1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Exp_Dbug
; use Exp_Dbug
;
32 with Exp_Util
; use Exp_Util
;
33 with Nlists
; use Nlists
;
34 with Nmake
; use Nmake
;
35 with Rtsfind
; use Rtsfind
;
37 with Sem_Ch3
; use Sem_Ch3
;
38 with Sem_Ch8
; use Sem_Ch8
;
39 with Sem_Ch13
; use Sem_Ch13
;
40 with Sem_Eval
; use Sem_Eval
;
41 with Sem_Res
; use Sem_Res
;
42 with Sem_Util
; use Sem_Util
;
43 with Sinfo
; use Sinfo
;
44 with Snames
; use Snames
;
45 with Stand
; use Stand
;
46 with Targparm
; use Targparm
;
47 with Tbuild
; use Tbuild
;
48 with Ttypes
; use Ttypes
;
49 with Uintp
; use Uintp
;
51 package body Exp_Pakd
is
53 ---------------------------
54 -- Endian Considerations --
55 ---------------------------
57 -- As described in the specification, bit numbering in a packed array
58 -- is consistent with bit numbering in a record representation clause,
59 -- and hence dependent on the endianness of the machine:
61 -- For little-endian machines, element zero is at the right hand end
62 -- (low order end) of a bit field.
64 -- For big-endian machines, element zero is at the left hand end
65 -- (high order end) of a bit field.
67 -- The shifts that are used to right justify a field therefore differ
68 -- in the two cases. For the little-endian case, we can simply use the
69 -- bit number (i.e. the element number * element size) as the count for
70 -- a right shift. For the big-endian case, we have to subtract the shift
71 -- count from an appropriate constant to use in the right shift. We use
72 -- rotates instead of shifts (which is necessary in the store case to
73 -- preserve other fields), and we expect that the backend will be able
74 -- to change the right rotate into a left rotate, avoiding the subtract,
75 -- if the architecture provides such an instruction.
77 ----------------------------------------------
78 -- Entity Tables for Packed Access Routines --
79 ----------------------------------------------
81 -- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call
82 -- library routines. This table is used to obtain the entity for the
85 type E_Array
is array (Int
range 01 .. 63) of RE_Id
;
87 -- Array of Bits_nn entities. Note that we do not use library routines
88 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
89 -- entries from System.Unsigned, because we also use this table for
90 -- certain special unchecked conversions in the big-endian case.
92 Bits_Id
: constant E_Array
:=
108 16 => RE_Unsigned_16
,
124 32 => RE_Unsigned_32
,
157 -- Array of Get routine entities. These are used to obtain an element
158 -- from a packed array. The N'th entry is used to obtain elements from
159 -- a packed array whose component size is N. RE_Null is used as a null
160 -- entry, for the cases where a library routine is not used.
162 Get_Id
: constant E_Array
:=
227 -- Array of Get routine entities to be used in the case where the packed
228 -- array is itself a component of a packed structure, and therefore may
229 -- not be fully aligned. This only affects the even sizes, since for the
230 -- odd sizes, we do not get any fixed alignment in any case.
232 GetU_Id
: constant E_Array
:=
297 -- Array of Set routine entities. These are used to assign an element
298 -- of a packed array. The N'th entry is used to assign elements for
299 -- a packed array whose component size is N. RE_Null is used as a null
300 -- entry, for the cases where a library routine is not used.
302 Set_Id
: constant E_Array
:=
367 -- Array of Set routine entities to be used in the case where the packed
368 -- array is itself a component of a packed structure, and therefore may
369 -- not be fully aligned. This only affects the even sizes, since for the
370 -- odd sizes, we do not get any fixed alignment in any case.
372 SetU_Id
: constant E_Array
:=
437 -----------------------
438 -- Local Subprograms --
439 -----------------------
441 procedure Compute_Linear_Subscript
444 Subscr
: out Node_Id
);
445 -- Given a constrained array type Atyp, and an indexed component node
446 -- N referencing an array object of this type, build an expression of
447 -- type Standard.Integer representing the zero-based linear subscript
448 -- value. This expression includes any required range checks.
450 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
);
451 -- Given an expression of a packed array type, builds a corresponding
452 -- expression whose type is the implementation type used to represent
453 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
455 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean;
456 -- There are two versions of the Set routines, the ones used when the
457 -- object is known to be sufficiently well aligned given the number of
458 -- bits, and the ones used when the object is not known to be aligned.
459 -- This routine is used to determine which set to use. Obj is a reference
460 -- to the object, and Csiz is the component size of the packed array.
461 -- True is returned if the alignment of object is known to be sufficient,
462 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
465 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
466 -- Build a left shift node, checking for the case of a shift count of zero
468 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
469 -- Build a right shift node, checking for the case of a shift count of zero
471 function RJ_Unchecked_Convert_To
473 Expr
: Node_Id
) return Node_Id
;
474 -- The packed array code does unchecked conversions which in some cases
475 -- may involve non-discrete types with differing sizes. The semantics of
476 -- such conversions is potentially endian dependent, and the effect we
477 -- want here for such a conversion is to do the conversion in size as
478 -- though numeric items are involved, and we extend or truncate on the
479 -- left side. This happens naturally in the little-endian case, but in
480 -- the big endian case we can get left justification, when what we want
481 -- is right justification. This routine does the unchecked conversion in
482 -- a stepwise manner to ensure that it gives the expected result. Hence
483 -- the name (RJ = Right justified). The parameters Typ and Expr are as
484 -- for the case of a normal Unchecked_Convert_To call.
486 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
);
487 -- This routine is called in the Get and Set case for arrays that are
488 -- packed but not bit-packed, meaning that they have at least one
489 -- subscript that is of an enumeration type with a non-standard
490 -- representation. This routine modifies the given node to properly
491 -- reference the corresponding packed array type.
493 procedure Setup_Inline_Packed_Array_Reference
496 Obj
: in out Node_Id
;
498 Shift
: out Node_Id
);
499 -- This procedure performs common processing on the N_Indexed_Component
500 -- parameter given as N, whose prefix is a reference to a packed array.
501 -- This is used for the get and set when the component size is 1,2,4
502 -- or for other component sizes when the packed array type is a modular
503 -- type (i.e. the cases that are handled with inline code).
507 -- N is the N_Indexed_Component node for the packed array reference
509 -- Atyp is the constrained array type (the actual subtype has been
510 -- computed if necessary to obtain the constraints, but this is still
511 -- the original array type, not the Packed_Array_Type value).
513 -- Obj is the object which is to be indexed. It is always of type Atyp.
517 -- Obj is the object containing the desired bit field. It is of type
518 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
519 -- entire value, for the small static case, or the proper selected byte
520 -- from the array in the large or dynamic case. This node is analyzed
521 -- and resolved on return.
523 -- Shift is a node representing the shift count to be used in the
524 -- rotate right instruction that positions the field for access.
525 -- This node is analyzed and resolved on return.
527 -- Cmask is a mask corresponding to the width of the component field.
528 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
530 -- Note: in some cases the call to this routine may generate actions
531 -- (for handling multi-use references and the generation of the packed
532 -- array type on the fly). Such actions are inserted into the tree
533 -- directly using Insert_Action.
535 ------------------------------
536 -- Compute_Linear_Subcsript --
537 ------------------------------
539 procedure Compute_Linear_Subscript
542 Subscr
: out Node_Id
)
544 Loc
: constant Source_Ptr
:= Sloc
(N
);
553 -- Loop through dimensions
555 Indx
:= First_Index
(Atyp
);
556 Oldsub
:= First
(Expressions
(N
));
558 while Present
(Indx
) loop
559 Styp
:= Etype
(Indx
);
560 Newsub
:= Relocate_Node
(Oldsub
);
562 -- Get expression for the subscript value. First, if Do_Range_Check
563 -- is set on a subscript, then we must do a range check against the
564 -- original bounds (not the bounds of the packed array type). We do
565 -- this by introducing a subtype conversion.
567 if Do_Range_Check
(Newsub
)
568 and then Etype
(Newsub
) /= Styp
570 Newsub
:= Convert_To
(Styp
, Newsub
);
573 -- Now evolve the expression for the subscript. First convert
574 -- the subscript to be zero based and of an integer type.
576 -- Case of integer type, where we just subtract to get lower bound
578 if Is_Integer_Type
(Styp
) then
580 -- If length of integer type is smaller than standard integer,
581 -- then we convert to integer first, then do the subtract
583 -- Integer (subscript) - Integer (Styp'First)
585 if Esize
(Styp
) < Esize
(Standard_Integer
) then
587 Make_Op_Subtract
(Loc
,
588 Left_Opnd
=> Convert_To
(Standard_Integer
, Newsub
),
590 Convert_To
(Standard_Integer
,
591 Make_Attribute_Reference
(Loc
,
592 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
593 Attribute_Name
=> Name_First
)));
595 -- For larger integer types, subtract first, then convert to
596 -- integer, this deals with strange long long integer bounds.
598 -- Integer (subscript - Styp'First)
602 Convert_To
(Standard_Integer
,
603 Make_Op_Subtract
(Loc
,
606 Make_Attribute_Reference
(Loc
,
607 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
608 Attribute_Name
=> Name_First
)));
611 -- For the enumeration case, we have to use 'Pos to get the value
612 -- to work with before subtracting the lower bound.
614 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
616 -- This is not quite right for bizarre cases where the size of the
617 -- enumeration type is > Integer'Size bits due to rep clause ???
620 pragma Assert
(Is_Enumeration_Type
(Styp
));
623 Make_Op_Subtract
(Loc
,
624 Left_Opnd
=> Convert_To
(Standard_Integer
,
625 Make_Attribute_Reference
(Loc
,
626 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
627 Attribute_Name
=> Name_Pos
,
628 Expressions
=> New_List
(Newsub
))),
631 Convert_To
(Standard_Integer
,
632 Make_Attribute_Reference
(Loc
,
633 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
634 Attribute_Name
=> Name_Pos
,
635 Expressions
=> New_List
(
636 Make_Attribute_Reference
(Loc
,
637 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
638 Attribute_Name
=> Name_First
)))));
641 Set_Paren_Count
(Newsub
, 1);
643 -- For the first subscript, we just copy that subscript value
648 -- Otherwise, we must multiply what we already have by the current
649 -- stride and then add in the new value to the evolving subscript.
655 Make_Op_Multiply
(Loc
,
658 Make_Attribute_Reference
(Loc
,
659 Attribute_Name
=> Name_Range_Length
,
660 Prefix
=> New_Occurrence_Of
(Styp
, Loc
))),
661 Right_Opnd
=> Newsub
);
664 -- Move to next subscript
669 end Compute_Linear_Subscript
;
671 -------------------------
672 -- Convert_To_PAT_Type --
673 -------------------------
675 -- The PAT is always obtained from the actual subtype
677 procedure Convert_To_PAT_Type
(Aexp
: Entity_Id
) is
681 Convert_To_Actual_Subtype
(Aexp
);
682 Act_ST
:= Underlying_Type
(Etype
(Aexp
));
683 Create_Packed_Array_Type
(Act_ST
);
685 -- Just replace the etype with the packed array type. This works
686 -- because the expression will not be further analyzed, and Gigi
687 -- considers the two types equivalent in any case.
689 -- This is not strictly the case ??? If the reference is an actual
690 -- in a call, the expansion of the prefix is delayed, and must be
691 -- reanalyzed, see Reset_Packed_Prefix. On the other hand, if the
692 -- prefix is a simple array reference, reanalysis can produce spurious
693 -- type errors when the PAT type is replaced again with the original
694 -- type of the array. The following is correct and minimal, but the
695 -- handling of more complex packed expressions in actuals is confused.
696 -- It is likely that the problem only remains for actuals in calls.
698 Set_Etype
(Aexp
, Packed_Array_Type
(Act_ST
));
700 if Is_Entity_Name
(Aexp
)
702 (Nkind
(Aexp
) = N_Indexed_Component
703 and then Is_Entity_Name
(Prefix
(Aexp
)))
707 end Convert_To_PAT_Type
;
709 ------------------------------
710 -- Create_Packed_Array_Type --
711 ------------------------------
713 procedure Create_Packed_Array_Type
(Typ
: Entity_Id
) is
714 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
715 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
716 Csize
: constant Uint
:= Component_Size
(Typ
);
731 procedure Install_PAT
;
732 -- This procedure is called with Decl set to the declaration for the
733 -- packed array type. It creates the type and installs it as required.
735 procedure Set_PB_Type
;
736 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
737 -- requirements (see documentation in the spec of this package).
743 procedure Install_PAT
is
744 Pushed_Scope
: Boolean := False;
747 -- We do not want to put the declaration we have created in the tree
748 -- since it is often hard, and sometimes impossible to find a proper
749 -- place for it (the impossible case arises for a packed array type
750 -- with bounds depending on the discriminant, a declaration cannot
751 -- be put inside the record, and the reference to the discriminant
752 -- cannot be outside the record).
754 -- The solution is to analyze the declaration while temporarily
755 -- attached to the tree at an appropriate point, and then we install
756 -- the resulting type as an Itype in the packed array type field of
757 -- the original type, so that no explicit declaration is required.
759 -- Note: the packed type is created in the scope of its parent
760 -- type. There are at least some cases where the current scope
761 -- is deeper, and so when this is the case, we temporarily reset
762 -- the scope for the definition. This is clearly safe, since the
763 -- first use of the packed array type will be the implicit
764 -- reference from the corresponding unpacked type when it is
767 if Is_Itype
(Typ
) then
768 Set_Parent
(Decl
, Associated_Node_For_Itype
(Typ
));
770 Set_Parent
(Decl
, Declaration_Node
(Typ
));
773 if Scope
(Typ
) /= Current_Scope
then
774 New_Scope
(Scope
(Typ
));
775 Pushed_Scope
:= True;
778 Set_Is_Itype
(PAT
, True);
779 Set_Packed_Array_Type
(Typ
, PAT
);
780 Analyze
(Decl
, Suppress
=> All_Checks
);
786 -- Set Esize and RM_Size to the actual size of the packed object
787 -- Do not reset RM_Size if already set, as happens in the case
788 -- of a modular type.
790 Set_Esize
(PAT
, PASize
);
792 if Unknown_RM_Size
(PAT
) then
793 Set_RM_Size
(PAT
, PASize
);
796 -- Set remaining fields of packed array type
798 Init_Alignment
(PAT
);
799 Set_Parent
(PAT
, Empty
);
800 Set_Associated_Node_For_Itype
(PAT
, Typ
);
801 Set_Is_Packed_Array_Type
(PAT
, True);
802 Set_Original_Array_Type
(PAT
, Typ
);
804 -- We definitely do not want to delay freezing for packed array
805 -- types. This is of particular importance for the itypes that
806 -- are generated for record components depending on discriminants
807 -- where there is no place to put the freeze node.
809 Set_Has_Delayed_Freeze
(PAT
, False);
810 Set_Has_Delayed_Freeze
(Etype
(PAT
), False);
812 -- If we did allocate a freeze node, then clear out the reference
813 -- since it is obsolete (should we delete the freeze node???)
815 Set_Freeze_Node
(PAT
, Empty
);
816 Set_Freeze_Node
(Etype
(PAT
), Empty
);
823 procedure Set_PB_Type
is
825 -- If the user has specified an explicit alignment for the
826 -- type or component, take it into account.
828 if Csize
<= 2 or else Csize
= 4 or else Csize
mod 2 /= 0
829 or else Alignment
(Typ
) = 1
830 or else Component_Alignment
(Typ
) = Calign_Storage_Unit
832 PB_Type
:= RTE
(RE_Packed_Bytes1
);
834 elsif Csize
mod 4 /= 0
835 or else Alignment
(Typ
) = 2
837 PB_Type
:= RTE
(RE_Packed_Bytes2
);
840 PB_Type
:= RTE
(RE_Packed_Bytes4
);
844 -- Start of processing for Create_Packed_Array_Type
847 -- If we already have a packed array type, nothing to do
849 if Present
(Packed_Array_Type
(Typ
)) then
853 -- If our immediate ancestor subtype is constrained, and it already
854 -- has a packed array type, then just share the same type, since the
855 -- bounds must be the same. If the ancestor is not an array type but
856 -- a private type, as can happen with multiple instantiations, create
857 -- a new packed type, to avoid privacy issues.
859 if Ekind
(Typ
) = E_Array_Subtype
then
860 Ancest
:= Ancestor_Subtype
(Typ
);
863 and then Is_Array_Type
(Ancest
)
864 and then Is_Constrained
(Ancest
)
865 and then Present
(Packed_Array_Type
(Ancest
))
867 Set_Packed_Array_Type
(Typ
, Packed_Array_Type
(Ancest
));
872 -- We preset the result type size from the size of the original array
873 -- type, since this size clearly belongs to the packed array type. The
874 -- size of the conceptual unpacked type is always set to unknown.
876 PASize
:= Esize
(Typ
);
878 -- Case of an array where at least one index is of an enumeration
879 -- type with a non-standard representation, but the component size
880 -- is not appropriate for bit packing. This is the case where we
881 -- have Is_Packed set (we would never be in this unit otherwise),
882 -- but Is_Bit_Packed_Array is false.
884 -- Note that if the component size is appropriate for bit packing,
885 -- then the circuit for the computation of the subscript properly
886 -- deals with the non-standard enumeration type case by taking the
889 if not Is_Bit_Packed_Array
(Typ
) then
891 -- Here we build a declaration:
893 -- type tttP is array (index1, index2, ...) of component_type
895 -- where index1, index2, are the index types. These are the same
896 -- as the index types of the original array, except for the non-
897 -- standard representation enumeration type case, where we have
900 -- For the unconstrained array case, we use
904 -- For the constrained case, we use
906 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
907 -- Enum_Type'Pos (Enum_Type'Last);
910 Make_Defining_Identifier
(Loc
,
911 Chars
=> New_External_Name
(Chars
(Typ
), 'P'));
913 Set_Packed_Array_Type
(Typ
, PAT
);
916 Indexes
: constant List_Id
:= New_List
;
918 Indx_Typ
: Entity_Id
;
923 Indx
:= First_Index
(Typ
);
925 while Present
(Indx
) loop
926 Indx_Typ
:= Etype
(Indx
);
928 Enum_Case
:= Is_Enumeration_Type
(Indx_Typ
)
929 and then Has_Non_Standard_Rep
(Indx_Typ
);
931 -- Unconstrained case
933 if not Is_Constrained
(Typ
) then
935 Indx_Typ
:= Standard_Natural
;
938 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
943 if not Enum_Case
then
944 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
948 Make_Subtype_Indication
(Loc
,
950 New_Occurrence_Of
(Standard_Natural
, Loc
),
952 Make_Range_Constraint
(Loc
,
956 Make_Attribute_Reference
(Loc
,
958 New_Occurrence_Of
(Indx_Typ
, Loc
),
959 Attribute_Name
=> Name_Pos
,
960 Expressions
=> New_List
(
961 Make_Attribute_Reference
(Loc
,
963 New_Occurrence_Of
(Indx_Typ
, Loc
),
964 Attribute_Name
=> Name_First
))),
967 Make_Attribute_Reference
(Loc
,
969 New_Occurrence_Of
(Indx_Typ
, Loc
),
970 Attribute_Name
=> Name_Pos
,
971 Expressions
=> New_List
(
972 Make_Attribute_Reference
(Loc
,
974 New_Occurrence_Of
(Indx_Typ
, Loc
),
975 Attribute_Name
=> Name_Last
)))))));
983 if not Is_Constrained
(Typ
) then
985 Make_Unconstrained_Array_Definition
(Loc
,
986 Subtype_Marks
=> Indexes
,
987 Component_Definition
=>
988 Make_Component_Definition
(Loc
,
989 Aliased_Present
=> False,
990 Subtype_Indication
=>
991 New_Occurrence_Of
(Ctyp
, Loc
)));
995 Make_Constrained_Array_Definition
(Loc
,
996 Discrete_Subtype_Definitions
=> Indexes
,
997 Component_Definition
=>
998 Make_Component_Definition
(Loc
,
999 Aliased_Present
=> False,
1000 Subtype_Indication
=>
1001 New_Occurrence_Of
(Ctyp
, Loc
)));
1005 Make_Full_Type_Declaration
(Loc
,
1006 Defining_Identifier
=> PAT
,
1007 Type_Definition
=> Typedef
);
1010 -- Set type as packed array type and install it
1012 Set_Is_Packed_Array_Type
(PAT
);
1016 -- Case of bit-packing required for unconstrained array. We create
1017 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1019 elsif not Is_Constrained
(Typ
) then
1021 Make_Defining_Identifier
(Loc
,
1022 Chars
=> Make_Packed_Array_Type_Name
(Typ
, Csize
));
1024 Set_Packed_Array_Type
(Typ
, PAT
);
1028 Make_Subtype_Declaration
(Loc
,
1029 Defining_Identifier
=> PAT
,
1030 Subtype_Indication
=> New_Occurrence_Of
(PB_Type
, Loc
));
1034 -- Remaining code is for the case of bit-packing for constrained array
1036 -- The name of the packed array subtype is
1040 -- where sss is the component size in bits and ttt is the name of
1041 -- the parent packed type.
1045 Make_Defining_Identifier
(Loc
,
1046 Chars
=> Make_Packed_Array_Type_Name
(Typ
, Csize
));
1048 Set_Packed_Array_Type
(Typ
, PAT
);
1050 -- Build an expression for the length of the array in bits.
1051 -- This is the product of the length of each of the dimensions
1057 Len_Expr
:= Empty
; -- suppress junk warning
1061 Make_Attribute_Reference
(Loc
,
1062 Attribute_Name
=> Name_Length
,
1063 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
1064 Expressions
=> New_List
(
1065 Make_Integer_Literal
(Loc
, J
)));
1068 Len_Expr
:= Len_Dim
;
1072 Make_Op_Multiply
(Loc
,
1073 Left_Opnd
=> Len_Expr
,
1074 Right_Opnd
=> Len_Dim
);
1078 exit when J
> Number_Dimensions
(Typ
);
1082 -- Temporarily attach the length expression to the tree and analyze
1083 -- and resolve it, so that we can test its value. We assume that the
1084 -- total length fits in type Integer. This expression may involve
1085 -- discriminants, so we treat it as a default/per-object expression.
1087 Set_Parent
(Len_Expr
, Typ
);
1088 Analyze_Per_Use_Expression
(Len_Expr
, Standard_Long_Long_Integer
);
1090 -- Use a modular type if possible. We can do this if we have
1091 -- static bounds, and the length is small enough, and the length
1092 -- is not zero. We exclude the zero length case because the size
1093 -- of things is always at least one, and the zero length object
1094 -- would have an anomalous size.
1096 if Compile_Time_Known_Value
(Len_Expr
) then
1097 Len_Bits
:= Expr_Value
(Len_Expr
) * Csize
;
1099 -- Check for size known to be too large
1102 Uint_2
** (Standard_Integer_Size
- 1) * System_Storage_Unit
1104 if System_Storage_Unit
= 8 then
1106 ("packed array size cannot exceed " &
1107 "Integer''Last bytes", Typ
);
1110 ("packed array size cannot exceed " &
1111 "Integer''Last storage units", Typ
);
1114 -- Reset length to arbitrary not too high value to continue
1116 Len_Expr
:= Make_Integer_Literal
(Loc
, 65535);
1117 Analyze_And_Resolve
(Len_Expr
, Standard_Long_Long_Integer
);
1120 -- We normally consider small enough to mean no larger than the
1121 -- value of System_Max_Binary_Modulus_Power, checking that in the
1122 -- case of values longer than word size, we have long shifts.
1126 (Len_Bits
<= System_Word_Size
1127 or else (Len_Bits
<= System_Max_Binary_Modulus_Power
1128 and then Support_Long_Shifts_On_Target
))
1130 -- Also test for alignment given. If an alignment is given which
1131 -- is smaller than the natural modular alignment, force the array
1132 -- of bytes representation to accommodate the alignment.
1135 (No
(Alignment_Clause
(Typ
))
1137 Alignment
(Typ
) >= ((Len_Bits
+ System_Storage_Unit
)
1138 / System_Storage_Unit
))
1140 -- We can use the modular type, it has the form:
1142 -- subtype tttPn is btyp
1143 -- range 0 .. 2 ** ((Typ'Length (1)
1144 -- * ... * Typ'Length (n)) * Csize) - 1;
1146 -- The bounds are statically known, and btyp is one
1147 -- of the unsigned types, depending on the length. If the
1148 -- type is its first subtype, i.e. it is a user-defined
1149 -- type, no object of the type will be larger, and it is
1150 -- worthwhile to use a small unsigned type.
1152 if Len_Bits
<= Standard_Short_Integer_Size
1153 and then First_Subtype
(Typ
) = Typ
1155 Btyp
:= RTE
(RE_Short_Unsigned
);
1157 elsif Len_Bits
<= Standard_Integer_Size
then
1158 Btyp
:= RTE
(RE_Unsigned
);
1160 elsif Len_Bits
<= Standard_Long_Integer_Size
then
1161 Btyp
:= RTE
(RE_Long_Unsigned
);
1164 Btyp
:= RTE
(RE_Long_Long_Unsigned
);
1167 Lit
:= Make_Integer_Literal
(Loc
, 2 ** Len_Bits
- 1);
1168 Set_Print_In_Hex
(Lit
);
1171 Make_Subtype_Declaration
(Loc
,
1172 Defining_Identifier
=> PAT
,
1173 Subtype_Indication
=>
1174 Make_Subtype_Indication
(Loc
,
1175 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
1178 Make_Range_Constraint
(Loc
,
1182 Make_Integer_Literal
(Loc
, 0),
1183 High_Bound
=> Lit
))));
1185 if PASize
= Uint_0
then
1194 -- Could not use a modular type, for all other cases, we build
1195 -- a packed array subtype:
1198 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1200 -- Bits is the length of the array in bits
1207 Make_Op_Multiply
(Loc
,
1209 Make_Integer_Literal
(Loc
, Csize
),
1210 Right_Opnd
=> Len_Expr
),
1213 Make_Integer_Literal
(Loc
, 7));
1215 Set_Paren_Count
(Bits_U1
, 1);
1218 Make_Op_Subtract
(Loc
,
1220 Make_Op_Divide
(Loc
,
1221 Left_Opnd
=> Bits_U1
,
1222 Right_Opnd
=> Make_Integer_Literal
(Loc
, 8)),
1223 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
1226 Make_Subtype_Declaration
(Loc
,
1227 Defining_Identifier
=> PAT
,
1228 Subtype_Indication
=>
1229 Make_Subtype_Indication
(Loc
,
1230 Subtype_Mark
=> New_Occurrence_Of
(PB_Type
, Loc
),
1232 Make_Index_Or_Discriminant_Constraint
(Loc
,
1233 Constraints
=> New_List
(
1236 Make_Integer_Literal
(Loc
, 0),
1238 Convert_To
(Standard_Integer
, PAT_High
))))));
1242 -- Currently the code in this unit requires that packed arrays
1243 -- represented by non-modular arrays of bytes be on a byte
1244 -- boundary for bit sizes handled by System.Pack_nn units.
1245 -- That's because these units assume the array being accessed
1246 -- starts on a byte boundary.
1248 if Get_Id
(UI_To_Int
(Csize
)) /= RE_Null
then
1249 Set_Must_Be_On_Byte_Boundary
(Typ
);
1252 end Create_Packed_Array_Type
;
1254 -----------------------------------
1255 -- Expand_Bit_Packed_Element_Set --
1256 -----------------------------------
1258 procedure Expand_Bit_Packed_Element_Set
(N
: Node_Id
) is
1259 Loc
: constant Source_Ptr
:= Sloc
(N
);
1260 Lhs
: constant Node_Id
:= Name
(N
);
1262 Ass_OK
: constant Boolean := Assignment_OK
(Lhs
);
1263 -- Used to preserve assignment OK status when assignment is rewritten
1265 Rhs
: Node_Id
:= Expression
(N
);
1266 -- Initially Rhs is the right hand side value, it will be replaced
1267 -- later by an appropriate unchecked conversion for the assignment.
1277 -- The expression for the shift value that is required
1279 Shift_Used
: Boolean := False;
1280 -- Set True if Shift has been used in the generated code at least
1281 -- once, so that it must be duplicated if used again
1286 Rhs_Val_Known
: Boolean;
1288 -- If the value of the right hand side as an integer constant is
1289 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1290 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1291 -- the Rhs_Val is undefined.
1293 function Get_Shift
return Node_Id
;
1294 -- Function used to get the value of Shift, making sure that it
1295 -- gets duplicated if the function is called more than once.
1301 function Get_Shift
return Node_Id
is
1303 -- If we used the shift value already, then duplicate it. We
1304 -- set a temporary parent in case actions have to be inserted.
1307 Set_Parent
(Shift
, N
);
1308 return Duplicate_Subexpr_No_Checks
(Shift
);
1310 -- If first time, use Shift unchanged, and set flag for first use
1318 -- Start of processing for Expand_Bit_Packed_Element_Set
1321 pragma Assert
(Is_Bit_Packed_Array
(Etype
(Prefix
(Lhs
))));
1323 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1324 Convert_To_Actual_Subtype
(Obj
);
1325 Atyp
:= Etype
(Obj
);
1326 PAT
:= Packed_Array_Type
(Atyp
);
1327 Ctyp
:= Component_Type
(Atyp
);
1328 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
1330 -- We convert the right hand side to the proper subtype to ensure
1331 -- that an appropriate range check is made (since the normal range
1332 -- check from assignment will be lost in the transformations). This
1333 -- conversion is analyzed immediately so that subsequent processing
1334 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1336 -- If the right-hand side is a string literal, create a temporary for
1337 -- it, constant-folding is not ready to wrap the bit representation
1338 -- of a string literal.
1340 if Nkind
(Rhs
) = N_String_Literal
then
1345 Make_Object_Declaration
(Loc
,
1346 Defining_Identifier
=>
1347 Make_Defining_Identifier
(Loc
, New_Internal_Name
('T')),
1348 Object_Definition
=> New_Occurrence_Of
(Ctyp
, Loc
),
1349 Expression
=> New_Copy_Tree
(Rhs
));
1351 Insert_Actions
(N
, New_List
(Decl
));
1352 Rhs
:= New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
);
1356 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1357 Set_Parent
(Rhs
, N
);
1358 Analyze_And_Resolve
(Rhs
, Ctyp
);
1360 -- Case of component size 1,2,4 or any component size for the modular
1361 -- case. These are the cases for which we can inline the code.
1363 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
1364 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
1366 Setup_Inline_Packed_Array_Reference
(Lhs
, Atyp
, Obj
, Cmask
, Shift
);
1368 -- The statement to be generated is:
1370 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, shift)))
1372 -- where mask1 is obtained by shifting Cmask left Shift bits
1373 -- and then complementing the result.
1375 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1377 -- the "or ..." is omitted if rhs is constant and all 0 bits
1379 -- rhs is converted to the appropriate type
1381 -- The result is converted back to the array type, since
1382 -- otherwise we lose knowledge of the packed nature.
1384 -- Determine if right side is all 0 bits or all 1 bits
1386 if Compile_Time_Known_Value
(Rhs
) then
1387 Rhs_Val
:= Expr_Rep_Value
(Rhs
);
1388 Rhs_Val_Known
:= True;
1390 -- The following test catches the case of an unchecked conversion
1391 -- of an integer literal. This results from optimizing aggregates
1394 elsif Nkind
(Rhs
) = N_Unchecked_Type_Conversion
1395 and then Compile_Time_Known_Value
(Expression
(Rhs
))
1397 Rhs_Val
:= Expr_Rep_Value
(Expression
(Rhs
));
1398 Rhs_Val_Known
:= True;
1402 Rhs_Val_Known
:= False;
1405 -- Some special checks for the case where the right hand value
1406 -- is known at compile time. Basically we have to take care of
1407 -- the implicit conversion to the subtype of the component object.
1409 if Rhs_Val_Known
then
1411 -- If we have a biased component type then we must manually do
1412 -- the biasing, since we are taking responsibility in this case
1413 -- for constructing the exact bit pattern to be used.
1415 if Has_Biased_Representation
(Ctyp
) then
1416 Rhs_Val
:= Rhs_Val
- Expr_Rep_Value
(Type_Low_Bound
(Ctyp
));
1419 -- For a negative value, we manually convert the twos complement
1420 -- value to a corresponding unsigned value, so that the proper
1421 -- field width is maintained. If we did not do this, we would
1422 -- get too many leading sign bits later on.
1425 Rhs_Val
:= 2 ** UI_From_Int
(Csiz
) + Rhs_Val
;
1429 New_Lhs
:= Duplicate_Subexpr
(Obj
, True);
1430 New_Rhs
:= Duplicate_Subexpr_No_Checks
(Obj
);
1432 -- First we deal with the "and"
1434 if not Rhs_Val_Known
or else Rhs_Val
/= Cmask
then
1440 if Compile_Time_Known_Value
(Shift
) then
1442 Make_Integer_Literal
(Loc
,
1443 Modulus
(Etype
(Obj
)) - 1 -
1444 (Cmask
* (2 ** Expr_Value
(Get_Shift
))));
1445 Set_Print_In_Hex
(Mask1
);
1448 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
1449 Set_Print_In_Hex
(Lit
);
1452 Right_Opnd
=> Make_Shift_Left
(Lit
, Get_Shift
));
1457 Left_Opnd
=> New_Rhs
,
1458 Right_Opnd
=> Mask1
);
1462 -- Then deal with the "or"
1464 if not Rhs_Val_Known
or else Rhs_Val
/= 0 then
1468 procedure Fixup_Rhs
;
1469 -- Adjust Rhs by bias if biased representation for components
1470 -- or remove extraneous high order sign bits if signed.
1472 procedure Fixup_Rhs
is
1473 Etyp
: constant Entity_Id
:= Etype
(Rhs
);
1476 -- For biased case, do the required biasing by simply
1477 -- converting to the biased subtype (the conversion
1478 -- will generate the required bias).
1480 if Has_Biased_Representation
(Ctyp
) then
1481 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1483 -- For a signed integer type that is not biased, generate
1484 -- a conversion to unsigned to strip high order sign bits.
1486 elsif Is_Signed_Integer_Type
(Ctyp
) then
1487 Rhs
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Csiz
)), Rhs
);
1490 -- Set Etype, since it can be referenced before the
1491 -- node is completely analyzed.
1493 Set_Etype
(Rhs
, Etyp
);
1495 -- We now need to do an unchecked conversion of the
1496 -- result to the target type, but it is important that
1497 -- this conversion be a right justified conversion and
1498 -- not a left justified conversion.
1500 Rhs
:= RJ_Unchecked_Convert_To
(Etype
(Obj
), Rhs
);
1506 and then Compile_Time_Known_Value
(Get_Shift
)
1509 Make_Integer_Literal
(Loc
,
1510 Rhs_Val
* (2 ** Expr_Value
(Get_Shift
)));
1511 Set_Print_In_Hex
(Or_Rhs
);
1514 -- We have to convert the right hand side to Etype (Obj).
1515 -- A special case case arises if what we have now is a Val
1516 -- attribute reference whose expression type is Etype (Obj).
1517 -- This happens for assignments of fields from the same
1518 -- array. In this case we get the required right hand side
1519 -- by simply removing the inner attribute reference.
1521 if Nkind
(Rhs
) = N_Attribute_Reference
1522 and then Attribute_Name
(Rhs
) = Name_Val
1523 and then Etype
(First
(Expressions
(Rhs
))) = Etype
(Obj
)
1525 Rhs
:= Relocate_Node
(First
(Expressions
(Rhs
)));
1528 -- If the value of the right hand side is a known integer
1529 -- value, then just replace it by an untyped constant,
1530 -- which will be properly retyped when we analyze and
1531 -- resolve the expression.
1533 elsif Rhs_Val_Known
then
1535 -- Note that Rhs_Val has already been normalized to
1536 -- be an unsigned value with the proper number of bits.
1539 Make_Integer_Literal
(Loc
, Rhs_Val
);
1541 -- Otherwise we need an unchecked conversion
1547 Or_Rhs
:= Make_Shift_Left
(Rhs
, Get_Shift
);
1550 if Nkind
(New_Rhs
) = N_Op_And
then
1551 Set_Paren_Count
(New_Rhs
, 1);
1556 Left_Opnd
=> New_Rhs
,
1557 Right_Opnd
=> Or_Rhs
);
1561 -- Now do the rewrite
1564 Make_Assignment_Statement
(Loc
,
1567 Unchecked_Convert_To
(Etype
(New_Lhs
), New_Rhs
)));
1568 Set_Assignment_OK
(Name
(N
), Ass_OK
);
1570 -- All other component sizes for non-modular case
1575 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1577 -- where Subscr is the computed linear subscript
1580 Bits_nn
: constant Entity_Id
:= RTE
(Bits_Id
(Csiz
));
1586 if No
(Bits_nn
) then
1588 -- Error, most likely High_Integrity_Mode restriction
1593 -- Acquire proper Set entity. We use the aligned or unaligned
1594 -- case as appropriate.
1596 if Known_Aligned_Enough
(Obj
, Csiz
) then
1597 Set_nn
:= RTE
(Set_Id
(Csiz
));
1599 Set_nn
:= RTE
(SetU_Id
(Csiz
));
1602 -- Now generate the set reference
1604 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1605 Convert_To_Actual_Subtype
(Obj
);
1606 Atyp
:= Etype
(Obj
);
1607 Compute_Linear_Subscript
(Atyp
, Lhs
, Subscr
);
1609 -- Below we must make the assumption that Obj is
1610 -- at least byte aligned, since otherwise its address
1611 -- cannot be taken. The assumption holds since the
1612 -- only arrays that can be misaligned are small packed
1613 -- arrays which are implemented as a modular type, and
1614 -- that is not the case here.
1617 Make_Procedure_Call_Statement
(Loc
,
1618 Name
=> New_Occurrence_Of
(Set_nn
, Loc
),
1619 Parameter_Associations
=> New_List
(
1620 Make_Attribute_Reference
(Loc
,
1621 Attribute_Name
=> Name_Address
,
1624 Unchecked_Convert_To
(Bits_nn
,
1625 Convert_To
(Ctyp
, Rhs
)))));
1630 Analyze
(N
, Suppress
=> All_Checks
);
1631 end Expand_Bit_Packed_Element_Set
;
1633 -------------------------------------
1634 -- Expand_Packed_Address_Reference --
1635 -------------------------------------
1637 procedure Expand_Packed_Address_Reference
(N
: Node_Id
) is
1638 Loc
: constant Source_Ptr
:= Sloc
(N
);
1650 -- We build up an expression serially that has the form
1652 -- outer_object'Address
1653 -- + (linear-subscript * component_size for each array reference
1654 -- + field'Bit_Position for each record field
1656 -- + ...) / Storage_Unit;
1658 -- Some additional conversions are required to deal with the addition
1659 -- operation, which is not normally visible to generated code.
1662 Ploc
:= Sloc
(Pref
);
1664 if Nkind
(Pref
) = N_Indexed_Component
then
1665 Convert_To_Actual_Subtype
(Prefix
(Pref
));
1666 Atyp
:= Etype
(Prefix
(Pref
));
1667 Compute_Linear_Subscript
(Atyp
, Pref
, Subscr
);
1670 Make_Op_Multiply
(Ploc
,
1671 Left_Opnd
=> Subscr
,
1673 Make_Attribute_Reference
(Ploc
,
1674 Prefix
=> New_Occurrence_Of
(Atyp
, Ploc
),
1675 Attribute_Name
=> Name_Component_Size
));
1677 elsif Nkind
(Pref
) = N_Selected_Component
then
1679 Make_Attribute_Reference
(Ploc
,
1680 Prefix
=> Selector_Name
(Pref
),
1681 Attribute_Name
=> Name_Bit_Position
);
1687 Term
:= Convert_To
(RTE
(RE_Integer_Address
), Term
);
1696 Right_Opnd
=> Term
);
1699 Pref
:= Prefix
(Pref
);
1703 Unchecked_Convert_To
(RTE
(RE_Address
),
1706 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1707 Make_Attribute_Reference
(Loc
,
1709 Attribute_Name
=> Name_Address
)),
1712 Make_Op_Divide
(Loc
,
1715 Make_Integer_Literal
(Loc
, System_Storage_Unit
)))));
1717 Analyze_And_Resolve
(N
, RTE
(RE_Address
));
1718 end Expand_Packed_Address_Reference
;
1720 ------------------------------------
1721 -- Expand_Packed_Boolean_Operator --
1722 ------------------------------------
1724 -- This routine expands "a op b" for the packed cases
1726 procedure Expand_Packed_Boolean_Operator
(N
: Node_Id
) is
1727 Loc
: constant Source_Ptr
:= Sloc
(N
);
1728 Typ
: constant Entity_Id
:= Etype
(N
);
1729 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
1730 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
1737 Convert_To_Actual_Subtype
(L
);
1738 Convert_To_Actual_Subtype
(R
);
1740 Ensure_Defined
(Etype
(L
), N
);
1741 Ensure_Defined
(Etype
(R
), N
);
1743 Apply_Length_Check
(R
, Etype
(L
));
1748 -- First an odd and silly test. We explicitly check for the XOR
1749 -- case where the component type is True .. True, since this will
1750 -- raise constraint error. A special check is required since CE
1751 -- will not be required other wise (cf Expand_Packed_Not).
1753 -- No such check is required for AND and OR, since for both these
1754 -- cases False op False = False, and True op True = True.
1756 if Nkind
(N
) = N_Op_Xor
then
1758 CT
: constant Entity_Id
:= Component_Type
(Rtyp
);
1759 BT
: constant Entity_Id
:= Base_Type
(CT
);
1763 Make_Raise_Constraint_Error
(Loc
,
1769 Make_Attribute_Reference
(Loc
,
1770 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
1771 Attribute_Name
=> Name_First
),
1775 New_Occurrence_Of
(Standard_True
, Loc
))),
1780 Make_Attribute_Reference
(Loc
,
1781 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
1782 Attribute_Name
=> Name_Last
),
1786 New_Occurrence_Of
(Standard_True
, Loc
)))),
1787 Reason
=> CE_Range_Check_Failed
));
1791 -- Now that that silliness is taken care of, get packed array type
1793 Convert_To_PAT_Type
(L
);
1794 Convert_To_PAT_Type
(R
);
1798 -- For the modular case, we expand a op b into
1800 -- rtyp!(pat!(a) op pat!(b))
1802 -- where rtyp is the Etype of the left operand. Note that we do not
1803 -- convert to the base type, since this would be unconstrained, and
1804 -- hence not have a corresponding packed array type set.
1806 -- Note that both operands must be modular for this code to be used
1808 if Is_Modular_Integer_Type
(PAT
)
1810 Is_Modular_Integer_Type
(Etype
(R
))
1816 if Nkind
(N
) = N_Op_And
then
1817 P
:= Make_Op_And
(Loc
, L
, R
);
1819 elsif Nkind
(N
) = N_Op_Or
then
1820 P
:= Make_Op_Or
(Loc
, L
, R
);
1822 else -- Nkind (N) = N_Op_Xor
1823 P
:= Make_Op_Xor
(Loc
, L
, R
);
1826 Rewrite
(N
, Unchecked_Convert_To
(Rtyp
, P
));
1829 -- For the array case, we insert the actions
1833 -- System.Bitops.Bit_And/Or/Xor
1835 -- Ltype'Length * Ltype'Component_Size;
1837 -- Rtype'Length * Rtype'Component_Size
1840 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1841 -- the second argument and fourth arguments are the lengths of the
1842 -- operands in bits. Then we replace the expression by a reference
1845 -- Note that if we are mixing a modular and array operand, everything
1846 -- works fine, since we ensure that the modular representation has the
1847 -- same physical layout as the array representation (that's what the
1848 -- left justified modular stuff in the big-endian case is about).
1852 Result_Ent
: constant Entity_Id
:=
1853 Make_Defining_Identifier
(Loc
,
1854 Chars
=> New_Internal_Name
('T'));
1859 if Nkind
(N
) = N_Op_And
then
1862 elsif Nkind
(N
) = N_Op_Or
then
1865 else -- Nkind (N) = N_Op_Xor
1869 Insert_Actions
(N
, New_List
(
1871 Make_Object_Declaration
(Loc
,
1872 Defining_Identifier
=> Result_Ent
,
1873 Object_Definition
=> New_Occurrence_Of
(Ltyp
, Loc
)),
1875 Make_Procedure_Call_Statement
(Loc
,
1876 Name
=> New_Occurrence_Of
(RTE
(E_Id
), Loc
),
1877 Parameter_Associations
=> New_List
(
1879 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1880 Attribute_Name
=> Name_Address
,
1883 Make_Op_Multiply
(Loc
,
1885 Make_Attribute_Reference
(Loc
,
1888 (Etype
(First_Index
(Ltyp
)), Loc
),
1889 Attribute_Name
=> Name_Range_Length
),
1891 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
))),
1893 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1894 Attribute_Name
=> Name_Address
,
1897 Make_Op_Multiply
(Loc
,
1899 Make_Attribute_Reference
(Loc
,
1902 (Etype
(First_Index
(Rtyp
)), Loc
),
1903 Attribute_Name
=> Name_Range_Length
),
1905 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
1907 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1908 Attribute_Name
=> Name_Address
,
1909 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
))))));
1912 New_Occurrence_Of
(Result_Ent
, Loc
));
1916 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
1917 end Expand_Packed_Boolean_Operator
;
1919 -------------------------------------
1920 -- Expand_Packed_Element_Reference --
1921 -------------------------------------
1923 procedure Expand_Packed_Element_Reference
(N
: Node_Id
) is
1924 Loc
: constant Source_Ptr
:= Sloc
(N
);
1936 -- If not bit packed, we have the enumeration case, which is easily
1937 -- dealt with (just adjust the subscripts of the indexed component)
1939 -- Note: this leaves the result as an indexed component, which is
1940 -- still a variable, so can be used in the assignment case, as is
1941 -- required in the enumeration case.
1943 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
1944 Setup_Enumeration_Packed_Array_Reference
(N
);
1948 -- Remaining processing is for the bit-packed case
1950 Obj
:= Relocate_Node
(Prefix
(N
));
1951 Convert_To_Actual_Subtype
(Obj
);
1952 Atyp
:= Etype
(Obj
);
1953 PAT
:= Packed_Array_Type
(Atyp
);
1954 Ctyp
:= Component_Type
(Atyp
);
1955 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
1957 -- Case of component size 1,2,4 or any component size for the modular
1958 -- case. These are the cases for which we can inline the code.
1960 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
1961 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
1963 Setup_Inline_Packed_Array_Reference
(N
, Atyp
, Obj
, Cmask
, Shift
);
1964 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
1965 Set_Print_In_Hex
(Lit
);
1967 -- We generate a shift right to position the field, followed by a
1968 -- masking operation to extract the bit field, and we finally do an
1969 -- unchecked conversion to convert the result to the required target.
1971 -- Note that the unchecked conversion automatically deals with the
1972 -- bias if we are dealing with a biased representation. What will
1973 -- happen is that we temporarily generate the biased representation,
1974 -- but almost immediately that will be converted to the original
1975 -- unbiased component type, and the bias will disappear.
1979 Left_Opnd
=> Make_Shift_Right
(Obj
, Shift
),
1982 -- We neded to analyze this before we do the unchecked convert
1983 -- below, but we need it temporarily attached to the tree for
1984 -- this analysis (hence the temporary Set_Parent call).
1986 Set_Parent
(Arg
, Parent
(N
));
1987 Analyze_And_Resolve
(Arg
);
1990 RJ_Unchecked_Convert_To
(Ctyp
, Arg
));
1992 -- All other component sizes for non-modular case
1997 -- Component_Type!(Get_nn (Arr'address, Subscr))
1999 -- where Subscr is the computed linear subscript
2006 -- Acquire proper Get entity. We use the aligned or unaligned
2007 -- case as appropriate.
2009 if Known_Aligned_Enough
(Obj
, Csiz
) then
2010 Get_nn
:= RTE
(Get_Id
(Csiz
));
2012 Get_nn
:= RTE
(GetU_Id
(Csiz
));
2015 -- Now generate the get reference
2017 Compute_Linear_Subscript
(Atyp
, N
, Subscr
);
2019 -- Below we make the assumption that Obj is at least byte
2020 -- aligned, since otherwise its address cannot be taken.
2021 -- The assumption holds since the only arrays that can be
2022 -- misaligned are small packed arrays which are implemented
2023 -- as a modular type, and that is not the case here.
2026 Unchecked_Convert_To
(Ctyp
,
2027 Make_Function_Call
(Loc
,
2028 Name
=> New_Occurrence_Of
(Get_nn
, Loc
),
2029 Parameter_Associations
=> New_List
(
2030 Make_Attribute_Reference
(Loc
,
2031 Attribute_Name
=> Name_Address
,
2037 Analyze_And_Resolve
(N
, Ctyp
, Suppress
=> All_Checks
);
2039 end Expand_Packed_Element_Reference
;
2041 ----------------------
2042 -- Expand_Packed_Eq --
2043 ----------------------
2045 -- Handles expansion of "=" on packed array types
2047 procedure Expand_Packed_Eq
(N
: Node_Id
) is
2048 Loc
: constant Source_Ptr
:= Sloc
(N
);
2049 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2050 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2060 Convert_To_Actual_Subtype
(L
);
2061 Convert_To_Actual_Subtype
(R
);
2062 Ltyp
:= Underlying_Type
(Etype
(L
));
2063 Rtyp
:= Underlying_Type
(Etype
(R
));
2065 Convert_To_PAT_Type
(L
);
2066 Convert_To_PAT_Type
(R
);
2070 Make_Op_Multiply
(Loc
,
2072 Make_Attribute_Reference
(Loc
,
2073 Attribute_Name
=> Name_Length
,
2074 Prefix
=> New_Occurrence_Of
(Ltyp
, Loc
)),
2076 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
)));
2079 Make_Op_Multiply
(Loc
,
2081 Make_Attribute_Reference
(Loc
,
2082 Attribute_Name
=> Name_Length
,
2083 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
)),
2085 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
)));
2087 -- For the modular case, we transform the comparison to:
2089 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2091 -- where PAT is the packed array type. This works fine, since in the
2092 -- modular case we guarantee that the unused bits are always zeroes.
2093 -- We do have to compare the lengths because we could be comparing
2094 -- two different subtypes of the same base type.
2096 if Is_Modular_Integer_Type
(PAT
) then
2101 Left_Opnd
=> LLexpr
,
2102 Right_Opnd
=> RLexpr
),
2109 -- For the non-modular case, we call a runtime routine
2111 -- System.Bit_Ops.Bit_Eq
2112 -- (L'Address, L_Length, R'Address, R_Length)
2114 -- where PAT is the packed array type, and the lengths are the lengths
2115 -- in bits of the original packed arrays. This routine takes care of
2116 -- not comparing the unused bits in the last byte.
2120 Make_Function_Call
(Loc
,
2121 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Eq
), Loc
),
2122 Parameter_Associations
=> New_List
(
2123 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2124 Attribute_Name
=> Name_Address
,
2129 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2130 Attribute_Name
=> Name_Address
,
2136 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
2137 end Expand_Packed_Eq
;
2139 -----------------------
2140 -- Expand_Packed_Not --
2141 -----------------------
2143 -- Handles expansion of "not" on packed array types
2145 procedure Expand_Packed_Not
(N
: Node_Id
) is
2146 Loc
: constant Source_Ptr
:= Sloc
(N
);
2147 Typ
: constant Entity_Id
:= Etype
(N
);
2148 Opnd
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2155 Convert_To_Actual_Subtype
(Opnd
);
2156 Rtyp
:= Etype
(Opnd
);
2158 -- First an odd and silly test. We explicitly check for the case
2159 -- where the 'First of the component type is equal to the 'Last of
2160 -- this component type, and if this is the case, we make sure that
2161 -- constraint error is raised. The reason is that the NOT is bound
2162 -- to cause CE in this case, and we will not otherwise catch it.
2164 -- Believe it or not, this was reported as a bug. Note that nearly
2165 -- always, the test will evaluate statically to False, so the code
2166 -- will be statically removed, and no extra overhead caused.
2169 CT
: constant Entity_Id
:= Component_Type
(Rtyp
);
2173 Make_Raise_Constraint_Error
(Loc
,
2177 Make_Attribute_Reference
(Loc
,
2178 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
2179 Attribute_Name
=> Name_First
),
2182 Make_Attribute_Reference
(Loc
,
2183 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
2184 Attribute_Name
=> Name_Last
)),
2185 Reason
=> CE_Range_Check_Failed
));
2188 -- Now that that silliness is taken care of, get packed array type
2190 Convert_To_PAT_Type
(Opnd
);
2191 PAT
:= Etype
(Opnd
);
2193 -- For the case where the packed array type is a modular type,
2194 -- not A expands simply into:
2196 -- rtyp!(PAT!(A) xor mask)
2198 -- where PAT is the packed array type, and mask is a mask of all
2199 -- one bits of length equal to the size of this packed type and
2200 -- rtyp is the actual subtype of the operand
2202 Lit
:= Make_Integer_Literal
(Loc
, 2 ** Esize
(PAT
) - 1);
2203 Set_Print_In_Hex
(Lit
);
2205 if not Is_Array_Type
(PAT
) then
2207 Unchecked_Convert_To
(Rtyp
,
2210 Right_Opnd
=> Lit
)));
2212 -- For the array case, we insert the actions
2216 -- System.Bitops.Bit_Not
2218 -- Typ'Length * Typ'Component_Size;
2221 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second
2222 -- argument is the length of the operand in bits. Then we replace
2223 -- the expression by a reference to Result.
2227 Result_Ent
: constant Entity_Id
:=
2228 Make_Defining_Identifier
(Loc
,
2229 Chars
=> New_Internal_Name
('T'));
2232 Insert_Actions
(N
, New_List
(
2234 Make_Object_Declaration
(Loc
,
2235 Defining_Identifier
=> Result_Ent
,
2236 Object_Definition
=> New_Occurrence_Of
(Rtyp
, Loc
)),
2238 Make_Procedure_Call_Statement
(Loc
,
2239 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Not
), Loc
),
2240 Parameter_Associations
=> New_List
(
2242 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2243 Attribute_Name
=> Name_Address
,
2246 Make_Op_Multiply
(Loc
,
2248 Make_Attribute_Reference
(Loc
,
2251 (Etype
(First_Index
(Rtyp
)), Loc
),
2252 Attribute_Name
=> Name_Range_Length
),
2254 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
2256 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2257 Attribute_Name
=> Name_Address
,
2258 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
))))));
2261 New_Occurrence_Of
(Result_Ent
, Loc
));
2265 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
2267 end Expand_Packed_Not
;
2269 -------------------------------------
2270 -- Involves_Packed_Array_Reference --
2271 -------------------------------------
2273 function Involves_Packed_Array_Reference
(N
: Node_Id
) return Boolean is
2275 if Nkind
(N
) = N_Indexed_Component
2276 and then Is_Bit_Packed_Array
(Etype
(Prefix
(N
)))
2280 elsif Nkind
(N
) = N_Selected_Component
then
2281 return Involves_Packed_Array_Reference
(Prefix
(N
));
2286 end Involves_Packed_Array_Reference
;
2288 --------------------------
2289 -- Known_Aligned_Enough --
2290 --------------------------
2292 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean is
2293 Typ
: constant Entity_Id
:= Etype
(Obj
);
2295 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean;
2296 -- If the component is in a record that contains previous packed
2297 -- components, consider it unaligned because the back-end might
2298 -- choose to pack the rest of the record. Lead to less efficient code,
2299 -- but safer vis-a-vis of back-end choices.
2301 --------------------------------
2302 -- In_Partially_Packed_Record --
2303 --------------------------------
2305 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean is
2306 Rec_Type
: constant Entity_Id
:= Scope
(Comp
);
2307 Prev_Comp
: Entity_Id
;
2310 Prev_Comp
:= First_Entity
(Rec_Type
);
2311 while Present
(Prev_Comp
) loop
2312 if Is_Packed
(Etype
(Prev_Comp
)) then
2315 elsif Prev_Comp
= Comp
then
2319 Next_Entity
(Prev_Comp
);
2323 end In_Partially_Packed_Record
;
2325 -- Start of processing for Known_Aligned_Enough
2328 -- Odd bit sizes don't need alignment anyway
2330 if Csiz
mod 2 = 1 then
2333 -- If we have a specified alignment, see if it is sufficient, if not
2334 -- then we can't possibly be aligned enough in any case.
2336 elsif Known_Alignment
(Etype
(Obj
)) then
2337 -- Alignment required is 4 if size is a multiple of 4, and
2338 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2340 if Alignment
(Etype
(Obj
)) < 4 - (Csiz
mod 4) then
2345 -- OK, alignment should be sufficient, if object is aligned
2347 -- If object is strictly aligned, then it is definitely aligned
2349 if Strict_Alignment
(Typ
) then
2352 -- Case of subscripted array reference
2354 elsif Nkind
(Obj
) = N_Indexed_Component
then
2356 -- If we have a pointer to an array, then this is definitely
2357 -- aligned, because pointers always point to aligned versions.
2359 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
2362 -- Otherwise, go look at the prefix
2365 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2368 -- Case of record field
2370 elsif Nkind
(Obj
) = N_Selected_Component
then
2372 -- What is significant here is whether the record type is packed
2374 if Is_Record_Type
(Etype
(Prefix
(Obj
)))
2375 and then Is_Packed
(Etype
(Prefix
(Obj
)))
2379 -- Or the component has a component clause which might cause
2380 -- the component to become unaligned (we can't tell if the
2381 -- backend is doing alignment computations).
2383 elsif Present
(Component_Clause
(Entity
(Selector_Name
(Obj
)))) then
2386 elsif In_Partially_Packed_Record
(Entity
(Selector_Name
(Obj
))) then
2389 -- In all other cases, go look at prefix
2392 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2395 elsif Nkind
(Obj
) = N_Type_Conversion
then
2396 return Known_Aligned_Enough
(Expression
(Obj
), Csiz
);
2398 -- For a formal parameter, it is safer to assume that it is not
2399 -- aligned, because the formal may be unconstrained while the actual
2400 -- is constrained. In this situation, a small constrained packed
2401 -- array, represented in modular form, may be unaligned.
2403 elsif Is_Entity_Name
(Obj
) then
2404 return not Is_Formal
(Entity
(Obj
));
2407 -- If none of the above, must be aligned
2410 end Known_Aligned_Enough
;
2412 ---------------------
2413 -- Make_Shift_Left --
2414 ---------------------
2416 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2420 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2424 Make_Op_Shift_Left
(Sloc
(N
),
2427 Set_Shift_Count_OK
(Nod
, True);
2430 end Make_Shift_Left
;
2432 ----------------------
2433 -- Make_Shift_Right --
2434 ----------------------
2436 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2440 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2444 Make_Op_Shift_Right
(Sloc
(N
),
2447 Set_Shift_Count_OK
(Nod
, True);
2450 end Make_Shift_Right
;
2452 -----------------------------
2453 -- RJ_Unchecked_Convert_To --
2454 -----------------------------
2456 function RJ_Unchecked_Convert_To
2458 Expr
: Node_Id
) return Node_Id
2460 Source_Typ
: constant Entity_Id
:= Etype
(Expr
);
2461 Target_Typ
: constant Entity_Id
:= Typ
;
2463 Src
: Node_Id
:= Expr
;
2469 Source_Siz
:= UI_To_Int
(RM_Size
(Source_Typ
));
2470 Target_Siz
:= UI_To_Int
(RM_Size
(Target_Typ
));
2472 -- First step, if the source type is not a discrete type, then we
2473 -- first convert to a modular type of the source length, since
2474 -- otherwise, on a big-endian machine, we get left-justification.
2475 -- We do it for little-endian machines as well, because there might
2476 -- be junk bits that are not cleared if the type is not numeric.
2478 if Source_Siz
/= Target_Siz
2479 and then not Is_Discrete_Type
(Source_Typ
)
2481 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Source_Siz
)), Src
);
2484 -- In the big endian case, if the lengths of the two types differ,
2485 -- then we must worry about possible left justification in the
2486 -- conversion, and avoiding that is what this is all about.
2488 if Bytes_Big_Endian
and then Source_Siz
/= Target_Siz
then
2490 -- Next step. If the target is not a discrete type, then we first
2491 -- convert to a modular type of the target length, since
2492 -- otherwise, on a big-endian machine, we get left-justification.
2494 if not Is_Discrete_Type
(Target_Typ
) then
2495 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Target_Siz
)), Src
);
2499 -- And now we can do the final conversion to the target type
2501 return Unchecked_Convert_To
(Target_Typ
, Src
);
2502 end RJ_Unchecked_Convert_To
;
2504 ----------------------------------------------
2505 -- Setup_Enumeration_Packed_Array_Reference --
2506 ----------------------------------------------
2508 -- All we have to do here is to find the subscripts that correspond
2509 -- to the index positions that have non-standard enumeration types
2510 -- and insert a Pos attribute to get the proper subscript value.
2512 -- Finally the prefix must be uncheck converted to the corresponding
2513 -- packed array type.
2515 -- Note that the component type is unchanged, so we do not need to
2516 -- fiddle with the types (Gigi always automatically takes the packed
2517 -- array type if it is set, as it will be in this case).
2519 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
) is
2520 Pfx
: constant Node_Id
:= Prefix
(N
);
2521 Typ
: constant Entity_Id
:= Etype
(N
);
2522 Exprs
: constant List_Id
:= Expressions
(N
);
2526 -- If the array is unconstrained, then we replace the array
2527 -- reference with its actual subtype. This actual subtype will
2528 -- have a packed array type with appropriate bounds.
2530 if not Is_Constrained
(Packed_Array_Type
(Etype
(Pfx
))) then
2531 Convert_To_Actual_Subtype
(Pfx
);
2534 Expr
:= First
(Exprs
);
2535 while Present
(Expr
) loop
2537 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2538 Expr_Typ
: constant Entity_Id
:= Etype
(Expr
);
2541 if Is_Enumeration_Type
(Expr_Typ
)
2542 and then Has_Non_Standard_Rep
(Expr_Typ
)
2545 Make_Attribute_Reference
(Loc
,
2546 Prefix
=> New_Occurrence_Of
(Expr_Typ
, Loc
),
2547 Attribute_Name
=> Name_Pos
,
2548 Expressions
=> New_List
(Relocate_Node
(Expr
))));
2549 Analyze_And_Resolve
(Expr
, Standard_Natural
);
2557 Make_Indexed_Component
(Sloc
(N
),
2559 Unchecked_Convert_To
(Packed_Array_Type
(Etype
(Pfx
)), Pfx
),
2560 Expressions
=> Exprs
));
2562 Analyze_And_Resolve
(N
, Typ
);
2564 end Setup_Enumeration_Packed_Array_Reference
;
2566 -----------------------------------------
2567 -- Setup_Inline_Packed_Array_Reference --
2568 -----------------------------------------
2570 procedure Setup_Inline_Packed_Array_Reference
2573 Obj
: in out Node_Id
;
2575 Shift
: out Node_Id
)
2577 Loc
: constant Source_Ptr
:= Sloc
(N
);
2584 Csiz
:= Component_Size
(Atyp
);
2586 Convert_To_PAT_Type
(Obj
);
2589 Cmask
:= 2 ** Csiz
- 1;
2591 if Is_Array_Type
(PAT
) then
2592 Otyp
:= Component_Type
(PAT
);
2593 Osiz
:= Component_Size
(PAT
);
2598 -- In the case where the PAT is a modular type, we want the actual
2599 -- size in bits of the modular value we use. This is neither the
2600 -- Object_Size nor the Value_Size, either of which may have been
2601 -- reset to strange values, but rather the minimum size. Note that
2602 -- since this is a modular type with full range, the issue of
2603 -- biased representation does not arise.
2605 Osiz
:= UI_From_Int
(Minimum_Size
(Otyp
));
2608 Compute_Linear_Subscript
(Atyp
, N
, Shift
);
2610 -- If the component size is not 1, then the subscript must be
2611 -- multiplied by the component size to get the shift count.
2615 Make_Op_Multiply
(Loc
,
2616 Left_Opnd
=> Make_Integer_Literal
(Loc
, Csiz
),
2617 Right_Opnd
=> Shift
);
2620 -- If we have the array case, then this shift count must be broken
2621 -- down into a byte subscript, and a shift within the byte.
2623 if Is_Array_Type
(PAT
) then
2626 New_Shift
: Node_Id
;
2629 -- We must analyze shift, since we will duplicate it
2631 Set_Parent
(Shift
, N
);
2633 (Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2635 -- The shift count within the word is
2640 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2641 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
));
2643 -- The subscript to be used on the PAT array is
2647 Make_Indexed_Component
(Loc
,
2649 Expressions
=> New_List
(
2650 Make_Op_Divide
(Loc
,
2651 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2652 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
))));
2657 -- For the modular integer case, the object to be manipulated is
2658 -- the entire array, so Obj is unchanged. Note that we will reset
2659 -- its type to PAT before returning to the caller.
2665 -- The one remaining step is to modify the shift count for the
2666 -- big-endian case. Consider the following example in a byte:
2668 -- xxxxxxxx bits of byte
2669 -- vvvvvvvv bits of value
2670 -- 33221100 little-endian numbering
2671 -- 00112233 big-endian numbering
2673 -- Here we have the case of 2-bit fields
2675 -- For the little-endian case, we already have the proper shift
2676 -- count set, e.g. for element 2, the shift count is 2*2 = 4.
2678 -- For the big endian case, we have to adjust the shift count,
2679 -- computing it as (N - F) - shift, where N is the number of bits
2680 -- in an element of the array used to implement the packed array,
2681 -- F is the number of bits in a source level array element, and
2682 -- shift is the count so far computed.
2684 if Bytes_Big_Endian
then
2686 Make_Op_Subtract
(Loc
,
2687 Left_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
- Csiz
),
2688 Right_Opnd
=> Shift
);
2691 Set_Parent
(Shift
, N
);
2692 Set_Parent
(Obj
, N
);
2693 Analyze_And_Resolve
(Obj
, Otyp
, Suppress
=> All_Checks
);
2694 Analyze_And_Resolve
(Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2696 -- Make sure final type of object is the appropriate packed type
2698 Set_Etype
(Obj
, Otyp
);
2700 end Setup_Inline_Packed_Array_Reference
;