gcc/fortran/
[official-gcc.git] / gcc / tree-parloops.c
blob1303ffc7d084c16287986d0567de788a5e537ff5
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-low.h"
53 #include "tree-ssa.h"
54 #include "params.h"
55 #include "params-enum.h"
56 #include "tree-ssa-alias.h"
57 #include "tree-eh.h"
58 #include "gomp-constants.h"
59 #include "tree-dfa.h"
61 /* This pass tries to distribute iterations of loops into several threads.
62 The implementation is straightforward -- for each loop we test whether its
63 iterations are independent, and if it is the case (and some additional
64 conditions regarding profitability and correctness are satisfied), we
65 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
66 machinery do its job.
68 The most of the complexity is in bringing the code into shape expected
69 by the omp expanders:
70 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
71 variable and that the exit test is at the start of the loop body
72 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
73 variables by accesses through pointers, and breaking up ssa chains
74 by storing the values incoming to the parallelized loop to a structure
75 passed to the new function as an argument (something similar is done
76 in omp gimplification, unfortunately only a small part of the code
77 can be shared).
79 TODO:
80 -- if there are several parallelizable loops in a function, it may be
81 possible to generate the threads just once (using synchronization to
82 ensure that cross-loop dependences are obeyed).
83 -- handling of common reduction patterns for outer loops.
85 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
87 Reduction handling:
88 currently we use vect_force_simple_reduction() to detect reduction patterns.
89 The code transformation will be introduced by an example.
92 parloop
94 int sum=1;
96 for (i = 0; i < N; i++)
98 x[i] = i + 3;
99 sum+=x[i];
103 gimple-like code:
104 header_bb:
106 # sum_29 = PHI <sum_11(5), 1(3)>
107 # i_28 = PHI <i_12(5), 0(3)>
108 D.1795_8 = i_28 + 3;
109 x[i_28] = D.1795_8;
110 sum_11 = D.1795_8 + sum_29;
111 i_12 = i_28 + 1;
112 if (N_6(D) > i_12)
113 goto header_bb;
116 exit_bb:
118 # sum_21 = PHI <sum_11(4)>
119 printf (&"%d"[0], sum_21);
122 after reduction transformation (only relevant parts):
124 parloop
127 ....
130 # Storing the initial value given by the user. #
132 .paral_data_store.32.sum.27 = 1;
134 #pragma omp parallel num_threads(4)
136 #pragma omp for schedule(static)
138 # The neutral element corresponding to the particular
139 reduction's operation, e.g. 0 for PLUS_EXPR,
140 1 for MULT_EXPR, etc. replaces the user's initial value. #
142 # sum.27_29 = PHI <sum.27_11, 0>
144 sum.27_11 = D.1827_8 + sum.27_29;
146 GIMPLE_OMP_CONTINUE
148 # Adding this reduction phi is done at create_phi_for_local_result() #
149 # sum.27_56 = PHI <sum.27_11, 0>
150 GIMPLE_OMP_RETURN
152 # Creating the atomic operation is done at
153 create_call_for_reduction_1() #
155 #pragma omp atomic_load
156 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
157 D.1840_60 = sum.27_56 + D.1839_59;
158 #pragma omp atomic_store (D.1840_60);
160 GIMPLE_OMP_RETURN
162 # collecting the result after the join of the threads is done at
163 create_loads_for_reductions().
164 The value computed by the threads is loaded from the
165 shared struct. #
168 .paral_data_load.33_52 = &.paral_data_store.32;
169 sum_37 = .paral_data_load.33_52->sum.27;
170 sum_43 = D.1795_41 + sum_37;
172 exit bb:
173 # sum_21 = PHI <sum_43, sum_26>
174 printf (&"%d"[0], sum_21);
182 /* Minimal number of iterations of a loop that should be executed in each
183 thread. */
184 #define MIN_PER_THREAD 100
186 /* Element of the hashtable, representing a
187 reduction in the current loop. */
188 struct reduction_info
190 gimple *reduc_stmt; /* reduction statement. */
191 gimple *reduc_phi; /* The phi node defining the reduction. */
192 enum tree_code reduction_code;/* code for the reduction operation. */
193 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
194 result. */
195 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
196 of the reduction variable when existing the loop. */
197 tree initial_value; /* The initial value of the reduction var before entering the loop. */
198 tree field; /* the name of the field in the parloop data structure intended for reduction. */
199 tree reduc_addr; /* The address of the reduction variable for
200 openacc reductions. */
201 tree init; /* reduction initialization value. */
202 gphi *new_phi; /* (helper field) Newly created phi node whose result
203 will be passed to the atomic operation. Represents
204 the local result each thread computed for the reduction
205 operation. */
208 /* Reduction info hashtable helpers. */
210 struct reduction_hasher : free_ptr_hash <reduction_info>
212 static inline hashval_t hash (const reduction_info *);
213 static inline bool equal (const reduction_info *, const reduction_info *);
216 /* Equality and hash functions for hashtab code. */
218 inline bool
219 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
221 return (a->reduc_phi == b->reduc_phi);
224 inline hashval_t
225 reduction_hasher::hash (const reduction_info *a)
227 return a->reduc_version;
230 typedef hash_table<reduction_hasher> reduction_info_table_type;
233 static struct reduction_info *
234 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
236 struct reduction_info tmpred, *red;
238 if (reduction_list->elements () == 0 || phi == NULL)
239 return NULL;
241 if (gimple_uid (phi) == (unsigned int)-1
242 || gimple_uid (phi) == 0)
243 return NULL;
245 tmpred.reduc_phi = phi;
246 tmpred.reduc_version = gimple_uid (phi);
247 red = reduction_list->find (&tmpred);
248 gcc_assert (red == NULL || red->reduc_phi == phi);
250 return red;
253 /* Element of hashtable of names to copy. */
255 struct name_to_copy_elt
257 unsigned version; /* The version of the name to copy. */
258 tree new_name; /* The new name used in the copy. */
259 tree field; /* The field of the structure used to pass the
260 value. */
263 /* Name copies hashtable helpers. */
265 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
267 static inline hashval_t hash (const name_to_copy_elt *);
268 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
271 /* Equality and hash functions for hashtab code. */
273 inline bool
274 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
276 return a->version == b->version;
279 inline hashval_t
280 name_to_copy_hasher::hash (const name_to_copy_elt *a)
282 return (hashval_t) a->version;
285 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
287 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
288 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
289 represents the denominator for every element in the matrix. */
290 typedef struct lambda_trans_matrix_s
292 lambda_matrix matrix;
293 int rowsize;
294 int colsize;
295 int denominator;
296 } *lambda_trans_matrix;
297 #define LTM_MATRIX(T) ((T)->matrix)
298 #define LTM_ROWSIZE(T) ((T)->rowsize)
299 #define LTM_COLSIZE(T) ((T)->colsize)
300 #define LTM_DENOMINATOR(T) ((T)->denominator)
302 /* Allocate a new transformation matrix. */
304 static lambda_trans_matrix
305 lambda_trans_matrix_new (int colsize, int rowsize,
306 struct obstack * lambda_obstack)
308 lambda_trans_matrix ret;
310 ret = (lambda_trans_matrix)
311 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
312 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
313 LTM_ROWSIZE (ret) = rowsize;
314 LTM_COLSIZE (ret) = colsize;
315 LTM_DENOMINATOR (ret) = 1;
316 return ret;
319 /* Multiply a vector VEC by a matrix MAT.
320 MAT is an M*N matrix, and VEC is a vector with length N. The result
321 is stored in DEST which must be a vector of length M. */
323 static void
324 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
325 lambda_vector vec, lambda_vector dest)
327 int i, j;
329 lambda_vector_clear (dest, m);
330 for (i = 0; i < m; i++)
331 for (j = 0; j < n; j++)
332 dest[i] += matrix[i][j] * vec[j];
335 /* Return true if TRANS is a legal transformation matrix that respects
336 the dependence vectors in DISTS and DIRS. The conservative answer
337 is false.
339 "Wolfe proves that a unimodular transformation represented by the
340 matrix T is legal when applied to a loop nest with a set of
341 lexicographically non-negative distance vectors RDG if and only if
342 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
343 i.e.: if and only if it transforms the lexicographically positive
344 distance vectors to lexicographically positive vectors. Note that
345 a unimodular matrix must transform the zero vector (and only it) to
346 the zero vector." S.Muchnick. */
348 static bool
349 lambda_transform_legal_p (lambda_trans_matrix trans,
350 int nb_loops,
351 vec<ddr_p> dependence_relations)
353 unsigned int i, j;
354 lambda_vector distres;
355 struct data_dependence_relation *ddr;
357 gcc_assert (LTM_COLSIZE (trans) == nb_loops
358 && LTM_ROWSIZE (trans) == nb_loops);
360 /* When there are no dependences, the transformation is correct. */
361 if (dependence_relations.length () == 0)
362 return true;
364 ddr = dependence_relations[0];
365 if (ddr == NULL)
366 return true;
368 /* When there is an unknown relation in the dependence_relations, we
369 know that it is no worth looking at this loop nest: give up. */
370 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
371 return false;
373 distres = lambda_vector_new (nb_loops);
375 /* For each distance vector in the dependence graph. */
376 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
378 /* Don't care about relations for which we know that there is no
379 dependence, nor about read-read (aka. output-dependences):
380 these data accesses can happen in any order. */
381 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
382 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
383 continue;
385 /* Conservatively answer: "this transformation is not valid". */
386 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
387 return false;
389 /* If the dependence could not be captured by a distance vector,
390 conservatively answer that the transform is not valid. */
391 if (DDR_NUM_DIST_VECTS (ddr) == 0)
392 return false;
394 /* Compute trans.dist_vect */
395 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
397 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
398 DDR_DIST_VECT (ddr, j), distres);
400 if (!lambda_vector_lexico_pos (distres, nb_loops))
401 return false;
404 return true;
407 /* Data dependency analysis. Returns true if the iterations of LOOP
408 are independent on each other (that is, if we can execute them
409 in parallel). */
411 static bool
412 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
414 vec<ddr_p> dependence_relations;
415 vec<data_reference_p> datarefs;
416 lambda_trans_matrix trans;
417 bool ret = false;
419 if (dump_file && (dump_flags & TDF_DETAILS))
421 fprintf (dump_file, "Considering loop %d\n", loop->num);
422 if (!loop->inner)
423 fprintf (dump_file, "loop is innermost\n");
424 else
425 fprintf (dump_file, "loop NOT innermost\n");
428 /* Check for problems with dependences. If the loop can be reversed,
429 the iterations are independent. */
430 auto_vec<loop_p, 3> loop_nest;
431 datarefs.create (10);
432 dependence_relations.create (100);
433 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
434 &dependence_relations))
436 if (dump_file && (dump_flags & TDF_DETAILS))
437 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
438 ret = false;
439 goto end;
441 if (dump_file && (dump_flags & TDF_DETAILS))
442 dump_data_dependence_relations (dump_file, dependence_relations);
444 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
445 LTM_MATRIX (trans)[0][0] = -1;
447 if (lambda_transform_legal_p (trans, 1, dependence_relations))
449 ret = true;
450 if (dump_file && (dump_flags & TDF_DETAILS))
451 fprintf (dump_file, " SUCCESS: may be parallelized\n");
453 else if (dump_file && (dump_flags & TDF_DETAILS))
454 fprintf (dump_file,
455 " FAILED: data dependencies exist across iterations\n");
457 end:
458 free_dependence_relations (dependence_relations);
459 free_data_refs (datarefs);
461 return ret;
464 /* Return true when LOOP contains basic blocks marked with the
465 BB_IRREDUCIBLE_LOOP flag. */
467 static inline bool
468 loop_has_blocks_with_irreducible_flag (struct loop *loop)
470 unsigned i;
471 basic_block *bbs = get_loop_body_in_dom_order (loop);
472 bool res = true;
474 for (i = 0; i < loop->num_nodes; i++)
475 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
476 goto end;
478 res = false;
479 end:
480 free (bbs);
481 return res;
484 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
485 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
486 to their addresses that can be reused. The address of OBJ is known to
487 be invariant in the whole function. Other needed statements are placed
488 right before GSI. */
490 static tree
491 take_address_of (tree obj, tree type, edge entry,
492 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
494 int uid;
495 tree *var_p, name, addr;
496 gassign *stmt;
497 gimple_seq stmts;
499 /* Since the address of OBJ is invariant, the trees may be shared.
500 Avoid rewriting unrelated parts of the code. */
501 obj = unshare_expr (obj);
502 for (var_p = &obj;
503 handled_component_p (*var_p);
504 var_p = &TREE_OPERAND (*var_p, 0))
505 continue;
507 /* Canonicalize the access to base on a MEM_REF. */
508 if (DECL_P (*var_p))
509 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
511 /* Assign a canonical SSA name to the address of the base decl used
512 in the address and share it for all accesses and addresses based
513 on it. */
514 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
515 int_tree_map elt;
516 elt.uid = uid;
517 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
518 if (!slot->to)
520 if (gsi == NULL)
521 return NULL;
522 addr = TREE_OPERAND (*var_p, 0);
523 const char *obj_name
524 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
525 if (obj_name)
526 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
527 else
528 name = make_ssa_name (TREE_TYPE (addr));
529 stmt = gimple_build_assign (name, addr);
530 gsi_insert_on_edge_immediate (entry, stmt);
532 slot->uid = uid;
533 slot->to = name;
535 else
536 name = slot->to;
538 /* Express the address in terms of the canonical SSA name. */
539 TREE_OPERAND (*var_p, 0) = name;
540 if (gsi == NULL)
541 return build_fold_addr_expr_with_type (obj, type);
543 name = force_gimple_operand (build_addr (obj),
544 &stmts, true, NULL_TREE);
545 if (!gimple_seq_empty_p (stmts))
546 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
548 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
550 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
551 NULL_TREE);
552 if (!gimple_seq_empty_p (stmts))
553 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
556 return name;
559 static tree
560 reduc_stmt_res (gimple *stmt)
562 return (gimple_code (stmt) == GIMPLE_PHI
563 ? gimple_phi_result (stmt)
564 : gimple_assign_lhs (stmt));
567 /* Callback for htab_traverse. Create the initialization statement
568 for reduction described in SLOT, and place it at the preheader of
569 the loop described in DATA. */
572 initialize_reductions (reduction_info **slot, struct loop *loop)
574 tree init;
575 tree type, arg;
576 edge e;
578 struct reduction_info *const reduc = *slot;
580 /* Create initialization in preheader:
581 reduction_variable = initialization value of reduction. */
583 /* In the phi node at the header, replace the argument coming
584 from the preheader with the reduction initialization value. */
586 /* Initialize the reduction. */
587 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
588 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
589 reduc->reduction_code, type);
590 reduc->init = init;
592 /* Replace the argument representing the initialization value
593 with the initialization value for the reduction (neutral
594 element for the particular operation, e.g. 0 for PLUS_EXPR,
595 1 for MULT_EXPR, etc).
596 Keep the old value in a new variable "reduction_initial",
597 that will be taken in consideration after the parallel
598 computing is done. */
600 e = loop_preheader_edge (loop);
601 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
602 /* Create new variable to hold the initial value. */
604 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
605 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
606 reduc->initial_value = arg;
607 return 1;
610 struct elv_data
612 struct walk_stmt_info info;
613 edge entry;
614 int_tree_htab_type *decl_address;
615 gimple_stmt_iterator *gsi;
616 bool changed;
617 bool reset;
620 /* Eliminates references to local variables in *TP out of the single
621 entry single exit region starting at DTA->ENTRY.
622 DECL_ADDRESS contains addresses of the references that had their
623 address taken already. If the expression is changed, CHANGED is
624 set to true. Callback for walk_tree. */
626 static tree
627 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
629 struct elv_data *const dta = (struct elv_data *) data;
630 tree t = *tp, var, addr, addr_type, type, obj;
632 if (DECL_P (t))
634 *walk_subtrees = 0;
636 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
637 return NULL_TREE;
639 type = TREE_TYPE (t);
640 addr_type = build_pointer_type (type);
641 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
642 dta->gsi);
643 if (dta->gsi == NULL && addr == NULL_TREE)
645 dta->reset = true;
646 return NULL_TREE;
649 *tp = build_simple_mem_ref (addr);
651 dta->changed = true;
652 return NULL_TREE;
655 if (TREE_CODE (t) == ADDR_EXPR)
657 /* ADDR_EXPR may appear in two contexts:
658 -- as a gimple operand, when the address taken is a function invariant
659 -- as gimple rhs, when the resulting address in not a function
660 invariant
661 We do not need to do anything special in the latter case (the base of
662 the memory reference whose address is taken may be replaced in the
663 DECL_P case). The former case is more complicated, as we need to
664 ensure that the new address is still a gimple operand. Thus, it
665 is not sufficient to replace just the base of the memory reference --
666 we need to move the whole computation of the address out of the
667 loop. */
668 if (!is_gimple_val (t))
669 return NULL_TREE;
671 *walk_subtrees = 0;
672 obj = TREE_OPERAND (t, 0);
673 var = get_base_address (obj);
674 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
675 return NULL_TREE;
677 addr_type = TREE_TYPE (t);
678 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
679 dta->gsi);
680 if (dta->gsi == NULL && addr == NULL_TREE)
682 dta->reset = true;
683 return NULL_TREE;
685 *tp = addr;
687 dta->changed = true;
688 return NULL_TREE;
691 if (!EXPR_P (t))
692 *walk_subtrees = 0;
694 return NULL_TREE;
697 /* Moves the references to local variables in STMT at *GSI out of the single
698 entry single exit region starting at ENTRY. DECL_ADDRESS contains
699 addresses of the references that had their address taken
700 already. */
702 static void
703 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
704 int_tree_htab_type *decl_address)
706 struct elv_data dta;
707 gimple *stmt = gsi_stmt (*gsi);
709 memset (&dta.info, '\0', sizeof (dta.info));
710 dta.entry = entry;
711 dta.decl_address = decl_address;
712 dta.changed = false;
713 dta.reset = false;
715 if (gimple_debug_bind_p (stmt))
717 dta.gsi = NULL;
718 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
719 eliminate_local_variables_1, &dta.info, NULL);
720 if (dta.reset)
722 gimple_debug_bind_reset_value (stmt);
723 dta.changed = true;
726 else if (gimple_clobber_p (stmt))
728 unlink_stmt_vdef (stmt);
729 stmt = gimple_build_nop ();
730 gsi_replace (gsi, stmt, false);
731 dta.changed = true;
733 else
735 dta.gsi = gsi;
736 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
739 if (dta.changed)
740 update_stmt (stmt);
743 /* Eliminates the references to local variables from the single entry
744 single exit region between the ENTRY and EXIT edges.
746 This includes:
747 1) Taking address of a local variable -- these are moved out of the
748 region (and temporary variable is created to hold the address if
749 necessary).
751 2) Dereferencing a local variable -- these are replaced with indirect
752 references. */
754 static void
755 eliminate_local_variables (edge entry, edge exit)
757 basic_block bb;
758 auto_vec<basic_block, 3> body;
759 unsigned i;
760 gimple_stmt_iterator gsi;
761 bool has_debug_stmt = false;
762 int_tree_htab_type decl_address (10);
763 basic_block entry_bb = entry->src;
764 basic_block exit_bb = exit->dest;
766 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
768 FOR_EACH_VEC_ELT (body, i, bb)
769 if (bb != entry_bb && bb != exit_bb)
771 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
772 if (is_gimple_debug (gsi_stmt (gsi)))
774 if (gimple_debug_bind_p (gsi_stmt (gsi)))
775 has_debug_stmt = true;
777 else
778 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
781 if (has_debug_stmt)
782 FOR_EACH_VEC_ELT (body, i, bb)
783 if (bb != entry_bb && bb != exit_bb)
784 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 if (gimple_debug_bind_p (gsi_stmt (gsi)))
786 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
789 /* Returns true if expression EXPR is not defined between ENTRY and
790 EXIT, i.e. if all its operands are defined outside of the region. */
792 static bool
793 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
795 basic_block entry_bb = entry->src;
796 basic_block exit_bb = exit->dest;
797 basic_block def_bb;
799 if (is_gimple_min_invariant (expr))
800 return true;
802 if (TREE_CODE (expr) == SSA_NAME)
804 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
805 if (def_bb
806 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
807 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
808 return false;
810 return true;
813 return false;
816 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
817 The copies are stored to NAME_COPIES, if NAME was already duplicated,
818 its duplicate stored in NAME_COPIES is returned.
820 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
821 duplicated, storing the copies in DECL_COPIES. */
823 static tree
824 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
825 int_tree_htab_type *decl_copies,
826 bool copy_name_p)
828 tree copy, var, var_copy;
829 unsigned idx, uid, nuid;
830 struct int_tree_map ielt;
831 struct name_to_copy_elt elt, *nelt;
832 name_to_copy_elt **slot;
833 int_tree_map *dslot;
835 if (TREE_CODE (name) != SSA_NAME)
836 return name;
838 idx = SSA_NAME_VERSION (name);
839 elt.version = idx;
840 slot = name_copies->find_slot_with_hash (&elt, idx,
841 copy_name_p ? INSERT : NO_INSERT);
842 if (slot && *slot)
843 return (*slot)->new_name;
845 if (copy_name_p)
847 copy = duplicate_ssa_name (name, NULL);
848 nelt = XNEW (struct name_to_copy_elt);
849 nelt->version = idx;
850 nelt->new_name = copy;
851 nelt->field = NULL_TREE;
852 *slot = nelt;
854 else
856 gcc_assert (!slot);
857 copy = name;
860 var = SSA_NAME_VAR (name);
861 if (!var)
862 return copy;
864 uid = DECL_UID (var);
865 ielt.uid = uid;
866 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
867 if (!dslot->to)
869 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
870 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
871 dslot->uid = uid;
872 dslot->to = var_copy;
874 /* Ensure that when we meet this decl next time, we won't duplicate
875 it again. */
876 nuid = DECL_UID (var_copy);
877 ielt.uid = nuid;
878 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
879 gcc_assert (!dslot->to);
880 dslot->uid = nuid;
881 dslot->to = var_copy;
883 else
884 var_copy = dslot->to;
886 replace_ssa_name_symbol (copy, var_copy);
887 return copy;
890 /* Finds the ssa names used in STMT that are defined outside the
891 region between ENTRY and EXIT and replaces such ssa names with
892 their duplicates. The duplicates are stored to NAME_COPIES. Base
893 decls of all ssa names used in STMT (including those defined in
894 LOOP) are replaced with the new temporary variables; the
895 replacement decls are stored in DECL_COPIES. */
897 static void
898 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
899 name_to_copy_table_type *name_copies,
900 int_tree_htab_type *decl_copies)
902 use_operand_p use;
903 def_operand_p def;
904 ssa_op_iter oi;
905 tree name, copy;
906 bool copy_name_p;
908 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
910 name = DEF_FROM_PTR (def);
911 gcc_assert (TREE_CODE (name) == SSA_NAME);
912 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
913 false);
914 gcc_assert (copy == name);
917 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
919 name = USE_FROM_PTR (use);
920 if (TREE_CODE (name) != SSA_NAME)
921 continue;
923 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
924 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
925 copy_name_p);
926 SET_USE (use, copy);
930 /* Finds the ssa names used in STMT that are defined outside the
931 region between ENTRY and EXIT and replaces such ssa names with
932 their duplicates. The duplicates are stored to NAME_COPIES. Base
933 decls of all ssa names used in STMT (including those defined in
934 LOOP) are replaced with the new temporary variables; the
935 replacement decls are stored in DECL_COPIES. */
937 static bool
938 separate_decls_in_region_debug (gimple *stmt,
939 name_to_copy_table_type *name_copies,
940 int_tree_htab_type *decl_copies)
942 use_operand_p use;
943 ssa_op_iter oi;
944 tree var, name;
945 struct int_tree_map ielt;
946 struct name_to_copy_elt elt;
947 name_to_copy_elt **slot;
948 int_tree_map *dslot;
950 if (gimple_debug_bind_p (stmt))
951 var = gimple_debug_bind_get_var (stmt);
952 else if (gimple_debug_source_bind_p (stmt))
953 var = gimple_debug_source_bind_get_var (stmt);
954 else
955 return true;
956 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
957 return true;
958 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
959 ielt.uid = DECL_UID (var);
960 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
961 if (!dslot)
962 return true;
963 if (gimple_debug_bind_p (stmt))
964 gimple_debug_bind_set_var (stmt, dslot->to);
965 else if (gimple_debug_source_bind_p (stmt))
966 gimple_debug_source_bind_set_var (stmt, dslot->to);
968 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
970 name = USE_FROM_PTR (use);
971 if (TREE_CODE (name) != SSA_NAME)
972 continue;
974 elt.version = SSA_NAME_VERSION (name);
975 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
976 if (!slot)
978 gimple_debug_bind_reset_value (stmt);
979 update_stmt (stmt);
980 break;
983 SET_USE (use, (*slot)->new_name);
986 return false;
989 /* Callback for htab_traverse. Adds a field corresponding to the reduction
990 specified in SLOT. The type is passed in DATA. */
993 add_field_for_reduction (reduction_info **slot, tree type)
996 struct reduction_info *const red = *slot;
997 tree var = reduc_stmt_res (red->reduc_stmt);
998 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
999 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1001 insert_field_into_struct (type, field);
1003 red->field = field;
1005 return 1;
1008 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1009 described in SLOT. The type is passed in DATA. */
1012 add_field_for_name (name_to_copy_elt **slot, tree type)
1014 struct name_to_copy_elt *const elt = *slot;
1015 tree name = ssa_name (elt->version);
1016 tree field = build_decl (UNKNOWN_LOCATION,
1017 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1018 TREE_TYPE (name));
1020 insert_field_into_struct (type, field);
1021 elt->field = field;
1023 return 1;
1026 /* Callback for htab_traverse. A local result is the intermediate result
1027 computed by a single
1028 thread, or the initial value in case no iteration was executed.
1029 This function creates a phi node reflecting these values.
1030 The phi's result will be stored in NEW_PHI field of the
1031 reduction's data structure. */
1034 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1036 struct reduction_info *const reduc = *slot;
1037 edge e;
1038 gphi *new_phi;
1039 basic_block store_bb, continue_bb;
1040 tree local_res;
1041 source_location locus;
1043 /* STORE_BB is the block where the phi
1044 should be stored. It is the destination of the loop exit.
1045 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1046 continue_bb = single_pred (loop->latch);
1047 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1049 /* STORE_BB has two predecessors. One coming from the loop
1050 (the reduction's result is computed at the loop),
1051 and another coming from a block preceding the loop,
1052 when no iterations
1053 are executed (the initial value should be taken). */
1054 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1055 e = EDGE_PRED (store_bb, 1);
1056 else
1057 e = EDGE_PRED (store_bb, 0);
1058 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1059 local_res = copy_ssa_name (lhs);
1060 locus = gimple_location (reduc->reduc_stmt);
1061 new_phi = create_phi_node (local_res, store_bb);
1062 add_phi_arg (new_phi, reduc->init, e, locus);
1063 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1064 reduc->new_phi = new_phi;
1066 return 1;
1069 struct clsn_data
1071 tree store;
1072 tree load;
1074 basic_block store_bb;
1075 basic_block load_bb;
1078 /* Callback for htab_traverse. Create an atomic instruction for the
1079 reduction described in SLOT.
1080 DATA annotates the place in memory the atomic operation relates to,
1081 and the basic block it needs to be generated in. */
1084 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1086 struct reduction_info *const reduc = *slot;
1087 gimple_stmt_iterator gsi;
1088 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1089 tree load_struct;
1090 basic_block bb;
1091 basic_block new_bb;
1092 edge e;
1093 tree t, addr, ref, x;
1094 tree tmp_load, name;
1095 gimple *load;
1097 if (reduc->reduc_addr == NULL_TREE)
1099 load_struct = build_simple_mem_ref (clsn_data->load);
1100 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1102 addr = build_addr (t);
1104 else
1106 /* Set the address for the atomic store. */
1107 addr = reduc->reduc_addr;
1109 /* Remove the non-atomic store '*addr = sum'. */
1110 tree res = PHI_RESULT (reduc->keep_res);
1111 use_operand_p use_p;
1112 gimple *stmt;
1113 bool single_use_p = single_imm_use (res, &use_p, &stmt);
1114 gcc_assert (single_use_p);
1115 replace_uses_by (gimple_vdef (stmt),
1116 gimple_vuse (stmt));
1117 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1118 gsi_remove (&gsi, true);
1121 /* Create phi node. */
1122 bb = clsn_data->load_bb;
1124 gsi = gsi_last_bb (bb);
1125 e = split_block (bb, gsi_stmt (gsi));
1126 new_bb = e->dest;
1128 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1129 tmp_load = make_ssa_name (tmp_load);
1130 load = gimple_build_omp_atomic_load (tmp_load, addr);
1131 SSA_NAME_DEF_STMT (tmp_load) = load;
1132 gsi = gsi_start_bb (new_bb);
1133 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1135 e = split_block (new_bb, load);
1136 new_bb = e->dest;
1137 gsi = gsi_start_bb (new_bb);
1138 ref = tmp_load;
1139 x = fold_build2 (reduc->reduction_code,
1140 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1141 PHI_RESULT (reduc->new_phi));
1143 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1144 GSI_CONTINUE_LINKING);
1146 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1147 return 1;
1150 /* Create the atomic operation at the join point of the threads.
1151 REDUCTION_LIST describes the reductions in the LOOP.
1152 LD_ST_DATA describes the shared data structure where
1153 shared data is stored in and loaded from. */
1154 static void
1155 create_call_for_reduction (struct loop *loop,
1156 reduction_info_table_type *reduction_list,
1157 struct clsn_data *ld_st_data)
1159 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1160 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1161 basic_block continue_bb = single_pred (loop->latch);
1162 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1163 reduction_list
1164 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1167 /* Callback for htab_traverse. Loads the final reduction value at the
1168 join point of all threads, and inserts it in the right place. */
1171 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1173 struct reduction_info *const red = *slot;
1174 gimple *stmt;
1175 gimple_stmt_iterator gsi;
1176 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1177 tree load_struct;
1178 tree name;
1179 tree x;
1181 /* If there's no exit phi, the result of the reduction is unused. */
1182 if (red->keep_res == NULL)
1183 return 1;
1185 gsi = gsi_after_labels (clsn_data->load_bb);
1186 load_struct = build_simple_mem_ref (clsn_data->load);
1187 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1188 NULL_TREE);
1190 x = load_struct;
1191 name = PHI_RESULT (red->keep_res);
1192 stmt = gimple_build_assign (name, x);
1194 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1196 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1197 !gsi_end_p (gsi); gsi_next (&gsi))
1198 if (gsi_stmt (gsi) == red->keep_res)
1200 remove_phi_node (&gsi, false);
1201 return 1;
1203 gcc_unreachable ();
1206 /* Load the reduction result that was stored in LD_ST_DATA.
1207 REDUCTION_LIST describes the list of reductions that the
1208 loads should be generated for. */
1209 static void
1210 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1211 struct clsn_data *ld_st_data)
1213 gimple_stmt_iterator gsi;
1214 tree t;
1215 gimple *stmt;
1217 gsi = gsi_after_labels (ld_st_data->load_bb);
1218 t = build_fold_addr_expr (ld_st_data->store);
1219 stmt = gimple_build_assign (ld_st_data->load, t);
1221 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1223 reduction_list
1224 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1228 /* Callback for htab_traverse. Store the neutral value for the
1229 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1230 1 for MULT_EXPR, etc. into the reduction field.
1231 The reduction is specified in SLOT. The store information is
1232 passed in DATA. */
1235 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1237 struct reduction_info *const red = *slot;
1238 tree t;
1239 gimple *stmt;
1240 gimple_stmt_iterator gsi;
1241 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1243 gsi = gsi_last_bb (clsn_data->store_bb);
1244 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1245 stmt = gimple_build_assign (t, red->initial_value);
1246 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1248 return 1;
1251 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1252 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1253 specified in SLOT. */
1256 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1257 struct clsn_data *clsn_data)
1259 struct name_to_copy_elt *const elt = *slot;
1260 tree t;
1261 gimple *stmt;
1262 gimple_stmt_iterator gsi;
1263 tree type = TREE_TYPE (elt->new_name);
1264 tree load_struct;
1266 gsi = gsi_last_bb (clsn_data->store_bb);
1267 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1268 stmt = gimple_build_assign (t, ssa_name (elt->version));
1269 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1271 gsi = gsi_last_bb (clsn_data->load_bb);
1272 load_struct = build_simple_mem_ref (clsn_data->load);
1273 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1274 stmt = gimple_build_assign (elt->new_name, t);
1275 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1277 return 1;
1280 /* Moves all the variables used in LOOP and defined outside of it (including
1281 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1282 name) to a structure created for this purpose. The code
1284 while (1)
1286 use (a);
1287 use (b);
1290 is transformed this way:
1292 bb0:
1293 old.a = a;
1294 old.b = b;
1296 bb1:
1297 a' = new->a;
1298 b' = new->b;
1299 while (1)
1301 use (a');
1302 use (b');
1305 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1306 pointer `new' is intentionally not initialized (the loop will be split to a
1307 separate function later, and `new' will be initialized from its arguments).
1308 LD_ST_DATA holds information about the shared data structure used to pass
1309 information among the threads. It is initialized here, and
1310 gen_parallel_loop will pass it to create_call_for_reduction that
1311 needs this information. REDUCTION_LIST describes the reductions
1312 in LOOP. */
1314 static void
1315 separate_decls_in_region (edge entry, edge exit,
1316 reduction_info_table_type *reduction_list,
1317 tree *arg_struct, tree *new_arg_struct,
1318 struct clsn_data *ld_st_data)
1321 basic_block bb1 = split_edge (entry);
1322 basic_block bb0 = single_pred (bb1);
1323 name_to_copy_table_type name_copies (10);
1324 int_tree_htab_type decl_copies (10);
1325 unsigned i;
1326 tree type, type_name, nvar;
1327 gimple_stmt_iterator gsi;
1328 struct clsn_data clsn_data;
1329 auto_vec<basic_block, 3> body;
1330 basic_block bb;
1331 basic_block entry_bb = bb1;
1332 basic_block exit_bb = exit->dest;
1333 bool has_debug_stmt = false;
1335 entry = single_succ_edge (entry_bb);
1336 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1338 FOR_EACH_VEC_ELT (body, i, bb)
1340 if (bb != entry_bb && bb != exit_bb)
1342 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1343 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1344 &name_copies, &decl_copies);
1346 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1348 gimple *stmt = gsi_stmt (gsi);
1350 if (is_gimple_debug (stmt))
1351 has_debug_stmt = true;
1352 else
1353 separate_decls_in_region_stmt (entry, exit, stmt,
1354 &name_copies, &decl_copies);
1359 /* Now process debug bind stmts. We must not create decls while
1360 processing debug stmts, so we defer their processing so as to
1361 make sure we will have debug info for as many variables as
1362 possible (all of those that were dealt with in the loop above),
1363 and discard those for which we know there's nothing we can
1364 do. */
1365 if (has_debug_stmt)
1366 FOR_EACH_VEC_ELT (body, i, bb)
1367 if (bb != entry_bb && bb != exit_bb)
1369 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1371 gimple *stmt = gsi_stmt (gsi);
1373 if (is_gimple_debug (stmt))
1375 if (separate_decls_in_region_debug (stmt, &name_copies,
1376 &decl_copies))
1378 gsi_remove (&gsi, true);
1379 continue;
1383 gsi_next (&gsi);
1387 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1389 /* It may happen that there is nothing to copy (if there are only
1390 loop carried and external variables in the loop). */
1391 *arg_struct = NULL;
1392 *new_arg_struct = NULL;
1394 else
1396 /* Create the type for the structure to store the ssa names to. */
1397 type = lang_hooks.types.make_type (RECORD_TYPE);
1398 type_name = build_decl (UNKNOWN_LOCATION,
1399 TYPE_DECL, create_tmp_var_name (".paral_data"),
1400 type);
1401 TYPE_NAME (type) = type_name;
1403 name_copies.traverse <tree, add_field_for_name> (type);
1404 if (reduction_list && reduction_list->elements () > 0)
1406 /* Create the fields for reductions. */
1407 reduction_list->traverse <tree, add_field_for_reduction> (type);
1409 layout_type (type);
1411 /* Create the loads and stores. */
1412 *arg_struct = create_tmp_var (type, ".paral_data_store");
1413 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1414 *new_arg_struct = make_ssa_name (nvar);
1416 ld_st_data->store = *arg_struct;
1417 ld_st_data->load = *new_arg_struct;
1418 ld_st_data->store_bb = bb0;
1419 ld_st_data->load_bb = bb1;
1421 name_copies
1422 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1423 (ld_st_data);
1425 /* Load the calculation from memory (after the join of the threads). */
1427 if (reduction_list && reduction_list->elements () > 0)
1429 reduction_list
1430 ->traverse <struct clsn_data *, create_stores_for_reduction>
1431 (ld_st_data);
1432 clsn_data.load = make_ssa_name (nvar);
1433 clsn_data.load_bb = exit->dest;
1434 clsn_data.store = ld_st_data->store;
1435 create_final_loads_for_reduction (reduction_list, &clsn_data);
1440 /* Returns true if FN was created to run in parallel. */
1442 bool
1443 parallelized_function_p (tree fndecl)
1445 cgraph_node *node = cgraph_node::get (fndecl);
1446 gcc_assert (node != NULL);
1447 return node->parallelized_function;
1450 /* Creates and returns an empty function that will receive the body of
1451 a parallelized loop. */
1453 static tree
1454 create_loop_fn (location_t loc)
1456 char buf[100];
1457 char *tname;
1458 tree decl, type, name, t;
1459 struct function *act_cfun = cfun;
1460 static unsigned loopfn_num;
1462 loc = LOCATION_LOCUS (loc);
1463 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1464 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1465 clean_symbol_name (tname);
1466 name = get_identifier (tname);
1467 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1469 decl = build_decl (loc, FUNCTION_DECL, name, type);
1470 TREE_STATIC (decl) = 1;
1471 TREE_USED (decl) = 1;
1472 DECL_ARTIFICIAL (decl) = 1;
1473 DECL_IGNORED_P (decl) = 0;
1474 TREE_PUBLIC (decl) = 0;
1475 DECL_UNINLINABLE (decl) = 1;
1476 DECL_EXTERNAL (decl) = 0;
1477 DECL_CONTEXT (decl) = NULL_TREE;
1478 DECL_INITIAL (decl) = make_node (BLOCK);
1480 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1481 DECL_ARTIFICIAL (t) = 1;
1482 DECL_IGNORED_P (t) = 1;
1483 DECL_RESULT (decl) = t;
1485 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1486 ptr_type_node);
1487 DECL_ARTIFICIAL (t) = 1;
1488 DECL_ARG_TYPE (t) = ptr_type_node;
1489 DECL_CONTEXT (t) = decl;
1490 TREE_USED (t) = 1;
1491 DECL_ARGUMENTS (decl) = t;
1493 allocate_struct_function (decl, false);
1495 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1496 it. */
1497 set_cfun (act_cfun);
1499 return decl;
1502 /* Replace uses of NAME by VAL in block BB. */
1504 static void
1505 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1507 gimple *use_stmt;
1508 imm_use_iterator imm_iter;
1510 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1512 if (gimple_bb (use_stmt) != bb)
1513 continue;
1515 use_operand_p use_p;
1516 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1517 SET_USE (use_p, val);
1521 /* Do transformation from:
1523 <bb preheader>:
1525 goto <bb header>
1527 <bb header>:
1528 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1529 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1531 use (ivtmp_a)
1533 sum_b = sum_a + sum_update
1535 if (ivtmp_a < n)
1536 goto <bb latch>;
1537 else
1538 goto <bb exit>;
1540 <bb latch>:
1541 ivtmp_b = ivtmp_a + 1;
1542 goto <bb header>
1544 <bb exit>:
1545 sum_z = PHI <sum_b (cond[1]), ...>
1547 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1548 that's <bb header>.
1552 <bb preheader>:
1554 goto <bb newheader>
1556 <bb header>:
1557 ivtmp_a = PHI <ivtmp_c (latch)>
1558 sum_a = PHI <sum_c (latch)>
1560 use (ivtmp_a)
1562 sum_b = sum_a + sum_update
1564 goto <bb latch>;
1566 <bb newheader>:
1567 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1568 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1569 if (ivtmp_c < n + 1)
1570 goto <bb header>;
1571 else
1572 goto <bb newexit>;
1574 <bb latch>:
1575 ivtmp_b = ivtmp_a + 1;
1576 goto <bb newheader>
1578 <bb newexit>:
1579 sum_y = PHI <sum_c (newheader)>
1581 <bb exit>:
1582 sum_z = PHI <sum_y (newexit), ...>
1585 In unified diff format:
1587 <bb preheader>:
1589 - goto <bb header>
1590 + goto <bb newheader>
1592 <bb header>:
1593 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1594 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1595 + ivtmp_a = PHI <ivtmp_c (latch)>
1596 + sum_a = PHI <sum_c (latch)>
1598 use (ivtmp_a)
1600 sum_b = sum_a + sum_update
1602 - if (ivtmp_a < n)
1603 - goto <bb latch>;
1604 + goto <bb latch>;
1606 + <bb newheader>:
1607 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1608 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1609 + if (ivtmp_c < n + 1)
1610 + goto <bb header>;
1611 else
1612 goto <bb exit>;
1614 <bb latch>:
1615 ivtmp_b = ivtmp_a + 1;
1616 - goto <bb header>
1617 + goto <bb newheader>
1619 + <bb newexit>:
1620 + sum_y = PHI <sum_c (newheader)>
1622 <bb exit>:
1623 - sum_z = PHI <sum_b (cond[1]), ...>
1624 + sum_z = PHI <sum_y (newexit), ...>
1626 Note: the example does not show any virtual phis, but these are handled more
1627 or less as reductions.
1630 Moves the exit condition of LOOP to the beginning of its header.
1631 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1632 bound. */
1634 static void
1635 transform_to_exit_first_loop_alt (struct loop *loop,
1636 reduction_info_table_type *reduction_list,
1637 tree bound)
1639 basic_block header = loop->header;
1640 basic_block latch = loop->latch;
1641 edge exit = single_dom_exit (loop);
1642 basic_block exit_block = exit->dest;
1643 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1644 tree control = gimple_cond_lhs (cond_stmt);
1645 edge e;
1647 /* Rewriting virtuals into loop-closed ssa normal form makes this
1648 transformation simpler. It also ensures that the virtuals are in
1649 loop-closed ssa normal from after the transformation, which is required by
1650 create_parallel_loop. */
1651 rewrite_virtuals_into_loop_closed_ssa (loop);
1653 /* Create the new_header block. */
1654 basic_block new_header = split_block_before_cond_jump (exit->src);
1655 edge edge_at_split = single_pred_edge (new_header);
1657 /* Redirect entry edge to new_header. */
1658 edge entry = loop_preheader_edge (loop);
1659 e = redirect_edge_and_branch (entry, new_header);
1660 gcc_assert (e == entry);
1662 /* Redirect post_inc_edge to new_header. */
1663 edge post_inc_edge = single_succ_edge (latch);
1664 e = redirect_edge_and_branch (post_inc_edge, new_header);
1665 gcc_assert (e == post_inc_edge);
1667 /* Redirect post_cond_edge to header. */
1668 edge post_cond_edge = single_pred_edge (latch);
1669 e = redirect_edge_and_branch (post_cond_edge, header);
1670 gcc_assert (e == post_cond_edge);
1672 /* Redirect edge_at_split to latch. */
1673 e = redirect_edge_and_branch (edge_at_split, latch);
1674 gcc_assert (e == edge_at_split);
1676 /* Set the new loop bound. */
1677 gimple_cond_set_rhs (cond_stmt, bound);
1678 update_stmt (cond_stmt);
1680 /* Repair the ssa. */
1681 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1682 edge_var_map *vm;
1683 gphi_iterator gsi;
1684 int i;
1685 for (gsi = gsi_start_phis (header), i = 0;
1686 !gsi_end_p (gsi) && v->iterate (i, &vm);
1687 gsi_next (&gsi), i++)
1689 gphi *phi = gsi.phi ();
1690 tree res_a = PHI_RESULT (phi);
1692 /* Create new phi. */
1693 tree res_c = copy_ssa_name (res_a, phi);
1694 gphi *nphi = create_phi_node (res_c, new_header);
1696 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1697 replace_uses_in_bb_by (res_a, res_c, new_header);
1699 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1700 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1702 /* Replace sum_b with sum_c in exit phi. */
1703 tree res_b = redirect_edge_var_map_def (vm);
1704 replace_uses_in_bb_by (res_b, res_c, exit_block);
1706 struct reduction_info *red = reduction_phi (reduction_list, phi);
1707 gcc_assert (virtual_operand_p (res_a)
1708 || res_a == control
1709 || red != NULL);
1711 if (red)
1713 /* Register the new reduction phi. */
1714 red->reduc_phi = nphi;
1715 gimple_set_uid (red->reduc_phi, red->reduc_version);
1718 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1720 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1721 flush_pending_stmts (entry);
1723 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1724 flush_pending_stmts (post_inc_edge);
1727 basic_block new_exit_block = NULL;
1728 if (!single_pred_p (exit->dest))
1730 /* Create a new empty exit block, inbetween the new loop header and the
1731 old exit block. The function separate_decls_in_region needs this block
1732 to insert code that is active on loop exit, but not any other path. */
1733 new_exit_block = split_edge (exit);
1736 /* Insert and register the reduction exit phis. */
1737 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1738 !gsi_end_p (gsi);
1739 gsi_next (&gsi))
1741 gphi *phi = gsi.phi ();
1742 gphi *nphi = NULL;
1743 tree res_z = PHI_RESULT (phi);
1744 tree res_c;
1746 if (new_exit_block != NULL)
1748 /* Now that we have a new exit block, duplicate the phi of the old
1749 exit block in the new exit block to preserve loop-closed ssa. */
1750 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1751 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1752 tree res_y = copy_ssa_name (res_z, phi);
1753 nphi = create_phi_node (res_y, new_exit_block);
1754 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1755 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1756 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1758 else
1759 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1761 if (virtual_operand_p (res_z))
1762 continue;
1764 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
1765 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1766 if (red != NULL)
1767 red->keep_res = (nphi != NULL
1768 ? nphi
1769 : phi);
1772 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1773 then we're still using some fields, so only bother about fields that are
1774 still used: header and latch.
1775 The loop has a new header bb, so we update it. The latch bb stays the
1776 same. */
1777 loop->header = new_header;
1779 /* Recalculate dominance info. */
1780 free_dominance_info (CDI_DOMINATORS);
1781 calculate_dominance_info (CDI_DOMINATORS);
1783 checking_verify_ssa (true, true);
1786 /* Tries to moves the exit condition of LOOP to the beginning of its header
1787 without duplication of the loop body. NIT is the number of iterations of the
1788 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1789 transformation is successful. */
1791 static bool
1792 try_transform_to_exit_first_loop_alt (struct loop *loop,
1793 reduction_info_table_type *reduction_list,
1794 tree nit)
1796 /* Check whether the latch contains a single statement. */
1797 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1798 return false;
1800 /* Check whether the latch contains no phis. */
1801 if (phi_nodes (loop->latch) != NULL)
1802 return false;
1804 /* Check whether the latch contains the loop iv increment. */
1805 edge back = single_succ_edge (loop->latch);
1806 edge exit = single_dom_exit (loop);
1807 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1808 tree control = gimple_cond_lhs (cond_stmt);
1809 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1810 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1811 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1812 return false;
1814 /* Check whether there's no code between the loop condition and the latch. */
1815 if (!single_pred_p (loop->latch)
1816 || single_pred (loop->latch) != exit->src)
1817 return false;
1819 tree alt_bound = NULL_TREE;
1820 tree nit_type = TREE_TYPE (nit);
1822 /* Figure out whether nit + 1 overflows. */
1823 if (TREE_CODE (nit) == INTEGER_CST)
1825 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1827 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1828 nit, build_one_cst (nit_type));
1830 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1831 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1832 return true;
1834 else
1836 /* Todo: Figure out if we can trigger this, if it's worth to handle
1837 optimally, and if we can handle it optimally. */
1838 return false;
1842 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1844 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1845 iv with base 0 and step 1 that is incremented in the latch, like this:
1847 <bb header>:
1848 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1850 if (iv_1 < nit)
1851 goto <bb latch>;
1852 else
1853 goto <bb exit>;
1855 <bb latch>:
1856 iv_2 = iv_1 + 1;
1857 goto <bb header>;
1859 The range of iv_1 is [0, nit]. The latch edge is taken for
1860 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1861 number of latch executions is equal to nit.
1863 The function max_loop_iterations gives us the maximum number of latch
1864 executions, so it gives us the maximum value of nit. */
1865 widest_int nit_max;
1866 if (!max_loop_iterations (loop, &nit_max))
1867 return false;
1869 /* Check if nit + 1 overflows. */
1870 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1871 if (nit_max >= type_max)
1872 return false;
1874 gimple *def = SSA_NAME_DEF_STMT (nit);
1876 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1877 if (def
1878 && is_gimple_assign (def)
1879 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1881 tree op1 = gimple_assign_rhs1 (def);
1882 tree op2 = gimple_assign_rhs2 (def);
1883 if (integer_minus_onep (op1))
1884 alt_bound = op2;
1885 else if (integer_minus_onep (op2))
1886 alt_bound = op1;
1889 /* If not found, insert nit + 1. */
1890 if (alt_bound == NULL_TREE)
1892 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1893 build_int_cst_type (nit_type, 1));
1895 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1897 alt_bound
1898 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1899 GSI_CONTINUE_LINKING);
1902 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1903 return true;
1906 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1907 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1908 LOOP. */
1910 static void
1911 transform_to_exit_first_loop (struct loop *loop,
1912 reduction_info_table_type *reduction_list,
1913 tree nit)
1915 basic_block *bbs, *nbbs, ex_bb, orig_header;
1916 unsigned n;
1917 bool ok;
1918 edge exit = single_dom_exit (loop), hpred;
1919 tree control, control_name, res, t;
1920 gphi *phi, *nphi;
1921 gassign *stmt;
1922 gcond *cond_stmt, *cond_nit;
1923 tree nit_1;
1925 split_block_after_labels (loop->header);
1926 orig_header = single_succ (loop->header);
1927 hpred = single_succ_edge (loop->header);
1929 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1930 control = gimple_cond_lhs (cond_stmt);
1931 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1933 /* Make sure that we have phi nodes on exit for all loop header phis
1934 (create_parallel_loop requires that). */
1935 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1936 !gsi_end_p (gsi);
1937 gsi_next (&gsi))
1939 phi = gsi.phi ();
1940 res = PHI_RESULT (phi);
1941 t = copy_ssa_name (res, phi);
1942 SET_PHI_RESULT (phi, t);
1943 nphi = create_phi_node (res, orig_header);
1944 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1946 if (res == control)
1948 gimple_cond_set_lhs (cond_stmt, t);
1949 update_stmt (cond_stmt);
1950 control = t;
1954 bbs = get_loop_body_in_dom_order (loop);
1956 for (n = 0; bbs[n] != exit->src; n++)
1957 continue;
1958 nbbs = XNEWVEC (basic_block, n);
1959 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1960 bbs + 1, n, nbbs);
1961 gcc_assert (ok);
1962 free (bbs);
1963 ex_bb = nbbs[0];
1964 free (nbbs);
1966 /* Other than reductions, the only gimple reg that should be copied
1967 out of the loop is the control variable. */
1968 exit = single_dom_exit (loop);
1969 control_name = NULL_TREE;
1970 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1971 !gsi_end_p (gsi); )
1973 phi = gsi.phi ();
1974 res = PHI_RESULT (phi);
1975 if (virtual_operand_p (res))
1977 gsi_next (&gsi);
1978 continue;
1981 /* Check if it is a part of reduction. If it is,
1982 keep the phi at the reduction's keep_res field. The
1983 PHI_RESULT of this phi is the resulting value of the reduction
1984 variable when exiting the loop. */
1986 if (reduction_list->elements () > 0)
1988 struct reduction_info *red;
1990 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1991 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1992 if (red)
1994 red->keep_res = phi;
1995 gsi_next (&gsi);
1996 continue;
1999 gcc_assert (control_name == NULL_TREE
2000 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
2001 control_name = res;
2002 remove_phi_node (&gsi, false);
2004 gcc_assert (control_name != NULL_TREE);
2006 /* Initialize the control variable to number of iterations
2007 according to the rhs of the exit condition. */
2008 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
2009 cond_nit = as_a <gcond *> (last_stmt (exit->src));
2010 nit_1 = gimple_cond_rhs (cond_nit);
2011 nit_1 = force_gimple_operand_gsi (&gsi,
2012 fold_convert (TREE_TYPE (control_name), nit_1),
2013 false, NULL_TREE, false, GSI_SAME_STMT);
2014 stmt = gimple_build_assign (control_name, nit_1);
2015 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2018 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
2019 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
2020 NEW_DATA is the variable that should be initialized from the argument
2021 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2022 that number is to be determined later. */
2024 static void
2025 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
2026 tree new_data, unsigned n_threads, location_t loc,
2027 bool oacc_kernels_p)
2029 gimple_stmt_iterator gsi;
2030 basic_block for_bb, ex_bb, continue_bb;
2031 tree t, param;
2032 gomp_parallel *omp_par_stmt;
2033 gimple *omp_return_stmt1, *omp_return_stmt2;
2034 gimple *phi;
2035 gcond *cond_stmt;
2036 gomp_for *for_stmt;
2037 gomp_continue *omp_cont_stmt;
2038 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
2039 edge exit, nexit, guard, end, e;
2041 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2042 if (oacc_kernels_p)
2044 tree clause = build_omp_clause (loc, OMP_CLAUSE_NUM_GANGS);
2045 OMP_CLAUSE_NUM_GANGS_EXPR (clause)
2046 = build_int_cst (integer_type_node, n_threads);
2047 set_oacc_fn_attrib (cfun->decl, clause, true, NULL);
2049 else
2051 basic_block bb = loop_preheader_edge (loop)->src;
2052 basic_block paral_bb = single_pred (bb);
2053 gsi = gsi_last_bb (paral_bb);
2055 gcc_checking_assert (n_threads != 0);
2056 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2057 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2058 = build_int_cst (integer_type_node, n_threads);
2059 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2060 gimple_set_location (omp_par_stmt, loc);
2062 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2064 /* Initialize NEW_DATA. */
2065 if (data)
2067 gassign *assign_stmt;
2069 gsi = gsi_after_labels (bb);
2071 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2072 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2073 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2075 assign_stmt = gimple_build_assign (new_data,
2076 fold_convert (TREE_TYPE (new_data), param));
2077 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2080 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2081 bb = split_loop_exit_edge (single_dom_exit (loop));
2082 gsi = gsi_last_bb (bb);
2083 omp_return_stmt1 = gimple_build_omp_return (false);
2084 gimple_set_location (omp_return_stmt1, loc);
2085 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2088 /* Extract data for GIMPLE_OMP_FOR. */
2089 gcc_assert (loop->header == single_dom_exit (loop)->src);
2090 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2092 cvar = gimple_cond_lhs (cond_stmt);
2093 cvar_base = SSA_NAME_VAR (cvar);
2094 phi = SSA_NAME_DEF_STMT (cvar);
2095 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2096 initvar = copy_ssa_name (cvar);
2097 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2098 initvar);
2099 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2101 gsi = gsi_last_nondebug_bb (loop->latch);
2102 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2103 gsi_remove (&gsi, true);
2105 /* Prepare cfg. */
2106 for_bb = split_edge (loop_preheader_edge (loop));
2107 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2108 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2109 gcc_assert (exit == single_dom_exit (loop));
2111 guard = make_edge (for_bb, ex_bb, 0);
2112 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2113 loop->latch = split_edge (single_succ_edge (loop->latch));
2114 single_pred_edge (loop->latch)->flags = 0;
2115 end = make_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2116 rescan_loop_exit (end, true, false);
2118 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2119 !gsi_end_p (gpi); gsi_next (&gpi))
2121 source_location locus;
2122 gphi *phi = gpi.phi ();
2123 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2124 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2126 /* If the exit phi is not connected to a header phi in the same loop, this
2127 value is not modified in the loop, and we're done with this phi. */
2128 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2129 && gimple_bb (def_stmt) == loop->header))
2131 locus = gimple_phi_arg_location_from_edge (phi, exit);
2132 add_phi_arg (phi, def, guard, locus);
2133 add_phi_arg (phi, def, end, locus);
2134 continue;
2137 gphi *stmt = as_a <gphi *> (def_stmt);
2138 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2139 locus = gimple_phi_arg_location_from_edge (stmt,
2140 loop_preheader_edge (loop));
2141 add_phi_arg (phi, def, guard, locus);
2143 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2144 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2145 add_phi_arg (phi, def, end, locus);
2147 e = redirect_edge_and_branch (exit, nexit->dest);
2148 PENDING_STMT (e) = NULL;
2150 /* Emit GIMPLE_OMP_FOR. */
2151 if (oacc_kernels_p)
2152 /* In combination with the NUM_GANGS on the parallel. */
2153 t = build_omp_clause (loc, OMP_CLAUSE_GANG);
2154 else
2156 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2157 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2158 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2159 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE);
2160 switch (schedule_type)
2162 case PARAM_PARLOOPS_SCHEDULE_KIND_static:
2163 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2164 break;
2165 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic:
2166 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2167 break;
2168 case PARAM_PARLOOPS_SCHEDULE_KIND_guided:
2169 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2170 break;
2171 case PARAM_PARLOOPS_SCHEDULE_KIND_auto:
2172 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2173 chunk_size = 0;
2174 break;
2175 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime:
2176 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2177 chunk_size = 0;
2178 break;
2179 default:
2180 gcc_unreachable ();
2182 if (chunk_size != 0)
2183 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2184 = build_int_cst (integer_type_node, chunk_size);
2187 for_stmt = gimple_build_omp_for (NULL,
2188 (oacc_kernels_p
2189 ? GF_OMP_FOR_KIND_OACC_LOOP
2190 : GF_OMP_FOR_KIND_FOR),
2191 t, 1, NULL);
2193 gimple_cond_set_lhs (cond_stmt, cvar_base);
2194 type = TREE_TYPE (cvar);
2195 gimple_set_location (for_stmt, loc);
2196 gimple_omp_for_set_index (for_stmt, 0, initvar);
2197 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2198 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2199 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2200 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2201 cvar_base,
2202 build_int_cst (type, 1)));
2204 gsi = gsi_last_bb (for_bb);
2205 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2206 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2208 /* Emit GIMPLE_OMP_CONTINUE. */
2209 continue_bb = single_pred (loop->latch);
2210 gsi = gsi_last_bb (continue_bb);
2211 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2212 gimple_set_location (omp_cont_stmt, loc);
2213 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2214 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2216 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2217 gsi = gsi_last_bb (ex_bb);
2218 omp_return_stmt2 = gimple_build_omp_return (true);
2219 gimple_set_location (omp_return_stmt2, loc);
2220 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2222 /* After the above dom info is hosed. Re-compute it. */
2223 free_dominance_info (CDI_DOMINATORS);
2224 calculate_dominance_info (CDI_DOMINATORS);
2227 /* Generates code to execute the iterations of LOOP in N_THREADS
2228 threads in parallel, which can be 0 if that number is to be determined
2229 later.
2231 NITER describes number of iterations of LOOP.
2232 REDUCTION_LIST describes the reductions existent in the LOOP. */
2234 static void
2235 gen_parallel_loop (struct loop *loop,
2236 reduction_info_table_type *reduction_list,
2237 unsigned n_threads, struct tree_niter_desc *niter,
2238 bool oacc_kernels_p)
2240 tree many_iterations_cond, type, nit;
2241 tree arg_struct, new_arg_struct;
2242 gimple_seq stmts;
2243 edge entry, exit;
2244 struct clsn_data clsn_data;
2245 unsigned prob;
2246 location_t loc;
2247 gimple *cond_stmt;
2248 unsigned int m_p_thread=2;
2250 /* From
2252 ---------------------------------------------------------------------
2253 loop
2255 IV = phi (INIT, IV + STEP)
2256 BODY1;
2257 if (COND)
2258 break;
2259 BODY2;
2261 ---------------------------------------------------------------------
2263 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2264 we generate the following code:
2266 ---------------------------------------------------------------------
2268 if (MAY_BE_ZERO
2269 || NITER < MIN_PER_THREAD * N_THREADS)
2270 goto original;
2272 BODY1;
2273 store all local loop-invariant variables used in body of the loop to DATA.
2274 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2275 load the variables from DATA.
2276 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2277 BODY2;
2278 BODY1;
2279 GIMPLE_OMP_CONTINUE;
2280 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2281 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2282 goto end;
2284 original:
2285 loop
2287 IV = phi (INIT, IV + STEP)
2288 BODY1;
2289 if (COND)
2290 break;
2291 BODY2;
2294 end:
2298 /* Create two versions of the loop -- in the old one, we know that the
2299 number of iterations is large enough, and we will transform it into the
2300 loop that will be split to loop_fn, the new one will be used for the
2301 remaining iterations. */
2303 /* We should compute a better number-of-iterations value for outer loops.
2304 That is, if we have
2306 for (i = 0; i < n; ++i)
2307 for (j = 0; j < m; ++j)
2310 we should compute nit = n * m, not nit = n.
2311 Also may_be_zero handling would need to be adjusted. */
2313 type = TREE_TYPE (niter->niter);
2314 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2315 NULL_TREE);
2316 if (stmts)
2317 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2319 if (!oacc_kernels_p)
2321 if (loop->inner)
2322 m_p_thread=2;
2323 else
2324 m_p_thread=MIN_PER_THREAD;
2326 gcc_checking_assert (n_threads != 0);
2327 many_iterations_cond =
2328 fold_build2 (GE_EXPR, boolean_type_node,
2329 nit, build_int_cst (type, m_p_thread * n_threads));
2331 many_iterations_cond
2332 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2333 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2334 many_iterations_cond);
2335 many_iterations_cond
2336 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2337 if (stmts)
2338 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2339 if (!is_gimple_condexpr (many_iterations_cond))
2341 many_iterations_cond
2342 = force_gimple_operand (many_iterations_cond, &stmts,
2343 true, NULL_TREE);
2344 if (stmts)
2345 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
2346 stmts);
2349 initialize_original_copy_tables ();
2351 /* We assume that the loop usually iterates a lot. */
2352 prob = 4 * REG_BR_PROB_BASE / 5;
2353 loop_version (loop, many_iterations_cond, NULL,
2354 prob, prob, REG_BR_PROB_BASE - prob, true);
2355 update_ssa (TODO_update_ssa);
2356 free_original_copy_tables ();
2359 /* Base all the induction variables in LOOP on a single control one. */
2360 canonicalize_loop_ivs (loop, &nit, true);
2362 /* Ensure that the exit condition is the first statement in the loop.
2363 The common case is that latch of the loop is empty (apart from the
2364 increment) and immediately follows the loop exit test. Attempt to move the
2365 entry of the loop directly before the exit check and increase the number of
2366 iterations of the loop by one. */
2367 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2369 if (dump_file
2370 && (dump_flags & TDF_DETAILS))
2371 fprintf (dump_file,
2372 "alternative exit-first loop transform succeeded"
2373 " for loop %d\n", loop->num);
2375 else
2377 if (oacc_kernels_p)
2378 n_threads = 1;
2380 /* Fall back on the method that handles more cases, but duplicates the
2381 loop body: move the exit condition of LOOP to the beginning of its
2382 header, and duplicate the part of the last iteration that gets disabled
2383 to the exit of the loop. */
2384 transform_to_exit_first_loop (loop, reduction_list, nit);
2387 /* Generate initializations for reductions. */
2388 if (reduction_list->elements () > 0)
2389 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2391 /* Eliminate the references to local variables from the loop. */
2392 gcc_assert (single_exit (loop));
2393 entry = loop_preheader_edge (loop);
2394 exit = single_dom_exit (loop);
2396 /* This rewrites the body in terms of new variables. This has already
2397 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
2398 if (!oacc_kernels_p)
2400 eliminate_local_variables (entry, exit);
2401 /* In the old loop, move all variables non-local to the loop to a
2402 structure and back, and create separate decls for the variables used in
2403 loop. */
2404 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2405 &new_arg_struct, &clsn_data);
2407 else
2409 arg_struct = NULL_TREE;
2410 new_arg_struct = NULL_TREE;
2411 clsn_data.load = NULL_TREE;
2412 clsn_data.load_bb = exit->dest;
2413 clsn_data.store = NULL_TREE;
2414 clsn_data.store_bb = NULL;
2417 /* Create the parallel constructs. */
2418 loc = UNKNOWN_LOCATION;
2419 cond_stmt = last_stmt (loop->header);
2420 if (cond_stmt)
2421 loc = gimple_location (cond_stmt);
2422 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
2423 n_threads, loc, oacc_kernels_p);
2424 if (reduction_list->elements () > 0)
2425 create_call_for_reduction (loop, reduction_list, &clsn_data);
2427 scev_reset ();
2429 /* Free loop bound estimations that could contain references to
2430 removed statements. */
2431 FOR_EACH_LOOP (loop, 0)
2432 free_numbers_of_iterations_estimates_loop (loop);
2435 /* Returns true when LOOP contains vector phi nodes. */
2437 static bool
2438 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2440 unsigned i;
2441 basic_block *bbs = get_loop_body_in_dom_order (loop);
2442 gphi_iterator gsi;
2443 bool res = true;
2445 for (i = 0; i < loop->num_nodes; i++)
2446 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2447 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2448 goto end;
2450 res = false;
2451 end:
2452 free (bbs);
2453 return res;
2456 /* Create a reduction_info struct, initialize it with REDUC_STMT
2457 and PHI, insert it to the REDUCTION_LIST. */
2459 static void
2460 build_new_reduction (reduction_info_table_type *reduction_list,
2461 gimple *reduc_stmt, gphi *phi)
2463 reduction_info **slot;
2464 struct reduction_info *new_reduction;
2465 enum tree_code reduction_code;
2467 gcc_assert (reduc_stmt);
2469 if (dump_file && (dump_flags & TDF_DETAILS))
2471 fprintf (dump_file,
2472 "Detected reduction. reduction stmt is:\n");
2473 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2474 fprintf (dump_file, "\n");
2477 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2479 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2480 gimple *def1 = SSA_NAME_DEF_STMT (op1);
2481 reduction_code = gimple_assign_rhs_code (def1);
2484 else
2485 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2487 new_reduction = XCNEW (struct reduction_info);
2489 new_reduction->reduc_stmt = reduc_stmt;
2490 new_reduction->reduc_phi = phi;
2491 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2492 new_reduction->reduction_code = reduction_code;
2493 slot = reduction_list->find_slot (new_reduction, INSERT);
2494 *slot = new_reduction;
2497 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2500 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2502 struct reduction_info *const red = *slot;
2503 gimple_set_uid (red->reduc_phi, red->reduc_version);
2504 return 1;
2507 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2509 static void
2510 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2512 gphi_iterator gsi;
2513 loop_vec_info simple_loop_info;
2514 loop_vec_info simple_inner_loop_info = NULL;
2515 bool allow_double_reduc = true;
2517 if (!stmt_vec_info_vec.exists ())
2518 init_stmt_vec_info_vec ();
2520 simple_loop_info = vect_analyze_loop_form (loop);
2521 if (simple_loop_info == NULL)
2522 goto gather_done;
2524 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2526 gphi *phi = gsi.phi ();
2527 affine_iv iv;
2528 tree res = PHI_RESULT (phi);
2529 bool double_reduc;
2531 if (virtual_operand_p (res))
2532 continue;
2534 if (simple_iv (loop, loop, res, &iv, true))
2535 continue;
2537 gimple *reduc_stmt
2538 = vect_force_simple_reduction (simple_loop_info, phi, true,
2539 &double_reduc, true);
2540 if (!reduc_stmt)
2541 continue;
2543 if (double_reduc)
2545 if (!allow_double_reduc
2546 || loop->inner->inner != NULL)
2547 continue;
2549 if (!simple_inner_loop_info)
2551 simple_inner_loop_info = vect_analyze_loop_form (loop->inner);
2552 if (!simple_inner_loop_info)
2554 allow_double_reduc = false;
2555 continue;
2559 use_operand_p use_p;
2560 gimple *inner_stmt;
2561 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2562 gcc_assert (single_use_p);
2563 if (gimple_code (inner_stmt) != GIMPLE_PHI)
2564 continue;
2565 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2566 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2567 &iv, true))
2568 continue;
2570 gimple *inner_reduc_stmt
2571 = vect_force_simple_reduction (simple_inner_loop_info, inner_phi,
2572 true, &double_reduc, true);
2573 gcc_assert (!double_reduc);
2574 if (inner_reduc_stmt == NULL)
2575 continue;
2578 build_new_reduction (reduction_list, reduc_stmt, phi);
2580 destroy_loop_vec_info (simple_loop_info, true);
2581 destroy_loop_vec_info (simple_inner_loop_info, true);
2583 gather_done:
2584 /* Release the claim on gimple_uid. */
2585 free_stmt_vec_info_vec ();
2587 if (reduction_list->elements () == 0)
2588 return;
2590 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2591 and free_stmt_vec_info_vec, we can set gimple_uid of reduc_phi stmts only
2592 now. */
2593 basic_block bb;
2594 FOR_EACH_BB_FN (bb, cfun)
2595 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2596 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
2597 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2600 /* Try to initialize NITER for code generation part. */
2602 static bool
2603 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2605 edge exit = single_dom_exit (loop);
2607 gcc_assert (exit);
2609 /* We need to know # of iterations, and there should be no uses of values
2610 defined inside loop outside of it, unless the values are invariants of
2611 the loop. */
2612 if (!number_of_iterations_exit (loop, exit, niter, false))
2614 if (dump_file && (dump_flags & TDF_DETAILS))
2615 fprintf (dump_file, " FAILED: number of iterations not known\n");
2616 return false;
2619 return true;
2622 /* Return the default def of the first function argument. */
2624 static tree
2625 get_omp_data_i_param (void)
2627 tree decl = DECL_ARGUMENTS (cfun->decl);
2628 gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
2629 return ssa_default_def (cfun, decl);
2632 /* For PHI in loop header of LOOP, look for pattern:
2634 <bb preheader>
2635 .omp_data_i = &.omp_data_arr;
2636 addr = .omp_data_i->sum;
2637 sum_a = *addr;
2639 <bb header>:
2640 sum_b = PHI <sum_a (preheader), sum_c (latch)>
2642 and return addr. Otherwise, return NULL_TREE. */
2644 static tree
2645 find_reduc_addr (struct loop *loop, gphi *phi)
2647 edge e = loop_preheader_edge (loop);
2648 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
2649 gimple *stmt = SSA_NAME_DEF_STMT (arg);
2650 if (!gimple_assign_single_p (stmt))
2651 return NULL_TREE;
2652 tree memref = gimple_assign_rhs1 (stmt);
2653 if (TREE_CODE (memref) != MEM_REF)
2654 return NULL_TREE;
2655 tree addr = TREE_OPERAND (memref, 0);
2657 gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
2658 if (!gimple_assign_single_p (stmt2))
2659 return NULL_TREE;
2660 tree compref = gimple_assign_rhs1 (stmt2);
2661 if (TREE_CODE (compref) != COMPONENT_REF)
2662 return NULL_TREE;
2663 tree addr2 = TREE_OPERAND (compref, 0);
2664 if (TREE_CODE (addr2) != MEM_REF)
2665 return NULL_TREE;
2666 addr2 = TREE_OPERAND (addr2, 0);
2667 if (TREE_CODE (addr2) != SSA_NAME
2668 || addr2 != get_omp_data_i_param ())
2669 return NULL_TREE;
2671 return addr;
2674 /* Try to initialize REDUCTION_LIST for code generation part.
2675 REDUCTION_LIST describes the reductions. */
2677 static bool
2678 try_create_reduction_list (loop_p loop,
2679 reduction_info_table_type *reduction_list,
2680 bool oacc_kernels_p)
2682 edge exit = single_dom_exit (loop);
2683 gphi_iterator gsi;
2685 gcc_assert (exit);
2687 /* Try to get rid of exit phis. */
2688 final_value_replacement_loop (loop);
2690 gather_scalar_reductions (loop, reduction_list);
2693 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2695 gphi *phi = gsi.phi ();
2696 struct reduction_info *red;
2697 imm_use_iterator imm_iter;
2698 use_operand_p use_p;
2699 gimple *reduc_phi;
2700 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2702 if (!virtual_operand_p (val))
2704 if (dump_file && (dump_flags & TDF_DETAILS))
2706 fprintf (dump_file, "phi is ");
2707 print_gimple_stmt (dump_file, phi, 0, 0);
2708 fprintf (dump_file, "arg of phi to exit: value ");
2709 print_generic_expr (dump_file, val, 0);
2710 fprintf (dump_file, " used outside loop\n");
2711 fprintf (dump_file,
2712 " checking if it is part of reduction pattern:\n");
2714 if (reduction_list->elements () == 0)
2716 if (dump_file && (dump_flags & TDF_DETAILS))
2717 fprintf (dump_file,
2718 " FAILED: it is not a part of reduction.\n");
2719 return false;
2721 reduc_phi = NULL;
2722 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2724 if (!gimple_debug_bind_p (USE_STMT (use_p))
2725 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2727 reduc_phi = USE_STMT (use_p);
2728 break;
2731 red = reduction_phi (reduction_list, reduc_phi);
2732 if (red == NULL)
2734 if (dump_file && (dump_flags & TDF_DETAILS))
2735 fprintf (dump_file,
2736 " FAILED: it is not a part of reduction.\n");
2737 return false;
2739 if (red->keep_res != NULL)
2741 if (dump_file && (dump_flags & TDF_DETAILS))
2742 fprintf (dump_file,
2743 " FAILED: reduction has multiple exit phis.\n");
2744 return false;
2746 red->keep_res = phi;
2747 if (dump_file && (dump_flags & TDF_DETAILS))
2749 fprintf (dump_file, "reduction phi is ");
2750 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2751 fprintf (dump_file, "reduction stmt is ");
2752 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2757 /* The iterations of the loop may communicate only through bivs whose
2758 iteration space can be distributed efficiently. */
2759 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2761 gphi *phi = gsi.phi ();
2762 tree def = PHI_RESULT (phi);
2763 affine_iv iv;
2765 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2767 struct reduction_info *red;
2769 red = reduction_phi (reduction_list, phi);
2770 if (red == NULL)
2772 if (dump_file && (dump_flags & TDF_DETAILS))
2773 fprintf (dump_file,
2774 " FAILED: scalar dependency between iterations\n");
2775 return false;
2780 if (oacc_kernels_p)
2782 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
2783 gsi_next (&gsi))
2785 gphi *phi = gsi.phi ();
2786 tree def = PHI_RESULT (phi);
2787 affine_iv iv;
2789 if (!virtual_operand_p (def)
2790 && !simple_iv (loop, loop, def, &iv, true))
2792 tree addr = find_reduc_addr (loop, phi);
2793 if (addr == NULL_TREE)
2794 return false;
2795 struct reduction_info *red = reduction_phi (reduction_list, phi);
2796 red->reduc_addr = addr;
2801 return true;
2804 /* Return true if LOOP contains phis with ADDR_EXPR in args. */
2806 static bool
2807 loop_has_phi_with_address_arg (struct loop *loop)
2809 basic_block *bbs = get_loop_body (loop);
2810 bool res = false;
2812 unsigned i, j;
2813 gphi_iterator gsi;
2814 for (i = 0; i < loop->num_nodes; i++)
2815 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2817 gphi *phi = gsi.phi ();
2818 for (j = 0; j < gimple_phi_num_args (phi); j++)
2820 tree arg = gimple_phi_arg_def (phi, j);
2821 if (TREE_CODE (arg) == ADDR_EXPR)
2823 /* This should be handled by eliminate_local_variables, but that
2824 function currently ignores phis. */
2825 res = true;
2826 goto end;
2830 end:
2831 free (bbs);
2833 return res;
2836 /* Return true if memory ref REF (corresponding to the stmt at GSI in
2837 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
2838 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
2839 store. Ignore conflicts with SKIP_STMT. */
2841 static bool
2842 ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
2843 bool ref_is_store, vec<basic_block> region_bbs,
2844 unsigned int i, gimple *skip_stmt)
2846 basic_block bb = region_bbs[i];
2847 gsi_next (&gsi);
2849 while (true)
2851 for (; !gsi_end_p (gsi);
2852 gsi_next (&gsi))
2854 gimple *stmt = gsi_stmt (gsi);
2855 if (stmt == skip_stmt)
2857 if (dump_file)
2859 fprintf (dump_file, "skipping reduction store: ");
2860 print_gimple_stmt (dump_file, stmt, 0, 0);
2862 continue;
2865 if (!gimple_vdef (stmt)
2866 && !gimple_vuse (stmt))
2867 continue;
2869 if (gimple_code (stmt) == GIMPLE_RETURN)
2870 continue;
2872 if (ref_is_store)
2874 if (ref_maybe_used_by_stmt_p (stmt, ref))
2876 if (dump_file)
2878 fprintf (dump_file, "Stmt ");
2879 print_gimple_stmt (dump_file, stmt, 0, 0);
2881 return true;
2884 else
2886 if (stmt_may_clobber_ref_p_1 (stmt, ref))
2888 if (dump_file)
2890 fprintf (dump_file, "Stmt ");
2891 print_gimple_stmt (dump_file, stmt, 0, 0);
2893 return true;
2897 i++;
2898 if (i == region_bbs.length ())
2899 break;
2900 bb = region_bbs[i];
2901 gsi = gsi_start_bb (bb);
2904 return false;
2907 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
2908 in parallel with REGION_BBS containing the loop. Return the stores of
2909 reduction results in REDUCTION_STORES. */
2911 static bool
2912 oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs,
2913 reduction_info_table_type *reduction_list,
2914 bitmap reduction_stores)
2916 tree omp_data_i = get_omp_data_i_param ();
2918 unsigned i;
2919 basic_block bb;
2920 FOR_EACH_VEC_ELT (region_bbs, i, bb)
2922 if (bitmap_bit_p (in_loop_bbs, bb->index))
2923 continue;
2925 gimple_stmt_iterator gsi;
2926 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2927 gsi_next (&gsi))
2929 gimple *stmt = gsi_stmt (gsi);
2930 gimple *skip_stmt = NULL;
2932 if (is_gimple_debug (stmt)
2933 || gimple_code (stmt) == GIMPLE_COND)
2934 continue;
2936 ao_ref ref;
2937 bool ref_is_store = false;
2938 if (gimple_assign_load_p (stmt))
2940 tree rhs = gimple_assign_rhs1 (stmt);
2941 tree base = get_base_address (rhs);
2942 if (TREE_CODE (base) == MEM_REF
2943 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
2944 continue;
2946 tree lhs = gimple_assign_lhs (stmt);
2947 if (TREE_CODE (lhs) == SSA_NAME
2948 && has_single_use (lhs))
2950 use_operand_p use_p;
2951 gimple *use_stmt;
2952 single_imm_use (lhs, &use_p, &use_stmt);
2953 if (gimple_code (use_stmt) == GIMPLE_PHI)
2955 struct reduction_info *red;
2956 red = reduction_phi (reduction_list, use_stmt);
2957 tree val = PHI_RESULT (red->keep_res);
2958 if (has_single_use (val))
2960 single_imm_use (val, &use_p, &use_stmt);
2961 if (gimple_store_p (use_stmt))
2963 unsigned int id
2964 = SSA_NAME_VERSION (gimple_vdef (use_stmt));
2965 bitmap_set_bit (reduction_stores, id);
2966 skip_stmt = use_stmt;
2967 if (dump_file)
2969 fprintf (dump_file, "found reduction load: ");
2970 print_gimple_stmt (dump_file, stmt, 0, 0);
2977 ao_ref_init (&ref, rhs);
2979 else if (gimple_store_p (stmt))
2981 ao_ref_init (&ref, gimple_assign_lhs (stmt));
2982 ref_is_store = true;
2984 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
2985 continue;
2986 else if (!gimple_has_side_effects (stmt)
2987 && !gimple_could_trap_p (stmt)
2988 && !stmt_could_throw_p (stmt)
2989 && !gimple_vdef (stmt)
2990 && !gimple_vuse (stmt))
2991 continue;
2992 else if (is_gimple_call (stmt)
2993 && gimple_call_internal_p (stmt)
2994 && gimple_call_internal_fn (stmt) == IFN_GOACC_DIM_POS)
2995 continue;
2996 else if (gimple_code (stmt) == GIMPLE_RETURN)
2997 continue;
2998 else
3000 if (dump_file)
3002 fprintf (dump_file, "Unhandled stmt in entry/exit: ");
3003 print_gimple_stmt (dump_file, stmt, 0, 0);
3005 return false;
3008 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
3009 i, skip_stmt))
3011 if (dump_file)
3013 fprintf (dump_file, "conflicts with entry/exit stmt: ");
3014 print_gimple_stmt (dump_file, stmt, 0, 0);
3016 return false;
3021 return true;
3024 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3025 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3026 if any changes were made. */
3028 static bool
3029 oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3030 bitmap reduction_stores)
3032 tree gang_pos = NULL_TREE;
3033 bool changed = false;
3035 unsigned i;
3036 basic_block bb;
3037 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3039 if (bitmap_bit_p (in_loop_bbs, bb->index))
3040 continue;
3042 gimple_stmt_iterator gsi;
3043 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3045 gimple *stmt = gsi_stmt (gsi);
3047 if (!gimple_store_p (stmt))
3049 /* Update gsi to point to next stmt. */
3050 gsi_next (&gsi);
3051 continue;
3054 if (bitmap_bit_p (reduction_stores,
3055 SSA_NAME_VERSION (gimple_vdef (stmt))))
3057 if (dump_file)
3059 fprintf (dump_file,
3060 "skipped reduction store for single-gang"
3061 " neutering: ");
3062 print_gimple_stmt (dump_file, stmt, 0, 0);
3065 /* Update gsi to point to next stmt. */
3066 gsi_next (&gsi);
3067 continue;
3070 changed = true;
3072 if (gang_pos == NULL_TREE)
3074 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
3075 gcall *gang_single
3076 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
3077 gang_pos = make_ssa_name (integer_type_node);
3078 gimple_call_set_lhs (gang_single, gang_pos);
3079 gimple_stmt_iterator start
3080 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
3081 tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
3082 gimple_set_vuse (gang_single, vuse);
3083 gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
3086 if (dump_file)
3088 fprintf (dump_file,
3089 "found store that needs single-gang neutering: ");
3090 print_gimple_stmt (dump_file, stmt, 0, 0);
3094 /* Split block before store. */
3095 gimple_stmt_iterator gsi2 = gsi;
3096 gsi_prev (&gsi2);
3097 edge e;
3098 if (gsi_end_p (gsi2))
3100 e = split_block_after_labels (bb);
3101 gsi2 = gsi_last_bb (bb);
3103 else
3104 e = split_block (bb, gsi_stmt (gsi2));
3105 basic_block bb2 = e->dest;
3107 /* Split block after store. */
3108 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
3109 edge e2 = split_block (bb2, gsi_stmt (gsi3));
3110 basic_block bb3 = e2->dest;
3112 gimple *cond
3113 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
3114 NULL_TREE, NULL_TREE);
3115 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
3117 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
3118 e->flags = EDGE_TRUE_VALUE;
3120 tree vdef = gimple_vdef (stmt);
3121 tree vuse = gimple_vuse (stmt);
3123 tree phi_res = copy_ssa_name (vdef);
3124 gphi *new_phi = create_phi_node (phi_res, bb3);
3125 replace_uses_by (vdef, phi_res);
3126 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
3127 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
3129 /* Update gsi to point to next stmt. */
3130 bb = bb3;
3131 gsi = gsi_start_bb (bb);
3136 return changed;
3139 /* Return true if the statements before and after the LOOP can be executed in
3140 parallel with the function containing the loop. Resolve conflicting stores
3141 outside LOOP by guarding them such that only a single gang executes them. */
3143 static bool
3144 oacc_entry_exit_ok (struct loop *loop,
3145 reduction_info_table_type *reduction_list)
3147 basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
3148 vec<basic_block> region_bbs
3149 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
3151 bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
3152 bitmap_clear (in_loop_bbs);
3153 for (unsigned int i = 0; i < loop->num_nodes; i++)
3154 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
3156 bitmap reduction_stores = BITMAP_ALLOC (NULL);
3157 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
3158 reduction_stores);
3160 if (res)
3162 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
3163 reduction_stores);
3164 if (changed)
3166 free_dominance_info (CDI_DOMINATORS);
3167 calculate_dominance_info (CDI_DOMINATORS);
3171 region_bbs.release ();
3172 free (loop_bbs);
3174 BITMAP_FREE (in_loop_bbs);
3175 BITMAP_FREE (reduction_stores);
3177 return res;
3180 /* Detect parallel loops and generate parallel code using libgomp
3181 primitives. Returns true if some loop was parallelized, false
3182 otherwise. */
3184 static bool
3185 parallelize_loops (bool oacc_kernels_p)
3187 unsigned n_threads;
3188 bool changed = false;
3189 struct loop *loop;
3190 struct loop *skip_loop = NULL;
3191 struct tree_niter_desc niter_desc;
3192 struct obstack parloop_obstack;
3193 HOST_WIDE_INT estimated;
3194 source_location loop_loc;
3196 /* Do not parallelize loops in the functions created by parallelization. */
3197 if (!oacc_kernels_p
3198 && parallelized_function_p (cfun->decl))
3199 return false;
3201 /* Do not parallelize loops in offloaded functions. */
3202 if (!oacc_kernels_p
3203 && get_oacc_fn_attrib (cfun->decl) != NULL)
3204 return false;
3206 if (cfun->has_nonlocal_label)
3207 return false;
3209 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
3210 the argument to -ftree-parallelize-loops. */
3211 if (oacc_kernels_p)
3212 n_threads = 0;
3213 else
3214 n_threads = flag_tree_parallelize_loops;
3216 gcc_obstack_init (&parloop_obstack);
3217 reduction_info_table_type reduction_list (10);
3219 calculate_dominance_info (CDI_DOMINATORS);
3221 FOR_EACH_LOOP (loop, 0)
3223 if (loop == skip_loop)
3225 if (!loop->in_oacc_kernels_region
3226 && dump_file && (dump_flags & TDF_DETAILS))
3227 fprintf (dump_file,
3228 "Skipping loop %d as inner loop of parallelized loop\n",
3229 loop->num);
3231 skip_loop = loop->inner;
3232 continue;
3234 else
3235 skip_loop = NULL;
3237 reduction_list.empty ();
3239 if (oacc_kernels_p)
3241 if (!loop->in_oacc_kernels_region)
3242 continue;
3244 /* Don't try to parallelize inner loops in an oacc kernels region. */
3245 if (loop->inner)
3246 skip_loop = loop->inner;
3248 if (dump_file && (dump_flags & TDF_DETAILS))
3249 fprintf (dump_file,
3250 "Trying loop %d with header bb %d in oacc kernels"
3251 " region\n", loop->num, loop->header->index);
3254 if (dump_file && (dump_flags & TDF_DETAILS))
3256 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
3257 if (loop->inner)
3258 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
3259 else
3260 fprintf (dump_file, "loop %d is innermost\n",loop->num);
3263 /* If we use autopar in graphite pass, we use its marked dependency
3264 checking results. */
3265 if (flag_loop_parallelize_all && !loop->can_be_parallel)
3267 if (dump_file && (dump_flags & TDF_DETAILS))
3268 fprintf (dump_file, "loop is not parallel according to graphite\n");
3269 continue;
3272 if (!single_dom_exit (loop))
3275 if (dump_file && (dump_flags & TDF_DETAILS))
3276 fprintf (dump_file, "loop is !single_dom_exit\n");
3278 continue;
3281 if (/* And of course, the loop must be parallelizable. */
3282 !can_duplicate_loop_p (loop)
3283 || loop_has_blocks_with_irreducible_flag (loop)
3284 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
3285 /* FIXME: the check for vector phi nodes could be removed. */
3286 || loop_has_vector_phi_nodes (loop))
3287 continue;
3289 estimated = estimated_stmt_executions_int (loop);
3290 if (estimated == -1)
3291 estimated = likely_max_stmt_executions_int (loop);
3292 /* FIXME: Bypass this check as graphite doesn't update the
3293 count and frequency correctly now. */
3294 if (!flag_loop_parallelize_all
3295 && !oacc_kernels_p
3296 && ((estimated != -1
3297 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
3298 /* Do not bother with loops in cold areas. */
3299 || optimize_loop_nest_for_size_p (loop)))
3300 continue;
3302 if (!try_get_loop_niter (loop, &niter_desc))
3303 continue;
3305 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
3306 continue;
3308 if (loop_has_phi_with_address_arg (loop))
3309 continue;
3311 if (!flag_loop_parallelize_all
3312 && !loop_parallel_p (loop, &parloop_obstack))
3313 continue;
3315 if (oacc_kernels_p
3316 && !oacc_entry_exit_ok (loop, &reduction_list))
3318 if (dump_file)
3319 fprintf (dump_file, "entry/exit not ok: FAILED\n");
3320 continue;
3323 changed = true;
3324 skip_loop = loop->inner;
3325 if (dump_file && (dump_flags & TDF_DETAILS))
3327 if (loop->inner)
3328 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
3329 else
3330 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
3331 loop_loc = find_loop_location (loop);
3332 if (loop_loc != UNKNOWN_LOCATION)
3333 fprintf (dump_file, "\nloop at %s:%d: ",
3334 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
3337 gen_parallel_loop (loop, &reduction_list,
3338 n_threads, &niter_desc, oacc_kernels_p);
3341 obstack_free (&parloop_obstack, NULL);
3343 /* Parallelization will cause new function calls to be inserted through
3344 which local variables will escape. Reset the points-to solution
3345 for ESCAPED. */
3346 if (changed)
3347 pt_solution_reset (&cfun->gimple_df->escaped);
3349 return changed;
3352 /* Parallelization. */
3354 namespace {
3356 const pass_data pass_data_parallelize_loops =
3358 GIMPLE_PASS, /* type */
3359 "parloops", /* name */
3360 OPTGROUP_LOOP, /* optinfo_flags */
3361 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
3362 ( PROP_cfg | PROP_ssa ), /* properties_required */
3363 0, /* properties_provided */
3364 0, /* properties_destroyed */
3365 0, /* todo_flags_start */
3366 0, /* todo_flags_finish */
3369 class pass_parallelize_loops : public gimple_opt_pass
3371 public:
3372 pass_parallelize_loops (gcc::context *ctxt)
3373 : gimple_opt_pass (pass_data_parallelize_loops, ctxt),
3374 oacc_kernels_p (false)
3377 /* opt_pass methods: */
3378 virtual bool gate (function *)
3380 if (oacc_kernels_p)
3381 return flag_openacc;
3382 else
3383 return flag_tree_parallelize_loops > 1;
3385 virtual unsigned int execute (function *);
3386 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
3387 void set_pass_param (unsigned int n, bool param)
3389 gcc_assert (n == 0);
3390 oacc_kernels_p = param;
3393 private:
3394 bool oacc_kernels_p;
3395 }; // class pass_parallelize_loops
3397 unsigned
3398 pass_parallelize_loops::execute (function *fun)
3400 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
3401 if (nthreads == NULL_TREE)
3402 return 0;
3404 bool in_loop_pipeline = scev_initialized_p ();
3405 if (!in_loop_pipeline)
3406 loop_optimizer_init (LOOPS_NORMAL
3407 | LOOPS_HAVE_RECORDED_EXITS);
3409 if (number_of_loops (fun) <= 1)
3410 return 0;
3412 if (!in_loop_pipeline)
3414 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3415 scev_initialize ();
3418 unsigned int todo = 0;
3419 if (parallelize_loops (oacc_kernels_p))
3421 fun->curr_properties &= ~(PROP_gimple_eomp);
3423 checking_verify_loop_structure ();
3425 todo |= TODO_update_ssa;
3428 if (!in_loop_pipeline)
3430 scev_finalize ();
3431 loop_optimizer_finalize ();
3434 return todo;
3437 } // anon namespace
3439 gimple_opt_pass *
3440 make_pass_parallelize_loops (gcc::context *ctxt)
3442 return new pass_parallelize_loops (ctxt);