* config/i386/driver-i386.c (decode_caches_intel): Add missing entries.
[official-gcc.git] / gcc / gimple-expr.c
blob45fe5c27d697304316603786a9e159c41187cca6
1 /* Gimple decl, type, and expression support functions.
3 Copyright (C) 2007-2013 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "pointer-set.h"
28 #include "basic-block.h"
29 #include "tree-ssa-alias.h"
30 #include "internal-fn.h"
31 #include "tree-eh.h"
32 #include "gimple-expr.h"
33 #include "is-a.h"
34 #include "gimple.h"
35 #include "stringpool.h"
36 #include "gimplify.h"
37 #include "stor-layout.h"
38 #include "demangle.h"
39 #include "gimple-ssa.h"
41 /* ----- Type related ----- */
43 /* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
44 useless type conversion, otherwise return false.
46 This function implicitly defines the middle-end type system. With
47 the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
48 holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
49 the following invariants shall be fulfilled:
51 1) useless_type_conversion_p is transitive.
52 If a < b and b < c then a < c.
54 2) useless_type_conversion_p is not symmetric.
55 From a < b does not follow a > b.
57 3) Types define the available set of operations applicable to values.
58 A type conversion is useless if the operations for the target type
59 is a subset of the operations for the source type. For example
60 casts to void* are useless, casts from void* are not (void* can't
61 be dereferenced or offsetted, but copied, hence its set of operations
62 is a strict subset of that of all other data pointer types). Casts
63 to const T* are useless (can't be written to), casts from const T*
64 to T* are not. */
66 bool
67 useless_type_conversion_p (tree outer_type, tree inner_type)
69 /* Do the following before stripping toplevel qualifiers. */
70 if (POINTER_TYPE_P (inner_type)
71 && POINTER_TYPE_P (outer_type))
73 /* Do not lose casts between pointers to different address spaces. */
74 if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
75 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
76 return false;
79 /* From now on qualifiers on value types do not matter. */
80 inner_type = TYPE_MAIN_VARIANT (inner_type);
81 outer_type = TYPE_MAIN_VARIANT (outer_type);
83 if (inner_type == outer_type)
84 return true;
86 /* If we know the canonical types, compare them. */
87 if (TYPE_CANONICAL (inner_type)
88 && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
89 return true;
91 /* Changes in machine mode are never useless conversions unless we
92 deal with aggregate types in which case we defer to later checks. */
93 if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
94 && !AGGREGATE_TYPE_P (inner_type))
95 return false;
97 /* If both the inner and outer types are integral types, then the
98 conversion is not necessary if they have the same mode and
99 signedness and precision, and both or neither are boolean. */
100 if (INTEGRAL_TYPE_P (inner_type)
101 && INTEGRAL_TYPE_P (outer_type))
103 /* Preserve changes in signedness or precision. */
104 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
105 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
106 return false;
108 /* Preserve conversions to/from BOOLEAN_TYPE if types are not
109 of precision one. */
110 if (((TREE_CODE (inner_type) == BOOLEAN_TYPE)
111 != (TREE_CODE (outer_type) == BOOLEAN_TYPE))
112 && TYPE_PRECISION (outer_type) != 1)
113 return false;
115 /* We don't need to preserve changes in the types minimum or
116 maximum value in general as these do not generate code
117 unless the types precisions are different. */
118 return true;
121 /* Scalar floating point types with the same mode are compatible. */
122 else if (SCALAR_FLOAT_TYPE_P (inner_type)
123 && SCALAR_FLOAT_TYPE_P (outer_type))
124 return true;
126 /* Fixed point types with the same mode are compatible. */
127 else if (FIXED_POINT_TYPE_P (inner_type)
128 && FIXED_POINT_TYPE_P (outer_type))
129 return true;
131 /* We need to take special care recursing to pointed-to types. */
132 else if (POINTER_TYPE_P (inner_type)
133 && POINTER_TYPE_P (outer_type))
135 /* Do not lose casts to function pointer types. */
136 if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
137 || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
138 && !(TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE
139 || TREE_CODE (TREE_TYPE (inner_type)) == METHOD_TYPE))
140 return false;
142 /* We do not care for const qualification of the pointed-to types
143 as const qualification has no semantic value to the middle-end. */
145 /* Otherwise pointers/references are equivalent. */
146 return true;
149 /* Recurse for complex types. */
150 else if (TREE_CODE (inner_type) == COMPLEX_TYPE
151 && TREE_CODE (outer_type) == COMPLEX_TYPE)
152 return useless_type_conversion_p (TREE_TYPE (outer_type),
153 TREE_TYPE (inner_type));
155 /* Recurse for vector types with the same number of subparts. */
156 else if (TREE_CODE (inner_type) == VECTOR_TYPE
157 && TREE_CODE (outer_type) == VECTOR_TYPE
158 && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
159 return useless_type_conversion_p (TREE_TYPE (outer_type),
160 TREE_TYPE (inner_type));
162 else if (TREE_CODE (inner_type) == ARRAY_TYPE
163 && TREE_CODE (outer_type) == ARRAY_TYPE)
165 /* Preserve string attributes. */
166 if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
167 return false;
169 /* Conversions from array types with unknown extent to
170 array types with known extent are not useless. */
171 if (!TYPE_DOMAIN (inner_type)
172 && TYPE_DOMAIN (outer_type))
173 return false;
175 /* Nor are conversions from array types with non-constant size to
176 array types with constant size or to different size. */
177 if (TYPE_SIZE (outer_type)
178 && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
179 && (!TYPE_SIZE (inner_type)
180 || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
181 || !tree_int_cst_equal (TYPE_SIZE (outer_type),
182 TYPE_SIZE (inner_type))))
183 return false;
185 /* Check conversions between arrays with partially known extents.
186 If the array min/max values are constant they have to match.
187 Otherwise allow conversions to unknown and variable extents.
188 In particular this declares conversions that may change the
189 mode to BLKmode as useless. */
190 if (TYPE_DOMAIN (inner_type)
191 && TYPE_DOMAIN (outer_type)
192 && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
194 tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
195 tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
196 tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
197 tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
199 /* After gimplification a variable min/max value carries no
200 additional information compared to a NULL value. All that
201 matters has been lowered to be part of the IL. */
202 if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
203 inner_min = NULL_TREE;
204 if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
205 outer_min = NULL_TREE;
206 if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
207 inner_max = NULL_TREE;
208 if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
209 outer_max = NULL_TREE;
211 /* Conversions NULL / variable <- cst are useless, but not
212 the other way around. */
213 if (outer_min
214 && (!inner_min
215 || !tree_int_cst_equal (inner_min, outer_min)))
216 return false;
217 if (outer_max
218 && (!inner_max
219 || !tree_int_cst_equal (inner_max, outer_max)))
220 return false;
223 /* Recurse on the element check. */
224 return useless_type_conversion_p (TREE_TYPE (outer_type),
225 TREE_TYPE (inner_type));
228 else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
229 || TREE_CODE (inner_type) == METHOD_TYPE)
230 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
232 tree outer_parm, inner_parm;
234 /* If the return types are not compatible bail out. */
235 if (!useless_type_conversion_p (TREE_TYPE (outer_type),
236 TREE_TYPE (inner_type)))
237 return false;
239 /* Method types should belong to a compatible base class. */
240 if (TREE_CODE (inner_type) == METHOD_TYPE
241 && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
242 TYPE_METHOD_BASETYPE (inner_type)))
243 return false;
245 /* A conversion to an unprototyped argument list is ok. */
246 if (!prototype_p (outer_type))
247 return true;
249 /* If the unqualified argument types are compatible the conversion
250 is useless. */
251 if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
252 return true;
254 for (outer_parm = TYPE_ARG_TYPES (outer_type),
255 inner_parm = TYPE_ARG_TYPES (inner_type);
256 outer_parm && inner_parm;
257 outer_parm = TREE_CHAIN (outer_parm),
258 inner_parm = TREE_CHAIN (inner_parm))
259 if (!useless_type_conversion_p
260 (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
261 TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
262 return false;
264 /* If there is a mismatch in the number of arguments the functions
265 are not compatible. */
266 if (outer_parm || inner_parm)
267 return false;
269 /* Defer to the target if necessary. */
270 if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
271 return comp_type_attributes (outer_type, inner_type) != 0;
273 return true;
276 /* For aggregates we rely on TYPE_CANONICAL exclusively and require
277 explicit conversions for types involving to be structurally
278 compared types. */
279 else if (AGGREGATE_TYPE_P (inner_type)
280 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
281 return false;
283 return false;
287 /* ----- Decl related ----- */
289 /* Set sequence SEQ to be the GIMPLE body for function FN. */
291 void
292 gimple_set_body (tree fndecl, gimple_seq seq)
294 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
295 if (fn == NULL)
297 /* If FNDECL still does not have a function structure associated
298 with it, then it does not make sense for it to receive a
299 GIMPLE body. */
300 gcc_assert (seq == NULL);
302 else
303 fn->gimple_body = seq;
307 /* Return the body of GIMPLE statements for function FN. After the
308 CFG pass, the function body doesn't exist anymore because it has
309 been split up into basic blocks. In this case, it returns
310 NULL. */
312 gimple_seq
313 gimple_body (tree fndecl)
315 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
316 return fn ? fn->gimple_body : NULL;
319 /* Return true when FNDECL has Gimple body either in unlowered
320 or CFG form. */
321 bool
322 gimple_has_body_p (tree fndecl)
324 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
325 return (gimple_body (fndecl) || (fn && fn->cfg));
328 /* Return a printable name for symbol DECL. */
330 const char *
331 gimple_decl_printable_name (tree decl, int verbosity)
333 if (!DECL_NAME (decl))
334 return NULL;
336 if (DECL_ASSEMBLER_NAME_SET_P (decl))
338 const char *str, *mangled_str;
339 int dmgl_opts = DMGL_NO_OPTS;
341 if (verbosity >= 2)
343 dmgl_opts = DMGL_VERBOSE
344 | DMGL_ANSI
345 | DMGL_GNU_V3
346 | DMGL_RET_POSTFIX;
347 if (TREE_CODE (decl) == FUNCTION_DECL)
348 dmgl_opts |= DMGL_PARAMS;
351 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
352 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
353 return (str) ? str : mangled_str;
356 return IDENTIFIER_POINTER (DECL_NAME (decl));
360 /* Create a new VAR_DECL and copy information from VAR to it. */
362 tree
363 copy_var_decl (tree var, tree name, tree type)
365 tree copy = build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, name, type);
367 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
368 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var);
369 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (var);
370 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
371 DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
372 DECL_CONTEXT (copy) = DECL_CONTEXT (var);
373 TREE_NO_WARNING (copy) = TREE_NO_WARNING (var);
374 TREE_USED (copy) = 1;
375 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
376 DECL_ATTRIBUTES (copy) = DECL_ATTRIBUTES (var);
378 return copy;
381 /* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
382 coalescing together, false otherwise.
384 This must stay consistent with var_map_base_init in tree-ssa-live.c. */
386 bool
387 gimple_can_coalesce_p (tree name1, tree name2)
389 /* First check the SSA_NAME's associated DECL. We only want to
390 coalesce if they have the same DECL or both have no associated DECL. */
391 tree var1 = SSA_NAME_VAR (name1);
392 tree var2 = SSA_NAME_VAR (name2);
393 var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
394 var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
395 if (var1 != var2)
396 return false;
398 /* Now check the types. If the types are the same, then we should
399 try to coalesce V1 and V2. */
400 tree t1 = TREE_TYPE (name1);
401 tree t2 = TREE_TYPE (name2);
402 if (t1 == t2)
403 return true;
405 /* If the types are not the same, check for a canonical type match. This
406 (for example) allows coalescing when the types are fundamentally the
407 same, but just have different names.
409 Note pointer types with different address spaces may have the same
410 canonical type. Those are rejected for coalescing by the
411 types_compatible_p check. */
412 if (TYPE_CANONICAL (t1)
413 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)
414 && types_compatible_p (t1, t2))
415 return true;
417 return false;
420 /* Strip off a legitimate source ending from the input string NAME of
421 length LEN. Rather than having to know the names used by all of
422 our front ends, we strip off an ending of a period followed by
423 up to five characters. (Java uses ".class".) */
425 static inline void
426 remove_suffix (char *name, int len)
428 int i;
430 for (i = 2; i < 8 && len > i; i++)
432 if (name[len - i] == '.')
434 name[len - i] = '\0';
435 break;
440 /* Create a new temporary name with PREFIX. Return an identifier. */
442 static GTY(()) unsigned int tmp_var_id_num;
444 tree
445 create_tmp_var_name (const char *prefix)
447 char *tmp_name;
449 if (prefix)
451 char *preftmp = ASTRDUP (prefix);
453 remove_suffix (preftmp, strlen (preftmp));
454 clean_symbol_name (preftmp);
456 prefix = preftmp;
459 ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
460 return get_identifier (tmp_name);
463 /* Create a new temporary variable declaration of type TYPE.
464 Do NOT push it into the current binding. */
466 tree
467 create_tmp_var_raw (tree type, const char *prefix)
469 tree tmp_var;
471 tmp_var = build_decl (input_location,
472 VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
473 type);
475 /* The variable was declared by the compiler. */
476 DECL_ARTIFICIAL (tmp_var) = 1;
477 /* And we don't want debug info for it. */
478 DECL_IGNORED_P (tmp_var) = 1;
480 /* Make the variable writable. */
481 TREE_READONLY (tmp_var) = 0;
483 DECL_EXTERNAL (tmp_var) = 0;
484 TREE_STATIC (tmp_var) = 0;
485 TREE_USED (tmp_var) = 1;
487 return tmp_var;
490 /* Create a new temporary variable declaration of type TYPE. DO push the
491 variable into the current binding. Further, assume that this is called
492 only from gimplification or optimization, at which point the creation of
493 certain types are bugs. */
495 tree
496 create_tmp_var (tree type, const char *prefix)
498 tree tmp_var;
500 /* We don't allow types that are addressable (meaning we can't make copies),
501 or incomplete. We also used to reject every variable size objects here,
502 but now support those for which a constant upper bound can be obtained.
503 The processing for variable sizes is performed in gimple_add_tmp_var,
504 point at which it really matters and possibly reached via paths not going
505 through this function, e.g. after direct calls to create_tmp_var_raw. */
506 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
508 tmp_var = create_tmp_var_raw (type, prefix);
509 gimple_add_tmp_var (tmp_var);
510 return tmp_var;
513 /* Create a new temporary variable declaration of type TYPE by calling
514 create_tmp_var and if TYPE is a vector or a complex number, mark the new
515 temporary as gimple register. */
517 tree
518 create_tmp_reg (tree type, const char *prefix)
520 tree tmp;
522 tmp = create_tmp_var (type, prefix);
523 if (TREE_CODE (type) == COMPLEX_TYPE
524 || TREE_CODE (type) == VECTOR_TYPE)
525 DECL_GIMPLE_REG_P (tmp) = 1;
527 return tmp;
531 /* ----- Expression related ----- */
533 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
534 *OP1_P, *OP2_P and *OP3_P respectively. */
536 void
537 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
538 tree *op2_p, tree *op3_p)
540 enum gimple_rhs_class grhs_class;
542 *subcode_p = TREE_CODE (expr);
543 grhs_class = get_gimple_rhs_class (*subcode_p);
545 if (grhs_class == GIMPLE_TERNARY_RHS)
547 *op1_p = TREE_OPERAND (expr, 0);
548 *op2_p = TREE_OPERAND (expr, 1);
549 *op3_p = TREE_OPERAND (expr, 2);
551 else if (grhs_class == GIMPLE_BINARY_RHS)
553 *op1_p = TREE_OPERAND (expr, 0);
554 *op2_p = TREE_OPERAND (expr, 1);
555 *op3_p = NULL_TREE;
557 else if (grhs_class == GIMPLE_UNARY_RHS)
559 *op1_p = TREE_OPERAND (expr, 0);
560 *op2_p = NULL_TREE;
561 *op3_p = NULL_TREE;
563 else if (grhs_class == GIMPLE_SINGLE_RHS)
565 *op1_p = expr;
566 *op2_p = NULL_TREE;
567 *op3_p = NULL_TREE;
569 else
570 gcc_unreachable ();
573 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
575 void
576 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
577 tree *lhs_p, tree *rhs_p)
579 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
580 || TREE_CODE (cond) == TRUTH_NOT_EXPR
581 || is_gimple_min_invariant (cond)
582 || SSA_VAR_P (cond));
584 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
586 /* Canonicalize conditionals of the form 'if (!VAL)'. */
587 if (*code_p == TRUTH_NOT_EXPR)
589 *code_p = EQ_EXPR;
590 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
591 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
593 /* Canonicalize conditionals of the form 'if (VAL)' */
594 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
596 *code_p = NE_EXPR;
597 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
598 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
602 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
604 bool
605 is_gimple_lvalue (tree t)
607 return (is_gimple_addressable (t)
608 || TREE_CODE (t) == WITH_SIZE_EXPR
609 /* These are complex lvalues, but don't have addresses, so they
610 go here. */
611 || TREE_CODE (t) == BIT_FIELD_REF);
614 /* Return true if T is a GIMPLE condition. */
616 bool
617 is_gimple_condexpr (tree t)
619 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
620 && !tree_could_throw_p (t)
621 && is_gimple_val (TREE_OPERAND (t, 0))
622 && is_gimple_val (TREE_OPERAND (t, 1))));
625 /* Return true if T is a gimple address. */
627 bool
628 is_gimple_address (const_tree t)
630 tree op;
632 if (TREE_CODE (t) != ADDR_EXPR)
633 return false;
635 op = TREE_OPERAND (t, 0);
636 while (handled_component_p (op))
638 if ((TREE_CODE (op) == ARRAY_REF
639 || TREE_CODE (op) == ARRAY_RANGE_REF)
640 && !is_gimple_val (TREE_OPERAND (op, 1)))
641 return false;
643 op = TREE_OPERAND (op, 0);
646 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
647 return true;
649 switch (TREE_CODE (op))
651 case PARM_DECL:
652 case RESULT_DECL:
653 case LABEL_DECL:
654 case FUNCTION_DECL:
655 case VAR_DECL:
656 case CONST_DECL:
657 return true;
659 default:
660 return false;
664 /* Return true if T is a gimple invariant address. */
666 bool
667 is_gimple_invariant_address (const_tree t)
669 const_tree op;
671 if (TREE_CODE (t) != ADDR_EXPR)
672 return false;
674 op = strip_invariant_refs (TREE_OPERAND (t, 0));
675 if (!op)
676 return false;
678 if (TREE_CODE (op) == MEM_REF)
680 const_tree op0 = TREE_OPERAND (op, 0);
681 return (TREE_CODE (op0) == ADDR_EXPR
682 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
683 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
686 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
689 /* Return true if T is a gimple invariant address at IPA level
690 (so addresses of variables on stack are not allowed). */
692 bool
693 is_gimple_ip_invariant_address (const_tree t)
695 const_tree op;
697 if (TREE_CODE (t) != ADDR_EXPR)
698 return false;
700 op = strip_invariant_refs (TREE_OPERAND (t, 0));
701 if (!op)
702 return false;
704 if (TREE_CODE (op) == MEM_REF)
706 const_tree op0 = TREE_OPERAND (op, 0);
707 return (TREE_CODE (op0) == ADDR_EXPR
708 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
709 || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
712 return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
715 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
716 form of function invariant. */
718 bool
719 is_gimple_min_invariant (const_tree t)
721 if (TREE_CODE (t) == ADDR_EXPR)
722 return is_gimple_invariant_address (t);
724 return is_gimple_constant (t);
727 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
728 form of gimple minimal invariant. */
730 bool
731 is_gimple_ip_invariant (const_tree t)
733 if (TREE_CODE (t) == ADDR_EXPR)
734 return is_gimple_ip_invariant_address (t);
736 return is_gimple_constant (t);
739 /* Return true if T is a non-aggregate register variable. */
741 bool
742 is_gimple_reg (tree t)
744 if (virtual_operand_p (t))
745 return false;
747 if (TREE_CODE (t) == SSA_NAME)
748 return true;
750 if (!is_gimple_variable (t))
751 return false;
753 if (!is_gimple_reg_type (TREE_TYPE (t)))
754 return false;
756 /* A volatile decl is not acceptable because we can't reuse it as
757 needed. We need to copy it into a temp first. */
758 if (TREE_THIS_VOLATILE (t))
759 return false;
761 /* We define "registers" as things that can be renamed as needed,
762 which with our infrastructure does not apply to memory. */
763 if (needs_to_live_in_memory (t))
764 return false;
766 /* Hard register variables are an interesting case. For those that
767 are call-clobbered, we don't know where all the calls are, since
768 we don't (want to) take into account which operations will turn
769 into libcalls at the rtl level. For those that are call-saved,
770 we don't currently model the fact that calls may in fact change
771 global hard registers, nor do we examine ASM_CLOBBERS at the tree
772 level, and so miss variable changes that might imply. All around,
773 it seems safest to not do too much optimization with these at the
774 tree level at all. We'll have to rely on the rtl optimizers to
775 clean this up, as there we've got all the appropriate bits exposed. */
776 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
777 return false;
779 /* Complex and vector values must have been put into SSA-like form.
780 That is, no assignments to the individual components. */
781 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
782 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
783 return DECL_GIMPLE_REG_P (t);
785 return true;
789 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
791 bool
792 is_gimple_val (tree t)
794 /* Make loads from volatiles and memory vars explicit. */
795 if (is_gimple_variable (t)
796 && is_gimple_reg_type (TREE_TYPE (t))
797 && !is_gimple_reg (t))
798 return false;
800 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
803 /* Similarly, but accept hard registers as inputs to asm statements. */
805 bool
806 is_gimple_asm_val (tree t)
808 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
809 return true;
811 return is_gimple_val (t);
814 /* Return true if T is a GIMPLE minimal lvalue. */
816 bool
817 is_gimple_min_lval (tree t)
819 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
820 return false;
821 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
824 /* Return true if T is a valid function operand of a CALL_EXPR. */
826 bool
827 is_gimple_call_addr (tree t)
829 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
832 /* Return true if T is a valid address operand of a MEM_REF. */
834 bool
835 is_gimple_mem_ref_addr (tree t)
837 return (is_gimple_reg (t)
838 || TREE_CODE (t) == INTEGER_CST
839 || (TREE_CODE (t) == ADDR_EXPR
840 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
841 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
844 /* Mark X addressable. Unlike the langhook we expect X to be in gimple
845 form and we don't do any syntax checking. */
847 void
848 mark_addressable (tree x)
850 while (handled_component_p (x))
851 x = TREE_OPERAND (x, 0);
852 if (TREE_CODE (x) == MEM_REF
853 && TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR)
854 x = TREE_OPERAND (TREE_OPERAND (x, 0), 0);
855 if (TREE_CODE (x) != VAR_DECL
856 && TREE_CODE (x) != PARM_DECL
857 && TREE_CODE (x) != RESULT_DECL)
858 return;
859 TREE_ADDRESSABLE (x) = 1;
861 /* Also mark the artificial SSA_NAME that points to the partition of X. */
862 if (TREE_CODE (x) == VAR_DECL
863 && !DECL_EXTERNAL (x)
864 && !TREE_STATIC (x)
865 && cfun->gimple_df != NULL
866 && cfun->gimple_df->decls_to_pointers != NULL)
868 void *namep
869 = pointer_map_contains (cfun->gimple_df->decls_to_pointers, x);
870 if (namep)
871 TREE_ADDRESSABLE (*(tree *)namep) = 1;
875 /* Returns true iff T is a valid RHS for an assignment to a renamed
876 user -- or front-end generated artificial -- variable. */
878 bool
879 is_gimple_reg_rhs (tree t)
881 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
884 #include "gt-gimple-expr.h"