1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
55 #include "insn-config.h"
56 #include "insn-attr.h"
58 #include "conditions.h"
60 #include "hard-reg-set.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
68 #include "basic-block.h"
70 #include "targhooks.h"
73 #include "tree-pass.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
95 #ifdef SDB_DEBUGGING_INFO
99 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
100 So define a null default for it to save conditionalization later. */
101 #ifndef CC_STATUS_INIT
102 #define CC_STATUS_INIT
105 /* Is the given character a logical line separator for the assembler? */
106 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
107 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
110 #ifndef JUMP_TABLES_IN_TEXT_SECTION
111 #define JUMP_TABLES_IN_TEXT_SECTION 0
114 /* Bitflags used by final_scan_insn. */
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn
;
121 rtx current_output_insn
;
123 /* Line number of last NOTE. */
124 static int last_linenum
;
126 /* Last discriminator written to assembly. */
127 static int last_discriminator
;
129 /* Discriminator of current block. */
130 static int discriminator
;
132 /* Highest line number in current block. */
133 static int high_block_linenum
;
135 /* Likewise for function. */
136 static int high_function_linenum
;
138 /* Filename of last NOTE. */
139 static const char *last_filename
;
141 /* Override filename and line number. */
142 static const char *override_filename
;
143 static int override_linenum
;
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line
= false;
148 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 rtx this_is_asm_operands
;
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands
;
158 /* Compare optimization flag. */
160 static rtx last_ignored_compare
= 0;
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
165 static int insn_counter
= 0;
168 /* This variable contains machine-dependent flags (defined in tm.h)
169 set and examined by output routines
170 that describe how to interpret the condition codes properly. */
174 /* During output of an insn, this contains a copy of cc_status
175 from before the insn. */
177 CC_STATUS cc_prev_status
;
180 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
182 static int block_depth
;
184 /* Nonzero if have enabled APP processing of our assembler output. */
188 /* If we are outputting an insn sequence, this contains the sequence rtx.
193 #ifdef ASSEMBLER_DIALECT
195 /* Number of the assembler dialect to use, starting at 0. */
196 static int dialect_number
;
199 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200 rtx current_insn_predicate
;
202 /* True if printing into -fdump-final-insns= dump. */
203 bool final_insns_dump_p
;
205 /* True if profile_function should be called, but hasn't been called yet. */
206 static bool need_profile_function
;
208 static int asm_insn_count (rtx
);
209 static void profile_function (FILE *);
210 static void profile_after_prologue (FILE *);
211 static bool notice_source_line (rtx
, bool *);
212 static rtx
walk_alter_subreg (rtx
*, bool *);
213 static void output_asm_name (void);
214 static void output_alternate_entry_point (FILE *, rtx
);
215 static tree
get_mem_expr_from_op (rtx
, int *);
216 static void output_asm_operand_names (rtx
*, int *, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx
);
221 static int alter_cond (rtx
);
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx
);
226 static int align_fuzz (rtx
, rtx
, int, unsigned);
228 /* Initialize data in final at the beginning of a compilation. */
231 init_final (const char *filename ATTRIBUTE_UNUSED
)
236 #ifdef ASSEMBLER_DIALECT
237 dialect_number
= ASSEMBLER_DIALECT
;
241 /* Default target function prologue and epilogue assembler output.
243 If not overridden for epilogue code, then the function body itself
244 contains return instructions wherever needed. */
246 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
247 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
252 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
253 tree decl ATTRIBUTE_UNUSED
,
254 bool new_is_cold ATTRIBUTE_UNUSED
)
258 /* Default target hook that outputs nothing to a stream. */
260 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
264 /* Enable APP processing of subsequent output.
265 Used before the output from an `asm' statement. */
272 fputs (ASM_APP_ON
, asm_out_file
);
277 /* Disable APP processing of subsequent output.
278 Called from varasm.c before most kinds of output. */
285 fputs (ASM_APP_OFF
, asm_out_file
);
290 /* Return the number of slots filled in the current
291 delayed branch sequence (we don't count the insn needing the
292 delay slot). Zero if not in a delayed branch sequence. */
296 dbr_sequence_length (void)
298 if (final_sequence
!= 0)
299 return XVECLEN (final_sequence
, 0) - 1;
305 /* The next two pages contain routines used to compute the length of an insn
306 and to shorten branches. */
308 /* Arrays for insn lengths, and addresses. The latter is referenced by
309 `insn_current_length'. */
311 static int *insn_lengths
;
313 vec
<int> insn_addresses_
;
315 /* Max uid for which the above arrays are valid. */
316 static int insn_lengths_max_uid
;
318 /* Address of insn being processed. Used by `insn_current_length'. */
319 int insn_current_address
;
321 /* Address of insn being processed in previous iteration. */
322 int insn_last_address
;
324 /* known invariant alignment of insn being processed. */
325 int insn_current_align
;
327 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
328 gives the next following alignment insn that increases the known
329 alignment, or NULL_RTX if there is no such insn.
330 For any alignment obtained this way, we can again index uid_align with
331 its uid to obtain the next following align that in turn increases the
332 alignment, till we reach NULL_RTX; the sequence obtained this way
333 for each insn we'll call the alignment chain of this insn in the following
336 struct label_alignment
342 static rtx
*uid_align
;
343 static int *uid_shuid
;
344 static struct label_alignment
*label_align
;
346 /* Indicate that branch shortening hasn't yet been done. */
349 init_insn_lengths (void)
360 insn_lengths_max_uid
= 0;
362 if (HAVE_ATTR_length
)
363 INSN_ADDRESSES_FREE ();
371 /* Obtain the current length of an insn. If branch shortening has been done,
372 get its actual length. Otherwise, use FALLBACK_FN to calculate the
375 get_attr_length_1 (rtx insn
, int (*fallback_fn
) (rtx
))
381 if (!HAVE_ATTR_length
)
384 if (insn_lengths_max_uid
> INSN_UID (insn
))
385 return insn_lengths
[INSN_UID (insn
)];
387 switch (GET_CODE (insn
))
397 length
= fallback_fn (insn
);
401 body
= PATTERN (insn
);
402 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
405 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
406 length
= asm_insn_count (body
) * fallback_fn (insn
);
407 else if (GET_CODE (body
) == SEQUENCE
)
408 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
409 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
411 length
= fallback_fn (insn
);
418 #ifdef ADJUST_INSN_LENGTH
419 ADJUST_INSN_LENGTH (insn
, length
);
424 /* Obtain the current length of an insn. If branch shortening has been done,
425 get its actual length. Otherwise, get its maximum length. */
427 get_attr_length (rtx insn
)
429 return get_attr_length_1 (insn
, insn_default_length
);
432 /* Obtain the current length of an insn. If branch shortening has been done,
433 get its actual length. Otherwise, get its minimum length. */
435 get_attr_min_length (rtx insn
)
437 return get_attr_length_1 (insn
, insn_min_length
);
440 /* Code to handle alignment inside shorten_branches. */
442 /* Here is an explanation how the algorithm in align_fuzz can give
445 Call a sequence of instructions beginning with alignment point X
446 and continuing until the next alignment point `block X'. When `X'
447 is used in an expression, it means the alignment value of the
450 Call the distance between the start of the first insn of block X, and
451 the end of the last insn of block X `IX', for the `inner size of X'.
452 This is clearly the sum of the instruction lengths.
454 Likewise with the next alignment-delimited block following X, which we
457 Call the distance between the start of the first insn of block X, and
458 the start of the first insn of block Y `OX', for the `outer size of X'.
460 The estimated padding is then OX - IX.
462 OX can be safely estimated as
467 OX = round_up(IX, X) + Y - X
469 Clearly est(IX) >= real(IX), because that only depends on the
470 instruction lengths, and those being overestimated is a given.
472 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
473 we needn't worry about that when thinking about OX.
475 When X >= Y, the alignment provided by Y adds no uncertainty factor
476 for branch ranges starting before X, so we can just round what we have.
477 But when X < Y, we don't know anything about the, so to speak,
478 `middle bits', so we have to assume the worst when aligning up from an
479 address mod X to one mod Y, which is Y - X. */
482 #define LABEL_ALIGN(LABEL) align_labels_log
486 #define LOOP_ALIGN(LABEL) align_loops_log
489 #ifndef LABEL_ALIGN_AFTER_BARRIER
490 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
494 #define JUMP_ALIGN(LABEL) align_jumps_log
498 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED
)
504 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
506 return align_loops_max_skip
;
510 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
512 return align_labels_max_skip
;
516 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
518 return align_jumps_max_skip
;
521 #ifndef ADDR_VEC_ALIGN
523 final_addr_vec_align (rtx addr_vec
)
525 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
527 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
528 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
529 return exact_log2 (align
);
533 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
536 #ifndef INSN_LENGTH_ALIGNMENT
537 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
540 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
542 static int min_labelno
, max_labelno
;
544 #define LABEL_TO_ALIGNMENT(LABEL) \
545 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
547 #define LABEL_TO_MAX_SKIP(LABEL) \
548 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
550 /* For the benefit of port specific code do this also as a function. */
553 label_to_alignment (rtx label
)
555 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
556 return LABEL_TO_ALIGNMENT (label
);
561 label_to_max_skip (rtx label
)
563 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
564 return LABEL_TO_MAX_SKIP (label
);
568 /* The differences in addresses
569 between a branch and its target might grow or shrink depending on
570 the alignment the start insn of the range (the branch for a forward
571 branch or the label for a backward branch) starts out on; if these
572 differences are used naively, they can even oscillate infinitely.
573 We therefore want to compute a 'worst case' address difference that
574 is independent of the alignment the start insn of the range end
575 up on, and that is at least as large as the actual difference.
576 The function align_fuzz calculates the amount we have to add to the
577 naively computed difference, by traversing the part of the alignment
578 chain of the start insn of the range that is in front of the end insn
579 of the range, and considering for each alignment the maximum amount
580 that it might contribute to a size increase.
582 For casesi tables, we also want to know worst case minimum amounts of
583 address difference, in case a machine description wants to introduce
584 some common offset that is added to all offsets in a table.
585 For this purpose, align_fuzz with a growth argument of 0 computes the
586 appropriate adjustment. */
588 /* Compute the maximum delta by which the difference of the addresses of
589 START and END might grow / shrink due to a different address for start
590 which changes the size of alignment insns between START and END.
591 KNOWN_ALIGN_LOG is the alignment known for START.
592 GROWTH should be ~0 if the objective is to compute potential code size
593 increase, and 0 if the objective is to compute potential shrink.
594 The return value is undefined for any other value of GROWTH. */
597 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
599 int uid
= INSN_UID (start
);
601 int known_align
= 1 << known_align_log
;
602 int end_shuid
= INSN_SHUID (end
);
605 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
607 int align_addr
, new_align
;
609 uid
= INSN_UID (align_label
);
610 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
611 if (uid_shuid
[uid
] > end_shuid
)
613 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
614 new_align
= 1 << known_align_log
;
615 if (new_align
< known_align
)
617 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
618 known_align
= new_align
;
623 /* Compute a worst-case reference address of a branch so that it
624 can be safely used in the presence of aligned labels. Since the
625 size of the branch itself is unknown, the size of the branch is
626 not included in the range. I.e. for a forward branch, the reference
627 address is the end address of the branch as known from the previous
628 branch shortening pass, minus a value to account for possible size
629 increase due to alignment. For a backward branch, it is the start
630 address of the branch as known from the current pass, plus a value
631 to account for possible size increase due to alignment.
632 NB.: Therefore, the maximum offset allowed for backward branches needs
633 to exclude the branch size. */
636 insn_current_reference_address (rtx branch
)
641 if (! INSN_ADDRESSES_SET_P ())
644 seq
= NEXT_INSN (PREV_INSN (branch
));
645 seq_uid
= INSN_UID (seq
);
646 if (!JUMP_P (branch
))
647 /* This can happen for example on the PA; the objective is to know the
648 offset to address something in front of the start of the function.
649 Thus, we can treat it like a backward branch.
650 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
651 any alignment we'd encounter, so we skip the call to align_fuzz. */
652 return insn_current_address
;
653 dest
= JUMP_LABEL (branch
);
655 /* BRANCH has no proper alignment chain set, so use SEQ.
656 BRANCH also has no INSN_SHUID. */
657 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
659 /* Forward branch. */
660 return (insn_last_address
+ insn_lengths
[seq_uid
]
661 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
665 /* Backward branch. */
666 return (insn_current_address
667 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
671 /* Compute branch alignments based on frequency information in the
675 compute_alignments (void)
677 int log
, max_skip
, max_log
;
680 int freq_threshold
= 0;
688 max_labelno
= max_label_num ();
689 min_labelno
= get_first_label_num ();
690 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
692 /* If not optimizing or optimizing for size, don't assign any alignments. */
693 if (! optimize
|| optimize_function_for_size_p (cfun
))
698 dump_reg_info (dump_file
);
699 dump_flow_info (dump_file
, TDF_DETAILS
);
700 flow_loops_dump (dump_file
, NULL
, 1);
702 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
703 FOR_EACH_BB_FN (bb
, cfun
)
704 if (bb
->frequency
> freq_max
)
705 freq_max
= bb
->frequency
;
706 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
709 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
710 FOR_EACH_BB_FN (bb
, cfun
)
712 rtx label
= BB_HEAD (bb
);
713 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
718 || optimize_bb_for_size_p (bb
))
722 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
723 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
727 max_log
= LABEL_ALIGN (label
);
728 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
730 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
732 if (e
->flags
& EDGE_FALLTHRU
)
733 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
735 branch_frequency
+= EDGE_FREQUENCY (e
);
739 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
740 " %2i fall %4i branch %4i",
741 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
743 fallthru_frequency
, branch_frequency
);
744 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
745 fprintf (dump_file
, " inner_loop");
746 if (bb
->loop_father
->header
== bb
)
747 fprintf (dump_file
, " loop_header");
748 fprintf (dump_file
, "\n");
751 /* There are two purposes to align block with no fallthru incoming edge:
752 1) to avoid fetch stalls when branch destination is near cache boundary
753 2) to improve cache efficiency in case the previous block is not executed
754 (so it does not need to be in the cache).
756 We to catch first case, we align frequently executed blocks.
757 To catch the second, we align blocks that are executed more frequently
758 than the predecessor and the predecessor is likely to not be executed
759 when function is called. */
762 && (branch_frequency
> freq_threshold
763 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
764 && (bb
->prev_bb
->frequency
765 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
767 log
= JUMP_ALIGN (label
);
769 fprintf (dump_file
, " jump alignment added.\n");
773 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
776 /* In case block is frequent and reached mostly by non-fallthru edge,
777 align it. It is most likely a first block of loop. */
779 && optimize_bb_for_speed_p (bb
)
780 && branch_frequency
+ fallthru_frequency
> freq_threshold
782 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
784 log
= LOOP_ALIGN (label
);
786 fprintf (dump_file
, " internal loop alignment added.\n");
790 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
793 LABEL_TO_ALIGNMENT (label
) = max_log
;
794 LABEL_TO_MAX_SKIP (label
) = max_skip
;
797 loop_optimizer_finalize ();
798 free_dominance_info (CDI_DOMINATORS
);
802 /* Grow the LABEL_ALIGN array after new labels are created. */
805 grow_label_align (void)
807 int old
= max_labelno
;
811 max_labelno
= max_label_num ();
813 n_labels
= max_labelno
- min_labelno
+ 1;
814 n_old_labels
= old
- min_labelno
+ 1;
816 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
818 /* Range of labels grows monotonically in the function. Failing here
819 means that the initialization of array got lost. */
820 gcc_assert (n_old_labels
<= n_labels
);
822 memset (label_align
+ n_old_labels
, 0,
823 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
826 /* Update the already computed alignment information. LABEL_PAIRS is a vector
827 made up of pairs of labels for which the alignment information of the first
828 element will be copied from that of the second element. */
831 update_alignments (vec
<rtx
> &label_pairs
)
834 rtx iter
, label
= NULL_RTX
;
836 if (max_labelno
!= max_label_num ())
839 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
842 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
843 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
851 const pass_data pass_data_compute_alignments
=
854 "alignments", /* name */
855 OPTGROUP_NONE
, /* optinfo_flags */
856 false, /* has_gate */
857 true, /* has_execute */
859 0, /* properties_required */
860 0, /* properties_provided */
861 0, /* properties_destroyed */
862 0, /* todo_flags_start */
863 TODO_verify_rtl_sharing
, /* todo_flags_finish */
866 class pass_compute_alignments
: public rtl_opt_pass
869 pass_compute_alignments (gcc::context
*ctxt
)
870 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
873 /* opt_pass methods: */
874 unsigned int execute () { return compute_alignments (); }
876 }; // class pass_compute_alignments
881 make_pass_compute_alignments (gcc::context
*ctxt
)
883 return new pass_compute_alignments (ctxt
);
887 /* Make a pass over all insns and compute their actual lengths by shortening
888 any branches of variable length if possible. */
890 /* shorten_branches might be called multiple times: for example, the SH
891 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
892 In order to do this, it needs proper length information, which it obtains
893 by calling shorten_branches. This cannot be collapsed with
894 shorten_branches itself into a single pass unless we also want to integrate
895 reorg.c, since the branch splitting exposes new instructions with delay
899 shorten_branches (rtx first
)
906 #define MAX_CODE_ALIGN 16
908 int something_changed
= 1;
909 char *varying_length
;
912 rtx align_tab
[MAX_CODE_ALIGN
];
914 /* Compute maximum UID and allocate label_align / uid_shuid. */
915 max_uid
= get_max_uid ();
917 /* Free uid_shuid before reallocating it. */
920 uid_shuid
= XNEWVEC (int, max_uid
);
922 if (max_labelno
!= max_label_num ())
925 /* Initialize label_align and set up uid_shuid to be strictly
926 monotonically rising with insn order. */
927 /* We use max_log here to keep track of the maximum alignment we want to
928 impose on the next CODE_LABEL (or the current one if we are processing
929 the CODE_LABEL itself). */
934 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
938 INSN_SHUID (insn
) = i
++;
945 bool next_is_jumptable
;
947 /* Merge in alignments computed by compute_alignments. */
948 log
= LABEL_TO_ALIGNMENT (insn
);
952 max_skip
= LABEL_TO_MAX_SKIP (insn
);
955 next
= next_nonnote_insn (insn
);
956 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
957 if (!next_is_jumptable
)
959 log
= LABEL_ALIGN (insn
);
963 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
966 /* ADDR_VECs only take room if read-only data goes into the text
968 if ((JUMP_TABLES_IN_TEXT_SECTION
969 || readonly_data_section
== text_section
)
970 && next_is_jumptable
)
972 log
= ADDR_VEC_ALIGN (next
);
976 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
979 LABEL_TO_ALIGNMENT (insn
) = max_log
;
980 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
984 else if (BARRIER_P (insn
))
988 for (label
= insn
; label
&& ! INSN_P (label
);
989 label
= NEXT_INSN (label
))
992 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
996 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1002 if (!HAVE_ATTR_length
)
1005 /* Allocate the rest of the arrays. */
1006 insn_lengths
= XNEWVEC (int, max_uid
);
1007 insn_lengths_max_uid
= max_uid
;
1008 /* Syntax errors can lead to labels being outside of the main insn stream.
1009 Initialize insn_addresses, so that we get reproducible results. */
1010 INSN_ADDRESSES_ALLOC (max_uid
);
1012 varying_length
= XCNEWVEC (char, max_uid
);
1014 /* Initialize uid_align. We scan instructions
1015 from end to start, and keep in align_tab[n] the last seen insn
1016 that does an alignment of at least n+1, i.e. the successor
1017 in the alignment chain for an insn that does / has a known
1019 uid_align
= XCNEWVEC (rtx
, max_uid
);
1021 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1022 align_tab
[i
] = NULL_RTX
;
1023 seq
= get_last_insn ();
1024 for (; seq
; seq
= PREV_INSN (seq
))
1026 int uid
= INSN_UID (seq
);
1028 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1029 uid_align
[uid
] = align_tab
[0];
1032 /* Found an alignment label. */
1033 uid_align
[uid
] = align_tab
[log
];
1034 for (i
= log
- 1; i
>= 0; i
--)
1039 /* When optimizing, we start assuming minimum length, and keep increasing
1040 lengths as we find the need for this, till nothing changes.
1041 When not optimizing, we start assuming maximum lengths, and
1042 do a single pass to update the lengths. */
1043 bool increasing
= optimize
!= 0;
1045 #ifdef CASE_VECTOR_SHORTEN_MODE
1048 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1051 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1052 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1055 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1057 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1058 int len
, i
, min
, max
, insn_shuid
;
1060 addr_diff_vec_flags flags
;
1062 if (! JUMP_TABLE_DATA_P (insn
)
1063 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1065 pat
= PATTERN (insn
);
1066 len
= XVECLEN (pat
, 1);
1067 gcc_assert (len
> 0);
1068 min_align
= MAX_CODE_ALIGN
;
1069 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1071 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1072 int shuid
= INSN_SHUID (lab
);
1083 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1084 min_align
= LABEL_TO_ALIGNMENT (lab
);
1086 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1087 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1088 insn_shuid
= INSN_SHUID (insn
);
1089 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1090 memset (&flags
, 0, sizeof (flags
));
1091 flags
.min_align
= min_align
;
1092 flags
.base_after_vec
= rel
> insn_shuid
;
1093 flags
.min_after_vec
= min
> insn_shuid
;
1094 flags
.max_after_vec
= max
> insn_shuid
;
1095 flags
.min_after_base
= min
> rel
;
1096 flags
.max_after_base
= max
> rel
;
1097 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1100 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1103 #endif /* CASE_VECTOR_SHORTEN_MODE */
1105 /* Compute initial lengths, addresses, and varying flags for each insn. */
1106 int (*length_fun
) (rtx
) = increasing
? insn_min_length
: insn_default_length
;
1108 for (insn_current_address
= 0, insn
= first
;
1110 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1112 uid
= INSN_UID (insn
);
1114 insn_lengths
[uid
] = 0;
1118 int log
= LABEL_TO_ALIGNMENT (insn
);
1121 int align
= 1 << log
;
1122 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1123 insn_lengths
[uid
] = new_address
- insn_current_address
;
1127 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1129 if (NOTE_P (insn
) || BARRIER_P (insn
)
1130 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1132 if (INSN_DELETED_P (insn
))
1135 body
= PATTERN (insn
);
1136 if (JUMP_TABLE_DATA_P (insn
))
1138 /* This only takes room if read-only data goes into the text
1140 if (JUMP_TABLES_IN_TEXT_SECTION
1141 || readonly_data_section
== text_section
)
1142 insn_lengths
[uid
] = (XVECLEN (body
,
1143 GET_CODE (body
) == ADDR_DIFF_VEC
)
1144 * GET_MODE_SIZE (GET_MODE (body
)));
1145 /* Alignment is handled by ADDR_VEC_ALIGN. */
1147 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1148 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1149 else if (GET_CODE (body
) == SEQUENCE
)
1152 int const_delay_slots
;
1154 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1156 const_delay_slots
= 0;
1158 int (*inner_length_fun
) (rtx
)
1159 = const_delay_slots
? length_fun
: insn_default_length
;
1160 /* Inside a delay slot sequence, we do not do any branch shortening
1161 if the shortening could change the number of delay slots
1163 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1165 rtx inner_insn
= XVECEXP (body
, 0, i
);
1166 int inner_uid
= INSN_UID (inner_insn
);
1169 if (GET_CODE (body
) == ASM_INPUT
1170 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1171 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1172 * insn_default_length (inner_insn
));
1174 inner_length
= inner_length_fun (inner_insn
);
1176 insn_lengths
[inner_uid
] = inner_length
;
1177 if (const_delay_slots
)
1179 if ((varying_length
[inner_uid
]
1180 = insn_variable_length_p (inner_insn
)) != 0)
1181 varying_length
[uid
] = 1;
1182 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1183 + insn_lengths
[uid
]);
1186 varying_length
[inner_uid
] = 0;
1187 insn_lengths
[uid
] += inner_length
;
1190 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1192 insn_lengths
[uid
] = length_fun (insn
);
1193 varying_length
[uid
] = insn_variable_length_p (insn
);
1196 /* If needed, do any adjustment. */
1197 #ifdef ADJUST_INSN_LENGTH
1198 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1199 if (insn_lengths
[uid
] < 0)
1200 fatal_insn ("negative insn length", insn
);
1204 /* Now loop over all the insns finding varying length insns. For each,
1205 get the current insn length. If it has changed, reflect the change.
1206 When nothing changes for a full pass, we are done. */
1208 while (something_changed
)
1210 something_changed
= 0;
1211 insn_current_align
= MAX_CODE_ALIGN
- 1;
1212 for (insn_current_address
= 0, insn
= first
;
1214 insn
= NEXT_INSN (insn
))
1217 #ifdef ADJUST_INSN_LENGTH
1222 uid
= INSN_UID (insn
);
1226 int log
= LABEL_TO_ALIGNMENT (insn
);
1228 #ifdef CASE_VECTOR_SHORTEN_MODE
1229 /* If the mode of a following jump table was changed, we
1230 may need to update the alignment of this label. */
1232 bool next_is_jumptable
;
1234 next
= next_nonnote_insn (insn
);
1235 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1236 if ((JUMP_TABLES_IN_TEXT_SECTION
1237 || readonly_data_section
== text_section
)
1238 && next_is_jumptable
)
1240 int newlog
= ADDR_VEC_ALIGN (next
);
1244 LABEL_TO_ALIGNMENT (insn
) = log
;
1245 something_changed
= 1;
1250 if (log
> insn_current_align
)
1252 int align
= 1 << log
;
1253 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1254 insn_lengths
[uid
] = new_address
- insn_current_address
;
1255 insn_current_align
= log
;
1256 insn_current_address
= new_address
;
1259 insn_lengths
[uid
] = 0;
1260 INSN_ADDRESSES (uid
) = insn_current_address
;
1264 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1265 if (length_align
< insn_current_align
)
1266 insn_current_align
= length_align
;
1268 insn_last_address
= INSN_ADDRESSES (uid
);
1269 INSN_ADDRESSES (uid
) = insn_current_address
;
1271 #ifdef CASE_VECTOR_SHORTEN_MODE
1273 && JUMP_TABLE_DATA_P (insn
)
1274 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1276 rtx body
= PATTERN (insn
);
1277 int old_length
= insn_lengths
[uid
];
1278 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1279 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1280 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1281 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1282 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1283 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1286 addr_diff_vec_flags flags
;
1287 enum machine_mode vec_mode
;
1289 /* Avoid automatic aggregate initialization. */
1290 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1292 /* Try to find a known alignment for rel_lab. */
1293 for (prev
= rel_lab
;
1295 && ! insn_lengths
[INSN_UID (prev
)]
1296 && ! (varying_length
[INSN_UID (prev
)] & 1);
1297 prev
= PREV_INSN (prev
))
1298 if (varying_length
[INSN_UID (prev
)] & 2)
1300 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1304 /* See the comment on addr_diff_vec_flags in rtl.h for the
1305 meaning of the flags values. base: REL_LAB vec: INSN */
1306 /* Anything after INSN has still addresses from the last
1307 pass; adjust these so that they reflect our current
1308 estimate for this pass. */
1309 if (flags
.base_after_vec
)
1310 rel_addr
+= insn_current_address
- insn_last_address
;
1311 if (flags
.min_after_vec
)
1312 min_addr
+= insn_current_address
- insn_last_address
;
1313 if (flags
.max_after_vec
)
1314 max_addr
+= insn_current_address
- insn_last_address
;
1315 /* We want to know the worst case, i.e. lowest possible value
1316 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1317 its offset is positive, and we have to be wary of code shrink;
1318 otherwise, it is negative, and we have to be vary of code
1320 if (flags
.min_after_base
)
1322 /* If INSN is between REL_LAB and MIN_LAB, the size
1323 changes we are about to make can change the alignment
1324 within the observed offset, therefore we have to break
1325 it up into two parts that are independent. */
1326 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1328 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1329 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1332 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1336 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1338 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1339 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1342 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1344 /* Likewise, determine the highest lowest possible value
1345 for the offset of MAX_LAB. */
1346 if (flags
.max_after_base
)
1348 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1350 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1351 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1354 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1358 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1360 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1361 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1364 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1366 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1367 max_addr
- rel_addr
, body
);
1369 || (GET_MODE_SIZE (vec_mode
)
1370 >= GET_MODE_SIZE (GET_MODE (body
))))
1371 PUT_MODE (body
, vec_mode
);
1372 if (JUMP_TABLES_IN_TEXT_SECTION
1373 || readonly_data_section
== text_section
)
1376 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1377 insn_current_address
+= insn_lengths
[uid
];
1378 if (insn_lengths
[uid
] != old_length
)
1379 something_changed
= 1;
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1386 if (! (varying_length
[uid
]))
1388 if (NONJUMP_INSN_P (insn
)
1389 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1393 body
= PATTERN (insn
);
1394 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1396 rtx inner_insn
= XVECEXP (body
, 0, i
);
1397 int inner_uid
= INSN_UID (inner_insn
);
1399 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1401 insn_current_address
+= insn_lengths
[inner_uid
];
1405 insn_current_address
+= insn_lengths
[uid
];
1410 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1414 body
= PATTERN (insn
);
1416 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1418 rtx inner_insn
= XVECEXP (body
, 0, i
);
1419 int inner_uid
= INSN_UID (inner_insn
);
1422 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1424 /* insn_current_length returns 0 for insns with a
1425 non-varying length. */
1426 if (! varying_length
[inner_uid
])
1427 inner_length
= insn_lengths
[inner_uid
];
1429 inner_length
= insn_current_length (inner_insn
);
1431 if (inner_length
!= insn_lengths
[inner_uid
])
1433 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1435 insn_lengths
[inner_uid
] = inner_length
;
1436 something_changed
= 1;
1439 inner_length
= insn_lengths
[inner_uid
];
1441 insn_current_address
+= inner_length
;
1442 new_length
+= inner_length
;
1447 new_length
= insn_current_length (insn
);
1448 insn_current_address
+= new_length
;
1451 #ifdef ADJUST_INSN_LENGTH
1452 /* If needed, do any adjustment. */
1453 tmp_length
= new_length
;
1454 ADJUST_INSN_LENGTH (insn
, new_length
);
1455 insn_current_address
+= (new_length
- tmp_length
);
1458 if (new_length
!= insn_lengths
[uid
]
1459 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1461 insn_lengths
[uid
] = new_length
;
1462 something_changed
= 1;
1465 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1467 /* For a non-optimizing compile, do only a single pass. */
1472 free (varying_length
);
1475 /* Given the body of an INSN known to be generated by an ASM statement, return
1476 the number of machine instructions likely to be generated for this insn.
1477 This is used to compute its length. */
1480 asm_insn_count (rtx body
)
1484 if (GET_CODE (body
) == ASM_INPUT
)
1485 templ
= XSTR (body
, 0);
1487 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1489 return asm_str_count (templ
);
1492 /* Return the number of machine instructions likely to be generated for the
1493 inline-asm template. */
1495 asm_str_count (const char *templ
)
1502 for (; *templ
; templ
++)
1503 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1510 /* ??? This is probably the wrong place for these. */
1511 /* Structure recording the mapping from source file and directory
1512 names at compile time to those to be embedded in debug
1514 typedef struct debug_prefix_map
1516 const char *old_prefix
;
1517 const char *new_prefix
;
1520 struct debug_prefix_map
*next
;
1523 /* Linked list of such structures. */
1524 static debug_prefix_map
*debug_prefix_maps
;
1527 /* Record a debug file prefix mapping. ARG is the argument to
1528 -fdebug-prefix-map and must be of the form OLD=NEW. */
1531 add_debug_prefix_map (const char *arg
)
1533 debug_prefix_map
*map
;
1536 p
= strchr (arg
, '=');
1539 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1542 map
= XNEW (debug_prefix_map
);
1543 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1544 map
->old_len
= p
- arg
;
1546 map
->new_prefix
= xstrdup (p
);
1547 map
->new_len
= strlen (p
);
1548 map
->next
= debug_prefix_maps
;
1549 debug_prefix_maps
= map
;
1552 /* Perform user-specified mapping of debug filename prefixes. Return
1553 the new name corresponding to FILENAME. */
1556 remap_debug_filename (const char *filename
)
1558 debug_prefix_map
*map
;
1563 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1564 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1568 name
= filename
+ map
->old_len
;
1569 name_len
= strlen (name
) + 1;
1570 s
= (char *) alloca (name_len
+ map
->new_len
);
1571 memcpy (s
, map
->new_prefix
, map
->new_len
);
1572 memcpy (s
+ map
->new_len
, name
, name_len
);
1573 return ggc_strdup (s
);
1576 /* Return true if DWARF2 debug info can be emitted for DECL. */
1579 dwarf2_debug_info_emitted_p (tree decl
)
1581 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1584 if (DECL_IGNORED_P (decl
))
1590 /* Return scope resulting from combination of S1 and S2. */
1592 choose_inner_scope (tree s1
, tree s2
)
1598 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1603 /* Emit lexical block notes needed to change scope from S1 to S2. */
1606 change_scope (rtx orig_insn
, tree s1
, tree s2
)
1608 rtx insn
= orig_insn
;
1609 tree com
= NULL_TREE
;
1610 tree ts1
= s1
, ts2
= s2
;
1615 gcc_assert (ts1
&& ts2
);
1616 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1617 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1618 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1619 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1622 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1623 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1632 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1633 NOTE_BLOCK (note
) = s
;
1634 s
= BLOCK_SUPERCONTEXT (s
);
1641 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1642 NOTE_BLOCK (insn
) = s
;
1643 s
= BLOCK_SUPERCONTEXT (s
);
1647 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1648 on the scope tree and the newly reordered instructions. */
1651 reemit_insn_block_notes (void)
1653 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1656 insn
= get_insns ();
1657 for (; insn
; insn
= NEXT_INSN (insn
))
1661 /* Prevent lexical blocks from straddling section boundaries. */
1662 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1664 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1665 s
= BLOCK_SUPERCONTEXT (s
))
1667 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1668 NOTE_BLOCK (note
) = s
;
1669 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1670 NOTE_BLOCK (note
) = s
;
1674 if (!active_insn_p (insn
))
1677 /* Avoid putting scope notes between jump table and its label. */
1678 if (JUMP_TABLE_DATA_P (insn
))
1681 this_block
= insn_scope (insn
);
1682 /* For sequences compute scope resulting from merging all scopes
1683 of instructions nested inside. */
1684 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1687 rtx body
= PATTERN (insn
);
1690 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1691 this_block
= choose_inner_scope (this_block
,
1692 insn_scope (XVECEXP (body
, 0, i
)));
1696 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1699 this_block
= DECL_INITIAL (cfun
->decl
);
1702 if (this_block
!= cur_block
)
1704 change_scope (insn
, cur_block
, this_block
);
1705 cur_block
= this_block
;
1709 /* change_scope emits before the insn, not after. */
1710 note
= emit_note (NOTE_INSN_DELETED
);
1711 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1717 /* Output assembler code for the start of a function,
1718 and initialize some of the variables in this file
1719 for the new function. The label for the function and associated
1720 assembler pseudo-ops have already been output in `assemble_start_function'.
1722 FIRST is the first insn of the rtl for the function being compiled.
1723 FILE is the file to write assembler code to.
1724 OPTIMIZE_P is nonzero if we should eliminate redundant
1725 test and compare insns. */
1728 final_start_function (rtx first
, FILE *file
,
1729 int optimize_p ATTRIBUTE_UNUSED
)
1733 this_is_asm_operands
= 0;
1735 need_profile_function
= false;
1737 last_filename
= LOCATION_FILE (prologue_location
);
1738 last_linenum
= LOCATION_LINE (prologue_location
);
1739 last_discriminator
= discriminator
= 0;
1741 high_block_linenum
= high_function_linenum
= last_linenum
;
1743 if (flag_sanitize
& SANITIZE_ADDRESS
)
1744 asan_function_start ();
1746 if (!DECL_IGNORED_P (current_function_decl
))
1747 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1749 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1750 dwarf2out_begin_prologue (0, NULL
);
1752 #ifdef LEAF_REG_REMAP
1753 if (crtl
->uses_only_leaf_regs
)
1754 leaf_renumber_regs (first
);
1757 /* The Sun386i and perhaps other machines don't work right
1758 if the profiling code comes after the prologue. */
1759 if (targetm
.profile_before_prologue () && crtl
->profile
)
1761 if (targetm
.asm_out
.function_prologue
1762 == default_function_pro_epilogue
1763 #ifdef HAVE_prologue
1769 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1775 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1776 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1778 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1779 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1788 need_profile_function
= true;
1790 profile_function (file
);
1793 profile_function (file
);
1796 /* If debugging, assign block numbers to all of the blocks in this
1800 reemit_insn_block_notes ();
1801 number_blocks (current_function_decl
);
1802 /* We never actually put out begin/end notes for the top-level
1803 block in the function. But, conceptually, that block is
1805 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1808 if (warn_frame_larger_than
1809 && get_frame_size () > frame_larger_than_size
)
1811 /* Issue a warning */
1812 warning (OPT_Wframe_larger_than_
,
1813 "the frame size of %wd bytes is larger than %wd bytes",
1814 get_frame_size (), frame_larger_than_size
);
1817 /* First output the function prologue: code to set up the stack frame. */
1818 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1820 /* If the machine represents the prologue as RTL, the profiling code must
1821 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1822 #ifdef HAVE_prologue
1823 if (! HAVE_prologue
)
1825 profile_after_prologue (file
);
1829 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1831 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1832 profile_function (file
);
1836 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1838 #ifndef NO_PROFILE_COUNTERS
1839 # define NO_PROFILE_COUNTERS 0
1841 #ifdef ASM_OUTPUT_REG_PUSH
1842 rtx sval
= NULL
, chain
= NULL
;
1844 if (cfun
->returns_struct
)
1845 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1847 if (cfun
->static_chain_decl
)
1848 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1849 #endif /* ASM_OUTPUT_REG_PUSH */
1851 if (! NO_PROFILE_COUNTERS
)
1853 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1854 switch_to_section (data_section
);
1855 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1856 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1857 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1860 switch_to_section (current_function_section ());
1862 #ifdef ASM_OUTPUT_REG_PUSH
1863 if (sval
&& REG_P (sval
))
1864 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1865 if (chain
&& REG_P (chain
))
1866 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1869 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1871 #ifdef ASM_OUTPUT_REG_PUSH
1872 if (chain
&& REG_P (chain
))
1873 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1874 if (sval
&& REG_P (sval
))
1875 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1879 /* Output assembler code for the end of a function.
1880 For clarity, args are same as those of `final_start_function'
1881 even though not all of them are needed. */
1884 final_end_function (void)
1888 if (!DECL_IGNORED_P (current_function_decl
))
1889 debug_hooks
->end_function (high_function_linenum
);
1891 /* Finally, output the function epilogue:
1892 code to restore the stack frame and return to the caller. */
1893 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1895 /* And debug output. */
1896 if (!DECL_IGNORED_P (current_function_decl
))
1897 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1899 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1900 && dwarf2out_do_frame ())
1901 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1905 /* Dumper helper for basic block information. FILE is the assembly
1906 output file, and INSN is the instruction being emitted. */
1909 dump_basic_block_info (FILE *file
, rtx insn
, basic_block
*start_to_bb
,
1910 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1914 if (!flag_debug_asm
)
1917 if (INSN_UID (insn
) < bb_map_size
1918 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1923 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1925 fprintf (file
, " freq:%d", bb
->frequency
);
1927 fprintf (file
, " count:" HOST_WIDEST_INT_PRINT_DEC
,
1929 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1930 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1931 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1933 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1935 fprintf (file
, "\n");
1937 if (INSN_UID (insn
) < bb_map_size
1938 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1943 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1944 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1946 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1948 fprintf (file
, "\n");
1952 /* Output assembler code for some insns: all or part of a function.
1953 For description of args, see `final_start_function', above. */
1956 final (rtx first
, FILE *file
, int optimize_p
)
1961 /* Used for -dA dump. */
1962 basic_block
*start_to_bb
= NULL
;
1963 basic_block
*end_to_bb
= NULL
;
1964 int bb_map_size
= 0;
1967 last_ignored_compare
= 0;
1970 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1972 /* If CC tracking across branches is enabled, record the insn which
1973 jumps to each branch only reached from one place. */
1974 if (optimize_p
&& JUMP_P (insn
))
1976 rtx lab
= JUMP_LABEL (insn
);
1977 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
1979 LABEL_REFS (lab
) = insn
;
1993 bb_map_size
= get_max_uid () + 1;
1994 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1995 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1997 /* There is no cfg for a thunk. */
1998 if (!cfun
->is_thunk
)
1999 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2001 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2002 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2006 /* Output the insns. */
2007 for (insn
= first
; insn
;)
2009 if (HAVE_ATTR_length
)
2011 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2013 /* This can be triggered by bugs elsewhere in the compiler if
2014 new insns are created after init_insn_lengths is called. */
2015 gcc_assert (NOTE_P (insn
));
2016 insn_current_address
= -1;
2019 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2022 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2023 bb_map_size
, &bb_seqn
);
2024 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2033 /* Remove CFI notes, to avoid compare-debug failures. */
2034 for (insn
= first
; insn
; insn
= next
)
2036 next
= NEXT_INSN (insn
);
2038 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2039 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2045 get_insn_template (int code
, rtx insn
)
2047 switch (insn_data
[code
].output_format
)
2049 case INSN_OUTPUT_FORMAT_SINGLE
:
2050 return insn_data
[code
].output
.single
;
2051 case INSN_OUTPUT_FORMAT_MULTI
:
2052 return insn_data
[code
].output
.multi
[which_alternative
];
2053 case INSN_OUTPUT_FORMAT_FUNCTION
:
2055 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
2062 /* Emit the appropriate declaration for an alternate-entry-point
2063 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2064 LABEL_KIND != LABEL_NORMAL.
2066 The case fall-through in this function is intentional. */
2068 output_alternate_entry_point (FILE *file
, rtx insn
)
2070 const char *name
= LABEL_NAME (insn
);
2072 switch (LABEL_KIND (insn
))
2074 case LABEL_WEAK_ENTRY
:
2075 #ifdef ASM_WEAKEN_LABEL
2076 ASM_WEAKEN_LABEL (file
, name
);
2078 case LABEL_GLOBAL_ENTRY
:
2079 targetm
.asm_out
.globalize_label (file
, name
);
2080 case LABEL_STATIC_ENTRY
:
2081 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2082 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2084 ASM_OUTPUT_LABEL (file
, name
);
2093 /* Given a CALL_INSN, find and return the nested CALL. */
2095 call_from_call_insn (rtx insn
)
2098 gcc_assert (CALL_P (insn
));
2101 while (GET_CODE (x
) != CALL
)
2103 switch (GET_CODE (x
))
2108 x
= COND_EXEC_CODE (x
);
2111 x
= XVECEXP (x
, 0, 0);
2121 /* The final scan for one insn, INSN.
2122 Args are same as in `final', except that INSN
2123 is the insn being scanned.
2124 Value returned is the next insn to be scanned.
2126 NOPEEPHOLES is the flag to disallow peephole processing (currently
2127 used for within delayed branch sequence output).
2129 SEEN is used to track the end of the prologue, for emitting
2130 debug information. We force the emission of a line note after
2131 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
2132 at the beginning of the second basic block, whichever comes
2136 final_scan_insn (rtx insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2137 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2146 /* Ignore deleted insns. These can occur when we split insns (due to a
2147 template of "#") while not optimizing. */
2148 if (INSN_DELETED_P (insn
))
2149 return NEXT_INSN (insn
);
2151 switch (GET_CODE (insn
))
2154 switch (NOTE_KIND (insn
))
2156 case NOTE_INSN_DELETED
:
2159 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2160 in_cold_section_p
= !in_cold_section_p
;
2162 if (dwarf2out_do_frame ())
2163 dwarf2out_switch_text_section ();
2164 else if (!DECL_IGNORED_P (current_function_decl
))
2165 debug_hooks
->switch_text_section ();
2167 switch_to_section (current_function_section ());
2168 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2169 current_function_decl
,
2171 /* Emit a label for the split cold section. Form label name by
2172 suffixing "cold" to the original function's name. */
2173 if (in_cold_section_p
)
2175 tree cold_function_name
2176 = clone_function_name (current_function_decl
, "cold");
2177 ASM_OUTPUT_LABEL (asm_out_file
,
2178 IDENTIFIER_POINTER (cold_function_name
));
2182 case NOTE_INSN_BASIC_BLOCK
:
2183 if (need_profile_function
)
2185 profile_function (asm_out_file
);
2186 need_profile_function
= false;
2189 if (targetm
.asm_out
.unwind_emit
)
2190 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2192 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
2194 *seen
|= SEEN_EMITTED
;
2195 force_source_line
= true;
2200 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2204 case NOTE_INSN_EH_REGION_BEG
:
2205 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2206 NOTE_EH_HANDLER (insn
));
2209 case NOTE_INSN_EH_REGION_END
:
2210 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2211 NOTE_EH_HANDLER (insn
));
2214 case NOTE_INSN_PROLOGUE_END
:
2215 targetm
.asm_out
.function_end_prologue (file
);
2216 profile_after_prologue (file
);
2218 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2220 *seen
|= SEEN_EMITTED
;
2221 force_source_line
= true;
2228 case NOTE_INSN_EPILOGUE_BEG
:
2229 if (!DECL_IGNORED_P (current_function_decl
))
2230 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2231 targetm
.asm_out
.function_begin_epilogue (file
);
2235 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2238 case NOTE_INSN_CFI_LABEL
:
2239 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2240 NOTE_LABEL_NUMBER (insn
));
2243 case NOTE_INSN_FUNCTION_BEG
:
2244 if (need_profile_function
)
2246 profile_function (asm_out_file
);
2247 need_profile_function
= false;
2251 if (!DECL_IGNORED_P (current_function_decl
))
2252 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2254 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2256 *seen
|= SEEN_EMITTED
;
2257 force_source_line
= true;
2264 case NOTE_INSN_BLOCK_BEG
:
2265 if (debug_info_level
== DINFO_LEVEL_NORMAL
2266 || debug_info_level
== DINFO_LEVEL_VERBOSE
2267 || write_symbols
== DWARF2_DEBUG
2268 || write_symbols
== VMS_AND_DWARF2_DEBUG
2269 || write_symbols
== VMS_DEBUG
)
2271 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2275 high_block_linenum
= last_linenum
;
2277 /* Output debugging info about the symbol-block beginning. */
2278 if (!DECL_IGNORED_P (current_function_decl
))
2279 debug_hooks
->begin_block (last_linenum
, n
);
2281 /* Mark this block as output. */
2282 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2284 if (write_symbols
== DBX_DEBUG
2285 || write_symbols
== SDB_DEBUG
)
2287 location_t
*locus_ptr
2288 = block_nonartificial_location (NOTE_BLOCK (insn
));
2290 if (locus_ptr
!= NULL
)
2292 override_filename
= LOCATION_FILE (*locus_ptr
);
2293 override_linenum
= LOCATION_LINE (*locus_ptr
);
2298 case NOTE_INSN_BLOCK_END
:
2299 if (debug_info_level
== DINFO_LEVEL_NORMAL
2300 || debug_info_level
== DINFO_LEVEL_VERBOSE
2301 || write_symbols
== DWARF2_DEBUG
2302 || write_symbols
== VMS_AND_DWARF2_DEBUG
2303 || write_symbols
== VMS_DEBUG
)
2305 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2309 /* End of a symbol-block. */
2311 gcc_assert (block_depth
>= 0);
2313 if (!DECL_IGNORED_P (current_function_decl
))
2314 debug_hooks
->end_block (high_block_linenum
, n
);
2316 if (write_symbols
== DBX_DEBUG
2317 || write_symbols
== SDB_DEBUG
)
2319 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2320 location_t
*locus_ptr
2321 = block_nonartificial_location (outer_block
);
2323 if (locus_ptr
!= NULL
)
2325 override_filename
= LOCATION_FILE (*locus_ptr
);
2326 override_linenum
= LOCATION_LINE (*locus_ptr
);
2330 override_filename
= NULL
;
2331 override_linenum
= 0;
2336 case NOTE_INSN_DELETED_LABEL
:
2337 /* Emit the label. We may have deleted the CODE_LABEL because
2338 the label could be proved to be unreachable, though still
2339 referenced (in the form of having its address taken. */
2340 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2343 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2344 /* Similarly, but need to use different namespace for it. */
2345 if (CODE_LABEL_NUMBER (insn
) != -1)
2346 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2349 case NOTE_INSN_VAR_LOCATION
:
2350 case NOTE_INSN_CALL_ARG_LOCATION
:
2351 if (!DECL_IGNORED_P (current_function_decl
))
2352 debug_hooks
->var_location (insn
);
2365 /* The target port might emit labels in the output function for
2366 some insn, e.g. sh.c output_branchy_insn. */
2367 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2369 int align
= LABEL_TO_ALIGNMENT (insn
);
2370 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2371 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2374 if (align
&& NEXT_INSN (insn
))
2376 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2377 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2379 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2380 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2382 ASM_OUTPUT_ALIGN (file
, align
);
2389 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2390 debug_hooks
->label (insn
);
2394 next
= next_nonnote_insn (insn
);
2395 /* If this label is followed by a jump-table, make sure we put
2396 the label in the read-only section. Also possibly write the
2397 label and jump table together. */
2398 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2400 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2401 /* In this case, the case vector is being moved by the
2402 target, so don't output the label at all. Leave that
2403 to the back end macros. */
2405 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2409 switch_to_section (targetm
.asm_out
.function_rodata_section
2410 (current_function_decl
));
2412 #ifdef ADDR_VEC_ALIGN
2413 log_align
= ADDR_VEC_ALIGN (next
);
2415 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2417 ASM_OUTPUT_ALIGN (file
, log_align
);
2420 switch_to_section (current_function_section ());
2422 #ifdef ASM_OUTPUT_CASE_LABEL
2423 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2426 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2431 if (LABEL_ALT_ENTRY_P (insn
))
2432 output_alternate_entry_point (file
, insn
);
2434 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2439 rtx body
= PATTERN (insn
);
2440 int insn_code_number
;
2444 /* Reset this early so it is correct for ASM statements. */
2445 current_insn_predicate
= NULL_RTX
;
2447 /* An INSN, JUMP_INSN or CALL_INSN.
2448 First check for special kinds that recog doesn't recognize. */
2450 if (GET_CODE (body
) == USE
/* These are just declarations. */
2451 || GET_CODE (body
) == CLOBBER
)
2456 /* If there is a REG_CC_SETTER note on this insn, it means that
2457 the setting of the condition code was done in the delay slot
2458 of the insn that branched here. So recover the cc status
2459 from the insn that set it. */
2461 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2464 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2465 cc_prev_status
= cc_status
;
2470 /* Detect insns that are really jump-tables
2471 and output them as such. */
2473 if (JUMP_TABLE_DATA_P (insn
))
2475 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2479 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2480 switch_to_section (targetm
.asm_out
.function_rodata_section
2481 (current_function_decl
));
2483 switch_to_section (current_function_section ());
2487 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2488 if (GET_CODE (body
) == ADDR_VEC
)
2490 #ifdef ASM_OUTPUT_ADDR_VEC
2491 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2498 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2499 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2505 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2506 for (idx
= 0; idx
< vlen
; idx
++)
2508 if (GET_CODE (body
) == ADDR_VEC
)
2510 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2511 ASM_OUTPUT_ADDR_VEC_ELT
2512 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2519 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2520 ASM_OUTPUT_ADDR_DIFF_ELT
2523 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2524 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2530 #ifdef ASM_OUTPUT_CASE_END
2531 ASM_OUTPUT_CASE_END (file
,
2532 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2537 switch_to_section (current_function_section ());
2541 /* Output this line note if it is the first or the last line
2543 if (!DECL_IGNORED_P (current_function_decl
)
2544 && notice_source_line (insn
, &is_stmt
))
2545 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2546 last_discriminator
, is_stmt
);
2548 if (GET_CODE (body
) == ASM_INPUT
)
2550 const char *string
= XSTR (body
, 0);
2552 /* There's no telling what that did to the condition codes. */
2557 expanded_location loc
;
2560 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2561 if (*loc
.file
&& loc
.line
)
2562 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2563 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2564 fprintf (asm_out_file
, "\t%s\n", string
);
2565 #if HAVE_AS_LINE_ZERO
2566 if (*loc
.file
&& loc
.line
)
2567 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2573 /* Detect `asm' construct with operands. */
2574 if (asm_noperands (body
) >= 0)
2576 unsigned int noperands
= asm_noperands (body
);
2577 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2580 expanded_location expanded
;
2582 /* There's no telling what that did to the condition codes. */
2585 /* Get out the operand values. */
2586 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2587 /* Inhibit dying on what would otherwise be compiler bugs. */
2588 insn_noperands
= noperands
;
2589 this_is_asm_operands
= insn
;
2590 expanded
= expand_location (loc
);
2592 #ifdef FINAL_PRESCAN_INSN
2593 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2596 /* Output the insn using them. */
2600 if (expanded
.file
&& expanded
.line
)
2601 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2602 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2603 output_asm_insn (string
, ops
);
2604 #if HAVE_AS_LINE_ZERO
2605 if (expanded
.file
&& expanded
.line
)
2606 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2610 if (targetm
.asm_out
.final_postscan_insn
)
2611 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2614 this_is_asm_operands
= 0;
2620 if (GET_CODE (body
) == SEQUENCE
)
2622 /* A delayed-branch sequence */
2625 final_sequence
= body
;
2627 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2628 force the restoration of a comparison that was previously
2629 thought unnecessary. If that happens, cancel this sequence
2630 and cause that insn to be restored. */
2632 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2633 if (next
!= XVECEXP (body
, 0, 1))
2639 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2641 rtx insn
= XVECEXP (body
, 0, i
);
2642 rtx next
= NEXT_INSN (insn
);
2643 /* We loop in case any instruction in a delay slot gets
2646 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2647 while (insn
!= next
);
2649 #ifdef DBR_OUTPUT_SEQEND
2650 DBR_OUTPUT_SEQEND (file
);
2654 /* If the insn requiring the delay slot was a CALL_INSN, the
2655 insns in the delay slot are actually executed before the
2656 called function. Hence we don't preserve any CC-setting
2657 actions in these insns and the CC must be marked as being
2658 clobbered by the function. */
2659 if (CALL_P (XVECEXP (body
, 0, 0)))
2666 /* We have a real machine instruction as rtl. */
2668 body
= PATTERN (insn
);
2671 set
= single_set (insn
);
2673 /* Check for redundant test and compare instructions
2674 (when the condition codes are already set up as desired).
2675 This is done only when optimizing; if not optimizing,
2676 it should be possible for the user to alter a variable
2677 with the debugger in between statements
2678 and the next statement should reexamine the variable
2679 to compute the condition codes. */
2684 && GET_CODE (SET_DEST (set
)) == CC0
2685 && insn
!= last_ignored_compare
)
2688 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2689 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2691 src1
= SET_SRC (set
);
2693 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2695 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2696 XEXP (SET_SRC (set
), 0)
2697 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2698 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2699 XEXP (SET_SRC (set
), 1)
2700 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2701 if (XEXP (SET_SRC (set
), 1)
2702 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2703 src2
= XEXP (SET_SRC (set
), 0);
2705 if ((cc_status
.value1
!= 0
2706 && rtx_equal_p (src1
, cc_status
.value1
))
2707 || (cc_status
.value2
!= 0
2708 && rtx_equal_p (src1
, cc_status
.value2
))
2709 || (src2
!= 0 && cc_status
.value1
!= 0
2710 && rtx_equal_p (src2
, cc_status
.value1
))
2711 || (src2
!= 0 && cc_status
.value2
!= 0
2712 && rtx_equal_p (src2
, cc_status
.value2
)))
2714 /* Don't delete insn if it has an addressing side-effect. */
2715 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2716 /* or if anything in it is volatile. */
2717 && ! volatile_refs_p (PATTERN (insn
)))
2719 /* We don't really delete the insn; just ignore it. */
2720 last_ignored_compare
= insn
;
2727 /* If this is a conditional branch, maybe modify it
2728 if the cc's are in a nonstandard state
2729 so that it accomplishes the same thing that it would
2730 do straightforwardly if the cc's were set up normally. */
2732 if (cc_status
.flags
!= 0
2734 && GET_CODE (body
) == SET
2735 && SET_DEST (body
) == pc_rtx
2736 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2737 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2738 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2740 /* This function may alter the contents of its argument
2741 and clear some of the cc_status.flags bits.
2742 It may also return 1 meaning condition now always true
2743 or -1 meaning condition now always false
2744 or 2 meaning condition nontrivial but altered. */
2745 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2746 /* If condition now has fixed value, replace the IF_THEN_ELSE
2747 with its then-operand or its else-operand. */
2749 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2751 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2753 /* The jump is now either unconditional or a no-op.
2754 If it has become a no-op, don't try to output it.
2755 (It would not be recognized.) */
2756 if (SET_SRC (body
) == pc_rtx
)
2761 else if (ANY_RETURN_P (SET_SRC (body
)))
2762 /* Replace (set (pc) (return)) with (return). */
2763 PATTERN (insn
) = body
= SET_SRC (body
);
2765 /* Rerecognize the instruction if it has changed. */
2767 INSN_CODE (insn
) = -1;
2770 /* If this is a conditional trap, maybe modify it if the cc's
2771 are in a nonstandard state so that it accomplishes the same
2772 thing that it would do straightforwardly if the cc's were
2774 if (cc_status
.flags
!= 0
2775 && NONJUMP_INSN_P (insn
)
2776 && GET_CODE (body
) == TRAP_IF
2777 && COMPARISON_P (TRAP_CONDITION (body
))
2778 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2780 /* This function may alter the contents of its argument
2781 and clear some of the cc_status.flags bits.
2782 It may also return 1 meaning condition now always true
2783 or -1 meaning condition now always false
2784 or 2 meaning condition nontrivial but altered. */
2785 int result
= alter_cond (TRAP_CONDITION (body
));
2787 /* If TRAP_CONDITION has become always false, delete the
2795 /* If TRAP_CONDITION has become always true, replace
2796 TRAP_CONDITION with const_true_rtx. */
2798 TRAP_CONDITION (body
) = const_true_rtx
;
2800 /* Rerecognize the instruction if it has changed. */
2802 INSN_CODE (insn
) = -1;
2805 /* Make same adjustments to instructions that examine the
2806 condition codes without jumping and instructions that
2807 handle conditional moves (if this machine has either one). */
2809 if (cc_status
.flags
!= 0
2812 rtx cond_rtx
, then_rtx
, else_rtx
;
2815 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2817 cond_rtx
= XEXP (SET_SRC (set
), 0);
2818 then_rtx
= XEXP (SET_SRC (set
), 1);
2819 else_rtx
= XEXP (SET_SRC (set
), 2);
2823 cond_rtx
= SET_SRC (set
);
2824 then_rtx
= const_true_rtx
;
2825 else_rtx
= const0_rtx
;
2828 if (COMPARISON_P (cond_rtx
)
2829 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2832 result
= alter_cond (cond_rtx
);
2834 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2835 else if (result
== -1)
2836 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2837 else if (result
== 2)
2838 INSN_CODE (insn
) = -1;
2839 if (SET_DEST (set
) == SET_SRC (set
))
2846 #ifdef HAVE_peephole
2847 /* Do machine-specific peephole optimizations if desired. */
2849 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2851 rtx next
= peephole (insn
);
2852 /* When peepholing, if there were notes within the peephole,
2853 emit them before the peephole. */
2854 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2856 rtx note
, prev
= PREV_INSN (insn
);
2858 for (note
= NEXT_INSN (insn
); note
!= next
;
2859 note
= NEXT_INSN (note
))
2860 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2862 /* Put the notes in the proper position for a later
2863 rescan. For example, the SH target can do this
2864 when generating a far jump in a delayed branch
2866 note
= NEXT_INSN (insn
);
2867 PREV_INSN (note
) = prev
;
2868 NEXT_INSN (prev
) = note
;
2869 NEXT_INSN (PREV_INSN (next
)) = insn
;
2870 PREV_INSN (insn
) = PREV_INSN (next
);
2871 NEXT_INSN (insn
) = next
;
2872 PREV_INSN (next
) = insn
;
2875 /* PEEPHOLE might have changed this. */
2876 body
= PATTERN (insn
);
2880 /* Try to recognize the instruction.
2881 If successful, verify that the operands satisfy the
2882 constraints for the instruction. Crash if they don't,
2883 since `reload' should have changed them so that they do. */
2885 insn_code_number
= recog_memoized (insn
);
2886 cleanup_subreg_operands (insn
);
2888 /* Dump the insn in the assembly for debugging (-dAP).
2889 If the final dump is requested as slim RTL, dump slim
2890 RTL to the assembly file also. */
2891 if (flag_dump_rtl_in_asm
)
2893 print_rtx_head
= ASM_COMMENT_START
;
2894 if (! (dump_flags
& TDF_SLIM
))
2895 print_rtl_single (asm_out_file
, insn
);
2897 dump_insn_slim (asm_out_file
, insn
);
2898 print_rtx_head
= "";
2901 if (! constrain_operands_cached (1))
2902 fatal_insn_not_found (insn
);
2904 /* Some target machines need to prescan each insn before
2907 #ifdef FINAL_PRESCAN_INSN
2908 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2911 if (targetm
.have_conditional_execution ()
2912 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2913 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2916 cc_prev_status
= cc_status
;
2918 /* Update `cc_status' for this instruction.
2919 The instruction's output routine may change it further.
2920 If the output routine for a jump insn needs to depend
2921 on the cc status, it should look at cc_prev_status. */
2923 NOTICE_UPDATE_CC (body
, insn
);
2926 current_output_insn
= debug_insn
= insn
;
2928 /* Find the proper template for this insn. */
2929 templ
= get_insn_template (insn_code_number
, insn
);
2931 /* If the C code returns 0, it means that it is a jump insn
2932 which follows a deleted test insn, and that test insn
2933 needs to be reinserted. */
2938 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2940 /* We have already processed the notes between the setter and
2941 the user. Make sure we don't process them again, this is
2942 particularly important if one of the notes is a block
2943 scope note or an EH note. */
2945 prev
!= last_ignored_compare
;
2946 prev
= PREV_INSN (prev
))
2949 delete_insn (prev
); /* Use delete_note. */
2955 /* If the template is the string "#", it means that this insn must
2957 if (templ
[0] == '#' && templ
[1] == '\0')
2959 rtx new_rtx
= try_split (body
, insn
, 0);
2961 /* If we didn't split the insn, go away. */
2962 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2963 fatal_insn ("could not split insn", insn
);
2965 /* If we have a length attribute, this instruction should have
2966 been split in shorten_branches, to ensure that we would have
2967 valid length info for the splitees. */
2968 gcc_assert (!HAVE_ATTR_length
);
2973 /* ??? This will put the directives in the wrong place if
2974 get_insn_template outputs assembly directly. However calling it
2975 before get_insn_template breaks if the insns is split. */
2976 if (targetm
.asm_out
.unwind_emit_before_insn
2977 && targetm
.asm_out
.unwind_emit
)
2978 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2982 rtx x
= call_from_call_insn (insn
);
2984 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2988 t
= SYMBOL_REF_DECL (x
);
2990 assemble_external (t
);
2992 if (!DECL_IGNORED_P (current_function_decl
))
2993 debug_hooks
->var_location (insn
);
2996 /* Output assembler code from the template. */
2997 output_asm_insn (templ
, recog_data
.operand
);
2999 /* Some target machines need to postscan each insn after
3001 if (targetm
.asm_out
.final_postscan_insn
)
3002 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3003 recog_data
.n_operands
);
3005 if (!targetm
.asm_out
.unwind_emit_before_insn
3006 && targetm
.asm_out
.unwind_emit
)
3007 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3009 current_output_insn
= debug_insn
= 0;
3012 return NEXT_INSN (insn
);
3015 /* Return whether a source line note needs to be emitted before INSN.
3016 Sets IS_STMT to TRUE if the line should be marked as a possible
3017 breakpoint location. */
3020 notice_source_line (rtx insn
, bool *is_stmt
)
3022 const char *filename
;
3025 if (override_filename
)
3027 filename
= override_filename
;
3028 linenum
= override_linenum
;
3032 filename
= insn_file (insn
);
3033 linenum
= insn_line (insn
);
3036 if (filename
== NULL
)
3039 if (force_source_line
3040 || filename
!= last_filename
3041 || last_linenum
!= linenum
)
3043 force_source_line
= false;
3044 last_filename
= filename
;
3045 last_linenum
= linenum
;
3046 last_discriminator
= discriminator
;
3048 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3049 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3053 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3055 /* If the discriminator changed, but the line number did not,
3056 output the line table entry with is_stmt false so the
3057 debugger does not treat this as a breakpoint location. */
3058 last_discriminator
= discriminator
;
3066 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3067 directly to the desired hard register. */
3070 cleanup_subreg_operands (rtx insn
)
3073 bool changed
= false;
3074 extract_insn_cached (insn
);
3075 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3077 /* The following test cannot use recog_data.operand when testing
3078 for a SUBREG: the underlying object might have been changed
3079 already if we are inside a match_operator expression that
3080 matches the else clause. Instead we test the underlying
3081 expression directly. */
3082 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3084 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3087 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3088 || GET_CODE (recog_data
.operand
[i
]) == MULT
3089 || MEM_P (recog_data
.operand
[i
]))
3090 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3093 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3095 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3097 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3100 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3101 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3102 || MEM_P (*recog_data
.dup_loc
[i
]))
3103 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3106 df_insn_rescan (insn
);
3109 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3110 the thing it is a subreg of. Do it anyway if FINAL_P. */
3113 alter_subreg (rtx
*xp
, bool final_p
)
3116 rtx y
= SUBREG_REG (x
);
3118 /* simplify_subreg does not remove subreg from volatile references.
3119 We are required to. */
3122 int offset
= SUBREG_BYTE (x
);
3124 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3125 contains 0 instead of the proper offset. See simplify_subreg. */
3127 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3129 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3130 - GET_MODE_SIZE (GET_MODE (x
));
3131 if (WORDS_BIG_ENDIAN
)
3132 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3133 if (BYTES_BIG_ENDIAN
)
3134 offset
+= difference
% UNITS_PER_WORD
;
3138 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3140 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3144 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3149 else if (final_p
&& REG_P (y
))
3151 /* Simplify_subreg can't handle some REG cases, but we have to. */
3153 HOST_WIDE_INT offset
;
3155 regno
= subreg_regno (x
);
3156 if (subreg_lowpart_p (x
))
3157 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3159 offset
= SUBREG_BYTE (x
);
3160 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3167 /* Do alter_subreg on all the SUBREGs contained in X. */
3170 walk_alter_subreg (rtx
*xp
, bool *changed
)
3173 switch (GET_CODE (x
))
3178 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3179 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3184 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3189 return alter_subreg (xp
, true);
3200 /* Given BODY, the body of a jump instruction, alter the jump condition
3201 as required by the bits that are set in cc_status.flags.
3202 Not all of the bits there can be handled at this level in all cases.
3204 The value is normally 0.
3205 1 means that the condition has become always true.
3206 -1 means that the condition has become always false.
3207 2 means that COND has been altered. */
3210 alter_cond (rtx cond
)
3214 if (cc_status
.flags
& CC_REVERSED
)
3217 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3220 if (cc_status
.flags
& CC_INVERTED
)
3223 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3226 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3227 switch (GET_CODE (cond
))
3232 /* Jump becomes unconditional. */
3238 /* Jump becomes no-op. */
3242 PUT_CODE (cond
, EQ
);
3247 PUT_CODE (cond
, NE
);
3255 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3256 switch (GET_CODE (cond
))
3260 /* Jump becomes unconditional. */
3265 /* Jump becomes no-op. */
3270 PUT_CODE (cond
, EQ
);
3276 PUT_CODE (cond
, NE
);
3284 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3285 switch (GET_CODE (cond
))
3288 /* Jump becomes unconditional. */
3292 PUT_CODE (cond
, EQ
);
3297 PUT_CODE (cond
, NE
);
3302 /* Jump becomes no-op. */
3309 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3310 switch (GET_CODE (cond
))
3316 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3321 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3326 if (cc_status
.flags
& CC_NOT_SIGNED
)
3327 /* The flags are valid if signed condition operators are converted
3329 switch (GET_CODE (cond
))
3332 PUT_CODE (cond
, LEU
);
3337 PUT_CODE (cond
, LTU
);
3342 PUT_CODE (cond
, GTU
);
3347 PUT_CODE (cond
, GEU
);
3359 /* Report inconsistency between the assembler template and the operands.
3360 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3363 output_operand_lossage (const char *cmsgid
, ...)
3367 const char *pfx_str
;
3370 va_start (ap
, cmsgid
);
3372 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3373 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3374 vasprintf (&new_message
, fmt_string
, ap
);
3376 if (this_is_asm_operands
)
3377 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3379 internal_error ("%s", new_message
);
3386 /* Output of assembler code from a template, and its subroutines. */
3388 /* Annotate the assembly with a comment describing the pattern and
3389 alternative used. */
3392 output_asm_name (void)
3396 int num
= INSN_CODE (debug_insn
);
3397 fprintf (asm_out_file
, "\t%s %d\t%s",
3398 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3399 insn_data
[num
].name
);
3400 if (insn_data
[num
].n_alternatives
> 1)
3401 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3403 if (HAVE_ATTR_length
)
3404 fprintf (asm_out_file
, "\t[length = %d]",
3405 get_attr_length (debug_insn
));
3407 /* Clear this so only the first assembler insn
3408 of any rtl insn will get the special comment for -dp. */
3413 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3414 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3415 corresponds to the address of the object and 0 if to the object. */
3418 get_mem_expr_from_op (rtx op
, int *paddressp
)
3426 return REG_EXPR (op
);
3427 else if (!MEM_P (op
))
3430 if (MEM_EXPR (op
) != 0)
3431 return MEM_EXPR (op
);
3433 /* Otherwise we have an address, so indicate it and look at the address. */
3437 /* First check if we have a decl for the address, then look at the right side
3438 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3439 But don't allow the address to itself be indirect. */
3440 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3442 else if (GET_CODE (op
) == PLUS
3443 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3447 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3450 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3451 return inner_addressp
? 0 : expr
;
3454 /* Output operand names for assembler instructions. OPERANDS is the
3455 operand vector, OPORDER is the order to write the operands, and NOPS
3456 is the number of operands to write. */
3459 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3464 for (i
= 0; i
< nops
; i
++)
3467 rtx op
= operands
[oporder
[i
]];
3468 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3470 fprintf (asm_out_file
, "%c%s",
3471 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3475 fprintf (asm_out_file
, "%s",
3476 addressp
? "*" : "");
3477 print_mem_expr (asm_out_file
, expr
);
3480 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3481 && ORIGINAL_REGNO (op
) != REGNO (op
))
3482 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3486 #ifdef ASSEMBLER_DIALECT
3487 /* Helper function to parse assembler dialects in the asm string.
3488 This is called from output_asm_insn and asm_fprintf. */
3490 do_assembler_dialects (const char *p
, int *dialect
)
3501 output_operand_lossage ("nested assembly dialect alternatives");
3505 /* If we want the first dialect, do nothing. Otherwise, skip
3506 DIALECT_NUMBER of strings ending with '|'. */
3507 for (i
= 0; i
< dialect_number
; i
++)
3509 while (*p
&& *p
!= '}')
3517 /* Skip over any character after a percent sign. */
3529 output_operand_lossage ("unterminated assembly dialect alternative");
3536 /* Skip to close brace. */
3541 output_operand_lossage ("unterminated assembly dialect alternative");
3545 /* Skip over any character after a percent sign. */
3546 if (*p
== '%' && p
[1])
3560 putc (c
, asm_out_file
);
3565 putc (c
, asm_out_file
);
3576 /* Output text from TEMPLATE to the assembler output file,
3577 obeying %-directions to substitute operands taken from
3578 the vector OPERANDS.
3580 %N (for N a digit) means print operand N in usual manner.
3581 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3582 and print the label name with no punctuation.
3583 %cN means require operand N to be a constant
3584 and print the constant expression with no punctuation.
3585 %aN means expect operand N to be a memory address
3586 (not a memory reference!) and print a reference
3588 %nN means expect operand N to be a constant
3589 and print a constant expression for minus the value
3590 of the operand, with no other punctuation. */
3593 output_asm_insn (const char *templ
, rtx
*operands
)
3597 #ifdef ASSEMBLER_DIALECT
3600 int oporder
[MAX_RECOG_OPERANDS
];
3601 char opoutput
[MAX_RECOG_OPERANDS
];
3604 /* An insn may return a null string template
3605 in a case where no assembler code is needed. */
3609 memset (opoutput
, 0, sizeof opoutput
);
3611 putc ('\t', asm_out_file
);
3613 #ifdef ASM_OUTPUT_OPCODE
3614 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3621 if (flag_verbose_asm
)
3622 output_asm_operand_names (operands
, oporder
, ops
);
3623 if (flag_print_asm_name
)
3627 memset (opoutput
, 0, sizeof opoutput
);
3629 putc (c
, asm_out_file
);
3630 #ifdef ASM_OUTPUT_OPCODE
3631 while ((c
= *p
) == '\t')
3633 putc (c
, asm_out_file
);
3636 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3640 #ifdef ASSEMBLER_DIALECT
3644 p
= do_assembler_dialects (p
, &dialect
);
3649 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3650 if ASSEMBLER_DIALECT defined and these characters have a special
3651 meaning as dialect delimiters.*/
3653 #ifdef ASSEMBLER_DIALECT
3654 || *p
== '{' || *p
== '}' || *p
== '|'
3658 putc (*p
, asm_out_file
);
3661 /* %= outputs a number which is unique to each insn in the entire
3662 compilation. This is useful for making local labels that are
3663 referred to more than once in a given insn. */
3667 fprintf (asm_out_file
, "%d", insn_counter
);
3669 /* % followed by a letter and some digits
3670 outputs an operand in a special way depending on the letter.
3671 Letters `acln' are implemented directly.
3672 Other letters are passed to `output_operand' so that
3673 the TARGET_PRINT_OPERAND hook can define them. */
3674 else if (ISALPHA (*p
))
3677 unsigned long opnum
;
3680 opnum
= strtoul (p
, &endptr
, 10);
3683 output_operand_lossage ("operand number missing "
3685 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3686 output_operand_lossage ("operand number out of range");
3687 else if (letter
== 'l')
3688 output_asm_label (operands
[opnum
]);
3689 else if (letter
== 'a')
3690 output_address (operands
[opnum
]);
3691 else if (letter
== 'c')
3693 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3694 output_addr_const (asm_out_file
, operands
[opnum
]);
3696 output_operand (operands
[opnum
], 'c');
3698 else if (letter
== 'n')
3700 if (CONST_INT_P (operands
[opnum
]))
3701 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3702 - INTVAL (operands
[opnum
]));
3705 putc ('-', asm_out_file
);
3706 output_addr_const (asm_out_file
, operands
[opnum
]);
3710 output_operand (operands
[opnum
], letter
);
3712 if (!opoutput
[opnum
])
3713 oporder
[ops
++] = opnum
;
3714 opoutput
[opnum
] = 1;
3719 /* % followed by a digit outputs an operand the default way. */
3720 else if (ISDIGIT (*p
))
3722 unsigned long opnum
;
3725 opnum
= strtoul (p
, &endptr
, 10);
3726 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3727 output_operand_lossage ("operand number out of range");
3729 output_operand (operands
[opnum
], 0);
3731 if (!opoutput
[opnum
])
3732 oporder
[ops
++] = opnum
;
3733 opoutput
[opnum
] = 1;
3738 /* % followed by punctuation: output something for that
3739 punctuation character alone, with no operand. The
3740 TARGET_PRINT_OPERAND hook decides what is actually done. */
3741 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3742 output_operand (NULL_RTX
, *p
++);
3744 output_operand_lossage ("invalid %%-code");
3748 putc (c
, asm_out_file
);
3751 /* Write out the variable names for operands, if we know them. */
3752 if (flag_verbose_asm
)
3753 output_asm_operand_names (operands
, oporder
, ops
);
3754 if (flag_print_asm_name
)
3757 putc ('\n', asm_out_file
);
3760 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3763 output_asm_label (rtx x
)
3767 if (GET_CODE (x
) == LABEL_REF
)
3771 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3772 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3774 output_operand_lossage ("'%%l' operand isn't a label");
3776 assemble_name (asm_out_file
, buf
);
3779 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3780 output_operand. Marks SYMBOL_REFs as referenced through use of
3781 assemble_external. */
3784 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3788 /* If we have a used symbol, we may have to emit assembly
3789 annotations corresponding to whether the symbol is external, weak
3790 or has non-default visibility. */
3791 if (GET_CODE (x
) == SYMBOL_REF
)
3795 t
= SYMBOL_REF_DECL (x
);
3797 assemble_external (t
);
3805 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3808 mark_symbol_refs_as_used (rtx x
)
3810 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3813 /* Print operand X using machine-dependent assembler syntax.
3814 CODE is a non-digit that preceded the operand-number in the % spec,
3815 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3816 between the % and the digits.
3817 When CODE is a non-letter, X is 0.
3819 The meanings of the letters are machine-dependent and controlled
3820 by TARGET_PRINT_OPERAND. */
3823 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3825 if (x
&& GET_CODE (x
) == SUBREG
)
3826 x
= alter_subreg (&x
, true);
3828 /* X must not be a pseudo reg. */
3829 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3831 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3836 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3839 /* Print a memory reference operand for address X using
3840 machine-dependent assembler syntax. */
3843 output_address (rtx x
)
3845 bool changed
= false;
3846 walk_alter_subreg (&x
, &changed
);
3847 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3850 /* Print an integer constant expression in assembler syntax.
3851 Addition and subtraction are the only arithmetic
3852 that may appear in these expressions. */
3855 output_addr_const (FILE *file
, rtx x
)
3860 switch (GET_CODE (x
))
3867 if (SYMBOL_REF_DECL (x
))
3868 assemble_external (SYMBOL_REF_DECL (x
));
3869 #ifdef ASM_OUTPUT_SYMBOL_REF
3870 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3872 assemble_name (file
, XSTR (x
, 0));
3880 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3881 #ifdef ASM_OUTPUT_LABEL_REF
3882 ASM_OUTPUT_LABEL_REF (file
, buf
);
3884 assemble_name (file
, buf
);
3889 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3893 /* This used to output parentheses around the expression,
3894 but that does not work on the 386 (either ATT or BSD assembler). */
3895 output_addr_const (file
, XEXP (x
, 0));
3899 if (GET_MODE (x
) == VOIDmode
)
3901 /* We can use %d if the number is one word and positive. */
3902 if (CONST_DOUBLE_HIGH (x
))
3903 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3904 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3905 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3906 else if (CONST_DOUBLE_LOW (x
) < 0)
3907 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3908 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3910 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3913 /* We can't handle floating point constants;
3914 PRINT_OPERAND must handle them. */
3915 output_operand_lossage ("floating constant misused");
3919 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3923 /* Some assemblers need integer constants to appear last (eg masm). */
3924 if (CONST_INT_P (XEXP (x
, 0)))
3926 output_addr_const (file
, XEXP (x
, 1));
3927 if (INTVAL (XEXP (x
, 0)) >= 0)
3928 fprintf (file
, "+");
3929 output_addr_const (file
, XEXP (x
, 0));
3933 output_addr_const (file
, XEXP (x
, 0));
3934 if (!CONST_INT_P (XEXP (x
, 1))
3935 || INTVAL (XEXP (x
, 1)) >= 0)
3936 fprintf (file
, "+");
3937 output_addr_const (file
, XEXP (x
, 1));
3942 /* Avoid outputting things like x-x or x+5-x,
3943 since some assemblers can't handle that. */
3944 x
= simplify_subtraction (x
);
3945 if (GET_CODE (x
) != MINUS
)
3948 output_addr_const (file
, XEXP (x
, 0));
3949 fprintf (file
, "-");
3950 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3951 || GET_CODE (XEXP (x
, 1)) == PC
3952 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3953 output_addr_const (file
, XEXP (x
, 1));
3956 fputs (targetm
.asm_out
.open_paren
, file
);
3957 output_addr_const (file
, XEXP (x
, 1));
3958 fputs (targetm
.asm_out
.close_paren
, file
);
3966 output_addr_const (file
, XEXP (x
, 0));
3970 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
3973 output_operand_lossage ("invalid expression as operand");
3977 /* Output a quoted string. */
3980 output_quoted_string (FILE *asm_file
, const char *string
)
3982 #ifdef OUTPUT_QUOTED_STRING
3983 OUTPUT_QUOTED_STRING (asm_file
, string
);
3987 putc ('\"', asm_file
);
3988 while ((c
= *string
++) != 0)
3992 if (c
== '\"' || c
== '\\')
3993 putc ('\\', asm_file
);
3997 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
3999 putc ('\"', asm_file
);
4003 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4006 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4008 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4013 char *p
= buf
+ sizeof (buf
);
4015 *--p
= "0123456789abcdef"[value
% 16];
4016 while ((value
/= 16) != 0);
4019 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4023 /* Internal function that prints an unsigned long in decimal in reverse.
4024 The output string IS NOT null-terminated. */
4027 sprint_ul_rev (char *s
, unsigned long value
)
4032 s
[i
] = "0123456789"[value
% 10];
4035 /* alternate version, without modulo */
4036 /* oldval = value; */
4038 /* s[i] = "0123456789" [oldval - 10*value]; */
4045 /* Write an unsigned long as decimal to a file, fast. */
4048 fprint_ul (FILE *f
, unsigned long value
)
4050 /* python says: len(str(2**64)) == 20 */
4054 i
= sprint_ul_rev (s
, value
);
4056 /* It's probably too small to bother with string reversal and fputs. */
4065 /* Write an unsigned long as decimal to a string, fast.
4066 s must be wide enough to not overflow, at least 21 chars.
4067 Returns the length of the string (without terminating '\0'). */
4070 sprint_ul (char *s
, unsigned long value
)
4077 len
= sprint_ul_rev (s
, value
);
4080 /* Reverse the string. */
4094 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4095 %R prints the value of REGISTER_PREFIX.
4096 %L prints the value of LOCAL_LABEL_PREFIX.
4097 %U prints the value of USER_LABEL_PREFIX.
4098 %I prints the value of IMMEDIATE_PREFIX.
4099 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4100 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4102 We handle alternate assembler dialects here, just like output_asm_insn. */
4105 asm_fprintf (FILE *file
, const char *p
, ...)
4109 #ifdef ASSEMBLER_DIALECT
4114 va_start (argptr
, p
);
4121 #ifdef ASSEMBLER_DIALECT
4125 p
= do_assembler_dialects (p
, &dialect
);
4132 while (strchr ("-+ #0", c
))
4137 while (ISDIGIT (c
) || c
== '.')
4148 case 'd': case 'i': case 'u':
4149 case 'x': case 'X': case 'o':
4153 fprintf (file
, buf
, va_arg (argptr
, int));
4157 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4158 'o' cases, but we do not check for those cases. It
4159 means that the value is a HOST_WIDE_INT, which may be
4160 either `long' or `long long'. */
4161 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4162 q
+= strlen (HOST_WIDE_INT_PRINT
);
4165 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4170 #ifdef HAVE_LONG_LONG
4176 fprintf (file
, buf
, va_arg (argptr
, long long));
4183 fprintf (file
, buf
, va_arg (argptr
, long));
4191 fprintf (file
, buf
, va_arg (argptr
, char *));
4195 #ifdef ASM_OUTPUT_OPCODE
4196 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4201 #ifdef REGISTER_PREFIX
4202 fprintf (file
, "%s", REGISTER_PREFIX
);
4207 #ifdef IMMEDIATE_PREFIX
4208 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4213 #ifdef LOCAL_LABEL_PREFIX
4214 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4219 fputs (user_label_prefix
, file
);
4222 #ifdef ASM_FPRINTF_EXTENSIONS
4223 /* Uppercase letters are reserved for general use by asm_fprintf
4224 and so are not available to target specific code. In order to
4225 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4226 they are defined here. As they get turned into real extensions
4227 to asm_fprintf they should be removed from this list. */
4228 case 'A': case 'B': case 'C': case 'D': case 'E':
4229 case 'F': case 'G': case 'H': case 'J': case 'K':
4230 case 'M': case 'N': case 'P': case 'Q': case 'S':
4231 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4234 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4247 /* Return nonzero if this function has no function calls. */
4250 leaf_function_p (void)
4254 if (crtl
->profile
|| profile_arc_flag
)
4257 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4260 && ! SIBLING_CALL_P (insn
))
4262 if (NONJUMP_INSN_P (insn
)
4263 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4264 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4265 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4272 /* Return 1 if branch is a forward branch.
4273 Uses insn_shuid array, so it works only in the final pass. May be used by
4274 output templates to customary add branch prediction hints.
4277 final_forward_branch_p (rtx insn
)
4279 int insn_id
, label_id
;
4281 gcc_assert (uid_shuid
);
4282 insn_id
= INSN_SHUID (insn
);
4283 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4284 /* We've hit some insns that does not have id information available. */
4285 gcc_assert (insn_id
&& label_id
);
4286 return insn_id
< label_id
;
4289 /* On some machines, a function with no call insns
4290 can run faster if it doesn't create its own register window.
4291 When output, the leaf function should use only the "output"
4292 registers. Ordinarily, the function would be compiled to use
4293 the "input" registers to find its arguments; it is a candidate
4294 for leaf treatment if it uses only the "input" registers.
4295 Leaf function treatment means renumbering so the function
4296 uses the "output" registers instead. */
4298 #ifdef LEAF_REGISTERS
4300 /* Return 1 if this function uses only the registers that can be
4301 safely renumbered. */
4304 only_leaf_regs_used (void)
4307 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4309 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4310 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4311 && ! permitted_reg_in_leaf_functions
[i
])
4314 if (crtl
->uses_pic_offset_table
4315 && pic_offset_table_rtx
!= 0
4316 && REG_P (pic_offset_table_rtx
)
4317 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4323 /* Scan all instructions and renumber all registers into those
4324 available in leaf functions. */
4327 leaf_renumber_regs (rtx first
)
4331 /* Renumber only the actual patterns.
4332 The reg-notes can contain frame pointer refs,
4333 and renumbering them could crash, and should not be needed. */
4334 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4336 leaf_renumber_regs_insn (PATTERN (insn
));
4339 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4340 available in leaf functions. */
4343 leaf_renumber_regs_insn (rtx in_rtx
)
4346 const char *format_ptr
;
4351 /* Renumber all input-registers into output-registers.
4352 renumbered_regs would be 1 for an output-register;
4359 /* Don't renumber the same reg twice. */
4363 newreg
= REGNO (in_rtx
);
4364 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4365 to reach here as part of a REG_NOTE. */
4366 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4371 newreg
= LEAF_REG_REMAP (newreg
);
4372 gcc_assert (newreg
>= 0);
4373 df_set_regs_ever_live (REGNO (in_rtx
), false);
4374 df_set_regs_ever_live (newreg
, true);
4375 SET_REGNO (in_rtx
, newreg
);
4379 if (INSN_P (in_rtx
))
4381 /* Inside a SEQUENCE, we find insns.
4382 Renumber just the patterns of these insns,
4383 just as we do for the top-level insns. */
4384 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4388 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4390 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4391 switch (*format_ptr
++)
4394 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4398 if (NULL
!= XVEC (in_rtx
, i
))
4400 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4401 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4420 /* Turn the RTL into assembly. */
4422 rest_of_handle_final (void)
4427 /* Get the function's name, as described by its RTL. This may be
4428 different from the DECL_NAME name used in the source file. */
4430 x
= DECL_RTL (current_function_decl
);
4431 gcc_assert (MEM_P (x
));
4433 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4434 fnname
= XSTR (x
, 0);
4436 assemble_start_function (current_function_decl
, fnname
);
4437 final_start_function (get_insns (), asm_out_file
, optimize
);
4438 final (get_insns (), asm_out_file
, optimize
);
4439 final_end_function ();
4441 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4442 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4443 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4444 output_function_exception_table (fnname
);
4446 assemble_end_function (current_function_decl
, fnname
);
4448 user_defined_section_attribute
= false;
4450 /* Free up reg info memory. */
4454 fflush (asm_out_file
);
4456 /* Write DBX symbols if requested. */
4458 /* Note that for those inline functions where we don't initially
4459 know for certain that we will be generating an out-of-line copy,
4460 the first invocation of this routine (rest_of_compilation) will
4461 skip over this code by doing a `goto exit_rest_of_compilation;'.
4462 Later on, wrapup_global_declarations will (indirectly) call
4463 rest_of_compilation again for those inline functions that need
4464 to have out-of-line copies generated. During that call, we
4465 *will* be routed past here. */
4467 timevar_push (TV_SYMOUT
);
4468 if (!DECL_IGNORED_P (current_function_decl
))
4469 debug_hooks
->function_decl (current_function_decl
);
4470 timevar_pop (TV_SYMOUT
);
4472 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4473 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4475 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4476 && targetm
.have_ctors_dtors
)
4477 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4478 decl_init_priority_lookup
4479 (current_function_decl
));
4480 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4481 && targetm
.have_ctors_dtors
)
4482 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4483 decl_fini_priority_lookup
4484 (current_function_decl
));
4490 const pass_data pass_data_final
=
4492 RTL_PASS
, /* type */
4494 OPTGROUP_NONE
, /* optinfo_flags */
4495 false, /* has_gate */
4496 true, /* has_execute */
4497 TV_FINAL
, /* tv_id */
4498 0, /* properties_required */
4499 0, /* properties_provided */
4500 0, /* properties_destroyed */
4501 0, /* todo_flags_start */
4502 0, /* todo_flags_finish */
4505 class pass_final
: public rtl_opt_pass
4508 pass_final (gcc::context
*ctxt
)
4509 : rtl_opt_pass (pass_data_final
, ctxt
)
4512 /* opt_pass methods: */
4513 unsigned int execute () { return rest_of_handle_final (); }
4515 }; // class pass_final
4520 make_pass_final (gcc::context
*ctxt
)
4522 return new pass_final (ctxt
);
4527 rest_of_handle_shorten_branches (void)
4529 /* Shorten branches. */
4530 shorten_branches (get_insns ());
4536 const pass_data pass_data_shorten_branches
=
4538 RTL_PASS
, /* type */
4539 "shorten", /* name */
4540 OPTGROUP_NONE
, /* optinfo_flags */
4541 false, /* has_gate */
4542 true, /* has_execute */
4543 TV_SHORTEN_BRANCH
, /* tv_id */
4544 0, /* properties_required */
4545 0, /* properties_provided */
4546 0, /* properties_destroyed */
4547 0, /* todo_flags_start */
4548 0, /* todo_flags_finish */
4551 class pass_shorten_branches
: public rtl_opt_pass
4554 pass_shorten_branches (gcc::context
*ctxt
)
4555 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4558 /* opt_pass methods: */
4559 unsigned int execute () { return rest_of_handle_shorten_branches (); }
4561 }; // class pass_shorten_branches
4566 make_pass_shorten_branches (gcc::context
*ctxt
)
4568 return new pass_shorten_branches (ctxt
);
4573 rest_of_clean_state (void)
4576 FILE *final_output
= NULL
;
4577 int save_unnumbered
= flag_dump_unnumbered
;
4578 int save_noaddr
= flag_dump_noaddr
;
4580 if (flag_dump_final_insns
)
4582 final_output
= fopen (flag_dump_final_insns
, "a");
4585 error ("could not open final insn dump file %qs: %m",
4586 flag_dump_final_insns
);
4587 flag_dump_final_insns
= NULL
;
4591 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4592 if (flag_compare_debug_opt
|| flag_compare_debug
)
4593 dump_flags
|= TDF_NOUID
;
4594 dump_function_header (final_output
, current_function_decl
,
4596 final_insns_dump_p
= true;
4598 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4600 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4604 set_block_for_insn (insn
, NULL
);
4605 INSN_UID (insn
) = 0;
4610 /* It is very important to decompose the RTL instruction chain here:
4611 debug information keeps pointing into CODE_LABEL insns inside the function
4612 body. If these remain pointing to the other insns, we end up preserving
4613 whole RTL chain and attached detailed debug info in memory. */
4614 for (insn
= get_insns (); insn
; insn
= next
)
4616 next
= NEXT_INSN (insn
);
4617 NEXT_INSN (insn
) = NULL
;
4618 PREV_INSN (insn
) = NULL
;
4621 && (!NOTE_P (insn
) ||
4622 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4623 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4624 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4625 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4626 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4627 print_rtl_single (final_output
, insn
);
4632 flag_dump_noaddr
= save_noaddr
;
4633 flag_dump_unnumbered
= save_unnumbered
;
4634 final_insns_dump_p
= false;
4636 if (fclose (final_output
))
4638 error ("could not close final insn dump file %qs: %m",
4639 flag_dump_final_insns
);
4640 flag_dump_final_insns
= NULL
;
4644 /* In case the function was not output,
4645 don't leave any temporary anonymous types
4646 queued up for sdb output. */
4647 #ifdef SDB_DEBUGGING_INFO
4648 if (write_symbols
== SDB_DEBUG
)
4649 sdbout_types (NULL_TREE
);
4652 flag_rerun_cse_after_global_opts
= 0;
4653 reload_completed
= 0;
4654 epilogue_completed
= 0;
4656 regstack_completed
= 0;
4659 /* Clear out the insn_length contents now that they are no
4661 init_insn_lengths ();
4663 /* Show no temporary slots allocated. */
4666 free_bb_for_insn ();
4670 /* We can reduce stack alignment on call site only when we are sure that
4671 the function body just produced will be actually used in the final
4673 if (decl_binds_to_current_def_p (current_function_decl
))
4675 unsigned int pref
= crtl
->preferred_stack_boundary
;
4676 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4677 pref
= crtl
->stack_alignment_needed
;
4678 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4682 /* Make sure volatile mem refs aren't considered valid operands for
4683 arithmetic insns. We must call this here if this is a nested inline
4684 function, since the above code leaves us in the init_recog state,
4685 and the function context push/pop code does not save/restore volatile_ok.
4687 ??? Maybe it isn't necessary for expand_start_function to call this
4688 anymore if we do it here? */
4690 init_recog_no_volatile ();
4692 /* We're done with this function. Free up memory if we can. */
4693 free_after_parsing (cfun
);
4694 free_after_compilation (cfun
);
4700 const pass_data pass_data_clean_state
=
4702 RTL_PASS
, /* type */
4703 "*clean_state", /* name */
4704 OPTGROUP_NONE
, /* optinfo_flags */
4705 false, /* has_gate */
4706 true, /* has_execute */
4707 TV_FINAL
, /* tv_id */
4708 0, /* properties_required */
4709 0, /* properties_provided */
4710 PROP_rtl
, /* properties_destroyed */
4711 0, /* todo_flags_start */
4712 0, /* todo_flags_finish */
4715 class pass_clean_state
: public rtl_opt_pass
4718 pass_clean_state (gcc::context
*ctxt
)
4719 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4722 /* opt_pass methods: */
4723 unsigned int execute () { return rest_of_clean_state (); }
4725 }; // class pass_clean_state
4730 make_pass_clean_state (gcc::context
*ctxt
)
4732 return new pass_clean_state (ctxt
);