* configure: Regenerated.
[official-gcc.git] / gcc / ipa-inline.c
blobf5c255ca0b7e16b2f7f5f8a1866a658028b46c06
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Inlining decision heuristics
24 The implementation of inliner is organized as follows:
26 inlining heuristics limits
28 can_inline_edge_p allow to check that particular inlining is allowed
29 by the limits specified by user (allowed function growth, growth and so
30 on).
32 Functions are inlined when it is obvious the result is profitable (such
33 as functions called once or when inlining reduce code size).
34 In addition to that we perform inlining of small functions and recursive
35 inlining.
37 inlining heuristics
39 The inliner itself is split into two passes:
41 pass_early_inlining
43 Simple local inlining pass inlining callees into current function.
44 This pass makes no use of whole unit analysis and thus it can do only
45 very simple decisions based on local properties.
47 The strength of the pass is that it is run in topological order
48 (reverse postorder) on the callgraph. Functions are converted into SSA
49 form just before this pass and optimized subsequently. As a result, the
50 callees of the function seen by the early inliner was already optimized
51 and results of early inlining adds a lot of optimization opportunities
52 for the local optimization.
54 The pass handle the obvious inlining decisions within the compilation
55 unit - inlining auto inline functions, inlining for size and
56 flattening.
58 main strength of the pass is the ability to eliminate abstraction
59 penalty in C++ code (via combination of inlining and early
60 optimization) and thus improve quality of analysis done by real IPA
61 optimizers.
63 Because of lack of whole unit knowledge, the pass can not really make
64 good code size/performance tradeoffs. It however does very simple
65 speculative inlining allowing code size to grow by
66 EARLY_INLINING_INSNS when callee is leaf function. In this case the
67 optimizations performed later are very likely to eliminate the cost.
69 pass_ipa_inline
71 This is the real inliner able to handle inlining with whole program
72 knowledge. It performs following steps:
74 1) inlining of small functions. This is implemented by greedy
75 algorithm ordering all inlinable cgraph edges by their badness and
76 inlining them in this order as long as inline limits allows doing so.
78 This heuristics is not very good on inlining recursive calls. Recursive
79 calls can be inlined with results similar to loop unrolling. To do so,
80 special purpose recursive inliner is executed on function when
81 recursive edge is met as viable candidate.
83 2) Unreachable functions are removed from callgraph. Inlining leads
84 to devirtualization and other modification of callgraph so functions
85 may become unreachable during the process. Also functions declared as
86 extern inline or virtual functions are removed, since after inlining
87 we no longer need the offline bodies.
89 3) Functions called once and not exported from the unit are inlined.
90 This should almost always lead to reduction of code size by eliminating
91 the need for offline copy of the function. */
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "tree.h"
98 #include "tree-inline.h"
99 #include "langhooks.h"
100 #include "flags.h"
101 #include "cgraph.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "params.h"
105 #include "fibheap.h"
106 #include "intl.h"
107 #include "tree-pass.h"
108 #include "coverage.h"
109 #include "ggc.h"
110 #include "rtl.h"
111 #include "tree-flow.h"
112 #include "ipa-prop.h"
113 #include "except.h"
114 #include "target.h"
115 #include "ipa-inline.h"
116 #include "ipa-utils.h"
118 /* Statistics we collect about inlining algorithm. */
119 static int overall_size;
120 static gcov_type max_count;
122 /* Return false when inlining edge E would lead to violating
123 limits on function unit growth or stack usage growth.
125 The relative function body growth limit is present generally
126 to avoid problems with non-linear behavior of the compiler.
127 To allow inlining huge functions into tiny wrapper, the limit
128 is always based on the bigger of the two functions considered.
130 For stack growth limits we always base the growth in stack usage
131 of the callers. We want to prevent applications from segfaulting
132 on stack overflow when functions with huge stack frames gets
133 inlined. */
135 static bool
136 caller_growth_limits (struct cgraph_edge *e)
138 struct cgraph_node *to = e->caller;
139 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
140 int newsize;
141 int limit = 0;
142 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
143 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
145 /* Look for function e->caller is inlined to. While doing
146 so work out the largest function body on the way. As
147 described above, we want to base our function growth
148 limits based on that. Not on the self size of the
149 outer function, not on the self size of inline code
150 we immediately inline to. This is the most relaxed
151 interpretation of the rule "do not grow large functions
152 too much in order to prevent compiler from exploding". */
153 while (true)
155 info = inline_summary (to);
156 if (limit < info->self_size)
157 limit = info->self_size;
158 if (stack_size_limit < info->estimated_self_stack_size)
159 stack_size_limit = info->estimated_self_stack_size;
160 if (to->global.inlined_to)
161 to = to->callers->caller;
162 else
163 break;
166 what_info = inline_summary (what);
168 if (limit < what_info->self_size)
169 limit = what_info->self_size;
171 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
173 /* Check the size after inlining against the function limits. But allow
174 the function to shrink if it went over the limits by forced inlining. */
175 newsize = estimate_size_after_inlining (to, e);
176 if (newsize >= info->size
177 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
178 && newsize > limit)
180 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
181 return false;
184 if (!what_info->estimated_stack_size)
185 return true;
187 /* FIXME: Stack size limit often prevents inlining in Fortran programs
188 due to large i/o datastructures used by the Fortran front-end.
189 We ought to ignore this limit when we know that the edge is executed
190 on every invocation of the caller (i.e. its call statement dominates
191 exit block). We do not track this information, yet. */
192 stack_size_limit += ((gcov_type)stack_size_limit
193 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
195 inlined_stack = (outer_info->stack_frame_offset
196 + outer_info->estimated_self_stack_size
197 + what_info->estimated_stack_size);
198 /* Check new stack consumption with stack consumption at the place
199 stack is used. */
200 if (inlined_stack > stack_size_limit
201 /* If function already has large stack usage from sibling
202 inline call, we can inline, too.
203 This bit overoptimistically assume that we are good at stack
204 packing. */
205 && inlined_stack > info->estimated_stack_size
206 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
208 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
209 return false;
211 return true;
214 /* Dump info about why inlining has failed. */
216 static void
217 report_inline_failed_reason (struct cgraph_edge *e)
219 if (dump_file)
221 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
222 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
223 xstrdup (cgraph_node_name (e->callee)), e->callee->uid,
224 cgraph_inline_failed_string (e->inline_failed));
228 /* Decide if we can inline the edge and possibly update
229 inline_failed reason.
230 We check whether inlining is possible at all and whether
231 caller growth limits allow doing so.
233 if REPORT is true, output reason to the dump file. */
235 static bool
236 can_inline_edge_p (struct cgraph_edge *e, bool report)
238 bool inlinable = true;
239 enum availability avail;
240 struct cgraph_node *callee
241 = cgraph_function_or_thunk_node (e->callee, &avail);
242 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->symbol.decl);
243 tree callee_tree
244 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->symbol.decl) : NULL;
245 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->symbol.decl);
246 struct function *callee_cfun
247 = callee ? DECL_STRUCT_FUNCTION (callee->symbol.decl) : NULL;
249 if (!caller_cfun && e->caller->clone_of)
250 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->symbol.decl);
252 if (!callee_cfun && callee && callee->clone_of)
253 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->symbol.decl);
255 gcc_assert (e->inline_failed);
257 if (!callee || !callee->analyzed)
259 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
260 inlinable = false;
262 else if (!inline_summary (callee)->inlinable)
264 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
265 inlinable = false;
267 else if (avail <= AVAIL_OVERWRITABLE)
269 e->inline_failed = CIF_OVERWRITABLE;
270 return false;
272 else if (e->call_stmt_cannot_inline_p)
274 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
275 inlinable = false;
277 /* Don't inline if the functions have different EH personalities. */
278 else if (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
279 && DECL_FUNCTION_PERSONALITY (callee->symbol.decl)
280 && (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
281 != DECL_FUNCTION_PERSONALITY (callee->symbol.decl)))
283 e->inline_failed = CIF_EH_PERSONALITY;
284 inlinable = false;
286 /* TM pure functions should not be inlined into non-TM_pure
287 functions. */
288 else if (is_tm_pure (callee->symbol.decl)
289 && !is_tm_pure (e->caller->symbol.decl))
291 e->inline_failed = CIF_UNSPECIFIED;
292 inlinable = false;
294 /* Don't inline if the callee can throw non-call exceptions but the
295 caller cannot.
296 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
297 Move the flag into cgraph node or mirror it in the inline summary. */
298 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
299 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
301 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
302 inlinable = false;
304 /* Check compatibility of target optimization options. */
305 else if (!targetm.target_option.can_inline_p (e->caller->symbol.decl,
306 callee->symbol.decl))
308 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
309 inlinable = false;
311 /* Check if caller growth allows the inlining. */
312 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)
313 && !lookup_attribute ("flatten",
314 DECL_ATTRIBUTES
315 (e->caller->global.inlined_to
316 ? e->caller->global.inlined_to->symbol.decl
317 : e->caller->symbol.decl))
318 && !caller_growth_limits (e))
319 inlinable = false;
320 /* Don't inline a function with a higher optimization level than the
321 caller. FIXME: this is really just tip of iceberg of handling
322 optimization attribute. */
323 else if (caller_tree != callee_tree)
325 struct cl_optimization *caller_opt
326 = TREE_OPTIMIZATION ((caller_tree)
327 ? caller_tree
328 : optimization_default_node);
330 struct cl_optimization *callee_opt
331 = TREE_OPTIMIZATION ((callee_tree)
332 ? callee_tree
333 : optimization_default_node);
335 if (((caller_opt->x_optimize > callee_opt->x_optimize)
336 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
337 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
338 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->symbol.decl))
340 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
341 inlinable = false;
345 if (!inlinable && report)
346 report_inline_failed_reason (e);
347 return inlinable;
351 /* Return true if the edge E is inlinable during early inlining. */
353 static bool
354 can_early_inline_edge_p (struct cgraph_edge *e)
356 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
357 NULL);
358 /* Early inliner might get called at WPA stage when IPA pass adds new
359 function. In this case we can not really do any of early inlining
360 because function bodies are missing. */
361 if (!gimple_has_body_p (callee->symbol.decl))
363 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
364 return false;
366 /* In early inliner some of callees may not be in SSA form yet
367 (i.e. the callgraph is cyclic and we did not process
368 the callee by early inliner, yet). We don't have CIF code for this
369 case; later we will re-do the decision in the real inliner. */
370 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->symbol.decl))
371 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
373 if (dump_file)
374 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
375 return false;
377 if (!can_inline_edge_p (e, true))
378 return false;
379 return true;
383 /* Return true when N is leaf function. Accept cheap builtins
384 in leaf functions. */
386 static bool
387 leaf_node_p (struct cgraph_node *n)
389 struct cgraph_edge *e;
390 for (e = n->callees; e; e = e->next_callee)
391 if (!is_inexpensive_builtin (e->callee->symbol.decl))
392 return false;
393 return true;
397 /* Return true if we are interested in inlining small function. */
399 static bool
400 want_early_inline_function_p (struct cgraph_edge *e)
402 bool want_inline = true;
403 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
405 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
407 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
408 && !flag_inline_small_functions)
410 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
411 report_inline_failed_reason (e);
412 want_inline = false;
414 else
416 int growth = estimate_edge_growth (e);
417 if (growth <= 0)
419 else if (!cgraph_maybe_hot_edge_p (e)
420 && growth > 0)
422 if (dump_file)
423 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
424 "call is cold and code would grow by %i\n",
425 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
426 xstrdup (cgraph_node_name (callee)), callee->uid,
427 growth);
428 want_inline = false;
430 else if (!leaf_node_p (callee)
431 && growth > 0)
433 if (dump_file)
434 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
435 "callee is not leaf and code would grow by %i\n",
436 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
437 xstrdup (cgraph_node_name (callee)), callee->uid,
438 growth);
439 want_inline = false;
441 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
443 if (dump_file)
444 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
445 "growth %i exceeds --param early-inlining-insns\n",
446 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
447 xstrdup (cgraph_node_name (callee)), callee->uid,
448 growth);
449 want_inline = false;
452 return want_inline;
455 /* Return true if we are interested in inlining small function.
456 When REPORT is true, report reason to dump file. */
458 static bool
459 want_inline_small_function_p (struct cgraph_edge *e, bool report)
461 bool want_inline = true;
462 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
464 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
466 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
467 && !flag_inline_small_functions)
469 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
470 want_inline = false;
472 else
474 int growth = estimate_edge_growth (e);
475 inline_hints hints = estimate_edge_hints (e);
477 if (growth <= 0)
479 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
480 hints suggests that inlining given function is very profitable. */
481 else if (DECL_DECLARED_INLINE_P (callee->symbol.decl)
482 && growth >= MAX_INLINE_INSNS_SINGLE
483 && !(hints & (INLINE_HINT_indirect_call
484 | INLINE_HINT_loop_iterations
485 | INLINE_HINT_loop_stride)))
487 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
488 want_inline = false;
490 /* Before giving up based on fact that caller size will grow, allow
491 functions that are called few times and eliminating the offline
492 copy will lead to overall code size reduction.
493 Not all of these will be handled by subsequent inlining of functions
494 called once: in particular weak functions are not handled or funcitons
495 that inline to multiple calls but a lot of bodies is optimized out.
496 Finally we want to inline earlier to allow inlining of callbacks.
498 This is slightly wrong on aggressive side: it is entirely possible
499 that function is called many times with a context where inlining
500 reduces code size and few times with a context where inlining increase
501 code size. Resoluting growth estimate will be negative even if it
502 would make more sense to keep offline copy and do not inline into the
503 call sites that makes the code size grow.
505 When badness orders the calls in a way that code reducing calls come
506 first, this situation is not a problem at all: after inlining all
507 "good" calls, we will realize that keeping the function around is
508 better. */
509 else if (growth <= MAX_INLINE_INSNS_SINGLE
510 /* Unlike for functions called once, we play unsafe with
511 COMDATs. We can allow that since we know functions
512 in consideration are small (and thus risk is small) and
513 moreover grow estimates already accounts that COMDAT
514 functions may or may not disappear when eliminated from
515 current unit. With good probability making aggressive
516 choice in all units is going to make overall program
517 smaller.
519 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
520 instead of
521 cgraph_will_be_removed_from_program_if_no_direct_calls */
522 && !DECL_EXTERNAL (callee->symbol.decl)
523 && cgraph_can_remove_if_no_direct_calls_p (callee)
524 && estimate_growth (callee) <= 0)
526 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
527 && !flag_inline_functions)
529 e->inline_failed = CIF_NOT_DECLARED_INLINED;
530 want_inline = false;
532 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
533 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
534 inlining given function is very profitable. */
535 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
536 && growth >= ((hints & (INLINE_HINT_indirect_call
537 | INLINE_HINT_loop_iterations
538 | INLINE_HINT_loop_stride))
539 ? MAX (MAX_INLINE_INSNS_AUTO,
540 MAX_INLINE_INSNS_SINGLE)
541 : MAX_INLINE_INSNS_AUTO))
543 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
544 want_inline = false;
546 /* If call is cold, do not inline when function body would grow. */
547 else if (!cgraph_maybe_hot_edge_p (e))
549 e->inline_failed = CIF_UNLIKELY_CALL;
550 want_inline = false;
553 if (!want_inline && report)
554 report_inline_failed_reason (e);
555 return want_inline;
558 /* EDGE is self recursive edge.
559 We hand two cases - when function A is inlining into itself
560 or when function A is being inlined into another inliner copy of function
561 A within function B.
563 In first case OUTER_NODE points to the toplevel copy of A, while
564 in the second case OUTER_NODE points to the outermost copy of A in B.
566 In both cases we want to be extra selective since
567 inlining the call will just introduce new recursive calls to appear. */
569 static bool
570 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
571 struct cgraph_node *outer_node,
572 bool peeling,
573 int depth)
575 char const *reason = NULL;
576 bool want_inline = true;
577 int caller_freq = CGRAPH_FREQ_BASE;
578 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
580 if (DECL_DECLARED_INLINE_P (edge->caller->symbol.decl))
581 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
583 if (!cgraph_maybe_hot_edge_p (edge))
585 reason = "recursive call is cold";
586 want_inline = false;
588 else if (max_count && !outer_node->count)
590 reason = "not executed in profile";
591 want_inline = false;
593 else if (depth > max_depth)
595 reason = "--param max-inline-recursive-depth exceeded.";
596 want_inline = false;
599 if (outer_node->global.inlined_to)
600 caller_freq = outer_node->callers->frequency;
602 if (!want_inline)
604 /* Inlining of self recursive function into copy of itself within other function
605 is transformation similar to loop peeling.
607 Peeling is profitable if we can inline enough copies to make probability
608 of actual call to the self recursive function very small. Be sure that
609 the probability of recursion is small.
611 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
612 This way the expected number of recision is at most max_depth. */
613 else if (peeling)
615 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
616 / max_depth);
617 int i;
618 for (i = 1; i < depth; i++)
619 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
620 if (max_count
621 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
622 >= max_prob))
624 reason = "profile of recursive call is too large";
625 want_inline = false;
627 if (!max_count
628 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
629 >= max_prob))
631 reason = "frequency of recursive call is too large";
632 want_inline = false;
635 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
636 depth is large. We reduce function call overhead and increase chances that
637 things fit in hardware return predictor.
639 Recursive inlining might however increase cost of stack frame setup
640 actually slowing down functions whose recursion tree is wide rather than
641 deep.
643 Deciding reliably on when to do recursive inlining without profile feedback
644 is tricky. For now we disable recursive inlining when probability of self
645 recursion is low.
647 Recursive inlining of self recursive call within loop also results in large loop
648 depths that generally optimize badly. We may want to throttle down inlining
649 in those cases. In particular this seems to happen in one of libstdc++ rb tree
650 methods. */
651 else
653 if (max_count
654 && (edge->count * 100 / outer_node->count
655 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
657 reason = "profile of recursive call is too small";
658 want_inline = false;
660 else if (!max_count
661 && (edge->frequency * 100 / caller_freq
662 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
664 reason = "frequency of recursive call is too small";
665 want_inline = false;
668 if (!want_inline && dump_file)
669 fprintf (dump_file, " not inlining recursively: %s\n", reason);
670 return want_inline;
673 /* Return true when NODE has caller other than EDGE.
674 Worker for cgraph_for_node_and_aliases. */
676 static bool
677 check_caller_edge (struct cgraph_node *node, void *edge)
679 return (node->callers
680 && node->callers != edge);
684 /* Decide if NODE is called once inlining it would eliminate need
685 for the offline copy of function. */
687 static bool
688 want_inline_function_called_once_p (struct cgraph_node *node)
690 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
691 /* Already inlined? */
692 if (function->global.inlined_to)
693 return false;
694 /* Zero or more then one callers? */
695 if (!node->callers
696 || node->callers->next_caller)
697 return false;
698 /* Maybe other aliases has more direct calls. */
699 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
700 return false;
701 /* Recursive call makes no sense to inline. */
702 if (cgraph_edge_recursive_p (node->callers))
703 return false;
704 /* External functions are not really in the unit, so inlining
705 them when called once would just increase the program size. */
706 if (DECL_EXTERNAL (function->symbol.decl))
707 return false;
708 /* Offline body must be optimized out. */
709 if (!cgraph_will_be_removed_from_program_if_no_direct_calls (function))
710 return false;
711 if (!can_inline_edge_p (node->callers, true))
712 return false;
713 return true;
717 /* Return relative time improvement for inlining EDGE in range
718 1...2^9. */
720 static inline int
721 relative_time_benefit (struct inline_summary *callee_info,
722 struct cgraph_edge *edge,
723 int time_growth)
725 int relbenefit;
726 gcov_type uninlined_call_time;
728 uninlined_call_time =
729 ((gcov_type)
730 (callee_info->time
731 + inline_edge_summary (edge)->call_stmt_time) * edge->frequency
732 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
733 /* Compute relative time benefit, i.e. how much the call becomes faster.
734 ??? perhaps computing how much the caller+calle together become faster
735 would lead to more realistic results. */
736 if (!uninlined_call_time)
737 uninlined_call_time = 1;
738 relbenefit =
739 (uninlined_call_time - time_growth) * 256 / (uninlined_call_time);
740 relbenefit = MIN (relbenefit, 512);
741 relbenefit = MAX (relbenefit, 1);
742 return relbenefit;
746 /* A cost model driving the inlining heuristics in a way so the edges with
747 smallest badness are inlined first. After each inlining is performed
748 the costs of all caller edges of nodes affected are recomputed so the
749 metrics may accurately depend on values such as number of inlinable callers
750 of the function or function body size. */
752 static int
753 edge_badness (struct cgraph_edge *edge, bool dump)
755 gcov_type badness;
756 int growth, time_growth;
757 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
758 NULL);
759 struct inline_summary *callee_info = inline_summary (callee);
760 inline_hints hints;
762 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
763 return INT_MIN;
765 growth = estimate_edge_growth (edge);
766 time_growth = estimate_edge_time (edge);
767 hints = estimate_edge_hints (edge);
769 if (dump)
771 fprintf (dump_file, " Badness calculation for %s -> %s\n",
772 xstrdup (cgraph_node_name (edge->caller)),
773 xstrdup (cgraph_node_name (callee)));
774 fprintf (dump_file, " size growth %i, time growth %i ",
775 growth,
776 time_growth);
777 dump_inline_hints (dump_file, hints);
778 fprintf (dump_file, "\n");
781 /* Always prefer inlining saving code size. */
782 if (growth <= 0)
784 badness = INT_MIN / 2 + growth;
785 if (dump)
786 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
787 growth);
790 /* When profiling is available, compute badness as:
792 relative_edge_count * relative_time_benefit
793 goodness = -------------------------------------------
794 edge_growth
795 badness = -goodness
797 The fraction is upside down, because on edge counts and time beneits
798 the bounds are known. Edge growth is essentially unlimited. */
800 else if (max_count)
802 int relbenefit = relative_time_benefit (callee_info, edge, time_growth);
803 badness =
804 ((int)
805 ((double) edge->count * INT_MIN / 2 / max_count / 512) *
806 relative_time_benefit (callee_info, edge, time_growth)) / growth;
808 /* Be sure that insanity of the profile won't lead to increasing counts
809 in the scalling and thus to overflow in the computation above. */
810 gcc_assert (max_count >= edge->count);
811 if (dump)
813 fprintf (dump_file,
814 " %i (relative %f): profile info. Relative count %f"
815 " * Relative benefit %f\n",
816 (int) badness, (double) badness / INT_MIN,
817 (double) edge->count / max_count,
818 relbenefit * 100 / 256.0);
822 /* When function local profile is available. Compute badness as:
825 growth_of_callee
826 badness = -------------------------------------- + growth_for-all
827 relative_time_benefit * edge_frequency
830 else if (flag_guess_branch_prob)
832 int div = edge->frequency * (1<<10) / CGRAPH_FREQ_MAX;
834 div = MAX (div, 1);
835 gcc_checking_assert (edge->frequency <= CGRAPH_FREQ_MAX);
836 div *= relative_time_benefit (callee_info, edge, time_growth);
838 /* frequency is normalized in range 1...2^10.
839 relbenefit in range 1...2^9
840 DIV should be in range 1....2^19. */
841 gcc_checking_assert (div >= 1 && div <= (1<<19));
843 /* Result must be integer in range 0...INT_MAX.
844 Set the base of fixed point calculation so we don't lose much of
845 precision for small bandesses (those are interesting) yet we don't
846 overflow for growths that are still in interesting range.
848 Fixed point arithmetic with point at 8th bit. */
849 badness = ((gcov_type)growth) * (1<<(19+8));
850 badness = (badness + div / 2) / div;
852 /* Overall growth of inlining all calls of function matters: we want to
853 inline so offline copy of function is no longer needed.
855 Additionally functions that can be fully inlined without much of
856 effort are better inline candidates than functions that can be fully
857 inlined only after noticeable overall unit growths. The latter
858 are better in a sense compressing of code size by factoring out common
859 code into separate function shared by multiple code paths.
861 We might mix the valud into the fraction by taking into account
862 relative growth of the unit, but for now just add the number
863 into resulting fraction. */
864 if (badness > INT_MAX / 2)
866 badness = INT_MAX / 2;
867 if (dump)
868 fprintf (dump_file, "Badness overflow\n");
870 if (hints & (INLINE_HINT_indirect_call
871 | INLINE_HINT_loop_iterations
872 | INLINE_HINT_loop_stride))
873 badness /= 8;
874 if (dump)
876 fprintf (dump_file,
877 " %i: guessed profile. frequency %f,"
878 " benefit %f%%, divisor %i\n",
879 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
880 relative_time_benefit (callee_info, edge, time_growth) * 100 / 256.0, div);
883 /* When function local profile is not available or it does not give
884 useful information (ie frequency is zero), base the cost on
885 loop nest and overall size growth, so we optimize for overall number
886 of functions fully inlined in program. */
887 else
889 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
890 badness = growth * 256;
892 /* Decrease badness if call is nested. */
893 if (badness > 0)
894 badness >>= nest;
895 else
897 badness <<= nest;
899 if (dump)
900 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
901 nest);
904 /* Ensure that we did not overflow in all the fixed point math above. */
905 gcc_assert (badness >= INT_MIN);
906 gcc_assert (badness <= INT_MAX - 1);
907 /* Make recursive inlining happen always after other inlining is done. */
908 if (cgraph_edge_recursive_p (edge))
909 return badness + 1;
910 else
911 return badness;
914 /* Recompute badness of EDGE and update its key in HEAP if needed. */
915 static inline void
916 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
918 int badness = edge_badness (edge, false);
919 if (edge->aux)
921 fibnode_t n = (fibnode_t) edge->aux;
922 gcc_checking_assert (n->data == edge);
924 /* fibheap_replace_key only decrease the keys.
925 When we increase the key we do not update heap
926 and instead re-insert the element once it becomes
927 a minimum of heap. */
928 if (badness < n->key)
930 if (dump_file && (dump_flags & TDF_DETAILS))
932 fprintf (dump_file,
933 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
934 xstrdup (cgraph_node_name (edge->caller)),
935 edge->caller->uid,
936 xstrdup (cgraph_node_name (edge->callee)),
937 edge->callee->uid,
938 (int)n->key,
939 badness);
941 fibheap_replace_key (heap, n, badness);
942 gcc_checking_assert (n->key == badness);
945 else
947 if (dump_file && (dump_flags & TDF_DETAILS))
949 fprintf (dump_file,
950 " enqueuing call %s/%i -> %s/%i, badness %i\n",
951 xstrdup (cgraph_node_name (edge->caller)),
952 edge->caller->uid,
953 xstrdup (cgraph_node_name (edge->callee)),
954 edge->callee->uid,
955 badness);
957 edge->aux = fibheap_insert (heap, badness, edge);
962 /* NODE was inlined.
963 All caller edges needs to be resetted because
964 size estimates change. Similarly callees needs reset
965 because better context may be known. */
967 static void
968 reset_edge_caches (struct cgraph_node *node)
970 struct cgraph_edge *edge;
971 struct cgraph_edge *e = node->callees;
972 struct cgraph_node *where = node;
973 int i;
974 struct ipa_ref *ref;
976 if (where->global.inlined_to)
977 where = where->global.inlined_to;
979 /* WHERE body size has changed, the cached growth is invalid. */
980 reset_node_growth_cache (where);
982 for (edge = where->callers; edge; edge = edge->next_caller)
983 if (edge->inline_failed)
984 reset_edge_growth_cache (edge);
985 for (i = 0; ipa_ref_list_referring_iterate (&where->symbol.ref_list,
986 i, ref); i++)
987 if (ref->use == IPA_REF_ALIAS)
988 reset_edge_caches (ipa_ref_referring_node (ref));
990 if (!e)
991 return;
993 while (true)
994 if (!e->inline_failed && e->callee->callees)
995 e = e->callee->callees;
996 else
998 if (e->inline_failed)
999 reset_edge_growth_cache (e);
1000 if (e->next_callee)
1001 e = e->next_callee;
1002 else
1006 if (e->caller == node)
1007 return;
1008 e = e->caller->callers;
1010 while (!e->next_callee);
1011 e = e->next_callee;
1016 /* Recompute HEAP nodes for each of caller of NODE.
1017 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1018 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1019 it is inlinable. Otherwise check all edges. */
1021 static void
1022 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1023 bitmap updated_nodes,
1024 struct cgraph_edge *check_inlinablity_for)
1026 struct cgraph_edge *edge;
1027 int i;
1028 struct ipa_ref *ref;
1030 if ((!node->alias && !inline_summary (node)->inlinable)
1031 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
1032 || node->global.inlined_to)
1033 return;
1034 if (!bitmap_set_bit (updated_nodes, node->uid))
1035 return;
1037 for (i = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list,
1038 i, ref); i++)
1039 if (ref->use == IPA_REF_ALIAS)
1041 struct cgraph_node *alias = ipa_ref_referring_node (ref);
1042 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1045 for (edge = node->callers; edge; edge = edge->next_caller)
1046 if (edge->inline_failed)
1048 if (!check_inlinablity_for
1049 || check_inlinablity_for == edge)
1051 if (can_inline_edge_p (edge, false)
1052 && want_inline_small_function_p (edge, false))
1053 update_edge_key (heap, edge);
1054 else if (edge->aux)
1056 report_inline_failed_reason (edge);
1057 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1058 edge->aux = NULL;
1061 else if (edge->aux)
1062 update_edge_key (heap, edge);
1066 /* Recompute HEAP nodes for each uninlined call in NODE.
1067 This is used when we know that edge badnesses are going only to increase
1068 (we introduced new call site) and thus all we need is to insert newly
1069 created edges into heap. */
1071 static void
1072 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1073 bitmap updated_nodes)
1075 struct cgraph_edge *e = node->callees;
1077 if (!e)
1078 return;
1079 while (true)
1080 if (!e->inline_failed && e->callee->callees)
1081 e = e->callee->callees;
1082 else
1084 enum availability avail;
1085 struct cgraph_node *callee;
1086 /* We do not reset callee growth cache here. Since we added a new call,
1087 growth chould have just increased and consequentely badness metric
1088 don't need updating. */
1089 if (e->inline_failed
1090 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1091 && inline_summary (callee)->inlinable
1092 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1093 && !bitmap_bit_p (updated_nodes, callee->uid))
1095 if (can_inline_edge_p (e, false)
1096 && want_inline_small_function_p (e, false))
1097 update_edge_key (heap, e);
1098 else if (e->aux)
1100 report_inline_failed_reason (e);
1101 fibheap_delete_node (heap, (fibnode_t) e->aux);
1102 e->aux = NULL;
1105 if (e->next_callee)
1106 e = e->next_callee;
1107 else
1111 if (e->caller == node)
1112 return;
1113 e = e->caller->callers;
1115 while (!e->next_callee);
1116 e = e->next_callee;
1121 /* Enqueue all recursive calls from NODE into priority queue depending on
1122 how likely we want to recursively inline the call. */
1124 static void
1125 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1126 fibheap_t heap)
1128 struct cgraph_edge *e;
1129 enum availability avail;
1131 for (e = where->callees; e; e = e->next_callee)
1132 if (e->callee == node
1133 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1134 && avail > AVAIL_OVERWRITABLE))
1136 /* When profile feedback is available, prioritize by expected number
1137 of calls. */
1138 fibheap_insert (heap,
1139 !max_count ? -e->frequency
1140 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1143 for (e = where->callees; e; e = e->next_callee)
1144 if (!e->inline_failed)
1145 lookup_recursive_calls (node, e->callee, heap);
1148 /* Decide on recursive inlining: in the case function has recursive calls,
1149 inline until body size reaches given argument. If any new indirect edges
1150 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1151 is NULL. */
1153 static bool
1154 recursive_inlining (struct cgraph_edge *edge,
1155 VEC (cgraph_edge_p, heap) **new_edges)
1157 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1158 fibheap_t heap;
1159 struct cgraph_node *node;
1160 struct cgraph_edge *e;
1161 struct cgraph_node *master_clone = NULL, *next;
1162 int depth = 0;
1163 int n = 0;
1165 node = edge->caller;
1166 if (node->global.inlined_to)
1167 node = node->global.inlined_to;
1169 if (DECL_DECLARED_INLINE_P (node->symbol.decl))
1170 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1172 /* Make sure that function is small enough to be considered for inlining. */
1173 if (estimate_size_after_inlining (node, edge) >= limit)
1174 return false;
1175 heap = fibheap_new ();
1176 lookup_recursive_calls (node, node, heap);
1177 if (fibheap_empty (heap))
1179 fibheap_delete (heap);
1180 return false;
1183 if (dump_file)
1184 fprintf (dump_file,
1185 " Performing recursive inlining on %s\n",
1186 cgraph_node_name (node));
1188 /* Do the inlining and update list of recursive call during process. */
1189 while (!fibheap_empty (heap))
1191 struct cgraph_edge *curr
1192 = (struct cgraph_edge *) fibheap_extract_min (heap);
1193 struct cgraph_node *cnode;
1195 if (estimate_size_after_inlining (node, curr) > limit)
1196 break;
1198 if (!can_inline_edge_p (curr, true))
1199 continue;
1201 depth = 1;
1202 for (cnode = curr->caller;
1203 cnode->global.inlined_to; cnode = cnode->callers->caller)
1204 if (node->symbol.decl
1205 == cgraph_function_or_thunk_node (curr->callee, NULL)->symbol.decl)
1206 depth++;
1208 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1209 continue;
1211 if (dump_file)
1213 fprintf (dump_file,
1214 " Inlining call of depth %i", depth);
1215 if (node->count)
1217 fprintf (dump_file, " called approx. %.2f times per call",
1218 (double)curr->count / node->count);
1220 fprintf (dump_file, "\n");
1222 if (!master_clone)
1224 /* We need original clone to copy around. */
1225 master_clone = cgraph_clone_node (node, node->symbol.decl,
1226 node->count, CGRAPH_FREQ_BASE,
1227 false, NULL, true);
1228 for (e = master_clone->callees; e; e = e->next_callee)
1229 if (!e->inline_failed)
1230 clone_inlined_nodes (e, true, false, NULL);
1233 cgraph_redirect_edge_callee (curr, master_clone);
1234 inline_call (curr, false, new_edges, &overall_size, true);
1235 lookup_recursive_calls (node, curr->callee, heap);
1236 n++;
1239 if (!fibheap_empty (heap) && dump_file)
1240 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1241 fibheap_delete (heap);
1243 if (!master_clone)
1244 return false;
1246 if (dump_file)
1247 fprintf (dump_file,
1248 "\n Inlined %i times, "
1249 "body grown from size %i to %i, time %i to %i\n", n,
1250 inline_summary (master_clone)->size, inline_summary (node)->size,
1251 inline_summary (master_clone)->time, inline_summary (node)->time);
1253 /* Remove master clone we used for inlining. We rely that clones inlined
1254 into master clone gets queued just before master clone so we don't
1255 need recursion. */
1256 for (node = cgraph_first_function (); node != master_clone;
1257 node = next)
1259 next = cgraph_next_function (node);
1260 if (node->global.inlined_to == master_clone)
1261 cgraph_remove_node (node);
1263 cgraph_remove_node (master_clone);
1264 return true;
1268 /* Given whole compilation unit estimate of INSNS, compute how large we can
1269 allow the unit to grow. */
1271 static int
1272 compute_max_insns (int insns)
1274 int max_insns = insns;
1275 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1276 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1278 return ((HOST_WIDEST_INT) max_insns
1279 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1283 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1285 static void
1286 add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
1288 while (VEC_length (cgraph_edge_p, new_edges) > 0)
1290 struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
1292 gcc_assert (!edge->aux);
1293 if (edge->inline_failed
1294 && can_inline_edge_p (edge, true)
1295 && want_inline_small_function_p (edge, true))
1296 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1301 /* We use greedy algorithm for inlining of small functions:
1302 All inline candidates are put into prioritized heap ordered in
1303 increasing badness.
1305 The inlining of small functions is bounded by unit growth parameters. */
1307 static void
1308 inline_small_functions (void)
1310 struct cgraph_node *node;
1311 struct cgraph_edge *edge;
1312 fibheap_t edge_heap = fibheap_new ();
1313 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1314 int min_size, max_size;
1315 VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
1316 int initial_size = 0;
1318 if (flag_indirect_inlining)
1319 new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
1321 if (dump_file)
1322 fprintf (dump_file,
1323 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1324 initial_size);
1326 /* Compute overall unit size and other global parameters used by badness
1327 metrics. */
1329 max_count = 0;
1330 initialize_growth_caches ();
1332 FOR_EACH_DEFINED_FUNCTION (node)
1333 if (!node->global.inlined_to)
1335 if (cgraph_function_with_gimple_body_p (node)
1336 || node->thunk.thunk_p)
1338 struct inline_summary *info = inline_summary (node);
1340 if (!DECL_EXTERNAL (node->symbol.decl))
1341 initial_size += info->size;
1344 for (edge = node->callers; edge; edge = edge->next_caller)
1345 if (max_count < edge->count)
1346 max_count = edge->count;
1349 overall_size = initial_size;
1350 max_size = compute_max_insns (overall_size);
1351 min_size = overall_size;
1353 /* Populate the heeap with all edges we might inline. */
1355 FOR_EACH_DEFINED_FUNCTION (node)
1356 if (!node->global.inlined_to)
1358 if (dump_file)
1359 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1360 cgraph_node_name (node), node->uid);
1362 for (edge = node->callers; edge; edge = edge->next_caller)
1363 if (edge->inline_failed
1364 && can_inline_edge_p (edge, true)
1365 && want_inline_small_function_p (edge, true)
1366 && edge->inline_failed)
1368 gcc_assert (!edge->aux);
1369 update_edge_key (edge_heap, edge);
1373 gcc_assert (in_lto_p
1374 || !max_count
1375 || (profile_info && flag_branch_probabilities));
1377 while (!fibheap_empty (edge_heap))
1379 int old_size = overall_size;
1380 struct cgraph_node *where, *callee;
1381 int badness = fibheap_min_key (edge_heap);
1382 int current_badness;
1383 int cached_badness;
1384 int growth;
1386 edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
1387 gcc_assert (edge->aux);
1388 edge->aux = NULL;
1389 if (!edge->inline_failed)
1390 continue;
1392 /* Be sure that caches are maintained consistent.
1393 We can not make this ENABLE_CHECKING only because it cause different
1394 updates of the fibheap queue. */
1395 cached_badness = edge_badness (edge, false);
1396 reset_edge_growth_cache (edge);
1397 reset_node_growth_cache (edge->callee);
1399 /* When updating the edge costs, we only decrease badness in the keys.
1400 Increases of badness are handled lazilly; when we see key with out
1401 of date value on it, we re-insert it now. */
1402 current_badness = edge_badness (edge, false);
1403 gcc_assert (cached_badness == current_badness);
1404 gcc_assert (current_badness >= badness);
1405 if (current_badness != badness)
1407 edge->aux = fibheap_insert (edge_heap, current_badness, edge);
1408 continue;
1411 if (!can_inline_edge_p (edge, true))
1412 continue;
1414 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1415 growth = estimate_edge_growth (edge);
1416 if (dump_file)
1418 fprintf (dump_file,
1419 "\nConsidering %s with %i size\n",
1420 cgraph_node_name (callee),
1421 inline_summary (callee)->size);
1422 fprintf (dump_file,
1423 " to be inlined into %s in %s:%i\n"
1424 " Estimated growth after inlined into all is %+i insns.\n"
1425 " Estimated badness is %i, frequency %.2f.\n",
1426 cgraph_node_name (edge->caller),
1427 flag_wpa ? "unknown"
1428 : gimple_filename ((const_gimple) edge->call_stmt),
1429 flag_wpa ? -1
1430 : gimple_lineno ((const_gimple) edge->call_stmt),
1431 estimate_growth (callee),
1432 badness,
1433 edge->frequency / (double)CGRAPH_FREQ_BASE);
1434 if (edge->count)
1435 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1436 edge->count);
1437 if (dump_flags & TDF_DETAILS)
1438 edge_badness (edge, true);
1441 if (overall_size + growth > max_size
1442 && !DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1444 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1445 report_inline_failed_reason (edge);
1446 continue;
1449 if (!want_inline_small_function_p (edge, true))
1450 continue;
1452 /* Heuristics for inlining small functions works poorly for
1453 recursive calls where we do efect similar to loop unrolling.
1454 When inliing such edge seems profitable, leave decision on
1455 specific inliner. */
1456 if (cgraph_edge_recursive_p (edge))
1458 where = edge->caller;
1459 if (where->global.inlined_to)
1460 where = where->global.inlined_to;
1461 if (!recursive_inlining (edge,
1462 flag_indirect_inlining
1463 ? &new_indirect_edges : NULL))
1465 edge->inline_failed = CIF_RECURSIVE_INLINING;
1466 continue;
1468 reset_edge_caches (where);
1469 /* Recursive inliner inlines all recursive calls of the function
1470 at once. Consequently we need to update all callee keys. */
1471 if (flag_indirect_inlining)
1472 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1473 update_callee_keys (edge_heap, where, updated_nodes);
1475 else
1477 struct cgraph_node *outer_node = NULL;
1478 int depth = 0;
1480 /* Consider the case where self recursive function A is inlined into B.
1481 This is desired optimization in some cases, since it leads to effect
1482 similar of loop peeling and we might completely optimize out the
1483 recursive call. However we must be extra selective. */
1485 where = edge->caller;
1486 while (where->global.inlined_to)
1488 if (where->symbol.decl == callee->symbol.decl)
1489 outer_node = where, depth++;
1490 where = where->callers->caller;
1492 if (outer_node
1493 && !want_inline_self_recursive_call_p (edge, outer_node,
1494 true, depth))
1496 edge->inline_failed
1497 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->symbol.decl)
1498 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1499 continue;
1501 else if (depth && dump_file)
1502 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1504 gcc_checking_assert (!callee->global.inlined_to);
1505 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1506 if (flag_indirect_inlining)
1507 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1509 reset_edge_caches (edge->callee);
1510 reset_node_growth_cache (callee);
1512 update_callee_keys (edge_heap, edge->callee, updated_nodes);
1514 where = edge->caller;
1515 if (where->global.inlined_to)
1516 where = where->global.inlined_to;
1518 /* Our profitability metric can depend on local properties
1519 such as number of inlinable calls and size of the function body.
1520 After inlining these properties might change for the function we
1521 inlined into (since it's body size changed) and for the functions
1522 called by function we inlined (since number of it inlinable callers
1523 might change). */
1524 update_caller_keys (edge_heap, where, updated_nodes, NULL);
1525 bitmap_clear (updated_nodes);
1527 if (dump_file)
1529 fprintf (dump_file,
1530 " Inlined into %s which now has time %i and size %i,"
1531 "net change of %+i.\n",
1532 cgraph_node_name (edge->caller),
1533 inline_summary (edge->caller)->time,
1534 inline_summary (edge->caller)->size,
1535 overall_size - old_size);
1537 if (min_size > overall_size)
1539 min_size = overall_size;
1540 max_size = compute_max_insns (min_size);
1542 if (dump_file)
1543 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1547 free_growth_caches ();
1548 if (new_indirect_edges)
1549 VEC_free (cgraph_edge_p, heap, new_indirect_edges);
1550 fibheap_delete (edge_heap);
1551 if (dump_file)
1552 fprintf (dump_file,
1553 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1554 initial_size, overall_size,
1555 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1556 BITMAP_FREE (updated_nodes);
1559 /* Flatten NODE. Performed both during early inlining and
1560 at IPA inlining time. */
1562 static void
1563 flatten_function (struct cgraph_node *node, bool early)
1565 struct cgraph_edge *e;
1567 /* We shouldn't be called recursively when we are being processed. */
1568 gcc_assert (node->symbol.aux == NULL);
1570 node->symbol.aux = (void *) node;
1572 for (e = node->callees; e; e = e->next_callee)
1574 struct cgraph_node *orig_callee;
1575 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1577 /* We've hit cycle? It is time to give up. */
1578 if (callee->symbol.aux)
1580 if (dump_file)
1581 fprintf (dump_file,
1582 "Not inlining %s into %s to avoid cycle.\n",
1583 xstrdup (cgraph_node_name (callee)),
1584 xstrdup (cgraph_node_name (e->caller)));
1585 e->inline_failed = CIF_RECURSIVE_INLINING;
1586 continue;
1589 /* When the edge is already inlined, we just need to recurse into
1590 it in order to fully flatten the leaves. */
1591 if (!e->inline_failed)
1593 flatten_function (callee, early);
1594 continue;
1597 /* Flatten attribute needs to be processed during late inlining. For
1598 extra code quality we however do flattening during early optimization,
1599 too. */
1600 if (!early
1601 ? !can_inline_edge_p (e, true)
1602 : !can_early_inline_edge_p (e))
1603 continue;
1605 if (cgraph_edge_recursive_p (e))
1607 if (dump_file)
1608 fprintf (dump_file, "Not inlining: recursive call.\n");
1609 continue;
1612 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->symbol.decl))
1613 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
1615 if (dump_file)
1616 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1617 continue;
1620 /* Inline the edge and flatten the inline clone. Avoid
1621 recursing through the original node if the node was cloned. */
1622 if (dump_file)
1623 fprintf (dump_file, " Inlining %s into %s.\n",
1624 xstrdup (cgraph_node_name (callee)),
1625 xstrdup (cgraph_node_name (e->caller)));
1626 orig_callee = callee;
1627 inline_call (e, true, NULL, NULL, false);
1628 if (e->callee != orig_callee)
1629 orig_callee->symbol.aux = (void *) node;
1630 flatten_function (e->callee, early);
1631 if (e->callee != orig_callee)
1632 orig_callee->symbol.aux = NULL;
1635 node->symbol.aux = NULL;
1636 if (!node->global.inlined_to)
1637 inline_update_overall_summary (node);
1640 /* Decide on the inlining. We do so in the topological order to avoid
1641 expenses on updating data structures. */
1643 static unsigned int
1644 ipa_inline (void)
1646 struct cgraph_node *node;
1647 int nnodes;
1648 struct cgraph_node **order =
1649 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1650 int i;
1652 if (in_lto_p && optimize)
1653 ipa_update_after_lto_read ();
1655 if (dump_file)
1656 dump_inline_summaries (dump_file);
1658 nnodes = ipa_reverse_postorder (order);
1660 FOR_EACH_FUNCTION (node)
1661 node->symbol.aux = 0;
1663 if (dump_file)
1664 fprintf (dump_file, "\nFlattening functions:\n");
1666 /* In the first pass handle functions to be flattened. Do this with
1667 a priority so none of our later choices will make this impossible. */
1668 for (i = nnodes - 1; i >= 0; i--)
1670 node = order[i];
1672 /* Handle nodes to be flattened.
1673 Ideally when processing callees we stop inlining at the
1674 entry of cycles, possibly cloning that entry point and
1675 try to flatten itself turning it into a self-recursive
1676 function. */
1677 if (lookup_attribute ("flatten",
1678 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
1680 if (dump_file)
1681 fprintf (dump_file,
1682 "Flattening %s\n", cgraph_node_name (node));
1683 flatten_function (node, false);
1687 inline_small_functions ();
1688 symtab_remove_unreachable_nodes (true, dump_file);
1689 free (order);
1691 /* We already perform some inlining of functions called once during
1692 inlining small functions above. After unreachable nodes are removed,
1693 we still might do a quick check that nothing new is found. */
1694 if (flag_inline_functions_called_once)
1696 int cold;
1697 if (dump_file)
1698 fprintf (dump_file, "\nDeciding on functions called once:\n");
1700 /* Inlining one function called once has good chance of preventing
1701 inlining other function into the same callee. Ideally we should
1702 work in priority order, but probably inlining hot functions first
1703 is good cut without the extra pain of maintaining the queue.
1705 ??? this is not really fitting the bill perfectly: inlining function
1706 into callee often leads to better optimization of callee due to
1707 increased context for optimization.
1708 For example if main() function calls a function that outputs help
1709 and then function that does the main optmization, we should inline
1710 the second with priority even if both calls are cold by themselves.
1712 We probably want to implement new predicate replacing our use of
1713 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1714 to be hot. */
1715 for (cold = 0; cold <= 1; cold ++)
1717 FOR_EACH_DEFINED_FUNCTION (node)
1719 if (want_inline_function_called_once_p (node)
1720 && (cold
1721 || cgraph_maybe_hot_edge_p (node->callers)))
1723 struct cgraph_node *caller = node->callers->caller;
1725 if (dump_file)
1727 fprintf (dump_file,
1728 "\nInlining %s size %i.\n",
1729 cgraph_node_name (node),
1730 inline_summary (node)->size);
1731 fprintf (dump_file,
1732 " Called once from %s %i insns.\n",
1733 cgraph_node_name (node->callers->caller),
1734 inline_summary (node->callers->caller)->size);
1737 inline_call (node->callers, true, NULL, NULL, true);
1738 if (dump_file)
1739 fprintf (dump_file,
1740 " Inlined into %s which now has %i size\n",
1741 cgraph_node_name (caller),
1742 inline_summary (caller)->size);
1748 /* Free ipa-prop structures if they are no longer needed. */
1749 if (optimize)
1750 ipa_free_all_structures_after_iinln ();
1752 if (dump_file)
1753 fprintf (dump_file,
1754 "\nInlined %i calls, eliminated %i functions\n\n",
1755 ncalls_inlined, nfunctions_inlined);
1757 if (dump_file)
1758 dump_inline_summaries (dump_file);
1759 /* In WPA we use inline summaries for partitioning process. */
1760 if (!flag_wpa)
1761 inline_free_summary ();
1762 return 0;
1765 /* Inline always-inline function calls in NODE. */
1767 static bool
1768 inline_always_inline_functions (struct cgraph_node *node)
1770 struct cgraph_edge *e;
1771 bool inlined = false;
1773 for (e = node->callees; e; e = e->next_callee)
1775 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1776 if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1777 continue;
1779 if (cgraph_edge_recursive_p (e))
1781 if (dump_file)
1782 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1783 cgraph_node_name (e->callee));
1784 e->inline_failed = CIF_RECURSIVE_INLINING;
1785 continue;
1788 if (!can_early_inline_edge_p (e))
1789 continue;
1791 if (dump_file)
1792 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1793 xstrdup (cgraph_node_name (e->callee)),
1794 xstrdup (cgraph_node_name (e->caller)));
1795 inline_call (e, true, NULL, NULL, false);
1796 inlined = true;
1798 if (inlined)
1799 inline_update_overall_summary (node);
1801 return inlined;
1804 /* Decide on the inlining. We do so in the topological order to avoid
1805 expenses on updating data structures. */
1807 static bool
1808 early_inline_small_functions (struct cgraph_node *node)
1810 struct cgraph_edge *e;
1811 bool inlined = false;
1813 for (e = node->callees; e; e = e->next_callee)
1815 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1816 if (!inline_summary (callee)->inlinable
1817 || !e->inline_failed)
1818 continue;
1820 /* Do not consider functions not declared inline. */
1821 if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
1822 && !flag_inline_small_functions
1823 && !flag_inline_functions)
1824 continue;
1826 if (dump_file)
1827 fprintf (dump_file, "Considering inline candidate %s.\n",
1828 cgraph_node_name (callee));
1830 if (!can_early_inline_edge_p (e))
1831 continue;
1833 if (cgraph_edge_recursive_p (e))
1835 if (dump_file)
1836 fprintf (dump_file, " Not inlining: recursive call.\n");
1837 continue;
1840 if (!want_early_inline_function_p (e))
1841 continue;
1843 if (dump_file)
1844 fprintf (dump_file, " Inlining %s into %s.\n",
1845 xstrdup (cgraph_node_name (callee)),
1846 xstrdup (cgraph_node_name (e->caller)));
1847 inline_call (e, true, NULL, NULL, true);
1848 inlined = true;
1851 return inlined;
1854 /* Do inlining of small functions. Doing so early helps profiling and other
1855 passes to be somewhat more effective and avoids some code duplication in
1856 later real inlining pass for testcases with very many function calls. */
1857 static unsigned int
1858 early_inliner (void)
1860 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1861 struct cgraph_edge *edge;
1862 unsigned int todo = 0;
1863 int iterations = 0;
1864 bool inlined = false;
1866 if (seen_error ())
1867 return 0;
1869 /* Do nothing if datastructures for ipa-inliner are already computed. This
1870 happens when some pass decides to construct new function and
1871 cgraph_add_new_function calls lowering passes and early optimization on
1872 it. This may confuse ourself when early inliner decide to inline call to
1873 function clone, because function clones don't have parameter list in
1874 ipa-prop matching their signature. */
1875 if (ipa_node_params_vector)
1876 return 0;
1878 #ifdef ENABLE_CHECKING
1879 verify_cgraph_node (node);
1880 #endif
1882 /* Even when not optimizing or not inlining inline always-inline
1883 functions. */
1884 inlined = inline_always_inline_functions (node);
1886 if (!optimize
1887 || flag_no_inline
1888 || !flag_early_inlining
1889 /* Never inline regular functions into always-inline functions
1890 during incremental inlining. This sucks as functions calling
1891 always inline functions will get less optimized, but at the
1892 same time inlining of functions calling always inline
1893 function into an always inline function might introduce
1894 cycles of edges to be always inlined in the callgraph.
1896 We might want to be smarter and just avoid this type of inlining. */
1897 || DECL_DISREGARD_INLINE_LIMITS (node->symbol.decl))
1899 else if (lookup_attribute ("flatten",
1900 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
1902 /* When the function is marked to be flattened, recursively inline
1903 all calls in it. */
1904 if (dump_file)
1905 fprintf (dump_file,
1906 "Flattening %s\n", cgraph_node_name (node));
1907 flatten_function (node, true);
1908 inlined = true;
1910 else
1912 /* We iterate incremental inlining to get trivial cases of indirect
1913 inlining. */
1914 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
1915 && early_inline_small_functions (node))
1917 timevar_push (TV_INTEGRATION);
1918 todo |= optimize_inline_calls (current_function_decl);
1920 /* Technically we ought to recompute inline parameters so the new
1921 iteration of early inliner works as expected. We however have
1922 values approximately right and thus we only need to update edge
1923 info that might be cleared out for newly discovered edges. */
1924 for (edge = node->callees; edge; edge = edge->next_callee)
1926 struct inline_edge_summary *es = inline_edge_summary (edge);
1927 es->call_stmt_size
1928 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
1929 es->call_stmt_time
1930 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
1931 if (edge->callee->symbol.decl
1932 && !gimple_check_call_matching_types (edge->call_stmt,
1933 edge->callee->symbol.decl))
1934 edge->call_stmt_cannot_inline_p = true;
1936 timevar_pop (TV_INTEGRATION);
1937 iterations++;
1938 inlined = false;
1940 if (dump_file)
1941 fprintf (dump_file, "Iterations: %i\n", iterations);
1944 if (inlined)
1946 timevar_push (TV_INTEGRATION);
1947 todo |= optimize_inline_calls (current_function_decl);
1948 timevar_pop (TV_INTEGRATION);
1951 cfun->always_inline_functions_inlined = true;
1953 return todo;
1956 struct gimple_opt_pass pass_early_inline =
1959 GIMPLE_PASS,
1960 "einline", /* name */
1961 NULL, /* gate */
1962 early_inliner, /* execute */
1963 NULL, /* sub */
1964 NULL, /* next */
1965 0, /* static_pass_number */
1966 TV_EARLY_INLINING, /* tv_id */
1967 PROP_ssa, /* properties_required */
1968 0, /* properties_provided */
1969 0, /* properties_destroyed */
1970 0, /* todo_flags_start */
1971 0 /* todo_flags_finish */
1976 /* When to run IPA inlining. Inlining of always-inline functions
1977 happens during early inlining.
1979 Enable inlining unconditoinally at -flto. We need size estimates to
1980 drive partitioning. */
1982 static bool
1983 gate_ipa_inline (void)
1985 return optimize || flag_lto || flag_wpa;
1988 struct ipa_opt_pass_d pass_ipa_inline =
1991 IPA_PASS,
1992 "inline", /* name */
1993 gate_ipa_inline, /* gate */
1994 ipa_inline, /* execute */
1995 NULL, /* sub */
1996 NULL, /* next */
1997 0, /* static_pass_number */
1998 TV_IPA_INLINING, /* tv_id */
1999 0, /* properties_required */
2000 0, /* properties_provided */
2001 0, /* properties_destroyed */
2002 TODO_remove_functions, /* todo_flags_finish */
2003 TODO_dump_symtab
2004 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
2006 inline_generate_summary, /* generate_summary */
2007 inline_write_summary, /* write_summary */
2008 inline_read_summary, /* read_summary */
2009 NULL, /* write_optimization_summary */
2010 NULL, /* read_optimization_summary */
2011 NULL, /* stmt_fixup */
2012 0, /* TODOs */
2013 inline_transform, /* function_transform */
2014 NULL, /* variable_transform */