2003-11-27 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / postreload.c
blobb55c4476f2dbdf49aab245431becd0d6bfc1e15c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
48 static int reload_cse_noop_set_p (rtx);
49 static void reload_cse_simplify (rtx, rtx);
50 static void reload_cse_regs_1 (rtx);
51 static int reload_cse_simplify_set (rtx, rtx);
52 static int reload_cse_simplify_operands (rtx, rtx);
54 static void reload_combine (void);
55 static void reload_combine_note_use (rtx *, rtx);
56 static void reload_combine_note_store (rtx, rtx, void *);
58 static void reload_cse_move2add (rtx);
59 static void move2add_note_store (rtx, rtx, void *);
61 /* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
63 void
64 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
66 reload_cse_regs_1 (first);
67 reload_combine ();
68 reload_cse_move2add (first);
69 if (flag_expensive_optimizations)
70 reload_cse_regs_1 (first);
73 /* See whether a single set SET is a noop. */
74 static int
75 reload_cse_noop_set_p (rtx set)
77 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
78 return 0;
80 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83 /* Try to simplify INSN. */
84 static void
85 reload_cse_simplify (rtx insn, rtx testreg)
87 rtx body = PATTERN (insn);
89 if (GET_CODE (body) == SET)
91 int count = 0;
93 /* Simplify even if we may think it is a no-op.
94 We may think a memory load of a value smaller than WORD_SIZE
95 is redundant because we haven't taken into account possible
96 implicit extension. reload_cse_simplify_set() will bring
97 this out, so it's safer to simplify before we delete. */
98 count += reload_cse_simplify_set (body, insn);
100 if (!count && reload_cse_noop_set_p (body))
102 rtx value = SET_DEST (body);
103 if (REG_P (value)
104 && ! REG_FUNCTION_VALUE_P (value))
105 value = 0;
106 delete_insn_and_edges (insn);
107 return;
110 if (count > 0)
111 apply_change_group ();
112 else
113 reload_cse_simplify_operands (insn, testreg);
115 else if (GET_CODE (body) == PARALLEL)
117 int i;
118 int count = 0;
119 rtx value = NULL_RTX;
121 /* If every action in a PARALLEL is a noop, we can delete
122 the entire PARALLEL. */
123 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
125 rtx part = XVECEXP (body, 0, i);
126 if (GET_CODE (part) == SET)
128 if (! reload_cse_noop_set_p (part))
129 break;
130 if (REG_P (SET_DEST (part))
131 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
133 if (value)
134 break;
135 value = SET_DEST (part);
138 else if (GET_CODE (part) != CLOBBER)
139 break;
142 if (i < 0)
144 delete_insn_and_edges (insn);
145 /* We're done with this insn. */
146 return;
149 /* It's not a no-op, but we can try to simplify it. */
150 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
151 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
152 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
154 if (count > 0)
155 apply_change_group ();
156 else
157 reload_cse_simplify_operands (insn, testreg);
161 /* Do a very simple CSE pass over the hard registers.
163 This function detects no-op moves where we happened to assign two
164 different pseudo-registers to the same hard register, and then
165 copied one to the other. Reload will generate a useless
166 instruction copying a register to itself.
168 This function also detects cases where we load a value from memory
169 into two different registers, and (if memory is more expensive than
170 registers) changes it to simply copy the first register into the
171 second register.
173 Another optimization is performed that scans the operands of each
174 instruction to see whether the value is already available in a
175 hard register. It then replaces the operand with the hard register
176 if possible, much like an optional reload would. */
178 static void
179 reload_cse_regs_1 (rtx first)
181 rtx insn;
182 rtx testreg = gen_rtx_REG (VOIDmode, -1);
184 cselib_init ();
185 init_alias_analysis ();
187 for (insn = first; insn; insn = NEXT_INSN (insn))
189 if (INSN_P (insn))
190 reload_cse_simplify (insn, testreg);
192 cselib_process_insn (insn);
195 /* Clean up. */
196 end_alias_analysis ();
197 cselib_finish ();
200 /* Try to simplify a single SET instruction. SET is the set pattern.
201 INSN is the instruction it came from.
202 This function only handles one case: if we set a register to a value
203 which is not a register, we try to find that value in some other register
204 and change the set into a register copy. */
206 static int
207 reload_cse_simplify_set (rtx set, rtx insn)
209 int did_change = 0;
210 int dreg;
211 rtx src;
212 enum reg_class dclass;
213 int old_cost;
214 cselib_val *val;
215 struct elt_loc_list *l;
216 #ifdef LOAD_EXTEND_OP
217 enum rtx_code extend_op = NIL;
218 #endif
220 dreg = true_regnum (SET_DEST (set));
221 if (dreg < 0)
222 return 0;
224 src = SET_SRC (set);
225 if (side_effects_p (src) || true_regnum (src) >= 0)
226 return 0;
228 dclass = REGNO_REG_CLASS (dreg);
230 #ifdef LOAD_EXTEND_OP
231 /* When replacing a memory with a register, we need to honor assumptions
232 that combine made wrt the contents of sign bits. We'll do this by
233 generating an extend instruction instead of a reg->reg copy. Thus
234 the destination must be a register that we can widen. */
235 if (GET_CODE (src) == MEM
236 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
237 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
238 && GET_CODE (SET_DEST (set)) != REG)
239 return 0;
240 #endif
242 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
243 if (! val)
244 return 0;
246 /* If memory loads are cheaper than register copies, don't change them. */
247 if (GET_CODE (src) == MEM)
248 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
249 else if (GET_CODE (src) == REG)
250 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
251 REGNO_REG_CLASS (REGNO (src)), dclass);
252 else
253 old_cost = rtx_cost (src, SET);
255 for (l = val->locs; l; l = l->next)
257 rtx this_rtx = l->loc;
258 int this_cost;
260 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
262 #ifdef LOAD_EXTEND_OP
263 if (extend_op != NIL)
265 HOST_WIDE_INT this_val;
267 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
268 constants, such as SYMBOL_REF, cannot be extended. */
269 if (GET_CODE (this_rtx) != CONST_INT)
270 continue;
272 this_val = INTVAL (this_rtx);
273 switch (extend_op)
275 case ZERO_EXTEND:
276 this_val &= GET_MODE_MASK (GET_MODE (src));
277 break;
278 case SIGN_EXTEND:
279 /* ??? In theory we're already extended. */
280 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
281 break;
282 default:
283 abort ();
285 this_rtx = GEN_INT (this_val);
287 #endif
288 this_cost = rtx_cost (this_rtx, SET);
290 else if (GET_CODE (this_rtx) == REG)
292 #ifdef LOAD_EXTEND_OP
293 if (extend_op != NIL)
295 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
296 this_cost = rtx_cost (this_rtx, SET);
298 else
299 #endif
300 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
301 REGNO_REG_CLASS (REGNO (this_rtx)),
302 dclass);
304 else
305 continue;
307 /* If equal costs, prefer registers over anything else. That
308 tends to lead to smaller instructions on some machines. */
309 if (this_cost < old_cost
310 || (this_cost == old_cost
311 && GET_CODE (this_rtx) == REG
312 && GET_CODE (SET_SRC (set)) != REG))
314 #ifdef LOAD_EXTEND_OP
315 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
316 && extend_op != NIL
317 #ifdef CANNOT_CHANGE_MODE_CLASS
318 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
319 word_mode,
320 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
321 #endif
324 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
325 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
326 validate_change (insn, &SET_DEST (set), wide_dest, 1);
328 #endif
330 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
331 old_cost = this_cost, did_change = 1;
335 return did_change;
338 /* Try to replace operands in INSN with equivalent values that are already
339 in registers. This can be viewed as optional reloading.
341 For each non-register operand in the insn, see if any hard regs are
342 known to be equivalent to that operand. Record the alternatives which
343 can accept these hard registers. Among all alternatives, select the
344 ones which are better or equal to the one currently matching, where
345 "better" is in terms of '?' and '!' constraints. Among the remaining
346 alternatives, select the one which replaces most operands with
347 hard registers. */
349 static int
350 reload_cse_simplify_operands (rtx insn, rtx testreg)
352 int i, j;
354 /* For each operand, all registers that are equivalent to it. */
355 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
357 const char *constraints[MAX_RECOG_OPERANDS];
359 /* Vector recording how bad an alternative is. */
360 int *alternative_reject;
361 /* Vector recording how many registers can be introduced by choosing
362 this alternative. */
363 int *alternative_nregs;
364 /* Array of vectors recording, for each operand and each alternative,
365 which hard register to substitute, or -1 if the operand should be
366 left as it is. */
367 int *op_alt_regno[MAX_RECOG_OPERANDS];
368 /* Array of alternatives, sorted in order of decreasing desirability. */
369 int *alternative_order;
371 extract_insn (insn);
373 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
374 return 0;
376 /* Figure out which alternative currently matches. */
377 if (! constrain_operands (1))
378 fatal_insn_not_found (insn);
380 alternative_reject = alloca (recog_data.n_alternatives * sizeof (int));
381 alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int));
382 alternative_order = alloca (recog_data.n_alternatives * sizeof (int));
383 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
384 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
386 /* For each operand, find out which regs are equivalent. */
387 for (i = 0; i < recog_data.n_operands; i++)
389 cselib_val *v;
390 struct elt_loc_list *l;
392 CLEAR_HARD_REG_SET (equiv_regs[i]);
394 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
395 right, so avoid the problem here. Likewise if we have a constant
396 and the insn pattern doesn't tell us the mode we need. */
397 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
398 || (CONSTANT_P (recog_data.operand[i])
399 && recog_data.operand_mode[i] == VOIDmode))
400 continue;
402 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
403 if (! v)
404 continue;
406 for (l = v->locs; l; l = l->next)
407 if (GET_CODE (l->loc) == REG)
408 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
411 for (i = 0; i < recog_data.n_operands; i++)
413 enum machine_mode mode;
414 int regno;
415 const char *p;
417 op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int));
418 for (j = 0; j < recog_data.n_alternatives; j++)
419 op_alt_regno[i][j] = -1;
421 p = constraints[i] = recog_data.constraints[i];
422 mode = recog_data.operand_mode[i];
424 /* Add the reject values for each alternative given by the constraints
425 for this operand. */
426 j = 0;
427 while (*p != '\0')
429 char c = *p++;
430 if (c == ',')
431 j++;
432 else if (c == '?')
433 alternative_reject[j] += 3;
434 else if (c == '!')
435 alternative_reject[j] += 300;
438 /* We won't change operands which are already registers. We
439 also don't want to modify output operands. */
440 regno = true_regnum (recog_data.operand[i]);
441 if (regno >= 0
442 || constraints[i][0] == '='
443 || constraints[i][0] == '+')
444 continue;
446 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
448 int class = (int) NO_REGS;
450 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
451 continue;
453 REGNO (testreg) = regno;
454 PUT_MODE (testreg, mode);
456 /* We found a register equal to this operand. Now look for all
457 alternatives that can accept this register and have not been
458 assigned a register they can use yet. */
459 j = 0;
460 p = constraints[i];
461 for (;;)
463 char c = *p;
465 switch (c)
467 case '=': case '+': case '?':
468 case '#': case '&': case '!':
469 case '*': case '%':
470 case '0': case '1': case '2': case '3': case '4':
471 case '5': case '6': case '7': case '8': case '9':
472 case 'm': case '<': case '>': case 'V': case 'o':
473 case 'E': case 'F': case 'G': case 'H':
474 case 's': case 'i': case 'n':
475 case 'I': case 'J': case 'K': case 'L':
476 case 'M': case 'N': case 'O': case 'P':
477 case 'p': case 'X':
478 /* These don't say anything we care about. */
479 break;
481 case 'g': case 'r':
482 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
483 break;
485 default:
486 class
487 = (reg_class_subunion
488 [(int) class]
489 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
490 break;
492 case ',': case '\0':
493 /* See if REGNO fits this alternative, and set it up as the
494 replacement register if we don't have one for this
495 alternative yet and the operand being replaced is not
496 a cheap CONST_INT. */
497 if (op_alt_regno[i][j] == -1
498 && reg_fits_class_p (testreg, class, 0, mode)
499 && (GET_CODE (recog_data.operand[i]) != CONST_INT
500 || (rtx_cost (recog_data.operand[i], SET)
501 > rtx_cost (testreg, SET))))
503 alternative_nregs[j]++;
504 op_alt_regno[i][j] = regno;
506 j++;
507 break;
509 p += CONSTRAINT_LEN (c, p);
511 if (c == '\0')
512 break;
517 /* Record all alternatives which are better or equal to the currently
518 matching one in the alternative_order array. */
519 for (i = j = 0; i < recog_data.n_alternatives; i++)
520 if (alternative_reject[i] <= alternative_reject[which_alternative])
521 alternative_order[j++] = i;
522 recog_data.n_alternatives = j;
524 /* Sort it. Given a small number of alternatives, a dumb algorithm
525 won't hurt too much. */
526 for (i = 0; i < recog_data.n_alternatives - 1; i++)
528 int best = i;
529 int best_reject = alternative_reject[alternative_order[i]];
530 int best_nregs = alternative_nregs[alternative_order[i]];
531 int tmp;
533 for (j = i + 1; j < recog_data.n_alternatives; j++)
535 int this_reject = alternative_reject[alternative_order[j]];
536 int this_nregs = alternative_nregs[alternative_order[j]];
538 if (this_reject < best_reject
539 || (this_reject == best_reject && this_nregs < best_nregs))
541 best = j;
542 best_reject = this_reject;
543 best_nregs = this_nregs;
547 tmp = alternative_order[best];
548 alternative_order[best] = alternative_order[i];
549 alternative_order[i] = tmp;
552 /* Substitute the operands as determined by op_alt_regno for the best
553 alternative. */
554 j = alternative_order[0];
556 for (i = 0; i < recog_data.n_operands; i++)
558 enum machine_mode mode = recog_data.operand_mode[i];
559 if (op_alt_regno[i][j] == -1)
560 continue;
562 validate_change (insn, recog_data.operand_loc[i],
563 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
566 for (i = recog_data.n_dups - 1; i >= 0; i--)
568 int op = recog_data.dup_num[i];
569 enum machine_mode mode = recog_data.operand_mode[op];
571 if (op_alt_regno[op][j] == -1)
572 continue;
574 validate_change (insn, recog_data.dup_loc[i],
575 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
578 return apply_change_group ();
581 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
582 addressing now.
583 This code might also be useful when reload gave up on reg+reg addressing
584 because of clashes between the return register and INDEX_REG_CLASS. */
586 /* The maximum number of uses of a register we can keep track of to
587 replace them with reg+reg addressing. */
588 #define RELOAD_COMBINE_MAX_USES 6
590 /* INSN is the insn where a register has ben used, and USEP points to the
591 location of the register within the rtl. */
592 struct reg_use { rtx insn, *usep; };
594 /* If the register is used in some unknown fashion, USE_INDEX is negative.
595 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
596 indicates where it becomes live again.
597 Otherwise, USE_INDEX is the index of the last encountered use of the
598 register (which is first among these we have seen since we scan backwards),
599 OFFSET contains the constant offset that is added to the register in
600 all encountered uses, and USE_RUID indicates the first encountered, i.e.
601 last, of these uses.
602 STORE_RUID is always meaningful if we only want to use a value in a
603 register in a different place: it denotes the next insn in the insn
604 stream (i.e. the last encountered) that sets or clobbers the register. */
605 static struct
607 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
608 int use_index;
609 rtx offset;
610 int store_ruid;
611 int use_ruid;
612 } reg_state[FIRST_PSEUDO_REGISTER];
614 /* Reverse linear uid. This is increased in reload_combine while scanning
615 the instructions from last to first. It is used to set last_label_ruid
616 and the store_ruid / use_ruid fields in reg_state. */
617 static int reload_combine_ruid;
619 #define LABEL_LIVE(LABEL) \
620 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
622 static void
623 reload_combine (void)
625 rtx insn, set;
626 int first_index_reg = -1;
627 int last_index_reg = 0;
628 int i;
629 basic_block bb;
630 unsigned int r;
631 int last_label_ruid;
632 int min_labelno, n_labels;
633 HARD_REG_SET ever_live_at_start, *label_live;
635 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
636 reload has already used it where appropriate, so there is no use in
637 trying to generate it now. */
638 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
639 return;
641 /* To avoid wasting too much time later searching for an index register,
642 determine the minimum and maximum index register numbers. */
643 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
644 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
646 if (first_index_reg == -1)
647 first_index_reg = r;
649 last_index_reg = r;
652 /* If no index register is available, we can quit now. */
653 if (first_index_reg == -1)
654 return;
656 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
657 information is a bit fuzzy immediately after reload, but it's
658 still good enough to determine which registers are live at a jump
659 destination. */
660 min_labelno = get_first_label_num ();
661 n_labels = max_label_num () - min_labelno;
662 label_live = xmalloc (n_labels * sizeof (HARD_REG_SET));
663 CLEAR_HARD_REG_SET (ever_live_at_start);
665 FOR_EACH_BB_REVERSE (bb)
667 insn = bb->head;
668 if (GET_CODE (insn) == CODE_LABEL)
670 HARD_REG_SET live;
672 REG_SET_TO_HARD_REG_SET (live,
673 bb->global_live_at_start);
674 compute_use_by_pseudos (&live,
675 bb->global_live_at_start);
676 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
677 IOR_HARD_REG_SET (ever_live_at_start, live);
681 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
682 last_label_ruid = reload_combine_ruid = 0;
683 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
685 reg_state[r].store_ruid = reload_combine_ruid;
686 if (fixed_regs[r])
687 reg_state[r].use_index = -1;
688 else
689 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
692 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
694 rtx note;
696 /* We cannot do our optimization across labels. Invalidating all the use
697 information we have would be costly, so we just note where the label
698 is and then later disable any optimization that would cross it. */
699 if (GET_CODE (insn) == CODE_LABEL)
700 last_label_ruid = reload_combine_ruid;
701 else if (GET_CODE (insn) == BARRIER)
702 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
703 if (! fixed_regs[r])
704 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
706 if (! INSN_P (insn))
707 continue;
709 reload_combine_ruid++;
711 /* Look for (set (REGX) (CONST_INT))
712 (set (REGX) (PLUS (REGX) (REGY)))
714 ... (MEM (REGX)) ...
715 and convert it to
716 (set (REGZ) (CONST_INT))
718 ... (MEM (PLUS (REGZ) (REGY)))... .
720 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
721 and that we know all uses of REGX before it dies.
722 Also, explicitly check that REGX != REGY; our life information
723 does not yet show whether REGY changes in this insn. */
724 set = single_set (insn);
725 if (set != NULL_RTX
726 && GET_CODE (SET_DEST (set)) == REG
727 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
728 GET_MODE (SET_DEST (set)))
729 == 1)
730 && GET_CODE (SET_SRC (set)) == PLUS
731 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
732 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
733 && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
734 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
736 rtx reg = SET_DEST (set);
737 rtx plus = SET_SRC (set);
738 rtx base = XEXP (plus, 1);
739 rtx prev = prev_nonnote_insn (insn);
740 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
741 unsigned int regno = REGNO (reg);
742 rtx const_reg = NULL_RTX;
743 rtx reg_sum = NULL_RTX;
745 /* Now, we need an index register.
746 We'll set index_reg to this index register, const_reg to the
747 register that is to be loaded with the constant
748 (denoted as REGZ in the substitution illustration above),
749 and reg_sum to the register-register that we want to use to
750 substitute uses of REG (typically in MEMs) with.
751 First check REG and BASE for being index registers;
752 we can use them even if they are not dead. */
753 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
754 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
755 REGNO (base)))
757 const_reg = reg;
758 reg_sum = plus;
760 else
762 /* Otherwise, look for a free index register. Since we have
763 checked above that neither REG nor BASE are index registers,
764 if we find anything at all, it will be different from these
765 two registers. */
766 for (i = first_index_reg; i <= last_index_reg; i++)
768 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
770 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
771 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
772 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
774 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
776 const_reg = index_reg;
777 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
778 break;
783 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
784 (REGY), i.e. BASE, is not clobbered before the last use we'll
785 create. */
786 if (prev_set != 0
787 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
788 && rtx_equal_p (SET_DEST (prev_set), reg)
789 && reg_state[regno].use_index >= 0
790 && (reg_state[REGNO (base)].store_ruid
791 <= reg_state[regno].use_ruid)
792 && reg_sum != 0)
794 int i;
796 /* Change destination register and, if necessary, the
797 constant value in PREV, the constant loading instruction. */
798 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
799 if (reg_state[regno].offset != const0_rtx)
800 validate_change (prev,
801 &SET_SRC (prev_set),
802 GEN_INT (INTVAL (SET_SRC (prev_set))
803 + INTVAL (reg_state[regno].offset)),
806 /* Now for every use of REG that we have recorded, replace REG
807 with REG_SUM. */
808 for (i = reg_state[regno].use_index;
809 i < RELOAD_COMBINE_MAX_USES; i++)
810 validate_change (reg_state[regno].reg_use[i].insn,
811 reg_state[regno].reg_use[i].usep,
812 /* Each change must have its own
813 replacement. */
814 copy_rtx (reg_sum), 1);
816 if (apply_change_group ())
818 rtx *np;
820 /* Delete the reg-reg addition. */
821 delete_insn (insn);
823 if (reg_state[regno].offset != const0_rtx)
824 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
825 are now invalid. */
826 for (np = &REG_NOTES (prev); *np;)
828 if (REG_NOTE_KIND (*np) == REG_EQUAL
829 || REG_NOTE_KIND (*np) == REG_EQUIV)
830 *np = XEXP (*np, 1);
831 else
832 np = &XEXP (*np, 1);
835 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
836 reg_state[REGNO (const_reg)].store_ruid
837 = reload_combine_ruid;
838 continue;
843 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
845 if (GET_CODE (insn) == CALL_INSN)
847 rtx link;
849 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
850 if (call_used_regs[r])
852 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
853 reg_state[r].store_ruid = reload_combine_ruid;
856 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
857 link = XEXP (link, 1))
859 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
860 if (GET_CODE (usage_rtx) == REG)
862 unsigned int i;
863 unsigned int start_reg = REGNO (usage_rtx);
864 unsigned int num_regs =
865 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
866 unsigned int end_reg = start_reg + num_regs - 1;
867 for (i = start_reg; i <= end_reg; i++)
868 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
870 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
871 reg_state[i].store_ruid = reload_combine_ruid;
873 else
874 reg_state[i].use_index = -1;
879 else if (GET_CODE (insn) == JUMP_INSN
880 && GET_CODE (PATTERN (insn)) != RETURN)
882 /* Non-spill registers might be used at the call destination in
883 some unknown fashion, so we have to mark the unknown use. */
884 HARD_REG_SET *live;
886 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
887 && JUMP_LABEL (insn))
888 live = &LABEL_LIVE (JUMP_LABEL (insn));
889 else
890 live = &ever_live_at_start;
892 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
893 if (TEST_HARD_REG_BIT (*live, i))
894 reg_state[i].use_index = -1;
897 reload_combine_note_use (&PATTERN (insn), insn);
898 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
900 if (REG_NOTE_KIND (note) == REG_INC
901 && GET_CODE (XEXP (note, 0)) == REG)
903 int regno = REGNO (XEXP (note, 0));
905 reg_state[regno].store_ruid = reload_combine_ruid;
906 reg_state[regno].use_index = -1;
911 free (label_live);
914 /* Check if DST is a register or a subreg of a register; if it is,
915 update reg_state[regno].store_ruid and reg_state[regno].use_index
916 accordingly. Called via note_stores from reload_combine. */
918 static void
919 reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
921 int regno = 0;
922 int i;
923 enum machine_mode mode = GET_MODE (dst);
925 if (GET_CODE (dst) == SUBREG)
927 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
928 GET_MODE (SUBREG_REG (dst)),
929 SUBREG_BYTE (dst),
930 GET_MODE (dst));
931 dst = SUBREG_REG (dst);
933 if (GET_CODE (dst) != REG)
934 return;
935 regno += REGNO (dst);
937 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
938 careful with registers / register parts that are not full words.
940 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
941 if (GET_CODE (set) != SET
942 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
943 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
944 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
946 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
948 reg_state[i].use_index = -1;
949 reg_state[i].store_ruid = reload_combine_ruid;
952 else
954 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
956 reg_state[i].store_ruid = reload_combine_ruid;
957 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
962 /* XP points to a piece of rtl that has to be checked for any uses of
963 registers.
964 *XP is the pattern of INSN, or a part of it.
965 Called from reload_combine, and recursively by itself. */
966 static void
967 reload_combine_note_use (rtx *xp, rtx insn)
969 rtx x = *xp;
970 enum rtx_code code = x->code;
971 const char *fmt;
972 int i, j;
973 rtx offset = const0_rtx; /* For the REG case below. */
975 switch (code)
977 case SET:
978 if (GET_CODE (SET_DEST (x)) == REG)
980 reload_combine_note_use (&SET_SRC (x), insn);
981 return;
983 break;
985 case USE:
986 /* If this is the USE of a return value, we can't change it. */
987 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
989 /* Mark the return register as used in an unknown fashion. */
990 rtx reg = XEXP (x, 0);
991 int regno = REGNO (reg);
992 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
994 while (--nregs >= 0)
995 reg_state[regno + nregs].use_index = -1;
996 return;
998 break;
1000 case CLOBBER:
1001 if (GET_CODE (SET_DEST (x)) == REG)
1003 /* No spurious CLOBBERs of pseudo registers may remain. */
1004 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
1005 abort ();
1006 return;
1008 break;
1010 case PLUS:
1011 /* We are interested in (plus (reg) (const_int)) . */
1012 if (GET_CODE (XEXP (x, 0)) != REG
1013 || GET_CODE (XEXP (x, 1)) != CONST_INT)
1014 break;
1015 offset = XEXP (x, 1);
1016 x = XEXP (x, 0);
1017 /* Fall through. */
1018 case REG:
1020 int regno = REGNO (x);
1021 int use_index;
1022 int nregs;
1024 /* No spurious USEs of pseudo registers may remain. */
1025 if (regno >= FIRST_PSEUDO_REGISTER)
1026 abort ();
1028 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
1030 /* We can't substitute into multi-hard-reg uses. */
1031 if (nregs > 1)
1033 while (--nregs >= 0)
1034 reg_state[regno + nregs].use_index = -1;
1035 return;
1038 /* If this register is already used in some unknown fashion, we
1039 can't do anything.
1040 If we decrement the index from zero to -1, we can't store more
1041 uses, so this register becomes used in an unknown fashion. */
1042 use_index = --reg_state[regno].use_index;
1043 if (use_index < 0)
1044 return;
1046 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1048 /* We have found another use for a register that is already
1049 used later. Check if the offsets match; if not, mark the
1050 register as used in an unknown fashion. */
1051 if (! rtx_equal_p (offset, reg_state[regno].offset))
1053 reg_state[regno].use_index = -1;
1054 return;
1057 else
1059 /* This is the first use of this register we have seen since we
1060 marked it as dead. */
1061 reg_state[regno].offset = offset;
1062 reg_state[regno].use_ruid = reload_combine_ruid;
1064 reg_state[regno].reg_use[use_index].insn = insn;
1065 reg_state[regno].reg_use[use_index].usep = xp;
1066 return;
1069 default:
1070 break;
1073 /* Recursively process the components of X. */
1074 fmt = GET_RTX_FORMAT (code);
1075 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1077 if (fmt[i] == 'e')
1078 reload_combine_note_use (&XEXP (x, i), insn);
1079 else if (fmt[i] == 'E')
1081 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1082 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1087 /* See if we can reduce the cost of a constant by replacing a move
1088 with an add. We track situations in which a register is set to a
1089 constant or to a register plus a constant. */
1090 /* We cannot do our optimization across labels. Invalidating all the
1091 information about register contents we have would be costly, so we
1092 use move2add_last_label_luid to note where the label is and then
1093 later disable any optimization that would cross it.
1094 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1095 reg_set_luid[n] is greater than move2add_last_label_luid. */
1096 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1098 /* If reg_base_reg[n] is negative, register n has been set to
1099 reg_offset[n] in mode reg_mode[n] .
1100 If reg_base_reg[n] is non-negative, register n has been set to the
1101 sum of reg_offset[n] and the value of register reg_base_reg[n]
1102 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1103 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1104 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1105 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1107 /* move2add_luid is linearly increased while scanning the instructions
1108 from first to last. It is used to set reg_set_luid in
1109 reload_cse_move2add and move2add_note_store. */
1110 static int move2add_luid;
1112 /* move2add_last_label_luid is set whenever a label is found. Labels
1113 invalidate all previously collected reg_offset data. */
1114 static int move2add_last_label_luid;
1116 /* ??? We don't know how zero / sign extension is handled, hence we
1117 can't go from a narrower to a wider mode. */
1118 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1119 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1120 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1121 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1122 GET_MODE_BITSIZE (INMODE))))
1124 static void
1125 reload_cse_move2add (rtx first)
1127 int i;
1128 rtx insn;
1130 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1131 reg_set_luid[i] = 0;
1133 move2add_last_label_luid = 0;
1134 move2add_luid = 2;
1135 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1137 rtx pat, note;
1139 if (GET_CODE (insn) == CODE_LABEL)
1141 move2add_last_label_luid = move2add_luid;
1142 /* We're going to increment move2add_luid twice after a
1143 label, so that we can use move2add_last_label_luid + 1 as
1144 the luid for constants. */
1145 move2add_luid++;
1146 continue;
1148 if (! INSN_P (insn))
1149 continue;
1150 pat = PATTERN (insn);
1151 /* For simplicity, we only perform this optimization on
1152 straightforward SETs. */
1153 if (GET_CODE (pat) == SET
1154 && GET_CODE (SET_DEST (pat)) == REG)
1156 rtx reg = SET_DEST (pat);
1157 int regno = REGNO (reg);
1158 rtx src = SET_SRC (pat);
1160 /* Check if we have valid information on the contents of this
1161 register in the mode of REG. */
1162 if (reg_set_luid[regno] > move2add_last_label_luid
1163 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
1165 /* Try to transform (set (REGX) (CONST_INT A))
1167 (set (REGX) (CONST_INT B))
1169 (set (REGX) (CONST_INT A))
1171 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1173 (set (REGX) (CONST_INT A))
1175 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1178 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
1180 rtx new_src =
1181 GEN_INT (trunc_int_for_mode (INTVAL (src)
1182 - reg_offset[regno],
1183 GET_MODE (reg)));
1184 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1185 use (set (reg) (reg)) instead.
1186 We don't delete this insn, nor do we convert it into a
1187 note, to avoid losing register notes or the return
1188 value flag. jump2 already knows how to get rid of
1189 no-op moves. */
1190 if (new_src == const0_rtx)
1192 /* If the constants are different, this is a
1193 truncation, that, if turned into (set (reg)
1194 (reg)), would be discarded. Maybe we should
1195 try a truncMN pattern? */
1196 if (INTVAL (src) == reg_offset [regno])
1197 validate_change (insn, &SET_SRC (pat), reg, 0);
1199 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
1200 && have_add2_insn (reg, new_src))
1202 rtx newpat = gen_rtx_SET (VOIDmode,
1203 reg,
1204 gen_rtx_PLUS (GET_MODE (reg),
1205 reg,
1206 new_src));
1207 validate_change (insn, &PATTERN (insn), newpat, 0);
1209 else
1211 enum machine_mode narrow_mode;
1212 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1213 narrow_mode != GET_MODE (reg);
1214 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1216 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1217 && ((reg_offset[regno]
1218 & ~GET_MODE_MASK (narrow_mode))
1219 == (INTVAL (src)
1220 & ~GET_MODE_MASK (narrow_mode))))
1222 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1223 REGNO (reg));
1224 rtx narrow_src =
1225 GEN_INT (trunc_int_for_mode (INTVAL (src),
1226 narrow_mode));
1227 rtx new_set =
1228 gen_rtx_SET (VOIDmode,
1229 gen_rtx_STRICT_LOW_PART (VOIDmode,
1230 narrow_reg),
1231 narrow_src);
1232 if (validate_change (insn, &PATTERN (insn),
1233 new_set, 0))
1234 break;
1238 reg_set_luid[regno] = move2add_luid;
1239 reg_mode[regno] = GET_MODE (reg);
1240 reg_offset[regno] = INTVAL (src);
1241 continue;
1244 /* Try to transform (set (REGX) (REGY))
1245 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1247 (set (REGX) (REGY))
1248 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1250 (set (REGX) (REGY))
1251 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1253 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1254 else if (GET_CODE (src) == REG
1255 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1256 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1257 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1258 reg_mode[REGNO (src)]))
1260 rtx next = next_nonnote_insn (insn);
1261 rtx set = NULL_RTX;
1262 if (next)
1263 set = single_set (next);
1264 if (set
1265 && SET_DEST (set) == reg
1266 && GET_CODE (SET_SRC (set)) == PLUS
1267 && XEXP (SET_SRC (set), 0) == reg
1268 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1270 rtx src3 = XEXP (SET_SRC (set), 1);
1271 HOST_WIDE_INT added_offset = INTVAL (src3);
1272 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1273 HOST_WIDE_INT regno_offset = reg_offset[regno];
1274 rtx new_src =
1275 GEN_INT (trunc_int_for_mode (added_offset
1276 + base_offset
1277 - regno_offset,
1278 GET_MODE (reg)));
1279 int success = 0;
1281 if (new_src == const0_rtx)
1282 /* See above why we create (set (reg) (reg)) here. */
1283 success
1284 = validate_change (next, &SET_SRC (set), reg, 0);
1285 else if ((rtx_cost (new_src, PLUS)
1286 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
1287 && have_add2_insn (reg, new_src))
1289 rtx newpat = gen_rtx_SET (VOIDmode,
1290 reg,
1291 gen_rtx_PLUS (GET_MODE (reg),
1292 reg,
1293 new_src));
1294 success
1295 = validate_change (next, &PATTERN (next),
1296 newpat, 0);
1298 if (success)
1299 delete_insn (insn);
1300 insn = next;
1301 reg_mode[regno] = GET_MODE (reg);
1302 reg_offset[regno] =
1303 trunc_int_for_mode (added_offset + base_offset,
1304 GET_MODE (reg));
1305 continue;
1311 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1313 if (REG_NOTE_KIND (note) == REG_INC
1314 && GET_CODE (XEXP (note, 0)) == REG)
1316 /* Reset the information about this register. */
1317 int regno = REGNO (XEXP (note, 0));
1318 if (regno < FIRST_PSEUDO_REGISTER)
1319 reg_set_luid[regno] = 0;
1322 note_stores (PATTERN (insn), move2add_note_store, NULL);
1324 /* If INSN is a conditional branch, we try to extract an
1325 implicit set out of it. */
1326 if (any_condjump_p (insn) && onlyjump_p (insn))
1328 rtx cnd = fis_get_condition (insn);
1330 if (cnd != NULL_RTX
1331 && GET_CODE (cnd) == NE
1332 && GET_CODE (XEXP (cnd, 0)) == REG
1333 /* The following two checks, which are also in
1334 move2add_note_store, are intended to reduce the
1335 number of calls to gen_rtx_SET to avoid memory
1336 allocation if possible. */
1337 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1338 && HARD_REGNO_NREGS (REGNO (XEXP (cnd, 0)), GET_MODE (XEXP (cnd, 0))) == 1
1339 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
1341 rtx implicit_set =
1342 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1343 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1347 /* If this is a CALL_INSN, all call used registers are stored with
1348 unknown values. */
1349 if (GET_CODE (insn) == CALL_INSN)
1351 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1353 if (call_used_regs[i])
1354 /* Reset the information about this register. */
1355 reg_set_luid[i] = 0;
1361 /* SET is a SET or CLOBBER that sets DST.
1362 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1363 Called from reload_cse_move2add via note_stores. */
1365 static void
1366 move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
1368 unsigned int regno = 0;
1369 unsigned int i;
1370 enum machine_mode mode = GET_MODE (dst);
1372 if (GET_CODE (dst) == SUBREG)
1374 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1375 GET_MODE (SUBREG_REG (dst)),
1376 SUBREG_BYTE (dst),
1377 GET_MODE (dst));
1378 dst = SUBREG_REG (dst);
1381 /* Some targets do argument pushes without adding REG_INC notes. */
1383 if (GET_CODE (dst) == MEM)
1385 dst = XEXP (dst, 0);
1386 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1387 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1388 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1389 return;
1391 if (GET_CODE (dst) != REG)
1392 return;
1394 regno += REGNO (dst);
1396 if (SCALAR_INT_MODE_P (mode)
1397 && HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
1398 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1399 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
1400 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1402 rtx src = SET_SRC (set);
1403 rtx base_reg;
1404 HOST_WIDE_INT offset;
1405 int base_regno;
1406 /* This may be different from mode, if SET_DEST (set) is a
1407 SUBREG. */
1408 enum machine_mode dst_mode = GET_MODE (dst);
1410 switch (GET_CODE (src))
1412 case PLUS:
1413 if (GET_CODE (XEXP (src, 0)) == REG)
1415 base_reg = XEXP (src, 0);
1417 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
1418 offset = INTVAL (XEXP (src, 1));
1419 else if (GET_CODE (XEXP (src, 1)) == REG
1420 && (reg_set_luid[REGNO (XEXP (src, 1))]
1421 > move2add_last_label_luid)
1422 && (MODES_OK_FOR_MOVE2ADD
1423 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1425 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1426 offset = reg_offset[REGNO (XEXP (src, 1))];
1427 /* Maybe the first register is known to be a
1428 constant. */
1429 else if (reg_set_luid[REGNO (base_reg)]
1430 > move2add_last_label_luid
1431 && (MODES_OK_FOR_MOVE2ADD
1432 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1433 && reg_base_reg[REGNO (base_reg)] < 0)
1435 offset = reg_offset[REGNO (base_reg)];
1436 base_reg = XEXP (src, 1);
1438 else
1439 goto invalidate;
1441 else
1442 goto invalidate;
1444 break;
1447 goto invalidate;
1449 case REG:
1450 base_reg = src;
1451 offset = 0;
1452 break;
1454 case CONST_INT:
1455 /* Start tracking the register as a constant. */
1456 reg_base_reg[regno] = -1;
1457 reg_offset[regno] = INTVAL (SET_SRC (set));
1458 /* We assign the same luid to all registers set to constants. */
1459 reg_set_luid[regno] = move2add_last_label_luid + 1;
1460 reg_mode[regno] = mode;
1461 return;
1463 default:
1464 invalidate:
1465 /* Invalidate the contents of the register. */
1466 reg_set_luid[regno] = 0;
1467 return;
1470 base_regno = REGNO (base_reg);
1471 /* If information about the base register is not valid, set it
1472 up as a new base register, pretending its value is known
1473 starting from the current insn. */
1474 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1476 reg_base_reg[base_regno] = base_regno;
1477 reg_offset[base_regno] = 0;
1478 reg_set_luid[base_regno] = move2add_luid;
1479 reg_mode[base_regno] = mode;
1481 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1482 reg_mode[base_regno]))
1483 goto invalidate;
1485 reg_mode[regno] = mode;
1487 /* Copy base information from our base register. */
1488 reg_set_luid[regno] = reg_set_luid[base_regno];
1489 reg_base_reg[regno] = reg_base_reg[base_regno];
1491 /* Compute the sum of the offsets or constants. */
1492 reg_offset[regno] = trunc_int_for_mode (offset
1493 + reg_offset[base_regno],
1494 dst_mode);
1496 else
1498 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
1500 for (i = regno; i < endregno; i++)
1501 /* Reset the information about this register. */
1502 reg_set_luid[i] = 0;