1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
27 #include "insn-config.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
39 #ifndef REG_MODE_OK_FOR_BASE_P
40 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
43 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
47 struct du_chain
*next_chain
;
48 struct du_chain
*next_use
;
53 unsigned int need_caller_save_reg
:1;
54 unsigned int earlyclobber
:1;
60 terminate_overlapping_read
,
67 static const char * const scan_actions_name
[] =
70 "terminate_overlapping_read",
77 static struct obstack rename_obstack
;
79 static void do_replace
PARAMS ((struct du_chain
*, int));
80 static void scan_rtx_reg
PARAMS ((rtx
, rtx
*, enum reg_class
,
81 enum scan_actions
, enum op_type
, int));
82 static void scan_rtx_address
PARAMS ((rtx
, rtx
*, enum reg_class
,
83 enum scan_actions
, enum machine_mode
));
84 static void scan_rtx
PARAMS ((rtx
, rtx
*, enum reg_class
,
85 enum scan_actions
, enum op_type
, int));
86 static struct du_chain
*build_def_use
PARAMS ((basic_block
));
87 static void dump_def_use_chain
PARAMS ((struct du_chain
*));
88 static void note_sets
PARAMS ((rtx
, rtx
, void *));
89 static void clear_dead_regs
PARAMS ((HARD_REG_SET
*, enum machine_mode
, rtx
));
90 static void merge_overlapping_regs
PARAMS ((basic_block
, HARD_REG_SET
*,
93 /* Called through note_stores from update_life. Find sets of registers, and
94 record them in *DATA (which is actually a HARD_REG_SET *). */
97 note_sets (x
, set
, data
)
99 rtx set ATTRIBUTE_UNUSED
;
102 HARD_REG_SET
*pset
= (HARD_REG_SET
*) data
;
105 if (GET_CODE (x
) != REG
)
108 nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
110 /* There must not be pseudos at this point. */
111 if (regno
+ nregs
> FIRST_PSEUDO_REGISTER
)
115 SET_HARD_REG_BIT (*pset
, regno
+ nregs
);
118 /* Clear all registers from *PSET for which a note of kind KIND can be found
119 in the list NOTES. */
122 clear_dead_regs (pset
, kind
, notes
)
124 enum machine_mode kind
;
128 for (note
= notes
; note
; note
= XEXP (note
, 1))
129 if (REG_NOTE_KIND (note
) == kind
&& REG_P (XEXP (note
, 0)))
131 rtx reg
= XEXP (note
, 0);
132 unsigned int regno
= REGNO (reg
);
133 int nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
135 /* There must not be pseudos at this point. */
136 if (regno
+ nregs
> FIRST_PSEUDO_REGISTER
)
140 CLEAR_HARD_REG_BIT (*pset
, regno
+ nregs
);
144 /* For a def-use chain CHAIN in basic block B, find which registers overlap
145 its lifetime and set the corresponding bits in *PSET. */
148 merge_overlapping_regs (b
, pset
, chain
)
151 struct du_chain
*chain
;
153 struct du_chain
*t
= chain
;
157 REG_SET_TO_HARD_REG_SET (live
, b
->global_live_at_start
);
161 /* Search forward until the next reference to the register to be
163 while (insn
!= t
->insn
)
167 clear_dead_regs (&live
, REG_DEAD
, REG_NOTES (insn
));
168 note_stores (PATTERN (insn
), note_sets
, (void *) &live
);
169 /* Only record currently live regs if we are inside the
172 IOR_HARD_REG_SET (*pset
, live
);
173 clear_dead_regs (&live
, REG_UNUSED
, REG_NOTES (insn
));
175 insn
= NEXT_INSN (insn
);
178 IOR_HARD_REG_SET (*pset
, live
);
180 /* For the last reference, also merge in all registers set in the
182 @@@ We only have take earlyclobbered sets into account. */
184 note_stores (PATTERN (insn
), note_sets
, (void *) pset
);
190 /* Perform register renaming on the current function. */
193 regrename_optimize ()
195 int tick
[FIRST_PSEUDO_REGISTER
];
200 memset (tick
, 0, sizeof tick
);
202 gcc_obstack_init (&rename_obstack
);
203 first_obj
= (char *) obstack_alloc (&rename_obstack
, 0);
207 struct du_chain
*all_chains
= 0;
208 HARD_REG_SET unavailable
;
209 HARD_REG_SET regs_seen
;
211 CLEAR_HARD_REG_SET (unavailable
);
214 fprintf (rtl_dump_file
, "\nBasic block %d:\n", bb
->index
);
216 all_chains
= build_def_use (bb
);
219 dump_def_use_chain (all_chains
);
221 CLEAR_HARD_REG_SET (unavailable
);
222 /* Don't clobber traceback for noreturn functions. */
223 if (frame_pointer_needed
)
227 for (i
= HARD_REGNO_NREGS (FRAME_POINTER_REGNUM
, Pmode
); i
--;)
228 SET_HARD_REG_BIT (unavailable
, FRAME_POINTER_REGNUM
+ i
);
230 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
231 for (i
= HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM
, Pmode
); i
--;)
232 SET_HARD_REG_BIT (unavailable
, HARD_FRAME_POINTER_REGNUM
+ i
);
236 CLEAR_HARD_REG_SET (regs_seen
);
239 int new_reg
, best_new_reg
= -1;
241 struct du_chain
*this = all_chains
;
242 struct du_chain
*tmp
, *last
;
243 HARD_REG_SET this_unavailable
;
244 int reg
= REGNO (*this->loc
);
247 all_chains
= this->next_chain
;
249 #if 0 /* This just disables optimization opportunities. */
250 /* Only rename once we've seen the reg more than once. */
251 if (! TEST_HARD_REG_BIT (regs_seen
, reg
))
253 SET_HARD_REG_BIT (regs_seen
, reg
);
258 if (fixed_regs
[reg
] || global_regs
[reg
]
259 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
260 || (frame_pointer_needed
&& reg
== HARD_FRAME_POINTER_REGNUM
)
262 || (frame_pointer_needed
&& reg
== FRAME_POINTER_REGNUM
)
267 COPY_HARD_REG_SET (this_unavailable
, unavailable
);
269 /* Find last entry on chain (which has the need_caller_save bit),
270 count number of uses, and narrow the set of registers we can
273 for (last
= this; last
->next_use
; last
= last
->next_use
)
276 IOR_COMPL_HARD_REG_SET (this_unavailable
,
277 reg_class_contents
[last
->class]);
282 IOR_COMPL_HARD_REG_SET (this_unavailable
,
283 reg_class_contents
[last
->class]);
285 if (this->need_caller_save_reg
)
286 IOR_HARD_REG_SET (this_unavailable
, call_used_reg_set
);
288 merge_overlapping_regs (bb
, &this_unavailable
, this);
290 /* Now potential_regs is a reasonable approximation, let's
291 have a closer look at each register still in there. */
292 for (new_reg
= 0; new_reg
< FIRST_PSEUDO_REGISTER
; new_reg
++)
294 int nregs
= HARD_REGNO_NREGS (new_reg
, GET_MODE (*this->loc
));
296 for (i
= nregs
- 1; i
>= 0; --i
)
297 if (TEST_HARD_REG_BIT (this_unavailable
, new_reg
+ i
)
298 || fixed_regs
[new_reg
+ i
]
299 || global_regs
[new_reg
+ i
]
300 /* Can't use regs which aren't saved by the prologue. */
301 || (! regs_ever_live
[new_reg
+ i
]
302 && ! call_used_regs
[new_reg
+ i
])
303 #ifdef LEAF_REGISTERS
304 /* We can't use a non-leaf register if we're in a
306 || (current_function_is_leaf
307 && !LEAF_REGISTERS
[new_reg
+ i
])
309 #ifdef HARD_REGNO_RENAME_OK
310 || ! HARD_REGNO_RENAME_OK (reg
+ i
, new_reg
+ i
)
317 /* See whether it accepts all modes that occur in
318 definition and uses. */
319 for (tmp
= this; tmp
; tmp
= tmp
->next_use
)
320 if (! HARD_REGNO_MODE_OK (new_reg
, GET_MODE (*tmp
->loc
))
321 || (tmp
->need_caller_save_reg
322 && ! (HARD_REGNO_CALL_PART_CLOBBERED
323 (reg
, GET_MODE (*tmp
->loc
)))
324 && (HARD_REGNO_CALL_PART_CLOBBERED
325 (new_reg
, GET_MODE (*tmp
->loc
)))))
329 if (best_new_reg
== -1
330 || tick
[best_new_reg
] > tick
[new_reg
])
331 best_new_reg
= new_reg
;
337 fprintf (rtl_dump_file
, "Register %s in insn %d",
338 reg_names
[reg
], INSN_UID (last
->insn
));
339 if (last
->need_caller_save_reg
)
340 fprintf (rtl_dump_file
, " crosses a call");
343 if (best_new_reg
== -1)
346 fprintf (rtl_dump_file
, "; no available registers\n");
350 do_replace (this, best_new_reg
);
351 tick
[best_new_reg
] = this_tick
++;
354 fprintf (rtl_dump_file
, ", renamed as %s\n", reg_names
[best_new_reg
]);
357 obstack_free (&rename_obstack
, first_obj
);
360 obstack_free (&rename_obstack
, NULL
);
363 fputc ('\n', rtl_dump_file
);
365 count_or_remove_death_notes (NULL
, 1);
366 update_life_info (NULL
, UPDATE_LIFE_LOCAL
,
367 PROP_REG_INFO
| PROP_DEATH_NOTES
);
371 do_replace (chain
, reg
)
372 struct du_chain
*chain
;
377 unsigned int regno
= ORIGINAL_REGNO (*chain
->loc
);
378 *chain
->loc
= gen_raw_REG (GET_MODE (*chain
->loc
), reg
);
379 if (regno
>= FIRST_PSEUDO_REGISTER
)
380 ORIGINAL_REGNO (*chain
->loc
) = regno
;
381 chain
= chain
->next_use
;
386 static struct du_chain
*open_chains
;
387 static struct du_chain
*closed_chains
;
390 scan_rtx_reg (insn
, loc
, class, action
, type
, earlyclobber
)
393 enum reg_class
class;
394 enum scan_actions action
;
400 enum machine_mode mode
= GET_MODE (x
);
401 int this_regno
= REGNO (x
);
402 int this_nregs
= HARD_REGNO_NREGS (this_regno
, mode
);
404 if (action
== mark_write
)
408 struct du_chain
*this = (struct du_chain
*)
409 obstack_alloc (&rename_obstack
, sizeof (struct du_chain
));
411 this->next_chain
= open_chains
;
415 this->need_caller_save_reg
= 0;
416 this->earlyclobber
= earlyclobber
;
422 if ((type
== OP_OUT
&& action
!= terminate_write
)
423 || (type
!= OP_OUT
&& action
== terminate_write
))
426 for (p
= &open_chains
; *p
;)
428 struct du_chain
*this = *p
;
430 /* Check if the chain has been terminated if it has then skip to
433 This can happen when we've already appended the location to
434 the chain in Step 3, but are trying to hide in-out operands
435 from terminate_write in Step 5. */
437 if (*this->loc
== cc0_rtx
)
438 p
= &this->next_chain
;
441 int regno
= REGNO (*this->loc
);
442 int nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (*this->loc
));
443 int exact_match
= (regno
== this_regno
&& nregs
== this_nregs
);
445 if (regno
+ nregs
<= this_regno
446 || this_regno
+ this_nregs
<= regno
)
448 p
= &this->next_chain
;
452 if (action
== mark_read
)
457 /* ??? Class NO_REGS can happen if the md file makes use of
458 EXTRA_CONSTRAINTS to match registers. Which is arguably
459 wrong, but there we are. Since we know not what this may
460 be replaced with, terminate the chain. */
461 if (class != NO_REGS
)
463 this = (struct du_chain
*)
464 obstack_alloc (&rename_obstack
, sizeof (struct du_chain
));
466 this->next_chain
= (*p
)->next_chain
;
470 this->need_caller_save_reg
= 0;
478 if (action
!= terminate_overlapping_read
|| ! exact_match
)
480 struct du_chain
*next
= this->next_chain
;
482 /* Whether the terminated chain can be used for renaming
483 depends on the action and this being an exact match.
484 In either case, we remove this element from open_chains. */
486 if ((action
== terminate_dead
|| action
== terminate_write
)
489 this->next_chain
= closed_chains
;
490 closed_chains
= this;
492 fprintf (rtl_dump_file
,
493 "Closing chain %s at insn %d (%s)\n",
494 reg_names
[REGNO (*this->loc
)], INSN_UID (insn
),
495 scan_actions_name
[(int) action
]);
500 fprintf (rtl_dump_file
,
501 "Discarding chain %s at insn %d (%s)\n",
502 reg_names
[REGNO (*this->loc
)], INSN_UID (insn
),
503 scan_actions_name
[(int) action
]);
508 p
= &this->next_chain
;
513 /* Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
514 BASE_REG_CLASS depending on how the register is being considered. */
517 scan_rtx_address (insn
, loc
, class, action
, mode
)
520 enum reg_class
class;
521 enum scan_actions action
;
522 enum machine_mode mode
;
525 RTX_CODE code
= GET_CODE (x
);
529 if (action
== mark_write
)
536 rtx orig_op0
= XEXP (x
, 0);
537 rtx orig_op1
= XEXP (x
, 1);
538 RTX_CODE code0
= GET_CODE (orig_op0
);
539 RTX_CODE code1
= GET_CODE (orig_op1
);
545 if (GET_CODE (op0
) == SUBREG
)
547 op0
= SUBREG_REG (op0
);
548 code0
= GET_CODE (op0
);
551 if (GET_CODE (op1
) == SUBREG
)
553 op1
= SUBREG_REG (op1
);
554 code1
= GET_CODE (op1
);
557 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
558 || code0
== ZERO_EXTEND
|| code1
== MEM
)
563 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
564 || code1
== ZERO_EXTEND
|| code0
== MEM
)
569 else if (code0
== CONST_INT
|| code0
== CONST
570 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
572 else if (code1
== CONST_INT
|| code1
== CONST
573 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
575 else if (code0
== REG
&& code1
== REG
)
579 if (REG_OK_FOR_INDEX_P (op0
)
580 && REG_MODE_OK_FOR_BASE_P (op1
, mode
))
582 else if (REG_OK_FOR_INDEX_P (op1
)
583 && REG_MODE_OK_FOR_BASE_P (op0
, mode
))
585 else if (REG_MODE_OK_FOR_BASE_P (op1
, mode
))
587 else if (REG_MODE_OK_FOR_BASE_P (op0
, mode
))
589 else if (REG_OK_FOR_INDEX_P (op1
))
594 locI
= &XEXP (x
, index_op
);
595 locB
= &XEXP (x
, !index_op
);
597 else if (code0
== REG
)
602 else if (code1
== REG
)
609 scan_rtx_address (insn
, locI
, INDEX_REG_CLASS
, action
, mode
);
611 scan_rtx_address (insn
, locB
, MODE_BASE_REG_CLASS (mode
), action
, mode
);
622 /* If the target doesn't claim to handle autoinc, this must be
623 something special, like a stack push. Kill this chain. */
624 action
= terminate_all_read
;
629 scan_rtx_address (insn
, &XEXP (x
, 0),
630 MODE_BASE_REG_CLASS (GET_MODE (x
)), action
,
635 scan_rtx_reg (insn
, loc
, class, action
, OP_IN
, 0);
642 fmt
= GET_RTX_FORMAT (code
);
643 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
646 scan_rtx_address (insn
, &XEXP (x
, i
), class, action
, mode
);
647 else if (fmt
[i
] == 'E')
648 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
649 scan_rtx_address (insn
, &XVECEXP (x
, i
, j
), class, action
, mode
);
654 scan_rtx (insn
, loc
, class, action
, type
, earlyclobber
)
657 enum reg_class
class;
658 enum scan_actions action
;
664 enum rtx_code code
= GET_CODE (x
);
681 scan_rtx_reg (insn
, loc
, class, action
, type
, earlyclobber
);
685 scan_rtx_address (insn
, &XEXP (x
, 0),
686 MODE_BASE_REG_CLASS (GET_MODE (x
)), action
,
691 scan_rtx (insn
, &SET_SRC (x
), class, action
, OP_IN
, 0);
692 scan_rtx (insn
, &SET_DEST (x
), class, action
, OP_OUT
, 0);
695 case STRICT_LOW_PART
:
696 scan_rtx (insn
, &XEXP (x
, 0), class, action
, OP_INOUT
, earlyclobber
);
701 scan_rtx (insn
, &XEXP (x
, 0), class, action
,
702 type
== OP_IN
? OP_IN
: OP_INOUT
, earlyclobber
);
703 scan_rtx (insn
, &XEXP (x
, 1), class, action
, OP_IN
, 0);
704 scan_rtx (insn
, &XEXP (x
, 2), class, action
, OP_IN
, 0);
713 /* Should only happen inside MEM. */
717 scan_rtx (insn
, &SET_DEST (x
), class, action
, OP_OUT
, 1);
721 scan_rtx (insn
, &XEXP (x
, 0), class, action
, type
, 0);
723 scan_rtx (insn
, &XEXP (x
, 1), class, action
, type
, 0);
730 fmt
= GET_RTX_FORMAT (code
);
731 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
734 scan_rtx (insn
, &XEXP (x
, i
), class, action
, type
, 0);
735 else if (fmt
[i
] == 'E')
736 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
737 scan_rtx (insn
, &XVECEXP (x
, i
, j
), class, action
, type
, 0);
741 /* Build def/use chain */
743 static struct du_chain
*
749 open_chains
= closed_chains
= NULL
;
751 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
757 rtx old_operands
[MAX_RECOG_OPERANDS
];
758 rtx old_dups
[MAX_DUP_OPERANDS
];
763 /* Process the insn, determining its effect on the def-use
764 chains. We perform the following steps with the register
765 references in the insn:
766 (1) Any read that overlaps an open chain, but doesn't exactly
767 match, causes that chain to be closed. We can't deal
769 (2) Any read outside an operand causes any chain it overlaps
770 with to be closed, since we can't replace it.
771 (3) Any read inside an operand is added if there's already
772 an open chain for it.
773 (4) For any REG_DEAD note we find, close open chains that
775 (5) For any write we find, close open chains that overlap it.
776 (6) For any write we find in an operand, make a new chain.
777 (7) For any REG_UNUSED, close any chains we just opened. */
779 icode
= recog_memoized (insn
);
781 if (! constrain_operands (1))
782 fatal_insn_not_found (insn
);
783 preprocess_constraints ();
784 alt
= which_alternative
;
785 n_ops
= recog_data
.n_operands
;
787 /* Simplify the code below by rewriting things to reflect
788 matching constraints. Also promote OP_OUT to OP_INOUT
789 in predicated instructions. */
791 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
792 for (i
= 0; i
< n_ops
; ++i
)
794 int matches
= recog_op_alt
[i
][alt
].matches
;
796 recog_op_alt
[i
][alt
].class = recog_op_alt
[matches
][alt
].class;
797 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
798 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
799 recog_data
.operand_type
[i
] = OP_INOUT
;
802 /* Step 1: Close chains for which we have overlapping reads. */
803 for (i
= 0; i
< n_ops
; i
++)
804 scan_rtx (insn
, recog_data
.operand_loc
[i
],
805 NO_REGS
, terminate_overlapping_read
,
806 recog_data
.operand_type
[i
], 0);
808 /* Step 2: Close chains for which we have reads outside operands.
809 We do this by munging all operands into CC0, and closing
810 everything remaining. */
812 for (i
= 0; i
< n_ops
; i
++)
814 old_operands
[i
] = recog_data
.operand
[i
];
815 /* Don't squash match_operator or match_parallel here, since
816 we don't know that all of the contained registers are
817 reachable by proper operands. */
818 if (recog_data
.constraints
[i
][0] == '\0')
820 *recog_data
.operand_loc
[i
] = cc0_rtx
;
822 for (i
= 0; i
< recog_data
.n_dups
; i
++)
824 int dup_num
= recog_data
.dup_num
[i
];
826 old_dups
[i
] = *recog_data
.dup_loc
[i
];
827 *recog_data
.dup_loc
[i
] = cc0_rtx
;
829 /* For match_dup of match_operator or match_parallel, share
830 them, so that we don't miss changes in the dup. */
832 && insn_data
[icode
].operand
[dup_num
].eliminable
== 0)
833 old_dups
[i
] = recog_data
.operand
[dup_num
];
836 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_all_read
,
839 for (i
= 0; i
< recog_data
.n_dups
; i
++)
840 *recog_data
.dup_loc
[i
] = old_dups
[i
];
841 for (i
= 0; i
< n_ops
; i
++)
842 *recog_data
.operand_loc
[i
] = old_operands
[i
];
844 /* Step 2B: Can't rename function call argument registers. */
845 if (GET_CODE (insn
) == CALL_INSN
&& CALL_INSN_FUNCTION_USAGE (insn
))
846 scan_rtx (insn
, &CALL_INSN_FUNCTION_USAGE (insn
),
847 NO_REGS
, terminate_all_read
, OP_IN
, 0);
849 /* Step 2C: Can't rename asm operands that were originally
851 if (asm_noperands (PATTERN (insn
)) > 0)
852 for (i
= 0; i
< n_ops
; i
++)
854 rtx
*loc
= recog_data
.operand_loc
[i
];
857 if (GET_CODE (op
) == REG
858 && REGNO (op
) == ORIGINAL_REGNO (op
)
859 && (recog_data
.operand_type
[i
] == OP_IN
860 || recog_data
.operand_type
[i
] == OP_INOUT
))
861 scan_rtx (insn
, loc
, NO_REGS
, terminate_all_read
, OP_IN
, 0);
864 /* Step 3: Append to chains for reads inside operands. */
865 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
867 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
868 rtx
*loc
= (i
< n_ops
869 ? recog_data
.operand_loc
[opn
]
870 : recog_data
.dup_loc
[i
- n_ops
]);
871 enum reg_class
class = recog_op_alt
[opn
][alt
].class;
872 enum op_type type
= recog_data
.operand_type
[opn
];
874 /* Don't scan match_operand here, since we've no reg class
875 information to pass down. Any operands that we could
876 substitute in will be represented elsewhere. */
877 if (recog_data
.constraints
[opn
][0] == '\0')
880 if (recog_op_alt
[opn
][alt
].is_address
)
881 scan_rtx_address (insn
, loc
, class, mark_read
, VOIDmode
);
883 scan_rtx (insn
, loc
, class, mark_read
, type
, 0);
886 /* Step 4: Close chains for registers that die here.
887 Also record updates for REG_INC notes. */
888 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
890 if (REG_NOTE_KIND (note
) == REG_DEAD
)
891 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
893 else if (REG_NOTE_KIND (note
) == REG_INC
)
894 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_read
,
898 /* Step 4B: If this is a call, any chain live at this point
899 requires a caller-saved reg. */
900 if (GET_CODE (insn
) == CALL_INSN
)
903 for (p
= open_chains
; p
; p
= p
->next_chain
)
904 p
->need_caller_save_reg
= 1;
907 /* Step 5: Close open chains that overlap writes. Similar to
908 step 2, we hide in-out operands, since we do not want to
909 close these chains. */
911 for (i
= 0; i
< n_ops
; i
++)
913 old_operands
[i
] = recog_data
.operand
[i
];
914 if (recog_data
.operand_type
[i
] == OP_INOUT
)
915 *recog_data
.operand_loc
[i
] = cc0_rtx
;
917 for (i
= 0; i
< recog_data
.n_dups
; i
++)
919 int opn
= recog_data
.dup_num
[i
];
920 old_dups
[i
] = *recog_data
.dup_loc
[i
];
921 if (recog_data
.operand_type
[opn
] == OP_INOUT
)
922 *recog_data
.dup_loc
[i
] = cc0_rtx
;
925 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_write
, OP_IN
, 0);
927 for (i
= 0; i
< recog_data
.n_dups
; i
++)
928 *recog_data
.dup_loc
[i
] = old_dups
[i
];
929 for (i
= 0; i
< n_ops
; i
++)
930 *recog_data
.operand_loc
[i
] = old_operands
[i
];
932 /* Step 6: Begin new chains for writes inside operands. */
933 /* ??? Many targets have output constraints on the SET_DEST
934 of a call insn, which is stupid, since these are certainly
935 ABI defined hard registers. Don't change calls at all.
936 Similarly take special care for asm statement that originally
937 referenced hard registers. */
938 if (asm_noperands (PATTERN (insn
)) > 0)
940 for (i
= 0; i
< n_ops
; i
++)
941 if (recog_data
.operand_type
[i
] == OP_OUT
)
943 rtx
*loc
= recog_data
.operand_loc
[i
];
945 enum reg_class
class = recog_op_alt
[i
][alt
].class;
947 if (GET_CODE (op
) == REG
948 && REGNO (op
) == ORIGINAL_REGNO (op
))
951 scan_rtx (insn
, loc
, class, mark_write
, OP_OUT
,
952 recog_op_alt
[i
][alt
].earlyclobber
);
955 else if (GET_CODE (insn
) != CALL_INSN
)
956 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
958 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
959 rtx
*loc
= (i
< n_ops
960 ? recog_data
.operand_loc
[opn
]
961 : recog_data
.dup_loc
[i
- n_ops
]);
962 enum reg_class
class = recog_op_alt
[opn
][alt
].class;
964 if (recog_data
.operand_type
[opn
] == OP_OUT
)
965 scan_rtx (insn
, loc
, class, mark_write
, OP_OUT
,
966 recog_op_alt
[opn
][alt
].earlyclobber
);
969 /* Step 7: Close chains for registers that were never
971 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
972 if (REG_NOTE_KIND (note
) == REG_UNUSED
)
973 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
980 /* Since we close every chain when we find a REG_DEAD note, anything that
981 is still open lives past the basic block, so it can't be renamed. */
982 return closed_chains
;
985 /* Dump all def/use chains in CHAINS to RTL_DUMP_FILE. They are
986 printed in reverse order as that's how we build them. */
989 dump_def_use_chain (chains
)
990 struct du_chain
*chains
;
994 struct du_chain
*this = chains
;
995 int r
= REGNO (*this->loc
);
996 int nregs
= HARD_REGNO_NREGS (r
, GET_MODE (*this->loc
));
997 fprintf (rtl_dump_file
, "Register %s (%d):", reg_names
[r
], nregs
);
1000 fprintf (rtl_dump_file
, " %d [%s]", INSN_UID (this->insn
),
1001 reg_class_names
[this->class]);
1002 this = this->next_use
;
1004 fprintf (rtl_dump_file
, "\n");
1005 chains
= chains
->next_chain
;
1009 /* The following code does forward propagation of hard register copies.
1010 The object is to eliminate as many dependencies as possible, so that
1011 we have the most scheduling freedom. As a side effect, we also clean
1012 up some silly register allocation decisions made by reload. This
1013 code may be obsoleted by a new register allocator. */
1015 /* For each register, we have a list of registers that contain the same
1016 value. The OLDEST_REGNO field points to the head of the list, and
1017 the NEXT_REGNO field runs through the list. The MODE field indicates
1018 what mode the data is known to be in; this field is VOIDmode when the
1019 register is not known to contain valid data. */
1021 struct value_data_entry
1023 enum machine_mode mode
;
1024 unsigned int oldest_regno
;
1025 unsigned int next_regno
;
1030 struct value_data_entry e
[FIRST_PSEUDO_REGISTER
];
1031 unsigned int max_value_regs
;
1034 static void kill_value_regno
PARAMS ((unsigned, struct value_data
*));
1035 static void kill_value
PARAMS ((rtx
, struct value_data
*));
1036 static void set_value_regno
PARAMS ((unsigned, enum machine_mode
,
1037 struct value_data
*));
1038 static void init_value_data
PARAMS ((struct value_data
*));
1039 static void kill_clobbered_value
PARAMS ((rtx
, rtx
, void *));
1040 static void kill_set_value
PARAMS ((rtx
, rtx
, void *));
1041 static int kill_autoinc_value
PARAMS ((rtx
*, void *));
1042 static void copy_value
PARAMS ((rtx
, rtx
, struct value_data
*));
1043 static bool mode_change_ok
PARAMS ((enum machine_mode
, enum machine_mode
,
1045 static rtx maybe_mode_change
PARAMS ((enum machine_mode
, enum machine_mode
,
1046 enum machine_mode
, unsigned int,
1048 static rtx find_oldest_value_reg
PARAMS ((enum reg_class
, rtx
,
1049 struct value_data
*));
1050 static bool replace_oldest_value_reg
PARAMS ((rtx
*, enum reg_class
, rtx
,
1051 struct value_data
*));
1052 static bool replace_oldest_value_addr
PARAMS ((rtx
*, enum reg_class
,
1053 enum machine_mode
, rtx
,
1054 struct value_data
*));
1055 static bool replace_oldest_value_mem
PARAMS ((rtx
, rtx
, struct value_data
*));
1056 static bool copyprop_hardreg_forward_1
PARAMS ((basic_block
,
1057 struct value_data
*));
1058 extern void debug_value_data
PARAMS ((struct value_data
*));
1059 #ifdef ENABLE_CHECKING
1060 static void validate_value_data
PARAMS ((struct value_data
*));
1063 /* Kill register REGNO. This involves removing it from any value lists,
1064 and resetting the value mode to VOIDmode. */
1067 kill_value_regno (regno
, vd
)
1069 struct value_data
*vd
;
1071 unsigned int i
, next
;
1073 if (vd
->e
[regno
].oldest_regno
!= regno
)
1075 for (i
= vd
->e
[regno
].oldest_regno
;
1076 vd
->e
[i
].next_regno
!= regno
;
1077 i
= vd
->e
[i
].next_regno
)
1079 vd
->e
[i
].next_regno
= vd
->e
[regno
].next_regno
;
1081 else if ((next
= vd
->e
[regno
].next_regno
) != INVALID_REGNUM
)
1083 for (i
= next
; i
!= INVALID_REGNUM
; i
= vd
->e
[i
].next_regno
)
1084 vd
->e
[i
].oldest_regno
= next
;
1087 vd
->e
[regno
].mode
= VOIDmode
;
1088 vd
->e
[regno
].oldest_regno
= regno
;
1089 vd
->e
[regno
].next_regno
= INVALID_REGNUM
;
1091 #ifdef ENABLE_CHECKING
1092 validate_value_data (vd
);
1096 /* Kill X. This is a convenience function for kill_value_regno
1097 so that we mind the mode the register is in. */
1102 struct value_data
*vd
;
1104 /* SUBREGS are supposed to have been eliminated by now. But some
1105 ports, e.g. i386 sse, use them to smuggle vector type information
1106 through to instruction selection. Each such SUBREG should simplify,
1107 so if we get a NULL we've done something wrong elsewhere. */
1109 if (GET_CODE (x
) == SUBREG
)
1110 x
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
),
1111 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
1114 unsigned int regno
= REGNO (x
);
1115 unsigned int n
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1118 /* Kill the value we're told to kill. */
1119 for (i
= 0; i
< n
; ++i
)
1120 kill_value_regno (regno
+ i
, vd
);
1122 /* Kill everything that overlapped what we're told to kill. */
1123 if (regno
< vd
->max_value_regs
)
1126 j
= regno
- vd
->max_value_regs
;
1127 for (; j
< regno
; ++j
)
1129 if (vd
->e
[j
].mode
== VOIDmode
)
1131 n
= HARD_REGNO_NREGS (j
, vd
->e
[j
].mode
);
1133 for (i
= 0; i
< n
; ++i
)
1134 kill_value_regno (j
+ i
, vd
);
1139 /* Remember that REGNO is valid in MODE. */
1142 set_value_regno (regno
, mode
, vd
)
1144 enum machine_mode mode
;
1145 struct value_data
*vd
;
1149 vd
->e
[regno
].mode
= mode
;
1151 nregs
= HARD_REGNO_NREGS (regno
, mode
);
1152 if (nregs
> vd
->max_value_regs
)
1153 vd
->max_value_regs
= nregs
;
1156 /* Initialize VD such that there are no known relationships between regs. */
1159 init_value_data (vd
)
1160 struct value_data
*vd
;
1163 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1165 vd
->e
[i
].mode
= VOIDmode
;
1166 vd
->e
[i
].oldest_regno
= i
;
1167 vd
->e
[i
].next_regno
= INVALID_REGNUM
;
1169 vd
->max_value_regs
= 0;
1172 /* Called through note_stores. If X is clobbered, kill its value. */
1175 kill_clobbered_value (x
, set
, data
)
1180 struct value_data
*vd
= data
;
1181 if (GET_CODE (set
) == CLOBBER
)
1185 /* Called through note_stores. If X is set, not clobbered, kill its
1186 current value and install it as the root of its own value list. */
1189 kill_set_value (x
, set
, data
)
1194 struct value_data
*vd
= data
;
1195 if (GET_CODE (set
) != CLOBBER
)
1199 set_value_regno (REGNO (x
), GET_MODE (x
), vd
);
1203 /* Called through for_each_rtx. Kill any register used as the base of an
1204 auto-increment expression, and install that register as the root of its
1208 kill_autoinc_value (px
, data
)
1213 struct value_data
*vd
= data
;
1215 if (GET_RTX_CLASS (GET_CODE (x
)) == 'a')
1219 set_value_regno (REGNO (x
), Pmode
, vd
);
1226 /* Assert that SRC has been copied to DEST. Adjust the data structures
1227 to reflect that SRC contains an older copy of the shared value. */
1230 copy_value (dest
, src
, vd
)
1233 struct value_data
*vd
;
1235 unsigned int dr
= REGNO (dest
);
1236 unsigned int sr
= REGNO (src
);
1237 unsigned int dn
, sn
;
1240 /* ??? At present, it's possible to see noop sets. It'd be nice if
1241 this were cleaned up beforehand... */
1245 /* Do not propagate copies to the stack pointer, as that can leave
1246 memory accesses with no scheduling dependency on the stack update. */
1247 if (dr
== STACK_POINTER_REGNUM
)
1250 /* Likewise with the frame pointer, if we're using one. */
1251 if (frame_pointer_needed
&& dr
== HARD_FRAME_POINTER_REGNUM
)
1254 /* If SRC and DEST overlap, don't record anything. */
1255 dn
= HARD_REGNO_NREGS (dr
, GET_MODE (dest
));
1256 sn
= HARD_REGNO_NREGS (sr
, GET_MODE (dest
));
1257 if ((dr
> sr
&& dr
< sr
+ sn
)
1258 || (sr
> dr
&& sr
< dr
+ dn
))
1261 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1262 assign it now and assume the value came from an input argument
1264 if (vd
->e
[sr
].mode
== VOIDmode
)
1265 set_value_regno (sr
, vd
->e
[dr
].mode
, vd
);
1267 /* If we are narrowing the input to a smaller number of hard regs,
1268 and it is in big endian, we are really extracting a high part.
1269 Since we generally associate a low part of a value with the value itself,
1270 we must not do the same for the high part.
1271 Note we can still get low parts for the same mode combination through
1272 a two-step copy involving differently sized hard regs.
1273 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1274 (set (reg:DI r0) (reg:DI fr0))
1275 (set (reg:SI fr2) (reg:SI r0))
1276 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1277 (set (reg:SI fr2) (reg:SI fr0))
1278 loads the high part of (reg:DI fr0) into fr2.
1280 We can't properly represent the latter case in our tables, so don't
1281 record anything then. */
1282 else if (sn
< (unsigned int) HARD_REGNO_NREGS (sr
, vd
->e
[sr
].mode
)
1283 && (GET_MODE_SIZE (vd
->e
[sr
].mode
) > UNITS_PER_WORD
1284 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
1287 /* If SRC had been assigned a mode narrower than the copy, we can't
1288 link DEST into the chain, because not all of the pieces of the
1289 copy came from oldest_regno. */
1290 else if (sn
> (unsigned int) HARD_REGNO_NREGS (sr
, vd
->e
[sr
].mode
))
1293 /* Link DR at the end of the value chain used by SR. */
1295 vd
->e
[dr
].oldest_regno
= vd
->e
[sr
].oldest_regno
;
1297 for (i
= sr
; vd
->e
[i
].next_regno
!= INVALID_REGNUM
; i
= vd
->e
[i
].next_regno
)
1299 vd
->e
[i
].next_regno
= dr
;
1301 #ifdef ENABLE_CHECKING
1302 validate_value_data (vd
);
1306 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1309 mode_change_ok (orig_mode
, new_mode
, regno
)
1310 enum machine_mode orig_mode
, new_mode
;
1311 unsigned int regno ATTRIBUTE_UNUSED
;
1313 if (GET_MODE_SIZE (orig_mode
) < GET_MODE_SIZE (new_mode
))
1316 #ifdef CLASS_CANNOT_CHANGE_MODE
1317 if (TEST_HARD_REG_BIT (reg_class_contents
[CLASS_CANNOT_CHANGE_MODE
], regno
)
1318 && CLASS_CANNOT_CHANGE_MODE_P (orig_mode
, new_mode
))
1325 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1326 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1328 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1331 maybe_mode_change (orig_mode
, copy_mode
, new_mode
, regno
, copy_regno
)
1332 enum machine_mode orig_mode
, copy_mode
, new_mode
;
1333 unsigned int regno
, copy_regno
;
1335 if (orig_mode
== new_mode
)
1336 return gen_rtx_raw_REG (new_mode
, regno
);
1337 else if (mode_change_ok (orig_mode
, new_mode
, regno
))
1339 int copy_nregs
= HARD_REGNO_NREGS (copy_regno
, copy_mode
);
1340 int use_nregs
= HARD_REGNO_NREGS (copy_regno
, new_mode
);
1342 = GET_MODE_SIZE (copy_mode
) / copy_nregs
* (copy_nregs
- use_nregs
);
1344 = GET_MODE_SIZE (orig_mode
) - GET_MODE_SIZE (new_mode
) - copy_offset
;
1345 int byteoffset
= offset
% UNITS_PER_WORD
;
1346 int wordoffset
= offset
- byteoffset
;
1348 offset
= ((WORDS_BIG_ENDIAN
? wordoffset
: 0)
1349 + (BYTES_BIG_ENDIAN
? byteoffset
: 0));
1350 return gen_rtx_raw_REG (new_mode
,
1351 regno
+ subreg_regno_offset (regno
, orig_mode
,
1358 /* Find the oldest copy of the value contained in REGNO that is in
1359 register class CLASS and has mode MODE. If found, return an rtx
1360 of that oldest register, otherwise return NULL. */
1363 find_oldest_value_reg (class, reg
, vd
)
1364 enum reg_class
class;
1366 struct value_data
*vd
;
1368 unsigned int regno
= REGNO (reg
);
1369 enum machine_mode mode
= GET_MODE (reg
);
1372 /* If we are accessing REG in some mode other that what we set it in,
1373 make sure that the replacement is valid. In particular, consider
1374 (set (reg:DI r11) (...))
1375 (set (reg:SI r9) (reg:SI r11))
1376 (set (reg:SI r10) (...))
1377 (set (...) (reg:DI r9))
1378 Replacing r9 with r11 is invalid. */
1379 if (mode
!= vd
->e
[regno
].mode
)
1381 if (HARD_REGNO_NREGS (regno
, mode
)
1382 > HARD_REGNO_NREGS (regno
, vd
->e
[regno
].mode
))
1386 for (i
= vd
->e
[regno
].oldest_regno
; i
!= regno
; i
= vd
->e
[i
].next_regno
)
1388 enum machine_mode oldmode
= vd
->e
[i
].mode
;
1391 if (TEST_HARD_REG_BIT (reg_class_contents
[class], i
)
1392 && (new = maybe_mode_change (oldmode
, vd
->e
[regno
].mode
, mode
, i
,
1395 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg
);
1403 /* If possible, replace the register at *LOC with the oldest register
1404 in register class CLASS. Return true if successfully replaced. */
1407 replace_oldest_value_reg (loc
, class, insn
, vd
)
1409 enum reg_class
class;
1411 struct value_data
*vd
;
1413 rtx
new = find_oldest_value_reg (class, *loc
, vd
);
1417 fprintf (rtl_dump_file
, "insn %u: replaced reg %u with %u\n",
1418 INSN_UID (insn
), REGNO (*loc
), REGNO (new));
1426 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1427 Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
1428 BASE_REG_CLASS depending on how the register is being considered. */
1431 replace_oldest_value_addr (loc
, class, mode
, insn
, vd
)
1433 enum reg_class
class;
1434 enum machine_mode mode
;
1436 struct value_data
*vd
;
1439 RTX_CODE code
= GET_CODE (x
);
1442 bool changed
= false;
1448 rtx orig_op0
= XEXP (x
, 0);
1449 rtx orig_op1
= XEXP (x
, 1);
1450 RTX_CODE code0
= GET_CODE (orig_op0
);
1451 RTX_CODE code1
= GET_CODE (orig_op1
);
1457 if (GET_CODE (op0
) == SUBREG
)
1459 op0
= SUBREG_REG (op0
);
1460 code0
= GET_CODE (op0
);
1463 if (GET_CODE (op1
) == SUBREG
)
1465 op1
= SUBREG_REG (op1
);
1466 code1
= GET_CODE (op1
);
1469 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
1470 || code0
== ZERO_EXTEND
|| code1
== MEM
)
1472 locI
= &XEXP (x
, 0);
1473 locB
= &XEXP (x
, 1);
1475 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
1476 || code1
== ZERO_EXTEND
|| code0
== MEM
)
1478 locI
= &XEXP (x
, 1);
1479 locB
= &XEXP (x
, 0);
1481 else if (code0
== CONST_INT
|| code0
== CONST
1482 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
1483 locB
= &XEXP (x
, 1);
1484 else if (code1
== CONST_INT
|| code1
== CONST
1485 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
1486 locB
= &XEXP (x
, 0);
1487 else if (code0
== REG
&& code1
== REG
)
1491 if (REG_OK_FOR_INDEX_P (op0
)
1492 && REG_MODE_OK_FOR_BASE_P (op1
, mode
))
1494 else if (REG_OK_FOR_INDEX_P (op1
)
1495 && REG_MODE_OK_FOR_BASE_P (op0
, mode
))
1497 else if (REG_MODE_OK_FOR_BASE_P (op1
, mode
))
1499 else if (REG_MODE_OK_FOR_BASE_P (op0
, mode
))
1501 else if (REG_OK_FOR_INDEX_P (op1
))
1506 locI
= &XEXP (x
, index_op
);
1507 locB
= &XEXP (x
, !index_op
);
1509 else if (code0
== REG
)
1511 locI
= &XEXP (x
, 0);
1512 locB
= &XEXP (x
, 1);
1514 else if (code1
== REG
)
1516 locI
= &XEXP (x
, 1);
1517 locB
= &XEXP (x
, 0);
1521 changed
|= replace_oldest_value_addr (locI
, INDEX_REG_CLASS
, mode
,
1524 changed
|= replace_oldest_value_addr (locB
,
1525 MODE_BASE_REG_CLASS (mode
),
1539 return replace_oldest_value_mem (x
, insn
, vd
);
1542 return replace_oldest_value_reg (loc
, class, insn
, vd
);
1548 fmt
= GET_RTX_FORMAT (code
);
1549 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1552 changed
|= replace_oldest_value_addr (&XEXP (x
, i
), class, mode
,
1554 else if (fmt
[i
] == 'E')
1555 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1556 changed
|= replace_oldest_value_addr (&XVECEXP (x
, i
, j
), class,
1563 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1566 replace_oldest_value_mem (x
, insn
, vd
)
1569 struct value_data
*vd
;
1571 return replace_oldest_value_addr (&XEXP (x
, 0),
1572 MODE_BASE_REG_CLASS (GET_MODE (x
)),
1573 GET_MODE (x
), insn
, vd
);
1576 /* Perform the forward copy propagation on basic block BB. */
1579 copyprop_hardreg_forward_1 (bb
, vd
)
1581 struct value_data
*vd
;
1583 bool changed
= false;
1586 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
1588 int n_ops
, i
, alt
, predicated
;
1592 if (! INSN_P (insn
))
1594 if (insn
== bb
->end
)
1600 set
= single_set (insn
);
1601 extract_insn (insn
);
1602 if (! constrain_operands (1))
1603 fatal_insn_not_found (insn
);
1604 preprocess_constraints ();
1605 alt
= which_alternative
;
1606 n_ops
= recog_data
.n_operands
;
1607 is_asm
= asm_noperands (PATTERN (insn
)) >= 0;
1609 /* Simplify the code below by rewriting things to reflect
1610 matching constraints. Also promote OP_OUT to OP_INOUT
1611 in predicated instructions. */
1613 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
1614 for (i
= 0; i
< n_ops
; ++i
)
1616 int matches
= recog_op_alt
[i
][alt
].matches
;
1618 recog_op_alt
[i
][alt
].class = recog_op_alt
[matches
][alt
].class;
1619 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
1620 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
1621 recog_data
.operand_type
[i
] = OP_INOUT
;
1624 /* For each earlyclobber operand, zap the value data. */
1625 for (i
= 0; i
< n_ops
; i
++)
1626 if (recog_op_alt
[i
][alt
].earlyclobber
)
1627 kill_value (recog_data
.operand
[i
], vd
);
1629 /* Within asms, a clobber cannot overlap inputs or outputs.
1630 I wouldn't think this were true for regular insns, but
1631 scan_rtx treats them like that... */
1632 note_stores (PATTERN (insn
), kill_clobbered_value
, vd
);
1634 /* Kill all auto-incremented values. */
1635 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1636 for_each_rtx (&PATTERN (insn
), kill_autoinc_value
, vd
);
1638 /* Kill all early-clobbered operands. */
1639 for (i
= 0; i
< n_ops
; i
++)
1640 if (recog_op_alt
[i
][alt
].earlyclobber
)
1641 kill_value (recog_data
.operand
[i
], vd
);
1643 /* Special-case plain move instructions, since we may well
1644 be able to do the move from a different register class. */
1645 if (set
&& REG_P (SET_SRC (set
)))
1647 rtx src
= SET_SRC (set
);
1648 unsigned int regno
= REGNO (src
);
1649 enum machine_mode mode
= GET_MODE (src
);
1653 /* If we are accessing SRC in some mode other that what we
1654 set it in, make sure that the replacement is valid. */
1655 if (mode
!= vd
->e
[regno
].mode
)
1657 if (HARD_REGNO_NREGS (regno
, mode
)
1658 > HARD_REGNO_NREGS (regno
, vd
->e
[regno
].mode
))
1659 goto no_move_special_case
;
1662 /* If the destination is also a register, try to find a source
1663 register in the same class. */
1664 if (REG_P (SET_DEST (set
)))
1666 new = find_oldest_value_reg (REGNO_REG_CLASS (regno
), src
, vd
);
1667 if (new && validate_change (insn
, &SET_SRC (set
), new, 0))
1670 fprintf (rtl_dump_file
,
1671 "insn %u: replaced reg %u with %u\n",
1672 INSN_UID (insn
), regno
, REGNO (new));
1674 goto did_replacement
;
1678 /* Otherwise, try all valid registers and see if its valid. */
1679 for (i
= vd
->e
[regno
].oldest_regno
; i
!= regno
;
1680 i
= vd
->e
[i
].next_regno
)
1682 new = maybe_mode_change (vd
->e
[i
].mode
, vd
->e
[regno
].mode
,
1684 if (new != NULL_RTX
)
1686 if (validate_change (insn
, &SET_SRC (set
), new, 0))
1688 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src
);
1690 fprintf (rtl_dump_file
,
1691 "insn %u: replaced reg %u with %u\n",
1692 INSN_UID (insn
), regno
, REGNO (new));
1694 goto did_replacement
;
1699 no_move_special_case
:
1701 /* For each input operand, replace a hard register with the
1702 eldest live copy that's in an appropriate register class. */
1703 for (i
= 0; i
< n_ops
; i
++)
1705 bool replaced
= false;
1707 /* Don't scan match_operand here, since we've no reg class
1708 information to pass down. Any operands that we could
1709 substitute in will be represented elsewhere. */
1710 if (recog_data
.constraints
[i
][0] == '\0')
1713 /* Don't replace in asms intentionally referencing hard regs. */
1714 if (is_asm
&& GET_CODE (recog_data
.operand
[i
]) == REG
1715 && (REGNO (recog_data
.operand
[i
])
1716 == ORIGINAL_REGNO (recog_data
.operand
[i
])))
1719 if (recog_data
.operand_type
[i
] == OP_IN
)
1721 if (recog_op_alt
[i
][alt
].is_address
)
1723 = replace_oldest_value_addr (recog_data
.operand_loc
[i
],
1724 recog_op_alt
[i
][alt
].class,
1725 VOIDmode
, insn
, vd
);
1726 else if (REG_P (recog_data
.operand
[i
]))
1728 = replace_oldest_value_reg (recog_data
.operand_loc
[i
],
1729 recog_op_alt
[i
][alt
].class,
1731 else if (GET_CODE (recog_data
.operand
[i
]) == MEM
)
1732 replaced
= replace_oldest_value_mem (recog_data
.operand
[i
],
1735 else if (GET_CODE (recog_data
.operand
[i
]) == MEM
)
1736 replaced
= replace_oldest_value_mem (recog_data
.operand
[i
],
1739 /* If we performed any replacement, update match_dups. */
1747 new = *recog_data
.operand_loc
[i
];
1748 recog_data
.operand
[i
] = new;
1749 for (j
= 0; j
< recog_data
.n_dups
; j
++)
1750 if (recog_data
.dup_num
[j
] == i
)
1751 *recog_data
.dup_loc
[j
] = new;
1756 /* Clobber call-clobbered registers. */
1757 if (GET_CODE (insn
) == CALL_INSN
)
1758 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1759 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1760 kill_value_regno (i
, vd
);
1762 /* Notice stores. */
1763 note_stores (PATTERN (insn
), kill_set_value
, vd
);
1765 /* Notice copies. */
1766 if (set
&& REG_P (SET_DEST (set
)) && REG_P (SET_SRC (set
)))
1767 copy_value (SET_DEST (set
), SET_SRC (set
), vd
);
1769 if (insn
== bb
->end
)
1776 /* Main entry point for the forward copy propagation optimization. */
1779 copyprop_hardreg_forward ()
1781 struct value_data
*all_vd
;
1783 basic_block bb
, bbp
= 0;
1785 need_refresh
= false;
1787 all_vd
= xmalloc (sizeof (struct value_data
) * last_basic_block
);
1791 /* If a block has a single predecessor, that we've already
1792 processed, begin with the value data that was live at
1793 the end of the predecessor block. */
1794 /* ??? Ought to use more intelligent queueing of blocks. */
1796 for (bbp
= bb
; bbp
&& bbp
!= bb
->pred
->src
; bbp
= bbp
->prev_bb
);
1798 && ! bb
->pred
->pred_next
1799 && ! (bb
->pred
->flags
& (EDGE_ABNORMAL_CALL
| EDGE_EH
))
1800 && bb
->pred
->src
!= ENTRY_BLOCK_PTR
1802 all_vd
[bb
->index
] = all_vd
[bb
->pred
->src
->index
];
1804 init_value_data (all_vd
+ bb
->index
);
1806 if (copyprop_hardreg_forward_1 (bb
, all_vd
+ bb
->index
))
1807 need_refresh
= true;
1813 fputs ("\n\n", rtl_dump_file
);
1815 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1816 to scan, so we have to do a life update with no initial set of
1817 blocks Just In Case. */
1818 delete_noop_moves (get_insns ());
1819 update_life_info (NULL
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
1821 | PROP_SCAN_DEAD_CODE
1822 | PROP_KILL_DEAD_CODE
);
1828 /* Dump the value chain data to stderr. */
1831 debug_value_data (vd
)
1832 struct value_data
*vd
;
1837 CLEAR_HARD_REG_SET (set
);
1839 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1840 if (vd
->e
[i
].oldest_regno
== i
)
1842 if (vd
->e
[i
].mode
== VOIDmode
)
1844 if (vd
->e
[i
].next_regno
!= INVALID_REGNUM
)
1845 fprintf (stderr
, "[%u] Bad next_regno for empty chain (%u)\n",
1846 i
, vd
->e
[i
].next_regno
);
1850 SET_HARD_REG_BIT (set
, i
);
1851 fprintf (stderr
, "[%u %s] ", i
, GET_MODE_NAME (vd
->e
[i
].mode
));
1853 for (j
= vd
->e
[i
].next_regno
;
1854 j
!= INVALID_REGNUM
;
1855 j
= vd
->e
[j
].next_regno
)
1857 if (TEST_HARD_REG_BIT (set
, j
))
1859 fprintf (stderr
, "[%u] Loop in regno chain\n", j
);
1863 if (vd
->e
[j
].oldest_regno
!= i
)
1865 fprintf (stderr
, "[%u] Bad oldest_regno (%u)\n",
1866 j
, vd
->e
[j
].oldest_regno
);
1869 SET_HARD_REG_BIT (set
, j
);
1870 fprintf (stderr
, "[%u %s] ", j
, GET_MODE_NAME (vd
->e
[j
].mode
));
1872 fputc ('\n', stderr
);
1875 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1876 if (! TEST_HARD_REG_BIT (set
, i
)
1877 && (vd
->e
[i
].mode
!= VOIDmode
1878 || vd
->e
[i
].oldest_regno
!= i
1879 || vd
->e
[i
].next_regno
!= INVALID_REGNUM
))
1880 fprintf (stderr
, "[%u] Non-empty reg in chain (%s %u %i)\n",
1881 i
, GET_MODE_NAME (vd
->e
[i
].mode
), vd
->e
[i
].oldest_regno
,
1882 vd
->e
[i
].next_regno
);
1885 #ifdef ENABLE_CHECKING
1887 validate_value_data (vd
)
1888 struct value_data
*vd
;
1893 CLEAR_HARD_REG_SET (set
);
1895 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1896 if (vd
->e
[i
].oldest_regno
== i
)
1898 if (vd
->e
[i
].mode
== VOIDmode
)
1900 if (vd
->e
[i
].next_regno
!= INVALID_REGNUM
)
1901 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1902 i
, vd
->e
[i
].next_regno
);
1906 SET_HARD_REG_BIT (set
, i
);
1908 for (j
= vd
->e
[i
].next_regno
;
1909 j
!= INVALID_REGNUM
;
1910 j
= vd
->e
[j
].next_regno
)
1912 if (TEST_HARD_REG_BIT (set
, j
))
1913 internal_error ("validate_value_data: Loop in regno chain (%u)",
1915 if (vd
->e
[j
].oldest_regno
!= i
)
1916 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1917 j
, vd
->e
[j
].oldest_regno
);
1919 SET_HARD_REG_BIT (set
, j
);
1923 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1924 if (! TEST_HARD_REG_BIT (set
, i
)
1925 && (vd
->e
[i
].mode
!= VOIDmode
1926 || vd
->e
[i
].oldest_regno
!= i
1927 || vd
->e
[i
].next_regno
!= INVALID_REGNUM
))
1928 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1929 i
, GET_MODE_NAME (vd
->e
[i
].mode
), vd
->e
[i
].oldest_regno
,
1930 vd
->e
[i
].next_regno
);