* ChangeLog: Follow spelling conventions.
[official-gcc.git] / gcc / ggc-page.c
blob294bdfc49e4a4653ff7b53a1a244e82755a1aa99
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "tree.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "toplev.h"
27 #include "varray.h"
28 #include "flags.h"
29 #include "ggc.h"
30 #include "timevar.h"
32 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
33 file open. Prefer either to valloc. */
34 #ifdef HAVE_MMAP_ANON
35 # undef HAVE_MMAP_DEV_ZERO
37 # include <sys/mman.h>
38 # ifndef MAP_FAILED
39 # define MAP_FAILED -1
40 # endif
41 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
42 # define MAP_ANONYMOUS MAP_ANON
43 # endif
44 # define USING_MMAP
46 #endif
48 #ifdef HAVE_MMAP_DEV_ZERO
50 # include <sys/mman.h>
51 # ifndef MAP_FAILED
52 # define MAP_FAILED -1
53 # endif
54 # define USING_MMAP
56 #endif
58 #ifndef USING_MMAP
59 #define USING_MALLOC_PAGE_GROUPS
60 #endif
62 /* Stategy:
64 This garbage-collecting allocator allocates objects on one of a set
65 of pages. Each page can allocate objects of a single size only;
66 available sizes are powers of two starting at four bytes. The size
67 of an allocation request is rounded up to the next power of two
68 (`order'), and satisfied from the appropriate page.
70 Each page is recorded in a page-entry, which also maintains an
71 in-use bitmap of object positions on the page. This allows the
72 allocation state of a particular object to be flipped without
73 touching the page itself.
75 Each page-entry also has a context depth, which is used to track
76 pushing and popping of allocation contexts. Only objects allocated
77 in the current (highest-numbered) context may be collected.
79 Page entries are arranged in an array of singly-linked lists. The
80 array is indexed by the allocation size, in bits, of the pages on
81 it; i.e. all pages on a list allocate objects of the same size.
82 Pages are ordered on the list such that all non-full pages precede
83 all full pages, with non-full pages arranged in order of decreasing
84 context depth.
86 Empty pages (of all orders) are kept on a single page cache list,
87 and are considered first when new pages are required; they are
88 deallocated at the start of the next collection if they haven't
89 been recycled by then. */
92 /* Define GGC_POISON to poison memory marked unused by the collector. */
93 #undef GGC_POISON
95 /* Define GGC_ALWAYS_COLLECT to perform collection every time
96 ggc_collect is invoked. Otherwise, collection is performed only
97 when a significant amount of memory has been allocated since the
98 last collection. */
99 #undef GGC_ALWAYS_COLLECT
101 #ifdef ENABLE_GC_CHECKING
102 #define GGC_POISON
103 #endif
104 #ifdef ENABLE_GC_ALWAYS_COLLECT
105 #define GGC_ALWAYS_COLLECT
106 #endif
108 /* Define GGC_DEBUG_LEVEL to print debugging information.
109 0: No debugging output.
110 1: GC statistics only.
111 2: Page-entry allocations/deallocations as well.
112 3: Object allocations as well.
113 4: Object marks as well. */
114 #define GGC_DEBUG_LEVEL (0)
116 #ifndef HOST_BITS_PER_PTR
117 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
118 #endif
121 /* A two-level tree is used to look up the page-entry for a given
122 pointer. Two chunks of the pointer's bits are extracted to index
123 the first and second levels of the tree, as follows:
125 HOST_PAGE_SIZE_BITS
126 32 | |
127 msb +----------------+----+------+------+ lsb
128 | | |
129 PAGE_L1_BITS |
131 PAGE_L2_BITS
133 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
134 pages are aligned on system page boundaries. The next most
135 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
136 index values in the lookup table, respectively.
138 For 32-bit architectures and the settings below, there are no
139 leftover bits. For architectures with wider pointers, the lookup
140 tree points to a list of pages, which must be scanned to find the
141 correct one. */
143 #define PAGE_L1_BITS (8)
144 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
145 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
146 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
148 #define LOOKUP_L1(p) \
149 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
151 #define LOOKUP_L2(p) \
152 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
154 /* The number of objects per allocation page, for objects on a page of
155 the indicated ORDER. */
156 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
158 /* The size of an object on a page of the indicated ORDER. */
159 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
161 /* For speed, we avoid doing a general integer divide to locate the
162 offset in the allocation bitmap, by precalculating numbers M, S
163 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
164 within the page which is evenly divisible by the object size Z. */
165 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
166 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
167 #define OFFSET_TO_BIT(OFFSET, ORDER) \
168 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
170 /* The number of extra orders, not corresponding to power-of-two sized
171 objects. */
173 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
175 #define RTL_SIZE(NSLOTS) \
176 (sizeof (struct rtx_def) + ((NSLOTS) - 1) * sizeof (rtunion))
178 /* The Ith entry is the maximum size of an object to be stored in the
179 Ith extra order. Adding a new entry to this array is the *only*
180 thing you need to do to add a new special allocation size. */
182 static const size_t extra_order_size_table[] = {
183 sizeof (struct tree_decl),
184 sizeof (struct tree_list),
185 RTL_SIZE (2), /* REG, MEM, PLUS, etc. */
186 RTL_SIZE (10), /* INSN, CALL_INSN, JUMP_INSN */
189 /* The total number of orders. */
191 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
193 /* We use this structure to determine the alignment required for
194 allocations. For power-of-two sized allocations, that's not a
195 problem, but it does matter for odd-sized allocations. */
197 struct max_alignment {
198 char c;
199 union {
200 HOST_WIDEST_INT i;
201 #ifdef HAVE_LONG_DOUBLE
202 long double d;
203 #else
204 double d;
205 #endif
206 } u;
209 /* The biggest alignment required. */
211 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
213 /* The Ith entry is the number of objects on a page or order I. */
215 static unsigned objects_per_page_table[NUM_ORDERS];
217 /* The Ith entry is the size of an object on a page of order I. */
219 static size_t object_size_table[NUM_ORDERS];
221 /* The Ith entry is a pair of numbers (mult, shift) such that
222 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
223 for all k evenly divisible by OBJECT_SIZE(I). */
225 static struct
227 unsigned int mult;
228 unsigned int shift;
230 inverse_table[NUM_ORDERS];
232 /* A page_entry records the status of an allocation page. This
233 structure is dynamically sized to fit the bitmap in_use_p. */
234 typedef struct page_entry
236 /* The next page-entry with objects of the same size, or NULL if
237 this is the last page-entry. */
238 struct page_entry *next;
240 /* The number of bytes allocated. (This will always be a multiple
241 of the host system page size.) */
242 size_t bytes;
244 /* The address at which the memory is allocated. */
245 char *page;
247 #ifdef USING_MALLOC_PAGE_GROUPS
248 /* Back pointer to the page group this page came from. */
249 struct page_group *group;
250 #endif
252 /* Saved in-use bit vector for pages that aren't in the topmost
253 context during collection. */
254 unsigned long *save_in_use_p;
256 /* Context depth of this page. */
257 unsigned short context_depth;
259 /* The number of free objects remaining on this page. */
260 unsigned short num_free_objects;
262 /* A likely candidate for the bit position of a free object for the
263 next allocation from this page. */
264 unsigned short next_bit_hint;
266 /* The lg of size of objects allocated from this page. */
267 unsigned char order;
269 /* A bit vector indicating whether or not objects are in use. The
270 Nth bit is one if the Nth object on this page is allocated. This
271 array is dynamically sized. */
272 unsigned long in_use_p[1];
273 } page_entry;
275 #ifdef USING_MALLOC_PAGE_GROUPS
276 /* A page_group describes a large allocation from malloc, from which
277 we parcel out aligned pages. */
278 typedef struct page_group
280 /* A linked list of all extant page groups. */
281 struct page_group *next;
283 /* The address we received from malloc. */
284 char *allocation;
286 /* The size of the block. */
287 size_t alloc_size;
289 /* A bitmask of pages in use. */
290 unsigned int in_use;
291 } page_group;
292 #endif
294 #if HOST_BITS_PER_PTR <= 32
296 /* On 32-bit hosts, we use a two level page table, as pictured above. */
297 typedef page_entry **page_table[PAGE_L1_SIZE];
299 #else
301 /* On 64-bit hosts, we use the same two level page tables plus a linked
302 list that disambiguates the top 32-bits. There will almost always be
303 exactly one entry in the list. */
304 typedef struct page_table_chain
306 struct page_table_chain *next;
307 size_t high_bits;
308 page_entry **table[PAGE_L1_SIZE];
309 } *page_table;
311 #endif
313 /* The rest of the global variables. */
314 static struct globals
316 /* The Nth element in this array is a page with objects of size 2^N.
317 If there are any pages with free objects, they will be at the
318 head of the list. NULL if there are no page-entries for this
319 object size. */
320 page_entry *pages[NUM_ORDERS];
322 /* The Nth element in this array is the last page with objects of
323 size 2^N. NULL if there are no page-entries for this object
324 size. */
325 page_entry *page_tails[NUM_ORDERS];
327 /* Lookup table for associating allocation pages with object addresses. */
328 page_table lookup;
330 /* The system's page size. */
331 size_t pagesize;
332 size_t lg_pagesize;
334 /* Bytes currently allocated. */
335 size_t allocated;
337 /* Bytes currently allocated at the end of the last collection. */
338 size_t allocated_last_gc;
340 /* Total amount of memory mapped. */
341 size_t bytes_mapped;
343 /* The current depth in the context stack. */
344 unsigned short context_depth;
346 /* A file descriptor open to /dev/zero for reading. */
347 #if defined (HAVE_MMAP_DEV_ZERO)
348 int dev_zero_fd;
349 #endif
351 /* A cache of free system pages. */
352 page_entry *free_pages;
354 #ifdef USING_MALLOC_PAGE_GROUPS
355 page_group *page_groups;
356 #endif
358 /* The file descriptor for debugging output. */
359 FILE *debug_file;
360 } G;
362 /* The size in bytes required to maintain a bitmap for the objects
363 on a page-entry. */
364 #define BITMAP_SIZE(Num_objects) \
365 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
367 /* Skip garbage collection if the current allocation is not at least
368 this factor times the allocation at the end of the last collection.
369 In other words, total allocation must expand by (this factor minus
370 one) before collection is performed. */
371 #define GGC_MIN_EXPAND_FOR_GC (1.3)
373 /* Bound `allocated_last_gc' to 4MB, to prevent the memory expansion
374 test from triggering too often when the heap is small. */
375 #define GGC_MIN_LAST_ALLOCATED (4 * 1024 * 1024)
377 /* Allocate pages in chunks of this size, to throttle calls to memory
378 allocation routines. The first page is used, the rest go onto the
379 free list. This cannot be larger than HOST_BITS_PER_INT for the
380 in_use bitmask for page_group. */
381 #define GGC_QUIRE_SIZE 16
383 static int ggc_allocated_p PARAMS ((const void *));
384 static page_entry *lookup_page_table_entry PARAMS ((const void *));
385 static void set_page_table_entry PARAMS ((void *, page_entry *));
386 #ifdef USING_MMAP
387 static char *alloc_anon PARAMS ((char *, size_t));
388 #endif
389 #ifdef USING_MALLOC_PAGE_GROUPS
390 static size_t page_group_index PARAMS ((char *, char *));
391 static void set_page_group_in_use PARAMS ((page_group *, char *));
392 static void clear_page_group_in_use PARAMS ((page_group *, char *));
393 #endif
394 static struct page_entry * alloc_page PARAMS ((unsigned));
395 static void free_page PARAMS ((struct page_entry *));
396 static void release_pages PARAMS ((void));
397 static void clear_marks PARAMS ((void));
398 static void sweep_pages PARAMS ((void));
399 static void ggc_recalculate_in_use_p PARAMS ((page_entry *));
400 static void compute_inverse PARAMS ((unsigned));
402 #ifdef GGC_POISON
403 static void poison_pages PARAMS ((void));
404 #endif
406 void debug_print_page_list PARAMS ((int));
408 /* Returns non-zero if P was allocated in GC'able memory. */
410 static inline int
411 ggc_allocated_p (p)
412 const void *p;
414 page_entry ***base;
415 size_t L1, L2;
417 #if HOST_BITS_PER_PTR <= 32
418 base = &G.lookup[0];
419 #else
420 page_table table = G.lookup;
421 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
422 while (1)
424 if (table == NULL)
425 return 0;
426 if (table->high_bits == high_bits)
427 break;
428 table = table->next;
430 base = &table->table[0];
431 #endif
433 /* Extract the level 1 and 2 indices. */
434 L1 = LOOKUP_L1 (p);
435 L2 = LOOKUP_L2 (p);
437 return base[L1] && base[L1][L2];
440 /* Traverse the page table and find the entry for a page.
441 Die (probably) if the object wasn't allocated via GC. */
443 static inline page_entry *
444 lookup_page_table_entry(p)
445 const void *p;
447 page_entry ***base;
448 size_t L1, L2;
450 #if HOST_BITS_PER_PTR <= 32
451 base = &G.lookup[0];
452 #else
453 page_table table = G.lookup;
454 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
455 while (table->high_bits != high_bits)
456 table = table->next;
457 base = &table->table[0];
458 #endif
460 /* Extract the level 1 and 2 indices. */
461 L1 = LOOKUP_L1 (p);
462 L2 = LOOKUP_L2 (p);
464 return base[L1][L2];
467 /* Set the page table entry for a page. */
469 static void
470 set_page_table_entry(p, entry)
471 void *p;
472 page_entry *entry;
474 page_entry ***base;
475 size_t L1, L2;
477 #if HOST_BITS_PER_PTR <= 32
478 base = &G.lookup[0];
479 #else
480 page_table table;
481 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
482 for (table = G.lookup; table; table = table->next)
483 if (table->high_bits == high_bits)
484 goto found;
486 /* Not found -- allocate a new table. */
487 table = (page_table) xcalloc (1, sizeof(*table));
488 table->next = G.lookup;
489 table->high_bits = high_bits;
490 G.lookup = table;
491 found:
492 base = &table->table[0];
493 #endif
495 /* Extract the level 1 and 2 indices. */
496 L1 = LOOKUP_L1 (p);
497 L2 = LOOKUP_L2 (p);
499 if (base[L1] == NULL)
500 base[L1] = (page_entry **) xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
502 base[L1][L2] = entry;
505 /* Prints the page-entry for object size ORDER, for debugging. */
507 void
508 debug_print_page_list (order)
509 int order;
511 page_entry *p;
512 printf ("Head=%p, Tail=%p:\n", (PTR) G.pages[order],
513 (PTR) G.page_tails[order]);
514 p = G.pages[order];
515 while (p != NULL)
517 printf ("%p(%1d|%3d) -> ", (PTR) p, p->context_depth,
518 p->num_free_objects);
519 p = p->next;
521 printf ("NULL\n");
522 fflush (stdout);
525 #ifdef USING_MMAP
526 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
527 (if non-null). The ifdef structure here is intended to cause a
528 compile error unless exactly one of the HAVE_* is defined. */
530 static inline char *
531 alloc_anon (pref, size)
532 char *pref ATTRIBUTE_UNUSED;
533 size_t size;
535 #ifdef HAVE_MMAP_ANON
536 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
537 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
538 #endif
539 #ifdef HAVE_MMAP_DEV_ZERO
540 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
541 MAP_PRIVATE, G.dev_zero_fd, 0);
542 #endif
544 if (page == (char *) MAP_FAILED)
546 perror ("virtual memory exhausted");
547 exit (FATAL_EXIT_CODE);
550 /* Remember that we allocated this memory. */
551 G.bytes_mapped += size;
553 return page;
555 #endif
556 #ifdef USING_MALLOC_PAGE_GROUPS
557 /* Compute the index for this page into the page group. */
559 static inline size_t
560 page_group_index (allocation, page)
561 char *allocation, *page;
563 return (size_t) (page - allocation) >> G.lg_pagesize;
566 /* Set and clear the in_use bit for this page in the page group. */
568 static inline void
569 set_page_group_in_use (group, page)
570 page_group *group;
571 char *page;
573 group->in_use |= 1 << page_group_index (group->allocation, page);
576 static inline void
577 clear_page_group_in_use (group, page)
578 page_group *group;
579 char *page;
581 group->in_use &= ~(1 << page_group_index (group->allocation, page));
583 #endif
585 /* Allocate a new page for allocating objects of size 2^ORDER,
586 and return an entry for it. The entry is not added to the
587 appropriate page_table list. */
589 static inline struct page_entry *
590 alloc_page (order)
591 unsigned order;
593 struct page_entry *entry, *p, **pp;
594 char *page;
595 size_t num_objects;
596 size_t bitmap_size;
597 size_t page_entry_size;
598 size_t entry_size;
599 #ifdef USING_MALLOC_PAGE_GROUPS
600 page_group *group;
601 #endif
603 num_objects = OBJECTS_PER_PAGE (order);
604 bitmap_size = BITMAP_SIZE (num_objects + 1);
605 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
606 entry_size = num_objects * OBJECT_SIZE (order);
607 if (entry_size < G.pagesize)
608 entry_size = G.pagesize;
610 entry = NULL;
611 page = NULL;
613 /* Check the list of free pages for one we can use. */
614 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
615 if (p->bytes == entry_size)
616 break;
618 if (p != NULL)
620 /* Recycle the allocated memory from this page ... */
621 *pp = p->next;
622 page = p->page;
624 #ifdef USING_MALLOC_PAGE_GROUPS
625 group = p->group;
626 #endif
628 /* ... and, if possible, the page entry itself. */
629 if (p->order == order)
631 entry = p;
632 memset (entry, 0, page_entry_size);
634 else
635 free (p);
637 #ifdef USING_MMAP
638 else if (entry_size == G.pagesize)
640 /* We want just one page. Allocate a bunch of them and put the
641 extras on the freelist. (Can only do this optimization with
642 mmap for backing store.) */
643 struct page_entry *e, *f = G.free_pages;
644 int i;
646 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
648 /* This loop counts down so that the chain will be in ascending
649 memory order. */
650 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
652 e = (struct page_entry *) xcalloc (1, page_entry_size);
653 e->order = order;
654 e->bytes = G.pagesize;
655 e->page = page + (i << G.lg_pagesize);
656 e->next = f;
657 f = e;
660 G.free_pages = f;
662 else
663 page = alloc_anon (NULL, entry_size);
664 #endif
665 #ifdef USING_MALLOC_PAGE_GROUPS
666 else
668 /* Allocate a large block of memory and serve out the aligned
669 pages therein. This results in much less memory wastage
670 than the traditional implementation of valloc. */
672 char *allocation, *a, *enda;
673 size_t alloc_size, head_slop, tail_slop;
674 int multiple_pages = (entry_size == G.pagesize);
676 if (multiple_pages)
677 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
678 else
679 alloc_size = entry_size + G.pagesize - 1;
680 allocation = xmalloc (alloc_size);
682 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
683 head_slop = page - allocation;
684 if (multiple_pages)
685 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
686 else
687 tail_slop = alloc_size - entry_size - head_slop;
688 enda = allocation + alloc_size - tail_slop;
690 /* We allocated N pages, which are likely not aligned, leaving
691 us with N-1 usable pages. We plan to place the page_group
692 structure somewhere in the slop. */
693 if (head_slop >= sizeof (page_group))
694 group = (page_group *)page - 1;
695 else
697 /* We magically got an aligned allocation. Too bad, we have
698 to waste a page anyway. */
699 if (tail_slop == 0)
701 enda -= G.pagesize;
702 tail_slop += G.pagesize;
704 if (tail_slop < sizeof (page_group))
705 abort ();
706 group = (page_group *)enda;
707 tail_slop -= sizeof (page_group);
710 /* Remember that we allocated this memory. */
711 group->next = G.page_groups;
712 group->allocation = allocation;
713 group->alloc_size = alloc_size;
714 group->in_use = 0;
715 G.page_groups = group;
716 G.bytes_mapped += alloc_size;
718 /* If we allocated multiple pages, put the rest on the free list. */
719 if (multiple_pages)
721 struct page_entry *e, *f = G.free_pages;
722 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
724 e = (struct page_entry *) xcalloc (1, page_entry_size);
725 e->order = order;
726 e->bytes = G.pagesize;
727 e->page = a;
728 e->group = group;
729 e->next = f;
730 f = e;
732 G.free_pages = f;
735 #endif
737 if (entry == NULL)
738 entry = (struct page_entry *) xcalloc (1, page_entry_size);
740 entry->bytes = entry_size;
741 entry->page = page;
742 entry->context_depth = G.context_depth;
743 entry->order = order;
744 entry->num_free_objects = num_objects;
745 entry->next_bit_hint = 1;
747 #ifdef USING_MALLOC_PAGE_GROUPS
748 entry->group = group;
749 set_page_group_in_use (group, page);
750 #endif
752 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
753 increment the hint. */
754 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
755 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
757 set_page_table_entry (page, entry);
759 if (GGC_DEBUG_LEVEL >= 2)
760 fprintf (G.debug_file,
761 "Allocating page at %p, object size=%lu, data %p-%p\n",
762 (PTR) entry, (unsigned long) OBJECT_SIZE (order), page,
763 page + entry_size - 1);
765 return entry;
768 /* For a page that is no longer needed, put it on the free page list. */
770 static inline void
771 free_page (entry)
772 page_entry *entry;
774 if (GGC_DEBUG_LEVEL >= 2)
775 fprintf (G.debug_file,
776 "Deallocating page at %p, data %p-%p\n", (PTR) entry,
777 entry->page, entry->page + entry->bytes - 1);
779 set_page_table_entry (entry->page, NULL);
781 #ifdef USING_MALLOC_PAGE_GROUPS
782 clear_page_group_in_use (entry->group, entry->page);
783 #endif
785 entry->next = G.free_pages;
786 G.free_pages = entry;
789 /* Release the free page cache to the system. */
791 static void
792 release_pages ()
794 #ifdef USING_MMAP
795 page_entry *p, *next;
796 char *start;
797 size_t len;
799 /* Gather up adjacent pages so they are unmapped together. */
800 p = G.free_pages;
802 while (p)
804 start = p->page;
805 next = p->next;
806 len = p->bytes;
807 free (p);
808 p = next;
810 while (p && p->page == start + len)
812 next = p->next;
813 len += p->bytes;
814 free (p);
815 p = next;
818 munmap (start, len);
819 G.bytes_mapped -= len;
822 G.free_pages = NULL;
823 #endif
824 #ifdef USING_MALLOC_PAGE_GROUPS
825 page_entry **pp, *p;
826 page_group **gp, *g;
828 /* Remove all pages from free page groups from the list. */
829 pp = &G.free_pages;
830 while ((p = *pp) != NULL)
831 if (p->group->in_use == 0)
833 *pp = p->next;
834 free (p);
836 else
837 pp = &p->next;
839 /* Remove all free page groups, and release the storage. */
840 gp = &G.page_groups;
841 while ((g = *gp) != NULL)
842 if (g->in_use == 0)
844 *gp = g->next;
845 G.bytes_mapped -= g->alloc_size;
846 free (g->allocation);
848 else
849 gp = &g->next;
850 #endif
853 /* This table provides a fast way to determine ceil(log_2(size)) for
854 allocation requests. The minimum allocation size is eight bytes. */
856 static unsigned char size_lookup[257] =
858 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
859 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
860 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
861 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
862 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
863 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
864 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
865 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
866 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
867 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
868 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
869 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
870 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
871 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
872 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
873 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
877 /* Allocate a chunk of memory of SIZE bytes. If ZERO is non-zero, the
878 memory is zeroed; otherwise, its contents are undefined. */
880 void *
881 ggc_alloc (size)
882 size_t size;
884 unsigned order, word, bit, object_offset;
885 struct page_entry *entry;
886 void *result;
888 if (size <= 256)
889 order = size_lookup[size];
890 else
892 order = 9;
893 while (size > OBJECT_SIZE (order))
894 order++;
897 /* If there are non-full pages for this size allocation, they are at
898 the head of the list. */
899 entry = G.pages[order];
901 /* If there is no page for this object size, or all pages in this
902 context are full, allocate a new page. */
903 if (entry == NULL || entry->num_free_objects == 0)
905 struct page_entry *new_entry;
906 new_entry = alloc_page (order);
908 /* If this is the only entry, it's also the tail. */
909 if (entry == NULL)
910 G.page_tails[order] = new_entry;
912 /* Put new pages at the head of the page list. */
913 new_entry->next = entry;
914 entry = new_entry;
915 G.pages[order] = new_entry;
917 /* For a new page, we know the word and bit positions (in the
918 in_use bitmap) of the first available object -- they're zero. */
919 new_entry->next_bit_hint = 1;
920 word = 0;
921 bit = 0;
922 object_offset = 0;
924 else
926 /* First try to use the hint left from the previous allocation
927 to locate a clear bit in the in-use bitmap. We've made sure
928 that the one-past-the-end bit is always set, so if the hint
929 has run over, this test will fail. */
930 unsigned hint = entry->next_bit_hint;
931 word = hint / HOST_BITS_PER_LONG;
932 bit = hint % HOST_BITS_PER_LONG;
934 /* If the hint didn't work, scan the bitmap from the beginning. */
935 if ((entry->in_use_p[word] >> bit) & 1)
937 word = bit = 0;
938 while (~entry->in_use_p[word] == 0)
939 ++word;
940 while ((entry->in_use_p[word] >> bit) & 1)
941 ++bit;
942 hint = word * HOST_BITS_PER_LONG + bit;
945 /* Next time, try the next bit. */
946 entry->next_bit_hint = hint + 1;
948 object_offset = hint * OBJECT_SIZE (order);
951 /* Set the in-use bit. */
952 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
954 /* Keep a running total of the number of free objects. If this page
955 fills up, we may have to move it to the end of the list if the
956 next page isn't full. If the next page is full, all subsequent
957 pages are full, so there's no need to move it. */
958 if (--entry->num_free_objects == 0
959 && entry->next != NULL
960 && entry->next->num_free_objects > 0)
962 G.pages[order] = entry->next;
963 entry->next = NULL;
964 G.page_tails[order]->next = entry;
965 G.page_tails[order] = entry;
968 /* Calculate the object's address. */
969 result = entry->page + object_offset;
971 #ifdef GGC_POISON
972 /* `Poison' the entire allocated object, including any padding at
973 the end. */
974 memset (result, 0xaf, OBJECT_SIZE (order));
975 #endif
977 /* Keep track of how many bytes are being allocated. This
978 information is used in deciding when to collect. */
979 G.allocated += OBJECT_SIZE (order);
981 if (GGC_DEBUG_LEVEL >= 3)
982 fprintf (G.debug_file,
983 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
984 (unsigned long) size, (unsigned long) OBJECT_SIZE (order), result,
985 (PTR) entry);
987 return result;
990 /* If P is not marked, marks it and return false. Otherwise return true.
991 P must have been allocated by the GC allocator; it mustn't point to
992 static objects, stack variables, or memory allocated with malloc. */
995 ggc_set_mark (p)
996 const void *p;
998 page_entry *entry;
999 unsigned bit, word;
1000 unsigned long mask;
1002 /* Look up the page on which the object is alloced. If the object
1003 wasn't allocated by the collector, we'll probably die. */
1004 entry = lookup_page_table_entry (p);
1005 #ifdef ENABLE_CHECKING
1006 if (entry == NULL)
1007 abort ();
1008 #endif
1010 /* Calculate the index of the object on the page; this is its bit
1011 position in the in_use_p bitmap. */
1012 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1013 word = bit / HOST_BITS_PER_LONG;
1014 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1016 /* If the bit was previously set, skip it. */
1017 if (entry->in_use_p[word] & mask)
1018 return 1;
1020 /* Otherwise set it, and decrement the free object count. */
1021 entry->in_use_p[word] |= mask;
1022 entry->num_free_objects -= 1;
1024 if (GGC_DEBUG_LEVEL >= 4)
1025 fprintf (G.debug_file, "Marking %p\n", p);
1027 return 0;
1030 /* Return 1 if P has been marked, zero otherwise.
1031 P must have been allocated by the GC allocator; it mustn't point to
1032 static objects, stack variables, or memory allocated with malloc. */
1035 ggc_marked_p (p)
1036 const void *p;
1038 page_entry *entry;
1039 unsigned bit, word;
1040 unsigned long mask;
1042 /* Look up the page on which the object is alloced. If the object
1043 wasn't allocated by the collector, we'll probably die. */
1044 entry = lookup_page_table_entry (p);
1045 #ifdef ENABLE_CHECKING
1046 if (entry == NULL)
1047 abort ();
1048 #endif
1050 /* Calculate the index of the object on the page; this is its bit
1051 position in the in_use_p bitmap. */
1052 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1053 word = bit / HOST_BITS_PER_LONG;
1054 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1056 return (entry->in_use_p[word] & mask) != 0;
1059 /* Return the size of the gc-able object P. */
1061 size_t
1062 ggc_get_size (p)
1063 const void *p;
1065 page_entry *pe = lookup_page_table_entry (p);
1066 return OBJECT_SIZE (pe->order);
1069 /* Subroutine of init_ggc which computes the pair of numbers used to
1070 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1072 This algorithm is taken from Granlund and Montgomery's paper
1073 "Division by Invariant Integers using Multiplication"
1074 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1075 constants). */
1077 static void
1078 compute_inverse (order)
1079 unsigned order;
1081 unsigned size, inv, e;
1083 /* There can be only one object per "page" in a bucket for sizes
1084 larger than half a machine page; it will always have offset zero. */
1085 if (OBJECT_SIZE (order) > G.pagesize/2)
1087 if (OBJECTS_PER_PAGE (order) != 1)
1088 abort ();
1090 DIV_MULT (order) = 1;
1091 DIV_SHIFT (order) = 0;
1092 return;
1095 size = OBJECT_SIZE (order);
1096 e = 0;
1097 while (size % 2 == 0)
1099 e++;
1100 size >>= 1;
1103 inv = size;
1104 while (inv * size != 1)
1105 inv = inv * (2 - inv*size);
1107 DIV_MULT (order) = inv;
1108 DIV_SHIFT (order) = e;
1111 /* Initialize the ggc-mmap allocator. */
1112 void
1113 init_ggc ()
1115 unsigned order;
1117 G.pagesize = getpagesize();
1118 G.lg_pagesize = exact_log2 (G.pagesize);
1120 #ifdef HAVE_MMAP_DEV_ZERO
1121 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1122 if (G.dev_zero_fd == -1)
1123 abort ();
1124 #endif
1126 #if 0
1127 G.debug_file = fopen ("ggc-mmap.debug", "w");
1128 #else
1129 G.debug_file = stdout;
1130 #endif
1132 G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
1134 #ifdef USING_MMAP
1135 /* StunOS has an amazing off-by-one error for the first mmap allocation
1136 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1137 believe, is an unaligned page allocation, which would cause us to
1138 hork badly if we tried to use it. */
1140 char *p = alloc_anon (NULL, G.pagesize);
1141 struct page_entry *e;
1142 if ((size_t)p & (G.pagesize - 1))
1144 /* How losing. Discard this one and try another. If we still
1145 can't get something useful, give up. */
1147 p = alloc_anon (NULL, G.pagesize);
1148 if ((size_t)p & (G.pagesize - 1))
1149 abort ();
1152 /* We have a good page, might as well hold onto it... */
1153 e = (struct page_entry *) xcalloc (1, sizeof (struct page_entry));
1154 e->bytes = G.pagesize;
1155 e->page = p;
1156 e->next = G.free_pages;
1157 G.free_pages = e;
1159 #endif
1161 /* Initialize the object size table. */
1162 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1163 object_size_table[order] = (size_t) 1 << order;
1164 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1166 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1168 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1169 so that we're sure of getting aligned memory. */
1170 s = CEIL (s, MAX_ALIGNMENT) * MAX_ALIGNMENT;
1171 object_size_table[order] = s;
1174 /* Initialize the objects-per-page and inverse tables. */
1175 for (order = 0; order < NUM_ORDERS; ++order)
1177 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1178 if (objects_per_page_table[order] == 0)
1179 objects_per_page_table[order] = 1;
1180 compute_inverse (order);
1183 /* Reset the size_lookup array to put appropriately sized objects in
1184 the special orders. All objects bigger than the previous power
1185 of two, but no greater than the special size, should go in the
1186 new order. */
1187 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1189 int o;
1190 int i;
1192 o = size_lookup[OBJECT_SIZE (order)];
1193 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1194 size_lookup[i] = order;
1198 /* Increment the `GC context'. Objects allocated in an outer context
1199 are never freed, eliminating the need to register their roots. */
1201 void
1202 ggc_push_context ()
1204 ++G.context_depth;
1206 /* Die on wrap. */
1207 if (G.context_depth == 0)
1208 abort ();
1211 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1212 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1214 static void
1215 ggc_recalculate_in_use_p (p)
1216 page_entry *p;
1218 unsigned int i;
1219 size_t num_objects;
1221 /* Because the past-the-end bit in in_use_p is always set, we
1222 pretend there is one additional object. */
1223 num_objects = OBJECTS_PER_PAGE (p->order) + 1;
1225 /* Reset the free object count. */
1226 p->num_free_objects = num_objects;
1228 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1229 for (i = 0;
1230 i < CEIL (BITMAP_SIZE (num_objects),
1231 sizeof (*p->in_use_p));
1232 ++i)
1234 unsigned long j;
1236 /* Something is in use if it is marked, or if it was in use in a
1237 context further down the context stack. */
1238 p->in_use_p[i] |= p->save_in_use_p[i];
1240 /* Decrement the free object count for every object allocated. */
1241 for (j = p->in_use_p[i]; j; j >>= 1)
1242 p->num_free_objects -= (j & 1);
1245 if (p->num_free_objects >= num_objects)
1246 abort ();
1249 /* Decrement the `GC context'. All objects allocated since the
1250 previous ggc_push_context are migrated to the outer context. */
1252 void
1253 ggc_pop_context ()
1255 unsigned order, depth;
1257 depth = --G.context_depth;
1259 /* Any remaining pages in the popped context are lowered to the new
1260 current context; i.e. objects allocated in the popped context and
1261 left over are imported into the previous context. */
1262 for (order = 2; order < NUM_ORDERS; order++)
1264 page_entry *p;
1266 for (p = G.pages[order]; p != NULL; p = p->next)
1268 if (p->context_depth > depth)
1269 p->context_depth = depth;
1271 /* If this page is now in the topmost context, and we'd
1272 saved its allocation state, restore it. */
1273 else if (p->context_depth == depth && p->save_in_use_p)
1275 ggc_recalculate_in_use_p (p);
1276 free (p->save_in_use_p);
1277 p->save_in_use_p = 0;
1283 /* Unmark all objects. */
1285 static inline void
1286 clear_marks ()
1288 unsigned order;
1290 for (order = 2; order < NUM_ORDERS; order++)
1292 size_t num_objects = OBJECTS_PER_PAGE (order);
1293 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1294 page_entry *p;
1296 for (p = G.pages[order]; p != NULL; p = p->next)
1298 #ifdef ENABLE_CHECKING
1299 /* The data should be page-aligned. */
1300 if ((size_t) p->page & (G.pagesize - 1))
1301 abort ();
1302 #endif
1304 /* Pages that aren't in the topmost context are not collected;
1305 nevertheless, we need their in-use bit vectors to store GC
1306 marks. So, back them up first. */
1307 if (p->context_depth < G.context_depth)
1309 if (! p->save_in_use_p)
1310 p->save_in_use_p = xmalloc (bitmap_size);
1311 memcpy (p->save_in_use_p, p->in_use_p, bitmap_size);
1314 /* Reset reset the number of free objects and clear the
1315 in-use bits. These will be adjusted by mark_obj. */
1316 p->num_free_objects = num_objects;
1317 memset (p->in_use_p, 0, bitmap_size);
1319 /* Make sure the one-past-the-end bit is always set. */
1320 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1321 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1326 /* Free all empty pages. Partially empty pages need no attention
1327 because the `mark' bit doubles as an `unused' bit. */
1329 static inline void
1330 sweep_pages ()
1332 unsigned order;
1334 for (order = 2; order < NUM_ORDERS; order++)
1336 /* The last page-entry to consider, regardless of entries
1337 placed at the end of the list. */
1338 page_entry * const last = G.page_tails[order];
1340 size_t num_objects = OBJECTS_PER_PAGE (order);
1341 size_t live_objects;
1342 page_entry *p, *previous;
1343 int done;
1345 p = G.pages[order];
1346 if (p == NULL)
1347 continue;
1349 previous = NULL;
1352 page_entry *next = p->next;
1354 /* Loop until all entries have been examined. */
1355 done = (p == last);
1357 /* Add all live objects on this page to the count of
1358 allocated memory. */
1359 live_objects = num_objects - p->num_free_objects;
1361 G.allocated += OBJECT_SIZE (order) * live_objects;
1363 /* Only objects on pages in the topmost context should get
1364 collected. */
1365 if (p->context_depth < G.context_depth)
1368 /* Remove the page if it's empty. */
1369 else if (live_objects == 0)
1371 if (! previous)
1372 G.pages[order] = next;
1373 else
1374 previous->next = next;
1376 /* Are we removing the last element? */
1377 if (p == G.page_tails[order])
1378 G.page_tails[order] = previous;
1379 free_page (p);
1380 p = previous;
1383 /* If the page is full, move it to the end. */
1384 else if (p->num_free_objects == 0)
1386 /* Don't move it if it's already at the end. */
1387 if (p != G.page_tails[order])
1389 /* Move p to the end of the list. */
1390 p->next = NULL;
1391 G.page_tails[order]->next = p;
1393 /* Update the tail pointer... */
1394 G.page_tails[order] = p;
1396 /* ... and the head pointer, if necessary. */
1397 if (! previous)
1398 G.pages[order] = next;
1399 else
1400 previous->next = next;
1401 p = previous;
1405 /* If we've fallen through to here, it's a page in the
1406 topmost context that is neither full nor empty. Such a
1407 page must precede pages at lesser context depth in the
1408 list, so move it to the head. */
1409 else if (p != G.pages[order])
1411 previous->next = p->next;
1412 p->next = G.pages[order];
1413 G.pages[order] = p;
1414 /* Are we moving the last element? */
1415 if (G.page_tails[order] == p)
1416 G.page_tails[order] = previous;
1417 p = previous;
1420 previous = p;
1421 p = next;
1423 while (! done);
1425 /* Now, restore the in_use_p vectors for any pages from contexts
1426 other than the current one. */
1427 for (p = G.pages[order]; p; p = p->next)
1428 if (p->context_depth != G.context_depth)
1429 ggc_recalculate_in_use_p (p);
1433 #ifdef GGC_POISON
1434 /* Clobber all free objects. */
1436 static inline void
1437 poison_pages ()
1439 unsigned order;
1441 for (order = 2; order < NUM_ORDERS; order++)
1443 size_t num_objects = OBJECTS_PER_PAGE (order);
1444 size_t size = OBJECT_SIZE (order);
1445 page_entry *p;
1447 for (p = G.pages[order]; p != NULL; p = p->next)
1449 size_t i;
1451 if (p->context_depth != G.context_depth)
1452 /* Since we don't do any collection for pages in pushed
1453 contexts, there's no need to do any poisoning. And
1454 besides, the IN_USE_P array isn't valid until we pop
1455 contexts. */
1456 continue;
1458 for (i = 0; i < num_objects; i++)
1460 size_t word, bit;
1461 word = i / HOST_BITS_PER_LONG;
1462 bit = i % HOST_BITS_PER_LONG;
1463 if (((p->in_use_p[word] >> bit) & 1) == 0)
1464 memset (p->page + i * size, 0xa5, size);
1469 #endif
1471 /* Top level mark-and-sweep routine. */
1473 void
1474 ggc_collect ()
1476 /* Avoid frequent unnecessary work by skipping collection if the
1477 total allocations haven't expanded much since the last
1478 collection. */
1479 #ifndef GGC_ALWAYS_COLLECT
1480 if (G.allocated < GGC_MIN_EXPAND_FOR_GC * G.allocated_last_gc)
1481 return;
1482 #endif
1484 timevar_push (TV_GC);
1485 if (!quiet_flag)
1486 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1488 /* Zero the total allocated bytes. This will be recalculated in the
1489 sweep phase. */
1490 G.allocated = 0;
1492 /* Release the pages we freed the last time we collected, but didn't
1493 reuse in the interim. */
1494 release_pages ();
1496 clear_marks ();
1497 ggc_mark_roots ();
1499 #ifdef GGC_POISON
1500 poison_pages ();
1501 #endif
1503 sweep_pages ();
1505 G.allocated_last_gc = G.allocated;
1506 if (G.allocated_last_gc < GGC_MIN_LAST_ALLOCATED)
1507 G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
1509 timevar_pop (TV_GC);
1511 if (!quiet_flag)
1512 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1515 /* Print allocation statistics. */
1516 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1517 ? (x) \
1518 : ((x) < 1024*1024*10 \
1519 ? (x) / 1024 \
1520 : (x) / (1024*1024))))
1521 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1523 void
1524 ggc_print_statistics ()
1526 struct ggc_statistics stats;
1527 unsigned int i;
1528 size_t total_overhead = 0;
1530 /* Clear the statistics. */
1531 memset (&stats, 0, sizeof (stats));
1533 /* Make sure collection will really occur. */
1534 G.allocated_last_gc = 0;
1536 /* Collect and print the statistics common across collectors. */
1537 ggc_print_common_statistics (stderr, &stats);
1539 /* Release free pages so that we will not count the bytes allocated
1540 there as part of the total allocated memory. */
1541 release_pages ();
1543 /* Collect some information about the various sizes of
1544 allocation. */
1545 fprintf (stderr, "\n%-5s %10s %10s %10s\n",
1546 "Size", "Allocated", "Used", "Overhead");
1547 for (i = 0; i < NUM_ORDERS; ++i)
1549 page_entry *p;
1550 size_t allocated;
1551 size_t in_use;
1552 size_t overhead;
1554 /* Skip empty entries. */
1555 if (!G.pages[i])
1556 continue;
1558 overhead = allocated = in_use = 0;
1560 /* Figure out the total number of bytes allocated for objects of
1561 this size, and how many of them are actually in use. Also figure
1562 out how much memory the page table is using. */
1563 for (p = G.pages[i]; p; p = p->next)
1565 allocated += p->bytes;
1566 in_use +=
1567 (OBJECTS_PER_PAGE (i) - p->num_free_objects) * OBJECT_SIZE (i);
1569 overhead += (sizeof (page_entry) - sizeof (long)
1570 + BITMAP_SIZE (OBJECTS_PER_PAGE (i) + 1));
1572 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1573 (unsigned long) OBJECT_SIZE (i),
1574 SCALE (allocated), LABEL (allocated),
1575 SCALE (in_use), LABEL (in_use),
1576 SCALE (overhead), LABEL (overhead));
1577 total_overhead += overhead;
1579 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1580 SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
1581 SCALE (G.allocated), LABEL(G.allocated),
1582 SCALE (total_overhead), LABEL (total_overhead));