* ChangeLog: Follow spelling conventions.
[official-gcc.git] / gcc / emit-rtl.c
blobb8297a8808cfb0534be94235f5a01c0cb0e7201e
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static int label_num = 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num;
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
92 rtx global_rtl[GR_MAX];
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
106 rtx const_true_rtx;
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconstm1;
113 /* All references to the following fixed hard registers go through
114 these unique rtl objects. On machines where the frame-pointer and
115 arg-pointer are the same register, they use the same unique object.
117 After register allocation, other rtl objects which used to be pseudo-regs
118 may be clobbered to refer to the frame-pointer register.
119 But references that were originally to the frame-pointer can be
120 distinguished from the others because they contain frame_pointer_rtx.
122 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
123 tricky: until register elimination has taken place hard_frame_pointer_rtx
124 should be used if it is being set, and frame_pointer_rtx otherwise. After
125 register elimination hard_frame_pointer_rtx should always be used.
126 On machines where the two registers are same (most) then these are the
127 same.
129 In an inline procedure, the stack and frame pointer rtxs may not be
130 used for anything else. */
131 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
132 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
133 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
134 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
135 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
144 integers. */
146 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
152 htab_t const_int_htab;
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
156 htab_t mem_attrs_htab;
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_linenum (cfun->emit->x_last_linenum)
166 #define last_filename (cfun->emit->x_last_filename)
167 #define first_label_num (cfun->emit->x_first_label_num)
169 static rtx make_jump_insn_raw PARAMS ((rtx));
170 static rtx make_call_insn_raw PARAMS ((rtx));
171 static rtx find_line_note PARAMS ((rtx));
172 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
173 int));
174 static void unshare_all_rtl_1 PARAMS ((rtx));
175 static void unshare_all_decls PARAMS ((tree));
176 static void reset_used_decls PARAMS ((tree));
177 static void mark_label_nuses PARAMS ((rtx));
178 static hashval_t const_int_htab_hash PARAMS ((const void *));
179 static int const_int_htab_eq PARAMS ((const void *,
180 const void *));
181 static hashval_t const_double_htab_hash PARAMS ((const void *));
182 static int const_double_htab_eq PARAMS ((const void *,
183 const void *));
184 static rtx lookup_const_double PARAMS ((rtx));
185 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
186 static int mem_attrs_htab_eq PARAMS ((const void *,
187 const void *));
188 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
189 rtx, unsigned int,
190 enum machine_mode));
191 static tree component_ref_for_mem_expr PARAMS ((tree));
192 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
194 /* Probability of the conditional branch currently proceeded by try_split.
195 Set to -1 otherwise. */
196 int split_branch_probability = -1;
198 /* Returns a hash code for X (which is a really a CONST_INT). */
200 static hashval_t
201 const_int_htab_hash (x)
202 const void *x;
204 return (hashval_t) INTVAL ((struct rtx_def *) x);
207 /* Returns non-zero if the value represented by X (which is really a
208 CONST_INT) is the same as that given by Y (which is really a
209 HOST_WIDE_INT *). */
211 static int
212 const_int_htab_eq (x, y)
213 const void *x;
214 const void *y;
216 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
219 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
220 static hashval_t
221 const_double_htab_hash (x)
222 const void *x;
224 hashval_t h = 0;
225 size_t i;
226 rtx value = (rtx) x;
228 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
229 h ^= XWINT (value, i);
230 return h;
233 /* Returns non-zero if the value represented by X (really a ...)
234 is the same as that represented by Y (really a ...) */
235 static int
236 const_double_htab_eq (x, y)
237 const void *x;
238 const void *y;
240 rtx a = (rtx)x, b = (rtx)y;
241 size_t i;
243 if (GET_MODE (a) != GET_MODE (b))
244 return 0;
245 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
246 if (XWINT (a, i) != XWINT (b, i))
247 return 0;
249 return 1;
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
254 static hashval_t
255 mem_attrs_htab_hash (x)
256 const void *x;
258 mem_attrs *p = (mem_attrs *) x;
260 return (p->alias ^ (p->align * 1000)
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
263 ^ (size_t) p->expr);
266 /* Returns non-zero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
270 static int
271 mem_attrs_htab_eq (x, y)
272 const void *x;
273 const void *y;
275 mem_attrs *p = (mem_attrs *) x;
276 mem_attrs *q = (mem_attrs *) y;
278 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
279 && p->size == q->size && p->align == q->align);
282 /* Allocate a new mem_attrs structure and insert it into the hash table if
283 one identical to it is not already in the table. We are doing this for
284 MEM of mode MODE. */
286 static mem_attrs *
287 get_mem_attrs (alias, expr, offset, size, align, mode)
288 HOST_WIDE_INT alias;
289 tree expr;
290 rtx offset;
291 rtx size;
292 unsigned int align;
293 enum machine_mode mode;
295 mem_attrs attrs;
296 void **slot;
298 /* If everything is the default, we can just return zero. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (align == BITS_PER_UNIT
303 || (STRICT_ALIGNMENT
304 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
305 return 0;
307 attrs.alias = alias;
308 attrs.expr = expr;
309 attrs.offset = offset;
310 attrs.size = size;
311 attrs.align = align;
313 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
314 if (*slot == 0)
316 *slot = ggc_alloc (sizeof (mem_attrs));
317 memcpy (*slot, &attrs, sizeof (mem_attrs));
320 return *slot;
323 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
324 don't attempt to share with the various global pieces of rtl (such as
325 frame_pointer_rtx). */
328 gen_raw_REG (mode, regno)
329 enum machine_mode mode;
330 int regno;
332 rtx x = gen_rtx_raw_REG (mode, regno);
333 ORIGINAL_REGNO (x) = regno;
334 return x;
337 /* There are some RTL codes that require special attention; the generation
338 functions do the raw handling. If you add to this list, modify
339 special_rtx in gengenrtl.c as well. */
342 gen_rtx_CONST_INT (mode, arg)
343 enum machine_mode mode ATTRIBUTE_UNUSED;
344 HOST_WIDE_INT arg;
346 void **slot;
348 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
349 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
351 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
352 if (const_true_rtx && arg == STORE_FLAG_VALUE)
353 return const_true_rtx;
354 #endif
356 /* Look up the CONST_INT in the hash table. */
357 slot = htab_find_slot_with_hash (const_int_htab, &arg,
358 (hashval_t) arg, INSERT);
359 if (*slot == 0)
360 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
362 return (rtx) *slot;
366 gen_int_mode (c, mode)
367 HOST_WIDE_INT c;
368 enum machine_mode mode;
370 return GEN_INT (trunc_int_for_mode (c, mode));
373 /* CONST_DOUBLEs might be created from pairs of integers, or from
374 REAL_VALUE_TYPEs. Also, their length is known only at run time,
375 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
377 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
378 hash table. If so, return its counterpart; otherwise add it
379 to the hash table and return it. */
380 static rtx
381 lookup_const_double (real)
382 rtx real;
384 void **slot = htab_find_slot (const_double_htab, real, INSERT);
385 if (*slot == 0)
386 *slot = real;
388 return (rtx) *slot;
391 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
392 VALUE in mode MODE. */
394 const_double_from_real_value (value, mode)
395 REAL_VALUE_TYPE value;
396 enum machine_mode mode;
398 rtx real = rtx_alloc (CONST_DOUBLE);
399 PUT_MODE (real, mode);
401 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
403 return lookup_const_double (real);
406 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
407 of ints: I0 is the low-order word and I1 is the high-order word.
408 Do not use this routine for non-integer modes; convert to
409 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
412 immed_double_const (i0, i1, mode)
413 HOST_WIDE_INT i0, i1;
414 enum machine_mode mode;
416 rtx value;
417 unsigned int i;
419 if (mode != VOIDmode)
421 int width;
422 if (GET_MODE_CLASS (mode) != MODE_INT
423 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
424 /* We can get a 0 for an error mark. */
425 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
426 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
427 abort ();
429 /* We clear out all bits that don't belong in MODE, unless they and
430 our sign bit are all one. So we get either a reasonable negative
431 value or a reasonable unsigned value for this mode. */
432 width = GET_MODE_BITSIZE (mode);
433 if (width < HOST_BITS_PER_WIDE_INT
434 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
435 != ((HOST_WIDE_INT) (-1) << (width - 1))))
436 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
437 else if (width == HOST_BITS_PER_WIDE_INT
438 && ! (i1 == ~0 && i0 < 0))
439 i1 = 0;
440 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
441 /* We cannot represent this value as a constant. */
442 abort ();
444 /* If this would be an entire word for the target, but is not for
445 the host, then sign-extend on the host so that the number will
446 look the same way on the host that it would on the target.
448 For example, when building a 64 bit alpha hosted 32 bit sparc
449 targeted compiler, then we want the 32 bit unsigned value -1 to be
450 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
451 The latter confuses the sparc backend. */
453 if (width < HOST_BITS_PER_WIDE_INT
454 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
455 i0 |= ((HOST_WIDE_INT) (-1) << width);
457 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
458 CONST_INT.
460 ??? Strictly speaking, this is wrong if we create a CONST_INT for
461 a large unsigned constant with the size of MODE being
462 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
463 in a wider mode. In that case we will mis-interpret it as a
464 negative number.
466 Unfortunately, the only alternative is to make a CONST_DOUBLE for
467 any constant in any mode if it is an unsigned constant larger
468 than the maximum signed integer in an int on the host. However,
469 doing this will break everyone that always expects to see a
470 CONST_INT for SImode and smaller.
472 We have always been making CONST_INTs in this case, so nothing
473 new is being broken. */
475 if (width <= HOST_BITS_PER_WIDE_INT)
476 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
479 /* If this integer fits in one word, return a CONST_INT. */
480 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
481 return GEN_INT (i0);
483 /* We use VOIDmode for integers. */
484 value = rtx_alloc (CONST_DOUBLE);
485 PUT_MODE (value, VOIDmode);
487 CONST_DOUBLE_LOW (value) = i0;
488 CONST_DOUBLE_HIGH (value) = i1;
490 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
491 XWINT (value, i) = 0;
493 return lookup_const_double (value);
497 gen_rtx_REG (mode, regno)
498 enum machine_mode mode;
499 unsigned int regno;
501 /* In case the MD file explicitly references the frame pointer, have
502 all such references point to the same frame pointer. This is
503 used during frame pointer elimination to distinguish the explicit
504 references to these registers from pseudos that happened to be
505 assigned to them.
507 If we have eliminated the frame pointer or arg pointer, we will
508 be using it as a normal register, for example as a spill
509 register. In such cases, we might be accessing it in a mode that
510 is not Pmode and therefore cannot use the pre-allocated rtx.
512 Also don't do this when we are making new REGs in reload, since
513 we don't want to get confused with the real pointers. */
515 if (mode == Pmode && !reload_in_progress)
517 if (regno == FRAME_POINTER_REGNUM
518 && (!reload_completed || frame_pointer_needed))
519 return frame_pointer_rtx;
520 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
521 if (regno == HARD_FRAME_POINTER_REGNUM
522 && (!reload_completed || frame_pointer_needed))
523 return hard_frame_pointer_rtx;
524 #endif
525 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
526 if (regno == ARG_POINTER_REGNUM)
527 return arg_pointer_rtx;
528 #endif
529 #ifdef RETURN_ADDRESS_POINTER_REGNUM
530 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
531 return return_address_pointer_rtx;
532 #endif
533 if (regno == PIC_OFFSET_TABLE_REGNUM
534 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
535 return pic_offset_table_rtx;
536 if (regno == STACK_POINTER_REGNUM)
537 return stack_pointer_rtx;
540 #if 0
541 /* If the per-function register table has been set up, try to re-use
542 an existing entry in that table to avoid useless generation of RTL.
544 This code is disabled for now until we can fix the various backends
545 which depend on having non-shared hard registers in some cases. Long
546 term we want to re-enable this code as it can significantly cut down
547 on the amount of useless RTL that gets generated.
549 We'll also need to fix some code that runs after reload that wants to
550 set ORIGINAL_REGNO. */
552 if (cfun
553 && cfun->emit
554 && regno_reg_rtx
555 && regno < FIRST_PSEUDO_REGISTER
556 && reg_raw_mode[regno] == mode)
557 return regno_reg_rtx[regno];
558 #endif
560 return gen_raw_REG (mode, regno);
564 gen_rtx_MEM (mode, addr)
565 enum machine_mode mode;
566 rtx addr;
568 rtx rt = gen_rtx_raw_MEM (mode, addr);
570 /* This field is not cleared by the mere allocation of the rtx, so
571 we clear it here. */
572 MEM_ATTRS (rt) = 0;
574 return rt;
578 gen_rtx_SUBREG (mode, reg, offset)
579 enum machine_mode mode;
580 rtx reg;
581 int offset;
583 /* This is the most common failure type.
584 Catch it early so we can see who does it. */
585 if ((offset % GET_MODE_SIZE (mode)) != 0)
586 abort ();
588 /* This check isn't usable right now because combine will
589 throw arbitrary crap like a CALL into a SUBREG in
590 gen_lowpart_for_combine so we must just eat it. */
591 #if 0
592 /* Check for this too. */
593 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
594 abort ();
595 #endif
596 return gen_rtx_raw_SUBREG (mode, reg, offset);
599 /* Generate a SUBREG representing the least-significant part of REG if MODE
600 is smaller than mode of REG, otherwise paradoxical SUBREG. */
603 gen_lowpart_SUBREG (mode, reg)
604 enum machine_mode mode;
605 rtx reg;
607 enum machine_mode inmode;
609 inmode = GET_MODE (reg);
610 if (inmode == VOIDmode)
611 inmode = mode;
612 return gen_rtx_SUBREG (mode, reg,
613 subreg_lowpart_offset (mode, inmode));
616 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
618 ** This routine generates an RTX of the size specified by
619 ** <code>, which is an RTX code. The RTX structure is initialized
620 ** from the arguments <element1> through <elementn>, which are
621 ** interpreted according to the specific RTX type's format. The
622 ** special machine mode associated with the rtx (if any) is specified
623 ** in <mode>.
625 ** gen_rtx can be invoked in a way which resembles the lisp-like
626 ** rtx it will generate. For example, the following rtx structure:
628 ** (plus:QI (mem:QI (reg:SI 1))
629 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
631 ** ...would be generated by the following C code:
633 ** gen_rtx (PLUS, QImode,
634 ** gen_rtx (MEM, QImode,
635 ** gen_rtx (REG, SImode, 1)),
636 ** gen_rtx (MEM, QImode,
637 ** gen_rtx (PLUS, SImode,
638 ** gen_rtx (REG, SImode, 2),
639 ** gen_rtx (REG, SImode, 3)))),
642 /*VARARGS2*/
644 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
646 int i; /* Array indices... */
647 const char *fmt; /* Current rtx's format... */
648 rtx rt_val; /* RTX to return to caller... */
650 VA_OPEN (p, mode);
651 VA_FIXEDARG (p, enum rtx_code, code);
652 VA_FIXEDARG (p, enum machine_mode, mode);
654 switch (code)
656 case CONST_INT:
657 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
658 break;
660 case CONST_DOUBLE:
662 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
663 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
665 rt_val = immed_double_const (arg0, arg1, mode);
667 break;
669 case REG:
670 rt_val = gen_rtx_REG (mode, va_arg (p, int));
671 break;
673 case MEM:
674 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
675 break;
677 default:
678 rt_val = rtx_alloc (code); /* Allocate the storage space. */
679 rt_val->mode = mode; /* Store the machine mode... */
681 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
682 for (i = 0; i < GET_RTX_LENGTH (code); i++)
684 switch (*fmt++)
686 case '0': /* Unused field. */
687 break;
689 case 'i': /* An integer? */
690 XINT (rt_val, i) = va_arg (p, int);
691 break;
693 case 'w': /* A wide integer? */
694 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
695 break;
697 case 's': /* A string? */
698 XSTR (rt_val, i) = va_arg (p, char *);
699 break;
701 case 'e': /* An expression? */
702 case 'u': /* An insn? Same except when printing. */
703 XEXP (rt_val, i) = va_arg (p, rtx);
704 break;
706 case 'E': /* An RTX vector? */
707 XVEC (rt_val, i) = va_arg (p, rtvec);
708 break;
710 case 'b': /* A bitmap? */
711 XBITMAP (rt_val, i) = va_arg (p, bitmap);
712 break;
714 case 't': /* A tree? */
715 XTREE (rt_val, i) = va_arg (p, tree);
716 break;
718 default:
719 abort ();
722 break;
725 VA_CLOSE (p);
726 return rt_val;
729 /* gen_rtvec (n, [rt1, ..., rtn])
731 ** This routine creates an rtvec and stores within it the
732 ** pointers to rtx's which are its arguments.
735 /*VARARGS1*/
736 rtvec
737 gen_rtvec VPARAMS ((int n, ...))
739 int i, save_n;
740 rtx *vector;
742 VA_OPEN (p, n);
743 VA_FIXEDARG (p, int, n);
745 if (n == 0)
746 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
748 vector = (rtx *) alloca (n * sizeof (rtx));
750 for (i = 0; i < n; i++)
751 vector[i] = va_arg (p, rtx);
753 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
754 save_n = n;
755 VA_CLOSE (p);
757 return gen_rtvec_v (save_n, vector);
760 rtvec
761 gen_rtvec_v (n, argp)
762 int n;
763 rtx *argp;
765 int i;
766 rtvec rt_val;
768 if (n == 0)
769 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
771 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
773 for (i = 0; i < n; i++)
774 rt_val->elem[i] = *argp++;
776 return rt_val;
779 /* Generate a REG rtx for a new pseudo register of mode MODE.
780 This pseudo is assigned the next sequential register number. */
783 gen_reg_rtx (mode)
784 enum machine_mode mode;
786 struct function *f = cfun;
787 rtx val;
789 /* Don't let anything called after initial flow analysis create new
790 registers. */
791 if (no_new_pseudos)
792 abort ();
794 if (generating_concat_p
795 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
796 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
798 /* For complex modes, don't make a single pseudo.
799 Instead, make a CONCAT of two pseudos.
800 This allows noncontiguous allocation of the real and imaginary parts,
801 which makes much better code. Besides, allocating DCmode
802 pseudos overstrains reload on some machines like the 386. */
803 rtx realpart, imagpart;
804 int size = GET_MODE_UNIT_SIZE (mode);
805 enum machine_mode partmode
806 = mode_for_size (size * BITS_PER_UNIT,
807 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
808 ? MODE_FLOAT : MODE_INT),
811 realpart = gen_reg_rtx (partmode);
812 imagpart = gen_reg_rtx (partmode);
813 return gen_rtx_CONCAT (mode, realpart, imagpart);
816 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
817 enough to have an element for this pseudo reg number. */
819 if (reg_rtx_no == f->emit->regno_pointer_align_length)
821 int old_size = f->emit->regno_pointer_align_length;
822 char *new;
823 rtx *new1;
824 tree *new2;
826 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
827 memset (new + old_size, 0, old_size);
828 f->emit->regno_pointer_align = (unsigned char *) new;
830 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
831 old_size * 2 * sizeof (rtx));
832 memset (new1 + old_size, 0, old_size * sizeof (rtx));
833 regno_reg_rtx = new1;
835 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
836 old_size * 2 * sizeof (tree));
837 memset (new2 + old_size, 0, old_size * sizeof (tree));
838 f->emit->regno_decl = new2;
840 f->emit->regno_pointer_align_length = old_size * 2;
843 val = gen_raw_REG (mode, reg_rtx_no);
844 regno_reg_rtx[reg_rtx_no++] = val;
845 return val;
848 /* Identify REG (which may be a CONCAT) as a user register. */
850 void
851 mark_user_reg (reg)
852 rtx reg;
854 if (GET_CODE (reg) == CONCAT)
856 REG_USERVAR_P (XEXP (reg, 0)) = 1;
857 REG_USERVAR_P (XEXP (reg, 1)) = 1;
859 else if (GET_CODE (reg) == REG)
860 REG_USERVAR_P (reg) = 1;
861 else
862 abort ();
865 /* Identify REG as a probable pointer register and show its alignment
866 as ALIGN, if nonzero. */
868 void
869 mark_reg_pointer (reg, align)
870 rtx reg;
871 int align;
873 if (! REG_POINTER (reg))
875 REG_POINTER (reg) = 1;
877 if (align)
878 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
880 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
881 /* We can no-longer be sure just how aligned this pointer is */
882 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
885 /* Return 1 plus largest pseudo reg number used in the current function. */
888 max_reg_num ()
890 return reg_rtx_no;
893 /* Return 1 + the largest label number used so far in the current function. */
896 max_label_num ()
898 if (last_label_num && label_num == base_label_num)
899 return last_label_num;
900 return label_num;
903 /* Return first label number used in this function (if any were used). */
906 get_first_label_num ()
908 return first_label_num;
911 /* Return the final regno of X, which is a SUBREG of a hard
912 register. */
914 subreg_hard_regno (x, check_mode)
915 rtx x;
916 int check_mode;
918 enum machine_mode mode = GET_MODE (x);
919 unsigned int byte_offset, base_regno, final_regno;
920 rtx reg = SUBREG_REG (x);
922 /* This is where we attempt to catch illegal subregs
923 created by the compiler. */
924 if (GET_CODE (x) != SUBREG
925 || GET_CODE (reg) != REG)
926 abort ();
927 base_regno = REGNO (reg);
928 if (base_regno >= FIRST_PSEUDO_REGISTER)
929 abort ();
930 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
931 abort ();
933 /* Catch non-congruent offsets too. */
934 byte_offset = SUBREG_BYTE (x);
935 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
936 abort ();
938 final_regno = subreg_regno (x);
940 return final_regno;
943 /* Return a value representing some low-order bits of X, where the number
944 of low-order bits is given by MODE. Note that no conversion is done
945 between floating-point and fixed-point values, rather, the bit
946 representation is returned.
948 This function handles the cases in common between gen_lowpart, below,
949 and two variants in cse.c and combine.c. These are the cases that can
950 be safely handled at all points in the compilation.
952 If this is not a case we can handle, return 0. */
955 gen_lowpart_common (mode, x)
956 enum machine_mode mode;
957 rtx x;
959 int msize = GET_MODE_SIZE (mode);
960 int xsize = GET_MODE_SIZE (GET_MODE (x));
961 int offset = 0;
963 if (GET_MODE (x) == mode)
964 return x;
966 /* MODE must occupy no more words than the mode of X. */
967 if (GET_MODE (x) != VOIDmode
968 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
969 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
970 return 0;
972 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
973 if (GET_MODE_CLASS (mode) == MODE_FLOAT
974 && GET_MODE (x) != VOIDmode && msize > xsize)
975 return 0;
977 offset = subreg_lowpart_offset (mode, GET_MODE (x));
979 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
980 && (GET_MODE_CLASS (mode) == MODE_INT
981 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
983 /* If we are getting the low-order part of something that has been
984 sign- or zero-extended, we can either just use the object being
985 extended or make a narrower extension. If we want an even smaller
986 piece than the size of the object being extended, call ourselves
987 recursively.
989 This case is used mostly by combine and cse. */
991 if (GET_MODE (XEXP (x, 0)) == mode)
992 return XEXP (x, 0);
993 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
994 return gen_lowpart_common (mode, XEXP (x, 0));
995 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
996 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
998 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
999 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1000 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1001 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1002 from the low-order part of the constant. */
1003 else if ((GET_MODE_CLASS (mode) == MODE_INT
1004 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1005 && GET_MODE (x) == VOIDmode
1006 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1008 /* If MODE is twice the host word size, X is already the desired
1009 representation. Otherwise, if MODE is wider than a word, we can't
1010 do this. If MODE is exactly a word, return just one CONST_INT. */
1012 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1013 return x;
1014 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1015 return 0;
1016 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1017 return (GET_CODE (x) == CONST_INT ? x
1018 : GEN_INT (CONST_DOUBLE_LOW (x)));
1019 else
1021 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1022 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1023 : CONST_DOUBLE_LOW (x));
1025 /* Sign extend to HOST_WIDE_INT. */
1026 val = trunc_int_for_mode (val, mode);
1028 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1029 : GEN_INT (val));
1033 /* The floating-point emulator can handle all conversions between
1034 FP and integer operands. This simplifies reload because it
1035 doesn't have to deal with constructs like (subreg:DI
1036 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1037 /* Single-precision floats are always 32-bits and double-precision
1038 floats are always 64-bits. */
1040 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1041 && GET_MODE_BITSIZE (mode) == 32
1042 && GET_CODE (x) == CONST_INT)
1044 REAL_VALUE_TYPE r;
1045 HOST_WIDE_INT i;
1047 i = INTVAL (x);
1048 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
1049 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1051 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1052 && GET_MODE_BITSIZE (mode) == 64
1053 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1054 && GET_MODE (x) == VOIDmode)
1056 REAL_VALUE_TYPE r;
1057 HOST_WIDE_INT i[2];
1058 HOST_WIDE_INT low, high;
1060 if (GET_CODE (x) == CONST_INT)
1062 low = INTVAL (x);
1063 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1065 else
1067 low = CONST_DOUBLE_LOW (x);
1068 high = CONST_DOUBLE_HIGH (x);
1071 #if HOST_BITS_PER_WIDE_INT == 32
1072 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1073 target machine. */
1074 if (WORDS_BIG_ENDIAN)
1075 i[0] = high, i[1] = low;
1076 else
1077 i[0] = low, i[1] = high;
1078 #else
1079 i[0] = low;
1080 #endif
1082 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1083 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1085 else if ((GET_MODE_CLASS (mode) == MODE_INT
1086 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1087 && GET_CODE (x) == CONST_DOUBLE
1088 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1090 REAL_VALUE_TYPE r;
1091 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1092 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1094 /* Convert 'r' into an array of four 32-bit words in target word
1095 order. */
1096 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1097 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1099 case 32:
1100 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1101 i[1] = 0;
1102 i[2] = 0;
1103 i[3 - 3 * endian] = 0;
1104 break;
1105 case 64:
1106 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1107 i[2 - 2 * endian] = 0;
1108 i[3 - 2 * endian] = 0;
1109 break;
1110 case 96:
1111 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1112 i[3 - 3 * endian] = 0;
1113 break;
1114 case 128:
1115 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1116 break;
1117 default:
1118 abort ();
1120 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1121 and return it. */
1122 #if HOST_BITS_PER_WIDE_INT == 32
1123 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1124 #else
1125 if (HOST_BITS_PER_WIDE_INT != 64)
1126 abort ();
1128 return immed_double_const ((((unsigned long) i[3 * endian])
1129 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1130 (((unsigned long) i[2 - endian])
1131 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1132 mode);
1133 #endif
1136 /* Otherwise, we can't do this. */
1137 return 0;
1140 /* Return the real part (which has mode MODE) of a complex value X.
1141 This always comes at the low address in memory. */
1144 gen_realpart (mode, x)
1145 enum machine_mode mode;
1146 rtx x;
1148 if (WORDS_BIG_ENDIAN
1149 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1150 && REG_P (x)
1151 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1152 internal_error
1153 ("can't access real part of complex value in hard register");
1154 else if (WORDS_BIG_ENDIAN)
1155 return gen_highpart (mode, x);
1156 else
1157 return gen_lowpart (mode, x);
1160 /* Return the imaginary part (which has mode MODE) of a complex value X.
1161 This always comes at the high address in memory. */
1164 gen_imagpart (mode, x)
1165 enum machine_mode mode;
1166 rtx x;
1168 if (WORDS_BIG_ENDIAN)
1169 return gen_lowpart (mode, x);
1170 else if (! WORDS_BIG_ENDIAN
1171 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1172 && REG_P (x)
1173 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1174 internal_error
1175 ("can't access imaginary part of complex value in hard register");
1176 else
1177 return gen_highpart (mode, x);
1180 /* Return 1 iff X, assumed to be a SUBREG,
1181 refers to the real part of the complex value in its containing reg.
1182 Complex values are always stored with the real part in the first word,
1183 regardless of WORDS_BIG_ENDIAN. */
1186 subreg_realpart_p (x)
1187 rtx x;
1189 if (GET_CODE (x) != SUBREG)
1190 abort ();
1192 return ((unsigned int) SUBREG_BYTE (x)
1193 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1196 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1197 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1198 least-significant part of X.
1199 MODE specifies how big a part of X to return;
1200 it usually should not be larger than a word.
1201 If X is a MEM whose address is a QUEUED, the value may be so also. */
1204 gen_lowpart (mode, x)
1205 enum machine_mode mode;
1206 rtx x;
1208 rtx result = gen_lowpart_common (mode, x);
1210 if (result)
1211 return result;
1212 else if (GET_CODE (x) == REG)
1214 /* Must be a hard reg that's not valid in MODE. */
1215 result = gen_lowpart_common (mode, copy_to_reg (x));
1216 if (result == 0)
1217 abort ();
1218 return result;
1220 else if (GET_CODE (x) == MEM)
1222 /* The only additional case we can do is MEM. */
1223 int offset = 0;
1224 if (WORDS_BIG_ENDIAN)
1225 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1226 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1228 if (BYTES_BIG_ENDIAN)
1229 /* Adjust the address so that the address-after-the-data
1230 is unchanged. */
1231 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1232 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1234 return adjust_address (x, mode, offset);
1236 else if (GET_CODE (x) == ADDRESSOF)
1237 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1238 else
1239 abort ();
1242 /* Like `gen_lowpart', but refer to the most significant part.
1243 This is used to access the imaginary part of a complex number. */
1246 gen_highpart (mode, x)
1247 enum machine_mode mode;
1248 rtx x;
1250 unsigned int msize = GET_MODE_SIZE (mode);
1251 rtx result;
1253 /* This case loses if X is a subreg. To catch bugs early,
1254 complain if an invalid MODE is used even in other cases. */
1255 if (msize > UNITS_PER_WORD
1256 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1257 abort ();
1259 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1260 subreg_highpart_offset (mode, GET_MODE (x)));
1262 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1263 the target if we have a MEM. gen_highpart must return a valid operand,
1264 emitting code if necessary to do so. */
1265 if (result != NULL_RTX && GET_CODE (result) == MEM)
1266 result = validize_mem (result);
1268 if (!result)
1269 abort ();
1270 return result;
1273 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1274 be VOIDmode constant. */
1276 gen_highpart_mode (outermode, innermode, exp)
1277 enum machine_mode outermode, innermode;
1278 rtx exp;
1280 if (GET_MODE (exp) != VOIDmode)
1282 if (GET_MODE (exp) != innermode)
1283 abort ();
1284 return gen_highpart (outermode, exp);
1286 return simplify_gen_subreg (outermode, exp, innermode,
1287 subreg_highpart_offset (outermode, innermode));
1290 /* Return offset in bytes to get OUTERMODE low part
1291 of the value in mode INNERMODE stored in memory in target format. */
1293 unsigned int
1294 subreg_lowpart_offset (outermode, innermode)
1295 enum machine_mode outermode, innermode;
1297 unsigned int offset = 0;
1298 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1300 if (difference > 0)
1302 if (WORDS_BIG_ENDIAN)
1303 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1304 if (BYTES_BIG_ENDIAN)
1305 offset += difference % UNITS_PER_WORD;
1308 return offset;
1311 /* Return offset in bytes to get OUTERMODE high part
1312 of the value in mode INNERMODE stored in memory in target format. */
1313 unsigned int
1314 subreg_highpart_offset (outermode, innermode)
1315 enum machine_mode outermode, innermode;
1317 unsigned int offset = 0;
1318 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1320 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1321 abort ();
1323 if (difference > 0)
1325 if (! WORDS_BIG_ENDIAN)
1326 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1327 if (! BYTES_BIG_ENDIAN)
1328 offset += difference % UNITS_PER_WORD;
1331 return offset;
1334 /* Return 1 iff X, assumed to be a SUBREG,
1335 refers to the least significant part of its containing reg.
1336 If X is not a SUBREG, always return 1 (it is its own low part!). */
1339 subreg_lowpart_p (x)
1340 rtx x;
1342 if (GET_CODE (x) != SUBREG)
1343 return 1;
1344 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1345 return 0;
1347 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1348 == SUBREG_BYTE (x));
1352 /* Helper routine for all the constant cases of operand_subword.
1353 Some places invoke this directly. */
1356 constant_subword (op, offset, mode)
1357 rtx op;
1358 int offset;
1359 enum machine_mode mode;
1361 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1362 HOST_WIDE_INT val;
1364 /* If OP is already an integer word, return it. */
1365 if (GET_MODE_CLASS (mode) == MODE_INT
1366 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1367 return op;
1369 /* The output is some bits, the width of the target machine's word.
1370 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1371 host can't. */
1372 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1373 && GET_MODE_CLASS (mode) == MODE_FLOAT
1374 && GET_MODE_BITSIZE (mode) == 64
1375 && GET_CODE (op) == CONST_DOUBLE)
1377 long k[2];
1378 REAL_VALUE_TYPE rv;
1380 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1381 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1383 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1384 which the words are written depends on the word endianness.
1385 ??? This is a potential portability problem and should
1386 be fixed at some point.
1388 We must exercise caution with the sign bit. By definition there
1389 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1390 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1391 So we explicitly mask and sign-extend as necessary. */
1392 if (BITS_PER_WORD == 32)
1394 val = k[offset];
1395 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1396 return GEN_INT (val);
1398 #if HOST_BITS_PER_WIDE_INT >= 64
1399 else if (BITS_PER_WORD >= 64 && offset == 0)
1401 val = k[! WORDS_BIG_ENDIAN];
1402 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1403 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1404 return GEN_INT (val);
1406 #endif
1407 else if (BITS_PER_WORD == 16)
1409 val = k[offset >> 1];
1410 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1411 val >>= 16;
1412 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1413 return GEN_INT (val);
1415 else
1416 abort ();
1418 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1419 && GET_MODE_CLASS (mode) == MODE_FLOAT
1420 && GET_MODE_BITSIZE (mode) > 64
1421 && GET_CODE (op) == CONST_DOUBLE)
1423 long k[4];
1424 REAL_VALUE_TYPE rv;
1426 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1427 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1429 if (BITS_PER_WORD == 32)
1431 val = k[offset];
1432 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1433 return GEN_INT (val);
1435 #if HOST_BITS_PER_WIDE_INT >= 64
1436 else if (BITS_PER_WORD >= 64 && offset <= 1)
1438 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1439 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1440 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1441 return GEN_INT (val);
1443 #endif
1444 else
1445 abort ();
1448 /* Single word float is a little harder, since single- and double-word
1449 values often do not have the same high-order bits. We have already
1450 verified that we want the only defined word of the single-word value. */
1451 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1452 && GET_MODE_BITSIZE (mode) == 32
1453 && GET_CODE (op) == CONST_DOUBLE)
1455 long l;
1456 REAL_VALUE_TYPE rv;
1458 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1459 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1461 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1462 val = l;
1463 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1465 if (BITS_PER_WORD == 16)
1467 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1468 val >>= 16;
1469 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1472 return GEN_INT (val);
1475 /* The only remaining cases that we can handle are integers.
1476 Convert to proper endianness now since these cases need it.
1477 At this point, offset == 0 means the low-order word.
1479 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1480 in general. However, if OP is (const_int 0), we can just return
1481 it for any word. */
1483 if (op == const0_rtx)
1484 return op;
1486 if (GET_MODE_CLASS (mode) != MODE_INT
1487 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1488 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1489 return 0;
1491 if (WORDS_BIG_ENDIAN)
1492 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1494 /* Find out which word on the host machine this value is in and get
1495 it from the constant. */
1496 val = (offset / size_ratio == 0
1497 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1498 : (GET_CODE (op) == CONST_INT
1499 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1501 /* Get the value we want into the low bits of val. */
1502 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1503 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1505 val = trunc_int_for_mode (val, word_mode);
1507 return GEN_INT (val);
1510 /* Return subword OFFSET of operand OP.
1511 The word number, OFFSET, is interpreted as the word number starting
1512 at the low-order address. OFFSET 0 is the low-order word if not
1513 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1515 If we cannot extract the required word, we return zero. Otherwise,
1516 an rtx corresponding to the requested word will be returned.
1518 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1519 reload has completed, a valid address will always be returned. After
1520 reload, if a valid address cannot be returned, we return zero.
1522 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1523 it is the responsibility of the caller.
1525 MODE is the mode of OP in case it is a CONST_INT.
1527 ??? This is still rather broken for some cases. The problem for the
1528 moment is that all callers of this thing provide no 'goal mode' to
1529 tell us to work with. This exists because all callers were written
1530 in a word based SUBREG world.
1531 Now use of this function can be deprecated by simplify_subreg in most
1532 cases.
1536 operand_subword (op, offset, validate_address, mode)
1537 rtx op;
1538 unsigned int offset;
1539 int validate_address;
1540 enum machine_mode mode;
1542 if (mode == VOIDmode)
1543 mode = GET_MODE (op);
1545 if (mode == VOIDmode)
1546 abort ();
1548 /* If OP is narrower than a word, fail. */
1549 if (mode != BLKmode
1550 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1551 return 0;
1553 /* If we want a word outside OP, return zero. */
1554 if (mode != BLKmode
1555 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1556 return const0_rtx;
1558 /* Form a new MEM at the requested address. */
1559 if (GET_CODE (op) == MEM)
1561 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1563 if (! validate_address)
1564 return new;
1566 else if (reload_completed)
1568 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1569 return 0;
1571 else
1572 return replace_equiv_address (new, XEXP (new, 0));
1575 /* Rest can be handled by simplify_subreg. */
1576 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1579 /* Similar to `operand_subword', but never return 0. If we can't extract
1580 the required subword, put OP into a register and try again. If that fails,
1581 abort. We always validate the address in this case.
1583 MODE is the mode of OP, in case it is CONST_INT. */
1586 operand_subword_force (op, offset, mode)
1587 rtx op;
1588 unsigned int offset;
1589 enum machine_mode mode;
1591 rtx result = operand_subword (op, offset, 1, mode);
1593 if (result)
1594 return result;
1596 if (mode != BLKmode && mode != VOIDmode)
1598 /* If this is a register which can not be accessed by words, copy it
1599 to a pseudo register. */
1600 if (GET_CODE (op) == REG)
1601 op = copy_to_reg (op);
1602 else
1603 op = force_reg (mode, op);
1606 result = operand_subword (op, offset, 1, mode);
1607 if (result == 0)
1608 abort ();
1610 return result;
1613 /* Given a compare instruction, swap the operands.
1614 A test instruction is changed into a compare of 0 against the operand. */
1616 void
1617 reverse_comparison (insn)
1618 rtx insn;
1620 rtx body = PATTERN (insn);
1621 rtx comp;
1623 if (GET_CODE (body) == SET)
1624 comp = SET_SRC (body);
1625 else
1626 comp = SET_SRC (XVECEXP (body, 0, 0));
1628 if (GET_CODE (comp) == COMPARE)
1630 rtx op0 = XEXP (comp, 0);
1631 rtx op1 = XEXP (comp, 1);
1632 XEXP (comp, 0) = op1;
1633 XEXP (comp, 1) = op0;
1635 else
1637 rtx new = gen_rtx_COMPARE (VOIDmode,
1638 CONST0_RTX (GET_MODE (comp)), comp);
1639 if (GET_CODE (body) == SET)
1640 SET_SRC (body) = new;
1641 else
1642 SET_SRC (XVECEXP (body, 0, 0)) = new;
1646 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1647 or (2) a component ref of something variable. Represent the later with
1648 a NULL expression. */
1650 static tree
1651 component_ref_for_mem_expr (ref)
1652 tree ref;
1654 tree inner = TREE_OPERAND (ref, 0);
1656 if (TREE_CODE (inner) == COMPONENT_REF)
1657 inner = component_ref_for_mem_expr (inner);
1658 else
1660 tree placeholder_ptr = 0;
1662 /* Now remove any conversions: they don't change what the underlying
1663 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1664 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1665 || TREE_CODE (inner) == NON_LVALUE_EXPR
1666 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1667 || TREE_CODE (inner) == SAVE_EXPR
1668 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1669 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1670 inner = find_placeholder (inner, &placeholder_ptr);
1671 else
1672 inner = TREE_OPERAND (inner, 0);
1674 if (! DECL_P (inner))
1675 inner = NULL_TREE;
1678 if (inner == TREE_OPERAND (ref, 0))
1679 return ref;
1680 else
1681 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1682 TREE_OPERAND (ref, 1));
1685 /* Given REF, a MEM, and T, either the type of X or the expression
1686 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1687 if we are making a new object of this type. BITPOS is nonzero if
1688 there is an offset outstanding on T that will be applied later. */
1690 void
1691 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1692 rtx ref;
1693 tree t;
1694 int objectp;
1695 HOST_WIDE_INT bitpos;
1697 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1698 tree expr = MEM_EXPR (ref);
1699 rtx offset = MEM_OFFSET (ref);
1700 rtx size = MEM_SIZE (ref);
1701 unsigned int align = MEM_ALIGN (ref);
1702 HOST_WIDE_INT apply_bitpos = 0;
1703 tree type;
1705 /* It can happen that type_for_mode was given a mode for which there
1706 is no language-level type. In which case it returns NULL, which
1707 we can see here. */
1708 if (t == NULL_TREE)
1709 return;
1711 type = TYPE_P (t) ? t : TREE_TYPE (t);
1713 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1714 wrong answer, as it assumes that DECL_RTL already has the right alias
1715 info. Callers should not set DECL_RTL until after the call to
1716 set_mem_attributes. */
1717 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1718 abort ();
1720 /* Get the alias set from the expression or type (perhaps using a
1721 front-end routine) and use it. */
1722 alias = get_alias_set (t);
1724 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1725 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1726 RTX_UNCHANGING_P (ref)
1727 |= ((lang_hooks.honor_readonly
1728 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1729 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1731 /* If we are making an object of this type, or if this is a DECL, we know
1732 that it is a scalar if the type is not an aggregate. */
1733 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1734 MEM_SCALAR_P (ref) = 1;
1736 /* We can set the alignment from the type if we are making an object,
1737 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1738 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1739 align = MAX (align, TYPE_ALIGN (type));
1741 /* If the size is known, we can set that. */
1742 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1743 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1745 /* If T is not a type, we may be able to deduce some more information about
1746 the expression. */
1747 if (! TYPE_P (t))
1749 maybe_set_unchanging (ref, t);
1750 if (TREE_THIS_VOLATILE (t))
1751 MEM_VOLATILE_P (ref) = 1;
1753 /* Now remove any conversions: they don't change what the underlying
1754 object is. Likewise for SAVE_EXPR. */
1755 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1756 || TREE_CODE (t) == NON_LVALUE_EXPR
1757 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1758 || TREE_CODE (t) == SAVE_EXPR)
1759 t = TREE_OPERAND (t, 0);
1761 /* If this expression can't be addressed (e.g., it contains a reference
1762 to a non-addressable field), show we don't change its alias set. */
1763 if (! can_address_p (t))
1764 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1766 /* If this is a decl, set the attributes of the MEM from it. */
1767 if (DECL_P (t))
1769 expr = t;
1770 offset = const0_rtx;
1771 apply_bitpos = bitpos;
1772 size = (DECL_SIZE_UNIT (t)
1773 && host_integerp (DECL_SIZE_UNIT (t), 1)
1774 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1775 align = DECL_ALIGN (t);
1778 /* If this is a constant, we know the alignment. */
1779 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1781 align = TYPE_ALIGN (type);
1782 #ifdef CONSTANT_ALIGNMENT
1783 align = CONSTANT_ALIGNMENT (t, align);
1784 #endif
1787 /* If this is a field reference and not a bit-field, record it. */
1788 /* ??? There is some information that can be gleened from bit-fields,
1789 such as the word offset in the structure that might be modified.
1790 But skip it for now. */
1791 else if (TREE_CODE (t) == COMPONENT_REF
1792 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1794 expr = component_ref_for_mem_expr (t);
1795 offset = const0_rtx;
1796 apply_bitpos = bitpos;
1797 /* ??? Any reason the field size would be different than
1798 the size we got from the type? */
1801 /* If this is an array reference, look for an outer field reference. */
1802 else if (TREE_CODE (t) == ARRAY_REF)
1804 tree off_tree = size_zero_node;
1808 tree index = TREE_OPERAND (t, 1);
1809 tree array = TREE_OPERAND (t, 0);
1810 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1811 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1812 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1814 /* We assume all arrays have sizes that are a multiple of a byte.
1815 First subtract the lower bound, if any, in the type of the
1816 index, then convert to sizetype and multiply by the size of the
1817 array element. */
1818 if (low_bound != 0 && ! integer_zerop (low_bound))
1819 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1820 index, low_bound));
1822 /* If the index has a self-referential type, pass it to a
1823 WITH_RECORD_EXPR; if the component size is, pass our
1824 component to one. */
1825 if (! TREE_CONSTANT (index)
1826 && contains_placeholder_p (index))
1827 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t);
1828 if (! TREE_CONSTANT (unit_size)
1829 && contains_placeholder_p (unit_size))
1830 unit_size = build (WITH_RECORD_EXPR, sizetype,
1831 unit_size, array);
1833 off_tree
1834 = fold (build (PLUS_EXPR, sizetype,
1835 fold (build (MULT_EXPR, sizetype,
1836 index,
1837 unit_size)),
1838 off_tree));
1839 t = TREE_OPERAND (t, 0);
1841 while (TREE_CODE (t) == ARRAY_REF);
1843 if (DECL_P (t))
1845 expr = t;
1846 offset = NULL;
1847 if (host_integerp (off_tree, 1))
1849 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1850 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1851 align = DECL_ALIGN (t);
1852 if (aoff && aoff < align)
1853 align = aoff;
1854 offset = GEN_INT (ioff);
1855 apply_bitpos = bitpos;
1858 else if (TREE_CODE (t) == COMPONENT_REF)
1860 expr = component_ref_for_mem_expr (t);
1861 if (host_integerp (off_tree, 1))
1863 offset = GEN_INT (tree_low_cst (off_tree, 1));
1864 apply_bitpos = bitpos;
1866 /* ??? Any reason the field size would be different than
1867 the size we got from the type? */
1869 else if (flag_argument_noalias > 1
1870 && TREE_CODE (t) == INDIRECT_REF
1871 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1873 expr = t;
1874 offset = NULL;
1878 /* If this is a Fortran indirect argument reference, record the
1879 parameter decl. */
1880 else if (flag_argument_noalias > 1
1881 && TREE_CODE (t) == INDIRECT_REF
1882 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1884 expr = t;
1885 offset = NULL;
1889 /* If we modified OFFSET based on T, then subtract the outstanding
1890 bit position offset. */
1891 if (apply_bitpos)
1892 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1894 /* Now set the attributes we computed above. */
1895 MEM_ATTRS (ref)
1896 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1898 /* If this is already known to be a scalar or aggregate, we are done. */
1899 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1900 return;
1902 /* If it is a reference into an aggregate, this is part of an aggregate.
1903 Otherwise we don't know. */
1904 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1905 || TREE_CODE (t) == ARRAY_RANGE_REF
1906 || TREE_CODE (t) == BIT_FIELD_REF)
1907 MEM_IN_STRUCT_P (ref) = 1;
1910 void
1911 set_mem_attributes (ref, t, objectp)
1912 rtx ref;
1913 tree t;
1914 int objectp;
1916 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1919 /* Set the alias set of MEM to SET. */
1921 void
1922 set_mem_alias_set (mem, set)
1923 rtx mem;
1924 HOST_WIDE_INT set;
1926 #ifdef ENABLE_CHECKING
1927 /* If the new and old alias sets don't conflict, something is wrong. */
1928 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1929 abort ();
1930 #endif
1932 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1933 MEM_SIZE (mem), MEM_ALIGN (mem),
1934 GET_MODE (mem));
1937 /* Set the alignment of MEM to ALIGN bits. */
1939 void
1940 set_mem_align (mem, align)
1941 rtx mem;
1942 unsigned int align;
1944 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1945 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1946 GET_MODE (mem));
1949 /* Set the expr for MEM to EXPR. */
1951 void
1952 set_mem_expr (mem, expr)
1953 rtx mem;
1954 tree expr;
1956 MEM_ATTRS (mem)
1957 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1958 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1961 /* Set the offset of MEM to OFFSET. */
1963 void
1964 set_mem_offset (mem, offset)
1965 rtx mem, offset;
1967 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1968 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1969 GET_MODE (mem));
1972 /* Set the size of MEM to SIZE. */
1974 void
1975 set_mem_size (mem, size)
1976 rtx mem, size;
1978 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1979 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1980 GET_MODE (mem));
1983 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1984 and its address changed to ADDR. (VOIDmode means don't change the mode.
1985 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1986 returned memory location is required to be valid. The memory
1987 attributes are not changed. */
1989 static rtx
1990 change_address_1 (memref, mode, addr, validate)
1991 rtx memref;
1992 enum machine_mode mode;
1993 rtx addr;
1994 int validate;
1996 rtx new;
1998 if (GET_CODE (memref) != MEM)
1999 abort ();
2000 if (mode == VOIDmode)
2001 mode = GET_MODE (memref);
2002 if (addr == 0)
2003 addr = XEXP (memref, 0);
2005 if (validate)
2007 if (reload_in_progress || reload_completed)
2009 if (! memory_address_p (mode, addr))
2010 abort ();
2012 else
2013 addr = memory_address (mode, addr);
2016 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2017 return memref;
2019 new = gen_rtx_MEM (mode, addr);
2020 MEM_COPY_ATTRIBUTES (new, memref);
2021 return new;
2024 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2025 way we are changing MEMREF, so we only preserve the alias set. */
2028 change_address (memref, mode, addr)
2029 rtx memref;
2030 enum machine_mode mode;
2031 rtx addr;
2033 rtx new = change_address_1 (memref, mode, addr, 1);
2034 enum machine_mode mmode = GET_MODE (new);
2036 MEM_ATTRS (new)
2037 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2038 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2039 (mmode == BLKmode ? BITS_PER_UNIT
2040 : GET_MODE_ALIGNMENT (mmode)),
2041 mmode);
2043 return new;
2046 /* Return a memory reference like MEMREF, but with its mode changed
2047 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2048 nonzero, the memory address is forced to be valid.
2049 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2050 and caller is responsible for adjusting MEMREF base register. */
2053 adjust_address_1 (memref, mode, offset, validate, adjust)
2054 rtx memref;
2055 enum machine_mode mode;
2056 HOST_WIDE_INT offset;
2057 int validate, adjust;
2059 rtx addr = XEXP (memref, 0);
2060 rtx new;
2061 rtx memoffset = MEM_OFFSET (memref);
2062 rtx size = 0;
2063 unsigned int memalign = MEM_ALIGN (memref);
2065 /* ??? Prefer to create garbage instead of creating shared rtl.
2066 This may happen even if offset is non-zero -- consider
2067 (plus (plus reg reg) const_int) -- so do this always. */
2068 addr = copy_rtx (addr);
2070 if (adjust)
2072 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2073 object, we can merge it into the LO_SUM. */
2074 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2075 && offset >= 0
2076 && (unsigned HOST_WIDE_INT) offset
2077 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2078 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2079 plus_constant (XEXP (addr, 1), offset));
2080 else
2081 addr = plus_constant (addr, offset);
2084 new = change_address_1 (memref, mode, addr, validate);
2086 /* Compute the new values of the memory attributes due to this adjustment.
2087 We add the offsets and update the alignment. */
2088 if (memoffset)
2089 memoffset = GEN_INT (offset + INTVAL (memoffset));
2091 /* Compute the new alignment by taking the MIN of the alignment and the
2092 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2093 if zero. */
2094 if (offset != 0)
2095 memalign
2096 = MIN (memalign,
2097 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2099 /* We can compute the size in a number of ways. */
2100 if (GET_MODE (new) != BLKmode)
2101 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2102 else if (MEM_SIZE (memref))
2103 size = plus_constant (MEM_SIZE (memref), -offset);
2105 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2106 memoffset, size, memalign, GET_MODE (new));
2108 /* At some point, we should validate that this offset is within the object,
2109 if all the appropriate values are known. */
2110 return new;
2113 /* Return a memory reference like MEMREF, but with its mode changed
2114 to MODE and its address changed to ADDR, which is assumed to be
2115 MEMREF offseted by OFFSET bytes. If VALIDATE is
2116 nonzero, the memory address is forced to be valid. */
2119 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2120 rtx memref;
2121 enum machine_mode mode;
2122 rtx addr;
2123 HOST_WIDE_INT offset;
2124 int validate;
2126 memref = change_address_1 (memref, VOIDmode, addr, validate);
2127 return adjust_address_1 (memref, mode, offset, validate, 0);
2130 /* Return a memory reference like MEMREF, but whose address is changed by
2131 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2132 known to be in OFFSET (possibly 1). */
2135 offset_address (memref, offset, pow2)
2136 rtx memref;
2137 rtx offset;
2138 HOST_WIDE_INT pow2;
2140 rtx new, addr = XEXP (memref, 0);
2142 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2144 /* At this point we don't know _why_ the address is invalid. It
2145 could have secondary memory refereces, multiplies or anything.
2147 However, if we did go and rearrange things, we can wind up not
2148 being able to recognize the magic around pic_offset_table_rtx.
2149 This stuff is fragile, and is yet another example of why it is
2150 bad to expose PIC machinery too early. */
2151 if (! memory_address_p (GET_MODE (memref), new)
2152 && GET_CODE (addr) == PLUS
2153 && XEXP (addr, 0) == pic_offset_table_rtx)
2155 addr = force_reg (GET_MODE (addr), addr);
2156 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2159 update_temp_slot_address (XEXP (memref, 0), new);
2160 new = change_address_1 (memref, VOIDmode, new, 1);
2162 /* Update the alignment to reflect the offset. Reset the offset, which
2163 we don't know. */
2164 MEM_ATTRS (new)
2165 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2166 MIN (MEM_ALIGN (memref),
2167 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2168 GET_MODE (new));
2169 return new;
2172 /* Return a memory reference like MEMREF, but with its address changed to
2173 ADDR. The caller is asserting that the actual piece of memory pointed
2174 to is the same, just the form of the address is being changed, such as
2175 by putting something into a register. */
2178 replace_equiv_address (memref, addr)
2179 rtx memref;
2180 rtx addr;
2182 /* change_address_1 copies the memory attribute structure without change
2183 and that's exactly what we want here. */
2184 update_temp_slot_address (XEXP (memref, 0), addr);
2185 return change_address_1 (memref, VOIDmode, addr, 1);
2188 /* Likewise, but the reference is not required to be valid. */
2191 replace_equiv_address_nv (memref, addr)
2192 rtx memref;
2193 rtx addr;
2195 return change_address_1 (memref, VOIDmode, addr, 0);
2198 /* Return a memory reference like MEMREF, but with its mode widened to
2199 MODE and offset by OFFSET. This would be used by targets that e.g.
2200 cannot issue QImode memory operations and have to use SImode memory
2201 operations plus masking logic. */
2204 widen_memory_access (memref, mode, offset)
2205 rtx memref;
2206 enum machine_mode mode;
2207 HOST_WIDE_INT offset;
2209 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2210 tree expr = MEM_EXPR (new);
2211 rtx memoffset = MEM_OFFSET (new);
2212 unsigned int size = GET_MODE_SIZE (mode);
2214 /* If we don't know what offset we were at within the expression, then
2215 we can't know if we've overstepped the bounds. */
2216 if (! memoffset)
2217 expr = NULL_TREE;
2219 while (expr)
2221 if (TREE_CODE (expr) == COMPONENT_REF)
2223 tree field = TREE_OPERAND (expr, 1);
2225 if (! DECL_SIZE_UNIT (field))
2227 expr = NULL_TREE;
2228 break;
2231 /* Is the field at least as large as the access? If so, ok,
2232 otherwise strip back to the containing structure. */
2233 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2234 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2235 && INTVAL (memoffset) >= 0)
2236 break;
2238 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2240 expr = NULL_TREE;
2241 break;
2244 expr = TREE_OPERAND (expr, 0);
2245 memoffset = (GEN_INT (INTVAL (memoffset)
2246 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2247 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2248 / BITS_PER_UNIT)));
2250 /* Similarly for the decl. */
2251 else if (DECL_P (expr)
2252 && DECL_SIZE_UNIT (expr)
2253 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2254 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2255 && (! memoffset || INTVAL (memoffset) >= 0))
2256 break;
2257 else
2259 /* The widened memory access overflows the expression, which means
2260 that it could alias another expression. Zap it. */
2261 expr = NULL_TREE;
2262 break;
2266 if (! expr)
2267 memoffset = NULL_RTX;
2269 /* The widened memory may alias other stuff, so zap the alias set. */
2270 /* ??? Maybe use get_alias_set on any remaining expression. */
2272 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2273 MEM_ALIGN (new), mode);
2275 return new;
2278 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2281 gen_label_rtx ()
2283 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2284 NULL, label_num++, NULL);
2287 /* For procedure integration. */
2289 /* Install new pointers to the first and last insns in the chain.
2290 Also, set cur_insn_uid to one higher than the last in use.
2291 Used for an inline-procedure after copying the insn chain. */
2293 void
2294 set_new_first_and_last_insn (first, last)
2295 rtx first, last;
2297 rtx insn;
2299 first_insn = first;
2300 last_insn = last;
2301 cur_insn_uid = 0;
2303 for (insn = first; insn; insn = NEXT_INSN (insn))
2304 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2306 cur_insn_uid++;
2309 /* Set the range of label numbers found in the current function.
2310 This is used when belatedly compiling an inline function. */
2312 void
2313 set_new_first_and_last_label_num (first, last)
2314 int first, last;
2316 base_label_num = label_num;
2317 first_label_num = first;
2318 last_label_num = last;
2321 /* Set the last label number found in the current function.
2322 This is used when belatedly compiling an inline function. */
2324 void
2325 set_new_last_label_num (last)
2326 int last;
2328 base_label_num = label_num;
2329 last_label_num = last;
2332 /* Restore all variables describing the current status from the structure *P.
2333 This is used after a nested function. */
2335 void
2336 restore_emit_status (p)
2337 struct function *p ATTRIBUTE_UNUSED;
2339 last_label_num = 0;
2342 /* Go through all the RTL insn bodies and copy any invalid shared
2343 structure. This routine should only be called once. */
2345 void
2346 unshare_all_rtl (fndecl, insn)
2347 tree fndecl;
2348 rtx insn;
2350 tree decl;
2352 /* Make sure that virtual parameters are not shared. */
2353 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2354 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2356 /* Make sure that virtual stack slots are not shared. */
2357 unshare_all_decls (DECL_INITIAL (fndecl));
2359 /* Unshare just about everything else. */
2360 unshare_all_rtl_1 (insn);
2362 /* Make sure the addresses of stack slots found outside the insn chain
2363 (such as, in DECL_RTL of a variable) are not shared
2364 with the insn chain.
2366 This special care is necessary when the stack slot MEM does not
2367 actually appear in the insn chain. If it does appear, its address
2368 is unshared from all else at that point. */
2369 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2372 /* Go through all the RTL insn bodies and copy any invalid shared
2373 structure, again. This is a fairly expensive thing to do so it
2374 should be done sparingly. */
2376 void
2377 unshare_all_rtl_again (insn)
2378 rtx insn;
2380 rtx p;
2381 tree decl;
2383 for (p = insn; p; p = NEXT_INSN (p))
2384 if (INSN_P (p))
2386 reset_used_flags (PATTERN (p));
2387 reset_used_flags (REG_NOTES (p));
2388 reset_used_flags (LOG_LINKS (p));
2391 /* Make sure that virtual stack slots are not shared. */
2392 reset_used_decls (DECL_INITIAL (cfun->decl));
2394 /* Make sure that virtual parameters are not shared. */
2395 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2396 reset_used_flags (DECL_RTL (decl));
2398 reset_used_flags (stack_slot_list);
2400 unshare_all_rtl (cfun->decl, insn);
2403 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2404 Assumes the mark bits are cleared at entry. */
2406 static void
2407 unshare_all_rtl_1 (insn)
2408 rtx insn;
2410 for (; insn; insn = NEXT_INSN (insn))
2411 if (INSN_P (insn))
2413 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2414 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2415 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2419 /* Go through all virtual stack slots of a function and copy any
2420 shared structure. */
2421 static void
2422 unshare_all_decls (blk)
2423 tree blk;
2425 tree t;
2427 /* Copy shared decls. */
2428 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2429 if (DECL_RTL_SET_P (t))
2430 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2432 /* Now process sub-blocks. */
2433 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2434 unshare_all_decls (t);
2437 /* Go through all virtual stack slots of a function and mark them as
2438 not shared. */
2439 static void
2440 reset_used_decls (blk)
2441 tree blk;
2443 tree t;
2445 /* Mark decls. */
2446 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2447 if (DECL_RTL_SET_P (t))
2448 reset_used_flags (DECL_RTL (t));
2450 /* Now process sub-blocks. */
2451 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2452 reset_used_decls (t);
2455 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2456 placed in the result directly, rather than being copied. MAY_SHARE is
2457 either a MEM of an EXPR_LIST of MEMs. */
2460 copy_most_rtx (orig, may_share)
2461 rtx orig;
2462 rtx may_share;
2464 rtx copy;
2465 int i, j;
2466 RTX_CODE code;
2467 const char *format_ptr;
2469 if (orig == may_share
2470 || (GET_CODE (may_share) == EXPR_LIST
2471 && in_expr_list_p (may_share, orig)))
2472 return orig;
2474 code = GET_CODE (orig);
2476 switch (code)
2478 case REG:
2479 case QUEUED:
2480 case CONST_INT:
2481 case CONST_DOUBLE:
2482 case CONST_VECTOR:
2483 case SYMBOL_REF:
2484 case CODE_LABEL:
2485 case PC:
2486 case CC0:
2487 return orig;
2488 default:
2489 break;
2492 copy = rtx_alloc (code);
2493 PUT_MODE (copy, GET_MODE (orig));
2494 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2495 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2496 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2497 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2498 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2500 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2502 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2504 switch (*format_ptr++)
2506 case 'e':
2507 XEXP (copy, i) = XEXP (orig, i);
2508 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2509 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2510 break;
2512 case 'u':
2513 XEXP (copy, i) = XEXP (orig, i);
2514 break;
2516 case 'E':
2517 case 'V':
2518 XVEC (copy, i) = XVEC (orig, i);
2519 if (XVEC (orig, i) != NULL)
2521 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2522 for (j = 0; j < XVECLEN (copy, i); j++)
2523 XVECEXP (copy, i, j)
2524 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2526 break;
2528 case 'w':
2529 XWINT (copy, i) = XWINT (orig, i);
2530 break;
2532 case 'n':
2533 case 'i':
2534 XINT (copy, i) = XINT (orig, i);
2535 break;
2537 case 't':
2538 XTREE (copy, i) = XTREE (orig, i);
2539 break;
2541 case 's':
2542 case 'S':
2543 XSTR (copy, i) = XSTR (orig, i);
2544 break;
2546 case '0':
2547 /* Copy this through the wide int field; that's safest. */
2548 X0WINT (copy, i) = X0WINT (orig, i);
2549 break;
2551 default:
2552 abort ();
2555 return copy;
2558 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2559 Recursively does the same for subexpressions. */
2562 copy_rtx_if_shared (orig)
2563 rtx orig;
2565 rtx x = orig;
2566 int i;
2567 enum rtx_code code;
2568 const char *format_ptr;
2569 int copied = 0;
2571 if (x == 0)
2572 return 0;
2574 code = GET_CODE (x);
2576 /* These types may be freely shared. */
2578 switch (code)
2580 case REG:
2581 case QUEUED:
2582 case CONST_INT:
2583 case CONST_DOUBLE:
2584 case CONST_VECTOR:
2585 case SYMBOL_REF:
2586 case CODE_LABEL:
2587 case PC:
2588 case CC0:
2589 case SCRATCH:
2590 /* SCRATCH must be shared because they represent distinct values. */
2591 return x;
2593 case CONST:
2594 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2595 a LABEL_REF, it isn't sharable. */
2596 if (GET_CODE (XEXP (x, 0)) == PLUS
2597 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2598 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2599 return x;
2600 break;
2602 case INSN:
2603 case JUMP_INSN:
2604 case CALL_INSN:
2605 case NOTE:
2606 case BARRIER:
2607 /* The chain of insns is not being copied. */
2608 return x;
2610 case MEM:
2611 /* A MEM is allowed to be shared if its address is constant.
2613 We used to allow sharing of MEMs which referenced
2614 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2615 that can lose. instantiate_virtual_regs will not unshare
2616 the MEMs, and combine may change the structure of the address
2617 because it looks safe and profitable in one context, but
2618 in some other context it creates unrecognizable RTL. */
2619 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2620 return x;
2622 break;
2624 default:
2625 break;
2628 /* This rtx may not be shared. If it has already been seen,
2629 replace it with a copy of itself. */
2631 if (RTX_FLAG (x, used))
2633 rtx copy;
2635 copy = rtx_alloc (code);
2636 memcpy (copy, x,
2637 (sizeof (*copy) - sizeof (copy->fld)
2638 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2639 x = copy;
2640 copied = 1;
2642 RTX_FLAG (x, used) = 1;
2644 /* Now scan the subexpressions recursively.
2645 We can store any replaced subexpressions directly into X
2646 since we know X is not shared! Any vectors in X
2647 must be copied if X was copied. */
2649 format_ptr = GET_RTX_FORMAT (code);
2651 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2653 switch (*format_ptr++)
2655 case 'e':
2656 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2657 break;
2659 case 'E':
2660 if (XVEC (x, i) != NULL)
2662 int j;
2663 int len = XVECLEN (x, i);
2665 if (copied && len > 0)
2666 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2667 for (j = 0; j < len; j++)
2668 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2670 break;
2673 return x;
2676 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2677 to look for shared sub-parts. */
2679 void
2680 reset_used_flags (x)
2681 rtx x;
2683 int i, j;
2684 enum rtx_code code;
2685 const char *format_ptr;
2687 if (x == 0)
2688 return;
2690 code = GET_CODE (x);
2692 /* These types may be freely shared so we needn't do any resetting
2693 for them. */
2695 switch (code)
2697 case REG:
2698 case QUEUED:
2699 case CONST_INT:
2700 case CONST_DOUBLE:
2701 case CONST_VECTOR:
2702 case SYMBOL_REF:
2703 case CODE_LABEL:
2704 case PC:
2705 case CC0:
2706 return;
2708 case INSN:
2709 case JUMP_INSN:
2710 case CALL_INSN:
2711 case NOTE:
2712 case LABEL_REF:
2713 case BARRIER:
2714 /* The chain of insns is not being copied. */
2715 return;
2717 default:
2718 break;
2721 RTX_FLAG (x, used) = 0;
2723 format_ptr = GET_RTX_FORMAT (code);
2724 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2726 switch (*format_ptr++)
2728 case 'e':
2729 reset_used_flags (XEXP (x, i));
2730 break;
2732 case 'E':
2733 for (j = 0; j < XVECLEN (x, i); j++)
2734 reset_used_flags (XVECEXP (x, i, j));
2735 break;
2740 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2741 Return X or the rtx for the pseudo reg the value of X was copied into.
2742 OTHER must be valid as a SET_DEST. */
2745 make_safe_from (x, other)
2746 rtx x, other;
2748 while (1)
2749 switch (GET_CODE (other))
2751 case SUBREG:
2752 other = SUBREG_REG (other);
2753 break;
2754 case STRICT_LOW_PART:
2755 case SIGN_EXTEND:
2756 case ZERO_EXTEND:
2757 other = XEXP (other, 0);
2758 break;
2759 default:
2760 goto done;
2762 done:
2763 if ((GET_CODE (other) == MEM
2764 && ! CONSTANT_P (x)
2765 && GET_CODE (x) != REG
2766 && GET_CODE (x) != SUBREG)
2767 || (GET_CODE (other) == REG
2768 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2769 || reg_mentioned_p (other, x))))
2771 rtx temp = gen_reg_rtx (GET_MODE (x));
2772 emit_move_insn (temp, x);
2773 return temp;
2775 return x;
2778 /* Emission of insns (adding them to the doubly-linked list). */
2780 /* Return the first insn of the current sequence or current function. */
2783 get_insns ()
2785 return first_insn;
2788 /* Specify a new insn as the first in the chain. */
2790 void
2791 set_first_insn (insn)
2792 rtx insn;
2794 if (PREV_INSN (insn) != 0)
2795 abort ();
2796 first_insn = insn;
2799 /* Return the last insn emitted in current sequence or current function. */
2802 get_last_insn ()
2804 return last_insn;
2807 /* Specify a new insn as the last in the chain. */
2809 void
2810 set_last_insn (insn)
2811 rtx insn;
2813 if (NEXT_INSN (insn) != 0)
2814 abort ();
2815 last_insn = insn;
2818 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2821 get_last_insn_anywhere ()
2823 struct sequence_stack *stack;
2824 if (last_insn)
2825 return last_insn;
2826 for (stack = seq_stack; stack; stack = stack->next)
2827 if (stack->last != 0)
2828 return stack->last;
2829 return 0;
2832 /* Return the first nonnote insn emitted in current sequence or current
2833 function. This routine looks inside SEQUENCEs. */
2836 get_first_nonnote_insn ()
2838 rtx insn = first_insn;
2840 while (insn)
2842 insn = next_insn (insn);
2843 if (insn == 0 || GET_CODE (insn) != NOTE)
2844 break;
2847 return insn;
2850 /* Return the last nonnote insn emitted in current sequence or current
2851 function. This routine looks inside SEQUENCEs. */
2854 get_last_nonnote_insn ()
2856 rtx insn = last_insn;
2858 while (insn)
2860 insn = previous_insn (insn);
2861 if (insn == 0 || GET_CODE (insn) != NOTE)
2862 break;
2865 return insn;
2868 /* Return a number larger than any instruction's uid in this function. */
2871 get_max_uid ()
2873 return cur_insn_uid;
2876 /* Renumber instructions so that no instruction UIDs are wasted. */
2878 void
2879 renumber_insns (stream)
2880 FILE *stream;
2882 rtx insn;
2884 /* If we're not supposed to renumber instructions, don't. */
2885 if (!flag_renumber_insns)
2886 return;
2888 /* If there aren't that many instructions, then it's not really
2889 worth renumbering them. */
2890 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2891 return;
2893 cur_insn_uid = 1;
2895 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2897 if (stream)
2898 fprintf (stream, "Renumbering insn %d to %d\n",
2899 INSN_UID (insn), cur_insn_uid);
2900 INSN_UID (insn) = cur_insn_uid++;
2904 /* Return the next insn. If it is a SEQUENCE, return the first insn
2905 of the sequence. */
2908 next_insn (insn)
2909 rtx insn;
2911 if (insn)
2913 insn = NEXT_INSN (insn);
2914 if (insn && GET_CODE (insn) == INSN
2915 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2916 insn = XVECEXP (PATTERN (insn), 0, 0);
2919 return insn;
2922 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2923 of the sequence. */
2926 previous_insn (insn)
2927 rtx insn;
2929 if (insn)
2931 insn = PREV_INSN (insn);
2932 if (insn && GET_CODE (insn) == INSN
2933 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2934 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2937 return insn;
2940 /* Return the next insn after INSN that is not a NOTE. This routine does not
2941 look inside SEQUENCEs. */
2944 next_nonnote_insn (insn)
2945 rtx insn;
2947 while (insn)
2949 insn = NEXT_INSN (insn);
2950 if (insn == 0 || GET_CODE (insn) != NOTE)
2951 break;
2954 return insn;
2957 /* Return the previous insn before INSN that is not a NOTE. This routine does
2958 not look inside SEQUENCEs. */
2961 prev_nonnote_insn (insn)
2962 rtx insn;
2964 while (insn)
2966 insn = PREV_INSN (insn);
2967 if (insn == 0 || GET_CODE (insn) != NOTE)
2968 break;
2971 return insn;
2974 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2975 or 0, if there is none. This routine does not look inside
2976 SEQUENCEs. */
2979 next_real_insn (insn)
2980 rtx insn;
2982 while (insn)
2984 insn = NEXT_INSN (insn);
2985 if (insn == 0 || GET_CODE (insn) == INSN
2986 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2987 break;
2990 return insn;
2993 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2994 or 0, if there is none. This routine does not look inside
2995 SEQUENCEs. */
2998 prev_real_insn (insn)
2999 rtx insn;
3001 while (insn)
3003 insn = PREV_INSN (insn);
3004 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3005 || GET_CODE (insn) == JUMP_INSN)
3006 break;
3009 return insn;
3012 /* Find the next insn after INSN that really does something. This routine
3013 does not look inside SEQUENCEs. Until reload has completed, this is the
3014 same as next_real_insn. */
3017 active_insn_p (insn)
3018 rtx insn;
3020 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3021 || (GET_CODE (insn) == INSN
3022 && (! reload_completed
3023 || (GET_CODE (PATTERN (insn)) != USE
3024 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3028 next_active_insn (insn)
3029 rtx insn;
3031 while (insn)
3033 insn = NEXT_INSN (insn);
3034 if (insn == 0 || active_insn_p (insn))
3035 break;
3038 return insn;
3041 /* Find the last insn before INSN that really does something. This routine
3042 does not look inside SEQUENCEs. Until reload has completed, this is the
3043 same as prev_real_insn. */
3046 prev_active_insn (insn)
3047 rtx insn;
3049 while (insn)
3051 insn = PREV_INSN (insn);
3052 if (insn == 0 || active_insn_p (insn))
3053 break;
3056 return insn;
3059 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3062 next_label (insn)
3063 rtx insn;
3065 while (insn)
3067 insn = NEXT_INSN (insn);
3068 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3069 break;
3072 return insn;
3075 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3078 prev_label (insn)
3079 rtx insn;
3081 while (insn)
3083 insn = PREV_INSN (insn);
3084 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3085 break;
3088 return insn;
3091 #ifdef HAVE_cc0
3092 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3093 and REG_CC_USER notes so we can find it. */
3095 void
3096 link_cc0_insns (insn)
3097 rtx insn;
3099 rtx user = next_nonnote_insn (insn);
3101 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3102 user = XVECEXP (PATTERN (user), 0, 0);
3104 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3105 REG_NOTES (user));
3106 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3109 /* Return the next insn that uses CC0 after INSN, which is assumed to
3110 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3111 applied to the result of this function should yield INSN).
3113 Normally, this is simply the next insn. However, if a REG_CC_USER note
3114 is present, it contains the insn that uses CC0.
3116 Return 0 if we can't find the insn. */
3119 next_cc0_user (insn)
3120 rtx insn;
3122 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3124 if (note)
3125 return XEXP (note, 0);
3127 insn = next_nonnote_insn (insn);
3128 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3129 insn = XVECEXP (PATTERN (insn), 0, 0);
3131 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3132 return insn;
3134 return 0;
3137 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3138 note, it is the previous insn. */
3141 prev_cc0_setter (insn)
3142 rtx insn;
3144 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3146 if (note)
3147 return XEXP (note, 0);
3149 insn = prev_nonnote_insn (insn);
3150 if (! sets_cc0_p (PATTERN (insn)))
3151 abort ();
3153 return insn;
3155 #endif
3157 /* Increment the label uses for all labels present in rtx. */
3159 static void
3160 mark_label_nuses (x)
3161 rtx x;
3163 enum rtx_code code;
3164 int i, j;
3165 const char *fmt;
3167 code = GET_CODE (x);
3168 if (code == LABEL_REF)
3169 LABEL_NUSES (XEXP (x, 0))++;
3171 fmt = GET_RTX_FORMAT (code);
3172 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3174 if (fmt[i] == 'e')
3175 mark_label_nuses (XEXP (x, i));
3176 else if (fmt[i] == 'E')
3177 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3178 mark_label_nuses (XVECEXP (x, i, j));
3183 /* Try splitting insns that can be split for better scheduling.
3184 PAT is the pattern which might split.
3185 TRIAL is the insn providing PAT.
3186 LAST is non-zero if we should return the last insn of the sequence produced.
3188 If this routine succeeds in splitting, it returns the first or last
3189 replacement insn depending on the value of LAST. Otherwise, it
3190 returns TRIAL. If the insn to be returned can be split, it will be. */
3193 try_split (pat, trial, last)
3194 rtx pat, trial;
3195 int last;
3197 rtx before = PREV_INSN (trial);
3198 rtx after = NEXT_INSN (trial);
3199 int has_barrier = 0;
3200 rtx tem;
3201 rtx note, seq;
3202 int probability;
3204 if (any_condjump_p (trial)
3205 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3206 split_branch_probability = INTVAL (XEXP (note, 0));
3207 probability = split_branch_probability;
3209 seq = split_insns (pat, trial);
3211 split_branch_probability = -1;
3213 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3214 We may need to handle this specially. */
3215 if (after && GET_CODE (after) == BARRIER)
3217 has_barrier = 1;
3218 after = NEXT_INSN (after);
3221 if (seq)
3223 /* Sometimes there will be only one insn in that list, this case will
3224 normally arise only when we want it in turn to be split (SFmode on
3225 the 29k is an example). */
3226 if (NEXT_INSN (seq) != NULL_RTX)
3228 rtx insn_last, insn;
3229 int njumps = 0;
3231 /* Avoid infinite loop if any insn of the result matches
3232 the original pattern. */
3233 insn_last = seq;
3234 while (1)
3236 if (INSN_P (insn_last)
3237 && rtx_equal_p (PATTERN (insn_last), pat))
3238 return trial;
3239 if (NEXT_INSN (insn_last) == NULL_RTX)
3240 break;
3241 insn_last = NEXT_INSN (insn_last);
3244 /* Mark labels. */
3245 insn = insn_last;
3246 while (insn != NULL_RTX)
3248 if (GET_CODE (insn) == JUMP_INSN)
3250 mark_jump_label (PATTERN (insn), insn, 0);
3251 njumps++;
3252 if (probability != -1
3253 && any_condjump_p (insn)
3254 && !find_reg_note (insn, REG_BR_PROB, 0))
3256 /* We can preserve the REG_BR_PROB notes only if exactly
3257 one jump is created, otherwise the machine description
3258 is responsible for this step using
3259 split_branch_probability variable. */
3260 if (njumps != 1)
3261 abort ();
3262 REG_NOTES (insn)
3263 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3264 GEN_INT (probability),
3265 REG_NOTES (insn));
3269 insn = PREV_INSN (insn);
3272 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3273 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3274 if (GET_CODE (trial) == CALL_INSN)
3276 insn = insn_last;
3277 while (insn != NULL_RTX)
3279 if (GET_CODE (insn) == CALL_INSN)
3280 CALL_INSN_FUNCTION_USAGE (insn)
3281 = CALL_INSN_FUNCTION_USAGE (trial);
3283 insn = PREV_INSN (insn);
3287 /* Copy notes, particularly those related to the CFG. */
3288 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3290 switch (REG_NOTE_KIND (note))
3292 case REG_EH_REGION:
3293 insn = insn_last;
3294 while (insn != NULL_RTX)
3296 if (GET_CODE (insn) == CALL_INSN
3297 || (flag_non_call_exceptions
3298 && may_trap_p (PATTERN (insn))))
3299 REG_NOTES (insn)
3300 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3301 XEXP (note, 0),
3302 REG_NOTES (insn));
3303 insn = PREV_INSN (insn);
3305 break;
3307 case REG_NORETURN:
3308 case REG_SETJMP:
3309 case REG_ALWAYS_RETURN:
3310 insn = insn_last;
3311 while (insn != NULL_RTX)
3313 if (GET_CODE (insn) == CALL_INSN)
3314 REG_NOTES (insn)
3315 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3316 XEXP (note, 0),
3317 REG_NOTES (insn));
3318 insn = PREV_INSN (insn);
3320 break;
3322 case REG_NON_LOCAL_GOTO:
3323 insn = insn_last;
3324 while (insn != NULL_RTX)
3326 if (GET_CODE (insn) == JUMP_INSN)
3327 REG_NOTES (insn)
3328 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3329 XEXP (note, 0),
3330 REG_NOTES (insn));
3331 insn = PREV_INSN (insn);
3333 break;
3335 default:
3336 break;
3340 /* If there are LABELS inside the split insns increment the
3341 usage count so we don't delete the label. */
3342 if (GET_CODE (trial) == INSN)
3344 insn = insn_last;
3345 while (insn != NULL_RTX)
3347 if (GET_CODE (insn) == INSN)
3348 mark_label_nuses (PATTERN (insn));
3350 insn = PREV_INSN (insn);
3354 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3356 delete_insn (trial);
3357 if (has_barrier)
3358 emit_barrier_after (tem);
3360 /* Recursively call try_split for each new insn created; by the
3361 time control returns here that insn will be fully split, so
3362 set LAST and continue from the insn after the one returned.
3363 We can't use next_active_insn here since AFTER may be a note.
3364 Ignore deleted insns, which can be occur if not optimizing. */
3365 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3366 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3367 tem = try_split (PATTERN (tem), tem, 1);
3369 /* Avoid infinite loop if the result matches the original pattern. */
3370 else if (rtx_equal_p (PATTERN (seq), pat))
3371 return trial;
3372 else
3374 PATTERN (trial) = PATTERN (seq);
3375 INSN_CODE (trial) = -1;
3376 try_split (PATTERN (trial), trial, last);
3379 /* Return either the first or the last insn, depending on which was
3380 requested. */
3381 return last
3382 ? (after ? PREV_INSN (after) : last_insn)
3383 : NEXT_INSN (before);
3386 return trial;
3389 /* Make and return an INSN rtx, initializing all its slots.
3390 Store PATTERN in the pattern slots. */
3393 make_insn_raw (pattern)
3394 rtx pattern;
3396 rtx insn;
3398 insn = rtx_alloc (INSN);
3400 INSN_UID (insn) = cur_insn_uid++;
3401 PATTERN (insn) = pattern;
3402 INSN_CODE (insn) = -1;
3403 LOG_LINKS (insn) = NULL;
3404 REG_NOTES (insn) = NULL;
3405 INSN_SCOPE (insn) = NULL;
3406 BLOCK_FOR_INSN (insn) = NULL;
3408 #ifdef ENABLE_RTL_CHECKING
3409 if (insn
3410 && INSN_P (insn)
3411 && (returnjump_p (insn)
3412 || (GET_CODE (insn) == SET
3413 && SET_DEST (insn) == pc_rtx)))
3415 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3416 debug_rtx (insn);
3418 #endif
3420 return insn;
3423 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3425 static rtx
3426 make_jump_insn_raw (pattern)
3427 rtx pattern;
3429 rtx insn;
3431 insn = rtx_alloc (JUMP_INSN);
3432 INSN_UID (insn) = cur_insn_uid++;
3434 PATTERN (insn) = pattern;
3435 INSN_CODE (insn) = -1;
3436 LOG_LINKS (insn) = NULL;
3437 REG_NOTES (insn) = NULL;
3438 JUMP_LABEL (insn) = NULL;
3439 INSN_SCOPE (insn) = NULL;
3440 BLOCK_FOR_INSN (insn) = NULL;
3442 return insn;
3445 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3447 static rtx
3448 make_call_insn_raw (pattern)
3449 rtx pattern;
3451 rtx insn;
3453 insn = rtx_alloc (CALL_INSN);
3454 INSN_UID (insn) = cur_insn_uid++;
3456 PATTERN (insn) = pattern;
3457 INSN_CODE (insn) = -1;
3458 LOG_LINKS (insn) = NULL;
3459 REG_NOTES (insn) = NULL;
3460 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3461 INSN_SCOPE (insn) = NULL;
3462 BLOCK_FOR_INSN (insn) = NULL;
3464 return insn;
3467 /* Add INSN to the end of the doubly-linked list.
3468 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3470 void
3471 add_insn (insn)
3472 rtx insn;
3474 PREV_INSN (insn) = last_insn;
3475 NEXT_INSN (insn) = 0;
3477 if (NULL != last_insn)
3478 NEXT_INSN (last_insn) = insn;
3480 if (NULL == first_insn)
3481 first_insn = insn;
3483 last_insn = insn;
3486 /* Add INSN into the doubly-linked list after insn AFTER. This and
3487 the next should be the only functions called to insert an insn once
3488 delay slots have been filled since only they know how to update a
3489 SEQUENCE. */
3491 void
3492 add_insn_after (insn, after)
3493 rtx insn, after;
3495 rtx next = NEXT_INSN (after);
3496 basic_block bb;
3498 if (optimize && INSN_DELETED_P (after))
3499 abort ();
3501 NEXT_INSN (insn) = next;
3502 PREV_INSN (insn) = after;
3504 if (next)
3506 PREV_INSN (next) = insn;
3507 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3508 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3510 else if (last_insn == after)
3511 last_insn = insn;
3512 else
3514 struct sequence_stack *stack = seq_stack;
3515 /* Scan all pending sequences too. */
3516 for (; stack; stack = stack->next)
3517 if (after == stack->last)
3519 stack->last = insn;
3520 break;
3523 if (stack == 0)
3524 abort ();
3527 if (GET_CODE (after) != BARRIER
3528 && GET_CODE (insn) != BARRIER
3529 && (bb = BLOCK_FOR_INSN (after)))
3531 set_block_for_insn (insn, bb);
3532 if (INSN_P (insn))
3533 bb->flags |= BB_DIRTY;
3534 /* Should not happen as first in the BB is always
3535 either NOTE or LABEL. */
3536 if (bb->end == after
3537 /* Avoid clobbering of structure when creating new BB. */
3538 && GET_CODE (insn) != BARRIER
3539 && (GET_CODE (insn) != NOTE
3540 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3541 bb->end = insn;
3544 NEXT_INSN (after) = insn;
3545 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3547 rtx sequence = PATTERN (after);
3548 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3552 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3553 the previous should be the only functions called to insert an insn once
3554 delay slots have been filled since only they know how to update a
3555 SEQUENCE. */
3557 void
3558 add_insn_before (insn, before)
3559 rtx insn, before;
3561 rtx prev = PREV_INSN (before);
3562 basic_block bb;
3564 if (optimize && INSN_DELETED_P (before))
3565 abort ();
3567 PREV_INSN (insn) = prev;
3568 NEXT_INSN (insn) = before;
3570 if (prev)
3572 NEXT_INSN (prev) = insn;
3573 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3575 rtx sequence = PATTERN (prev);
3576 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3579 else if (first_insn == before)
3580 first_insn = insn;
3581 else
3583 struct sequence_stack *stack = seq_stack;
3584 /* Scan all pending sequences too. */
3585 for (; stack; stack = stack->next)
3586 if (before == stack->first)
3588 stack->first = insn;
3589 break;
3592 if (stack == 0)
3593 abort ();
3596 if (GET_CODE (before) != BARRIER
3597 && GET_CODE (insn) != BARRIER
3598 && (bb = BLOCK_FOR_INSN (before)))
3600 set_block_for_insn (insn, bb);
3601 if (INSN_P (insn))
3602 bb->flags |= BB_DIRTY;
3603 /* Should not happen as first in the BB is always
3604 either NOTE or LABEl. */
3605 if (bb->head == insn
3606 /* Avoid clobbering of structure when creating new BB. */
3607 && GET_CODE (insn) != BARRIER
3608 && (GET_CODE (insn) != NOTE
3609 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3610 abort ();
3613 PREV_INSN (before) = insn;
3614 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3615 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3618 /* Remove an insn from its doubly-linked list. This function knows how
3619 to handle sequences. */
3620 void
3621 remove_insn (insn)
3622 rtx insn;
3624 rtx next = NEXT_INSN (insn);
3625 rtx prev = PREV_INSN (insn);
3626 basic_block bb;
3628 if (prev)
3630 NEXT_INSN (prev) = next;
3631 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3633 rtx sequence = PATTERN (prev);
3634 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3637 else if (first_insn == insn)
3638 first_insn = next;
3639 else
3641 struct sequence_stack *stack = seq_stack;
3642 /* Scan all pending sequences too. */
3643 for (; stack; stack = stack->next)
3644 if (insn == stack->first)
3646 stack->first = next;
3647 break;
3650 if (stack == 0)
3651 abort ();
3654 if (next)
3656 PREV_INSN (next) = prev;
3657 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3658 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3660 else if (last_insn == insn)
3661 last_insn = prev;
3662 else
3664 struct sequence_stack *stack = seq_stack;
3665 /* Scan all pending sequences too. */
3666 for (; stack; stack = stack->next)
3667 if (insn == stack->last)
3669 stack->last = prev;
3670 break;
3673 if (stack == 0)
3674 abort ();
3676 if (GET_CODE (insn) != BARRIER
3677 && (bb = BLOCK_FOR_INSN (insn)))
3679 if (INSN_P (insn))
3680 bb->flags |= BB_DIRTY;
3681 if (bb->head == insn)
3683 /* Never ever delete the basic block note without deleting whole
3684 basic block. */
3685 if (GET_CODE (insn) == NOTE)
3686 abort ();
3687 bb->head = next;
3689 if (bb->end == insn)
3690 bb->end = prev;
3694 /* Delete all insns made since FROM.
3695 FROM becomes the new last instruction. */
3697 void
3698 delete_insns_since (from)
3699 rtx from;
3701 if (from == 0)
3702 first_insn = 0;
3703 else
3704 NEXT_INSN (from) = 0;
3705 last_insn = from;
3708 /* This function is deprecated, please use sequences instead.
3710 Move a consecutive bunch of insns to a different place in the chain.
3711 The insns to be moved are those between FROM and TO.
3712 They are moved to a new position after the insn AFTER.
3713 AFTER must not be FROM or TO or any insn in between.
3715 This function does not know about SEQUENCEs and hence should not be
3716 called after delay-slot filling has been done. */
3718 void
3719 reorder_insns_nobb (from, to, after)
3720 rtx from, to, after;
3722 /* Splice this bunch out of where it is now. */
3723 if (PREV_INSN (from))
3724 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3725 if (NEXT_INSN (to))
3726 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3727 if (last_insn == to)
3728 last_insn = PREV_INSN (from);
3729 if (first_insn == from)
3730 first_insn = NEXT_INSN (to);
3732 /* Make the new neighbors point to it and it to them. */
3733 if (NEXT_INSN (after))
3734 PREV_INSN (NEXT_INSN (after)) = to;
3736 NEXT_INSN (to) = NEXT_INSN (after);
3737 PREV_INSN (from) = after;
3738 NEXT_INSN (after) = from;
3739 if (after == last_insn)
3740 last_insn = to;
3743 /* Same as function above, but take care to update BB boundaries. */
3744 void
3745 reorder_insns (from, to, after)
3746 rtx from, to, after;
3748 rtx prev = PREV_INSN (from);
3749 basic_block bb, bb2;
3751 reorder_insns_nobb (from, to, after);
3753 if (GET_CODE (after) != BARRIER
3754 && (bb = BLOCK_FOR_INSN (after)))
3756 rtx x;
3757 bb->flags |= BB_DIRTY;
3759 if (GET_CODE (from) != BARRIER
3760 && (bb2 = BLOCK_FOR_INSN (from)))
3762 if (bb2->end == to)
3763 bb2->end = prev;
3764 bb2->flags |= BB_DIRTY;
3767 if (bb->end == after)
3768 bb->end = to;
3770 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3771 set_block_for_insn (x, bb);
3775 /* Return the line note insn preceding INSN. */
3777 static rtx
3778 find_line_note (insn)
3779 rtx insn;
3781 if (no_line_numbers)
3782 return 0;
3784 for (; insn; insn = PREV_INSN (insn))
3785 if (GET_CODE (insn) == NOTE
3786 && NOTE_LINE_NUMBER (insn) >= 0)
3787 break;
3789 return insn;
3792 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3793 of the moved insns when debugging. This may insert a note between AFTER
3794 and FROM, and another one after TO. */
3796 void
3797 reorder_insns_with_line_notes (from, to, after)
3798 rtx from, to, after;
3800 rtx from_line = find_line_note (from);
3801 rtx after_line = find_line_note (after);
3803 reorder_insns (from, to, after);
3805 if (from_line == after_line)
3806 return;
3808 if (from_line)
3809 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3810 NOTE_LINE_NUMBER (from_line),
3811 after);
3812 if (after_line)
3813 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3814 NOTE_LINE_NUMBER (after_line),
3815 to);
3818 /* Remove unnecessary notes from the instruction stream. */
3820 void
3821 remove_unnecessary_notes ()
3823 rtx block_stack = NULL_RTX;
3824 rtx eh_stack = NULL_RTX;
3825 rtx insn;
3826 rtx next;
3827 rtx tmp;
3829 /* We must not remove the first instruction in the function because
3830 the compiler depends on the first instruction being a note. */
3831 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3833 /* Remember what's next. */
3834 next = NEXT_INSN (insn);
3836 /* We're only interested in notes. */
3837 if (GET_CODE (insn) != NOTE)
3838 continue;
3840 switch (NOTE_LINE_NUMBER (insn))
3842 case NOTE_INSN_DELETED:
3843 case NOTE_INSN_LOOP_END_TOP_COND:
3844 remove_insn (insn);
3845 break;
3847 case NOTE_INSN_EH_REGION_BEG:
3848 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3849 break;
3851 case NOTE_INSN_EH_REGION_END:
3852 /* Too many end notes. */
3853 if (eh_stack == NULL_RTX)
3854 abort ();
3855 /* Mismatched nesting. */
3856 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3857 abort ();
3858 tmp = eh_stack;
3859 eh_stack = XEXP (eh_stack, 1);
3860 free_INSN_LIST_node (tmp);
3861 break;
3863 case NOTE_INSN_BLOCK_BEG:
3864 /* By now, all notes indicating lexical blocks should have
3865 NOTE_BLOCK filled in. */
3866 if (NOTE_BLOCK (insn) == NULL_TREE)
3867 abort ();
3868 block_stack = alloc_INSN_LIST (insn, block_stack);
3869 break;
3871 case NOTE_INSN_BLOCK_END:
3872 /* Too many end notes. */
3873 if (block_stack == NULL_RTX)
3874 abort ();
3875 /* Mismatched nesting. */
3876 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3877 abort ();
3878 tmp = block_stack;
3879 block_stack = XEXP (block_stack, 1);
3880 free_INSN_LIST_node (tmp);
3882 /* Scan back to see if there are any non-note instructions
3883 between INSN and the beginning of this block. If not,
3884 then there is no PC range in the generated code that will
3885 actually be in this block, so there's no point in
3886 remembering the existence of the block. */
3887 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3889 /* This block contains a real instruction. Note that we
3890 don't include labels; if the only thing in the block
3891 is a label, then there are still no PC values that
3892 lie within the block. */
3893 if (INSN_P (tmp))
3894 break;
3896 /* We're only interested in NOTEs. */
3897 if (GET_CODE (tmp) != NOTE)
3898 continue;
3900 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3902 /* We just verified that this BLOCK matches us with
3903 the block_stack check above. Never delete the
3904 BLOCK for the outermost scope of the function; we
3905 can refer to names from that scope even if the
3906 block notes are messed up. */
3907 if (! is_body_block (NOTE_BLOCK (insn))
3908 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3910 remove_insn (tmp);
3911 remove_insn (insn);
3913 break;
3915 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3916 /* There's a nested block. We need to leave the
3917 current block in place since otherwise the debugger
3918 wouldn't be able to show symbols from our block in
3919 the nested block. */
3920 break;
3925 /* Too many begin notes. */
3926 if (block_stack || eh_stack)
3927 abort ();
3931 /* Emit insn(s) of given code and pattern
3932 at a specified place within the doubly-linked list.
3934 All of the emit_foo global entry points accept an object
3935 X which is either an insn list or a PATTERN of a single
3936 instruction.
3938 There are thus a few canonical ways to generate code and
3939 emit it at a specific place in the instruction stream. For
3940 example, consider the instruction named SPOT and the fact that
3941 we would like to emit some instructions before SPOT. We might
3942 do it like this:
3944 start_sequence ();
3945 ... emit the new instructions ...
3946 insns_head = get_insns ();
3947 end_sequence ();
3949 emit_insn_before (insns_head, SPOT);
3951 It used to be common to generate SEQUENCE rtl instead, but that
3952 is a relic of the past which no longer occurs. The reason is that
3953 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3954 generated would almost certainly die right after it was created. */
3956 /* Make X be output before the instruction BEFORE. */
3959 emit_insn_before (x, before)
3960 rtx x, before;
3962 rtx last = before;
3963 rtx insn;
3965 #ifdef ENABLE_RTL_CHECKING
3966 if (before == NULL_RTX)
3967 abort ();
3968 #endif
3970 if (x == NULL_RTX)
3971 return last;
3973 switch (GET_CODE (x))
3975 case INSN:
3976 case JUMP_INSN:
3977 case CALL_INSN:
3978 case CODE_LABEL:
3979 case BARRIER:
3980 case NOTE:
3981 insn = x;
3982 while (insn)
3984 rtx next = NEXT_INSN (insn);
3985 add_insn_before (insn, before);
3986 last = insn;
3987 insn = next;
3989 break;
3991 #ifdef ENABLE_RTL_CHECKING
3992 case SEQUENCE:
3993 abort ();
3994 break;
3995 #endif
3997 default:
3998 last = make_insn_raw (x);
3999 add_insn_before (last, before);
4000 break;
4003 return last;
4006 /* Make an instruction with body X and code JUMP_INSN
4007 and output it before the instruction BEFORE. */
4010 emit_jump_insn_before (x, before)
4011 rtx x, before;
4013 rtx insn, last = NULL_RTX;
4015 #ifdef ENABLE_RTL_CHECKING
4016 if (before == NULL_RTX)
4017 abort ();
4018 #endif
4020 switch (GET_CODE (x))
4022 case INSN:
4023 case JUMP_INSN:
4024 case CALL_INSN:
4025 case CODE_LABEL:
4026 case BARRIER:
4027 case NOTE:
4028 insn = x;
4029 while (insn)
4031 rtx next = NEXT_INSN (insn);
4032 add_insn_before (insn, before);
4033 last = insn;
4034 insn = next;
4036 break;
4038 #ifdef ENABLE_RTL_CHECKING
4039 case SEQUENCE:
4040 abort ();
4041 break;
4042 #endif
4044 default:
4045 last = make_jump_insn_raw (x);
4046 add_insn_before (last, before);
4047 break;
4050 return last;
4053 /* Make an instruction with body X and code CALL_INSN
4054 and output it before the instruction BEFORE. */
4057 emit_call_insn_before (x, before)
4058 rtx x, before;
4060 rtx last = NULL_RTX, insn;
4062 #ifdef ENABLE_RTL_CHECKING
4063 if (before == NULL_RTX)
4064 abort ();
4065 #endif
4067 switch (GET_CODE (x))
4069 case INSN:
4070 case JUMP_INSN:
4071 case CALL_INSN:
4072 case CODE_LABEL:
4073 case BARRIER:
4074 case NOTE:
4075 insn = x;
4076 while (insn)
4078 rtx next = NEXT_INSN (insn);
4079 add_insn_before (insn, before);
4080 last = insn;
4081 insn = next;
4083 break;
4085 #ifdef ENABLE_RTL_CHECKING
4086 case SEQUENCE:
4087 abort ();
4088 break;
4089 #endif
4091 default:
4092 last = make_call_insn_raw (x);
4093 add_insn_before (last, before);
4094 break;
4097 return last;
4100 /* Make an insn of code BARRIER
4101 and output it before the insn BEFORE. */
4104 emit_barrier_before (before)
4105 rtx before;
4107 rtx insn = rtx_alloc (BARRIER);
4109 INSN_UID (insn) = cur_insn_uid++;
4111 add_insn_before (insn, before);
4112 return insn;
4115 /* Emit the label LABEL before the insn BEFORE. */
4118 emit_label_before (label, before)
4119 rtx label, before;
4121 /* This can be called twice for the same label as a result of the
4122 confusion that follows a syntax error! So make it harmless. */
4123 if (INSN_UID (label) == 0)
4125 INSN_UID (label) = cur_insn_uid++;
4126 add_insn_before (label, before);
4129 return label;
4132 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4135 emit_note_before (subtype, before)
4136 int subtype;
4137 rtx before;
4139 rtx note = rtx_alloc (NOTE);
4140 INSN_UID (note) = cur_insn_uid++;
4141 NOTE_SOURCE_FILE (note) = 0;
4142 NOTE_LINE_NUMBER (note) = subtype;
4143 BLOCK_FOR_INSN (note) = NULL;
4145 add_insn_before (note, before);
4146 return note;
4149 /* Helper for emit_insn_after, handles lists of instructions
4150 efficiently. */
4152 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4154 static rtx
4155 emit_insn_after_1 (first, after)
4156 rtx first, after;
4158 rtx last;
4159 rtx after_after;
4160 basic_block bb;
4162 if (GET_CODE (after) != BARRIER
4163 && (bb = BLOCK_FOR_INSN (after)))
4165 bb->flags |= BB_DIRTY;
4166 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4167 if (GET_CODE (last) != BARRIER)
4168 set_block_for_insn (last, bb);
4169 if (GET_CODE (last) != BARRIER)
4170 set_block_for_insn (last, bb);
4171 if (bb->end == after)
4172 bb->end = last;
4174 else
4175 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4176 continue;
4178 after_after = NEXT_INSN (after);
4180 NEXT_INSN (after) = first;
4181 PREV_INSN (first) = after;
4182 NEXT_INSN (last) = after_after;
4183 if (after_after)
4184 PREV_INSN (after_after) = last;
4186 if (after == last_insn)
4187 last_insn = last;
4188 return last;
4191 /* Make X be output after the insn AFTER. */
4194 emit_insn_after (x, after)
4195 rtx x, after;
4197 rtx last = after;
4199 #ifdef ENABLE_RTL_CHECKING
4200 if (after == NULL_RTX)
4201 abort ();
4202 #endif
4204 if (x == NULL_RTX)
4205 return last;
4207 switch (GET_CODE (x))
4209 case INSN:
4210 case JUMP_INSN:
4211 case CALL_INSN:
4212 case CODE_LABEL:
4213 case BARRIER:
4214 case NOTE:
4215 last = emit_insn_after_1 (x, after);
4216 break;
4218 #ifdef ENABLE_RTL_CHECKING
4219 case SEQUENCE:
4220 abort ();
4221 break;
4222 #endif
4224 default:
4225 last = make_insn_raw (x);
4226 add_insn_after (last, after);
4227 break;
4230 return last;
4233 /* Similar to emit_insn_after, except that line notes are to be inserted so
4234 as to act as if this insn were at FROM. */
4236 void
4237 emit_insn_after_with_line_notes (x, after, from)
4238 rtx x, after, from;
4240 rtx from_line = find_line_note (from);
4241 rtx after_line = find_line_note (after);
4242 rtx insn = emit_insn_after (x, after);
4244 if (from_line)
4245 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4246 NOTE_LINE_NUMBER (from_line),
4247 after);
4249 if (after_line)
4250 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4251 NOTE_LINE_NUMBER (after_line),
4252 insn);
4255 /* Make an insn of code JUMP_INSN with body X
4256 and output it after the insn AFTER. */
4259 emit_jump_insn_after (x, after)
4260 rtx x, after;
4262 rtx last;
4264 #ifdef ENABLE_RTL_CHECKING
4265 if (after == NULL_RTX)
4266 abort ();
4267 #endif
4269 switch (GET_CODE (x))
4271 case INSN:
4272 case JUMP_INSN:
4273 case CALL_INSN:
4274 case CODE_LABEL:
4275 case BARRIER:
4276 case NOTE:
4277 last = emit_insn_after_1 (x, after);
4278 break;
4280 #ifdef ENABLE_RTL_CHECKING
4281 case SEQUENCE:
4282 abort ();
4283 break;
4284 #endif
4286 default:
4287 last = make_jump_insn_raw (x);
4288 add_insn_after (last, after);
4289 break;
4292 return last;
4295 /* Make an instruction with body X and code CALL_INSN
4296 and output it after the instruction AFTER. */
4299 emit_call_insn_after (x, after)
4300 rtx x, after;
4302 rtx last;
4304 #ifdef ENABLE_RTL_CHECKING
4305 if (after == NULL_RTX)
4306 abort ();
4307 #endif
4309 switch (GET_CODE (x))
4311 case INSN:
4312 case JUMP_INSN:
4313 case CALL_INSN:
4314 case CODE_LABEL:
4315 case BARRIER:
4316 case NOTE:
4317 last = emit_insn_after_1 (x, after);
4318 break;
4320 #ifdef ENABLE_RTL_CHECKING
4321 case SEQUENCE:
4322 abort ();
4323 break;
4324 #endif
4326 default:
4327 last = make_call_insn_raw (x);
4328 add_insn_after (last, after);
4329 break;
4332 return last;
4335 /* Make an insn of code BARRIER
4336 and output it after the insn AFTER. */
4339 emit_barrier_after (after)
4340 rtx after;
4342 rtx insn = rtx_alloc (BARRIER);
4344 INSN_UID (insn) = cur_insn_uid++;
4346 add_insn_after (insn, after);
4347 return insn;
4350 /* Emit the label LABEL after the insn AFTER. */
4353 emit_label_after (label, after)
4354 rtx label, after;
4356 /* This can be called twice for the same label
4357 as a result of the confusion that follows a syntax error!
4358 So make it harmless. */
4359 if (INSN_UID (label) == 0)
4361 INSN_UID (label) = cur_insn_uid++;
4362 add_insn_after (label, after);
4365 return label;
4368 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4371 emit_note_after (subtype, after)
4372 int subtype;
4373 rtx after;
4375 rtx note = rtx_alloc (NOTE);
4376 INSN_UID (note) = cur_insn_uid++;
4377 NOTE_SOURCE_FILE (note) = 0;
4378 NOTE_LINE_NUMBER (note) = subtype;
4379 BLOCK_FOR_INSN (note) = NULL;
4380 add_insn_after (note, after);
4381 return note;
4384 /* Emit a line note for FILE and LINE after the insn AFTER. */
4387 emit_line_note_after (file, line, after)
4388 const char *file;
4389 int line;
4390 rtx after;
4392 rtx note;
4394 if (no_line_numbers && line > 0)
4396 cur_insn_uid++;
4397 return 0;
4400 note = rtx_alloc (NOTE);
4401 INSN_UID (note) = cur_insn_uid++;
4402 NOTE_SOURCE_FILE (note) = file;
4403 NOTE_LINE_NUMBER (note) = line;
4404 BLOCK_FOR_INSN (note) = NULL;
4405 add_insn_after (note, after);
4406 return note;
4409 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4411 emit_insn_after_scope (pattern, after, scope)
4412 rtx pattern, after;
4413 tree scope;
4415 rtx last = emit_insn_after (pattern, after);
4417 after = NEXT_INSN (after);
4418 while (1)
4420 if (active_insn_p (after))
4421 INSN_SCOPE (after) = scope;
4422 if (after == last)
4423 break;
4424 after = NEXT_INSN (after);
4426 return last;
4429 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4431 emit_jump_insn_after_scope (pattern, after, scope)
4432 rtx pattern, after;
4433 tree scope;
4435 rtx last = emit_jump_insn_after (pattern, after);
4437 after = NEXT_INSN (after);
4438 while (1)
4440 if (active_insn_p (after))
4441 INSN_SCOPE (after) = scope;
4442 if (after == last)
4443 break;
4444 after = NEXT_INSN (after);
4446 return last;
4449 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4451 emit_call_insn_after_scope (pattern, after, scope)
4452 rtx pattern, after;
4453 tree scope;
4455 rtx last = emit_call_insn_after (pattern, after);
4457 after = NEXT_INSN (after);
4458 while (1)
4460 if (active_insn_p (after))
4461 INSN_SCOPE (after) = scope;
4462 if (after == last)
4463 break;
4464 after = NEXT_INSN (after);
4466 return last;
4469 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4471 emit_insn_before_scope (pattern, before, scope)
4472 rtx pattern, before;
4473 tree scope;
4475 rtx first = PREV_INSN (before);
4476 rtx last = emit_insn_before (pattern, before);
4478 first = NEXT_INSN (first);
4479 while (1)
4481 if (active_insn_p (first))
4482 INSN_SCOPE (first) = scope;
4483 if (first == last)
4484 break;
4485 first = NEXT_INSN (first);
4487 return last;
4490 /* Take X and emit it at the end of the doubly-linked
4491 INSN list.
4493 Returns the last insn emitted. */
4496 emit_insn (x)
4497 rtx x;
4499 rtx last = last_insn;
4500 rtx insn;
4502 if (x == NULL_RTX)
4503 return last;
4505 switch (GET_CODE (x))
4507 case INSN:
4508 case JUMP_INSN:
4509 case CALL_INSN:
4510 case CODE_LABEL:
4511 case BARRIER:
4512 case NOTE:
4513 insn = x;
4514 while (insn)
4516 rtx next = NEXT_INSN (insn);
4517 add_insn (insn);
4518 last = insn;
4519 insn = next;
4521 break;
4523 #ifdef ENABLE_RTL_CHECKING
4524 case SEQUENCE:
4525 abort ();
4526 break;
4527 #endif
4529 default:
4530 last = make_insn_raw (x);
4531 add_insn (last);
4532 break;
4535 return last;
4538 /* Make an insn of code JUMP_INSN with pattern X
4539 and add it to the end of the doubly-linked list. */
4542 emit_jump_insn (x)
4543 rtx x;
4545 rtx last = NULL_RTX, insn;
4547 switch (GET_CODE (x))
4549 case INSN:
4550 case JUMP_INSN:
4551 case CALL_INSN:
4552 case CODE_LABEL:
4553 case BARRIER:
4554 case NOTE:
4555 insn = x;
4556 while (insn)
4558 rtx next = NEXT_INSN (insn);
4559 add_insn (insn);
4560 last = insn;
4561 insn = next;
4563 break;
4565 #ifdef ENABLE_RTL_CHECKING
4566 case SEQUENCE:
4567 abort ();
4568 break;
4569 #endif
4571 default:
4572 last = make_jump_insn_raw (x);
4573 add_insn (last);
4574 break;
4577 return last;
4580 /* Make an insn of code CALL_INSN with pattern X
4581 and add it to the end of the doubly-linked list. */
4584 emit_call_insn (x)
4585 rtx x;
4587 rtx insn;
4589 switch (GET_CODE (x))
4591 case INSN:
4592 case JUMP_INSN:
4593 case CALL_INSN:
4594 case CODE_LABEL:
4595 case BARRIER:
4596 case NOTE:
4597 insn = emit_insn (x);
4598 break;
4600 #ifdef ENABLE_RTL_CHECKING
4601 case SEQUENCE:
4602 abort ();
4603 break;
4604 #endif
4606 default:
4607 insn = make_call_insn_raw (x);
4608 add_insn (insn);
4609 break;
4612 return insn;
4615 /* Add the label LABEL to the end of the doubly-linked list. */
4618 emit_label (label)
4619 rtx label;
4621 /* This can be called twice for the same label
4622 as a result of the confusion that follows a syntax error!
4623 So make it harmless. */
4624 if (INSN_UID (label) == 0)
4626 INSN_UID (label) = cur_insn_uid++;
4627 add_insn (label);
4629 return label;
4632 /* Make an insn of code BARRIER
4633 and add it to the end of the doubly-linked list. */
4636 emit_barrier ()
4638 rtx barrier = rtx_alloc (BARRIER);
4639 INSN_UID (barrier) = cur_insn_uid++;
4640 add_insn (barrier);
4641 return barrier;
4644 /* Make an insn of code NOTE
4645 with data-fields specified by FILE and LINE
4646 and add it to the end of the doubly-linked list,
4647 but only if line-numbers are desired for debugging info. */
4650 emit_line_note (file, line)
4651 const char *file;
4652 int line;
4654 set_file_and_line_for_stmt (file, line);
4656 #if 0
4657 if (no_line_numbers)
4658 return 0;
4659 #endif
4661 return emit_note (file, line);
4664 /* Make an insn of code NOTE
4665 with data-fields specified by FILE and LINE
4666 and add it to the end of the doubly-linked list.
4667 If it is a line-number NOTE, omit it if it matches the previous one. */
4670 emit_note (file, line)
4671 const char *file;
4672 int line;
4674 rtx note;
4676 if (line > 0)
4678 if (file && last_filename && !strcmp (file, last_filename)
4679 && line == last_linenum)
4680 return 0;
4681 last_filename = file;
4682 last_linenum = line;
4685 if (no_line_numbers && line > 0)
4687 cur_insn_uid++;
4688 return 0;
4691 note = rtx_alloc (NOTE);
4692 INSN_UID (note) = cur_insn_uid++;
4693 NOTE_SOURCE_FILE (note) = file;
4694 NOTE_LINE_NUMBER (note) = line;
4695 BLOCK_FOR_INSN (note) = NULL;
4696 add_insn (note);
4697 return note;
4700 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4703 emit_line_note_force (file, line)
4704 const char *file;
4705 int line;
4707 last_linenum = -1;
4708 return emit_line_note (file, line);
4711 /* Cause next statement to emit a line note even if the line number
4712 has not changed. This is used at the beginning of a function. */
4714 void
4715 force_next_line_note ()
4717 last_linenum = -1;
4720 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4721 note of this type already exists, remove it first. */
4724 set_unique_reg_note (insn, kind, datum)
4725 rtx insn;
4726 enum reg_note kind;
4727 rtx datum;
4729 rtx note = find_reg_note (insn, kind, NULL_RTX);
4731 switch (kind)
4733 case REG_EQUAL:
4734 case REG_EQUIV:
4735 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4736 has multiple sets (some callers assume single_set
4737 means the insn only has one set, when in fact it
4738 means the insn only has one * useful * set). */
4739 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4741 if (note)
4742 abort ();
4743 return NULL_RTX;
4746 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4747 It serves no useful purpose and breaks eliminate_regs. */
4748 if (GET_CODE (datum) == ASM_OPERANDS)
4749 return NULL_RTX;
4750 break;
4752 default:
4753 break;
4756 if (note)
4758 XEXP (note, 0) = datum;
4759 return note;
4762 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4763 return REG_NOTES (insn);
4766 /* Return an indication of which type of insn should have X as a body.
4767 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4769 enum rtx_code
4770 classify_insn (x)
4771 rtx x;
4773 if (GET_CODE (x) == CODE_LABEL)
4774 return CODE_LABEL;
4775 if (GET_CODE (x) == CALL)
4776 return CALL_INSN;
4777 if (GET_CODE (x) == RETURN)
4778 return JUMP_INSN;
4779 if (GET_CODE (x) == SET)
4781 if (SET_DEST (x) == pc_rtx)
4782 return JUMP_INSN;
4783 else if (GET_CODE (SET_SRC (x)) == CALL)
4784 return CALL_INSN;
4785 else
4786 return INSN;
4788 if (GET_CODE (x) == PARALLEL)
4790 int j;
4791 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4792 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4793 return CALL_INSN;
4794 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4795 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4796 return JUMP_INSN;
4797 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4798 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4799 return CALL_INSN;
4801 return INSN;
4804 /* Emit the rtl pattern X as an appropriate kind of insn.
4805 If X is a label, it is simply added into the insn chain. */
4808 emit (x)
4809 rtx x;
4811 enum rtx_code code = classify_insn (x);
4813 if (code == CODE_LABEL)
4814 return emit_label (x);
4815 else if (code == INSN)
4816 return emit_insn (x);
4817 else if (code == JUMP_INSN)
4819 rtx insn = emit_jump_insn (x);
4820 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4821 return emit_barrier ();
4822 return insn;
4824 else if (code == CALL_INSN)
4825 return emit_call_insn (x);
4826 else
4827 abort ();
4830 /* Space for free sequence stack entries. */
4831 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4833 /* Begin emitting insns to a sequence which can be packaged in an
4834 RTL_EXPR. If this sequence will contain something that might cause
4835 the compiler to pop arguments to function calls (because those
4836 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4837 details), use do_pending_stack_adjust before calling this function.
4838 That will ensure that the deferred pops are not accidentally
4839 emitted in the middle of this sequence. */
4841 void
4842 start_sequence ()
4844 struct sequence_stack *tem;
4846 if (free_sequence_stack != NULL)
4848 tem = free_sequence_stack;
4849 free_sequence_stack = tem->next;
4851 else
4852 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4854 tem->next = seq_stack;
4855 tem->first = first_insn;
4856 tem->last = last_insn;
4857 tem->sequence_rtl_expr = seq_rtl_expr;
4859 seq_stack = tem;
4861 first_insn = 0;
4862 last_insn = 0;
4865 /* Similarly, but indicate that this sequence will be placed in T, an
4866 RTL_EXPR. See the documentation for start_sequence for more
4867 information about how to use this function. */
4869 void
4870 start_sequence_for_rtl_expr (t)
4871 tree t;
4873 start_sequence ();
4875 seq_rtl_expr = t;
4878 /* Set up the insn chain starting with FIRST as the current sequence,
4879 saving the previously current one. See the documentation for
4880 start_sequence for more information about how to use this function. */
4882 void
4883 push_to_sequence (first)
4884 rtx first;
4886 rtx last;
4888 start_sequence ();
4890 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4892 first_insn = first;
4893 last_insn = last;
4896 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4898 void
4899 push_to_full_sequence (first, last)
4900 rtx first, last;
4902 start_sequence ();
4903 first_insn = first;
4904 last_insn = last;
4905 /* We really should have the end of the insn chain here. */
4906 if (last && NEXT_INSN (last))
4907 abort ();
4910 /* Set up the outer-level insn chain
4911 as the current sequence, saving the previously current one. */
4913 void
4914 push_topmost_sequence ()
4916 struct sequence_stack *stack, *top = NULL;
4918 start_sequence ();
4920 for (stack = seq_stack; stack; stack = stack->next)
4921 top = stack;
4923 first_insn = top->first;
4924 last_insn = top->last;
4925 seq_rtl_expr = top->sequence_rtl_expr;
4928 /* After emitting to the outer-level insn chain, update the outer-level
4929 insn chain, and restore the previous saved state. */
4931 void
4932 pop_topmost_sequence ()
4934 struct sequence_stack *stack, *top = NULL;
4936 for (stack = seq_stack; stack; stack = stack->next)
4937 top = stack;
4939 top->first = first_insn;
4940 top->last = last_insn;
4941 /* ??? Why don't we save seq_rtl_expr here? */
4943 end_sequence ();
4946 /* After emitting to a sequence, restore previous saved state.
4948 To get the contents of the sequence just made, you must call
4949 `get_insns' *before* calling here.
4951 If the compiler might have deferred popping arguments while
4952 generating this sequence, and this sequence will not be immediately
4953 inserted into the instruction stream, use do_pending_stack_adjust
4954 before calling get_insns. That will ensure that the deferred
4955 pops are inserted into this sequence, and not into some random
4956 location in the instruction stream. See INHIBIT_DEFER_POP for more
4957 information about deferred popping of arguments. */
4959 void
4960 end_sequence ()
4962 struct sequence_stack *tem = seq_stack;
4964 first_insn = tem->first;
4965 last_insn = tem->last;
4966 seq_rtl_expr = tem->sequence_rtl_expr;
4967 seq_stack = tem->next;
4969 memset (tem, 0, sizeof (*tem));
4970 tem->next = free_sequence_stack;
4971 free_sequence_stack = tem;
4974 /* This works like end_sequence, but records the old sequence in FIRST
4975 and LAST. */
4977 void
4978 end_full_sequence (first, last)
4979 rtx *first, *last;
4981 *first = first_insn;
4982 *last = last_insn;
4983 end_sequence ();
4986 /* Return 1 if currently emitting into a sequence. */
4989 in_sequence_p ()
4991 return seq_stack != 0;
4994 /* Put the various virtual registers into REGNO_REG_RTX. */
4996 void
4997 init_virtual_regs (es)
4998 struct emit_status *es;
5000 rtx *ptr = es->x_regno_reg_rtx;
5001 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5002 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5003 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5004 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5005 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5009 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5010 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5011 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5012 static int copy_insn_n_scratches;
5014 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5015 copied an ASM_OPERANDS.
5016 In that case, it is the original input-operand vector. */
5017 static rtvec orig_asm_operands_vector;
5019 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5020 copied an ASM_OPERANDS.
5021 In that case, it is the copied input-operand vector. */
5022 static rtvec copy_asm_operands_vector;
5024 /* Likewise for the constraints vector. */
5025 static rtvec orig_asm_constraints_vector;
5026 static rtvec copy_asm_constraints_vector;
5028 /* Recursively create a new copy of an rtx for copy_insn.
5029 This function differs from copy_rtx in that it handles SCRATCHes and
5030 ASM_OPERANDs properly.
5031 Normally, this function is not used directly; use copy_insn as front end.
5032 However, you could first copy an insn pattern with copy_insn and then use
5033 this function afterwards to properly copy any REG_NOTEs containing
5034 SCRATCHes. */
5037 copy_insn_1 (orig)
5038 rtx orig;
5040 rtx copy;
5041 int i, j;
5042 RTX_CODE code;
5043 const char *format_ptr;
5045 code = GET_CODE (orig);
5047 switch (code)
5049 case REG:
5050 case QUEUED:
5051 case CONST_INT:
5052 case CONST_DOUBLE:
5053 case CONST_VECTOR:
5054 case SYMBOL_REF:
5055 case CODE_LABEL:
5056 case PC:
5057 case CC0:
5058 case ADDRESSOF:
5059 return orig;
5061 case SCRATCH:
5062 for (i = 0; i < copy_insn_n_scratches; i++)
5063 if (copy_insn_scratch_in[i] == orig)
5064 return copy_insn_scratch_out[i];
5065 break;
5067 case CONST:
5068 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5069 a LABEL_REF, it isn't sharable. */
5070 if (GET_CODE (XEXP (orig, 0)) == PLUS
5071 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5072 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5073 return orig;
5074 break;
5076 /* A MEM with a constant address is not sharable. The problem is that
5077 the constant address may need to be reloaded. If the mem is shared,
5078 then reloading one copy of this mem will cause all copies to appear
5079 to have been reloaded. */
5081 default:
5082 break;
5085 copy = rtx_alloc (code);
5087 /* Copy the various flags, and other information. We assume that
5088 all fields need copying, and then clear the fields that should
5089 not be copied. That is the sensible default behavior, and forces
5090 us to explicitly document why we are *not* copying a flag. */
5091 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5093 /* We do not copy the USED flag, which is used as a mark bit during
5094 walks over the RTL. */
5095 RTX_FLAG (copy, used) = 0;
5097 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5098 if (GET_RTX_CLASS (code) == 'i')
5100 RTX_FLAG (copy, jump) = 0;
5101 RTX_FLAG (copy, call) = 0;
5102 RTX_FLAG (copy, frame_related) = 0;
5105 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5107 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5109 copy->fld[i] = orig->fld[i];
5110 switch (*format_ptr++)
5112 case 'e':
5113 if (XEXP (orig, i) != NULL)
5114 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5115 break;
5117 case 'E':
5118 case 'V':
5119 if (XVEC (orig, i) == orig_asm_constraints_vector)
5120 XVEC (copy, i) = copy_asm_constraints_vector;
5121 else if (XVEC (orig, i) == orig_asm_operands_vector)
5122 XVEC (copy, i) = copy_asm_operands_vector;
5123 else if (XVEC (orig, i) != NULL)
5125 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5126 for (j = 0; j < XVECLEN (copy, i); j++)
5127 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5129 break;
5131 case 't':
5132 case 'w':
5133 case 'i':
5134 case 's':
5135 case 'S':
5136 case 'u':
5137 case '0':
5138 /* These are left unchanged. */
5139 break;
5141 default:
5142 abort ();
5146 if (code == SCRATCH)
5148 i = copy_insn_n_scratches++;
5149 if (i >= MAX_RECOG_OPERANDS)
5150 abort ();
5151 copy_insn_scratch_in[i] = orig;
5152 copy_insn_scratch_out[i] = copy;
5154 else if (code == ASM_OPERANDS)
5156 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5157 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5158 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5159 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5162 return copy;
5165 /* Create a new copy of an rtx.
5166 This function differs from copy_rtx in that it handles SCRATCHes and
5167 ASM_OPERANDs properly.
5168 INSN doesn't really have to be a full INSN; it could be just the
5169 pattern. */
5171 copy_insn (insn)
5172 rtx insn;
5174 copy_insn_n_scratches = 0;
5175 orig_asm_operands_vector = 0;
5176 orig_asm_constraints_vector = 0;
5177 copy_asm_operands_vector = 0;
5178 copy_asm_constraints_vector = 0;
5179 return copy_insn_1 (insn);
5182 /* Initialize data structures and variables in this file
5183 before generating rtl for each function. */
5185 void
5186 init_emit ()
5188 struct function *f = cfun;
5190 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5191 first_insn = NULL;
5192 last_insn = NULL;
5193 seq_rtl_expr = NULL;
5194 cur_insn_uid = 1;
5195 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5196 last_linenum = 0;
5197 last_filename = 0;
5198 first_label_num = label_num;
5199 last_label_num = 0;
5200 seq_stack = NULL;
5202 /* Init the tables that describe all the pseudo regs. */
5204 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5206 f->emit->regno_pointer_align
5207 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5208 * sizeof (unsigned char));
5210 regno_reg_rtx
5211 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5212 * sizeof (rtx));
5214 f->emit->regno_decl
5215 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5216 * sizeof (tree));
5218 /* Put copies of all the hard registers into regno_reg_rtx. */
5219 memcpy (regno_reg_rtx,
5220 static_regno_reg_rtx,
5221 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5223 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5224 init_virtual_regs (f->emit);
5226 /* Indicate that the virtual registers and stack locations are
5227 all pointers. */
5228 REG_POINTER (stack_pointer_rtx) = 1;
5229 REG_POINTER (frame_pointer_rtx) = 1;
5230 REG_POINTER (hard_frame_pointer_rtx) = 1;
5231 REG_POINTER (arg_pointer_rtx) = 1;
5233 REG_POINTER (virtual_incoming_args_rtx) = 1;
5234 REG_POINTER (virtual_stack_vars_rtx) = 1;
5235 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5236 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5237 REG_POINTER (virtual_cfa_rtx) = 1;
5239 #ifdef STACK_BOUNDARY
5240 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5241 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5242 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5243 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5245 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5246 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5247 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5248 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5249 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5250 #endif
5252 #ifdef INIT_EXPANDERS
5253 INIT_EXPANDERS;
5254 #endif
5257 /* Generate the constant 0. */
5259 static rtx
5260 gen_const_vector_0 (mode)
5261 enum machine_mode mode;
5263 rtx tem;
5264 rtvec v;
5265 int units, i;
5266 enum machine_mode inner;
5268 units = GET_MODE_NUNITS (mode);
5269 inner = GET_MODE_INNER (mode);
5271 v = rtvec_alloc (units);
5273 /* We need to call this function after we to set CONST0_RTX first. */
5274 if (!CONST0_RTX (inner))
5275 abort ();
5277 for (i = 0; i < units; ++i)
5278 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5280 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5281 return tem;
5284 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5285 all elements are zero. */
5287 gen_rtx_CONST_VECTOR (mode, v)
5288 enum machine_mode mode;
5289 rtvec v;
5291 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5292 int i;
5294 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5295 if (RTVEC_ELT (v, i) != inner_zero)
5296 return gen_rtx_raw_CONST_VECTOR (mode, v);
5297 return CONST0_RTX (mode);
5300 /* Create some permanent unique rtl objects shared between all functions.
5301 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5303 void
5304 init_emit_once (line_numbers)
5305 int line_numbers;
5307 int i;
5308 enum machine_mode mode;
5309 enum machine_mode double_mode;
5311 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5312 tables. */
5313 const_int_htab = htab_create (37, const_int_htab_hash,
5314 const_int_htab_eq, NULL);
5316 const_double_htab = htab_create (37, const_double_htab_hash,
5317 const_double_htab_eq, NULL);
5319 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5320 mem_attrs_htab_eq, NULL);
5322 no_line_numbers = ! line_numbers;
5324 /* Compute the word and byte modes. */
5326 byte_mode = VOIDmode;
5327 word_mode = VOIDmode;
5328 double_mode = VOIDmode;
5330 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5331 mode = GET_MODE_WIDER_MODE (mode))
5333 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5334 && byte_mode == VOIDmode)
5335 byte_mode = mode;
5337 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5338 && word_mode == VOIDmode)
5339 word_mode = mode;
5342 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5343 mode = GET_MODE_WIDER_MODE (mode))
5345 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5346 && double_mode == VOIDmode)
5347 double_mode = mode;
5350 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5352 /* Assign register numbers to the globally defined register rtx.
5353 This must be done at runtime because the register number field
5354 is in a union and some compilers can't initialize unions. */
5356 pc_rtx = gen_rtx (PC, VOIDmode);
5357 cc0_rtx = gen_rtx (CC0, VOIDmode);
5358 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5359 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5360 if (hard_frame_pointer_rtx == 0)
5361 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5362 HARD_FRAME_POINTER_REGNUM);
5363 if (arg_pointer_rtx == 0)
5364 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5365 virtual_incoming_args_rtx =
5366 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5367 virtual_stack_vars_rtx =
5368 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5369 virtual_stack_dynamic_rtx =
5370 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5371 virtual_outgoing_args_rtx =
5372 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5373 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5375 /* Initialize RTL for commonly used hard registers. These are
5376 copied into regno_reg_rtx as we begin to compile each function. */
5377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5378 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5380 #ifdef INIT_EXPANDERS
5381 /* This is to initialize {init|mark|free}_machine_status before the first
5382 call to push_function_context_to. This is needed by the Chill front
5383 end which calls push_function_context_to before the first call to
5384 init_function_start. */
5385 INIT_EXPANDERS;
5386 #endif
5388 /* Create the unique rtx's for certain rtx codes and operand values. */
5390 /* Don't use gen_rtx here since gen_rtx in this case
5391 tries to use these variables. */
5392 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5393 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5394 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5396 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5397 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5398 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5399 else
5400 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5402 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5403 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5404 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5405 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5407 for (i = 0; i <= 2; i++)
5409 REAL_VALUE_TYPE *r =
5410 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5412 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5413 mode = GET_MODE_WIDER_MODE (mode))
5414 const_tiny_rtx[i][(int) mode] =
5415 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5417 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5419 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5420 mode = GET_MODE_WIDER_MODE (mode))
5421 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5423 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5424 mode != VOIDmode;
5425 mode = GET_MODE_WIDER_MODE (mode))
5426 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5429 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5430 mode != VOIDmode;
5431 mode = GET_MODE_WIDER_MODE (mode))
5432 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5434 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5435 mode != VOIDmode;
5436 mode = GET_MODE_WIDER_MODE (mode))
5437 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5439 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5440 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5441 const_tiny_rtx[0][i] = const0_rtx;
5443 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5444 if (STORE_FLAG_VALUE == 1)
5445 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5447 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5448 return_address_pointer_rtx
5449 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5450 #endif
5452 #ifdef STRUCT_VALUE
5453 struct_value_rtx = STRUCT_VALUE;
5454 #else
5455 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5456 #endif
5458 #ifdef STRUCT_VALUE_INCOMING
5459 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5460 #else
5461 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5462 struct_value_incoming_rtx
5463 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5464 #else
5465 struct_value_incoming_rtx = struct_value_rtx;
5466 #endif
5467 #endif
5469 #ifdef STATIC_CHAIN_REGNUM
5470 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5472 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5473 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5474 static_chain_incoming_rtx
5475 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5476 else
5477 #endif
5478 static_chain_incoming_rtx = static_chain_rtx;
5479 #endif
5481 #ifdef STATIC_CHAIN
5482 static_chain_rtx = STATIC_CHAIN;
5484 #ifdef STATIC_CHAIN_INCOMING
5485 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5486 #else
5487 static_chain_incoming_rtx = static_chain_rtx;
5488 #endif
5489 #endif
5491 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5492 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5495 /* Query and clear/ restore no_line_numbers. This is used by the
5496 switch / case handling in stmt.c to give proper line numbers in
5497 warnings about unreachable code. */
5500 force_line_numbers ()
5502 int old = no_line_numbers;
5504 no_line_numbers = 0;
5505 if (old)
5506 force_next_line_note ();
5507 return old;
5510 void
5511 restore_line_number_status (old_value)
5512 int old_value;
5514 no_line_numbers = old_value;
5517 /* Produce exact duplicate of insn INSN after AFTER.
5518 Care updating of libcall regions if present. */
5521 emit_copy_of_insn_after (insn, after)
5522 rtx insn, after;
5524 rtx new;
5525 rtx note1, note2, link;
5527 switch (GET_CODE (insn))
5529 case INSN:
5530 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5531 break;
5533 case JUMP_INSN:
5534 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5535 break;
5537 case CALL_INSN:
5538 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5539 if (CALL_INSN_FUNCTION_USAGE (insn))
5540 CALL_INSN_FUNCTION_USAGE (new)
5541 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5542 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5543 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5544 break;
5546 default:
5547 abort ();
5550 /* Update LABEL_NUSES. */
5551 mark_jump_label (PATTERN (new), new, 0);
5553 INSN_SCOPE (new) = INSN_SCOPE (insn);
5555 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5556 make them. */
5557 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5558 if (REG_NOTE_KIND (link) != REG_LABEL)
5560 if (GET_CODE (link) == EXPR_LIST)
5561 REG_NOTES (new)
5562 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5563 XEXP (link, 0),
5564 REG_NOTES (new)));
5565 else
5566 REG_NOTES (new)
5567 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5568 XEXP (link, 0),
5569 REG_NOTES (new)));
5572 /* Fix the libcall sequences. */
5573 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5575 rtx p = new;
5576 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5577 p = PREV_INSN (p);
5578 XEXP (note1, 0) = p;
5579 XEXP (note2, 0) = new;
5581 return new;
5584 #include "gt-emit-rtl.h"