1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
54 #include "basic-block.h"
57 #include "langhooks.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static int label_num
= 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num
;
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num
;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers
;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
92 rtx global_rtl
[GR_MAX
];
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
104 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
108 REAL_VALUE_TYPE dconst0
;
109 REAL_VALUE_TYPE dconst1
;
110 REAL_VALUE_TYPE dconst2
;
111 REAL_VALUE_TYPE dconstm1
;
113 /* All references to the following fixed hard registers go through
114 these unique rtl objects. On machines where the frame-pointer and
115 arg-pointer are the same register, they use the same unique object.
117 After register allocation, other rtl objects which used to be pseudo-regs
118 may be clobbered to refer to the frame-pointer register.
119 But references that were originally to the frame-pointer can be
120 distinguished from the others because they contain frame_pointer_rtx.
122 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
123 tricky: until register elimination has taken place hard_frame_pointer_rtx
124 should be used if it is being set, and frame_pointer_rtx otherwise. After
125 register elimination hard_frame_pointer_rtx should always be used.
126 On machines where the two registers are same (most) then these are the
129 In an inline procedure, the stack and frame pointer rtxs may not be
130 used for anything else. */
131 rtx struct_value_rtx
; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
132 rtx struct_value_incoming_rtx
; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
133 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
134 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
135 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
146 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
152 htab_t const_int_htab
;
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
156 htab_t mem_attrs_htab
;
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
160 htab_t const_double_htab
;
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_linenum (cfun->emit->x_last_linenum)
166 #define last_filename (cfun->emit->x_last_filename)
167 #define first_label_num (cfun->emit->x_first_label_num)
169 static rtx make_jump_insn_raw
PARAMS ((rtx
));
170 static rtx make_call_insn_raw
PARAMS ((rtx
));
171 static rtx find_line_note
PARAMS ((rtx
));
172 static rtx change_address_1
PARAMS ((rtx
, enum machine_mode
, rtx
,
174 static void unshare_all_rtl_1
PARAMS ((rtx
));
175 static void unshare_all_decls
PARAMS ((tree
));
176 static void reset_used_decls
PARAMS ((tree
));
177 static void mark_label_nuses
PARAMS ((rtx
));
178 static hashval_t const_int_htab_hash
PARAMS ((const void *));
179 static int const_int_htab_eq
PARAMS ((const void *,
181 static hashval_t const_double_htab_hash
PARAMS ((const void *));
182 static int const_double_htab_eq
PARAMS ((const void *,
184 static rtx lookup_const_double
PARAMS ((rtx
));
185 static hashval_t mem_attrs_htab_hash
PARAMS ((const void *));
186 static int mem_attrs_htab_eq
PARAMS ((const void *,
188 static mem_attrs
*get_mem_attrs
PARAMS ((HOST_WIDE_INT
, tree
, rtx
,
191 static tree component_ref_for_mem_expr
PARAMS ((tree
));
192 static rtx gen_const_vector_0
PARAMS ((enum machine_mode
));
194 /* Probability of the conditional branch currently proceeded by try_split.
195 Set to -1 otherwise. */
196 int split_branch_probability
= -1;
198 /* Returns a hash code for X (which is a really a CONST_INT). */
201 const_int_htab_hash (x
)
204 return (hashval_t
) INTVAL ((struct rtx_def
*) x
);
207 /* Returns non-zero if the value represented by X (which is really a
208 CONST_INT) is the same as that given by Y (which is really a
212 const_int_htab_eq (x
, y
)
216 return (INTVAL ((rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
219 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
221 const_double_htab_hash (x
)
228 for (i
= 0; i
< sizeof(CONST_DOUBLE_FORMAT
)-1; i
++)
229 h
^= XWINT (value
, i
);
233 /* Returns non-zero if the value represented by X (really a ...)
234 is the same as that represented by Y (really a ...) */
236 const_double_htab_eq (x
, y
)
240 rtx a
= (rtx
)x
, b
= (rtx
)y
;
243 if (GET_MODE (a
) != GET_MODE (b
))
245 for (i
= 0; i
< sizeof(CONST_DOUBLE_FORMAT
)-1; i
++)
246 if (XWINT (a
, i
) != XWINT (b
, i
))
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
255 mem_attrs_htab_hash (x
)
258 mem_attrs
*p
= (mem_attrs
*) x
;
260 return (p
->alias
^ (p
->align
* 1000)
261 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
262 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
266 /* Returns non-zero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
271 mem_attrs_htab_eq (x
, y
)
275 mem_attrs
*p
= (mem_attrs
*) x
;
276 mem_attrs
*q
= (mem_attrs
*) y
;
278 return (p
->alias
== q
->alias
&& p
->expr
== q
->expr
&& p
->offset
== q
->offset
279 && p
->size
== q
->size
&& p
->align
== q
->align
);
282 /* Allocate a new mem_attrs structure and insert it into the hash table if
283 one identical to it is not already in the table. We are doing this for
287 get_mem_attrs (alias
, expr
, offset
, size
, align
, mode
)
293 enum machine_mode mode
;
298 /* If everything is the default, we can just return zero. */
299 if (alias
== 0 && expr
== 0 && offset
== 0
301 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
302 && (align
== BITS_PER_UNIT
304 && mode
!= BLKmode
&& align
== GET_MODE_ALIGNMENT (mode
))))
309 attrs
.offset
= offset
;
313 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
316 *slot
= ggc_alloc (sizeof (mem_attrs
));
317 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
323 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
324 don't attempt to share with the various global pieces of rtl (such as
325 frame_pointer_rtx). */
328 gen_raw_REG (mode
, regno
)
329 enum machine_mode mode
;
332 rtx x
= gen_rtx_raw_REG (mode
, regno
);
333 ORIGINAL_REGNO (x
) = regno
;
337 /* There are some RTL codes that require special attention; the generation
338 functions do the raw handling. If you add to this list, modify
339 special_rtx in gengenrtl.c as well. */
342 gen_rtx_CONST_INT (mode
, arg
)
343 enum machine_mode mode ATTRIBUTE_UNUSED
;
348 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
349 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
351 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
352 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
353 return const_true_rtx
;
356 /* Look up the CONST_INT in the hash table. */
357 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
358 (hashval_t
) arg
, INSERT
);
360 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
366 gen_int_mode (c
, mode
)
368 enum machine_mode mode
;
370 return GEN_INT (trunc_int_for_mode (c
, mode
));
373 /* CONST_DOUBLEs might be created from pairs of integers, or from
374 REAL_VALUE_TYPEs. Also, their length is known only at run time,
375 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
377 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
378 hash table. If so, return its counterpart; otherwise add it
379 to the hash table and return it. */
381 lookup_const_double (real
)
384 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
391 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
392 VALUE in mode MODE. */
394 const_double_from_real_value (value
, mode
)
395 REAL_VALUE_TYPE value
;
396 enum machine_mode mode
;
398 rtx real
= rtx_alloc (CONST_DOUBLE
);
399 PUT_MODE (real
, mode
);
401 memcpy (&CONST_DOUBLE_LOW (real
), &value
, sizeof (REAL_VALUE_TYPE
));
403 return lookup_const_double (real
);
406 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
407 of ints: I0 is the low-order word and I1 is the high-order word.
408 Do not use this routine for non-integer modes; convert to
409 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
412 immed_double_const (i0
, i1
, mode
)
413 HOST_WIDE_INT i0
, i1
;
414 enum machine_mode mode
;
419 if (mode
!= VOIDmode
)
422 if (GET_MODE_CLASS (mode
) != MODE_INT
423 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
424 /* We can get a 0 for an error mark. */
425 && GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
426 && GET_MODE_CLASS (mode
) != MODE_VECTOR_FLOAT
)
429 /* We clear out all bits that don't belong in MODE, unless they and
430 our sign bit are all one. So we get either a reasonable negative
431 value or a reasonable unsigned value for this mode. */
432 width
= GET_MODE_BITSIZE (mode
);
433 if (width
< HOST_BITS_PER_WIDE_INT
434 && ((i0
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
435 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
436 i0
&= ((HOST_WIDE_INT
) 1 << width
) - 1, i1
= 0;
437 else if (width
== HOST_BITS_PER_WIDE_INT
438 && ! (i1
== ~0 && i0
< 0))
440 else if (width
> 2 * HOST_BITS_PER_WIDE_INT
)
441 /* We cannot represent this value as a constant. */
444 /* If this would be an entire word for the target, but is not for
445 the host, then sign-extend on the host so that the number will
446 look the same way on the host that it would on the target.
448 For example, when building a 64 bit alpha hosted 32 bit sparc
449 targeted compiler, then we want the 32 bit unsigned value -1 to be
450 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
451 The latter confuses the sparc backend. */
453 if (width
< HOST_BITS_PER_WIDE_INT
454 && (i0
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
455 i0
|= ((HOST_WIDE_INT
) (-1) << width
);
457 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
460 ??? Strictly speaking, this is wrong if we create a CONST_INT for
461 a large unsigned constant with the size of MODE being
462 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
463 in a wider mode. In that case we will mis-interpret it as a
466 Unfortunately, the only alternative is to make a CONST_DOUBLE for
467 any constant in any mode if it is an unsigned constant larger
468 than the maximum signed integer in an int on the host. However,
469 doing this will break everyone that always expects to see a
470 CONST_INT for SImode and smaller.
472 We have always been making CONST_INTs in this case, so nothing
473 new is being broken. */
475 if (width
<= HOST_BITS_PER_WIDE_INT
)
476 i1
= (i0
< 0) ? ~(HOST_WIDE_INT
) 0 : 0;
479 /* If this integer fits in one word, return a CONST_INT. */
480 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
483 /* We use VOIDmode for integers. */
484 value
= rtx_alloc (CONST_DOUBLE
);
485 PUT_MODE (value
, VOIDmode
);
487 CONST_DOUBLE_LOW (value
) = i0
;
488 CONST_DOUBLE_HIGH (value
) = i1
;
490 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
491 XWINT (value
, i
) = 0;
493 return lookup_const_double (value
);
497 gen_rtx_REG (mode
, regno
)
498 enum machine_mode mode
;
501 /* In case the MD file explicitly references the frame pointer, have
502 all such references point to the same frame pointer. This is
503 used during frame pointer elimination to distinguish the explicit
504 references to these registers from pseudos that happened to be
507 If we have eliminated the frame pointer or arg pointer, we will
508 be using it as a normal register, for example as a spill
509 register. In such cases, we might be accessing it in a mode that
510 is not Pmode and therefore cannot use the pre-allocated rtx.
512 Also don't do this when we are making new REGs in reload, since
513 we don't want to get confused with the real pointers. */
515 if (mode
== Pmode
&& !reload_in_progress
)
517 if (regno
== FRAME_POINTER_REGNUM
518 && (!reload_completed
|| frame_pointer_needed
))
519 return frame_pointer_rtx
;
520 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
521 if (regno
== HARD_FRAME_POINTER_REGNUM
522 && (!reload_completed
|| frame_pointer_needed
))
523 return hard_frame_pointer_rtx
;
525 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
526 if (regno
== ARG_POINTER_REGNUM
)
527 return arg_pointer_rtx
;
529 #ifdef RETURN_ADDRESS_POINTER_REGNUM
530 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
531 return return_address_pointer_rtx
;
533 if (regno
== PIC_OFFSET_TABLE_REGNUM
534 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
535 return pic_offset_table_rtx
;
536 if (regno
== STACK_POINTER_REGNUM
)
537 return stack_pointer_rtx
;
541 /* If the per-function register table has been set up, try to re-use
542 an existing entry in that table to avoid useless generation of RTL.
544 This code is disabled for now until we can fix the various backends
545 which depend on having non-shared hard registers in some cases. Long
546 term we want to re-enable this code as it can significantly cut down
547 on the amount of useless RTL that gets generated.
549 We'll also need to fix some code that runs after reload that wants to
550 set ORIGINAL_REGNO. */
555 && regno
< FIRST_PSEUDO_REGISTER
556 && reg_raw_mode
[regno
] == mode
)
557 return regno_reg_rtx
[regno
];
560 return gen_raw_REG (mode
, regno
);
564 gen_rtx_MEM (mode
, addr
)
565 enum machine_mode mode
;
568 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
570 /* This field is not cleared by the mere allocation of the rtx, so
578 gen_rtx_SUBREG (mode
, reg
, offset
)
579 enum machine_mode mode
;
583 /* This is the most common failure type.
584 Catch it early so we can see who does it. */
585 if ((offset
% GET_MODE_SIZE (mode
)) != 0)
588 /* This check isn't usable right now because combine will
589 throw arbitrary crap like a CALL into a SUBREG in
590 gen_lowpart_for_combine so we must just eat it. */
592 /* Check for this too. */
593 if (offset
>= GET_MODE_SIZE (GET_MODE (reg
)))
596 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
599 /* Generate a SUBREG representing the least-significant part of REG if MODE
600 is smaller than mode of REG, otherwise paradoxical SUBREG. */
603 gen_lowpart_SUBREG (mode
, reg
)
604 enum machine_mode mode
;
607 enum machine_mode inmode
;
609 inmode
= GET_MODE (reg
);
610 if (inmode
== VOIDmode
)
612 return gen_rtx_SUBREG (mode
, reg
,
613 subreg_lowpart_offset (mode
, inmode
));
616 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
618 ** This routine generates an RTX of the size specified by
619 ** <code>, which is an RTX code. The RTX structure is initialized
620 ** from the arguments <element1> through <elementn>, which are
621 ** interpreted according to the specific RTX type's format. The
622 ** special machine mode associated with the rtx (if any) is specified
625 ** gen_rtx can be invoked in a way which resembles the lisp-like
626 ** rtx it will generate. For example, the following rtx structure:
628 ** (plus:QI (mem:QI (reg:SI 1))
629 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
631 ** ...would be generated by the following C code:
633 ** gen_rtx (PLUS, QImode,
634 ** gen_rtx (MEM, QImode,
635 ** gen_rtx (REG, SImode, 1)),
636 ** gen_rtx (MEM, QImode,
637 ** gen_rtx (PLUS, SImode,
638 ** gen_rtx (REG, SImode, 2),
639 ** gen_rtx (REG, SImode, 3)))),
644 gen_rtx
VPARAMS ((enum rtx_code code
, enum machine_mode mode
, ...))
646 int i
; /* Array indices... */
647 const char *fmt
; /* Current rtx's format... */
648 rtx rt_val
; /* RTX to return to caller... */
651 VA_FIXEDARG (p
, enum rtx_code
, code
);
652 VA_FIXEDARG (p
, enum machine_mode
, mode
);
657 rt_val
= gen_rtx_CONST_INT (mode
, va_arg (p
, HOST_WIDE_INT
));
662 HOST_WIDE_INT arg0
= va_arg (p
, HOST_WIDE_INT
);
663 HOST_WIDE_INT arg1
= va_arg (p
, HOST_WIDE_INT
);
665 rt_val
= immed_double_const (arg0
, arg1
, mode
);
670 rt_val
= gen_rtx_REG (mode
, va_arg (p
, int));
674 rt_val
= gen_rtx_MEM (mode
, va_arg (p
, rtx
));
678 rt_val
= rtx_alloc (code
); /* Allocate the storage space. */
679 rt_val
->mode
= mode
; /* Store the machine mode... */
681 fmt
= GET_RTX_FORMAT (code
); /* Find the right format... */
682 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
686 case '0': /* Unused field. */
689 case 'i': /* An integer? */
690 XINT (rt_val
, i
) = va_arg (p
, int);
693 case 'w': /* A wide integer? */
694 XWINT (rt_val
, i
) = va_arg (p
, HOST_WIDE_INT
);
697 case 's': /* A string? */
698 XSTR (rt_val
, i
) = va_arg (p
, char *);
701 case 'e': /* An expression? */
702 case 'u': /* An insn? Same except when printing. */
703 XEXP (rt_val
, i
) = va_arg (p
, rtx
);
706 case 'E': /* An RTX vector? */
707 XVEC (rt_val
, i
) = va_arg (p
, rtvec
);
710 case 'b': /* A bitmap? */
711 XBITMAP (rt_val
, i
) = va_arg (p
, bitmap
);
714 case 't': /* A tree? */
715 XTREE (rt_val
, i
) = va_arg (p
, tree
);
729 /* gen_rtvec (n, [rt1, ..., rtn])
731 ** This routine creates an rtvec and stores within it the
732 ** pointers to rtx's which are its arguments.
737 gen_rtvec
VPARAMS ((int n
, ...))
743 VA_FIXEDARG (p
, int, n
);
746 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
748 vector
= (rtx
*) alloca (n
* sizeof (rtx
));
750 for (i
= 0; i
< n
; i
++)
751 vector
[i
] = va_arg (p
, rtx
);
753 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
757 return gen_rtvec_v (save_n
, vector
);
761 gen_rtvec_v (n
, argp
)
769 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
771 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
773 for (i
= 0; i
< n
; i
++)
774 rt_val
->elem
[i
] = *argp
++;
779 /* Generate a REG rtx for a new pseudo register of mode MODE.
780 This pseudo is assigned the next sequential register number. */
784 enum machine_mode mode
;
786 struct function
*f
= cfun
;
789 /* Don't let anything called after initial flow analysis create new
794 if (generating_concat_p
795 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
796 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
798 /* For complex modes, don't make a single pseudo.
799 Instead, make a CONCAT of two pseudos.
800 This allows noncontiguous allocation of the real and imaginary parts,
801 which makes much better code. Besides, allocating DCmode
802 pseudos overstrains reload on some machines like the 386. */
803 rtx realpart
, imagpart
;
804 int size
= GET_MODE_UNIT_SIZE (mode
);
805 enum machine_mode partmode
806 = mode_for_size (size
* BITS_PER_UNIT
,
807 (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
808 ? MODE_FLOAT
: MODE_INT
),
811 realpart
= gen_reg_rtx (partmode
);
812 imagpart
= gen_reg_rtx (partmode
);
813 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
816 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
817 enough to have an element for this pseudo reg number. */
819 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
821 int old_size
= f
->emit
->regno_pointer_align_length
;
826 new = ggc_realloc (f
->emit
->regno_pointer_align
, old_size
* 2);
827 memset (new + old_size
, 0, old_size
);
828 f
->emit
->regno_pointer_align
= (unsigned char *) new;
830 new1
= (rtx
*) ggc_realloc (f
->emit
->x_regno_reg_rtx
,
831 old_size
* 2 * sizeof (rtx
));
832 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
833 regno_reg_rtx
= new1
;
835 new2
= (tree
*) ggc_realloc (f
->emit
->regno_decl
,
836 old_size
* 2 * sizeof (tree
));
837 memset (new2
+ old_size
, 0, old_size
* sizeof (tree
));
838 f
->emit
->regno_decl
= new2
;
840 f
->emit
->regno_pointer_align_length
= old_size
* 2;
843 val
= gen_raw_REG (mode
, reg_rtx_no
);
844 regno_reg_rtx
[reg_rtx_no
++] = val
;
848 /* Identify REG (which may be a CONCAT) as a user register. */
854 if (GET_CODE (reg
) == CONCAT
)
856 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
857 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
859 else if (GET_CODE (reg
) == REG
)
860 REG_USERVAR_P (reg
) = 1;
865 /* Identify REG as a probable pointer register and show its alignment
866 as ALIGN, if nonzero. */
869 mark_reg_pointer (reg
, align
)
873 if (! REG_POINTER (reg
))
875 REG_POINTER (reg
) = 1;
878 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
880 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
881 /* We can no-longer be sure just how aligned this pointer is */
882 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
885 /* Return 1 plus largest pseudo reg number used in the current function. */
893 /* Return 1 + the largest label number used so far in the current function. */
898 if (last_label_num
&& label_num
== base_label_num
)
899 return last_label_num
;
903 /* Return first label number used in this function (if any were used). */
906 get_first_label_num ()
908 return first_label_num
;
911 /* Return the final regno of X, which is a SUBREG of a hard
914 subreg_hard_regno (x
, check_mode
)
918 enum machine_mode mode
= GET_MODE (x
);
919 unsigned int byte_offset
, base_regno
, final_regno
;
920 rtx reg
= SUBREG_REG (x
);
922 /* This is where we attempt to catch illegal subregs
923 created by the compiler. */
924 if (GET_CODE (x
) != SUBREG
925 || GET_CODE (reg
) != REG
)
927 base_regno
= REGNO (reg
);
928 if (base_regno
>= FIRST_PSEUDO_REGISTER
)
930 if (check_mode
&& ! HARD_REGNO_MODE_OK (base_regno
, GET_MODE (reg
)))
933 /* Catch non-congruent offsets too. */
934 byte_offset
= SUBREG_BYTE (x
);
935 if ((byte_offset
% GET_MODE_SIZE (mode
)) != 0)
938 final_regno
= subreg_regno (x
);
943 /* Return a value representing some low-order bits of X, where the number
944 of low-order bits is given by MODE. Note that no conversion is done
945 between floating-point and fixed-point values, rather, the bit
946 representation is returned.
948 This function handles the cases in common between gen_lowpart, below,
949 and two variants in cse.c and combine.c. These are the cases that can
950 be safely handled at all points in the compilation.
952 If this is not a case we can handle, return 0. */
955 gen_lowpart_common (mode
, x
)
956 enum machine_mode mode
;
959 int msize
= GET_MODE_SIZE (mode
);
960 int xsize
= GET_MODE_SIZE (GET_MODE (x
));
963 if (GET_MODE (x
) == mode
)
966 /* MODE must occupy no more words than the mode of X. */
967 if (GET_MODE (x
) != VOIDmode
968 && ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
969 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
972 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
973 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
974 && GET_MODE (x
) != VOIDmode
&& msize
> xsize
)
977 offset
= subreg_lowpart_offset (mode
, GET_MODE (x
));
979 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
980 && (GET_MODE_CLASS (mode
) == MODE_INT
981 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
983 /* If we are getting the low-order part of something that has been
984 sign- or zero-extended, we can either just use the object being
985 extended or make a narrower extension. If we want an even smaller
986 piece than the size of the object being extended, call ourselves
989 This case is used mostly by combine and cse. */
991 if (GET_MODE (XEXP (x
, 0)) == mode
)
993 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
994 return gen_lowpart_common (mode
, XEXP (x
, 0));
995 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
996 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
998 else if (GET_CODE (x
) == SUBREG
|| GET_CODE (x
) == REG
999 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
)
1000 return simplify_gen_subreg (mode
, x
, GET_MODE (x
), offset
);
1001 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1002 from the low-order part of the constant. */
1003 else if ((GET_MODE_CLASS (mode
) == MODE_INT
1004 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
1005 && GET_MODE (x
) == VOIDmode
1006 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
))
1008 /* If MODE is twice the host word size, X is already the desired
1009 representation. Otherwise, if MODE is wider than a word, we can't
1010 do this. If MODE is exactly a word, return just one CONST_INT. */
1012 if (GET_MODE_BITSIZE (mode
) >= 2 * HOST_BITS_PER_WIDE_INT
)
1014 else if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
1016 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
1017 return (GET_CODE (x
) == CONST_INT
? x
1018 : GEN_INT (CONST_DOUBLE_LOW (x
)));
1021 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1022 HOST_WIDE_INT val
= (GET_CODE (x
) == CONST_INT
? INTVAL (x
)
1023 : CONST_DOUBLE_LOW (x
));
1025 /* Sign extend to HOST_WIDE_INT. */
1026 val
= trunc_int_for_mode (val
, mode
);
1028 return (GET_CODE (x
) == CONST_INT
&& INTVAL (x
) == val
? x
1033 /* The floating-point emulator can handle all conversions between
1034 FP and integer operands. This simplifies reload because it
1035 doesn't have to deal with constructs like (subreg:DI
1036 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1037 /* Single-precision floats are always 32-bits and double-precision
1038 floats are always 64-bits. */
1040 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1041 && GET_MODE_BITSIZE (mode
) == 32
1042 && GET_CODE (x
) == CONST_INT
)
1048 r
= REAL_VALUE_FROM_TARGET_SINGLE (i
);
1049 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
1051 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1052 && GET_MODE_BITSIZE (mode
) == 64
1053 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
1054 && GET_MODE (x
) == VOIDmode
)
1058 HOST_WIDE_INT low
, high
;
1060 if (GET_CODE (x
) == CONST_INT
)
1063 high
= low
>> (HOST_BITS_PER_WIDE_INT
- 1);
1067 low
= CONST_DOUBLE_LOW (x
);
1068 high
= CONST_DOUBLE_HIGH (x
);
1071 #if HOST_BITS_PER_WIDE_INT == 32
1072 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1074 if (WORDS_BIG_ENDIAN
)
1075 i
[0] = high
, i
[1] = low
;
1077 i
[0] = low
, i
[1] = high
;
1082 r
= REAL_VALUE_FROM_TARGET_DOUBLE (i
);
1083 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
1085 else if ((GET_MODE_CLASS (mode
) == MODE_INT
1086 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
1087 && GET_CODE (x
) == CONST_DOUBLE
1088 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
)
1091 long i
[4]; /* Only the low 32 bits of each 'long' are used. */
1092 int endian
= WORDS_BIG_ENDIAN
? 1 : 0;
1094 /* Convert 'r' into an array of four 32-bit words in target word
1096 REAL_VALUE_FROM_CONST_DOUBLE (r
, x
);
1097 switch (GET_MODE_BITSIZE (GET_MODE (x
)))
1100 REAL_VALUE_TO_TARGET_SINGLE (r
, i
[3 * endian
]);
1103 i
[3 - 3 * endian
] = 0;
1106 REAL_VALUE_TO_TARGET_DOUBLE (r
, i
+ 2 * endian
);
1107 i
[2 - 2 * endian
] = 0;
1108 i
[3 - 2 * endian
] = 0;
1111 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
+ endian
);
1112 i
[3 - 3 * endian
] = 0;
1115 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
);
1120 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1122 #if HOST_BITS_PER_WIDE_INT == 32
1123 return immed_double_const (i
[3 * endian
], i
[1 + endian
], mode
);
1125 if (HOST_BITS_PER_WIDE_INT
!= 64)
1128 return immed_double_const ((((unsigned long) i
[3 * endian
])
1129 | ((HOST_WIDE_INT
) i
[1 + endian
] << 32)),
1130 (((unsigned long) i
[2 - endian
])
1131 | ((HOST_WIDE_INT
) i
[3 - 3 * endian
] << 32)),
1136 /* Otherwise, we can't do this. */
1140 /* Return the real part (which has mode MODE) of a complex value X.
1141 This always comes at the low address in memory. */
1144 gen_realpart (mode
, x
)
1145 enum machine_mode mode
;
1148 if (WORDS_BIG_ENDIAN
1149 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1151 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1153 ("can't access real part of complex value in hard register");
1154 else if (WORDS_BIG_ENDIAN
)
1155 return gen_highpart (mode
, x
);
1157 return gen_lowpart (mode
, x
);
1160 /* Return the imaginary part (which has mode MODE) of a complex value X.
1161 This always comes at the high address in memory. */
1164 gen_imagpart (mode
, x
)
1165 enum machine_mode mode
;
1168 if (WORDS_BIG_ENDIAN
)
1169 return gen_lowpart (mode
, x
);
1170 else if (! WORDS_BIG_ENDIAN
1171 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1173 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1175 ("can't access imaginary part of complex value in hard register");
1177 return gen_highpart (mode
, x
);
1180 /* Return 1 iff X, assumed to be a SUBREG,
1181 refers to the real part of the complex value in its containing reg.
1182 Complex values are always stored with the real part in the first word,
1183 regardless of WORDS_BIG_ENDIAN. */
1186 subreg_realpart_p (x
)
1189 if (GET_CODE (x
) != SUBREG
)
1192 return ((unsigned int) SUBREG_BYTE (x
)
1193 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x
))));
1196 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1197 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1198 least-significant part of X.
1199 MODE specifies how big a part of X to return;
1200 it usually should not be larger than a word.
1201 If X is a MEM whose address is a QUEUED, the value may be so also. */
1204 gen_lowpart (mode
, x
)
1205 enum machine_mode mode
;
1208 rtx result
= gen_lowpart_common (mode
, x
);
1212 else if (GET_CODE (x
) == REG
)
1214 /* Must be a hard reg that's not valid in MODE. */
1215 result
= gen_lowpart_common (mode
, copy_to_reg (x
));
1220 else if (GET_CODE (x
) == MEM
)
1222 /* The only additional case we can do is MEM. */
1224 if (WORDS_BIG_ENDIAN
)
1225 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1226 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1228 if (BYTES_BIG_ENDIAN
)
1229 /* Adjust the address so that the address-after-the-data
1231 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1232 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
1234 return adjust_address (x
, mode
, offset
);
1236 else if (GET_CODE (x
) == ADDRESSOF
)
1237 return gen_lowpart (mode
, force_reg (GET_MODE (x
), x
));
1242 /* Like `gen_lowpart', but refer to the most significant part.
1243 This is used to access the imaginary part of a complex number. */
1246 gen_highpart (mode
, x
)
1247 enum machine_mode mode
;
1250 unsigned int msize
= GET_MODE_SIZE (mode
);
1253 /* This case loses if X is a subreg. To catch bugs early,
1254 complain if an invalid MODE is used even in other cases. */
1255 if (msize
> UNITS_PER_WORD
1256 && msize
!= GET_MODE_UNIT_SIZE (GET_MODE (x
)))
1259 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1260 subreg_highpart_offset (mode
, GET_MODE (x
)));
1262 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1263 the target if we have a MEM. gen_highpart must return a valid operand,
1264 emitting code if necessary to do so. */
1265 if (result
!= NULL_RTX
&& GET_CODE (result
) == MEM
)
1266 result
= validize_mem (result
);
1273 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1274 be VOIDmode constant. */
1276 gen_highpart_mode (outermode
, innermode
, exp
)
1277 enum machine_mode outermode
, innermode
;
1280 if (GET_MODE (exp
) != VOIDmode
)
1282 if (GET_MODE (exp
) != innermode
)
1284 return gen_highpart (outermode
, exp
);
1286 return simplify_gen_subreg (outermode
, exp
, innermode
,
1287 subreg_highpart_offset (outermode
, innermode
));
1290 /* Return offset in bytes to get OUTERMODE low part
1291 of the value in mode INNERMODE stored in memory in target format. */
1294 subreg_lowpart_offset (outermode
, innermode
)
1295 enum machine_mode outermode
, innermode
;
1297 unsigned int offset
= 0;
1298 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1302 if (WORDS_BIG_ENDIAN
)
1303 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1304 if (BYTES_BIG_ENDIAN
)
1305 offset
+= difference
% UNITS_PER_WORD
;
1311 /* Return offset in bytes to get OUTERMODE high part
1312 of the value in mode INNERMODE stored in memory in target format. */
1314 subreg_highpart_offset (outermode
, innermode
)
1315 enum machine_mode outermode
, innermode
;
1317 unsigned int offset
= 0;
1318 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1320 if (GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
1325 if (! WORDS_BIG_ENDIAN
)
1326 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1327 if (! BYTES_BIG_ENDIAN
)
1328 offset
+= difference
% UNITS_PER_WORD
;
1334 /* Return 1 iff X, assumed to be a SUBREG,
1335 refers to the least significant part of its containing reg.
1336 If X is not a SUBREG, always return 1 (it is its own low part!). */
1339 subreg_lowpart_p (x
)
1342 if (GET_CODE (x
) != SUBREG
)
1344 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1347 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1348 == SUBREG_BYTE (x
));
1352 /* Helper routine for all the constant cases of operand_subword.
1353 Some places invoke this directly. */
1356 constant_subword (op
, offset
, mode
)
1359 enum machine_mode mode
;
1361 int size_ratio
= HOST_BITS_PER_WIDE_INT
/ BITS_PER_WORD
;
1364 /* If OP is already an integer word, return it. */
1365 if (GET_MODE_CLASS (mode
) == MODE_INT
1366 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
)
1369 /* The output is some bits, the width of the target machine's word.
1370 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1372 if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1373 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1374 && GET_MODE_BITSIZE (mode
) == 64
1375 && GET_CODE (op
) == CONST_DOUBLE
)
1380 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1381 REAL_VALUE_TO_TARGET_DOUBLE (rv
, k
);
1383 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1384 which the words are written depends on the word endianness.
1385 ??? This is a potential portability problem and should
1386 be fixed at some point.
1388 We must exercise caution with the sign bit. By definition there
1389 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1390 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1391 So we explicitly mask and sign-extend as necessary. */
1392 if (BITS_PER_WORD
== 32)
1395 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1396 return GEN_INT (val
);
1398 #if HOST_BITS_PER_WIDE_INT >= 64
1399 else if (BITS_PER_WORD
>= 64 && offset
== 0)
1401 val
= k
[! WORDS_BIG_ENDIAN
];
1402 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1403 val
|= (HOST_WIDE_INT
) k
[WORDS_BIG_ENDIAN
] & 0xffffffff;
1404 return GEN_INT (val
);
1407 else if (BITS_PER_WORD
== 16)
1409 val
= k
[offset
>> 1];
1410 if ((offset
& 1) == ! WORDS_BIG_ENDIAN
)
1412 val
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1413 return GEN_INT (val
);
1418 else if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1419 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1420 && GET_MODE_BITSIZE (mode
) > 64
1421 && GET_CODE (op
) == CONST_DOUBLE
)
1426 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1427 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, k
);
1429 if (BITS_PER_WORD
== 32)
1432 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1433 return GEN_INT (val
);
1435 #if HOST_BITS_PER_WIDE_INT >= 64
1436 else if (BITS_PER_WORD
>= 64 && offset
<= 1)
1438 val
= k
[offset
* 2 + ! WORDS_BIG_ENDIAN
];
1439 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1440 val
|= (HOST_WIDE_INT
) k
[offset
* 2 + WORDS_BIG_ENDIAN
] & 0xffffffff;
1441 return GEN_INT (val
);
1448 /* Single word float is a little harder, since single- and double-word
1449 values often do not have the same high-order bits. We have already
1450 verified that we want the only defined word of the single-word value. */
1451 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1452 && GET_MODE_BITSIZE (mode
) == 32
1453 && GET_CODE (op
) == CONST_DOUBLE
)
1458 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1459 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
1461 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1463 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1465 if (BITS_PER_WORD
== 16)
1467 if ((offset
& 1) == ! WORDS_BIG_ENDIAN
)
1469 val
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1472 return GEN_INT (val
);
1475 /* The only remaining cases that we can handle are integers.
1476 Convert to proper endianness now since these cases need it.
1477 At this point, offset == 0 means the low-order word.
1479 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1480 in general. However, if OP is (const_int 0), we can just return
1483 if (op
== const0_rtx
)
1486 if (GET_MODE_CLASS (mode
) != MODE_INT
1487 || (GET_CODE (op
) != CONST_INT
&& GET_CODE (op
) != CONST_DOUBLE
)
1488 || BITS_PER_WORD
> HOST_BITS_PER_WIDE_INT
)
1491 if (WORDS_BIG_ENDIAN
)
1492 offset
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
- 1 - offset
;
1494 /* Find out which word on the host machine this value is in and get
1495 it from the constant. */
1496 val
= (offset
/ size_ratio
== 0
1497 ? (GET_CODE (op
) == CONST_INT
? INTVAL (op
) : CONST_DOUBLE_LOW (op
))
1498 : (GET_CODE (op
) == CONST_INT
1499 ? (INTVAL (op
) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op
)));
1501 /* Get the value we want into the low bits of val. */
1502 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
)
1503 val
= ((val
>> ((offset
% size_ratio
) * BITS_PER_WORD
)));
1505 val
= trunc_int_for_mode (val
, word_mode
);
1507 return GEN_INT (val
);
1510 /* Return subword OFFSET of operand OP.
1511 The word number, OFFSET, is interpreted as the word number starting
1512 at the low-order address. OFFSET 0 is the low-order word if not
1513 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1515 If we cannot extract the required word, we return zero. Otherwise,
1516 an rtx corresponding to the requested word will be returned.
1518 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1519 reload has completed, a valid address will always be returned. After
1520 reload, if a valid address cannot be returned, we return zero.
1522 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1523 it is the responsibility of the caller.
1525 MODE is the mode of OP in case it is a CONST_INT.
1527 ??? This is still rather broken for some cases. The problem for the
1528 moment is that all callers of this thing provide no 'goal mode' to
1529 tell us to work with. This exists because all callers were written
1530 in a word based SUBREG world.
1531 Now use of this function can be deprecated by simplify_subreg in most
1536 operand_subword (op
, offset
, validate_address
, mode
)
1538 unsigned int offset
;
1539 int validate_address
;
1540 enum machine_mode mode
;
1542 if (mode
== VOIDmode
)
1543 mode
= GET_MODE (op
);
1545 if (mode
== VOIDmode
)
1548 /* If OP is narrower than a word, fail. */
1550 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1553 /* If we want a word outside OP, return zero. */
1555 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1558 /* Form a new MEM at the requested address. */
1559 if (GET_CODE (op
) == MEM
)
1561 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1563 if (! validate_address
)
1566 else if (reload_completed
)
1568 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1572 return replace_equiv_address (new, XEXP (new, 0));
1575 /* Rest can be handled by simplify_subreg. */
1576 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1579 /* Similar to `operand_subword', but never return 0. If we can't extract
1580 the required subword, put OP into a register and try again. If that fails,
1581 abort. We always validate the address in this case.
1583 MODE is the mode of OP, in case it is CONST_INT. */
1586 operand_subword_force (op
, offset
, mode
)
1588 unsigned int offset
;
1589 enum machine_mode mode
;
1591 rtx result
= operand_subword (op
, offset
, 1, mode
);
1596 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1598 /* If this is a register which can not be accessed by words, copy it
1599 to a pseudo register. */
1600 if (GET_CODE (op
) == REG
)
1601 op
= copy_to_reg (op
);
1603 op
= force_reg (mode
, op
);
1606 result
= operand_subword (op
, offset
, 1, mode
);
1613 /* Given a compare instruction, swap the operands.
1614 A test instruction is changed into a compare of 0 against the operand. */
1617 reverse_comparison (insn
)
1620 rtx body
= PATTERN (insn
);
1623 if (GET_CODE (body
) == SET
)
1624 comp
= SET_SRC (body
);
1626 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1628 if (GET_CODE (comp
) == COMPARE
)
1630 rtx op0
= XEXP (comp
, 0);
1631 rtx op1
= XEXP (comp
, 1);
1632 XEXP (comp
, 0) = op1
;
1633 XEXP (comp
, 1) = op0
;
1637 rtx
new = gen_rtx_COMPARE (VOIDmode
,
1638 CONST0_RTX (GET_MODE (comp
)), comp
);
1639 if (GET_CODE (body
) == SET
)
1640 SET_SRC (body
) = new;
1642 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1646 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1647 or (2) a component ref of something variable. Represent the later with
1648 a NULL expression. */
1651 component_ref_for_mem_expr (ref
)
1654 tree inner
= TREE_OPERAND (ref
, 0);
1656 if (TREE_CODE (inner
) == COMPONENT_REF
)
1657 inner
= component_ref_for_mem_expr (inner
);
1660 tree placeholder_ptr
= 0;
1662 /* Now remove any conversions: they don't change what the underlying
1663 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1664 while (TREE_CODE (inner
) == NOP_EXPR
|| TREE_CODE (inner
) == CONVERT_EXPR
1665 || TREE_CODE (inner
) == NON_LVALUE_EXPR
1666 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1667 || TREE_CODE (inner
) == SAVE_EXPR
1668 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
1669 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
1670 inner
= find_placeholder (inner
, &placeholder_ptr
);
1672 inner
= TREE_OPERAND (inner
, 0);
1674 if (! DECL_P (inner
))
1678 if (inner
== TREE_OPERAND (ref
, 0))
1681 return build (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1682 TREE_OPERAND (ref
, 1));
1685 /* Given REF, a MEM, and T, either the type of X or the expression
1686 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1687 if we are making a new object of this type. BITPOS is nonzero if
1688 there is an offset outstanding on T that will be applied later. */
1691 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, bitpos
)
1695 HOST_WIDE_INT bitpos
;
1697 HOST_WIDE_INT alias
= MEM_ALIAS_SET (ref
);
1698 tree expr
= MEM_EXPR (ref
);
1699 rtx offset
= MEM_OFFSET (ref
);
1700 rtx size
= MEM_SIZE (ref
);
1701 unsigned int align
= MEM_ALIGN (ref
);
1702 HOST_WIDE_INT apply_bitpos
= 0;
1705 /* It can happen that type_for_mode was given a mode for which there
1706 is no language-level type. In which case it returns NULL, which
1711 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1713 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1714 wrong answer, as it assumes that DECL_RTL already has the right alias
1715 info. Callers should not set DECL_RTL until after the call to
1716 set_mem_attributes. */
1717 if (DECL_P (t
) && ref
== DECL_RTL_IF_SET (t
))
1720 /* Get the alias set from the expression or type (perhaps using a
1721 front-end routine) and use it. */
1722 alias
= get_alias_set (t
);
1724 MEM_VOLATILE_P (ref
) = TYPE_VOLATILE (type
);
1725 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
1726 RTX_UNCHANGING_P (ref
)
1727 |= ((lang_hooks
.honor_readonly
1728 && (TYPE_READONLY (type
) || TREE_READONLY (t
)))
1729 || (! TYPE_P (t
) && TREE_CONSTANT (t
)));
1731 /* If we are making an object of this type, or if this is a DECL, we know
1732 that it is a scalar if the type is not an aggregate. */
1733 if ((objectp
|| DECL_P (t
)) && ! AGGREGATE_TYPE_P (type
))
1734 MEM_SCALAR_P (ref
) = 1;
1736 /* We can set the alignment from the type if we are making an object,
1737 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1738 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1739 align
= MAX (align
, TYPE_ALIGN (type
));
1741 /* If the size is known, we can set that. */
1742 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1743 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1745 /* If T is not a type, we may be able to deduce some more information about
1749 maybe_set_unchanging (ref
, t
);
1750 if (TREE_THIS_VOLATILE (t
))
1751 MEM_VOLATILE_P (ref
) = 1;
1753 /* Now remove any conversions: they don't change what the underlying
1754 object is. Likewise for SAVE_EXPR. */
1755 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
1756 || TREE_CODE (t
) == NON_LVALUE_EXPR
1757 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1758 || TREE_CODE (t
) == SAVE_EXPR
)
1759 t
= TREE_OPERAND (t
, 0);
1761 /* If this expression can't be addressed (e.g., it contains a reference
1762 to a non-addressable field), show we don't change its alias set. */
1763 if (! can_address_p (t
))
1764 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1766 /* If this is a decl, set the attributes of the MEM from it. */
1770 offset
= const0_rtx
;
1771 apply_bitpos
= bitpos
;
1772 size
= (DECL_SIZE_UNIT (t
)
1773 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1774 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1775 align
= DECL_ALIGN (t
);
1778 /* If this is a constant, we know the alignment. */
1779 else if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
1781 align
= TYPE_ALIGN (type
);
1782 #ifdef CONSTANT_ALIGNMENT
1783 align
= CONSTANT_ALIGNMENT (t
, align
);
1787 /* If this is a field reference and not a bit-field, record it. */
1788 /* ??? There is some information that can be gleened from bit-fields,
1789 such as the word offset in the structure that might be modified.
1790 But skip it for now. */
1791 else if (TREE_CODE (t
) == COMPONENT_REF
1792 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1794 expr
= component_ref_for_mem_expr (t
);
1795 offset
= const0_rtx
;
1796 apply_bitpos
= bitpos
;
1797 /* ??? Any reason the field size would be different than
1798 the size we got from the type? */
1801 /* If this is an array reference, look for an outer field reference. */
1802 else if (TREE_CODE (t
) == ARRAY_REF
)
1804 tree off_tree
= size_zero_node
;
1808 tree index
= TREE_OPERAND (t
, 1);
1809 tree array
= TREE_OPERAND (t
, 0);
1810 tree domain
= TYPE_DOMAIN (TREE_TYPE (array
));
1811 tree low_bound
= (domain
? TYPE_MIN_VALUE (domain
) : 0);
1812 tree unit_size
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array
)));
1814 /* We assume all arrays have sizes that are a multiple of a byte.
1815 First subtract the lower bound, if any, in the type of the
1816 index, then convert to sizetype and multiply by the size of the
1818 if (low_bound
!= 0 && ! integer_zerop (low_bound
))
1819 index
= fold (build (MINUS_EXPR
, TREE_TYPE (index
),
1822 /* If the index has a self-referential type, pass it to a
1823 WITH_RECORD_EXPR; if the component size is, pass our
1824 component to one. */
1825 if (! TREE_CONSTANT (index
)
1826 && contains_placeholder_p (index
))
1827 index
= build (WITH_RECORD_EXPR
, TREE_TYPE (index
), index
, t
);
1828 if (! TREE_CONSTANT (unit_size
)
1829 && contains_placeholder_p (unit_size
))
1830 unit_size
= build (WITH_RECORD_EXPR
, sizetype
,
1834 = fold (build (PLUS_EXPR
, sizetype
,
1835 fold (build (MULT_EXPR
, sizetype
,
1839 t
= TREE_OPERAND (t
, 0);
1841 while (TREE_CODE (t
) == ARRAY_REF
);
1847 if (host_integerp (off_tree
, 1))
1849 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1850 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1851 align
= DECL_ALIGN (t
);
1852 if (aoff
&& aoff
< align
)
1854 offset
= GEN_INT (ioff
);
1855 apply_bitpos
= bitpos
;
1858 else if (TREE_CODE (t
) == COMPONENT_REF
)
1860 expr
= component_ref_for_mem_expr (t
);
1861 if (host_integerp (off_tree
, 1))
1863 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1864 apply_bitpos
= bitpos
;
1866 /* ??? Any reason the field size would be different than
1867 the size we got from the type? */
1869 else if (flag_argument_noalias
> 1
1870 && TREE_CODE (t
) == INDIRECT_REF
1871 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1878 /* If this is a Fortran indirect argument reference, record the
1880 else if (flag_argument_noalias
> 1
1881 && TREE_CODE (t
) == INDIRECT_REF
1882 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1889 /* If we modified OFFSET based on T, then subtract the outstanding
1890 bit position offset. */
1892 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1894 /* Now set the attributes we computed above. */
1896 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1898 /* If this is already known to be a scalar or aggregate, we are done. */
1899 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1902 /* If it is a reference into an aggregate, this is part of an aggregate.
1903 Otherwise we don't know. */
1904 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1905 || TREE_CODE (t
) == ARRAY_RANGE_REF
1906 || TREE_CODE (t
) == BIT_FIELD_REF
)
1907 MEM_IN_STRUCT_P (ref
) = 1;
1911 set_mem_attributes (ref
, t
, objectp
)
1916 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1919 /* Set the alias set of MEM to SET. */
1922 set_mem_alias_set (mem
, set
)
1926 #ifdef ENABLE_CHECKING
1927 /* If the new and old alias sets don't conflict, something is wrong. */
1928 if (!alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)))
1932 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1933 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1937 /* Set the alignment of MEM to ALIGN bits. */
1940 set_mem_align (mem
, align
)
1944 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1945 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1949 /* Set the expr for MEM to EXPR. */
1952 set_mem_expr (mem
, expr
)
1957 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1958 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1961 /* Set the offset of MEM to OFFSET. */
1964 set_mem_offset (mem
, offset
)
1967 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1968 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1972 /* Set the size of MEM to SIZE. */
1975 set_mem_size (mem
, size
)
1978 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1979 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1983 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1984 and its address changed to ADDR. (VOIDmode means don't change the mode.
1985 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1986 returned memory location is required to be valid. The memory
1987 attributes are not changed. */
1990 change_address_1 (memref
, mode
, addr
, validate
)
1992 enum machine_mode mode
;
1998 if (GET_CODE (memref
) != MEM
)
2000 if (mode
== VOIDmode
)
2001 mode
= GET_MODE (memref
);
2003 addr
= XEXP (memref
, 0);
2007 if (reload_in_progress
|| reload_completed
)
2009 if (! memory_address_p (mode
, addr
))
2013 addr
= memory_address (mode
, addr
);
2016 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2019 new = gen_rtx_MEM (mode
, addr
);
2020 MEM_COPY_ATTRIBUTES (new, memref
);
2024 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2025 way we are changing MEMREF, so we only preserve the alias set. */
2028 change_address (memref
, mode
, addr
)
2030 enum machine_mode mode
;
2033 rtx
new = change_address_1 (memref
, mode
, addr
, 1);
2034 enum machine_mode mmode
= GET_MODE (new);
2037 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0,
2038 mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
)),
2039 (mmode
== BLKmode
? BITS_PER_UNIT
2040 : GET_MODE_ALIGNMENT (mmode
)),
2046 /* Return a memory reference like MEMREF, but with its mode changed
2047 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2048 nonzero, the memory address is forced to be valid.
2049 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2050 and caller is responsible for adjusting MEMREF base register. */
2053 adjust_address_1 (memref
, mode
, offset
, validate
, adjust
)
2055 enum machine_mode mode
;
2056 HOST_WIDE_INT offset
;
2057 int validate
, adjust
;
2059 rtx addr
= XEXP (memref
, 0);
2061 rtx memoffset
= MEM_OFFSET (memref
);
2063 unsigned int memalign
= MEM_ALIGN (memref
);
2065 /* ??? Prefer to create garbage instead of creating shared rtl.
2066 This may happen even if offset is non-zero -- consider
2067 (plus (plus reg reg) const_int) -- so do this always. */
2068 addr
= copy_rtx (addr
);
2072 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2073 object, we can merge it into the LO_SUM. */
2074 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2076 && (unsigned HOST_WIDE_INT
) offset
2077 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2078 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
2079 plus_constant (XEXP (addr
, 1), offset
));
2081 addr
= plus_constant (addr
, offset
);
2084 new = change_address_1 (memref
, mode
, addr
, validate
);
2086 /* Compute the new values of the memory attributes due to this adjustment.
2087 We add the offsets and update the alignment. */
2089 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
2091 /* Compute the new alignment by taking the MIN of the alignment and the
2092 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2097 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
2099 /* We can compute the size in a number of ways. */
2100 if (GET_MODE (new) != BLKmode
)
2101 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2102 else if (MEM_SIZE (memref
))
2103 size
= plus_constant (MEM_SIZE (memref
), -offset
);
2105 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
2106 memoffset
, size
, memalign
, GET_MODE (new));
2108 /* At some point, we should validate that this offset is within the object,
2109 if all the appropriate values are known. */
2113 /* Return a memory reference like MEMREF, but with its mode changed
2114 to MODE and its address changed to ADDR, which is assumed to be
2115 MEMREF offseted by OFFSET bytes. If VALIDATE is
2116 nonzero, the memory address is forced to be valid. */
2119 adjust_automodify_address_1 (memref
, mode
, addr
, offset
, validate
)
2121 enum machine_mode mode
;
2123 HOST_WIDE_INT offset
;
2126 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2127 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
2130 /* Return a memory reference like MEMREF, but whose address is changed by
2131 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2132 known to be in OFFSET (possibly 1). */
2135 offset_address (memref
, offset
, pow2
)
2140 rtx
new, addr
= XEXP (memref
, 0);
2142 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
2144 /* At this point we don't know _why_ the address is invalid. It
2145 could have secondary memory refereces, multiplies or anything.
2147 However, if we did go and rearrange things, we can wind up not
2148 being able to recognize the magic around pic_offset_table_rtx.
2149 This stuff is fragile, and is yet another example of why it is
2150 bad to expose PIC machinery too early. */
2151 if (! memory_address_p (GET_MODE (memref
), new)
2152 && GET_CODE (addr
) == PLUS
2153 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2155 addr
= force_reg (GET_MODE (addr
), addr
);
2156 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
2159 update_temp_slot_address (XEXP (memref
, 0), new);
2160 new = change_address_1 (memref
, VOIDmode
, new, 1);
2162 /* Update the alignment to reflect the offset. Reset the offset, which
2165 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2166 MIN (MEM_ALIGN (memref
),
2167 (unsigned HOST_WIDE_INT
) pow2
* BITS_PER_UNIT
),
2172 /* Return a memory reference like MEMREF, but with its address changed to
2173 ADDR. The caller is asserting that the actual piece of memory pointed
2174 to is the same, just the form of the address is being changed, such as
2175 by putting something into a register. */
2178 replace_equiv_address (memref
, addr
)
2182 /* change_address_1 copies the memory attribute structure without change
2183 and that's exactly what we want here. */
2184 update_temp_slot_address (XEXP (memref
, 0), addr
);
2185 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2188 /* Likewise, but the reference is not required to be valid. */
2191 replace_equiv_address_nv (memref
, addr
)
2195 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2198 /* Return a memory reference like MEMREF, but with its mode widened to
2199 MODE and offset by OFFSET. This would be used by targets that e.g.
2200 cannot issue QImode memory operations and have to use SImode memory
2201 operations plus masking logic. */
2204 widen_memory_access (memref
, mode
, offset
)
2206 enum machine_mode mode
;
2207 HOST_WIDE_INT offset
;
2209 rtx
new = adjust_address_1 (memref
, mode
, offset
, 1, 1);
2210 tree expr
= MEM_EXPR (new);
2211 rtx memoffset
= MEM_OFFSET (new);
2212 unsigned int size
= GET_MODE_SIZE (mode
);
2214 /* If we don't know what offset we were at within the expression, then
2215 we can't know if we've overstepped the bounds. */
2221 if (TREE_CODE (expr
) == COMPONENT_REF
)
2223 tree field
= TREE_OPERAND (expr
, 1);
2225 if (! DECL_SIZE_UNIT (field
))
2231 /* Is the field at least as large as the access? If so, ok,
2232 otherwise strip back to the containing structure. */
2233 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2234 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2235 && INTVAL (memoffset
) >= 0)
2238 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
2244 expr
= TREE_OPERAND (expr
, 0);
2245 memoffset
= (GEN_INT (INTVAL (memoffset
)
2246 + tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
2247 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2250 /* Similarly for the decl. */
2251 else if (DECL_P (expr
)
2252 && DECL_SIZE_UNIT (expr
)
2253 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2254 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2255 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2259 /* The widened memory access overflows the expression, which means
2260 that it could alias another expression. Zap it. */
2267 memoffset
= NULL_RTX
;
2269 /* The widened memory may alias other stuff, so zap the alias set. */
2270 /* ??? Maybe use get_alias_set on any remaining expression. */
2272 MEM_ATTRS (new) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2273 MEM_ALIGN (new), mode
);
2278 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2283 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2284 NULL
, label_num
++, NULL
);
2287 /* For procedure integration. */
2289 /* Install new pointers to the first and last insns in the chain.
2290 Also, set cur_insn_uid to one higher than the last in use.
2291 Used for an inline-procedure after copying the insn chain. */
2294 set_new_first_and_last_insn (first
, last
)
2303 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2304 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2309 /* Set the range of label numbers found in the current function.
2310 This is used when belatedly compiling an inline function. */
2313 set_new_first_and_last_label_num (first
, last
)
2316 base_label_num
= label_num
;
2317 first_label_num
= first
;
2318 last_label_num
= last
;
2321 /* Set the last label number found in the current function.
2322 This is used when belatedly compiling an inline function. */
2325 set_new_last_label_num (last
)
2328 base_label_num
= label_num
;
2329 last_label_num
= last
;
2332 /* Restore all variables describing the current status from the structure *P.
2333 This is used after a nested function. */
2336 restore_emit_status (p
)
2337 struct function
*p ATTRIBUTE_UNUSED
;
2342 /* Go through all the RTL insn bodies and copy any invalid shared
2343 structure. This routine should only be called once. */
2346 unshare_all_rtl (fndecl
, insn
)
2352 /* Make sure that virtual parameters are not shared. */
2353 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
2354 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2356 /* Make sure that virtual stack slots are not shared. */
2357 unshare_all_decls (DECL_INITIAL (fndecl
));
2359 /* Unshare just about everything else. */
2360 unshare_all_rtl_1 (insn
);
2362 /* Make sure the addresses of stack slots found outside the insn chain
2363 (such as, in DECL_RTL of a variable) are not shared
2364 with the insn chain.
2366 This special care is necessary when the stack slot MEM does not
2367 actually appear in the insn chain. If it does appear, its address
2368 is unshared from all else at that point. */
2369 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2372 /* Go through all the RTL insn bodies and copy any invalid shared
2373 structure, again. This is a fairly expensive thing to do so it
2374 should be done sparingly. */
2377 unshare_all_rtl_again (insn
)
2383 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2386 reset_used_flags (PATTERN (p
));
2387 reset_used_flags (REG_NOTES (p
));
2388 reset_used_flags (LOG_LINKS (p
));
2391 /* Make sure that virtual stack slots are not shared. */
2392 reset_used_decls (DECL_INITIAL (cfun
->decl
));
2394 /* Make sure that virtual parameters are not shared. */
2395 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2396 reset_used_flags (DECL_RTL (decl
));
2398 reset_used_flags (stack_slot_list
);
2400 unshare_all_rtl (cfun
->decl
, insn
);
2403 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2404 Assumes the mark bits are cleared at entry. */
2407 unshare_all_rtl_1 (insn
)
2410 for (; insn
; insn
= NEXT_INSN (insn
))
2413 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2414 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2415 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
2419 /* Go through all virtual stack slots of a function and copy any
2420 shared structure. */
2422 unshare_all_decls (blk
)
2427 /* Copy shared decls. */
2428 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2429 if (DECL_RTL_SET_P (t
))
2430 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
2432 /* Now process sub-blocks. */
2433 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2434 unshare_all_decls (t
);
2437 /* Go through all virtual stack slots of a function and mark them as
2440 reset_used_decls (blk
)
2446 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2447 if (DECL_RTL_SET_P (t
))
2448 reset_used_flags (DECL_RTL (t
));
2450 /* Now process sub-blocks. */
2451 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2452 reset_used_decls (t
);
2455 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2456 placed in the result directly, rather than being copied. MAY_SHARE is
2457 either a MEM of an EXPR_LIST of MEMs. */
2460 copy_most_rtx (orig
, may_share
)
2467 const char *format_ptr
;
2469 if (orig
== may_share
2470 || (GET_CODE (may_share
) == EXPR_LIST
2471 && in_expr_list_p (may_share
, orig
)))
2474 code
= GET_CODE (orig
);
2492 copy
= rtx_alloc (code
);
2493 PUT_MODE (copy
, GET_MODE (orig
));
2494 RTX_FLAG (copy
, in_struct
) = RTX_FLAG (orig
, in_struct
);
2495 RTX_FLAG (copy
, volatil
) = RTX_FLAG (orig
, volatil
);
2496 RTX_FLAG (copy
, unchanging
) = RTX_FLAG (orig
, unchanging
);
2497 RTX_FLAG (copy
, integrated
) = RTX_FLAG (orig
, integrated
);
2498 RTX_FLAG (copy
, frame_related
) = RTX_FLAG (orig
, frame_related
);
2500 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
2502 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
2504 switch (*format_ptr
++)
2507 XEXP (copy
, i
) = XEXP (orig
, i
);
2508 if (XEXP (orig
, i
) != NULL
&& XEXP (orig
, i
) != may_share
)
2509 XEXP (copy
, i
) = copy_most_rtx (XEXP (orig
, i
), may_share
);
2513 XEXP (copy
, i
) = XEXP (orig
, i
);
2518 XVEC (copy
, i
) = XVEC (orig
, i
);
2519 if (XVEC (orig
, i
) != NULL
)
2521 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
2522 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
2523 XVECEXP (copy
, i
, j
)
2524 = copy_most_rtx (XVECEXP (orig
, i
, j
), may_share
);
2529 XWINT (copy
, i
) = XWINT (orig
, i
);
2534 XINT (copy
, i
) = XINT (orig
, i
);
2538 XTREE (copy
, i
) = XTREE (orig
, i
);
2543 XSTR (copy
, i
) = XSTR (orig
, i
);
2547 /* Copy this through the wide int field; that's safest. */
2548 X0WINT (copy
, i
) = X0WINT (orig
, i
);
2558 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2559 Recursively does the same for subexpressions. */
2562 copy_rtx_if_shared (orig
)
2568 const char *format_ptr
;
2574 code
= GET_CODE (x
);
2576 /* These types may be freely shared. */
2590 /* SCRATCH must be shared because they represent distinct values. */
2594 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2595 a LABEL_REF, it isn't sharable. */
2596 if (GET_CODE (XEXP (x
, 0)) == PLUS
2597 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2598 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2607 /* The chain of insns is not being copied. */
2611 /* A MEM is allowed to be shared if its address is constant.
2613 We used to allow sharing of MEMs which referenced
2614 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2615 that can lose. instantiate_virtual_regs will not unshare
2616 the MEMs, and combine may change the structure of the address
2617 because it looks safe and profitable in one context, but
2618 in some other context it creates unrecognizable RTL. */
2619 if (CONSTANT_ADDRESS_P (XEXP (x
, 0)))
2628 /* This rtx may not be shared. If it has already been seen,
2629 replace it with a copy of itself. */
2631 if (RTX_FLAG (x
, used
))
2635 copy
= rtx_alloc (code
);
2637 (sizeof (*copy
) - sizeof (copy
->fld
)
2638 + sizeof (copy
->fld
[0]) * GET_RTX_LENGTH (code
)));
2642 RTX_FLAG (x
, used
) = 1;
2644 /* Now scan the subexpressions recursively.
2645 We can store any replaced subexpressions directly into X
2646 since we know X is not shared! Any vectors in X
2647 must be copied if X was copied. */
2649 format_ptr
= GET_RTX_FORMAT (code
);
2651 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2653 switch (*format_ptr
++)
2656 XEXP (x
, i
) = copy_rtx_if_shared (XEXP (x
, i
));
2660 if (XVEC (x
, i
) != NULL
)
2663 int len
= XVECLEN (x
, i
);
2665 if (copied
&& len
> 0)
2666 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2667 for (j
= 0; j
< len
; j
++)
2668 XVECEXP (x
, i
, j
) = copy_rtx_if_shared (XVECEXP (x
, i
, j
));
2676 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2677 to look for shared sub-parts. */
2680 reset_used_flags (x
)
2685 const char *format_ptr
;
2690 code
= GET_CODE (x
);
2692 /* These types may be freely shared so we needn't do any resetting
2714 /* The chain of insns is not being copied. */
2721 RTX_FLAG (x
, used
) = 0;
2723 format_ptr
= GET_RTX_FORMAT (code
);
2724 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2726 switch (*format_ptr
++)
2729 reset_used_flags (XEXP (x
, i
));
2733 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2734 reset_used_flags (XVECEXP (x
, i
, j
));
2740 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2741 Return X or the rtx for the pseudo reg the value of X was copied into.
2742 OTHER must be valid as a SET_DEST. */
2745 make_safe_from (x
, other
)
2749 switch (GET_CODE (other
))
2752 other
= SUBREG_REG (other
);
2754 case STRICT_LOW_PART
:
2757 other
= XEXP (other
, 0);
2763 if ((GET_CODE (other
) == MEM
2765 && GET_CODE (x
) != REG
2766 && GET_CODE (x
) != SUBREG
)
2767 || (GET_CODE (other
) == REG
2768 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2769 || reg_mentioned_p (other
, x
))))
2771 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2772 emit_move_insn (temp
, x
);
2778 /* Emission of insns (adding them to the doubly-linked list). */
2780 /* Return the first insn of the current sequence or current function. */
2788 /* Specify a new insn as the first in the chain. */
2791 set_first_insn (insn
)
2794 if (PREV_INSN (insn
) != 0)
2799 /* Return the last insn emitted in current sequence or current function. */
2807 /* Specify a new insn as the last in the chain. */
2810 set_last_insn (insn
)
2813 if (NEXT_INSN (insn
) != 0)
2818 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2821 get_last_insn_anywhere ()
2823 struct sequence_stack
*stack
;
2826 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2827 if (stack
->last
!= 0)
2832 /* Return the first nonnote insn emitted in current sequence or current
2833 function. This routine looks inside SEQUENCEs. */
2836 get_first_nonnote_insn ()
2838 rtx insn
= first_insn
;
2842 insn
= next_insn (insn
);
2843 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2850 /* Return the last nonnote insn emitted in current sequence or current
2851 function. This routine looks inside SEQUENCEs. */
2854 get_last_nonnote_insn ()
2856 rtx insn
= last_insn
;
2860 insn
= previous_insn (insn
);
2861 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2868 /* Return a number larger than any instruction's uid in this function. */
2873 return cur_insn_uid
;
2876 /* Renumber instructions so that no instruction UIDs are wasted. */
2879 renumber_insns (stream
)
2884 /* If we're not supposed to renumber instructions, don't. */
2885 if (!flag_renumber_insns
)
2888 /* If there aren't that many instructions, then it's not really
2889 worth renumbering them. */
2890 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2895 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2898 fprintf (stream
, "Renumbering insn %d to %d\n",
2899 INSN_UID (insn
), cur_insn_uid
);
2900 INSN_UID (insn
) = cur_insn_uid
++;
2904 /* Return the next insn. If it is a SEQUENCE, return the first insn
2913 insn
= NEXT_INSN (insn
);
2914 if (insn
&& GET_CODE (insn
) == INSN
2915 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2916 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2922 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2926 previous_insn (insn
)
2931 insn
= PREV_INSN (insn
);
2932 if (insn
&& GET_CODE (insn
) == INSN
2933 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2934 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2940 /* Return the next insn after INSN that is not a NOTE. This routine does not
2941 look inside SEQUENCEs. */
2944 next_nonnote_insn (insn
)
2949 insn
= NEXT_INSN (insn
);
2950 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2957 /* Return the previous insn before INSN that is not a NOTE. This routine does
2958 not look inside SEQUENCEs. */
2961 prev_nonnote_insn (insn
)
2966 insn
= PREV_INSN (insn
);
2967 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2974 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2975 or 0, if there is none. This routine does not look inside
2979 next_real_insn (insn
)
2984 insn
= NEXT_INSN (insn
);
2985 if (insn
== 0 || GET_CODE (insn
) == INSN
2986 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2993 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2994 or 0, if there is none. This routine does not look inside
2998 prev_real_insn (insn
)
3003 insn
= PREV_INSN (insn
);
3004 if (insn
== 0 || GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
3005 || GET_CODE (insn
) == JUMP_INSN
)
3012 /* Find the next insn after INSN that really does something. This routine
3013 does not look inside SEQUENCEs. Until reload has completed, this is the
3014 same as next_real_insn. */
3017 active_insn_p (insn
)
3020 return (GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
3021 || (GET_CODE (insn
) == INSN
3022 && (! reload_completed
3023 || (GET_CODE (PATTERN (insn
)) != USE
3024 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3028 next_active_insn (insn
)
3033 insn
= NEXT_INSN (insn
);
3034 if (insn
== 0 || active_insn_p (insn
))
3041 /* Find the last insn before INSN that really does something. This routine
3042 does not look inside SEQUENCEs. Until reload has completed, this is the
3043 same as prev_real_insn. */
3046 prev_active_insn (insn
)
3051 insn
= PREV_INSN (insn
);
3052 if (insn
== 0 || active_insn_p (insn
))
3059 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3067 insn
= NEXT_INSN (insn
);
3068 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
3075 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3083 insn
= PREV_INSN (insn
);
3084 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
3092 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3093 and REG_CC_USER notes so we can find it. */
3096 link_cc0_insns (insn
)
3099 rtx user
= next_nonnote_insn (insn
);
3101 if (GET_CODE (user
) == INSN
&& GET_CODE (PATTERN (user
)) == SEQUENCE
)
3102 user
= XVECEXP (PATTERN (user
), 0, 0);
3104 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
3106 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
3109 /* Return the next insn that uses CC0 after INSN, which is assumed to
3110 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3111 applied to the result of this function should yield INSN).
3113 Normally, this is simply the next insn. However, if a REG_CC_USER note
3114 is present, it contains the insn that uses CC0.
3116 Return 0 if we can't find the insn. */
3119 next_cc0_user (insn
)
3122 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3125 return XEXP (note
, 0);
3127 insn
= next_nonnote_insn (insn
);
3128 if (insn
&& GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3129 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3131 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3137 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3138 note, it is the previous insn. */
3141 prev_cc0_setter (insn
)
3144 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3147 return XEXP (note
, 0);
3149 insn
= prev_nonnote_insn (insn
);
3150 if (! sets_cc0_p (PATTERN (insn
)))
3157 /* Increment the label uses for all labels present in rtx. */
3160 mark_label_nuses (x
)
3167 code
= GET_CODE (x
);
3168 if (code
== LABEL_REF
)
3169 LABEL_NUSES (XEXP (x
, 0))++;
3171 fmt
= GET_RTX_FORMAT (code
);
3172 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3175 mark_label_nuses (XEXP (x
, i
));
3176 else if (fmt
[i
] == 'E')
3177 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3178 mark_label_nuses (XVECEXP (x
, i
, j
));
3183 /* Try splitting insns that can be split for better scheduling.
3184 PAT is the pattern which might split.
3185 TRIAL is the insn providing PAT.
3186 LAST is non-zero if we should return the last insn of the sequence produced.
3188 If this routine succeeds in splitting, it returns the first or last
3189 replacement insn depending on the value of LAST. Otherwise, it
3190 returns TRIAL. If the insn to be returned can be split, it will be. */
3193 try_split (pat
, trial
, last
)
3197 rtx before
= PREV_INSN (trial
);
3198 rtx after
= NEXT_INSN (trial
);
3199 int has_barrier
= 0;
3204 if (any_condjump_p (trial
)
3205 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3206 split_branch_probability
= INTVAL (XEXP (note
, 0));
3207 probability
= split_branch_probability
;
3209 seq
= split_insns (pat
, trial
);
3211 split_branch_probability
= -1;
3213 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3214 We may need to handle this specially. */
3215 if (after
&& GET_CODE (after
) == BARRIER
)
3218 after
= NEXT_INSN (after
);
3223 /* Sometimes there will be only one insn in that list, this case will
3224 normally arise only when we want it in turn to be split (SFmode on
3225 the 29k is an example). */
3226 if (NEXT_INSN (seq
) != NULL_RTX
)
3228 rtx insn_last
, insn
;
3231 /* Avoid infinite loop if any insn of the result matches
3232 the original pattern. */
3236 if (INSN_P (insn_last
)
3237 && rtx_equal_p (PATTERN (insn_last
), pat
))
3239 if (NEXT_INSN (insn_last
) == NULL_RTX
)
3241 insn_last
= NEXT_INSN (insn_last
);
3246 while (insn
!= NULL_RTX
)
3248 if (GET_CODE (insn
) == JUMP_INSN
)
3250 mark_jump_label (PATTERN (insn
), insn
, 0);
3252 if (probability
!= -1
3253 && any_condjump_p (insn
)
3254 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3256 /* We can preserve the REG_BR_PROB notes only if exactly
3257 one jump is created, otherwise the machine description
3258 is responsible for this step using
3259 split_branch_probability variable. */
3263 = gen_rtx_EXPR_LIST (REG_BR_PROB
,
3264 GEN_INT (probability
),
3269 insn
= PREV_INSN (insn
);
3272 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3273 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3274 if (GET_CODE (trial
) == CALL_INSN
)
3277 while (insn
!= NULL_RTX
)
3279 if (GET_CODE (insn
) == CALL_INSN
)
3280 CALL_INSN_FUNCTION_USAGE (insn
)
3281 = CALL_INSN_FUNCTION_USAGE (trial
);
3283 insn
= PREV_INSN (insn
);
3287 /* Copy notes, particularly those related to the CFG. */
3288 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3290 switch (REG_NOTE_KIND (note
))
3294 while (insn
!= NULL_RTX
)
3296 if (GET_CODE (insn
) == CALL_INSN
3297 || (flag_non_call_exceptions
3298 && may_trap_p (PATTERN (insn
))))
3300 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3303 insn
= PREV_INSN (insn
);
3309 case REG_ALWAYS_RETURN
:
3311 while (insn
!= NULL_RTX
)
3313 if (GET_CODE (insn
) == CALL_INSN
)
3315 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3318 insn
= PREV_INSN (insn
);
3322 case REG_NON_LOCAL_GOTO
:
3324 while (insn
!= NULL_RTX
)
3326 if (GET_CODE (insn
) == JUMP_INSN
)
3328 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3331 insn
= PREV_INSN (insn
);
3340 /* If there are LABELS inside the split insns increment the
3341 usage count so we don't delete the label. */
3342 if (GET_CODE (trial
) == INSN
)
3345 while (insn
!= NULL_RTX
)
3347 if (GET_CODE (insn
) == INSN
)
3348 mark_label_nuses (PATTERN (insn
));
3350 insn
= PREV_INSN (insn
);
3354 tem
= emit_insn_after_scope (seq
, trial
, INSN_SCOPE (trial
));
3356 delete_insn (trial
);
3358 emit_barrier_after (tem
);
3360 /* Recursively call try_split for each new insn created; by the
3361 time control returns here that insn will be fully split, so
3362 set LAST and continue from the insn after the one returned.
3363 We can't use next_active_insn here since AFTER may be a note.
3364 Ignore deleted insns, which can be occur if not optimizing. */
3365 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3366 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3367 tem
= try_split (PATTERN (tem
), tem
, 1);
3369 /* Avoid infinite loop if the result matches the original pattern. */
3370 else if (rtx_equal_p (PATTERN (seq
), pat
))
3374 PATTERN (trial
) = PATTERN (seq
);
3375 INSN_CODE (trial
) = -1;
3376 try_split (PATTERN (trial
), trial
, last
);
3379 /* Return either the first or the last insn, depending on which was
3382 ? (after
? PREV_INSN (after
) : last_insn
)
3383 : NEXT_INSN (before
);
3389 /* Make and return an INSN rtx, initializing all its slots.
3390 Store PATTERN in the pattern slots. */
3393 make_insn_raw (pattern
)
3398 insn
= rtx_alloc (INSN
);
3400 INSN_UID (insn
) = cur_insn_uid
++;
3401 PATTERN (insn
) = pattern
;
3402 INSN_CODE (insn
) = -1;
3403 LOG_LINKS (insn
) = NULL
;
3404 REG_NOTES (insn
) = NULL
;
3405 INSN_SCOPE (insn
) = NULL
;
3406 BLOCK_FOR_INSN (insn
) = NULL
;
3408 #ifdef ENABLE_RTL_CHECKING
3411 && (returnjump_p (insn
)
3412 || (GET_CODE (insn
) == SET
3413 && SET_DEST (insn
) == pc_rtx
)))
3415 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3423 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3426 make_jump_insn_raw (pattern
)
3431 insn
= rtx_alloc (JUMP_INSN
);
3432 INSN_UID (insn
) = cur_insn_uid
++;
3434 PATTERN (insn
) = pattern
;
3435 INSN_CODE (insn
) = -1;
3436 LOG_LINKS (insn
) = NULL
;
3437 REG_NOTES (insn
) = NULL
;
3438 JUMP_LABEL (insn
) = NULL
;
3439 INSN_SCOPE (insn
) = NULL
;
3440 BLOCK_FOR_INSN (insn
) = NULL
;
3445 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3448 make_call_insn_raw (pattern
)
3453 insn
= rtx_alloc (CALL_INSN
);
3454 INSN_UID (insn
) = cur_insn_uid
++;
3456 PATTERN (insn
) = pattern
;
3457 INSN_CODE (insn
) = -1;
3458 LOG_LINKS (insn
) = NULL
;
3459 REG_NOTES (insn
) = NULL
;
3460 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3461 INSN_SCOPE (insn
) = NULL
;
3462 BLOCK_FOR_INSN (insn
) = NULL
;
3467 /* Add INSN to the end of the doubly-linked list.
3468 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3474 PREV_INSN (insn
) = last_insn
;
3475 NEXT_INSN (insn
) = 0;
3477 if (NULL
!= last_insn
)
3478 NEXT_INSN (last_insn
) = insn
;
3480 if (NULL
== first_insn
)
3486 /* Add INSN into the doubly-linked list after insn AFTER. This and
3487 the next should be the only functions called to insert an insn once
3488 delay slots have been filled since only they know how to update a
3492 add_insn_after (insn
, after
)
3495 rtx next
= NEXT_INSN (after
);
3498 if (optimize
&& INSN_DELETED_P (after
))
3501 NEXT_INSN (insn
) = next
;
3502 PREV_INSN (insn
) = after
;
3506 PREV_INSN (next
) = insn
;
3507 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3508 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3510 else if (last_insn
== after
)
3514 struct sequence_stack
*stack
= seq_stack
;
3515 /* Scan all pending sequences too. */
3516 for (; stack
; stack
= stack
->next
)
3517 if (after
== stack
->last
)
3527 if (GET_CODE (after
) != BARRIER
3528 && GET_CODE (insn
) != BARRIER
3529 && (bb
= BLOCK_FOR_INSN (after
)))
3531 set_block_for_insn (insn
, bb
);
3533 bb
->flags
|= BB_DIRTY
;
3534 /* Should not happen as first in the BB is always
3535 either NOTE or LABEL. */
3536 if (bb
->end
== after
3537 /* Avoid clobbering of structure when creating new BB. */
3538 && GET_CODE (insn
) != BARRIER
3539 && (GET_CODE (insn
) != NOTE
3540 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3544 NEXT_INSN (after
) = insn
;
3545 if (GET_CODE (after
) == INSN
&& GET_CODE (PATTERN (after
)) == SEQUENCE
)
3547 rtx sequence
= PATTERN (after
);
3548 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3552 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3553 the previous should be the only functions called to insert an insn once
3554 delay slots have been filled since only they know how to update a
3558 add_insn_before (insn
, before
)
3561 rtx prev
= PREV_INSN (before
);
3564 if (optimize
&& INSN_DELETED_P (before
))
3567 PREV_INSN (insn
) = prev
;
3568 NEXT_INSN (insn
) = before
;
3572 NEXT_INSN (prev
) = insn
;
3573 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3575 rtx sequence
= PATTERN (prev
);
3576 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3579 else if (first_insn
== before
)
3583 struct sequence_stack
*stack
= seq_stack
;
3584 /* Scan all pending sequences too. */
3585 for (; stack
; stack
= stack
->next
)
3586 if (before
== stack
->first
)
3588 stack
->first
= insn
;
3596 if (GET_CODE (before
) != BARRIER
3597 && GET_CODE (insn
) != BARRIER
3598 && (bb
= BLOCK_FOR_INSN (before
)))
3600 set_block_for_insn (insn
, bb
);
3602 bb
->flags
|= BB_DIRTY
;
3603 /* Should not happen as first in the BB is always
3604 either NOTE or LABEl. */
3605 if (bb
->head
== insn
3606 /* Avoid clobbering of structure when creating new BB. */
3607 && GET_CODE (insn
) != BARRIER
3608 && (GET_CODE (insn
) != NOTE
3609 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3613 PREV_INSN (before
) = insn
;
3614 if (GET_CODE (before
) == INSN
&& GET_CODE (PATTERN (before
)) == SEQUENCE
)
3615 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3618 /* Remove an insn from its doubly-linked list. This function knows how
3619 to handle sequences. */
3624 rtx next
= NEXT_INSN (insn
);
3625 rtx prev
= PREV_INSN (insn
);
3630 NEXT_INSN (prev
) = next
;
3631 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3633 rtx sequence
= PATTERN (prev
);
3634 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3637 else if (first_insn
== insn
)
3641 struct sequence_stack
*stack
= seq_stack
;
3642 /* Scan all pending sequences too. */
3643 for (; stack
; stack
= stack
->next
)
3644 if (insn
== stack
->first
)
3646 stack
->first
= next
;
3656 PREV_INSN (next
) = prev
;
3657 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3658 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3660 else if (last_insn
== insn
)
3664 struct sequence_stack
*stack
= seq_stack
;
3665 /* Scan all pending sequences too. */
3666 for (; stack
; stack
= stack
->next
)
3667 if (insn
== stack
->last
)
3676 if (GET_CODE (insn
) != BARRIER
3677 && (bb
= BLOCK_FOR_INSN (insn
)))
3680 bb
->flags
|= BB_DIRTY
;
3681 if (bb
->head
== insn
)
3683 /* Never ever delete the basic block note without deleting whole
3685 if (GET_CODE (insn
) == NOTE
)
3689 if (bb
->end
== insn
)
3694 /* Delete all insns made since FROM.
3695 FROM becomes the new last instruction. */
3698 delete_insns_since (from
)
3704 NEXT_INSN (from
) = 0;
3708 /* This function is deprecated, please use sequences instead.
3710 Move a consecutive bunch of insns to a different place in the chain.
3711 The insns to be moved are those between FROM and TO.
3712 They are moved to a new position after the insn AFTER.
3713 AFTER must not be FROM or TO or any insn in between.
3715 This function does not know about SEQUENCEs and hence should not be
3716 called after delay-slot filling has been done. */
3719 reorder_insns_nobb (from
, to
, after
)
3720 rtx from
, to
, after
;
3722 /* Splice this bunch out of where it is now. */
3723 if (PREV_INSN (from
))
3724 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3726 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3727 if (last_insn
== to
)
3728 last_insn
= PREV_INSN (from
);
3729 if (first_insn
== from
)
3730 first_insn
= NEXT_INSN (to
);
3732 /* Make the new neighbors point to it and it to them. */
3733 if (NEXT_INSN (after
))
3734 PREV_INSN (NEXT_INSN (after
)) = to
;
3736 NEXT_INSN (to
) = NEXT_INSN (after
);
3737 PREV_INSN (from
) = after
;
3738 NEXT_INSN (after
) = from
;
3739 if (after
== last_insn
)
3743 /* Same as function above, but take care to update BB boundaries. */
3745 reorder_insns (from
, to
, after
)
3746 rtx from
, to
, after
;
3748 rtx prev
= PREV_INSN (from
);
3749 basic_block bb
, bb2
;
3751 reorder_insns_nobb (from
, to
, after
);
3753 if (GET_CODE (after
) != BARRIER
3754 && (bb
= BLOCK_FOR_INSN (after
)))
3757 bb
->flags
|= BB_DIRTY
;
3759 if (GET_CODE (from
) != BARRIER
3760 && (bb2
= BLOCK_FOR_INSN (from
)))
3764 bb2
->flags
|= BB_DIRTY
;
3767 if (bb
->end
== after
)
3770 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3771 set_block_for_insn (x
, bb
);
3775 /* Return the line note insn preceding INSN. */
3778 find_line_note (insn
)
3781 if (no_line_numbers
)
3784 for (; insn
; insn
= PREV_INSN (insn
))
3785 if (GET_CODE (insn
) == NOTE
3786 && NOTE_LINE_NUMBER (insn
) >= 0)
3792 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3793 of the moved insns when debugging. This may insert a note between AFTER
3794 and FROM, and another one after TO. */
3797 reorder_insns_with_line_notes (from
, to
, after
)
3798 rtx from
, to
, after
;
3800 rtx from_line
= find_line_note (from
);
3801 rtx after_line
= find_line_note (after
);
3803 reorder_insns (from
, to
, after
);
3805 if (from_line
== after_line
)
3809 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
3810 NOTE_LINE_NUMBER (from_line
),
3813 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
3814 NOTE_LINE_NUMBER (after_line
),
3818 /* Remove unnecessary notes from the instruction stream. */
3821 remove_unnecessary_notes ()
3823 rtx block_stack
= NULL_RTX
;
3824 rtx eh_stack
= NULL_RTX
;
3829 /* We must not remove the first instruction in the function because
3830 the compiler depends on the first instruction being a note. */
3831 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
3833 /* Remember what's next. */
3834 next
= NEXT_INSN (insn
);
3836 /* We're only interested in notes. */
3837 if (GET_CODE (insn
) != NOTE
)
3840 switch (NOTE_LINE_NUMBER (insn
))
3842 case NOTE_INSN_DELETED
:
3843 case NOTE_INSN_LOOP_END_TOP_COND
:
3847 case NOTE_INSN_EH_REGION_BEG
:
3848 eh_stack
= alloc_INSN_LIST (insn
, eh_stack
);
3851 case NOTE_INSN_EH_REGION_END
:
3852 /* Too many end notes. */
3853 if (eh_stack
== NULL_RTX
)
3855 /* Mismatched nesting. */
3856 if (NOTE_EH_HANDLER (XEXP (eh_stack
, 0)) != NOTE_EH_HANDLER (insn
))
3859 eh_stack
= XEXP (eh_stack
, 1);
3860 free_INSN_LIST_node (tmp
);
3863 case NOTE_INSN_BLOCK_BEG
:
3864 /* By now, all notes indicating lexical blocks should have
3865 NOTE_BLOCK filled in. */
3866 if (NOTE_BLOCK (insn
) == NULL_TREE
)
3868 block_stack
= alloc_INSN_LIST (insn
, block_stack
);
3871 case NOTE_INSN_BLOCK_END
:
3872 /* Too many end notes. */
3873 if (block_stack
== NULL_RTX
)
3875 /* Mismatched nesting. */
3876 if (NOTE_BLOCK (XEXP (block_stack
, 0)) != NOTE_BLOCK (insn
))
3879 block_stack
= XEXP (block_stack
, 1);
3880 free_INSN_LIST_node (tmp
);
3882 /* Scan back to see if there are any non-note instructions
3883 between INSN and the beginning of this block. If not,
3884 then there is no PC range in the generated code that will
3885 actually be in this block, so there's no point in
3886 remembering the existence of the block. */
3887 for (tmp
= PREV_INSN (insn
); tmp
; tmp
= PREV_INSN (tmp
))
3889 /* This block contains a real instruction. Note that we
3890 don't include labels; if the only thing in the block
3891 is a label, then there are still no PC values that
3892 lie within the block. */
3896 /* We're only interested in NOTEs. */
3897 if (GET_CODE (tmp
) != NOTE
)
3900 if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_BEG
)
3902 /* We just verified that this BLOCK matches us with
3903 the block_stack check above. Never delete the
3904 BLOCK for the outermost scope of the function; we
3905 can refer to names from that scope even if the
3906 block notes are messed up. */
3907 if (! is_body_block (NOTE_BLOCK (insn
))
3908 && (*debug_hooks
->ignore_block
) (NOTE_BLOCK (insn
)))
3915 else if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_END
)
3916 /* There's a nested block. We need to leave the
3917 current block in place since otherwise the debugger
3918 wouldn't be able to show symbols from our block in
3919 the nested block. */
3925 /* Too many begin notes. */
3926 if (block_stack
|| eh_stack
)
3931 /* Emit insn(s) of given code and pattern
3932 at a specified place within the doubly-linked list.
3934 All of the emit_foo global entry points accept an object
3935 X which is either an insn list or a PATTERN of a single
3938 There are thus a few canonical ways to generate code and
3939 emit it at a specific place in the instruction stream. For
3940 example, consider the instruction named SPOT and the fact that
3941 we would like to emit some instructions before SPOT. We might
3945 ... emit the new instructions ...
3946 insns_head = get_insns ();
3949 emit_insn_before (insns_head, SPOT);
3951 It used to be common to generate SEQUENCE rtl instead, but that
3952 is a relic of the past which no longer occurs. The reason is that
3953 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3954 generated would almost certainly die right after it was created. */
3956 /* Make X be output before the instruction BEFORE. */
3959 emit_insn_before (x
, before
)
3965 #ifdef ENABLE_RTL_CHECKING
3966 if (before
== NULL_RTX
)
3973 switch (GET_CODE (x
))
3984 rtx next
= NEXT_INSN (insn
);
3985 add_insn_before (insn
, before
);
3991 #ifdef ENABLE_RTL_CHECKING
3998 last
= make_insn_raw (x
);
3999 add_insn_before (last
, before
);
4006 /* Make an instruction with body X and code JUMP_INSN
4007 and output it before the instruction BEFORE. */
4010 emit_jump_insn_before (x
, before
)
4013 rtx insn
, last
= NULL_RTX
;
4015 #ifdef ENABLE_RTL_CHECKING
4016 if (before
== NULL_RTX
)
4020 switch (GET_CODE (x
))
4031 rtx next
= NEXT_INSN (insn
);
4032 add_insn_before (insn
, before
);
4038 #ifdef ENABLE_RTL_CHECKING
4045 last
= make_jump_insn_raw (x
);
4046 add_insn_before (last
, before
);
4053 /* Make an instruction with body X and code CALL_INSN
4054 and output it before the instruction BEFORE. */
4057 emit_call_insn_before (x
, before
)
4060 rtx last
= NULL_RTX
, insn
;
4062 #ifdef ENABLE_RTL_CHECKING
4063 if (before
== NULL_RTX
)
4067 switch (GET_CODE (x
))
4078 rtx next
= NEXT_INSN (insn
);
4079 add_insn_before (insn
, before
);
4085 #ifdef ENABLE_RTL_CHECKING
4092 last
= make_call_insn_raw (x
);
4093 add_insn_before (last
, before
);
4100 /* Make an insn of code BARRIER
4101 and output it before the insn BEFORE. */
4104 emit_barrier_before (before
)
4107 rtx insn
= rtx_alloc (BARRIER
);
4109 INSN_UID (insn
) = cur_insn_uid
++;
4111 add_insn_before (insn
, before
);
4115 /* Emit the label LABEL before the insn BEFORE. */
4118 emit_label_before (label
, before
)
4121 /* This can be called twice for the same label as a result of the
4122 confusion that follows a syntax error! So make it harmless. */
4123 if (INSN_UID (label
) == 0)
4125 INSN_UID (label
) = cur_insn_uid
++;
4126 add_insn_before (label
, before
);
4132 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4135 emit_note_before (subtype
, before
)
4139 rtx note
= rtx_alloc (NOTE
);
4140 INSN_UID (note
) = cur_insn_uid
++;
4141 NOTE_SOURCE_FILE (note
) = 0;
4142 NOTE_LINE_NUMBER (note
) = subtype
;
4143 BLOCK_FOR_INSN (note
) = NULL
;
4145 add_insn_before (note
, before
);
4149 /* Helper for emit_insn_after, handles lists of instructions
4152 static rtx emit_insn_after_1
PARAMS ((rtx
, rtx
));
4155 emit_insn_after_1 (first
, after
)
4162 if (GET_CODE (after
) != BARRIER
4163 && (bb
= BLOCK_FOR_INSN (after
)))
4165 bb
->flags
|= BB_DIRTY
;
4166 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4167 if (GET_CODE (last
) != BARRIER
)
4168 set_block_for_insn (last
, bb
);
4169 if (GET_CODE (last
) != BARRIER
)
4170 set_block_for_insn (last
, bb
);
4171 if (bb
->end
== after
)
4175 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4178 after_after
= NEXT_INSN (after
);
4180 NEXT_INSN (after
) = first
;
4181 PREV_INSN (first
) = after
;
4182 NEXT_INSN (last
) = after_after
;
4184 PREV_INSN (after_after
) = last
;
4186 if (after
== last_insn
)
4191 /* Make X be output after the insn AFTER. */
4194 emit_insn_after (x
, after
)
4199 #ifdef ENABLE_RTL_CHECKING
4200 if (after
== NULL_RTX
)
4207 switch (GET_CODE (x
))
4215 last
= emit_insn_after_1 (x
, after
);
4218 #ifdef ENABLE_RTL_CHECKING
4225 last
= make_insn_raw (x
);
4226 add_insn_after (last
, after
);
4233 /* Similar to emit_insn_after, except that line notes are to be inserted so
4234 as to act as if this insn were at FROM. */
4237 emit_insn_after_with_line_notes (x
, after
, from
)
4240 rtx from_line
= find_line_note (from
);
4241 rtx after_line
= find_line_note (after
);
4242 rtx insn
= emit_insn_after (x
, after
);
4245 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
4246 NOTE_LINE_NUMBER (from_line
),
4250 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
4251 NOTE_LINE_NUMBER (after_line
),
4255 /* Make an insn of code JUMP_INSN with body X
4256 and output it after the insn AFTER. */
4259 emit_jump_insn_after (x
, after
)
4264 #ifdef ENABLE_RTL_CHECKING
4265 if (after
== NULL_RTX
)
4269 switch (GET_CODE (x
))
4277 last
= emit_insn_after_1 (x
, after
);
4280 #ifdef ENABLE_RTL_CHECKING
4287 last
= make_jump_insn_raw (x
);
4288 add_insn_after (last
, after
);
4295 /* Make an instruction with body X and code CALL_INSN
4296 and output it after the instruction AFTER. */
4299 emit_call_insn_after (x
, after
)
4304 #ifdef ENABLE_RTL_CHECKING
4305 if (after
== NULL_RTX
)
4309 switch (GET_CODE (x
))
4317 last
= emit_insn_after_1 (x
, after
);
4320 #ifdef ENABLE_RTL_CHECKING
4327 last
= make_call_insn_raw (x
);
4328 add_insn_after (last
, after
);
4335 /* Make an insn of code BARRIER
4336 and output it after the insn AFTER. */
4339 emit_barrier_after (after
)
4342 rtx insn
= rtx_alloc (BARRIER
);
4344 INSN_UID (insn
) = cur_insn_uid
++;
4346 add_insn_after (insn
, after
);
4350 /* Emit the label LABEL after the insn AFTER. */
4353 emit_label_after (label
, after
)
4356 /* This can be called twice for the same label
4357 as a result of the confusion that follows a syntax error!
4358 So make it harmless. */
4359 if (INSN_UID (label
) == 0)
4361 INSN_UID (label
) = cur_insn_uid
++;
4362 add_insn_after (label
, after
);
4368 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4371 emit_note_after (subtype
, after
)
4375 rtx note
= rtx_alloc (NOTE
);
4376 INSN_UID (note
) = cur_insn_uid
++;
4377 NOTE_SOURCE_FILE (note
) = 0;
4378 NOTE_LINE_NUMBER (note
) = subtype
;
4379 BLOCK_FOR_INSN (note
) = NULL
;
4380 add_insn_after (note
, after
);
4384 /* Emit a line note for FILE and LINE after the insn AFTER. */
4387 emit_line_note_after (file
, line
, after
)
4394 if (no_line_numbers
&& line
> 0)
4400 note
= rtx_alloc (NOTE
);
4401 INSN_UID (note
) = cur_insn_uid
++;
4402 NOTE_SOURCE_FILE (note
) = file
;
4403 NOTE_LINE_NUMBER (note
) = line
;
4404 BLOCK_FOR_INSN (note
) = NULL
;
4405 add_insn_after (note
, after
);
4409 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4411 emit_insn_after_scope (pattern
, after
, scope
)
4415 rtx last
= emit_insn_after (pattern
, after
);
4417 after
= NEXT_INSN (after
);
4420 if (active_insn_p (after
))
4421 INSN_SCOPE (after
) = scope
;
4424 after
= NEXT_INSN (after
);
4429 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4431 emit_jump_insn_after_scope (pattern
, after
, scope
)
4435 rtx last
= emit_jump_insn_after (pattern
, after
);
4437 after
= NEXT_INSN (after
);
4440 if (active_insn_p (after
))
4441 INSN_SCOPE (after
) = scope
;
4444 after
= NEXT_INSN (after
);
4449 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4451 emit_call_insn_after_scope (pattern
, after
, scope
)
4455 rtx last
= emit_call_insn_after (pattern
, after
);
4457 after
= NEXT_INSN (after
);
4460 if (active_insn_p (after
))
4461 INSN_SCOPE (after
) = scope
;
4464 after
= NEXT_INSN (after
);
4469 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4471 emit_insn_before_scope (pattern
, before
, scope
)
4472 rtx pattern
, before
;
4475 rtx first
= PREV_INSN (before
);
4476 rtx last
= emit_insn_before (pattern
, before
);
4478 first
= NEXT_INSN (first
);
4481 if (active_insn_p (first
))
4482 INSN_SCOPE (first
) = scope
;
4485 first
= NEXT_INSN (first
);
4490 /* Take X and emit it at the end of the doubly-linked
4493 Returns the last insn emitted. */
4499 rtx last
= last_insn
;
4505 switch (GET_CODE (x
))
4516 rtx next
= NEXT_INSN (insn
);
4523 #ifdef ENABLE_RTL_CHECKING
4530 last
= make_insn_raw (x
);
4538 /* Make an insn of code JUMP_INSN with pattern X
4539 and add it to the end of the doubly-linked list. */
4545 rtx last
= NULL_RTX
, insn
;
4547 switch (GET_CODE (x
))
4558 rtx next
= NEXT_INSN (insn
);
4565 #ifdef ENABLE_RTL_CHECKING
4572 last
= make_jump_insn_raw (x
);
4580 /* Make an insn of code CALL_INSN with pattern X
4581 and add it to the end of the doubly-linked list. */
4589 switch (GET_CODE (x
))
4597 insn
= emit_insn (x
);
4600 #ifdef ENABLE_RTL_CHECKING
4607 insn
= make_call_insn_raw (x
);
4615 /* Add the label LABEL to the end of the doubly-linked list. */
4621 /* This can be called twice for the same label
4622 as a result of the confusion that follows a syntax error!
4623 So make it harmless. */
4624 if (INSN_UID (label
) == 0)
4626 INSN_UID (label
) = cur_insn_uid
++;
4632 /* Make an insn of code BARRIER
4633 and add it to the end of the doubly-linked list. */
4638 rtx barrier
= rtx_alloc (BARRIER
);
4639 INSN_UID (barrier
) = cur_insn_uid
++;
4644 /* Make an insn of code NOTE
4645 with data-fields specified by FILE and LINE
4646 and add it to the end of the doubly-linked list,
4647 but only if line-numbers are desired for debugging info. */
4650 emit_line_note (file
, line
)
4654 set_file_and_line_for_stmt (file
, line
);
4657 if (no_line_numbers
)
4661 return emit_note (file
, line
);
4664 /* Make an insn of code NOTE
4665 with data-fields specified by FILE and LINE
4666 and add it to the end of the doubly-linked list.
4667 If it is a line-number NOTE, omit it if it matches the previous one. */
4670 emit_note (file
, line
)
4678 if (file
&& last_filename
&& !strcmp (file
, last_filename
)
4679 && line
== last_linenum
)
4681 last_filename
= file
;
4682 last_linenum
= line
;
4685 if (no_line_numbers
&& line
> 0)
4691 note
= rtx_alloc (NOTE
);
4692 INSN_UID (note
) = cur_insn_uid
++;
4693 NOTE_SOURCE_FILE (note
) = file
;
4694 NOTE_LINE_NUMBER (note
) = line
;
4695 BLOCK_FOR_INSN (note
) = NULL
;
4700 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4703 emit_line_note_force (file
, line
)
4708 return emit_line_note (file
, line
);
4711 /* Cause next statement to emit a line note even if the line number
4712 has not changed. This is used at the beginning of a function. */
4715 force_next_line_note ()
4720 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4721 note of this type already exists, remove it first. */
4724 set_unique_reg_note (insn
, kind
, datum
)
4729 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4735 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4736 has multiple sets (some callers assume single_set
4737 means the insn only has one set, when in fact it
4738 means the insn only has one * useful * set). */
4739 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4746 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4747 It serves no useful purpose and breaks eliminate_regs. */
4748 if (GET_CODE (datum
) == ASM_OPERANDS
)
4758 XEXP (note
, 0) = datum
;
4762 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
4763 return REG_NOTES (insn
);
4766 /* Return an indication of which type of insn should have X as a body.
4767 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4773 if (GET_CODE (x
) == CODE_LABEL
)
4775 if (GET_CODE (x
) == CALL
)
4777 if (GET_CODE (x
) == RETURN
)
4779 if (GET_CODE (x
) == SET
)
4781 if (SET_DEST (x
) == pc_rtx
)
4783 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4788 if (GET_CODE (x
) == PARALLEL
)
4791 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4792 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4794 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4795 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4797 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4798 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4804 /* Emit the rtl pattern X as an appropriate kind of insn.
4805 If X is a label, it is simply added into the insn chain. */
4811 enum rtx_code code
= classify_insn (x
);
4813 if (code
== CODE_LABEL
)
4814 return emit_label (x
);
4815 else if (code
== INSN
)
4816 return emit_insn (x
);
4817 else if (code
== JUMP_INSN
)
4819 rtx insn
= emit_jump_insn (x
);
4820 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4821 return emit_barrier ();
4824 else if (code
== CALL_INSN
)
4825 return emit_call_insn (x
);
4830 /* Space for free sequence stack entries. */
4831 static GTY ((deletable (""))) struct sequence_stack
*free_sequence_stack
;
4833 /* Begin emitting insns to a sequence which can be packaged in an
4834 RTL_EXPR. If this sequence will contain something that might cause
4835 the compiler to pop arguments to function calls (because those
4836 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4837 details), use do_pending_stack_adjust before calling this function.
4838 That will ensure that the deferred pops are not accidentally
4839 emitted in the middle of this sequence. */
4844 struct sequence_stack
*tem
;
4846 if (free_sequence_stack
!= NULL
)
4848 tem
= free_sequence_stack
;
4849 free_sequence_stack
= tem
->next
;
4852 tem
= (struct sequence_stack
*) ggc_alloc (sizeof (struct sequence_stack
));
4854 tem
->next
= seq_stack
;
4855 tem
->first
= first_insn
;
4856 tem
->last
= last_insn
;
4857 tem
->sequence_rtl_expr
= seq_rtl_expr
;
4865 /* Similarly, but indicate that this sequence will be placed in T, an
4866 RTL_EXPR. See the documentation for start_sequence for more
4867 information about how to use this function. */
4870 start_sequence_for_rtl_expr (t
)
4878 /* Set up the insn chain starting with FIRST as the current sequence,
4879 saving the previously current one. See the documentation for
4880 start_sequence for more information about how to use this function. */
4883 push_to_sequence (first
)
4890 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4896 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4899 push_to_full_sequence (first
, last
)
4905 /* We really should have the end of the insn chain here. */
4906 if (last
&& NEXT_INSN (last
))
4910 /* Set up the outer-level insn chain
4911 as the current sequence, saving the previously current one. */
4914 push_topmost_sequence ()
4916 struct sequence_stack
*stack
, *top
= NULL
;
4920 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4923 first_insn
= top
->first
;
4924 last_insn
= top
->last
;
4925 seq_rtl_expr
= top
->sequence_rtl_expr
;
4928 /* After emitting to the outer-level insn chain, update the outer-level
4929 insn chain, and restore the previous saved state. */
4932 pop_topmost_sequence ()
4934 struct sequence_stack
*stack
, *top
= NULL
;
4936 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4939 top
->first
= first_insn
;
4940 top
->last
= last_insn
;
4941 /* ??? Why don't we save seq_rtl_expr here? */
4946 /* After emitting to a sequence, restore previous saved state.
4948 To get the contents of the sequence just made, you must call
4949 `get_insns' *before* calling here.
4951 If the compiler might have deferred popping arguments while
4952 generating this sequence, and this sequence will not be immediately
4953 inserted into the instruction stream, use do_pending_stack_adjust
4954 before calling get_insns. That will ensure that the deferred
4955 pops are inserted into this sequence, and not into some random
4956 location in the instruction stream. See INHIBIT_DEFER_POP for more
4957 information about deferred popping of arguments. */
4962 struct sequence_stack
*tem
= seq_stack
;
4964 first_insn
= tem
->first
;
4965 last_insn
= tem
->last
;
4966 seq_rtl_expr
= tem
->sequence_rtl_expr
;
4967 seq_stack
= tem
->next
;
4969 memset (tem
, 0, sizeof (*tem
));
4970 tem
->next
= free_sequence_stack
;
4971 free_sequence_stack
= tem
;
4974 /* This works like end_sequence, but records the old sequence in FIRST
4978 end_full_sequence (first
, last
)
4981 *first
= first_insn
;
4986 /* Return 1 if currently emitting into a sequence. */
4991 return seq_stack
!= 0;
4994 /* Put the various virtual registers into REGNO_REG_RTX. */
4997 init_virtual_regs (es
)
4998 struct emit_status
*es
;
5000 rtx
*ptr
= es
->x_regno_reg_rtx
;
5001 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5002 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5003 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5004 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5005 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5009 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5010 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5011 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5012 static int copy_insn_n_scratches
;
5014 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5015 copied an ASM_OPERANDS.
5016 In that case, it is the original input-operand vector. */
5017 static rtvec orig_asm_operands_vector
;
5019 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5020 copied an ASM_OPERANDS.
5021 In that case, it is the copied input-operand vector. */
5022 static rtvec copy_asm_operands_vector
;
5024 /* Likewise for the constraints vector. */
5025 static rtvec orig_asm_constraints_vector
;
5026 static rtvec copy_asm_constraints_vector
;
5028 /* Recursively create a new copy of an rtx for copy_insn.
5029 This function differs from copy_rtx in that it handles SCRATCHes and
5030 ASM_OPERANDs properly.
5031 Normally, this function is not used directly; use copy_insn as front end.
5032 However, you could first copy an insn pattern with copy_insn and then use
5033 this function afterwards to properly copy any REG_NOTEs containing
5043 const char *format_ptr
;
5045 code
= GET_CODE (orig
);
5062 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5063 if (copy_insn_scratch_in
[i
] == orig
)
5064 return copy_insn_scratch_out
[i
];
5068 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5069 a LABEL_REF, it isn't sharable. */
5070 if (GET_CODE (XEXP (orig
, 0)) == PLUS
5071 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
5072 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
5076 /* A MEM with a constant address is not sharable. The problem is that
5077 the constant address may need to be reloaded. If the mem is shared,
5078 then reloading one copy of this mem will cause all copies to appear
5079 to have been reloaded. */
5085 copy
= rtx_alloc (code
);
5087 /* Copy the various flags, and other information. We assume that
5088 all fields need copying, and then clear the fields that should
5089 not be copied. That is the sensible default behavior, and forces
5090 us to explicitly document why we are *not* copying a flag. */
5091 memcpy (copy
, orig
, sizeof (struct rtx_def
) - sizeof (rtunion
));
5093 /* We do not copy the USED flag, which is used as a mark bit during
5094 walks over the RTL. */
5095 RTX_FLAG (copy
, used
) = 0;
5097 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5098 if (GET_RTX_CLASS (code
) == 'i')
5100 RTX_FLAG (copy
, jump
) = 0;
5101 RTX_FLAG (copy
, call
) = 0;
5102 RTX_FLAG (copy
, frame_related
) = 0;
5105 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5107 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5109 copy
->fld
[i
] = orig
->fld
[i
];
5110 switch (*format_ptr
++)
5113 if (XEXP (orig
, i
) != NULL
)
5114 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5119 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5120 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5121 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5122 XVEC (copy
, i
) = copy_asm_operands_vector
;
5123 else if (XVEC (orig
, i
) != NULL
)
5125 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5126 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5127 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5138 /* These are left unchanged. */
5146 if (code
== SCRATCH
)
5148 i
= copy_insn_n_scratches
++;
5149 if (i
>= MAX_RECOG_OPERANDS
)
5151 copy_insn_scratch_in
[i
] = orig
;
5152 copy_insn_scratch_out
[i
] = copy
;
5154 else if (code
== ASM_OPERANDS
)
5156 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5157 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5158 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5159 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5165 /* Create a new copy of an rtx.
5166 This function differs from copy_rtx in that it handles SCRATCHes and
5167 ASM_OPERANDs properly.
5168 INSN doesn't really have to be a full INSN; it could be just the
5174 copy_insn_n_scratches
= 0;
5175 orig_asm_operands_vector
= 0;
5176 orig_asm_constraints_vector
= 0;
5177 copy_asm_operands_vector
= 0;
5178 copy_asm_constraints_vector
= 0;
5179 return copy_insn_1 (insn
);
5182 /* Initialize data structures and variables in this file
5183 before generating rtl for each function. */
5188 struct function
*f
= cfun
;
5190 f
->emit
= (struct emit_status
*) ggc_alloc (sizeof (struct emit_status
));
5193 seq_rtl_expr
= NULL
;
5195 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5198 first_label_num
= label_num
;
5202 /* Init the tables that describe all the pseudo regs. */
5204 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5206 f
->emit
->regno_pointer_align
5207 = (unsigned char *) ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5208 * sizeof (unsigned char));
5211 = (rtx
*) ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5215 = (tree
*) ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5218 /* Put copies of all the hard registers into regno_reg_rtx. */
5219 memcpy (regno_reg_rtx
,
5220 static_regno_reg_rtx
,
5221 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5223 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5224 init_virtual_regs (f
->emit
);
5226 /* Indicate that the virtual registers and stack locations are
5228 REG_POINTER (stack_pointer_rtx
) = 1;
5229 REG_POINTER (frame_pointer_rtx
) = 1;
5230 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5231 REG_POINTER (arg_pointer_rtx
) = 1;
5233 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5234 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5235 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5236 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5237 REG_POINTER (virtual_cfa_rtx
) = 1;
5239 #ifdef STACK_BOUNDARY
5240 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5241 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5242 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5243 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5245 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5246 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5247 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5248 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5249 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5252 #ifdef INIT_EXPANDERS
5257 /* Generate the constant 0. */
5260 gen_const_vector_0 (mode
)
5261 enum machine_mode mode
;
5266 enum machine_mode inner
;
5268 units
= GET_MODE_NUNITS (mode
);
5269 inner
= GET_MODE_INNER (mode
);
5271 v
= rtvec_alloc (units
);
5273 /* We need to call this function after we to set CONST0_RTX first. */
5274 if (!CONST0_RTX (inner
))
5277 for (i
= 0; i
< units
; ++i
)
5278 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
5280 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5284 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5285 all elements are zero. */
5287 gen_rtx_CONST_VECTOR (mode
, v
)
5288 enum machine_mode mode
;
5291 rtx inner_zero
= CONST0_RTX (GET_MODE_INNER (mode
));
5294 for (i
= GET_MODE_NUNITS (mode
) - 1; i
>= 0; i
--)
5295 if (RTVEC_ELT (v
, i
) != inner_zero
)
5296 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5297 return CONST0_RTX (mode
);
5300 /* Create some permanent unique rtl objects shared between all functions.
5301 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5304 init_emit_once (line_numbers
)
5308 enum machine_mode mode
;
5309 enum machine_mode double_mode
;
5311 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5313 const_int_htab
= htab_create (37, const_int_htab_hash
,
5314 const_int_htab_eq
, NULL
);
5316 const_double_htab
= htab_create (37, const_double_htab_hash
,
5317 const_double_htab_eq
, NULL
);
5319 mem_attrs_htab
= htab_create (37, mem_attrs_htab_hash
,
5320 mem_attrs_htab_eq
, NULL
);
5322 no_line_numbers
= ! line_numbers
;
5324 /* Compute the word and byte modes. */
5326 byte_mode
= VOIDmode
;
5327 word_mode
= VOIDmode
;
5328 double_mode
= VOIDmode
;
5330 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5331 mode
= GET_MODE_WIDER_MODE (mode
))
5333 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5334 && byte_mode
== VOIDmode
)
5337 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5338 && word_mode
== VOIDmode
)
5342 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5343 mode
= GET_MODE_WIDER_MODE (mode
))
5345 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5346 && double_mode
== VOIDmode
)
5350 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5352 /* Assign register numbers to the globally defined register rtx.
5353 This must be done at runtime because the register number field
5354 is in a union and some compilers can't initialize unions. */
5356 pc_rtx
= gen_rtx (PC
, VOIDmode
);
5357 cc0_rtx
= gen_rtx (CC0
, VOIDmode
);
5358 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5359 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5360 if (hard_frame_pointer_rtx
== 0)
5361 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
5362 HARD_FRAME_POINTER_REGNUM
);
5363 if (arg_pointer_rtx
== 0)
5364 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5365 virtual_incoming_args_rtx
=
5366 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5367 virtual_stack_vars_rtx
=
5368 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5369 virtual_stack_dynamic_rtx
=
5370 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5371 virtual_outgoing_args_rtx
=
5372 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5373 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5375 /* Initialize RTL for commonly used hard registers. These are
5376 copied into regno_reg_rtx as we begin to compile each function. */
5377 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5378 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5380 #ifdef INIT_EXPANDERS
5381 /* This is to initialize {init|mark|free}_machine_status before the first
5382 call to push_function_context_to. This is needed by the Chill front
5383 end which calls push_function_context_to before the first call to
5384 init_function_start. */
5388 /* Create the unique rtx's for certain rtx codes and operand values. */
5390 /* Don't use gen_rtx here since gen_rtx in this case
5391 tries to use these variables. */
5392 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5393 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5394 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5396 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5397 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5398 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5400 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5402 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5403 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5404 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5405 REAL_VALUE_FROM_INT (dconstm1
, -1, -1, double_mode
);
5407 for (i
= 0; i
<= 2; i
++)
5409 REAL_VALUE_TYPE
*r
=
5410 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5412 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5413 mode
= GET_MODE_WIDER_MODE (mode
))
5414 const_tiny_rtx
[i
][(int) mode
] =
5415 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5417 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5419 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5420 mode
= GET_MODE_WIDER_MODE (mode
))
5421 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5423 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5425 mode
= GET_MODE_WIDER_MODE (mode
))
5426 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5429 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5431 mode
= GET_MODE_WIDER_MODE (mode
))
5432 const_tiny_rtx
[0][(int) mode
] = gen_const_vector_0 (mode
);
5434 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5436 mode
= GET_MODE_WIDER_MODE (mode
))
5437 const_tiny_rtx
[0][(int) mode
] = gen_const_vector_0 (mode
);
5439 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5440 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5441 const_tiny_rtx
[0][i
] = const0_rtx
;
5443 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5444 if (STORE_FLAG_VALUE
== 1)
5445 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5447 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5448 return_address_pointer_rtx
5449 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5453 struct_value_rtx
= STRUCT_VALUE
;
5455 struct_value_rtx
= gen_rtx_REG (Pmode
, STRUCT_VALUE_REGNUM
);
5458 #ifdef STRUCT_VALUE_INCOMING
5459 struct_value_incoming_rtx
= STRUCT_VALUE_INCOMING
;
5461 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5462 struct_value_incoming_rtx
5463 = gen_rtx_REG (Pmode
, STRUCT_VALUE_INCOMING_REGNUM
);
5465 struct_value_incoming_rtx
= struct_value_rtx
;
5469 #ifdef STATIC_CHAIN_REGNUM
5470 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5472 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5473 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5474 static_chain_incoming_rtx
5475 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5478 static_chain_incoming_rtx
= static_chain_rtx
;
5482 static_chain_rtx
= STATIC_CHAIN
;
5484 #ifdef STATIC_CHAIN_INCOMING
5485 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5487 static_chain_incoming_rtx
= static_chain_rtx
;
5491 if (PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5492 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5495 /* Query and clear/ restore no_line_numbers. This is used by the
5496 switch / case handling in stmt.c to give proper line numbers in
5497 warnings about unreachable code. */
5500 force_line_numbers ()
5502 int old
= no_line_numbers
;
5504 no_line_numbers
= 0;
5506 force_next_line_note ();
5511 restore_line_number_status (old_value
)
5514 no_line_numbers
= old_value
;
5517 /* Produce exact duplicate of insn INSN after AFTER.
5518 Care updating of libcall regions if present. */
5521 emit_copy_of_insn_after (insn
, after
)
5525 rtx note1
, note2
, link
;
5527 switch (GET_CODE (insn
))
5530 new = emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5534 new = emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5538 new = emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5539 if (CALL_INSN_FUNCTION_USAGE (insn
))
5540 CALL_INSN_FUNCTION_USAGE (new)
5541 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5542 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn
);
5543 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn
);
5550 /* Update LABEL_NUSES. */
5551 mark_jump_label (PATTERN (new), new, 0);
5553 INSN_SCOPE (new) = INSN_SCOPE (insn
);
5555 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5557 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5558 if (REG_NOTE_KIND (link
) != REG_LABEL
)
5560 if (GET_CODE (link
) == EXPR_LIST
)
5562 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
5567 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
5572 /* Fix the libcall sequences. */
5573 if ((note1
= find_reg_note (new, REG_RETVAL
, NULL_RTX
)) != NULL
)
5576 while ((note2
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)) == NULL
)
5578 XEXP (note1
, 0) = p
;
5579 XEXP (note2
, 0) = new;
5584 #include "gt-emit-rtl.h"