* ChangeLog: Follow spelling conventions.
[official-gcc.git] / gcc / config / h8300 / h8300.h
blob0fc4a375663025351b4be1dc382a728b05057656
1 /* Definitions of target machine for GNU compiler.
2 Hitachi H8/300 version generating coff
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002 Free Software Foundation, Inc.
5 Contributed by Steve Chamberlain (sac@cygnus.com),
6 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 #ifndef GCC_H8300_H
26 #define GCC_H8300_H
28 /* Which CPU to compile for.
29 We use int for CPU_TYPE to avoid lots of casts. */
30 #if 0 /* defined in insn-attr.h, here for documentation */
31 enum attr_cpu { CPU_H8300, CPU_H8300H };
32 #endif
33 extern int cpu_type;
35 /* Various globals defined in h8300.c. */
37 extern const char *h8_push_op, *h8_pop_op, *h8_mov_op;
38 extern const char * const *h8_reg_names;
40 /* Target CPU builtins. */
41 #define TARGET_CPU_CPP_BUILTINS() \
42 do \
43 { \
44 if (TARGET_H8300H) \
45 { \
46 builtin_define ("__H8300H__"); \
47 builtin_assert ("cpu=h8300h"); \
48 builtin_assert ("machine=h8300h"); \
49 } \
50 else if (TARGET_H8300S) \
51 { \
52 builtin_define ("__H8300S__"); \
53 builtin_assert ("cpu=h8300s"); \
54 builtin_assert ("machine=h8300s"); \
55 } \
56 else \
57 { \
58 builtin_define ("__H8300__"); \
59 builtin_assert ("cpu=h8300"); \
60 builtin_assert ("machine=h8300"); \
61 } \
62 } \
63 while (0)
65 #define LINK_SPEC "%{mh:-m h8300h} %{ms:-m h8300s}"
67 #define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
69 /* Print subsidiary information on the compiler version in use. */
71 #define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");
73 /* Run-time compilation parameters selecting different hardware subsets. */
75 extern int target_flags;
77 /* Macros used in the machine description to test the flags. */
79 /* Make int's 32 bits. */
80 #define TARGET_INT32 (target_flags & 8)
82 /* Dump recorded insn lengths into the output file. This helps debug the
83 md file. */
84 #define TARGET_ADDRESSES (target_flags & 64)
86 /* Pass the first few arguments in registers. */
87 #define TARGET_QUICKCALL (target_flags & 128)
89 /* Pretend byte accesses are slow. */
90 #define TARGET_SLOWBYTE (target_flags & 256)
92 /* Dump each assembler insn's rtl into the output file.
93 This is for debugging the compiler only. */
94 #define TARGET_RTL_DUMP (target_flags & 2048)
96 /* Select between the H8/300 and H8/300H CPUs. */
97 #define TARGET_H8300 (! TARGET_H8300H && ! TARGET_H8300S)
98 #define TARGET_H8300H (target_flags & 4096)
99 #define TARGET_H8300S (target_flags & 1)
101 /* mac register and relevant instructions are available. */
102 #define TARGET_MAC (target_flags & 2)
104 /* Align all values on the H8/300H the same way as the H8/300. Specifically,
105 32 bit and larger values are aligned on 16 bit boundaries.
106 This is all the hardware requires, but the default is 32 bits for the 300H.
107 ??? Now watch someone add hardware floating point requiring 32 bit
108 alignment. */
109 #define TARGET_ALIGN_300 (target_flags & 8192)
111 /* Macro to define tables used to set the flags.
112 This is a list in braces of pairs in braces,
113 each pair being { "NAME", VALUE }
114 where VALUE is the bits to set or minus the bits to clear.
115 An empty string NAME is used to identify the default VALUE. */
117 #define TARGET_SWITCHES \
118 { {"s", 1, N_("Generate H8S code")}, \
119 {"no-s", -1, N_("Do not generate H8S code")}, \
120 {"s2600", 2, N_("Generate H8S/2600 code")}, \
121 {"no-s2600", -2, N_("Do not generate H8S/2600 code")}, \
122 {"int32", 8, N_("Make integers 32 bits wide")}, \
123 {"addresses", 64, NULL}, \
124 {"quickcall", 128, \
125 N_("Use registers for argument passing")}, \
126 {"no-quickcall", -128, \
127 N_("Do not use registers for argument passing")}, \
128 {"slowbyte", 256, \
129 N_("Consider access to byte sized memory slow")}, \
130 {"relax", 1024, N_("Enable linker relaxing")}, \
131 {"rtl-dump", 2048, NULL}, \
132 {"h", 4096, N_("Generate H8/300H code")}, \
133 {"no-h", -4096, N_("Do not generate H8/300H code")}, \
134 {"align-300", 8192, N_("Use H8/300 alignment rules")}, \
135 { "", TARGET_DEFAULT, NULL}}
137 #ifdef IN_LIBGCC2
138 #undef TARGET_H8300H
139 #undef TARGET_H8300S
140 /* If compiling libgcc2, make these compile time constants based on what
141 flags are we actually compiling with. */
142 #ifdef __H8300H__
143 #define TARGET_H8300H 1
144 #else
145 #define TARGET_H8300H 0
146 #endif
147 #ifdef __H8300S__
148 #define TARGET_H8300S 1
149 #else
150 #define TARGET_H8300S 0
151 #endif
152 #endif /* !IN_LIBGCC2 */
154 /* Do things that must be done once at start up. */
156 #define OVERRIDE_OPTIONS \
157 do \
159 h8300_init_once (); \
161 while (0)
163 /* Default target_flags if no switches specified. */
165 #ifndef TARGET_DEFAULT
166 #define TARGET_DEFAULT (128) /* quickcall */
167 #endif
169 /* Show we can debug even without a frame pointer. */
170 /* #define CAN_DEBUG_WITHOUT_FP */
172 /* Define this if addresses of constant functions
173 shouldn't be put through pseudo regs where they can be cse'd.
174 Desirable on machines where ordinary constants are expensive
175 but a CALL with constant address is cheap.
177 Calls through a register are cheaper than calls to named
178 functions; however, the register pressure this causes makes
179 CSEing of function addresses generally a lose. */
180 #define NO_FUNCTION_CSE
182 /* Target machine storage layout */
184 /* Define this if most significant bit is lowest numbered
185 in instructions that operate on numbered bit-fields.
186 This is not true on the H8/300. */
187 #define BITS_BIG_ENDIAN 0
189 /* Define this if most significant byte of a word is the lowest numbered. */
190 /* That is true on the H8/300. */
191 #define BYTES_BIG_ENDIAN 1
193 /* Define this if most significant word of a multiword number is lowest
194 numbered.
195 This is true on an H8/300 (actually we can make it up, but we choose to
196 be consistent). */
197 #define WORDS_BIG_ENDIAN 1
199 #define MAX_BITS_PER_WORD 32
201 /* Width of a word, in units (bytes). */
202 #define UNITS_PER_WORD (TARGET_H8300H || TARGET_H8300S ? 4 : 2)
203 #define MIN_UNITS_PER_WORD 2
205 #define SHORT_TYPE_SIZE 16
206 #define INT_TYPE_SIZE (TARGET_INT32 ? 32 : 16)
207 #define LONG_TYPE_SIZE 32
208 #define LONG_LONG_TYPE_SIZE 32
209 #define FLOAT_TYPE_SIZE 32
210 #define DOUBLE_TYPE_SIZE 32
211 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
213 #define MAX_FIXED_MODE_SIZE 32
215 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
216 #define PARM_BOUNDARY (TARGET_H8300H || TARGET_H8300S ? 32 : 16)
218 /* Allocation boundary (in *bits*) for the code of a function. */
219 #define FUNCTION_BOUNDARY 16
221 /* Alignment of field after `int : 0' in a structure. */
222 /* One can argue this should be 32 for -mint32, but since 32 bit ints only
223 need 16 bit alignment, this is left as is so that -mint32 doesn't change
224 structure layouts. */
225 #define EMPTY_FIELD_BOUNDARY 16
227 /* A bitfield declared as `int' forces `int' alignment for the struct. */
228 #define PCC_BITFIELD_TYPE_MATTERS 0
230 /* No data type wants to be aligned rounder than this.
231 32 bit values are aligned as such on the H8/300H and H8S for speed. */
232 #define BIGGEST_ALIGNMENT \
233 (((TARGET_H8300H || TARGET_H8300S) && ! TARGET_ALIGN_300) ? 32 : 16)
235 /* The stack goes in 16/32 bit lumps. */
236 #define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)
238 /* Define this if move instructions will actually fail to work
239 when given unaligned data. */
240 /* On the H8/300, longs can be aligned on halfword boundaries, but not
241 byte boundaries. */
242 #define STRICT_ALIGNMENT 1
244 /* Standard register usage. */
246 /* Number of actual hardware registers.
247 The hardware registers are assigned numbers for the compiler
248 from 0 to just below FIRST_PSEUDO_REGISTER.
250 All registers that the compiler knows about must be given numbers,
251 even those that are not normally considered general registers.
253 Reg 9 does not correspond to any hardware register, but instead
254 appears in the RTL as an argument pointer prior to reload, and is
255 eliminated during reloading in favor of either the stack or frame
256 pointer. */
258 #define FIRST_PSEUDO_REGISTER 11
260 /* 1 for registers that have pervasive standard uses
261 and are not available for the register allocator. */
263 #define FIXED_REGISTERS \
264 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1}
266 /* 1 for registers not available across function calls.
267 These must include the FIXED_REGISTERS and also any
268 registers that can be used without being saved.
269 The latter must include the registers where values are returned
270 and the register where structure-value addresses are passed.
271 Aside from that, you can include as many other registers as you
272 like.
274 H8 destroys r0,r1,r2,r3. */
276 #define CALL_USED_REGISTERS \
277 { 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1 }
279 #define REG_ALLOC_ORDER \
280 { 2, 3, 0, 1, 4, 5, 6, 8, 7, 9, 10}
282 #define CONDITIONAL_REGISTER_USAGE \
284 if (!TARGET_MAC) \
285 fixed_regs[MAC_REG] = call_used_regs[MAC_REG] = 1; \
288 /* Return number of consecutive hard regs needed starting at reg REGNO
289 to hold something of mode MODE.
291 This is ordinarily the length in words of a value of mode MODE
292 but can be less for certain modes in special long registers.
294 We pretend the MAC register is 32bits -- we don't have any data
295 types on the H8 series to handle more than 32bits. */
297 #define HARD_REGNO_NREGS(REGNO, MODE) \
298 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
300 /* Value is 1 if hard register REGNO can hold a value of machine-mode
301 MODE.
303 H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
304 or HI.
305 H8/300H: Anything goes. */
307 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
308 (TARGET_H8300 \
309 ? ((((REGNO) & 1) == 0) || ((MODE) == HImode) || ((MODE) == QImode)) \
310 : (REGNO) == MAC_REG ? (MODE) == SImode : 1)
312 /* Value is 1 if it is a good idea to tie two pseudo registers
313 when one has mode MODE1 and one has mode MODE2.
314 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
315 for any hard reg, then this must be 0 for correct output. */
316 #define MODES_TIEABLE_P(MODE1, MODE2) \
317 ((MODE1) == (MODE2) \
318 || (((MODE1) == QImode || (MODE1) == HImode \
319 || ((TARGET_H8300H || TARGET_H8300S) && (MODE1) == SImode)) \
320 && ((MODE2) == QImode || (MODE2) == HImode \
321 || ((TARGET_H8300H || TARGET_H8300S) && (MODE2) == SImode))))
323 /* Specify the registers used for certain standard purposes.
324 The values of these macros are register numbers. */
326 /* H8/300 pc is not overloaded on a register. */
328 /*#define PC_REGNUM 15*/
330 /* Register to use for pushing function arguments. */
331 #define STACK_POINTER_REGNUM SP_REG
333 /* Base register for access to local variables of the function. */
334 #define FRAME_POINTER_REGNUM FP_REG
336 /* Value should be nonzero if functions must have frame pointers.
337 Zero means the frame pointer need not be set up (and parms
338 may be accessed via the stack pointer) in functions that seem suitable.
339 This is computed in `reload', in reload1.c. */
340 #define FRAME_POINTER_REQUIRED 0
342 /* Base register for access to arguments of the function. */
343 #define ARG_POINTER_REGNUM AP_REG
345 /* Register in which static-chain is passed to a function. */
346 #define STATIC_CHAIN_REGNUM SC_REG
348 /* Fake register that holds the address on the stack of the
349 current function's return address. */
350 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
352 /* A C expression whose value is RTL representing the value of the return
353 address for the frame COUNT steps up from the current frame.
354 FRAMEADDR is already the frame pointer of the COUNT frame, assuming
355 a stack layout with the frame pointer as the first saved register. */
356 #define RETURN_ADDR_RTX(COUNT, FRAME) h8300_return_addr_rtx ((COUNT), (FRAME))
358 /* Define the classes of registers for register constraints in the
359 machine description. Also define ranges of constants.
361 One of the classes must always be named ALL_REGS and include all hard regs.
362 If there is more than one class, another class must be named NO_REGS
363 and contain no registers.
365 The name GENERAL_REGS must be the name of a class (or an alias for
366 another name such as ALL_REGS). This is the class of registers
367 that is allowed by "g" or "r" in a register constraint.
368 Also, registers outside this class are allocated only when
369 instructions express preferences for them.
371 The classes must be numbered in nondecreasing order; that is,
372 a larger-numbered class must never be contained completely
373 in a smaller-numbered class.
375 For any two classes, it is very desirable that there be another
376 class that represents their union. */
378 enum reg_class {
379 NO_REGS, GENERAL_REGS, MAC_REGS, ALL_REGS, LIM_REG_CLASSES
382 #define N_REG_CLASSES (int) LIM_REG_CLASSES
384 /* Give names of register classes as strings for dump file. */
386 #define REG_CLASS_NAMES \
387 { "NO_REGS", "GENERAL_REGS", "MAC_REGS", "ALL_REGS", "LIM_REGS" }
389 /* Define which registers fit in which classes.
390 This is an initializer for a vector of HARD_REG_SET
391 of length N_REG_CLASSES. */
393 #define REG_CLASS_CONTENTS \
394 { {0}, /* No regs */ \
395 {0x6ff}, /* GENERAL_REGS */ \
396 {0x100}, /* MAC_REGS */ \
397 {0x7ff}, /* ALL_REGS */ \
400 /* The same information, inverted:
401 Return the class number of the smallest class containing
402 reg number REGNO. This could be a conditional expression
403 or could index an array. */
405 #define REGNO_REG_CLASS(REGNO) (REGNO != MAC_REG ? GENERAL_REGS : MAC_REGS)
407 /* The class value for index registers, and the one for base regs. */
409 #define INDEX_REG_CLASS NO_REGS
410 #define BASE_REG_CLASS GENERAL_REGS
412 /* Get reg_class from a letter such as appears in the machine description.
414 'a' is the MAC register. */
416 #define REG_CLASS_FROM_LETTER(C) ((C) == 'a' ? MAC_REGS : NO_REGS)
418 /* The letters I, J, K, L, M, N, O, P in a register constraint string
419 can be used to stand for particular ranges of immediate operands.
420 This macro defines what the ranges are.
421 C is the letter, and VALUE is a constant value.
422 Return 1 if VALUE is in the range specified by C. */
424 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
425 #define CONST_OK_FOR_J(VALUE) ((unsigned HOST_WIDE_INT) (VALUE) < 256)
426 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 1 || (VALUE) == 2)
427 #define CONST_OK_FOR_L(VALUE) \
428 (TARGET_H8300H || TARGET_H8300S \
429 ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 4 \
430 : (VALUE) == 1 || (VALUE) == 2)
431 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3 || (VALUE) == 4)
432 #define CONST_OK_FOR_N(VALUE) \
433 (TARGET_H8300H || TARGET_H8300S \
434 ? (VALUE) == -1 || (VALUE) == -2 || (VALUE) == -4 \
435 : (VALUE) == -1 || (VALUE) == -2)
437 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
438 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
439 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
440 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
441 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
442 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
443 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
446 /* Similar, but for floating constants, and defining letters G and H.
447 Here VALUE is the CONST_DOUBLE rtx itself.
449 `G' is a floating-point zero. */
451 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
452 ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode) \
453 : 0)
455 /* Given an rtx X being reloaded into a reg required to be
456 in class CLASS, return the class of reg to actually use.
457 In general this is just CLASS; but on some machines
458 in some cases it is preferable to use a more restrictive class. */
460 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
462 /* Return the maximum number of consecutive registers
463 needed to represent mode MODE in a register of class CLASS. */
465 /* On the H8, this is the size of MODE in words. */
467 #define CLASS_MAX_NREGS(CLASS, MODE) \
468 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
470 /* Any SI register-to-register move may need to be reloaded,
471 so define REGISTER_MOVE_COST to be > 2 so that reload never
472 shortcuts. */
474 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
475 (CLASS1 == MAC_REGS || CLASS2 == MAC_REGS ? 6 : 3)
477 /* Stack layout; function entry, exit and calling. */
479 /* Define this if pushing a word on the stack
480 makes the stack pointer a smaller address. */
482 #define STACK_GROWS_DOWNWARD
484 /* Define this if the nominal address of the stack frame
485 is at the high-address end of the local variables;
486 that is, each additional local variable allocated
487 goes at a more negative offset in the frame. */
489 #define FRAME_GROWS_DOWNWARD
491 /* Offset within stack frame to start allocating local variables at.
492 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
493 first local allocated. Otherwise, it is the offset to the BEGINNING
494 of the first local allocated. */
496 #define STARTING_FRAME_OFFSET 0
498 /* If we generate an insn to push BYTES bytes,
499 this says how many the stack pointer really advances by.
501 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
502 dangerous, so we claim that it always pushes a word, then we catch
503 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
505 On the H8/300H, we simplify TARGET_QUICKCALL by setting this to 4
506 and doing a similar thing. */
508 #define PUSH_ROUNDING(BYTES) \
509 (((BYTES) + PARM_BOUNDARY / 8 - 1) & -PARM_BOUNDARY / 8)
511 /* Offset of first parameter from the argument pointer register value. */
512 /* Is equal to the size of the saved fp + pc, even if an fp isn't
513 saved since the value is used before we know. */
515 #define FIRST_PARM_OFFSET(FNDECL) 0
517 /* Value is the number of bytes of arguments automatically
518 popped when returning from a subroutine call.
519 FUNDECL is the declaration node of the function (as a tree),
520 FUNTYPE is the data type of the function (as a tree),
521 or for a library call it is an identifier node for the subroutine name.
522 SIZE is the number of bytes of arguments passed on the stack.
524 On the H8 the return does not pop anything. */
526 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
528 /* Definitions for register eliminations.
530 This is an array of structures. Each structure initializes one pair
531 of eliminable registers. The "from" register number is given first,
532 followed by "to". Eliminations of the same "from" register are listed
533 in order of preference.
535 We have two registers that can be eliminated on the h8300. First, the
536 frame pointer register can often be eliminated in favor of the stack
537 pointer register. Secondly, the argument pointer register can always be
538 eliminated; it is replaced with either the stack or frame pointer. */
540 #define ELIMINABLE_REGS \
541 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
542 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
543 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},\
544 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM},\
545 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
547 /* Given FROM and TO register numbers, say whether this elimination is allowed.
548 Frame pointer elimination is automatically handled.
550 For the h8300, if frame pointer elimination is being done, we would like to
551 convert ap and rp into sp, not fp.
553 All other eliminations are valid. */
555 #define CAN_ELIMINATE(FROM, TO) \
556 ((((FROM) == ARG_POINTER_REGNUM || (FROM) == RETURN_ADDRESS_POINTER_REGNUM) \
557 && (TO) == STACK_POINTER_REGNUM) \
558 ? ! frame_pointer_needed \
559 : 1)
561 /* Define the offset between two registers, one to be eliminated, and the other
562 its replacement, at the start of a routine. */
564 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
565 OFFSET = initial_offset (FROM, TO)
567 /* Define how to find the value returned by a function.
568 VALTYPE is the data type of the value (as a tree).
569 If the precise function being called is known, FUNC is its FUNCTION_DECL;
570 otherwise, FUNC is 0.
572 On the H8 the return value is in R0/R1. */
574 #define FUNCTION_VALUE(VALTYPE, FUNC) \
575 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
577 /* Define how to find the value returned by a library function
578 assuming the value has mode MODE. */
580 /* On the H8 the return value is in R0/R1. */
582 #define LIBCALL_VALUE(MODE) \
583 gen_rtx_REG (MODE, 0)
585 /* 1 if N is a possible register number for a function value.
586 On the H8, R0 is the only register thus used. */
588 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
590 /* Define this if PCC uses the nonreentrant convention for returning
591 structure and union values. */
593 /*#define PCC_STATIC_STRUCT_RETURN*/
595 /* 1 if N is a possible register number for function argument passing.
596 On the H8, no registers are used in this way. */
598 #define FUNCTION_ARG_REGNO_P(N) (TARGET_QUICKCALL ? N < 3 : 0)
600 /* Register in which address to store a structure value
601 is passed to a function. */
603 #define STRUCT_VALUE 0
605 /* Return true if X should be returned in memory. */
606 #define RETURN_IN_MEMORY(X) \
607 (TYPE_MODE (X) == BLKmode || GET_MODE_SIZE (TYPE_MODE (X)) > 4)
609 /* When defined, the compiler allows registers explicitly used in the
610 rtl to be used as spill registers but prevents the compiler from
611 extending the lifetime of these registers. */
613 #define SMALL_REGISTER_CLASSES 1
615 /* Define a data type for recording info about an argument list
616 during the scan of that argument list. This data type should
617 hold all necessary information about the function itself
618 and about the args processed so far, enough to enable macros
619 such as FUNCTION_ARG to determine where the next arg should go.
621 On the H8/300, this is a two item struct, the first is the number
622 of bytes scanned so far and the second is the rtx of the called
623 library function if any. */
625 #define CUMULATIVE_ARGS struct cum_arg
626 struct cum_arg
628 int nbytes;
629 struct rtx_def *libcall;
632 /* Initialize a variable CUM of type CUMULATIVE_ARGS
633 for a call to a function whose data type is FNTYPE.
634 For a library call, FNTYPE is 0.
636 On the H8/300, the offset starts at 0. */
638 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
639 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)
641 /* Update the data in CUM to advance over an argument
642 of mode MODE and data type TYPE.
643 (TYPE is null for libcalls where that information may not be available.) */
645 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
646 ((CUM).nbytes += ((MODE) != BLKmode \
647 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
648 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
650 /* Define where to put the arguments to a function.
651 Value is zero to push the argument on the stack,
652 or a hard register in which to store the argument.
654 MODE is the argument's machine mode.
655 TYPE is the data type of the argument (as a tree).
656 This is null for libcalls where that information may
657 not be available.
658 CUM is a variable of type CUMULATIVE_ARGS which gives info about
659 the preceding args and about the function being called.
660 NAMED is nonzero if this argument is a named parameter
661 (otherwise it is an extra parameter matching an ellipsis). */
663 /* On the H8/300 all normal args are pushed, unless -mquickcall in which
664 case the first 3 arguments are passed in registers.
665 See function `function_arg'. */
667 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
668 function_arg (&CUM, MODE, TYPE, NAMED)
670 /* Output assembler code to FILE to increment profiler label # LABELNO
671 for profiling a function entry. */
673 #define FUNCTION_PROFILER(FILE, LABELNO) \
674 fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
675 h8_mov_op, (LABELNO), h8_reg_names[0]);
677 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
678 the stack pointer does not matter. The value is tested only in
679 functions that have frame pointers.
680 No definition is equivalent to always zero. */
682 #define EXIT_IGNORE_STACK 0
684 /* Output assembler code for a block containing the constant parts
685 of a trampoline, leaving space for the variable parts.
687 H8/300
688 vvvv context
689 1 0000 7900xxxx mov.w #0x1234,r3
690 2 0004 5A00xxxx jmp @0x1234
691 ^^^^ function
693 H8/300H
694 vvvvvvvv context
695 2 0000 7A00xxxxxxxx mov.l #0x12345678,er3
696 3 0006 5Axxxxxx jmp @0x123456
697 ^^^^^^ function
700 #define TRAMPOLINE_TEMPLATE(FILE) \
701 do \
703 if (TARGET_H8300) \
705 fprintf (FILE, "\tmov.w #0x1234,r3\n"); \
706 fprintf (FILE, "\tjmp @0x1234\n"); \
708 else \
710 fprintf (FILE, "\tmov.l #0x12345678,er3\n"); \
711 fprintf (FILE, "\tjmp @0x123456\n"); \
714 while (0)
716 /* Length in units of the trampoline for entering a nested function. */
718 #define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)
720 /* Emit RTL insns to initialize the variable parts of a trampoline.
721 FNADDR is an RTX for the address of the function's pure code.
722 CXT is an RTX for the static chain value for the function. */
724 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
726 emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), 2)), CXT); \
727 emit_move_insn (gen_rtx_MEM (Pmode, plus_constant ((TRAMP), 6)), FNADDR); \
728 if (TARGET_H8300H || TARGET_H8300S) \
729 emit_move_insn (gen_rtx_MEM (QImode, plus_constant ((TRAMP), 6)), \
730 GEN_INT (0x5A)); \
733 /* Addressing modes, and classification of registers for them. */
735 #define HAVE_POST_INCREMENT 1
736 #define HAVE_PRE_DECREMENT 1
738 /* Macros to check register numbers against specific register classes. */
740 /* These assume that REGNO is a hard or pseudo reg number.
741 They give nonzero only if REGNO is a hard reg of the suitable class
742 or a pseudo reg currently allocated to a suitable hard reg.
743 Since they use reg_renumber, they are safe only once reg_renumber
744 has been allocated, which happens in local-alloc.c. */
746 #define REGNO_OK_FOR_INDEX_P(regno) 0
748 #define REGNO_OK_FOR_BASE_P(regno) \
749 (((regno) < FIRST_PSEUDO_REGISTER && regno != 8) || reg_renumber[regno] >= 0)
751 /* Maximum number of registers that can appear in a valid memory address. */
753 #define MAX_REGS_PER_ADDRESS 1
755 /* 1 if X is an rtx for a constant that is a valid address. */
757 #define CONSTANT_ADDRESS_P(X) \
758 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
759 || (GET_CODE (X) == CONST_INT \
760 /* We handle signed and unsigned offsets here. */ \
761 && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000) \
762 && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000)) \
763 || ((GET_CODE (X) == HIGH || GET_CODE (X) == CONST) \
764 && TARGET_H8300))
766 /* Nonzero if the constant value X is a legitimate general operand.
767 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
769 #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
771 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
772 and check its validity for a certain class.
773 We have two alternate definitions for each of them.
774 The usual definition accepts all pseudo regs; the other rejects
775 them unless they have been allocated suitable hard regs.
776 The symbol REG_OK_STRICT causes the latter definition to be used.
778 Most source files want to accept pseudo regs in the hope that
779 they will get allocated to the class that the insn wants them to be in.
780 Source files for reload pass need to be strict.
781 After reload, it makes no difference, since pseudo regs have
782 been eliminated by then. */
784 #ifndef REG_OK_STRICT
786 /* Nonzero if X is a hard reg that can be used as an index
787 or if it is a pseudo reg. */
788 #define REG_OK_FOR_INDEX_P(X) 0
789 /* Nonzero if X is a hard reg that can be used as a base reg
790 or if it is a pseudo reg. */
791 /* Don't use REGNO_OK_FOR_BASE_P here because it uses reg_renumber. */
792 #define REG_OK_FOR_BASE_P(X) \
793 (REGNO (X) >= FIRST_PSEUDO_REGISTER || REGNO (X) != 8)
794 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
795 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
796 #define STRICT 0
798 #else
800 /* Nonzero if X is a hard reg that can be used as an index. */
801 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
802 /* Nonzero if X is a hard reg that can be used as a base reg. */
803 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
804 #define STRICT 1
806 #endif
808 /* Extra constraints. */
810 #define OK_FOR_R(OP) \
811 (GET_CODE (OP) == CONST_INT \
812 ? !h8300_shift_needs_scratch_p (INTVAL (OP), QImode) \
813 : 0)
815 #define OK_FOR_S(OP) \
816 (GET_CODE (OP) == CONST_INT \
817 ? !h8300_shift_needs_scratch_p (INTVAL (OP), HImode) \
818 : 0)
820 #define OK_FOR_T(OP) \
821 (GET_CODE (OP) == CONST_INT \
822 ? !h8300_shift_needs_scratch_p (INTVAL (OP), SImode) \
823 : 0)
825 /* Nonzero if X is a constant address suitable as an 8-bit absolute,
826 which is a special case of the 'R' operand. */
828 #define EIGHTBIT_CONSTANT_ADDRESS_P(X) \
829 ((GET_CODE (X) == CONST_INT) \
830 && ((TARGET_H8300H && 0xffff00 <= INTVAL (X) \
831 && INTVAL (X) <= 0xffffff) \
832 || (TARGET_H8300S && 0xffffff00 <= INTVAL (X) \
833 && INTVAL (X) <= 0xffffffff) \
834 || (TARGET_H8300 && 0xff00 <= (INTVAL (X) & 0x0000FFFF) \
835 && (INTVAL (X) & 0x0000FFFF) <= 0xffff)))
837 /* Nonzero if X is a constant address suitable as an 16-bit absolute
838 on H8/300H and H8S. */
840 #define TINY_CONSTANT_ADDRESS_P(X) \
841 ((GET_CODE (X) == CONST_INT) \
842 && ((TARGET_H8300H \
843 && ((0xff8000 <= INTVAL (X) && INTVAL (X) <= 0xffffff) \
844 || (0x000000 <= INTVAL (X) && INTVAL (X) <= 0x007fff))) \
845 || (TARGET_H8300S \
846 && ((0xffff8000 <= INTVAL (X) && INTVAL (X) <= 0xffffffff) \
847 || (0x00000000 <= INTVAL (X) \
848 && INTVAL (X) <= 0x00007fff)))))
850 /* 'U' if valid for a bset destination;
851 i.e. a register, register indirect, or the eightbit memory region
852 (a SYMBOL_REF with an SYMBOL_REF_FLAG set).
854 On the H8S 'U' can also be a 16bit or 32bit absolute. */
855 #define OK_FOR_U(OP) \
856 ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
857 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
858 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
859 || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
860 && (TARGET_H8300S || SYMBOL_REF_FLAG (XEXP (OP, 0)))) \
861 || ((GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == CONST \
862 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == PLUS \
863 && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 0)) == SYMBOL_REF \
864 && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 1)) == CONST_INT) \
865 && (TARGET_H8300S \
866 || SYMBOL_REF_FLAG (XEXP (XEXP (XEXP (OP, 0), 0), 0)))) \
867 || (GET_CODE (OP) == MEM \
868 && EIGHTBIT_CONSTANT_ADDRESS_P (XEXP (OP, 0))) \
869 || (GET_CODE (OP) == MEM && TARGET_H8300S \
870 && GET_CODE (XEXP (OP, 0)) == CONST_INT))
872 #define EXTRA_CONSTRAINT(OP, C) \
873 ((C) == 'R' ? OK_FOR_R (OP) : \
874 (C) == 'S' ? OK_FOR_S (OP) : \
875 (C) == 'T' ? OK_FOR_T (OP) : \
876 (C) == 'U' ? OK_FOR_U (OP) : \
879 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
880 that is a valid memory address for an instruction.
881 The MODE argument is the machine mode for the MEM expression
882 that wants to use this address.
884 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
885 except for CONSTANT_ADDRESS_P which is actually
886 machine-independent.
888 On the H8/300, a legitimate address has the form
889 REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS. */
891 /* Accept either REG or SUBREG where a register is valid. */
893 #define RTX_OK_FOR_BASE_P(X) \
894 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
895 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
896 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
898 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
899 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
900 if (CONSTANT_ADDRESS_P (X)) goto ADDR; \
901 if (GET_CODE (X) == PLUS \
902 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
903 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;
905 /* Try machine-dependent ways of modifying an illegitimate address
906 to be legitimate. If we find one, return the new, valid address.
907 This macro is used in only one place: `memory_address' in explow.c.
909 OLDX is the address as it was before break_out_memory_refs was called.
910 In some cases it is useful to look at this to decide what needs to be done.
912 MODE and WIN are passed so that this macro can use
913 GO_IF_LEGITIMATE_ADDRESS.
915 It is always safe for this macro to do nothing. It exists to recognize
916 opportunities to optimize the output.
918 For the H8/300, don't do anything. */
920 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) {}
922 /* Go to LABEL if ADDR (a legitimate address expression)
923 has an effect that depends on the machine mode it is used for.
925 On the H8/300, the predecrement and postincrement address depend thus
926 (the amount of decrement or increment being the length of the operand). */
928 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
929 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;
931 /* Specify the machine mode that this machine uses
932 for the index in the tablejump instruction. */
933 #define CASE_VECTOR_MODE Pmode
935 /* Define as C expression which evaluates to nonzero if the tablejump
936 instruction expects the table to contain offsets from the address of the
937 table.
938 Do not define this if the table should contain absolute addresses. */
939 /*#define CASE_VECTOR_PC_RELATIVE 1 */
941 /* Define this as 1 if `char' should by default be signed; else as 0.
943 On the H8/300, sign extension is expensive, so we'll say that chars
944 are unsigned. */
945 #define DEFAULT_SIGNED_CHAR 0
947 /* This flag, if defined, says the same insns that convert to a signed fixnum
948 also convert validly to an unsigned one. */
949 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
951 /* Max number of bytes we can move from memory to memory
952 in one reasonably fast instruction. */
953 #define MOVE_MAX (TARGET_H8300H || TARGET_H8300S ? 4 : 2)
954 #define MAX_MOVE_MAX 4
956 /* Nonzero if access to memory by bytes is slow and undesirable. */
957 #define SLOW_BYTE_ACCESS TARGET_SLOWBYTE
959 /* Define if shifts truncate the shift count
960 which implies one can omit a sign-extension or zero-extension
961 of a shift count. */
962 /* #define SHIFT_COUNT_TRUNCATED */
964 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
965 is done just by pretending it is already truncated. */
966 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
968 /* Specify the machine mode that pointers have.
969 After generation of rtl, the compiler makes no further distinction
970 between pointers and any other objects of this machine mode. */
971 #define Pmode (TARGET_H8300H || TARGET_H8300S ? SImode : HImode)
973 /* ANSI C types.
974 We use longs for the 300H because ints can be 16 or 32.
975 GCC requires SIZE_TYPE to be the same size as pointers. */
976 #define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
977 #define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")
979 #define WCHAR_TYPE "short unsigned int"
980 #define WCHAR_TYPE_SIZE 16
981 #define MAX_WCHAR_TYPE_SIZE 16
983 /* A function address in a call instruction
984 is a byte address (for indexing purposes)
985 so give the MEM rtx a byte's mode. */
986 #define FUNCTION_MODE QImode
988 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
989 LENGTH += h8300_adjust_insn_length (INSN, LENGTH);
991 /* Compute the cost of computing a constant rtl expression RTX
992 whose rtx-code is CODE. The body of this macro is a portion
993 of a switch statement. If the code is computed here,
994 return it with a return statement. Otherwise, break from the switch. */
996 #define DEFAULT_RTX_COSTS(RTX, CODE, OUTER_CODE) \
997 return (const_costs (RTX, CODE, OUTER_CODE));
999 #define BRANCH_COST 0
1001 /* We say that MOD and DIV are so cheap because otherwise we'll
1002 generate some really horrible code for division of a power of two. */
1004 /* Provide the costs of a rtl expression. This is in the body of a
1005 switch on CODE. */
1006 /* ??? Shifts need to have a *much* higher cost than this. */
1008 #define RTX_COSTS(RTX, CODE, OUTER_CODE) \
1009 case MOD: \
1010 case DIV: \
1011 return 60; \
1012 case MULT: \
1013 return 20; \
1014 case ASHIFT: \
1015 case ASHIFTRT: \
1016 case LSHIFTRT: \
1017 case ROTATE: \
1018 case ROTATERT: \
1019 if (GET_MODE (RTX) == HImode) return 2; \
1020 return 8;
1022 /* Tell final.c how to eliminate redundant test instructions. */
1024 /* Here we define machine-dependent flags and fields in cc_status
1025 (see `conditions.h'). No extra ones are needed for the h8300. */
1027 /* Store in cc_status the expressions
1028 that the condition codes will describe
1029 after execution of an instruction whose pattern is EXP.
1030 Do not alter them if the instruction would not alter the cc's. */
1032 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc (EXP, INSN)
1034 /* The add insns don't set overflow in a usable way. */
1035 #define CC_OVERFLOW_UNUSABLE 01000
1036 /* The mov,and,or,xor insns don't set carry. That's OK though as the
1037 Z bit is all we need when doing unsigned comparisons on the result of
1038 these insns (since they're always with 0). However, conditions.h has
1039 CC_NO_OVERFLOW defined for this purpose. Rename it to something more
1040 understandable. */
1041 #define CC_NO_CARRY CC_NO_OVERFLOW
1043 /* Control the assembler format that we output. */
1045 /* Output at beginning/end of assembler file. */
1047 #define ASM_FILE_START(FILE) asm_file_start (FILE)
1049 #define ASM_FILE_END(FILE) asm_file_end (FILE)
1051 /* Output to assembler file text saying following lines
1052 may contain character constants, extra white space, comments, etc. */
1054 #define ASM_APP_ON "; #APP\n"
1056 /* Output to assembler file text saying following lines
1057 no longer contain unusual constructs. */
1059 #define ASM_APP_OFF "; #NO_APP\n"
1061 #define FILE_ASM_OP "\t.file\n"
1062 #define IDENT_ASM_OP "\t.ident\n"
1064 /* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H. */
1065 #define ASM_WORD_OP (TARGET_H8300 ? "\t.word\t" : "\t.long\t")
1067 #define TEXT_SECTION_ASM_OP "\t.section .text"
1068 #define DATA_SECTION_ASM_OP "\t.section .data"
1069 #define BSS_SECTION_ASM_OP "\t.section .bss"
1070 #define INIT_SECTION_ASM_OP "\t.section .init"
1071 #define READONLY_DATA_SECTION_ASM_OP "\t.section .rodata"
1073 #undef DO_GLOBAL_CTORS_BODY
1074 #define DO_GLOBAL_CTORS_BODY \
1076 typedef (*pfunc)(); \
1077 extern pfunc __ctors[]; \
1078 extern pfunc __ctors_end[]; \
1079 pfunc *p; \
1080 for (p = __ctors_end; p > __ctors; ) \
1082 (*--p)(); \
1086 #undef DO_GLOBAL_DTORS_BODY
1087 #define DO_GLOBAL_DTORS_BODY \
1089 typedef (*pfunc)(); \
1090 extern pfunc __dtors[]; \
1091 extern pfunc __dtors_end[]; \
1092 pfunc *p; \
1093 for (p = __dtors; p < __dtors_end; p++) \
1095 (*p)(); \
1099 #define TINY_DATA_NAME_P(NAME) (*(NAME) == '&')
1101 /* How to refer to registers in assembler output.
1102 This sequence is indexed by compiler's hard-register-number (see above). */
1104 #define REGISTER_NAMES \
1105 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "mac", "ap", "rap" }
1107 #define ADDITIONAL_REGISTER_NAMES \
1108 { {"er0", 0}, {"er1", 1}, {"er2", 2}, {"er3", 3}, {"er4", 4}, \
1109 {"er5", 5}, {"er6", 6}, {"er7", 7}, {"r7", 7} }
1111 #define SDB_DEBUGGING_INFO 1
1112 #define SDB_DELIM "\n"
1114 /* Support -gstabs. */
1116 #include "dbxcoff.h"
1118 /* Override definition in dbxcoff.h. */
1119 /* Generate a blank trailing N_SO to mark the end of the .o file, since
1120 we can't depend upon the linker to mark .o file boundaries with
1121 embedded stabs. */
1123 #undef DBX_OUTPUT_MAIN_SOURCE_FILE_END
1124 #define DBX_OUTPUT_MAIN_SOURCE_FILE_END(FILE, FILENAME) \
1125 fprintf (FILE, \
1126 "\t.text\n.stabs \"\",%d,0,0,.Letext\n.Letext:\n", N_SO)
1128 /* Switch into a generic section. */
1129 #define TARGET_ASM_NAMED_SECTION h8300_asm_named_section
1131 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1132 asm_fprintf ((FILE), "%U%s", (NAME) + (TINY_DATA_NAME_P (NAME) ? 1 : 0))
1134 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME)
1136 /* Globalizing directive for a label. */
1137 #define GLOBAL_ASM_OP "\t.global "
1139 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1140 ASM_OUTPUT_LABEL (FILE, NAME)
1142 /* The prefix to add to user-visible assembler symbols. */
1144 #define USER_LABEL_PREFIX "_"
1146 /* This is how to output an internal numbered label where
1147 PREFIX is the class of label and NUM is the number within the class.
1149 N.B.: The h8300.md branch_true and branch_false patterns also know
1150 how to generate internal labels. */
1152 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1153 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1155 /* This is how to store into the string LABEL
1156 the symbol_ref name of an internal numbered label where
1157 PREFIX is the class of label and NUM is the number within the class.
1158 This is suitable for output with `assemble_name'. */
1160 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1161 sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1163 /* This is how to output an insn to push a register on the stack.
1164 It need not be very fast code. */
1166 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1167 fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])
1169 /* This is how to output an insn to pop a register from the stack.
1170 It need not be very fast code. */
1172 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1173 fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])
1175 /* This is how to output an element of a case-vector that is absolute. */
1177 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1178 fprintf (FILE, "%s.L%d\n", ASM_WORD_OP, VALUE)
1180 /* This is how to output an element of a case-vector that is relative. */
1182 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1183 fprintf (FILE, "%s.L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)
1185 /* This is how to output an assembler line
1186 that says to advance the location counter
1187 to a multiple of 2**LOG bytes. */
1189 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1190 if ((LOG) != 0) \
1191 fprintf (FILE, "\t.align %d\n", (LOG))
1193 /* This is how to output an assembler line
1194 that says to advance the location counter by SIZE bytes. */
1196 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1197 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME)
1199 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1200 fprintf (FILE, "\t.space %d\n", (SIZE))
1202 /* This says how to output an assembler line
1203 to define a global common symbol. */
1205 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1206 ( fputs ("\t.comm ", (FILE)), \
1207 assemble_name ((FILE), (NAME)), \
1208 fprintf ((FILE), ",%d\n", (SIZE)))
1210 /* This says how to output the assembler to define a global
1211 uninitialized but not common symbol.
1212 Try to use asm_output_bss to implement this macro. */
1214 #define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
1215 asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))
1217 /* This says how to output an assembler line
1218 to define a local common symbol. */
1220 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1221 ( fputs ("\t.lcomm ", (FILE)), \
1222 assemble_name ((FILE), (NAME)), \
1223 fprintf ((FILE), ",%d\n", (SIZE)))
1225 /* Store in OUTPUT a string (made with alloca) containing
1226 an assembler-name for a local static variable named NAME.
1227 LABELNO is an integer which is different for each call. */
1229 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1230 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1231 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1233 /* Print an instruction operand X on file FILE.
1234 Look in h8300.c for details. */
1236 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1237 ((CODE) == '#')
1239 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1241 /* Print a memory operand whose address is X, on file FILE.
1242 This uses a function in h8300.c. */
1244 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1246 /* H8300 specific pragmas. */
1247 #define REGISTER_TARGET_PRAGMAS(PFILE) \
1248 do \
1250 cpp_register_pragma (PFILE, 0, "saveall", h8300_pr_saveall); \
1251 cpp_register_pragma (PFILE, 0, "interrupt", h8300_pr_interrupt); \
1253 while (0)
1255 #define FINAL_PRESCAN_INSN(insn, operand, nop) \
1256 final_prescan_insn (insn, operand, nop)
1258 /* Define this macro if GNU CC should generate calls to the System V
1259 (and ANSI C) library functions `memcpy' and `memset' rather than
1260 the BSD functions `bcopy' and `bzero'. */
1262 #define TARGET_MEM_FUNCTIONS 1
1264 #define MULHI3_LIBCALL "__mulhi3"
1265 #define DIVHI3_LIBCALL "__divhi3"
1266 #define UDIVHI3_LIBCALL "__udivhi3"
1267 #define MODHI3_LIBCALL "__modhi3"
1268 #define UMODHI3_LIBCALL "__umodhi3"
1270 /* Perform target dependent optabs initialization. */
1272 #define INIT_TARGET_OPTABS \
1273 do \
1275 smul_optab->handlers[(int) HImode].libfunc \
1276 = init_one_libfunc (MULHI3_LIBCALL); \
1277 sdiv_optab->handlers[(int) HImode].libfunc \
1278 = init_one_libfunc (DIVHI3_LIBCALL); \
1279 udiv_optab->handlers[(int) HImode].libfunc \
1280 = init_one_libfunc (UDIVHI3_LIBCALL); \
1281 smod_optab->handlers[(int) HImode].libfunc \
1282 = init_one_libfunc (MODHI3_LIBCALL); \
1283 umod_optab->handlers[(int) HImode].libfunc \
1284 = init_one_libfunc (UMODHI3_LIBCALL); \
1286 while (0)
1288 #define MOVE_RATIO 3
1290 #endif /* ! GCC_H8300_H */