lb1sf68.asm: Add __PIC__ and __ID_SHARED_LIBRARY__ support.
[official-gcc.git] / gcc / flow.c
blob66c04eecfa6f8e2b4e80c7aa83c9b87b124bae5f
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
142 #include "obstack.h"
143 #include "splay-tree.h"
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
182 /* Maximum register number used in this function, plus one. */
184 int max_regno;
186 /* Indexed by n, giving various register information */
188 varray_type reg_n_info;
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
193 int regset_bytes;
194 int regset_size;
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199 regset regs_live_at_setjmp;
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) (tree);
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
214 static HARD_REG_SET elim_reg_set;
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
235 struct propagate_block_info
237 /* The basic block we're considering. */
238 basic_block bb;
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
277 /* Flags controlling the set of information propagate_block collects. */
278 int flags;
281 /* Number of dead insns removed. */
282 static int ndead;
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
288 /* Forward declarations */
289 static int verify_wide_reg_1 (rtx *, void *);
290 static void verify_wide_reg (int, basic_block);
291 static void verify_local_live_at_start (regset, basic_block);
292 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
293 static void notice_stack_pointer_modification (rtx);
294 static void mark_reg (rtx, void *);
295 static void mark_regs_live_at_end (regset);
296 static int set_phi_alternative_reg (rtx, int, int, void *);
297 static void calculate_global_regs_live (sbitmap, sbitmap, int);
298 static void propagate_block_delete_insn (rtx);
299 static rtx propagate_block_delete_libcall (rtx, rtx);
300 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
301 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
304 rtx, rtx, int);
305 static int find_regno_partial (rtx *, void *);
307 #ifdef HAVE_conditional_execution
308 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
309 static void free_reg_cond_life_info (splay_tree_value);
310 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
311 static void flush_reg_cond_reg (struct propagate_block_info *, int);
312 static rtx elim_reg_cond (rtx, unsigned int);
313 static rtx ior_reg_cond (rtx, rtx, int);
314 static rtx not_reg_cond (rtx);
315 static rtx and_reg_cond (rtx, rtx, int);
316 #endif
317 #ifdef AUTO_INC_DEC
318 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
319 rtx, rtx);
320 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
321 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
322 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
323 #endif
324 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
325 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
326 void debug_flow_info (void);
327 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
328 static int invalidate_mems_from_autoinc (rtx *, void *);
329 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
330 static void clear_log_links (sbitmap);
333 void
334 check_function_return_warnings (void)
336 if (warn_missing_noreturn
337 && !TREE_THIS_VOLATILE (cfun->decl)
338 && EXIT_BLOCK_PTR->pred == NULL
339 && (lang_missing_noreturn_ok_p
340 && !lang_missing_noreturn_ok_p (cfun->decl)))
341 warning ("function might be possible candidate for attribute `noreturn'");
343 /* If we have a path to EXIT, then we do return. */
344 if (TREE_THIS_VOLATILE (cfun->decl)
345 && EXIT_BLOCK_PTR->pred != NULL)
346 warning ("`noreturn' function does return");
348 /* If the clobber_return_insn appears in some basic block, then we
349 do reach the end without returning a value. */
350 else if (warn_return_type
351 && cfun->x_clobber_return_insn != NULL
352 && EXIT_BLOCK_PTR->pred != NULL)
354 int max_uid = get_max_uid ();
356 /* If clobber_return_insn was excised by jump1, then renumber_insns
357 can make max_uid smaller than the number still recorded in our rtx.
358 That's fine, since this is a quick way of verifying that the insn
359 is no longer in the chain. */
360 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
362 rtx insn;
364 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
365 if (insn == cfun->x_clobber_return_insn)
367 warning ("control reaches end of non-void function");
368 break;
374 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
375 note associated with the BLOCK. */
378 first_insn_after_basic_block_note (basic_block block)
380 rtx insn;
382 /* Get the first instruction in the block. */
383 insn = block->head;
385 if (insn == NULL_RTX)
386 return NULL_RTX;
387 if (GET_CODE (insn) == CODE_LABEL)
388 insn = NEXT_INSN (insn);
389 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
390 abort ();
392 return NEXT_INSN (insn);
395 /* Perform data flow analysis.
396 F is the first insn of the function; FLAGS is a set of PROP_* flags
397 to be used in accumulating flow info. */
399 void
400 life_analysis (rtx f, FILE *file, int flags)
402 #ifdef ELIMINABLE_REGS
403 int i;
404 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
405 #endif
407 /* Record which registers will be eliminated. We use this in
408 mark_used_regs. */
410 CLEAR_HARD_REG_SET (elim_reg_set);
412 #ifdef ELIMINABLE_REGS
413 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
414 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
415 #else
416 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
417 #endif
420 #ifdef CANNOT_CHANGE_MODE_CLASS
421 if (flags & PROP_REG_INFO)
422 bitmap_initialize (&subregs_of_mode, 1);
423 #endif
425 if (! optimize)
426 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
428 /* The post-reload life analysis have (on a global basis) the same
429 registers live as was computed by reload itself. elimination
430 Otherwise offsets and such may be incorrect.
432 Reload will make some registers as live even though they do not
433 appear in the rtl.
435 We don't want to create new auto-incs after reload, since they
436 are unlikely to be useful and can cause problems with shared
437 stack slots. */
438 if (reload_completed)
439 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
441 /* We want alias analysis information for local dead store elimination. */
442 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
443 init_alias_analysis ();
445 /* Always remove no-op moves. Do this before other processing so
446 that we don't have to keep re-scanning them. */
447 delete_noop_moves (f);
449 /* Some targets can emit simpler epilogues if they know that sp was
450 not ever modified during the function. After reload, of course,
451 we've already emitted the epilogue so there's no sense searching. */
452 if (! reload_completed)
453 notice_stack_pointer_modification (f);
455 /* Allocate and zero out data structures that will record the
456 data from lifetime analysis. */
457 allocate_reg_life_data ();
458 allocate_bb_life_data ();
460 /* Find the set of registers live on function exit. */
461 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
463 /* "Update" life info from zero. It'd be nice to begin the
464 relaxation with just the exit and noreturn blocks, but that set
465 is not immediately handy. */
467 if (flags & PROP_REG_INFO)
468 memset (regs_ever_live, 0, sizeof (regs_ever_live));
469 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
471 /* Clean up. */
472 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
473 end_alias_analysis ();
475 if (file)
476 dump_flow_info (file);
478 free_basic_block_vars (1);
480 /* Removing dead insns should've made jumptables really dead. */
481 delete_dead_jumptables ();
484 /* A subroutine of verify_wide_reg, called through for_each_rtx.
485 Search for REGNO. If found, return 2 if it is not wider than
486 word_mode. */
488 static int
489 verify_wide_reg_1 (rtx *px, void *pregno)
491 rtx x = *px;
492 unsigned int regno = *(int *) pregno;
494 if (GET_CODE (x) == REG && REGNO (x) == regno)
496 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
497 return 2;
498 return 1;
500 return 0;
503 /* A subroutine of verify_local_live_at_start. Search through insns
504 of BB looking for register REGNO. */
506 static void
507 verify_wide_reg (int regno, basic_block bb)
509 rtx head = bb->head, end = bb->end;
511 while (1)
513 if (INSN_P (head))
515 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
516 if (r == 1)
517 return;
518 if (r == 2)
519 break;
521 if (head == end)
522 break;
523 head = NEXT_INSN (head);
526 if (rtl_dump_file)
528 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
529 dump_bb (bb, rtl_dump_file);
531 abort ();
534 /* A subroutine of update_life_info. Verify that there are no untoward
535 changes in live_at_start during a local update. */
537 static void
538 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
540 if (reload_completed)
542 /* After reload, there are no pseudos, nor subregs of multi-word
543 registers. The regsets should exactly match. */
544 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
546 if (rtl_dump_file)
548 fprintf (rtl_dump_file,
549 "live_at_start mismatch in bb %d, aborting\nNew:\n",
550 bb->index);
551 debug_bitmap_file (rtl_dump_file, new_live_at_start);
552 fputs ("Old:\n", rtl_dump_file);
553 dump_bb (bb, rtl_dump_file);
555 abort ();
558 else
560 int i;
562 /* Find the set of changed registers. */
563 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
565 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
567 /* No registers should die. */
568 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
570 if (rtl_dump_file)
572 fprintf (rtl_dump_file,
573 "Register %d died unexpectedly.\n", i);
574 dump_bb (bb, rtl_dump_file);
576 abort ();
579 /* Verify that the now-live register is wider than word_mode. */
580 verify_wide_reg (i, bb);
585 /* Updates life information starting with the basic blocks set in BLOCKS.
586 If BLOCKS is null, consider it to be the universal set.
588 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
589 we are only expecting local modifications to basic blocks. If we find
590 extra registers live at the beginning of a block, then we either killed
591 useful data, or we have a broken split that wants data not provided.
592 If we find registers removed from live_at_start, that means we have
593 a broken peephole that is killing a register it shouldn't.
595 ??? This is not true in one situation -- when a pre-reload splitter
596 generates subregs of a multi-word pseudo, current life analysis will
597 lose the kill. So we _can_ have a pseudo go live. How irritating.
599 Including PROP_REG_INFO does not properly refresh regs_ever_live
600 unless the caller resets it to zero. */
603 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
605 regset tmp;
606 regset_head tmp_head;
607 int i;
608 int stabilized_prop_flags = prop_flags;
609 basic_block bb;
611 tmp = INITIALIZE_REG_SET (tmp_head);
612 ndead = 0;
614 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
615 ? TV_LIFE_UPDATE : TV_LIFE);
617 /* Changes to the CFG are only allowed when
618 doing a global update for the entire CFG. */
619 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
620 && (extent == UPDATE_LIFE_LOCAL || blocks))
621 abort ();
623 /* For a global update, we go through the relaxation process again. */
624 if (extent != UPDATE_LIFE_LOCAL)
626 for ( ; ; )
628 int changed = 0;
630 calculate_global_regs_live (blocks, blocks,
631 prop_flags & (PROP_SCAN_DEAD_CODE
632 | PROP_SCAN_DEAD_STORES
633 | PROP_ALLOW_CFG_CHANGES));
635 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
636 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
637 break;
639 /* Removing dead code may allow the CFG to be simplified which
640 in turn may allow for further dead code detection / removal. */
641 FOR_EACH_BB_REVERSE (bb)
643 COPY_REG_SET (tmp, bb->global_live_at_end);
644 changed |= propagate_block (bb, tmp, NULL, NULL,
645 prop_flags & (PROP_SCAN_DEAD_CODE
646 | PROP_SCAN_DEAD_STORES
647 | PROP_KILL_DEAD_CODE));
650 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
651 subsequent propagate_block calls, since removing or acting as
652 removing dead code can affect global register liveness, which
653 is supposed to be finalized for this call after this loop. */
654 stabilized_prop_flags
655 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
656 | PROP_KILL_DEAD_CODE);
658 if (! changed)
659 break;
661 /* We repeat regardless of what cleanup_cfg says. If there were
662 instructions deleted above, that might have been only a
663 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
664 Further improvement may be possible. */
665 cleanup_cfg (CLEANUP_EXPENSIVE);
667 /* Zap the life information from the last round. If we don't
668 do this, we can wind up with registers that no longer appear
669 in the code being marked live at entry, which twiggs bogus
670 warnings from regno_uninitialized. */
671 FOR_EACH_BB (bb)
673 CLEAR_REG_SET (bb->global_live_at_start);
674 CLEAR_REG_SET (bb->global_live_at_end);
678 /* If asked, remove notes from the blocks we'll update. */
679 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
680 count_or_remove_death_notes (blocks, 1);
683 /* Clear log links in case we are asked to (re)compute them. */
684 if (prop_flags & PROP_LOG_LINKS)
685 clear_log_links (blocks);
687 if (blocks)
689 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
691 bb = BASIC_BLOCK (i);
693 COPY_REG_SET (tmp, bb->global_live_at_end);
694 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
696 if (extent == UPDATE_LIFE_LOCAL)
697 verify_local_live_at_start (tmp, bb);
700 else
702 FOR_EACH_BB_REVERSE (bb)
704 COPY_REG_SET (tmp, bb->global_live_at_end);
706 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
708 if (extent == UPDATE_LIFE_LOCAL)
709 verify_local_live_at_start (tmp, bb);
713 FREE_REG_SET (tmp);
715 if (prop_flags & PROP_REG_INFO)
717 /* The only pseudos that are live at the beginning of the function
718 are those that were not set anywhere in the function. local-alloc
719 doesn't know how to handle these correctly, so mark them as not
720 local to any one basic block. */
721 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
722 FIRST_PSEUDO_REGISTER, i,
723 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
725 /* We have a problem with any pseudoreg that lives across the setjmp.
726 ANSI says that if a user variable does not change in value between
727 the setjmp and the longjmp, then the longjmp preserves it. This
728 includes longjmp from a place where the pseudo appears dead.
729 (In principle, the value still exists if it is in scope.)
730 If the pseudo goes in a hard reg, some other value may occupy
731 that hard reg where this pseudo is dead, thus clobbering the pseudo.
732 Conclusion: such a pseudo must not go in a hard reg. */
733 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
734 FIRST_PSEUDO_REGISTER, i,
736 if (regno_reg_rtx[i] != 0)
738 REG_LIVE_LENGTH (i) = -1;
739 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
743 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
744 ? TV_LIFE_UPDATE : TV_LIFE);
745 if (ndead && rtl_dump_file)
746 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
747 return ndead;
750 /* Update life information in all blocks where BB_DIRTY is set. */
753 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
755 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
756 int n = 0;
757 basic_block bb;
758 int retval = 0;
760 sbitmap_zero (update_life_blocks);
761 FOR_EACH_BB (bb)
763 if (extent == UPDATE_LIFE_LOCAL)
765 if (bb->flags & BB_DIRTY)
767 SET_BIT (update_life_blocks, bb->index);
768 n++;
771 else
773 /* ??? Bootstrap with -march=pentium4 fails to terminate
774 with only a partial life update. */
775 SET_BIT (update_life_blocks, bb->index);
776 if (bb->flags & BB_DIRTY)
777 n++;
781 if (n)
782 retval = update_life_info (update_life_blocks, extent, prop_flags);
784 sbitmap_free (update_life_blocks);
785 return retval;
788 /* Free the variables allocated by find_basic_blocks.
790 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
792 void
793 free_basic_block_vars (int keep_head_end_p)
795 if (! keep_head_end_p)
797 if (basic_block_info)
799 clear_edges ();
800 VARRAY_FREE (basic_block_info);
802 n_basic_blocks = 0;
803 last_basic_block = 0;
805 ENTRY_BLOCK_PTR->aux = NULL;
806 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
807 EXIT_BLOCK_PTR->aux = NULL;
808 EXIT_BLOCK_PTR->global_live_at_start = NULL;
812 /* Delete any insns that copy a register to itself. */
815 delete_noop_moves (rtx f ATTRIBUTE_UNUSED)
817 rtx insn, next;
818 basic_block bb;
819 int nnoops = 0;
821 FOR_EACH_BB (bb)
823 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
825 next = NEXT_INSN (insn);
826 if (INSN_P (insn) && noop_move_p (insn))
828 rtx note;
830 /* If we're about to remove the first insn of a libcall
831 then move the libcall note to the next real insn and
832 update the retval note. */
833 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
834 && XEXP (note, 0) != insn)
836 rtx new_libcall_insn = next_real_insn (insn);
837 rtx retval_note = find_reg_note (XEXP (note, 0),
838 REG_RETVAL, NULL_RTX);
839 REG_NOTES (new_libcall_insn)
840 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
841 REG_NOTES (new_libcall_insn));
842 XEXP (retval_note, 0) = new_libcall_insn;
845 delete_insn_and_edges (insn);
846 nnoops++;
850 if (nnoops && rtl_dump_file)
851 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
852 return nnoops;
855 /* Delete any jump tables never referenced. We can't delete them at the
856 time of removing tablejump insn as they are referenced by the preceding
857 insns computing the destination, so we delay deleting and garbagecollect
858 them once life information is computed. */
859 void
860 delete_dead_jumptables (void)
862 rtx insn, next;
863 for (insn = get_insns (); insn; insn = next)
865 next = NEXT_INSN (insn);
866 if (GET_CODE (insn) == CODE_LABEL
867 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
868 && GET_CODE (next) == JUMP_INSN
869 && (GET_CODE (PATTERN (next)) == ADDR_VEC
870 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
872 if (rtl_dump_file)
873 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
874 delete_insn (NEXT_INSN (insn));
875 delete_insn (insn);
876 next = NEXT_INSN (next);
881 /* Determine if the stack pointer is constant over the life of the function.
882 Only useful before prologues have been emitted. */
884 static void
885 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
886 void *data ATTRIBUTE_UNUSED)
888 if (x == stack_pointer_rtx
889 /* The stack pointer is only modified indirectly as the result
890 of a push until later in flow. See the comments in rtl.texi
891 regarding Embedded Side-Effects on Addresses. */
892 || (GET_CODE (x) == MEM
893 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
894 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
895 current_function_sp_is_unchanging = 0;
898 static void
899 notice_stack_pointer_modification (rtx f)
901 rtx insn;
903 /* Assume that the stack pointer is unchanging if alloca hasn't
904 been used. */
905 current_function_sp_is_unchanging = !current_function_calls_alloca;
906 if (! current_function_sp_is_unchanging)
907 return;
909 for (insn = f; insn; insn = NEXT_INSN (insn))
911 if (INSN_P (insn))
913 /* Check if insn modifies the stack pointer. */
914 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
915 NULL);
916 if (! current_function_sp_is_unchanging)
917 return;
922 /* Mark a register in SET. Hard registers in large modes get all
923 of their component registers set as well. */
925 static void
926 mark_reg (rtx reg, void *xset)
928 regset set = (regset) xset;
929 int regno = REGNO (reg);
931 if (GET_MODE (reg) == BLKmode)
932 abort ();
934 SET_REGNO_REG_SET (set, regno);
935 if (regno < FIRST_PSEUDO_REGISTER)
937 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
938 while (--n > 0)
939 SET_REGNO_REG_SET (set, regno + n);
943 /* Mark those regs which are needed at the end of the function as live
944 at the end of the last basic block. */
946 static void
947 mark_regs_live_at_end (regset set)
949 unsigned int i;
951 /* If exiting needs the right stack value, consider the stack pointer
952 live at the end of the function. */
953 if ((HAVE_epilogue && epilogue_completed)
954 || ! EXIT_IGNORE_STACK
955 || (! FRAME_POINTER_REQUIRED
956 && ! current_function_calls_alloca
957 && flag_omit_frame_pointer)
958 || current_function_sp_is_unchanging)
960 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
963 /* Mark the frame pointer if needed at the end of the function. If
964 we end up eliminating it, it will be removed from the live list
965 of each basic block by reload. */
967 if (! reload_completed || frame_pointer_needed)
969 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
970 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
971 /* If they are different, also mark the hard frame pointer as live. */
972 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
973 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
974 #endif
977 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
978 /* Many architectures have a GP register even without flag_pic.
979 Assume the pic register is not in use, or will be handled by
980 other means, if it is not fixed. */
981 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
982 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
983 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
984 #endif
986 /* Mark all global registers, and all registers used by the epilogue
987 as being live at the end of the function since they may be
988 referenced by our caller. */
989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
990 if (global_regs[i] || EPILOGUE_USES (i))
991 SET_REGNO_REG_SET (set, i);
993 if (HAVE_epilogue && epilogue_completed)
995 /* Mark all call-saved registers that we actually used. */
996 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
997 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
998 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
999 SET_REGNO_REG_SET (set, i);
1002 #ifdef EH_RETURN_DATA_REGNO
1003 /* Mark the registers that will contain data for the handler. */
1004 if (reload_completed && current_function_calls_eh_return)
1005 for (i = 0; ; ++i)
1007 unsigned regno = EH_RETURN_DATA_REGNO(i);
1008 if (regno == INVALID_REGNUM)
1009 break;
1010 SET_REGNO_REG_SET (set, regno);
1012 #endif
1013 #ifdef EH_RETURN_STACKADJ_RTX
1014 if ((! HAVE_epilogue || ! epilogue_completed)
1015 && current_function_calls_eh_return)
1017 rtx tmp = EH_RETURN_STACKADJ_RTX;
1018 if (tmp && REG_P (tmp))
1019 mark_reg (tmp, set);
1021 #endif
1022 #ifdef EH_RETURN_HANDLER_RTX
1023 if ((! HAVE_epilogue || ! epilogue_completed)
1024 && current_function_calls_eh_return)
1026 rtx tmp = EH_RETURN_HANDLER_RTX;
1027 if (tmp && REG_P (tmp))
1028 mark_reg (tmp, set);
1030 #endif
1032 /* Mark function return value. */
1033 diddle_return_value (mark_reg, set);
1036 /* Callback function for for_each_successor_phi. DATA is a regset.
1037 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1038 INSN, in the regset. */
1040 static int
1041 set_phi_alternative_reg (rtx insn ATTRIBUTE_UNUSED,
1042 int dest_regno ATTRIBUTE_UNUSED, int src_regno,
1043 void *data)
1045 regset live = (regset) data;
1046 SET_REGNO_REG_SET (live, src_regno);
1047 return 0;
1050 /* Propagate global life info around the graph of basic blocks. Begin
1051 considering blocks with their corresponding bit set in BLOCKS_IN.
1052 If BLOCKS_IN is null, consider it the universal set.
1054 BLOCKS_OUT is set for every block that was changed. */
1056 static void
1057 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1059 basic_block *queue, *qhead, *qtail, *qend, bb;
1060 regset tmp, new_live_at_end, invalidated_by_call;
1061 regset_head tmp_head, invalidated_by_call_head;
1062 regset_head new_live_at_end_head;
1063 int i;
1065 /* Some passes used to forget clear aux field of basic block causing
1066 sick behavior here. */
1067 #ifdef ENABLE_CHECKING
1068 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1069 if (bb->aux)
1070 abort ();
1071 #endif
1073 tmp = INITIALIZE_REG_SET (tmp_head);
1074 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1075 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1077 /* Inconveniently, this is only readily available in hard reg set form. */
1078 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1079 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1080 SET_REGNO_REG_SET (invalidated_by_call, i);
1082 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1083 because the `head == tail' style test for an empty queue doesn't
1084 work with a full queue. */
1085 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1086 qtail = queue;
1087 qhead = qend = queue + n_basic_blocks + 2;
1089 /* Queue the blocks set in the initial mask. Do this in reverse block
1090 number order so that we are more likely for the first round to do
1091 useful work. We use AUX non-null to flag that the block is queued. */
1092 if (blocks_in)
1094 FOR_EACH_BB (bb)
1095 if (TEST_BIT (blocks_in, bb->index))
1097 *--qhead = bb;
1098 bb->aux = bb;
1101 else
1103 FOR_EACH_BB (bb)
1105 *--qhead = bb;
1106 bb->aux = bb;
1110 /* We clean aux when we remove the initially-enqueued bbs, but we
1111 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1112 unconditionally. */
1113 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1115 if (blocks_out)
1116 sbitmap_zero (blocks_out);
1118 /* We work through the queue until there are no more blocks. What
1119 is live at the end of this block is precisely the union of what
1120 is live at the beginning of all its successors. So, we set its
1121 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1122 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1123 this block by walking through the instructions in this block in
1124 reverse order and updating as we go. If that changed
1125 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1126 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1128 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1129 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1130 must either be live at the end of the block, or used within the
1131 block. In the latter case, it will certainly never disappear
1132 from GLOBAL_LIVE_AT_START. In the former case, the register
1133 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1134 for one of the successor blocks. By induction, that cannot
1135 occur. */
1136 while (qhead != qtail)
1138 int rescan, changed;
1139 basic_block bb;
1140 edge e;
1142 bb = *qhead++;
1143 if (qhead == qend)
1144 qhead = queue;
1145 bb->aux = NULL;
1147 /* Begin by propagating live_at_start from the successor blocks. */
1148 CLEAR_REG_SET (new_live_at_end);
1150 if (bb->succ)
1151 for (e = bb->succ; e; e = e->succ_next)
1153 basic_block sb = e->dest;
1155 /* Call-clobbered registers die across exception and
1156 call edges. */
1157 /* ??? Abnormal call edges ignored for the moment, as this gets
1158 confused by sibling call edges, which crashes reg-stack. */
1159 if (e->flags & EDGE_EH)
1161 bitmap_operation (tmp, sb->global_live_at_start,
1162 invalidated_by_call, BITMAP_AND_COMPL);
1163 IOR_REG_SET (new_live_at_end, tmp);
1165 else
1166 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1168 /* If a target saves one register in another (instead of on
1169 the stack) the save register will need to be live for EH. */
1170 if (e->flags & EDGE_EH)
1171 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1172 if (EH_USES (i))
1173 SET_REGNO_REG_SET (new_live_at_end, i);
1175 else
1177 /* This might be a noreturn function that throws. And
1178 even if it isn't, getting the unwind info right helps
1179 debugging. */
1180 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1181 if (EH_USES (i))
1182 SET_REGNO_REG_SET (new_live_at_end, i);
1185 /* The all-important stack pointer must always be live. */
1186 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1188 /* Before reload, there are a few registers that must be forced
1189 live everywhere -- which might not already be the case for
1190 blocks within infinite loops. */
1191 if (! reload_completed)
1193 /* Any reference to any pseudo before reload is a potential
1194 reference of the frame pointer. */
1195 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1197 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1198 /* Pseudos with argument area equivalences may require
1199 reloading via the argument pointer. */
1200 if (fixed_regs[ARG_POINTER_REGNUM])
1201 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1202 #endif
1204 /* Any constant, or pseudo with constant equivalences, may
1205 require reloading from memory using the pic register. */
1206 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1207 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1208 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1211 /* Regs used in phi nodes are not included in
1212 global_live_at_start, since they are live only along a
1213 particular edge. Set those regs that are live because of a
1214 phi node alternative corresponding to this particular block. */
1215 if (in_ssa_form)
1216 for_each_successor_phi (bb, &set_phi_alternative_reg,
1217 new_live_at_end);
1219 if (bb == ENTRY_BLOCK_PTR)
1221 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1222 continue;
1225 /* On our first pass through this block, we'll go ahead and continue.
1226 Recognize first pass by local_set NULL. On subsequent passes, we
1227 get to skip out early if live_at_end wouldn't have changed. */
1229 if (bb->local_set == NULL)
1231 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1232 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1233 rescan = 1;
1235 else
1237 /* If any bits were removed from live_at_end, we'll have to
1238 rescan the block. This wouldn't be necessary if we had
1239 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1240 local_live is really dependent on live_at_end. */
1241 CLEAR_REG_SET (tmp);
1242 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1243 new_live_at_end, BITMAP_AND_COMPL);
1245 if (! rescan)
1247 /* If any of the registers in the new live_at_end set are
1248 conditionally set in this basic block, we must rescan.
1249 This is because conditional lifetimes at the end of the
1250 block do not just take the live_at_end set into account,
1251 but also the liveness at the start of each successor
1252 block. We can miss changes in those sets if we only
1253 compare the new live_at_end against the previous one. */
1254 CLEAR_REG_SET (tmp);
1255 rescan = bitmap_operation (tmp, new_live_at_end,
1256 bb->cond_local_set, BITMAP_AND);
1259 if (! rescan)
1261 /* Find the set of changed bits. Take this opportunity
1262 to notice that this set is empty and early out. */
1263 CLEAR_REG_SET (tmp);
1264 changed = bitmap_operation (tmp, bb->global_live_at_end,
1265 new_live_at_end, BITMAP_XOR);
1266 if (! changed)
1267 continue;
1269 /* If any of the changed bits overlap with local_set,
1270 we'll have to rescan the block. Detect overlap by
1271 the AND with ~local_set turning off bits. */
1272 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1273 BITMAP_AND_COMPL);
1277 /* Let our caller know that BB changed enough to require its
1278 death notes updated. */
1279 if (blocks_out)
1280 SET_BIT (blocks_out, bb->index);
1282 if (! rescan)
1284 /* Add to live_at_start the set of all registers in
1285 new_live_at_end that aren't in the old live_at_end. */
1287 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1288 BITMAP_AND_COMPL);
1289 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1291 changed = bitmap_operation (bb->global_live_at_start,
1292 bb->global_live_at_start,
1293 tmp, BITMAP_IOR);
1294 if (! changed)
1295 continue;
1297 else
1299 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1301 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1302 into live_at_start. */
1303 propagate_block (bb, new_live_at_end, bb->local_set,
1304 bb->cond_local_set, flags);
1306 /* If live_at start didn't change, no need to go farther. */
1307 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1308 continue;
1310 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1313 /* Queue all predecessors of BB so that we may re-examine
1314 their live_at_end. */
1315 for (e = bb->pred; e; e = e->pred_next)
1317 basic_block pb = e->src;
1318 if (pb->aux == NULL)
1320 *qtail++ = pb;
1321 if (qtail == qend)
1322 qtail = queue;
1323 pb->aux = pb;
1328 FREE_REG_SET (tmp);
1329 FREE_REG_SET (new_live_at_end);
1330 FREE_REG_SET (invalidated_by_call);
1332 if (blocks_out)
1334 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1336 basic_block bb = BASIC_BLOCK (i);
1337 FREE_REG_SET (bb->local_set);
1338 FREE_REG_SET (bb->cond_local_set);
1341 else
1343 FOR_EACH_BB (bb)
1345 FREE_REG_SET (bb->local_set);
1346 FREE_REG_SET (bb->cond_local_set);
1350 free (queue);
1354 /* This structure is used to pass parameters to and from the
1355 the function find_regno_partial(). It is used to pass in the
1356 register number we are looking, as well as to return any rtx
1357 we find. */
1359 typedef struct {
1360 unsigned regno_to_find;
1361 rtx retval;
1362 } find_regno_partial_param;
1365 /* Find the rtx for the reg numbers specified in 'data' if it is
1366 part of an expression which only uses part of the register. Return
1367 it in the structure passed in. */
1368 static int
1369 find_regno_partial (rtx *ptr, void *data)
1371 find_regno_partial_param *param = (find_regno_partial_param *)data;
1372 unsigned reg = param->regno_to_find;
1373 param->retval = NULL_RTX;
1375 if (*ptr == NULL_RTX)
1376 return 0;
1378 switch (GET_CODE (*ptr))
1380 case ZERO_EXTRACT:
1381 case SIGN_EXTRACT:
1382 case STRICT_LOW_PART:
1383 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1385 param->retval = XEXP (*ptr, 0);
1386 return 1;
1388 break;
1390 case SUBREG:
1391 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1392 && REGNO (SUBREG_REG (*ptr)) == reg)
1394 param->retval = SUBREG_REG (*ptr);
1395 return 1;
1397 break;
1399 default:
1400 break;
1403 return 0;
1406 /* Process all immediate successors of the entry block looking for pseudo
1407 registers which are live on entry. Find all of those whose first
1408 instance is a partial register reference of some kind, and initialize
1409 them to 0 after the entry block. This will prevent bit sets within
1410 registers whose value is unknown, and may contain some kind of sticky
1411 bits we don't want. */
1414 initialize_uninitialized_subregs (void)
1416 rtx insn;
1417 edge e;
1418 int reg, did_something = 0;
1419 find_regno_partial_param param;
1421 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1423 basic_block bb = e->dest;
1424 regset map = bb->global_live_at_start;
1425 EXECUTE_IF_SET_IN_REG_SET (map,
1426 FIRST_PSEUDO_REGISTER, reg,
1428 int uid = REGNO_FIRST_UID (reg);
1429 rtx i;
1431 /* Find an insn which mentions the register we are looking for.
1432 Its preferable to have an instance of the register's rtl since
1433 there may be various flags set which we need to duplicate.
1434 If we can't find it, its probably an automatic whose initial
1435 value doesn't matter, or hopefully something we don't care about. */
1436 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1438 if (i != NULL_RTX)
1440 /* Found the insn, now get the REG rtx, if we can. */
1441 param.regno_to_find = reg;
1442 for_each_rtx (&i, find_regno_partial, &param);
1443 if (param.retval != NULL_RTX)
1445 start_sequence ();
1446 emit_move_insn (param.retval,
1447 CONST0_RTX (GET_MODE (param.retval)));
1448 insn = get_insns ();
1449 end_sequence ();
1450 insert_insn_on_edge (insn, e);
1451 did_something = 1;
1457 if (did_something)
1458 commit_edge_insertions ();
1459 return did_something;
1463 /* Subroutines of life analysis. */
1465 /* Allocate the permanent data structures that represent the results
1466 of life analysis. Not static since used also for stupid life analysis. */
1468 void
1469 allocate_bb_life_data (void)
1471 basic_block bb;
1473 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1475 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1476 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1479 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1482 void
1483 allocate_reg_life_data (void)
1485 int i;
1487 max_regno = max_reg_num ();
1489 /* Recalculate the register space, in case it has grown. Old style
1490 vector oriented regsets would set regset_{size,bytes} here also. */
1491 allocate_reg_info (max_regno, FALSE, FALSE);
1493 /* Reset all the data we'll collect in propagate_block and its
1494 subroutines. */
1495 for (i = 0; i < max_regno; i++)
1497 REG_N_SETS (i) = 0;
1498 REG_N_REFS (i) = 0;
1499 REG_N_DEATHS (i) = 0;
1500 REG_N_CALLS_CROSSED (i) = 0;
1501 REG_LIVE_LENGTH (i) = 0;
1502 REG_FREQ (i) = 0;
1503 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1507 /* Delete dead instructions for propagate_block. */
1509 static void
1510 propagate_block_delete_insn (rtx insn)
1512 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1514 /* If the insn referred to a label, and that label was attached to
1515 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1516 pretty much mandatory to delete it, because the ADDR_VEC may be
1517 referencing labels that no longer exist.
1519 INSN may reference a deleted label, particularly when a jump
1520 table has been optimized into a direct jump. There's no
1521 real good way to fix up the reference to the deleted label
1522 when the label is deleted, so we just allow it here. */
1524 if (inote && GET_CODE (inote) == CODE_LABEL)
1526 rtx label = XEXP (inote, 0);
1527 rtx next;
1529 /* The label may be forced if it has been put in the constant
1530 pool. If that is the only use we must discard the table
1531 jump following it, but not the label itself. */
1532 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1533 && (next = next_nonnote_insn (label)) != NULL
1534 && GET_CODE (next) == JUMP_INSN
1535 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1536 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1538 rtx pat = PATTERN (next);
1539 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1540 int len = XVECLEN (pat, diff_vec_p);
1541 int i;
1543 for (i = 0; i < len; i++)
1544 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1546 delete_insn_and_edges (next);
1547 ndead++;
1551 delete_insn_and_edges (insn);
1552 ndead++;
1555 /* Delete dead libcalls for propagate_block. Return the insn
1556 before the libcall. */
1558 static rtx
1559 propagate_block_delete_libcall (rtx insn, rtx note)
1561 rtx first = XEXP (note, 0);
1562 rtx before = PREV_INSN (first);
1564 delete_insn_chain_and_edges (first, insn);
1565 ndead++;
1566 return before;
1569 /* Update the life-status of regs for one insn. Return the previous insn. */
1572 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1574 rtx prev = PREV_INSN (insn);
1575 int flags = pbi->flags;
1576 int insn_is_dead = 0;
1577 int libcall_is_dead = 0;
1578 rtx note;
1579 int i;
1581 if (! INSN_P (insn))
1582 return prev;
1584 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1585 if (flags & PROP_SCAN_DEAD_CODE)
1587 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1588 libcall_is_dead = (insn_is_dead && note != 0
1589 && libcall_dead_p (pbi, note, insn));
1592 /* If an instruction consists of just dead store(s) on final pass,
1593 delete it. */
1594 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1596 /* If we're trying to delete a prologue or epilogue instruction
1597 that isn't flagged as possibly being dead, something is wrong.
1598 But if we are keeping the stack pointer depressed, we might well
1599 be deleting insns that are used to compute the amount to update
1600 it by, so they are fine. */
1601 if (reload_completed
1602 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1603 && (TYPE_RETURNS_STACK_DEPRESSED
1604 (TREE_TYPE (current_function_decl))))
1605 && (((HAVE_epilogue || HAVE_prologue)
1606 && prologue_epilogue_contains (insn))
1607 || (HAVE_sibcall_epilogue
1608 && sibcall_epilogue_contains (insn)))
1609 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1610 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1612 /* Record sets. Do this even for dead instructions, since they
1613 would have killed the values if they hadn't been deleted. */
1614 mark_set_regs (pbi, PATTERN (insn), insn);
1616 /* CC0 is now known to be dead. Either this insn used it,
1617 in which case it doesn't anymore, or clobbered it,
1618 so the next insn can't use it. */
1619 pbi->cc0_live = 0;
1621 if (libcall_is_dead)
1622 prev = propagate_block_delete_libcall ( insn, note);
1623 else
1626 /* If INSN contains a RETVAL note and is dead, but the libcall
1627 as a whole is not dead, then we want to remove INSN, but
1628 not the whole libcall sequence.
1630 However, we need to also remove the dangling REG_LIBCALL
1631 note so that we do not have mis-matched LIBCALL/RETVAL
1632 notes. In theory we could find a new location for the
1633 REG_RETVAL note, but it hardly seems worth the effort.
1635 NOTE at this point will be the RETVAL note if it exists. */
1636 if (note)
1638 rtx libcall_note;
1640 libcall_note
1641 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1642 remove_note (XEXP (note, 0), libcall_note);
1645 /* Similarly if INSN contains a LIBCALL note, remove the
1646 dangling REG_RETVAL note. */
1647 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1648 if (note)
1650 rtx retval_note;
1652 retval_note
1653 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1654 remove_note (XEXP (note, 0), retval_note);
1657 /* Now delete INSN. */
1658 propagate_block_delete_insn (insn);
1661 return prev;
1664 /* See if this is an increment or decrement that can be merged into
1665 a following memory address. */
1666 #ifdef AUTO_INC_DEC
1668 rtx x = single_set (insn);
1670 /* Does this instruction increment or decrement a register? */
1671 if ((flags & PROP_AUTOINC)
1672 && x != 0
1673 && GET_CODE (SET_DEST (x)) == REG
1674 && (GET_CODE (SET_SRC (x)) == PLUS
1675 || GET_CODE (SET_SRC (x)) == MINUS)
1676 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1677 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1678 /* Ok, look for a following memory ref we can combine with.
1679 If one is found, change the memory ref to a PRE_INC
1680 or PRE_DEC, cancel this insn, and return 1.
1681 Return 0 if nothing has been done. */
1682 && try_pre_increment_1 (pbi, insn))
1683 return prev;
1685 #endif /* AUTO_INC_DEC */
1687 CLEAR_REG_SET (pbi->new_set);
1689 /* If this is not the final pass, and this insn is copying the value of
1690 a library call and it's dead, don't scan the insns that perform the
1691 library call, so that the call's arguments are not marked live. */
1692 if (libcall_is_dead)
1694 /* Record the death of the dest reg. */
1695 mark_set_regs (pbi, PATTERN (insn), insn);
1697 insn = XEXP (note, 0);
1698 return PREV_INSN (insn);
1700 else if (GET_CODE (PATTERN (insn)) == SET
1701 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1702 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1703 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1704 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1705 /* We have an insn to pop a constant amount off the stack.
1706 (Such insns use PLUS regardless of the direction of the stack,
1707 and any insn to adjust the stack by a constant is always a pop.)
1708 These insns, if not dead stores, have no effect on life, though
1709 they do have an effect on the memory stores we are tracking. */
1710 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1711 else
1713 rtx note;
1714 /* Any regs live at the time of a call instruction must not go
1715 in a register clobbered by calls. Find all regs now live and
1716 record this for them. */
1718 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1719 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1720 { REG_N_CALLS_CROSSED (i)++; });
1722 /* Record sets. Do this even for dead instructions, since they
1723 would have killed the values if they hadn't been deleted. */
1724 mark_set_regs (pbi, PATTERN (insn), insn);
1726 if (GET_CODE (insn) == CALL_INSN)
1728 regset live_at_end;
1729 bool sibcall_p;
1730 rtx note, cond;
1731 int i;
1733 cond = NULL_RTX;
1734 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1735 cond = COND_EXEC_TEST (PATTERN (insn));
1737 /* Non-constant calls clobber memory, constant calls do not
1738 clobber memory, though they may clobber outgoing arguments
1739 on the stack. */
1740 if (! CONST_OR_PURE_CALL_P (insn))
1742 free_EXPR_LIST_list (&pbi->mem_set_list);
1743 pbi->mem_set_list_len = 0;
1745 else
1746 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1748 /* There may be extra registers to be clobbered. */
1749 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1750 note;
1751 note = XEXP (note, 1))
1752 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1753 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1754 cond, insn, pbi->flags);
1756 /* Calls change all call-used and global registers; sibcalls do not
1757 clobber anything that must be preserved at end-of-function,
1758 except for return values. */
1760 sibcall_p = SIBLING_CALL_P (insn);
1761 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1762 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1763 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1764 && ! (sibcall_p
1765 && REGNO_REG_SET_P (live_at_end, i)
1766 && ! refers_to_regno_p (i, i+1,
1767 current_function_return_rtx,
1768 (rtx *) 0)))
1770 /* We do not want REG_UNUSED notes for these registers. */
1771 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1772 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1776 /* If an insn doesn't use CC0, it becomes dead since we assume
1777 that every insn clobbers it. So show it dead here;
1778 mark_used_regs will set it live if it is referenced. */
1779 pbi->cc0_live = 0;
1781 /* Record uses. */
1782 if (! insn_is_dead)
1783 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1784 if ((flags & PROP_EQUAL_NOTES)
1785 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1786 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1787 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1789 /* Sometimes we may have inserted something before INSN (such as a move)
1790 when we make an auto-inc. So ensure we will scan those insns. */
1791 #ifdef AUTO_INC_DEC
1792 prev = PREV_INSN (insn);
1793 #endif
1795 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1797 int i;
1798 rtx note, cond;
1800 cond = NULL_RTX;
1801 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1802 cond = COND_EXEC_TEST (PATTERN (insn));
1804 /* Calls use their arguments, and may clobber memory which
1805 address involves some register. */
1806 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1807 note;
1808 note = XEXP (note, 1))
1809 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1810 of which mark_used_regs knows how to handle. */
1811 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1813 /* The stack ptr is used (honorarily) by a CALL insn. */
1814 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1816 /* Calls may also reference any of the global registers,
1817 so they are made live. */
1818 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1819 if (global_regs[i])
1820 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1824 /* On final pass, update counts of how many insns in which each reg
1825 is live. */
1826 if (flags & PROP_REG_INFO)
1827 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1828 { REG_LIVE_LENGTH (i)++; });
1830 return prev;
1833 /* Initialize a propagate_block_info struct for public consumption.
1834 Note that the structure itself is opaque to this file, but that
1835 the user can use the regsets provided here. */
1837 struct propagate_block_info *
1838 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1839 regset cond_local_set, int flags)
1841 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1843 pbi->bb = bb;
1844 pbi->reg_live = live;
1845 pbi->mem_set_list = NULL_RTX;
1846 pbi->mem_set_list_len = 0;
1847 pbi->local_set = local_set;
1848 pbi->cond_local_set = cond_local_set;
1849 pbi->cc0_live = 0;
1850 pbi->flags = flags;
1852 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1853 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1854 else
1855 pbi->reg_next_use = NULL;
1857 pbi->new_set = BITMAP_XMALLOC ();
1859 #ifdef HAVE_conditional_execution
1860 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1861 free_reg_cond_life_info);
1862 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1864 /* If this block ends in a conditional branch, for each register live
1865 from one side of the branch and not the other, record the register
1866 as conditionally dead. */
1867 if (GET_CODE (bb->end) == JUMP_INSN
1868 && any_condjump_p (bb->end))
1870 regset_head diff_head;
1871 regset diff = INITIALIZE_REG_SET (diff_head);
1872 basic_block bb_true, bb_false;
1873 rtx cond_true, cond_false, set_src;
1874 int i;
1876 /* Identify the successor blocks. */
1877 bb_true = bb->succ->dest;
1878 if (bb->succ->succ_next != NULL)
1880 bb_false = bb->succ->succ_next->dest;
1882 if (bb->succ->flags & EDGE_FALLTHRU)
1884 basic_block t = bb_false;
1885 bb_false = bb_true;
1886 bb_true = t;
1888 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1889 abort ();
1891 else
1893 /* This can happen with a conditional jump to the next insn. */
1894 if (JUMP_LABEL (bb->end) != bb_true->head)
1895 abort ();
1897 /* Simplest way to do nothing. */
1898 bb_false = bb_true;
1901 /* Extract the condition from the branch. */
1902 set_src = SET_SRC (pc_set (bb->end));
1903 cond_true = XEXP (set_src, 0);
1904 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1905 GET_MODE (cond_true), XEXP (cond_true, 0),
1906 XEXP (cond_true, 1));
1907 if (GET_CODE (XEXP (set_src, 1)) == PC)
1909 rtx t = cond_false;
1910 cond_false = cond_true;
1911 cond_true = t;
1914 /* Compute which register lead different lives in the successors. */
1915 if (bitmap_operation (diff, bb_true->global_live_at_start,
1916 bb_false->global_live_at_start, BITMAP_XOR))
1918 rtx reg = XEXP (cond_true, 0);
1920 if (GET_CODE (reg) == SUBREG)
1921 reg = SUBREG_REG (reg);
1923 if (GET_CODE (reg) != REG)
1924 abort ();
1926 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1928 /* For each such register, mark it conditionally dead. */
1929 EXECUTE_IF_SET_IN_REG_SET
1930 (diff, 0, i,
1932 struct reg_cond_life_info *rcli;
1933 rtx cond;
1935 rcli = xmalloc (sizeof (*rcli));
1937 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1938 cond = cond_false;
1939 else
1940 cond = cond_true;
1941 rcli->condition = cond;
1942 rcli->stores = const0_rtx;
1943 rcli->orig_condition = cond;
1945 splay_tree_insert (pbi->reg_cond_dead, i,
1946 (splay_tree_value) rcli);
1950 FREE_REG_SET (diff);
1952 #endif
1954 /* If this block has no successors, any stores to the frame that aren't
1955 used later in the block are dead. So make a pass over the block
1956 recording any such that are made and show them dead at the end. We do
1957 a very conservative and simple job here. */
1958 if (optimize
1959 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1960 && (TYPE_RETURNS_STACK_DEPRESSED
1961 (TREE_TYPE (current_function_decl))))
1962 && (flags & PROP_SCAN_DEAD_STORES)
1963 && (bb->succ == NULL
1964 || (bb->succ->succ_next == NULL
1965 && bb->succ->dest == EXIT_BLOCK_PTR
1966 && ! current_function_calls_eh_return)))
1968 rtx insn, set;
1969 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1970 if (GET_CODE (insn) == INSN
1971 && (set = single_set (insn))
1972 && GET_CODE (SET_DEST (set)) == MEM)
1974 rtx mem = SET_DEST (set);
1975 rtx canon_mem = canon_rtx (mem);
1977 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1978 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1979 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1980 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1981 add_to_mem_set_list (pbi, canon_mem);
1985 return pbi;
1988 /* Release a propagate_block_info struct. */
1990 void
1991 free_propagate_block_info (struct propagate_block_info *pbi)
1993 free_EXPR_LIST_list (&pbi->mem_set_list);
1995 BITMAP_XFREE (pbi->new_set);
1997 #ifdef HAVE_conditional_execution
1998 splay_tree_delete (pbi->reg_cond_dead);
1999 BITMAP_XFREE (pbi->reg_cond_reg);
2000 #endif
2002 if (pbi->reg_next_use)
2003 free (pbi->reg_next_use);
2005 free (pbi);
2008 /* Compute the registers live at the beginning of a basic block BB from
2009 those live at the end.
2011 When called, REG_LIVE contains those live at the end. On return, it
2012 contains those live at the beginning.
2014 LOCAL_SET, if non-null, will be set with all registers killed
2015 unconditionally by this basic block.
2016 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2017 killed conditionally by this basic block. If there is any unconditional
2018 set of a register, then the corresponding bit will be set in LOCAL_SET
2019 and cleared in COND_LOCAL_SET.
2020 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2021 case, the resulting set will be equal to the union of the two sets that
2022 would otherwise be computed.
2024 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2027 propagate_block (basic_block bb, regset live, regset local_set,
2028 regset cond_local_set, int flags)
2030 struct propagate_block_info *pbi;
2031 rtx insn, prev;
2032 int changed;
2034 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2036 if (flags & PROP_REG_INFO)
2038 int i;
2040 /* Process the regs live at the end of the block.
2041 Mark them as not local to any one basic block. */
2042 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2043 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2046 /* Scan the block an insn at a time from end to beginning. */
2048 changed = 0;
2049 for (insn = bb->end;; insn = prev)
2051 /* If this is a call to `setjmp' et al, warn if any
2052 non-volatile datum is live. */
2053 if ((flags & PROP_REG_INFO)
2054 && GET_CODE (insn) == CALL_INSN
2055 && find_reg_note (insn, REG_SETJMP, NULL))
2056 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2058 prev = propagate_one_insn (pbi, insn);
2059 if (!prev)
2060 changed |= insn != get_insns ();
2061 else
2062 changed |= NEXT_INSN (prev) != insn;
2064 if (insn == bb->head)
2065 break;
2068 free_propagate_block_info (pbi);
2070 return changed;
2073 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2074 (SET expressions whose destinations are registers dead after the insn).
2075 NEEDED is the regset that says which regs are alive after the insn.
2077 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2079 If X is the entire body of an insn, NOTES contains the reg notes
2080 pertaining to the insn. */
2082 static int
2083 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2084 rtx notes ATTRIBUTE_UNUSED)
2086 enum rtx_code code = GET_CODE (x);
2088 /* Don't eliminate insns that may trap. */
2089 if (flag_non_call_exceptions && may_trap_p (x))
2090 return 0;
2092 #ifdef AUTO_INC_DEC
2093 /* As flow is invoked after combine, we must take existing AUTO_INC
2094 expressions into account. */
2095 for (; notes; notes = XEXP (notes, 1))
2097 if (REG_NOTE_KIND (notes) == REG_INC)
2099 int regno = REGNO (XEXP (notes, 0));
2101 /* Don't delete insns to set global regs. */
2102 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2103 || REGNO_REG_SET_P (pbi->reg_live, regno))
2104 return 0;
2107 #endif
2109 /* If setting something that's a reg or part of one,
2110 see if that register's altered value will be live. */
2112 if (code == SET)
2114 rtx r = SET_DEST (x);
2116 #ifdef HAVE_cc0
2117 if (GET_CODE (r) == CC0)
2118 return ! pbi->cc0_live;
2119 #endif
2121 /* A SET that is a subroutine call cannot be dead. */
2122 if (GET_CODE (SET_SRC (x)) == CALL)
2124 if (! call_ok)
2125 return 0;
2128 /* Don't eliminate loads from volatile memory or volatile asms. */
2129 else if (volatile_refs_p (SET_SRC (x)))
2130 return 0;
2132 if (GET_CODE (r) == MEM)
2134 rtx temp, canon_r;
2136 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2137 return 0;
2139 canon_r = canon_rtx (r);
2141 /* Walk the set of memory locations we are currently tracking
2142 and see if one is an identical match to this memory location.
2143 If so, this memory write is dead (remember, we're walking
2144 backwards from the end of the block to the start). Since
2145 rtx_equal_p does not check the alias set or flags, we also
2146 must have the potential for them to conflict (anti_dependence). */
2147 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2148 if (unchanging_anti_dependence (r, XEXP (temp, 0)))
2150 rtx mem = XEXP (temp, 0);
2152 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2153 && (GET_MODE_SIZE (GET_MODE (canon_r))
2154 <= GET_MODE_SIZE (GET_MODE (mem))))
2155 return 1;
2157 #ifdef AUTO_INC_DEC
2158 /* Check if memory reference matches an auto increment. Only
2159 post increment/decrement or modify are valid. */
2160 if (GET_MODE (mem) == GET_MODE (r)
2161 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2162 || GET_CODE (XEXP (mem, 0)) == POST_INC
2163 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2164 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2165 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2166 return 1;
2167 #endif
2170 else
2172 while (GET_CODE (r) == SUBREG
2173 || GET_CODE (r) == STRICT_LOW_PART
2174 || GET_CODE (r) == ZERO_EXTRACT)
2175 r = XEXP (r, 0);
2177 if (GET_CODE (r) == REG)
2179 int regno = REGNO (r);
2181 /* Obvious. */
2182 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2183 return 0;
2185 /* If this is a hard register, verify that subsequent
2186 words are not needed. */
2187 if (regno < FIRST_PSEUDO_REGISTER)
2189 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2191 while (--n > 0)
2192 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2193 return 0;
2196 /* Don't delete insns to set global regs. */
2197 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2198 return 0;
2200 /* Make sure insns to set the stack pointer aren't deleted. */
2201 if (regno == STACK_POINTER_REGNUM)
2202 return 0;
2204 /* ??? These bits might be redundant with the force live bits
2205 in calculate_global_regs_live. We would delete from
2206 sequential sets; whether this actually affects real code
2207 for anything but the stack pointer I don't know. */
2208 /* Make sure insns to set the frame pointer aren't deleted. */
2209 if (regno == FRAME_POINTER_REGNUM
2210 && (! reload_completed || frame_pointer_needed))
2211 return 0;
2212 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2213 if (regno == HARD_FRAME_POINTER_REGNUM
2214 && (! reload_completed || frame_pointer_needed))
2215 return 0;
2216 #endif
2218 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2219 /* Make sure insns to set arg pointer are never deleted
2220 (if the arg pointer isn't fixed, there will be a USE
2221 for it, so we can treat it normally). */
2222 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2223 return 0;
2224 #endif
2226 /* Otherwise, the set is dead. */
2227 return 1;
2232 /* If performing several activities, insn is dead if each activity
2233 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2234 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2235 worth keeping. */
2236 else if (code == PARALLEL)
2238 int i = XVECLEN (x, 0);
2240 for (i--; i >= 0; i--)
2241 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2242 && GET_CODE (XVECEXP (x, 0, i)) != USE
2243 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2244 return 0;
2246 return 1;
2249 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2250 is not necessarily true for hard registers. */
2251 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2252 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2253 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2254 return 1;
2256 /* We do not check other CLOBBER or USE here. An insn consisting of just
2257 a CLOBBER or just a USE should not be deleted. */
2258 return 0;
2261 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2262 return 1 if the entire library call is dead.
2263 This is true if INSN copies a register (hard or pseudo)
2264 and if the hard return reg of the call insn is dead.
2265 (The caller should have tested the destination of the SET inside
2266 INSN already for death.)
2268 If this insn doesn't just copy a register, then we don't
2269 have an ordinary libcall. In that case, cse could not have
2270 managed to substitute the source for the dest later on,
2271 so we can assume the libcall is dead.
2273 PBI is the block info giving pseudoregs live before this insn.
2274 NOTE is the REG_RETVAL note of the insn. */
2276 static int
2277 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2279 rtx x = single_set (insn);
2281 if (x)
2283 rtx r = SET_SRC (x);
2285 if (GET_CODE (r) == REG)
2287 rtx call = XEXP (note, 0);
2288 rtx call_pat;
2289 int i;
2291 /* Find the call insn. */
2292 while (call != insn && GET_CODE (call) != CALL_INSN)
2293 call = NEXT_INSN (call);
2295 /* If there is none, do nothing special,
2296 since ordinary death handling can understand these insns. */
2297 if (call == insn)
2298 return 0;
2300 /* See if the hard reg holding the value is dead.
2301 If this is a PARALLEL, find the call within it. */
2302 call_pat = PATTERN (call);
2303 if (GET_CODE (call_pat) == PARALLEL)
2305 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2306 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2307 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2308 break;
2310 /* This may be a library call that is returning a value
2311 via invisible pointer. Do nothing special, since
2312 ordinary death handling can understand these insns. */
2313 if (i < 0)
2314 return 0;
2316 call_pat = XVECEXP (call_pat, 0, i);
2319 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2322 return 1;
2325 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2326 live at function entry. Don't count global register variables, variables
2327 in registers that can be used for function arg passing, or variables in
2328 fixed hard registers. */
2331 regno_uninitialized (unsigned int regno)
2333 if (n_basic_blocks == 0
2334 || (regno < FIRST_PSEUDO_REGISTER
2335 && (global_regs[regno]
2336 || fixed_regs[regno]
2337 || FUNCTION_ARG_REGNO_P (regno))))
2338 return 0;
2340 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2343 /* 1 if register REGNO was alive at a place where `setjmp' was called
2344 and was set more than once or is an argument.
2345 Such regs may be clobbered by `longjmp'. */
2348 regno_clobbered_at_setjmp (int regno)
2350 if (n_basic_blocks == 0)
2351 return 0;
2353 return ((REG_N_SETS (regno) > 1
2354 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2355 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2358 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2359 maximal list size; look for overlaps in mode and select the largest. */
2360 static void
2361 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2363 rtx i;
2365 /* We don't know how large a BLKmode store is, so we must not
2366 take them into consideration. */
2367 if (GET_MODE (mem) == BLKmode)
2368 return;
2370 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2372 rtx e = XEXP (i, 0);
2373 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2375 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2377 #ifdef AUTO_INC_DEC
2378 /* If we must store a copy of the mem, we can just modify
2379 the mode of the stored copy. */
2380 if (pbi->flags & PROP_AUTOINC)
2381 PUT_MODE (e, GET_MODE (mem));
2382 else
2383 #endif
2384 XEXP (i, 0) = mem;
2386 return;
2390 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2392 #ifdef AUTO_INC_DEC
2393 /* Store a copy of mem, otherwise the address may be
2394 scrogged by find_auto_inc. */
2395 if (pbi->flags & PROP_AUTOINC)
2396 mem = shallow_copy_rtx (mem);
2397 #endif
2398 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2399 pbi->mem_set_list_len++;
2403 /* INSN references memory, possibly using autoincrement addressing modes.
2404 Find any entries on the mem_set_list that need to be invalidated due
2405 to an address change. */
2407 static int
2408 invalidate_mems_from_autoinc (rtx *px, void *data)
2410 rtx x = *px;
2411 struct propagate_block_info *pbi = data;
2413 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2415 invalidate_mems_from_set (pbi, XEXP (x, 0));
2416 return -1;
2419 return 0;
2422 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2424 static void
2425 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2427 rtx temp = pbi->mem_set_list;
2428 rtx prev = NULL_RTX;
2429 rtx next;
2431 while (temp)
2433 next = XEXP (temp, 1);
2434 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2436 /* Splice this entry out of the list. */
2437 if (prev)
2438 XEXP (prev, 1) = next;
2439 else
2440 pbi->mem_set_list = next;
2441 free_EXPR_LIST_node (temp);
2442 pbi->mem_set_list_len--;
2444 else
2445 prev = temp;
2446 temp = next;
2450 /* Process the registers that are set within X. Their bits are set to
2451 1 in the regset DEAD, because they are dead prior to this insn.
2453 If INSN is nonzero, it is the insn being processed.
2455 FLAGS is the set of operations to perform. */
2457 static void
2458 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2460 rtx cond = NULL_RTX;
2461 rtx link;
2462 enum rtx_code code;
2464 if (insn)
2465 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2467 if (REG_NOTE_KIND (link) == REG_INC)
2468 mark_set_1 (pbi, SET, XEXP (link, 0),
2469 (GET_CODE (x) == COND_EXEC
2470 ? COND_EXEC_TEST (x) : NULL_RTX),
2471 insn, pbi->flags);
2473 retry:
2474 switch (code = GET_CODE (x))
2476 case SET:
2477 case CLOBBER:
2478 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2479 return;
2481 case COND_EXEC:
2482 cond = COND_EXEC_TEST (x);
2483 x = COND_EXEC_CODE (x);
2484 goto retry;
2486 case PARALLEL:
2488 int i;
2490 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2492 rtx sub = XVECEXP (x, 0, i);
2493 switch (code = GET_CODE (sub))
2495 case COND_EXEC:
2496 if (cond != NULL_RTX)
2497 abort ();
2499 cond = COND_EXEC_TEST (sub);
2500 sub = COND_EXEC_CODE (sub);
2501 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2502 break;
2503 /* Fall through. */
2505 case SET:
2506 case CLOBBER:
2507 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2508 break;
2510 default:
2511 break;
2514 break;
2517 default:
2518 break;
2522 /* Process a single set, which appears in INSN. REG (which may not
2523 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2524 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2525 If the set is conditional (because it appear in a COND_EXEC), COND
2526 will be the condition. */
2528 static void
2529 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2531 int regno_first = -1, regno_last = -1;
2532 unsigned long not_dead = 0;
2533 int i;
2535 /* Modifying just one hardware register of a multi-reg value or just a
2536 byte field of a register does not mean the value from before this insn
2537 is now dead. Of course, if it was dead after it's unused now. */
2539 switch (GET_CODE (reg))
2541 case PARALLEL:
2542 /* Some targets place small structures in registers for return values of
2543 functions. We have to detect this case specially here to get correct
2544 flow information. */
2545 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2546 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2547 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2548 flags);
2549 return;
2551 case ZERO_EXTRACT:
2552 case SIGN_EXTRACT:
2553 case STRICT_LOW_PART:
2554 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2556 reg = XEXP (reg, 0);
2557 while (GET_CODE (reg) == SUBREG
2558 || GET_CODE (reg) == ZERO_EXTRACT
2559 || GET_CODE (reg) == SIGN_EXTRACT
2560 || GET_CODE (reg) == STRICT_LOW_PART);
2561 if (GET_CODE (reg) == MEM)
2562 break;
2563 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2564 /* Fall through. */
2566 case REG:
2567 regno_last = regno_first = REGNO (reg);
2568 if (regno_first < FIRST_PSEUDO_REGISTER)
2569 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2570 break;
2572 case SUBREG:
2573 if (GET_CODE (SUBREG_REG (reg)) == REG)
2575 enum machine_mode outer_mode = GET_MODE (reg);
2576 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2578 /* Identify the range of registers affected. This is moderately
2579 tricky for hard registers. See alter_subreg. */
2581 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2582 if (regno_first < FIRST_PSEUDO_REGISTER)
2584 regno_first += subreg_regno_offset (regno_first, inner_mode,
2585 SUBREG_BYTE (reg),
2586 outer_mode);
2587 regno_last = (regno_first
2588 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2590 /* Since we've just adjusted the register number ranges, make
2591 sure REG matches. Otherwise some_was_live will be clear
2592 when it shouldn't have been, and we'll create incorrect
2593 REG_UNUSED notes. */
2594 reg = gen_rtx_REG (outer_mode, regno_first);
2596 else
2598 /* If the number of words in the subreg is less than the number
2599 of words in the full register, we have a well-defined partial
2600 set. Otherwise the high bits are undefined.
2602 This is only really applicable to pseudos, since we just took
2603 care of multi-word hard registers. */
2604 if (((GET_MODE_SIZE (outer_mode)
2605 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2606 < ((GET_MODE_SIZE (inner_mode)
2607 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2608 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2609 regno_first);
2611 reg = SUBREG_REG (reg);
2614 else
2615 reg = SUBREG_REG (reg);
2616 break;
2618 default:
2619 break;
2622 /* If this set is a MEM, then it kills any aliased writes.
2623 If this set is a REG, then it kills any MEMs which use the reg. */
2624 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2626 if (GET_CODE (reg) == REG)
2627 invalidate_mems_from_set (pbi, reg);
2629 /* If the memory reference had embedded side effects (autoincrement
2630 address modes. Then we may need to kill some entries on the
2631 memory set list. */
2632 if (insn && GET_CODE (reg) == MEM)
2633 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2635 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2636 /* ??? With more effort we could track conditional memory life. */
2637 && ! cond)
2638 add_to_mem_set_list (pbi, canon_rtx (reg));
2641 if (GET_CODE (reg) == REG
2642 && ! (regno_first == FRAME_POINTER_REGNUM
2643 && (! reload_completed || frame_pointer_needed))
2644 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2645 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2646 && (! reload_completed || frame_pointer_needed))
2647 #endif
2648 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2649 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2650 #endif
2653 int some_was_live = 0, some_was_dead = 0;
2655 for (i = regno_first; i <= regno_last; ++i)
2657 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2658 if (pbi->local_set)
2660 /* Order of the set operation matters here since both
2661 sets may be the same. */
2662 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2663 if (cond != NULL_RTX
2664 && ! REGNO_REG_SET_P (pbi->local_set, i))
2665 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2666 else
2667 SET_REGNO_REG_SET (pbi->local_set, i);
2669 if (code != CLOBBER)
2670 SET_REGNO_REG_SET (pbi->new_set, i);
2672 some_was_live |= needed_regno;
2673 some_was_dead |= ! needed_regno;
2676 #ifdef HAVE_conditional_execution
2677 /* Consider conditional death in deciding that the register needs
2678 a death note. */
2679 if (some_was_live && ! not_dead
2680 /* The stack pointer is never dead. Well, not strictly true,
2681 but it's very difficult to tell from here. Hopefully
2682 combine_stack_adjustments will fix up the most egregious
2683 errors. */
2684 && regno_first != STACK_POINTER_REGNUM)
2686 for (i = regno_first; i <= regno_last; ++i)
2687 if (! mark_regno_cond_dead (pbi, i, cond))
2688 not_dead |= ((unsigned long) 1) << (i - regno_first);
2690 #endif
2692 /* Additional data to record if this is the final pass. */
2693 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2694 | PROP_DEATH_NOTES | PROP_AUTOINC))
2696 rtx y;
2697 int blocknum = pbi->bb->index;
2699 y = NULL_RTX;
2700 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2702 y = pbi->reg_next_use[regno_first];
2704 /* The next use is no longer next, since a store intervenes. */
2705 for (i = regno_first; i <= regno_last; ++i)
2706 pbi->reg_next_use[i] = 0;
2709 if (flags & PROP_REG_INFO)
2711 for (i = regno_first; i <= regno_last; ++i)
2713 /* Count (weighted) references, stores, etc. This counts a
2714 register twice if it is modified, but that is correct. */
2715 REG_N_SETS (i) += 1;
2716 REG_N_REFS (i) += 1;
2717 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2719 /* The insns where a reg is live are normally counted
2720 elsewhere, but we want the count to include the insn
2721 where the reg is set, and the normal counting mechanism
2722 would not count it. */
2723 REG_LIVE_LENGTH (i) += 1;
2726 /* If this is a hard reg, record this function uses the reg. */
2727 if (regno_first < FIRST_PSEUDO_REGISTER)
2729 for (i = regno_first; i <= regno_last; i++)
2730 regs_ever_live[i] = 1;
2732 else
2734 /* Keep track of which basic blocks each reg appears in. */
2735 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2736 REG_BASIC_BLOCK (regno_first) = blocknum;
2737 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2738 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2742 if (! some_was_dead)
2744 if (flags & PROP_LOG_LINKS)
2746 /* Make a logical link from the next following insn
2747 that uses this register, back to this insn.
2748 The following insns have already been processed.
2750 We don't build a LOG_LINK for hard registers containing
2751 in ASM_OPERANDs. If these registers get replaced,
2752 we might wind up changing the semantics of the insn,
2753 even if reload can make what appear to be valid
2754 assignments later. */
2755 if (y && (BLOCK_NUM (y) == blocknum)
2756 && (regno_first >= FIRST_PSEUDO_REGISTER
2757 || asm_noperands (PATTERN (y)) < 0))
2758 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2761 else if (not_dead)
2763 else if (! some_was_live)
2765 if (flags & PROP_REG_INFO)
2766 REG_N_DEATHS (regno_first) += 1;
2768 if (flags & PROP_DEATH_NOTES)
2770 /* Note that dead stores have already been deleted
2771 when possible. If we get here, we have found a
2772 dead store that cannot be eliminated (because the
2773 same insn does something useful). Indicate this
2774 by marking the reg being set as dying here. */
2775 REG_NOTES (insn)
2776 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2779 else
2781 if (flags & PROP_DEATH_NOTES)
2783 /* This is a case where we have a multi-word hard register
2784 and some, but not all, of the words of the register are
2785 needed in subsequent insns. Write REG_UNUSED notes
2786 for those parts that were not needed. This case should
2787 be rare. */
2789 for (i = regno_first; i <= regno_last; ++i)
2790 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2791 REG_NOTES (insn)
2792 = alloc_EXPR_LIST (REG_UNUSED,
2793 regno_reg_rtx[i],
2794 REG_NOTES (insn));
2799 /* Mark the register as being dead. */
2800 if (some_was_live
2801 /* The stack pointer is never dead. Well, not strictly true,
2802 but it's very difficult to tell from here. Hopefully
2803 combine_stack_adjustments will fix up the most egregious
2804 errors. */
2805 && regno_first != STACK_POINTER_REGNUM)
2807 for (i = regno_first; i <= regno_last; ++i)
2808 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2809 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2812 else if (GET_CODE (reg) == REG)
2814 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2815 pbi->reg_next_use[regno_first] = 0;
2818 /* If this is the last pass and this is a SCRATCH, show it will be dying
2819 here and count it. */
2820 else if (GET_CODE (reg) == SCRATCH)
2822 if (flags & PROP_DEATH_NOTES)
2823 REG_NOTES (insn)
2824 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2828 #ifdef HAVE_conditional_execution
2829 /* Mark REGNO conditionally dead.
2830 Return true if the register is now unconditionally dead. */
2832 static int
2833 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2835 /* If this is a store to a predicate register, the value of the
2836 predicate is changing, we don't know that the predicate as seen
2837 before is the same as that seen after. Flush all dependent
2838 conditions from reg_cond_dead. This will make all such
2839 conditionally live registers unconditionally live. */
2840 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2841 flush_reg_cond_reg (pbi, regno);
2843 /* If this is an unconditional store, remove any conditional
2844 life that may have existed. */
2845 if (cond == NULL_RTX)
2846 splay_tree_remove (pbi->reg_cond_dead, regno);
2847 else
2849 splay_tree_node node;
2850 struct reg_cond_life_info *rcli;
2851 rtx ncond;
2853 /* Otherwise this is a conditional set. Record that fact.
2854 It may have been conditionally used, or there may be a
2855 subsequent set with a complimentary condition. */
2857 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2858 if (node == NULL)
2860 /* The register was unconditionally live previously.
2861 Record the current condition as the condition under
2862 which it is dead. */
2863 rcli = xmalloc (sizeof (*rcli));
2864 rcli->condition = cond;
2865 rcli->stores = cond;
2866 rcli->orig_condition = const0_rtx;
2867 splay_tree_insert (pbi->reg_cond_dead, regno,
2868 (splay_tree_value) rcli);
2870 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2872 /* Not unconditionally dead. */
2873 return 0;
2875 else
2877 /* The register was conditionally live previously.
2878 Add the new condition to the old. */
2879 rcli = (struct reg_cond_life_info *) node->value;
2880 ncond = rcli->condition;
2881 ncond = ior_reg_cond (ncond, cond, 1);
2882 if (rcli->stores == const0_rtx)
2883 rcli->stores = cond;
2884 else if (rcli->stores != const1_rtx)
2885 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2887 /* If the register is now unconditionally dead, remove the entry
2888 in the splay_tree. A register is unconditionally dead if the
2889 dead condition ncond is true. A register is also unconditionally
2890 dead if the sum of all conditional stores is an unconditional
2891 store (stores is true), and the dead condition is identically the
2892 same as the original dead condition initialized at the end of
2893 the block. This is a pointer compare, not an rtx_equal_p
2894 compare. */
2895 if (ncond == const1_rtx
2896 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2897 splay_tree_remove (pbi->reg_cond_dead, regno);
2898 else
2900 rcli->condition = ncond;
2902 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2904 /* Not unconditionally dead. */
2905 return 0;
2910 return 1;
2913 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2915 static void
2916 free_reg_cond_life_info (splay_tree_value value)
2918 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2919 free (rcli);
2922 /* Helper function for flush_reg_cond_reg. */
2924 static int
2925 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2927 struct reg_cond_life_info *rcli;
2928 int *xdata = (int *) data;
2929 unsigned int regno = xdata[0];
2931 /* Don't need to search if last flushed value was farther on in
2932 the in-order traversal. */
2933 if (xdata[1] >= (int) node->key)
2934 return 0;
2936 /* Splice out portions of the expression that refer to regno. */
2937 rcli = (struct reg_cond_life_info *) node->value;
2938 rcli->condition = elim_reg_cond (rcli->condition, regno);
2939 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2940 rcli->stores = elim_reg_cond (rcli->stores, regno);
2942 /* If the entire condition is now false, signal the node to be removed. */
2943 if (rcli->condition == const0_rtx)
2945 xdata[1] = node->key;
2946 return -1;
2948 else if (rcli->condition == const1_rtx)
2949 abort ();
2951 return 0;
2954 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2956 static void
2957 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2959 int pair[2];
2961 pair[0] = regno;
2962 pair[1] = -1;
2963 while (splay_tree_foreach (pbi->reg_cond_dead,
2964 flush_reg_cond_reg_1, pair) == -1)
2965 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2967 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2970 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2971 For ior/and, the ADD flag determines whether we want to add the new
2972 condition X to the old one unconditionally. If it is zero, we will
2973 only return a new expression if X allows us to simplify part of
2974 OLD, otherwise we return NULL to the caller.
2975 If ADD is nonzero, we will return a new condition in all cases. The
2976 toplevel caller of one of these functions should always pass 1 for
2977 ADD. */
2979 static rtx
2980 ior_reg_cond (rtx old, rtx x, int add)
2982 rtx op0, op1;
2984 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2986 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2987 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2988 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2989 return const1_rtx;
2990 if (GET_CODE (x) == GET_CODE (old)
2991 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2992 return old;
2993 if (! add)
2994 return NULL;
2995 return gen_rtx_IOR (0, old, x);
2998 switch (GET_CODE (old))
3000 case IOR:
3001 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3002 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3003 if (op0 != NULL || op1 != NULL)
3005 if (op0 == const0_rtx)
3006 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3007 if (op1 == const0_rtx)
3008 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3009 if (op0 == const1_rtx || op1 == const1_rtx)
3010 return const1_rtx;
3011 if (op0 == NULL)
3012 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3013 else if (rtx_equal_p (x, op0))
3014 /* (x | A) | x ~ (x | A). */
3015 return old;
3016 if (op1 == NULL)
3017 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3018 else if (rtx_equal_p (x, op1))
3019 /* (A | x) | x ~ (A | x). */
3020 return old;
3021 return gen_rtx_IOR (0, op0, op1);
3023 if (! add)
3024 return NULL;
3025 return gen_rtx_IOR (0, old, x);
3027 case AND:
3028 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3029 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3030 if (op0 != NULL || op1 != NULL)
3032 if (op0 == const1_rtx)
3033 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3034 if (op1 == const1_rtx)
3035 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3036 if (op0 == const0_rtx || op1 == const0_rtx)
3037 return const0_rtx;
3038 if (op0 == NULL)
3039 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3040 else if (rtx_equal_p (x, op0))
3041 /* (x & A) | x ~ x. */
3042 return op0;
3043 if (op1 == NULL)
3044 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3045 else if (rtx_equal_p (x, op1))
3046 /* (A & x) | x ~ x. */
3047 return op1;
3048 return gen_rtx_AND (0, op0, op1);
3050 if (! add)
3051 return NULL;
3052 return gen_rtx_IOR (0, old, x);
3054 case NOT:
3055 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3056 if (op0 != NULL)
3057 return not_reg_cond (op0);
3058 if (! add)
3059 return NULL;
3060 return gen_rtx_IOR (0, old, x);
3062 default:
3063 abort ();
3067 static rtx
3068 not_reg_cond (rtx x)
3070 enum rtx_code x_code;
3072 if (x == const0_rtx)
3073 return const1_rtx;
3074 else if (x == const1_rtx)
3075 return const0_rtx;
3076 x_code = GET_CODE (x);
3077 if (x_code == NOT)
3078 return XEXP (x, 0);
3079 if (GET_RTX_CLASS (x_code) == '<'
3080 && GET_CODE (XEXP (x, 0)) == REG)
3082 if (XEXP (x, 1) != const0_rtx)
3083 abort ();
3085 return gen_rtx_fmt_ee (reverse_condition (x_code),
3086 VOIDmode, XEXP (x, 0), const0_rtx);
3088 return gen_rtx_NOT (0, x);
3091 static rtx
3092 and_reg_cond (rtx old, rtx x, int add)
3094 rtx op0, op1;
3096 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3098 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3099 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3100 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3101 return const0_rtx;
3102 if (GET_CODE (x) == GET_CODE (old)
3103 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3104 return old;
3105 if (! add)
3106 return NULL;
3107 return gen_rtx_AND (0, old, x);
3110 switch (GET_CODE (old))
3112 case IOR:
3113 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3114 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3115 if (op0 != NULL || op1 != NULL)
3117 if (op0 == const0_rtx)
3118 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3119 if (op1 == const0_rtx)
3120 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3121 if (op0 == const1_rtx || op1 == const1_rtx)
3122 return const1_rtx;
3123 if (op0 == NULL)
3124 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3125 else if (rtx_equal_p (x, op0))
3126 /* (x | A) & x ~ x. */
3127 return op0;
3128 if (op1 == NULL)
3129 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3130 else if (rtx_equal_p (x, op1))
3131 /* (A | x) & x ~ x. */
3132 return op1;
3133 return gen_rtx_IOR (0, op0, op1);
3135 if (! add)
3136 return NULL;
3137 return gen_rtx_AND (0, old, x);
3139 case AND:
3140 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3141 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3142 if (op0 != NULL || op1 != NULL)
3144 if (op0 == const1_rtx)
3145 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3146 if (op1 == const1_rtx)
3147 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3148 if (op0 == const0_rtx || op1 == const0_rtx)
3149 return const0_rtx;
3150 if (op0 == NULL)
3151 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3152 else if (rtx_equal_p (x, op0))
3153 /* (x & A) & x ~ (x & A). */
3154 return old;
3155 if (op1 == NULL)
3156 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3157 else if (rtx_equal_p (x, op1))
3158 /* (A & x) & x ~ (A & x). */
3159 return old;
3160 return gen_rtx_AND (0, op0, op1);
3162 if (! add)
3163 return NULL;
3164 return gen_rtx_AND (0, old, x);
3166 case NOT:
3167 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3168 if (op0 != NULL)
3169 return not_reg_cond (op0);
3170 if (! add)
3171 return NULL;
3172 return gen_rtx_AND (0, old, x);
3174 default:
3175 abort ();
3179 /* Given a condition X, remove references to reg REGNO and return the
3180 new condition. The removal will be done so that all conditions
3181 involving REGNO are considered to evaluate to false. This function
3182 is used when the value of REGNO changes. */
3184 static rtx
3185 elim_reg_cond (rtx x, unsigned int regno)
3187 rtx op0, op1;
3189 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3191 if (REGNO (XEXP (x, 0)) == regno)
3192 return const0_rtx;
3193 return x;
3196 switch (GET_CODE (x))
3198 case AND:
3199 op0 = elim_reg_cond (XEXP (x, 0), regno);
3200 op1 = elim_reg_cond (XEXP (x, 1), regno);
3201 if (op0 == const0_rtx || op1 == const0_rtx)
3202 return const0_rtx;
3203 if (op0 == const1_rtx)
3204 return op1;
3205 if (op1 == const1_rtx)
3206 return op0;
3207 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3208 return x;
3209 return gen_rtx_AND (0, op0, op1);
3211 case IOR:
3212 op0 = elim_reg_cond (XEXP (x, 0), regno);
3213 op1 = elim_reg_cond (XEXP (x, 1), regno);
3214 if (op0 == const1_rtx || op1 == const1_rtx)
3215 return const1_rtx;
3216 if (op0 == const0_rtx)
3217 return op1;
3218 if (op1 == const0_rtx)
3219 return op0;
3220 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3221 return x;
3222 return gen_rtx_IOR (0, op0, op1);
3224 case NOT:
3225 op0 = elim_reg_cond (XEXP (x, 0), regno);
3226 if (op0 == const0_rtx)
3227 return const1_rtx;
3228 if (op0 == const1_rtx)
3229 return const0_rtx;
3230 if (op0 != XEXP (x, 0))
3231 return not_reg_cond (op0);
3232 return x;
3234 default:
3235 abort ();
3238 #endif /* HAVE_conditional_execution */
3240 #ifdef AUTO_INC_DEC
3242 /* Try to substitute the auto-inc expression INC as the address inside
3243 MEM which occurs in INSN. Currently, the address of MEM is an expression
3244 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3245 that has a single set whose source is a PLUS of INCR_REG and something
3246 else. */
3248 static void
3249 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3250 rtx mem, rtx incr, rtx incr_reg)
3252 int regno = REGNO (incr_reg);
3253 rtx set = single_set (incr);
3254 rtx q = SET_DEST (set);
3255 rtx y = SET_SRC (set);
3256 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3258 /* Make sure this reg appears only once in this insn. */
3259 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3260 return;
3262 if (dead_or_set_p (incr, incr_reg)
3263 /* Mustn't autoinc an eliminable register. */
3264 && (regno >= FIRST_PSEUDO_REGISTER
3265 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3267 /* This is the simple case. Try to make the auto-inc. If
3268 we can't, we are done. Otherwise, we will do any
3269 needed updates below. */
3270 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3271 return;
3273 else if (GET_CODE (q) == REG
3274 /* PREV_INSN used here to check the semi-open interval
3275 [insn,incr). */
3276 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3277 /* We must also check for sets of q as q may be
3278 a call clobbered hard register and there may
3279 be a call between PREV_INSN (insn) and incr. */
3280 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3282 /* We have *p followed sometime later by q = p+size.
3283 Both p and q must be live afterward,
3284 and q is not used between INSN and its assignment.
3285 Change it to q = p, ...*q..., q = q+size.
3286 Then fall into the usual case. */
3287 rtx insns, temp;
3289 start_sequence ();
3290 emit_move_insn (q, incr_reg);
3291 insns = get_insns ();
3292 end_sequence ();
3294 /* If we can't make the auto-inc, or can't make the
3295 replacement into Y, exit. There's no point in making
3296 the change below if we can't do the auto-inc and doing
3297 so is not correct in the pre-inc case. */
3299 XEXP (inc, 0) = q;
3300 validate_change (insn, &XEXP (mem, 0), inc, 1);
3301 validate_change (incr, &XEXP (y, opnum), q, 1);
3302 if (! apply_change_group ())
3303 return;
3305 /* We now know we'll be doing this change, so emit the
3306 new insn(s) and do the updates. */
3307 emit_insn_before (insns, insn);
3309 if (pbi->bb->head == insn)
3310 pbi->bb->head = insns;
3312 /* INCR will become a NOTE and INSN won't contain a
3313 use of INCR_REG. If a use of INCR_REG was just placed in
3314 the insn before INSN, make that the next use.
3315 Otherwise, invalidate it. */
3316 if (GET_CODE (PREV_INSN (insn)) == INSN
3317 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3318 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3319 pbi->reg_next_use[regno] = PREV_INSN (insn);
3320 else
3321 pbi->reg_next_use[regno] = 0;
3323 incr_reg = q;
3324 regno = REGNO (q);
3326 /* REGNO is now used in INCR which is below INSN, but
3327 it previously wasn't live here. If we don't mark
3328 it as live, we'll put a REG_DEAD note for it
3329 on this insn, which is incorrect. */
3330 SET_REGNO_REG_SET (pbi->reg_live, regno);
3332 /* If there are any calls between INSN and INCR, show
3333 that REGNO now crosses them. */
3334 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3335 if (GET_CODE (temp) == CALL_INSN)
3336 REG_N_CALLS_CROSSED (regno)++;
3338 /* Invalidate alias info for Q since we just changed its value. */
3339 clear_reg_alias_info (q);
3341 else
3342 return;
3344 /* If we haven't returned, it means we were able to make the
3345 auto-inc, so update the status. First, record that this insn
3346 has an implicit side effect. */
3348 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3350 /* Modify the old increment-insn to simply copy
3351 the already-incremented value of our register. */
3352 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3353 abort ();
3355 /* If that makes it a no-op (copying the register into itself) delete
3356 it so it won't appear to be a "use" and a "set" of this
3357 register. */
3358 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3360 /* If the original source was dead, it's dead now. */
3361 rtx note;
3363 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3365 remove_note (incr, note);
3366 if (XEXP (note, 0) != incr_reg)
3367 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3370 PUT_CODE (incr, NOTE);
3371 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3372 NOTE_SOURCE_FILE (incr) = 0;
3375 if (regno >= FIRST_PSEUDO_REGISTER)
3377 /* Count an extra reference to the reg. When a reg is
3378 incremented, spilling it is worse, so we want to make
3379 that less likely. */
3380 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3382 /* Count the increment as a setting of the register,
3383 even though it isn't a SET in rtl. */
3384 REG_N_SETS (regno)++;
3388 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3389 reference. */
3391 static void
3392 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3394 rtx addr = XEXP (x, 0);
3395 HOST_WIDE_INT offset = 0;
3396 rtx set, y, incr, inc_val;
3397 int regno;
3398 int size = GET_MODE_SIZE (GET_MODE (x));
3400 if (GET_CODE (insn) == JUMP_INSN)
3401 return;
3403 /* Here we detect use of an index register which might be good for
3404 postincrement, postdecrement, preincrement, or predecrement. */
3406 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3407 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3409 if (GET_CODE (addr) != REG)
3410 return;
3412 regno = REGNO (addr);
3414 /* Is the next use an increment that might make auto-increment? */
3415 incr = pbi->reg_next_use[regno];
3416 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3417 return;
3418 set = single_set (incr);
3419 if (set == 0 || GET_CODE (set) != SET)
3420 return;
3421 y = SET_SRC (set);
3423 if (GET_CODE (y) != PLUS)
3424 return;
3426 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3427 inc_val = XEXP (y, 1);
3428 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3429 inc_val = XEXP (y, 0);
3430 else
3431 return;
3433 if (GET_CODE (inc_val) == CONST_INT)
3435 if (HAVE_POST_INCREMENT
3436 && (INTVAL (inc_val) == size && offset == 0))
3437 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3438 incr, addr);
3439 else if (HAVE_POST_DECREMENT
3440 && (INTVAL (inc_val) == -size && offset == 0))
3441 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3442 incr, addr);
3443 else if (HAVE_PRE_INCREMENT
3444 && (INTVAL (inc_val) == size && offset == size))
3445 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3446 incr, addr);
3447 else if (HAVE_PRE_DECREMENT
3448 && (INTVAL (inc_val) == -size && offset == -size))
3449 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3450 incr, addr);
3451 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3452 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3453 gen_rtx_PLUS (Pmode,
3454 addr,
3455 inc_val)),
3456 insn, x, incr, addr);
3457 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3458 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3459 gen_rtx_PLUS (Pmode,
3460 addr,
3461 inc_val)),
3462 insn, x, incr, addr);
3464 else if (GET_CODE (inc_val) == REG
3465 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3466 NEXT_INSN (incr)))
3469 if (HAVE_POST_MODIFY_REG && offset == 0)
3470 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3471 gen_rtx_PLUS (Pmode,
3472 addr,
3473 inc_val)),
3474 insn, x, incr, addr);
3478 #endif /* AUTO_INC_DEC */
3480 static void
3481 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3482 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3484 unsigned int regno_first, regno_last, i;
3485 int some_was_live, some_was_dead, some_not_set;
3487 regno_last = regno_first = REGNO (reg);
3488 if (regno_first < FIRST_PSEUDO_REGISTER)
3489 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3491 /* Find out if any of this register is live after this instruction. */
3492 some_was_live = some_was_dead = 0;
3493 for (i = regno_first; i <= regno_last; ++i)
3495 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3496 some_was_live |= needed_regno;
3497 some_was_dead |= ! needed_regno;
3500 /* Find out if any of the register was set this insn. */
3501 some_not_set = 0;
3502 for (i = regno_first; i <= regno_last; ++i)
3503 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3505 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3507 /* Record where each reg is used, so when the reg is set we know
3508 the next insn that uses it. */
3509 pbi->reg_next_use[regno_first] = insn;
3512 if (pbi->flags & PROP_REG_INFO)
3514 if (regno_first < FIRST_PSEUDO_REGISTER)
3516 /* If this is a register we are going to try to eliminate,
3517 don't mark it live here. If we are successful in
3518 eliminating it, it need not be live unless it is used for
3519 pseudos, in which case it will have been set live when it
3520 was allocated to the pseudos. If the register will not
3521 be eliminated, reload will set it live at that point.
3523 Otherwise, record that this function uses this register. */
3524 /* ??? The PPC backend tries to "eliminate" on the pic
3525 register to itself. This should be fixed. In the mean
3526 time, hack around it. */
3528 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3529 && (regno_first == FRAME_POINTER_REGNUM
3530 || regno_first == ARG_POINTER_REGNUM)))
3531 for (i = regno_first; i <= regno_last; ++i)
3532 regs_ever_live[i] = 1;
3534 else
3536 /* Keep track of which basic block each reg appears in. */
3538 int blocknum = pbi->bb->index;
3539 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3540 REG_BASIC_BLOCK (regno_first) = blocknum;
3541 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3542 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3544 /* Count (weighted) number of uses of each reg. */
3545 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3546 REG_N_REFS (regno_first)++;
3550 /* Record and count the insns in which a reg dies. If it is used in
3551 this insn and was dead below the insn then it dies in this insn.
3552 If it was set in this insn, we do not make a REG_DEAD note;
3553 likewise if we already made such a note. */
3554 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3555 && some_was_dead
3556 && some_not_set)
3558 /* Check for the case where the register dying partially
3559 overlaps the register set by this insn. */
3560 if (regno_first != regno_last)
3561 for (i = regno_first; i <= regno_last; ++i)
3562 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3564 /* If none of the words in X is needed, make a REG_DEAD note.
3565 Otherwise, we must make partial REG_DEAD notes. */
3566 if (! some_was_live)
3568 if ((pbi->flags & PROP_DEATH_NOTES)
3569 && ! find_regno_note (insn, REG_DEAD, regno_first))
3570 REG_NOTES (insn)
3571 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3573 if (pbi->flags & PROP_REG_INFO)
3574 REG_N_DEATHS (regno_first)++;
3576 else
3578 /* Don't make a REG_DEAD note for a part of a register
3579 that is set in the insn. */
3580 for (i = regno_first; i <= regno_last; ++i)
3581 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3582 && ! dead_or_set_regno_p (insn, i))
3583 REG_NOTES (insn)
3584 = alloc_EXPR_LIST (REG_DEAD,
3585 regno_reg_rtx[i],
3586 REG_NOTES (insn));
3590 /* Mark the register as being live. */
3591 for (i = regno_first; i <= regno_last; ++i)
3593 #ifdef HAVE_conditional_execution
3594 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3595 #endif
3597 SET_REGNO_REG_SET (pbi->reg_live, i);
3599 #ifdef HAVE_conditional_execution
3600 /* If this is a conditional use, record that fact. If it is later
3601 conditionally set, we'll know to kill the register. */
3602 if (cond != NULL_RTX)
3604 splay_tree_node node;
3605 struct reg_cond_life_info *rcli;
3606 rtx ncond;
3608 if (this_was_live)
3610 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3611 if (node == NULL)
3613 /* The register was unconditionally live previously.
3614 No need to do anything. */
3616 else
3618 /* The register was conditionally live previously.
3619 Subtract the new life cond from the old death cond. */
3620 rcli = (struct reg_cond_life_info *) node->value;
3621 ncond = rcli->condition;
3622 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3624 /* If the register is now unconditionally live,
3625 remove the entry in the splay_tree. */
3626 if (ncond == const0_rtx)
3627 splay_tree_remove (pbi->reg_cond_dead, i);
3628 else
3630 rcli->condition = ncond;
3631 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3632 REGNO (XEXP (cond, 0)));
3636 else
3638 /* The register was not previously live at all. Record
3639 the condition under which it is still dead. */
3640 rcli = xmalloc (sizeof (*rcli));
3641 rcli->condition = not_reg_cond (cond);
3642 rcli->stores = const0_rtx;
3643 rcli->orig_condition = const0_rtx;
3644 splay_tree_insert (pbi->reg_cond_dead, i,
3645 (splay_tree_value) rcli);
3647 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3650 else if (this_was_live)
3652 /* The register may have been conditionally live previously, but
3653 is now unconditionally live. Remove it from the conditionally
3654 dead list, so that a conditional set won't cause us to think
3655 it dead. */
3656 splay_tree_remove (pbi->reg_cond_dead, i);
3658 #endif
3662 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3663 This is done assuming the registers needed from X are those that
3664 have 1-bits in PBI->REG_LIVE.
3666 INSN is the containing instruction. If INSN is dead, this function
3667 is not called. */
3669 static void
3670 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3672 RTX_CODE code;
3673 int regno;
3674 int flags = pbi->flags;
3676 retry:
3677 if (!x)
3678 return;
3679 code = GET_CODE (x);
3680 switch (code)
3682 case LABEL_REF:
3683 case SYMBOL_REF:
3684 case CONST_INT:
3685 case CONST:
3686 case CONST_DOUBLE:
3687 case CONST_VECTOR:
3688 case PC:
3689 case ADDR_VEC:
3690 case ADDR_DIFF_VEC:
3691 return;
3693 #ifdef HAVE_cc0
3694 case CC0:
3695 pbi->cc0_live = 1;
3696 return;
3697 #endif
3699 case CLOBBER:
3700 /* If we are clobbering a MEM, mark any registers inside the address
3701 as being used. */
3702 if (GET_CODE (XEXP (x, 0)) == MEM)
3703 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3704 return;
3706 case MEM:
3707 /* Don't bother watching stores to mems if this is not the
3708 final pass. We'll not be deleting dead stores this round. */
3709 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3711 /* Invalidate the data for the last MEM stored, but only if MEM is
3712 something that can be stored into. */
3713 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3714 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3715 /* Needn't clear the memory set list. */
3717 else
3719 rtx temp = pbi->mem_set_list;
3720 rtx prev = NULL_RTX;
3721 rtx next;
3723 while (temp)
3725 next = XEXP (temp, 1);
3726 if (unchanging_anti_dependence (XEXP (temp, 0), x))
3728 /* Splice temp out of the list. */
3729 if (prev)
3730 XEXP (prev, 1) = next;
3731 else
3732 pbi->mem_set_list = next;
3733 free_EXPR_LIST_node (temp);
3734 pbi->mem_set_list_len--;
3736 else
3737 prev = temp;
3738 temp = next;
3742 /* If the memory reference had embedded side effects (autoincrement
3743 address modes. Then we may need to kill some entries on the
3744 memory set list. */
3745 if (insn)
3746 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3749 #ifdef AUTO_INC_DEC
3750 if (flags & PROP_AUTOINC)
3751 find_auto_inc (pbi, x, insn);
3752 #endif
3753 break;
3755 case SUBREG:
3756 #ifdef CANNOT_CHANGE_MODE_CLASS
3757 if ((flags & PROP_REG_INFO)
3758 && GET_CODE (SUBREG_REG (x)) == REG
3759 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3760 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3761 * MAX_MACHINE_MODE
3762 + GET_MODE (x));
3763 #endif
3765 /* While we're here, optimize this case. */
3766 x = SUBREG_REG (x);
3767 if (GET_CODE (x) != REG)
3768 goto retry;
3769 /* Fall through. */
3771 case REG:
3772 /* See a register other than being set => mark it as needed. */
3773 mark_used_reg (pbi, x, cond, insn);
3774 return;
3776 case SET:
3778 rtx testreg = SET_DEST (x);
3779 int mark_dest = 0;
3781 /* If storing into MEM, don't show it as being used. But do
3782 show the address as being used. */
3783 if (GET_CODE (testreg) == MEM)
3785 #ifdef AUTO_INC_DEC
3786 if (flags & PROP_AUTOINC)
3787 find_auto_inc (pbi, testreg, insn);
3788 #endif
3789 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3790 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3791 return;
3794 /* Storing in STRICT_LOW_PART is like storing in a reg
3795 in that this SET might be dead, so ignore it in TESTREG.
3796 but in some other ways it is like using the reg.
3798 Storing in a SUBREG or a bit field is like storing the entire
3799 register in that if the register's value is not used
3800 then this SET is not needed. */
3801 while (GET_CODE (testreg) == STRICT_LOW_PART
3802 || GET_CODE (testreg) == ZERO_EXTRACT
3803 || GET_CODE (testreg) == SIGN_EXTRACT
3804 || GET_CODE (testreg) == SUBREG)
3806 #ifdef CANNOT_CHANGE_MODE_CLASS
3807 if ((flags & PROP_REG_INFO)
3808 && GET_CODE (testreg) == SUBREG
3809 && GET_CODE (SUBREG_REG (testreg)) == REG
3810 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3811 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3812 * MAX_MACHINE_MODE
3813 + GET_MODE (testreg));
3814 #endif
3816 /* Modifying a single register in an alternate mode
3817 does not use any of the old value. But these other
3818 ways of storing in a register do use the old value. */
3819 if (GET_CODE (testreg) == SUBREG
3820 && !((REG_BYTES (SUBREG_REG (testreg))
3821 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3822 > (REG_BYTES (testreg)
3823 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3825 else
3826 mark_dest = 1;
3828 testreg = XEXP (testreg, 0);
3831 /* If this is a store into a register or group of registers,
3832 recursively scan the value being stored. */
3834 if ((GET_CODE (testreg) == PARALLEL
3835 && GET_MODE (testreg) == BLKmode)
3836 || (GET_CODE (testreg) == REG
3837 && (regno = REGNO (testreg),
3838 ! (regno == FRAME_POINTER_REGNUM
3839 && (! reload_completed || frame_pointer_needed)))
3840 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3841 && ! (regno == HARD_FRAME_POINTER_REGNUM
3842 && (! reload_completed || frame_pointer_needed))
3843 #endif
3844 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3845 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3846 #endif
3849 if (mark_dest)
3850 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3851 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3852 return;
3855 break;
3857 case ASM_OPERANDS:
3858 case UNSPEC_VOLATILE:
3859 case TRAP_IF:
3860 case ASM_INPUT:
3862 /* Traditional and volatile asm instructions must be considered to use
3863 and clobber all hard registers, all pseudo-registers and all of
3864 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3866 Consider for instance a volatile asm that changes the fpu rounding
3867 mode. An insn should not be moved across this even if it only uses
3868 pseudo-regs because it might give an incorrectly rounded result.
3870 ?!? Unfortunately, marking all hard registers as live causes massive
3871 problems for the register allocator and marking all pseudos as live
3872 creates mountains of uninitialized variable warnings.
3874 So for now, just clear the memory set list and mark any regs
3875 we can find in ASM_OPERANDS as used. */
3876 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3878 free_EXPR_LIST_list (&pbi->mem_set_list);
3879 pbi->mem_set_list_len = 0;
3882 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3883 We can not just fall through here since then we would be confused
3884 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3885 traditional asms unlike their normal usage. */
3886 if (code == ASM_OPERANDS)
3888 int j;
3890 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3891 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3893 break;
3896 case COND_EXEC:
3897 if (cond != NULL_RTX)
3898 abort ();
3900 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3902 cond = COND_EXEC_TEST (x);
3903 x = COND_EXEC_CODE (x);
3904 goto retry;
3906 case PHI:
3907 /* We _do_not_ want to scan operands of phi nodes. Operands of
3908 a phi function are evaluated only when control reaches this
3909 block along a particular edge. Therefore, regs that appear
3910 as arguments to phi should not be added to the global live at
3911 start. */
3912 return;
3914 default:
3915 break;
3918 /* Recursively scan the operands of this expression. */
3921 const char * const fmt = GET_RTX_FORMAT (code);
3922 int i;
3924 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3926 if (fmt[i] == 'e')
3928 /* Tail recursive case: save a function call level. */
3929 if (i == 0)
3931 x = XEXP (x, 0);
3932 goto retry;
3934 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3936 else if (fmt[i] == 'E')
3938 int j;
3939 for (j = 0; j < XVECLEN (x, i); j++)
3940 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3946 #ifdef AUTO_INC_DEC
3948 static int
3949 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3951 /* Find the next use of this reg. If in same basic block,
3952 make it do pre-increment or pre-decrement if appropriate. */
3953 rtx x = single_set (insn);
3954 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3955 * INTVAL (XEXP (SET_SRC (x), 1)));
3956 int regno = REGNO (SET_DEST (x));
3957 rtx y = pbi->reg_next_use[regno];
3958 if (y != 0
3959 && SET_DEST (x) != stack_pointer_rtx
3960 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3961 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3962 mode would be better. */
3963 && ! dead_or_set_p (y, SET_DEST (x))
3964 && try_pre_increment (y, SET_DEST (x), amount))
3966 /* We have found a suitable auto-increment and already changed
3967 insn Y to do it. So flush this increment instruction. */
3968 propagate_block_delete_insn (insn);
3970 /* Count a reference to this reg for the increment insn we are
3971 deleting. When a reg is incremented, spilling it is worse,
3972 so we want to make that less likely. */
3973 if (regno >= FIRST_PSEUDO_REGISTER)
3975 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3976 REG_N_SETS (regno)++;
3979 /* Flush any remembered memories depending on the value of
3980 the incremented register. */
3981 invalidate_mems_from_set (pbi, SET_DEST (x));
3983 return 1;
3985 return 0;
3988 /* Try to change INSN so that it does pre-increment or pre-decrement
3989 addressing on register REG in order to add AMOUNT to REG.
3990 AMOUNT is negative for pre-decrement.
3991 Returns 1 if the change could be made.
3992 This checks all about the validity of the result of modifying INSN. */
3994 static int
3995 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
3997 rtx use;
3999 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4000 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4001 int pre_ok = 0;
4002 /* Nonzero if we can try to make a post-increment or post-decrement.
4003 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4004 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4005 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4006 int post_ok = 0;
4008 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4009 int do_post = 0;
4011 /* From the sign of increment, see which possibilities are conceivable
4012 on this target machine. */
4013 if (HAVE_PRE_INCREMENT && amount > 0)
4014 pre_ok = 1;
4015 if (HAVE_POST_INCREMENT && amount > 0)
4016 post_ok = 1;
4018 if (HAVE_PRE_DECREMENT && amount < 0)
4019 pre_ok = 1;
4020 if (HAVE_POST_DECREMENT && amount < 0)
4021 post_ok = 1;
4023 if (! (pre_ok || post_ok))
4024 return 0;
4026 /* It is not safe to add a side effect to a jump insn
4027 because if the incremented register is spilled and must be reloaded
4028 there would be no way to store the incremented value back in memory. */
4030 if (GET_CODE (insn) == JUMP_INSN)
4031 return 0;
4033 use = 0;
4034 if (pre_ok)
4035 use = find_use_as_address (PATTERN (insn), reg, 0);
4036 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4038 use = find_use_as_address (PATTERN (insn), reg, -amount);
4039 do_post = 1;
4042 if (use == 0 || use == (rtx) (size_t) 1)
4043 return 0;
4045 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4046 return 0;
4048 /* See if this combination of instruction and addressing mode exists. */
4049 if (! validate_change (insn, &XEXP (use, 0),
4050 gen_rtx_fmt_e (amount > 0
4051 ? (do_post ? POST_INC : PRE_INC)
4052 : (do_post ? POST_DEC : PRE_DEC),
4053 Pmode, reg), 0))
4054 return 0;
4056 /* Record that this insn now has an implicit side effect on X. */
4057 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4058 return 1;
4061 #endif /* AUTO_INC_DEC */
4063 /* Find the place in the rtx X where REG is used as a memory address.
4064 Return the MEM rtx that so uses it.
4065 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4066 (plus REG (const_int PLUSCONST)).
4068 If such an address does not appear, return 0.
4069 If REG appears more than once, or is used other than in such an address,
4070 return (rtx) 1. */
4073 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4075 enum rtx_code code = GET_CODE (x);
4076 const char * const fmt = GET_RTX_FORMAT (code);
4077 int i;
4078 rtx value = 0;
4079 rtx tem;
4081 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4082 return x;
4084 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4085 && XEXP (XEXP (x, 0), 0) == reg
4086 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4087 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4088 return x;
4090 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4092 /* If REG occurs inside a MEM used in a bit-field reference,
4093 that is unacceptable. */
4094 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4095 return (rtx) (size_t) 1;
4098 if (x == reg)
4099 return (rtx) (size_t) 1;
4101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4103 if (fmt[i] == 'e')
4105 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4106 if (value == 0)
4107 value = tem;
4108 else if (tem != 0)
4109 return (rtx) (size_t) 1;
4111 else if (fmt[i] == 'E')
4113 int j;
4114 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4116 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4117 if (value == 0)
4118 value = tem;
4119 else if (tem != 0)
4120 return (rtx) (size_t) 1;
4125 return value;
4128 /* Write information about registers and basic blocks into FILE.
4129 This is part of making a debugging dump. */
4131 void
4132 dump_regset (regset r, FILE *outf)
4134 int i;
4135 if (r == NULL)
4137 fputs (" (nil)", outf);
4138 return;
4141 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4143 fprintf (outf, " %d", i);
4144 if (i < FIRST_PSEUDO_REGISTER)
4145 fprintf (outf, " [%s]",
4146 reg_names[i]);
4150 /* Print a human-readable representation of R on the standard error
4151 stream. This function is designed to be used from within the
4152 debugger. */
4154 void
4155 debug_regset (regset r)
4157 dump_regset (r, stderr);
4158 putc ('\n', stderr);
4161 /* Recompute register set/reference counts immediately prior to register
4162 allocation.
4164 This avoids problems with set/reference counts changing to/from values
4165 which have special meanings to the register allocators.
4167 Additionally, the reference counts are the primary component used by the
4168 register allocators to prioritize pseudos for allocation to hard regs.
4169 More accurate reference counts generally lead to better register allocation.
4171 F is the first insn to be scanned.
4173 LOOP_STEP denotes how much loop_depth should be incremented per
4174 loop nesting level in order to increase the ref count more for
4175 references in a loop.
4177 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4178 possibly other information which is used by the register allocators. */
4180 void
4181 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4183 allocate_reg_life_data ();
4184 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4187 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4188 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4189 of the number of registers that died. */
4192 count_or_remove_death_notes (sbitmap blocks, int kill)
4194 int count = 0;
4195 basic_block bb;
4197 FOR_EACH_BB_REVERSE (bb)
4199 rtx insn;
4201 if (blocks && ! TEST_BIT (blocks, bb->index))
4202 continue;
4204 for (insn = bb->head;; insn = NEXT_INSN (insn))
4206 if (INSN_P (insn))
4208 rtx *pprev = &REG_NOTES (insn);
4209 rtx link = *pprev;
4211 while (link)
4213 switch (REG_NOTE_KIND (link))
4215 case REG_DEAD:
4216 if (GET_CODE (XEXP (link, 0)) == REG)
4218 rtx reg = XEXP (link, 0);
4219 int n;
4221 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4222 n = 1;
4223 else
4224 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4225 count += n;
4227 /* Fall through. */
4229 case REG_UNUSED:
4230 if (kill)
4232 rtx next = XEXP (link, 1);
4233 free_EXPR_LIST_node (link);
4234 *pprev = link = next;
4235 break;
4237 /* Fall through. */
4239 default:
4240 pprev = &XEXP (link, 1);
4241 link = *pprev;
4242 break;
4247 if (insn == bb->end)
4248 break;
4252 return count;
4254 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4255 if blocks is NULL. */
4257 static void
4258 clear_log_links (sbitmap blocks)
4260 rtx insn;
4261 int i;
4263 if (!blocks)
4265 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4266 if (INSN_P (insn))
4267 free_INSN_LIST_list (&LOG_LINKS (insn));
4269 else
4270 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4272 basic_block bb = BASIC_BLOCK (i);
4274 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4275 insn = NEXT_INSN (insn))
4276 if (INSN_P (insn))
4277 free_INSN_LIST_list (&LOG_LINKS (insn));
4281 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4282 correspond to the hard registers, if any, set in that map. This
4283 could be done far more efficiently by having all sorts of special-cases
4284 with moving single words, but probably isn't worth the trouble. */
4286 void
4287 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4289 int i;
4291 EXECUTE_IF_SET_IN_BITMAP
4292 (from, 0, i,
4294 if (i >= FIRST_PSEUDO_REGISTER)
4295 return;
4296 SET_HARD_REG_BIT (*to, i);