Add PR marker
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob07845101b86d268127e125ca3f69bc07170522d7
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
48 #include "case-cfn-macros.h"
50 static unsigned int tree_ssa_phiopt_worker (bool, bool, bool);
51 static bool conditional_replacement (basic_block, basic_block,
52 edge, edge, gphi *, tree, tree);
53 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
54 gimple *);
55 static int value_replacement (basic_block, basic_block,
56 edge, edge, gimple *, tree, tree);
57 static bool minmax_replacement (basic_block, basic_block,
58 edge, edge, gimple *, tree, tree);
59 static bool abs_replacement (basic_block, basic_block,
60 edge, edge, gimple *, tree, tree);
61 static bool cond_removal_in_popcount_pattern (basic_block, basic_block,
62 edge, edge, gimple *, tree, tree);
63 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
64 hash_set<tree> *);
65 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
66 static hash_set<tree> * get_non_trapping ();
67 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
68 static void hoist_adjacent_loads (basic_block, basic_block,
69 basic_block, basic_block);
70 static bool gate_hoist_loads (void);
72 /* This pass tries to transform conditional stores into unconditional
73 ones, enabling further simplifications with the simpler then and else
74 blocks. In particular it replaces this:
76 bb0:
77 if (cond) goto bb2; else goto bb1;
78 bb1:
79 *p = RHS;
80 bb2:
82 with
84 bb0:
85 if (cond) goto bb1; else goto bb2;
86 bb1:
87 condtmp' = *p;
88 bb2:
89 condtmp = PHI <RHS, condtmp'>
90 *p = condtmp;
92 This transformation can only be done under several constraints,
93 documented below. It also replaces:
95 bb0:
96 if (cond) goto bb2; else goto bb1;
97 bb1:
98 *p = RHS1;
99 goto bb3;
100 bb2:
101 *p = RHS2;
102 bb3:
104 with
106 bb0:
107 if (cond) goto bb3; else goto bb1;
108 bb1:
109 bb3:
110 condtmp = PHI <RHS1, RHS2>
111 *p = condtmp; */
113 static unsigned int
114 tree_ssa_cs_elim (void)
116 unsigned todo;
117 /* ??? We are not interested in loop related info, but the following
118 will create it, ICEing as we didn't init loops with pre-headers.
119 An interfacing issue of find_data_references_in_bb. */
120 loop_optimizer_init (LOOPS_NORMAL);
121 scev_initialize ();
122 todo = tree_ssa_phiopt_worker (true, false, false);
123 scev_finalize ();
124 loop_optimizer_finalize ();
125 return todo;
128 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
130 static gphi *
131 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
133 gimple_stmt_iterator i;
134 gphi *phi = NULL;
135 if (gimple_seq_singleton_p (seq))
136 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
137 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
139 gphi *p = as_a <gphi *> (gsi_stmt (i));
140 /* If the PHI arguments are equal then we can skip this PHI. */
141 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
142 gimple_phi_arg_def (p, e1->dest_idx)))
143 continue;
145 /* If we already have a PHI that has the two edge arguments are
146 different, then return it is not a singleton for these PHIs. */
147 if (phi)
148 return NULL;
150 phi = p;
152 return phi;
155 /* The core routine of conditional store replacement and normal
156 phi optimizations. Both share much of the infrastructure in how
157 to match applicable basic block patterns. DO_STORE_ELIM is true
158 when we want to do conditional store replacement, false otherwise.
159 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
160 of diamond control flow patterns, false otherwise. */
161 static unsigned int
162 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads, bool early_p)
164 basic_block bb;
165 basic_block *bb_order;
166 unsigned n, i;
167 bool cfgchanged = false;
168 hash_set<tree> *nontrap = 0;
170 if (do_store_elim)
171 /* Calculate the set of non-trapping memory accesses. */
172 nontrap = get_non_trapping ();
174 /* Search every basic block for COND_EXPR we may be able to optimize.
176 We walk the blocks in order that guarantees that a block with
177 a single predecessor is processed before the predecessor.
178 This ensures that we collapse inner ifs before visiting the
179 outer ones, and also that we do not try to visit a removed
180 block. */
181 bb_order = single_pred_before_succ_order ();
182 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
184 for (i = 0; i < n; i++)
186 gimple *cond_stmt;
187 gphi *phi;
188 basic_block bb1, bb2;
189 edge e1, e2;
190 tree arg0, arg1;
192 bb = bb_order[i];
194 cond_stmt = last_stmt (bb);
195 /* Check to see if the last statement is a GIMPLE_COND. */
196 if (!cond_stmt
197 || gimple_code (cond_stmt) != GIMPLE_COND)
198 continue;
200 e1 = EDGE_SUCC (bb, 0);
201 bb1 = e1->dest;
202 e2 = EDGE_SUCC (bb, 1);
203 bb2 = e2->dest;
205 /* We cannot do the optimization on abnormal edges. */
206 if ((e1->flags & EDGE_ABNORMAL) != 0
207 || (e2->flags & EDGE_ABNORMAL) != 0)
208 continue;
210 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
211 if (EDGE_COUNT (bb1->succs) == 0
212 || bb2 == NULL
213 || EDGE_COUNT (bb2->succs) == 0)
214 continue;
216 /* Find the bb which is the fall through to the other. */
217 if (EDGE_SUCC (bb1, 0)->dest == bb2)
219 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
221 std::swap (bb1, bb2);
222 std::swap (e1, e2);
224 else if (do_store_elim
225 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
227 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
229 if (!single_succ_p (bb1)
230 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
231 || !single_succ_p (bb2)
232 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
233 || EDGE_COUNT (bb3->preds) != 2)
234 continue;
235 if (cond_if_else_store_replacement (bb1, bb2, bb3))
236 cfgchanged = true;
237 continue;
239 else if (do_hoist_loads
240 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
242 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
244 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
245 && single_succ_p (bb1)
246 && single_succ_p (bb2)
247 && single_pred_p (bb1)
248 && single_pred_p (bb2)
249 && EDGE_COUNT (bb->succs) == 2
250 && EDGE_COUNT (bb3->preds) == 2
251 /* If one edge or the other is dominant, a conditional move
252 is likely to perform worse than the well-predicted branch. */
253 && !predictable_edge_p (EDGE_SUCC (bb, 0))
254 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
255 hoist_adjacent_loads (bb, bb1, bb2, bb3);
256 continue;
258 else
259 continue;
261 e1 = EDGE_SUCC (bb1, 0);
263 /* Make sure that bb1 is just a fall through. */
264 if (!single_succ_p (bb1)
265 || (e1->flags & EDGE_FALLTHRU) == 0)
266 continue;
268 /* Also make sure that bb1 only have one predecessor and that it
269 is bb. */
270 if (!single_pred_p (bb1)
271 || single_pred (bb1) != bb)
272 continue;
274 if (do_store_elim)
276 /* bb1 is the middle block, bb2 the join block, bb the split block,
277 e1 the fallthrough edge from bb1 to bb2. We can't do the
278 optimization if the join block has more than two predecessors. */
279 if (EDGE_COUNT (bb2->preds) > 2)
280 continue;
281 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
282 cfgchanged = true;
284 else
286 gimple_seq phis = phi_nodes (bb2);
287 gimple_stmt_iterator gsi;
288 bool candorest = true;
290 /* Value replacement can work with more than one PHI
291 so try that first. */
292 if (!early_p)
293 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
295 phi = as_a <gphi *> (gsi_stmt (gsi));
296 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
297 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
298 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
300 candorest = false;
301 cfgchanged = true;
302 break;
306 if (!candorest)
307 continue;
309 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
310 if (!phi)
311 continue;
313 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
314 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
316 /* Something is wrong if we cannot find the arguments in the PHI
317 node. */
318 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
320 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
321 arg0, arg1,
322 cond_stmt);
323 if (newphi != NULL)
325 phi = newphi;
326 /* factor_out_conditional_conversion may create a new PHI in
327 BB2 and eliminate an existing PHI in BB2. Recompute values
328 that may be affected by that change. */
329 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
330 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
331 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
334 /* Do the replacement of conditional if it can be done. */
335 if (!early_p
336 && conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
337 cfgchanged = true;
338 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
339 cfgchanged = true;
340 else if (!early_p
341 && cond_removal_in_popcount_pattern (bb, bb1, e1, e2,
342 phi, arg0, arg1))
343 cfgchanged = true;
344 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
345 cfgchanged = true;
349 free (bb_order);
351 if (do_store_elim)
352 delete nontrap;
353 /* If the CFG has changed, we should cleanup the CFG. */
354 if (cfgchanged && do_store_elim)
356 /* In cond-store replacement we have added some loads on edges
357 and new VOPS (as we moved the store, and created a load). */
358 gsi_commit_edge_inserts ();
359 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
361 else if (cfgchanged)
362 return TODO_cleanup_cfg;
363 return 0;
366 /* Replace PHI node element whose edge is E in block BB with variable NEW.
367 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
368 is known to have two edges, one of which must reach BB). */
370 static void
371 replace_phi_edge_with_variable (basic_block cond_block,
372 edge e, gimple *phi, tree new_tree)
374 basic_block bb = gimple_bb (phi);
375 basic_block block_to_remove;
376 gimple_stmt_iterator gsi;
378 /* Change the PHI argument to new. */
379 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
381 /* Remove the empty basic block. */
382 if (EDGE_SUCC (cond_block, 0)->dest == bb)
384 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
385 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
386 EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
388 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
390 else
392 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
393 EDGE_SUCC (cond_block, 1)->flags
394 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
395 EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
397 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
399 delete_basic_block (block_to_remove);
401 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
402 gsi = gsi_last_bb (cond_block);
403 gsi_remove (&gsi, true);
405 if (dump_file && (dump_flags & TDF_DETAILS))
406 fprintf (dump_file,
407 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
408 cond_block->index,
409 bb->index);
412 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
413 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
414 to the result of PHI stmt. COND_STMT is the controlling predicate.
415 Return the newly-created PHI, if any. */
417 static gphi *
418 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
419 tree arg0, tree arg1, gimple *cond_stmt)
421 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
422 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
423 tree temp, result;
424 gphi *newphi;
425 gimple_stmt_iterator gsi, gsi_for_def;
426 source_location locus = gimple_location (phi);
427 enum tree_code convert_code;
429 /* Handle only PHI statements with two arguments. TODO: If all
430 other arguments to PHI are INTEGER_CST or if their defining
431 statement have the same unary operation, we can handle more
432 than two arguments too. */
433 if (gimple_phi_num_args (phi) != 2)
434 return NULL;
436 /* First canonicalize to simplify tests. */
437 if (TREE_CODE (arg0) != SSA_NAME)
439 std::swap (arg0, arg1);
440 std::swap (e0, e1);
443 if (TREE_CODE (arg0) != SSA_NAME
444 || (TREE_CODE (arg1) != SSA_NAME
445 && TREE_CODE (arg1) != INTEGER_CST))
446 return NULL;
448 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
449 a conversion. */
450 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
451 if (!gimple_assign_cast_p (arg0_def_stmt))
452 return NULL;
454 /* Use the RHS as new_arg0. */
455 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
456 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
457 if (convert_code == VIEW_CONVERT_EXPR)
459 new_arg0 = TREE_OPERAND (new_arg0, 0);
460 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
461 return NULL;
464 if (TREE_CODE (arg1) == SSA_NAME)
466 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
467 is a conversion. */
468 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
469 if (!is_gimple_assign (arg1_def_stmt)
470 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
471 return NULL;
473 /* Use the RHS as new_arg1. */
474 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
475 if (convert_code == VIEW_CONVERT_EXPR)
476 new_arg1 = TREE_OPERAND (new_arg1, 0);
478 else
480 /* If arg1 is an INTEGER_CST, fold it to new type. */
481 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
482 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
484 if (gimple_assign_cast_p (arg0_def_stmt))
486 /* For the INTEGER_CST case, we are just moving the
487 conversion from one place to another, which can often
488 hurt as the conversion moves further away from the
489 statement that computes the value. So, perform this
490 only if new_arg0 is an operand of COND_STMT, or
491 if arg0_def_stmt is the only non-debug stmt in
492 its basic block, because then it is possible this
493 could enable further optimizations (minmax replacement
494 etc.). See PR71016. */
495 if (new_arg0 != gimple_cond_lhs (cond_stmt)
496 && new_arg0 != gimple_cond_rhs (cond_stmt)
497 && gimple_bb (arg0_def_stmt) == e0->src)
499 gsi = gsi_for_stmt (arg0_def_stmt);
500 gsi_prev_nondebug (&gsi);
501 if (!gsi_end_p (gsi))
502 return NULL;
503 gsi = gsi_for_stmt (arg0_def_stmt);
504 gsi_next_nondebug (&gsi);
505 if (!gsi_end_p (gsi))
506 return NULL;
508 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
510 else
511 return NULL;
513 else
514 return NULL;
517 /* If arg0/arg1 have > 1 use, then this transformation actually increases
518 the number of expressions evaluated at runtime. */
519 if (!has_single_use (arg0)
520 || (arg1_def_stmt && !has_single_use (arg1)))
521 return NULL;
523 /* If types of new_arg0 and new_arg1 are different bailout. */
524 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
525 return NULL;
527 /* Create a new PHI stmt. */
528 result = PHI_RESULT (phi);
529 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
530 newphi = create_phi_node (temp, gimple_bb (phi));
532 if (dump_file && (dump_flags & TDF_DETAILS))
534 fprintf (dump_file, "PHI ");
535 print_generic_expr (dump_file, gimple_phi_result (phi));
536 fprintf (dump_file,
537 " changed to factor conversion out from COND_EXPR.\n");
538 fprintf (dump_file, "New stmt with CAST that defines ");
539 print_generic_expr (dump_file, result);
540 fprintf (dump_file, ".\n");
543 /* Remove the old cast(s) that has single use. */
544 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
545 gsi_remove (&gsi_for_def, true);
546 release_defs (arg0_def_stmt);
548 if (arg1_def_stmt)
550 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
551 gsi_remove (&gsi_for_def, true);
552 release_defs (arg1_def_stmt);
555 add_phi_arg (newphi, new_arg0, e0, locus);
556 add_phi_arg (newphi, new_arg1, e1, locus);
558 /* Create the conversion stmt and insert it. */
559 if (convert_code == VIEW_CONVERT_EXPR)
561 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
562 new_stmt = gimple_build_assign (result, temp);
564 else
565 new_stmt = gimple_build_assign (result, convert_code, temp);
566 gsi = gsi_after_labels (gimple_bb (phi));
567 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
569 /* Remove the original PHI stmt. */
570 gsi = gsi_for_stmt (phi);
571 gsi_remove (&gsi, true);
572 return newphi;
575 /* The function conditional_replacement does the main work of doing the
576 conditional replacement. Return true if the replacement is done.
577 Otherwise return false.
578 BB is the basic block where the replacement is going to be done on. ARG0
579 is argument 0 from PHI. Likewise for ARG1. */
581 static bool
582 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
583 edge e0, edge e1, gphi *phi,
584 tree arg0, tree arg1)
586 tree result;
587 gimple *stmt;
588 gassign *new_stmt;
589 tree cond;
590 gimple_stmt_iterator gsi;
591 edge true_edge, false_edge;
592 tree new_var, new_var2;
593 bool neg;
595 /* FIXME: Gimplification of complex type is too hard for now. */
596 /* We aren't prepared to handle vectors either (and it is a question
597 if it would be worthwhile anyway). */
598 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
599 || POINTER_TYPE_P (TREE_TYPE (arg0)))
600 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
601 || POINTER_TYPE_P (TREE_TYPE (arg1))))
602 return false;
604 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
605 convert it to the conditional. */
606 if ((integer_zerop (arg0) && integer_onep (arg1))
607 || (integer_zerop (arg1) && integer_onep (arg0)))
608 neg = false;
609 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
610 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
611 neg = true;
612 else
613 return false;
615 if (!empty_block_p (middle_bb))
616 return false;
618 /* At this point we know we have a GIMPLE_COND with two successors.
619 One successor is BB, the other successor is an empty block which
620 falls through into BB.
622 There is a single PHI node at the join point (BB) and its arguments
623 are constants (0, 1) or (0, -1).
625 So, given the condition COND, and the two PHI arguments, we can
626 rewrite this PHI into non-branching code:
628 dest = (COND) or dest = COND'
630 We use the condition as-is if the argument associated with the
631 true edge has the value one or the argument associated with the
632 false edge as the value zero. Note that those conditions are not
633 the same since only one of the outgoing edges from the GIMPLE_COND
634 will directly reach BB and thus be associated with an argument. */
636 stmt = last_stmt (cond_bb);
637 result = PHI_RESULT (phi);
639 /* To handle special cases like floating point comparison, it is easier and
640 less error-prone to build a tree and gimplify it on the fly though it is
641 less efficient. */
642 cond = fold_build2_loc (gimple_location (stmt),
643 gimple_cond_code (stmt), boolean_type_node,
644 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
646 /* We need to know which is the true edge and which is the false
647 edge so that we know when to invert the condition below. */
648 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
649 if ((e0 == true_edge && integer_zerop (arg0))
650 || (e0 == false_edge && !integer_zerop (arg0))
651 || (e1 == true_edge && integer_zerop (arg1))
652 || (e1 == false_edge && !integer_zerop (arg1)))
653 cond = fold_build1_loc (gimple_location (stmt),
654 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
656 if (neg)
658 cond = fold_convert_loc (gimple_location (stmt),
659 TREE_TYPE (result), cond);
660 cond = fold_build1_loc (gimple_location (stmt),
661 NEGATE_EXPR, TREE_TYPE (cond), cond);
664 /* Insert our new statements at the end of conditional block before the
665 COND_STMT. */
666 gsi = gsi_for_stmt (stmt);
667 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
668 GSI_SAME_STMT);
670 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
672 source_location locus_0, locus_1;
674 new_var2 = make_ssa_name (TREE_TYPE (result));
675 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
676 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
677 new_var = new_var2;
679 /* Set the locus to the first argument, unless is doesn't have one. */
680 locus_0 = gimple_phi_arg_location (phi, 0);
681 locus_1 = gimple_phi_arg_location (phi, 1);
682 if (locus_0 == UNKNOWN_LOCATION)
683 locus_0 = locus_1;
684 gimple_set_location (new_stmt, locus_0);
687 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
689 /* Note that we optimized this PHI. */
690 return true;
693 /* Update *ARG which is defined in STMT so that it contains the
694 computed value if that seems profitable. Return true if the
695 statement is made dead by that rewriting. */
697 static bool
698 jump_function_from_stmt (tree *arg, gimple *stmt)
700 enum tree_code code = gimple_assign_rhs_code (stmt);
701 if (code == ADDR_EXPR)
703 /* For arg = &p->i transform it to p, if possible. */
704 tree rhs1 = gimple_assign_rhs1 (stmt);
705 poly_int64 offset;
706 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
707 &offset);
708 if (tem
709 && TREE_CODE (tem) == MEM_REF
710 && known_eq (mem_ref_offset (tem) + offset, 0))
712 *arg = TREE_OPERAND (tem, 0);
713 return true;
716 /* TODO: Much like IPA-CP jump-functions we want to handle constant
717 additions symbolically here, and we'd need to update the comparison
718 code that compares the arg + cst tuples in our caller. For now the
719 code above exactly handles the VEC_BASE pattern from vec.h. */
720 return false;
723 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
724 of the form SSA_NAME NE 0.
726 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
727 the two input values of the EQ_EXPR match arg0 and arg1.
729 If so update *code and return TRUE. Otherwise return FALSE. */
731 static bool
732 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
733 enum tree_code *code, const_tree rhs)
735 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
736 statement. */
737 if (TREE_CODE (rhs) == SSA_NAME)
739 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
741 /* Verify the defining statement has an EQ_EXPR on the RHS. */
742 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
744 /* Finally verify the source operands of the EQ_EXPR are equal
745 to arg0 and arg1. */
746 tree op0 = gimple_assign_rhs1 (def1);
747 tree op1 = gimple_assign_rhs2 (def1);
748 if ((operand_equal_for_phi_arg_p (arg0, op0)
749 && operand_equal_for_phi_arg_p (arg1, op1))
750 || (operand_equal_for_phi_arg_p (arg0, op1)
751 && operand_equal_for_phi_arg_p (arg1, op0)))
753 /* We will perform the optimization. */
754 *code = gimple_assign_rhs_code (def1);
755 return true;
759 return false;
762 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
764 Also return TRUE if arg0/arg1 are equal to the source arguments of a
765 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
767 Return FALSE otherwise. */
769 static bool
770 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
771 enum tree_code *code, gimple *cond)
773 gimple *def;
774 tree lhs = gimple_cond_lhs (cond);
775 tree rhs = gimple_cond_rhs (cond);
777 if ((operand_equal_for_phi_arg_p (arg0, lhs)
778 && operand_equal_for_phi_arg_p (arg1, rhs))
779 || (operand_equal_for_phi_arg_p (arg1, lhs)
780 && operand_equal_for_phi_arg_p (arg0, rhs)))
781 return true;
783 /* Now handle more complex case where we have an EQ comparison
784 which feeds a BIT_AND_EXPR which feeds COND.
786 First verify that COND is of the form SSA_NAME NE 0. */
787 if (*code != NE_EXPR || !integer_zerop (rhs)
788 || TREE_CODE (lhs) != SSA_NAME)
789 return false;
791 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
792 def = SSA_NAME_DEF_STMT (lhs);
793 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
794 return false;
796 /* Now verify arg0/arg1 correspond to the source arguments of an
797 EQ comparison feeding the BIT_AND_EXPR. */
799 tree tmp = gimple_assign_rhs1 (def);
800 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
801 return true;
803 tmp = gimple_assign_rhs2 (def);
804 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
805 return true;
807 return false;
810 /* Returns true if ARG is a neutral element for operation CODE
811 on the RIGHT side. */
813 static bool
814 neutral_element_p (tree_code code, tree arg, bool right)
816 switch (code)
818 case PLUS_EXPR:
819 case BIT_IOR_EXPR:
820 case BIT_XOR_EXPR:
821 return integer_zerop (arg);
823 case LROTATE_EXPR:
824 case RROTATE_EXPR:
825 case LSHIFT_EXPR:
826 case RSHIFT_EXPR:
827 case MINUS_EXPR:
828 case POINTER_PLUS_EXPR:
829 return right && integer_zerop (arg);
831 case MULT_EXPR:
832 return integer_onep (arg);
834 case TRUNC_DIV_EXPR:
835 case CEIL_DIV_EXPR:
836 case FLOOR_DIV_EXPR:
837 case ROUND_DIV_EXPR:
838 case EXACT_DIV_EXPR:
839 return right && integer_onep (arg);
841 case BIT_AND_EXPR:
842 return integer_all_onesp (arg);
844 default:
845 return false;
849 /* Returns true if ARG is an absorbing element for operation CODE. */
851 static bool
852 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
854 switch (code)
856 case BIT_IOR_EXPR:
857 return integer_all_onesp (arg);
859 case MULT_EXPR:
860 case BIT_AND_EXPR:
861 return integer_zerop (arg);
863 case LSHIFT_EXPR:
864 case RSHIFT_EXPR:
865 case LROTATE_EXPR:
866 case RROTATE_EXPR:
867 return !right && integer_zerop (arg);
869 case TRUNC_DIV_EXPR:
870 case CEIL_DIV_EXPR:
871 case FLOOR_DIV_EXPR:
872 case ROUND_DIV_EXPR:
873 case EXACT_DIV_EXPR:
874 case TRUNC_MOD_EXPR:
875 case CEIL_MOD_EXPR:
876 case FLOOR_MOD_EXPR:
877 case ROUND_MOD_EXPR:
878 return (!right
879 && integer_zerop (arg)
880 && tree_single_nonzero_warnv_p (rval, NULL));
882 default:
883 return false;
887 /* The function value_replacement does the main work of doing the value
888 replacement. Return non-zero if the replacement is done. Otherwise return
889 0. If we remove the middle basic block, return 2.
890 BB is the basic block where the replacement is going to be done on. ARG0
891 is argument 0 from the PHI. Likewise for ARG1. */
893 static int
894 value_replacement (basic_block cond_bb, basic_block middle_bb,
895 edge e0, edge e1, gimple *phi,
896 tree arg0, tree arg1)
898 gimple_stmt_iterator gsi;
899 gimple *cond;
900 edge true_edge, false_edge;
901 enum tree_code code;
902 bool emtpy_or_with_defined_p = true;
904 /* If the type says honor signed zeros we cannot do this
905 optimization. */
906 if (HONOR_SIGNED_ZEROS (arg1))
907 return 0;
909 /* If there is a statement in MIDDLE_BB that defines one of the PHI
910 arguments, then adjust arg0 or arg1. */
911 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
912 while (!gsi_end_p (gsi))
914 gimple *stmt = gsi_stmt (gsi);
915 tree lhs;
916 gsi_next_nondebug (&gsi);
917 if (!is_gimple_assign (stmt))
919 if (gimple_code (stmt) != GIMPLE_PREDICT
920 && gimple_code (stmt) != GIMPLE_NOP)
921 emtpy_or_with_defined_p = false;
922 continue;
924 /* Now try to adjust arg0 or arg1 according to the computation
925 in the statement. */
926 lhs = gimple_assign_lhs (stmt);
927 if (!(lhs == arg0
928 && jump_function_from_stmt (&arg0, stmt))
929 || (lhs == arg1
930 && jump_function_from_stmt (&arg1, stmt)))
931 emtpy_or_with_defined_p = false;
934 cond = last_stmt (cond_bb);
935 code = gimple_cond_code (cond);
937 /* This transformation is only valid for equality comparisons. */
938 if (code != NE_EXPR && code != EQ_EXPR)
939 return 0;
941 /* We need to know which is the true edge and which is the false
942 edge so that we know if have abs or negative abs. */
943 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
945 /* At this point we know we have a COND_EXPR with two successors.
946 One successor is BB, the other successor is an empty block which
947 falls through into BB.
949 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
951 There is a single PHI node at the join point (BB) with two arguments.
953 We now need to verify that the two arguments in the PHI node match
954 the two arguments to the equality comparison. */
956 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
958 edge e;
959 tree arg;
961 /* For NE_EXPR, we want to build an assignment result = arg where
962 arg is the PHI argument associated with the true edge. For
963 EQ_EXPR we want the PHI argument associated with the false edge. */
964 e = (code == NE_EXPR ? true_edge : false_edge);
966 /* Unfortunately, E may not reach BB (it may instead have gone to
967 OTHER_BLOCK). If that is the case, then we want the single outgoing
968 edge from OTHER_BLOCK which reaches BB and represents the desired
969 path from COND_BLOCK. */
970 if (e->dest == middle_bb)
971 e = single_succ_edge (e->dest);
973 /* Now we know the incoming edge to BB that has the argument for the
974 RHS of our new assignment statement. */
975 if (e0 == e)
976 arg = arg0;
977 else
978 arg = arg1;
980 /* If the middle basic block was empty or is defining the
981 PHI arguments and this is a single phi where the args are different
982 for the edges e0 and e1 then we can remove the middle basic block. */
983 if (emtpy_or_with_defined_p
984 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
985 e0, e1) == phi)
987 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
988 /* Note that we optimized this PHI. */
989 return 2;
991 else
993 /* Replace the PHI arguments with arg. */
994 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
995 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
996 if (dump_file && (dump_flags & TDF_DETAILS))
998 fprintf (dump_file, "PHI ");
999 print_generic_expr (dump_file, gimple_phi_result (phi));
1000 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
1001 cond_bb->index);
1002 print_generic_expr (dump_file, arg);
1003 fprintf (dump_file, ".\n");
1005 return 1;
1010 /* Now optimize (x != 0) ? x + y : y to just x + y. */
1011 gsi = gsi_last_nondebug_bb (middle_bb);
1012 if (gsi_end_p (gsi))
1013 return 0;
1015 gimple *assign = gsi_stmt (gsi);
1016 if (!is_gimple_assign (assign)
1017 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1018 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1019 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1020 return 0;
1022 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1023 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1024 return 0;
1026 /* Allow up to 2 cheap preparation statements that prepare argument
1027 for assign, e.g.:
1028 if (y_4 != 0)
1029 goto <bb 3>;
1030 else
1031 goto <bb 4>;
1032 <bb 3>:
1033 _1 = (int) y_4;
1034 iftmp.0_6 = x_5(D) r<< _1;
1035 <bb 4>:
1036 # iftmp.0_2 = PHI <iftmp.0_6(3), x_5(D)(2)>
1038 if (y_3(D) == 0)
1039 goto <bb 4>;
1040 else
1041 goto <bb 3>;
1042 <bb 3>:
1043 y_4 = y_3(D) & 31;
1044 _1 = (int) y_4;
1045 _6 = x_5(D) r<< _1;
1046 <bb 4>:
1047 # _2 = PHI <x_5(D)(2), _6(3)> */
1048 gimple *prep_stmt[2] = { NULL, NULL };
1049 int prep_cnt;
1050 for (prep_cnt = 0; ; prep_cnt++)
1052 gsi_prev_nondebug (&gsi);
1053 if (gsi_end_p (gsi))
1054 break;
1056 gimple *g = gsi_stmt (gsi);
1057 if (gimple_code (g) == GIMPLE_LABEL)
1058 break;
1060 if (prep_cnt == 2 || !is_gimple_assign (g))
1061 return 0;
1063 tree lhs = gimple_assign_lhs (g);
1064 tree rhs1 = gimple_assign_rhs1 (g);
1065 use_operand_p use_p;
1066 gimple *use_stmt;
1067 if (TREE_CODE (lhs) != SSA_NAME
1068 || TREE_CODE (rhs1) != SSA_NAME
1069 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1070 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1071 || !single_imm_use (lhs, &use_p, &use_stmt)
1072 || use_stmt != (prep_cnt ? prep_stmt[prep_cnt - 1] : assign))
1073 return 0;
1074 switch (gimple_assign_rhs_code (g))
1076 CASE_CONVERT:
1077 break;
1078 case PLUS_EXPR:
1079 case BIT_AND_EXPR:
1080 case BIT_IOR_EXPR:
1081 case BIT_XOR_EXPR:
1082 if (TREE_CODE (gimple_assign_rhs2 (g)) != INTEGER_CST)
1083 return 0;
1084 break;
1085 default:
1086 return 0;
1088 prep_stmt[prep_cnt] = g;
1091 /* Only transform if it removes the condition. */
1092 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1093 return 0;
1095 /* Size-wise, this is always profitable. */
1096 if (optimize_bb_for_speed_p (cond_bb)
1097 /* The special case is useless if it has a low probability. */
1098 && profile_status_for_fn (cfun) != PROFILE_ABSENT
1099 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
1100 /* If assign is cheap, there is no point avoiding it. */
1101 && estimate_num_insns (bb_seq (middle_bb), &eni_time_weights)
1102 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1103 return 0;
1105 tree lhs = gimple_assign_lhs (assign);
1106 tree rhs1 = gimple_assign_rhs1 (assign);
1107 tree rhs2 = gimple_assign_rhs2 (assign);
1108 enum tree_code code_def = gimple_assign_rhs_code (assign);
1109 tree cond_lhs = gimple_cond_lhs (cond);
1110 tree cond_rhs = gimple_cond_rhs (cond);
1112 /* Propagate the cond_rhs constant through preparation stmts,
1113 make sure UB isn't invoked while doing that. */
1114 for (int i = prep_cnt - 1; i >= 0; --i)
1116 gimple *g = prep_stmt[i];
1117 tree grhs1 = gimple_assign_rhs1 (g);
1118 if (!operand_equal_for_phi_arg_p (cond_lhs, grhs1))
1119 return 0;
1120 cond_lhs = gimple_assign_lhs (g);
1121 cond_rhs = fold_convert (TREE_TYPE (grhs1), cond_rhs);
1122 if (TREE_CODE (cond_rhs) != INTEGER_CST
1123 || TREE_OVERFLOW (cond_rhs))
1124 return 0;
1125 if (gimple_assign_rhs_class (g) == GIMPLE_BINARY_RHS)
1127 cond_rhs = int_const_binop (gimple_assign_rhs_code (g), cond_rhs,
1128 gimple_assign_rhs2 (g));
1129 if (TREE_OVERFLOW (cond_rhs))
1130 return 0;
1132 cond_rhs = fold_convert (TREE_TYPE (cond_lhs), cond_rhs);
1133 if (TREE_CODE (cond_rhs) != INTEGER_CST
1134 || TREE_OVERFLOW (cond_rhs))
1135 return 0;
1138 if (((code == NE_EXPR && e1 == false_edge)
1139 || (code == EQ_EXPR && e1 == true_edge))
1140 && arg0 == lhs
1141 && ((arg1 == rhs1
1142 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1143 && neutral_element_p (code_def, cond_rhs, true))
1144 || (arg1 == rhs2
1145 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1146 && neutral_element_p (code_def, cond_rhs, false))
1147 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1148 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1149 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1150 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1151 && absorbing_element_p (code_def,
1152 cond_rhs, false, rhs2))))))
1154 gsi = gsi_for_stmt (cond);
1155 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1156 def-stmt in:
1157 if (n_5 != 0)
1158 goto <bb 3>;
1159 else
1160 goto <bb 4>;
1162 <bb 3>:
1163 # RANGE [0, 4294967294]
1164 u_6 = n_5 + 4294967295;
1166 <bb 4>:
1167 # u_3 = PHI <u_6(3), 4294967295(2)> */
1168 reset_flow_sensitive_info (lhs);
1169 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1171 /* If available, we can use VR of phi result at least. */
1172 tree phires = gimple_phi_result (phi);
1173 struct range_info_def *phires_range_info
1174 = SSA_NAME_RANGE_INFO (phires);
1175 if (phires_range_info)
1176 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1177 phires_range_info);
1179 gimple_stmt_iterator gsi_from;
1180 for (int i = prep_cnt - 1; i >= 0; --i)
1182 tree plhs = gimple_assign_lhs (prep_stmt[i]);
1183 reset_flow_sensitive_info (plhs);
1184 gsi_from = gsi_for_stmt (prep_stmt[i]);
1185 gsi_move_before (&gsi_from, &gsi);
1187 gsi_from = gsi_for_stmt (assign);
1188 gsi_move_before (&gsi_from, &gsi);
1189 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1190 return 2;
1193 return 0;
1196 /* The function minmax_replacement does the main work of doing the minmax
1197 replacement. Return true if the replacement is done. Otherwise return
1198 false.
1199 BB is the basic block where the replacement is going to be done on. ARG0
1200 is argument 0 from the PHI. Likewise for ARG1. */
1202 static bool
1203 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1204 edge e0, edge e1, gimple *phi,
1205 tree arg0, tree arg1)
1207 tree result, type;
1208 gcond *cond;
1209 gassign *new_stmt;
1210 edge true_edge, false_edge;
1211 enum tree_code cmp, minmax, ass_code;
1212 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1213 gimple_stmt_iterator gsi, gsi_from;
1215 type = TREE_TYPE (PHI_RESULT (phi));
1217 /* The optimization may be unsafe due to NaNs. */
1218 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1219 return false;
1221 cond = as_a <gcond *> (last_stmt (cond_bb));
1222 cmp = gimple_cond_code (cond);
1224 /* This transformation is only valid for order comparisons. Record which
1225 operand is smaller/larger if the result of the comparison is true. */
1226 alt_smaller = NULL_TREE;
1227 alt_larger = NULL_TREE;
1228 if (cmp == LT_EXPR || cmp == LE_EXPR)
1230 smaller = gimple_cond_lhs (cond);
1231 larger = gimple_cond_rhs (cond);
1232 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1233 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1234 if (TREE_CODE (larger) == INTEGER_CST)
1236 if (cmp == LT_EXPR)
1238 wi::overflow_type overflow;
1239 wide_int alt = wi::sub (wi::to_wide (larger), 1,
1240 TYPE_SIGN (TREE_TYPE (larger)),
1241 &overflow);
1242 if (! overflow)
1243 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1245 else
1247 wi::overflow_type overflow;
1248 wide_int alt = wi::add (wi::to_wide (larger), 1,
1249 TYPE_SIGN (TREE_TYPE (larger)),
1250 &overflow);
1251 if (! overflow)
1252 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1256 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1258 smaller = gimple_cond_rhs (cond);
1259 larger = gimple_cond_lhs (cond);
1260 /* If we have larger > CST it is equivalent to larger >= CST+1.
1261 Likewise larger >= CST is equivalent to larger > CST-1. */
1262 if (TREE_CODE (smaller) == INTEGER_CST)
1264 wi::overflow_type overflow;
1265 if (cmp == GT_EXPR)
1267 wide_int alt = wi::add (wi::to_wide (smaller), 1,
1268 TYPE_SIGN (TREE_TYPE (smaller)),
1269 &overflow);
1270 if (! overflow)
1271 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1273 else
1275 wide_int alt = wi::sub (wi::to_wide (smaller), 1,
1276 TYPE_SIGN (TREE_TYPE (smaller)),
1277 &overflow);
1278 if (! overflow)
1279 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1283 else
1284 return false;
1286 /* We need to know which is the true edge and which is the false
1287 edge so that we know if have abs or negative abs. */
1288 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1290 /* Forward the edges over the middle basic block. */
1291 if (true_edge->dest == middle_bb)
1292 true_edge = EDGE_SUCC (true_edge->dest, 0);
1293 if (false_edge->dest == middle_bb)
1294 false_edge = EDGE_SUCC (false_edge->dest, 0);
1296 if (true_edge == e0)
1298 gcc_assert (false_edge == e1);
1299 arg_true = arg0;
1300 arg_false = arg1;
1302 else
1304 gcc_assert (false_edge == e0);
1305 gcc_assert (true_edge == e1);
1306 arg_true = arg1;
1307 arg_false = arg0;
1310 if (empty_block_p (middle_bb))
1312 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1313 || (alt_smaller
1314 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1315 && (operand_equal_for_phi_arg_p (arg_false, larger)
1316 || (alt_larger
1317 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1319 /* Case
1321 if (smaller < larger)
1322 rslt = smaller;
1323 else
1324 rslt = larger; */
1325 minmax = MIN_EXPR;
1327 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1328 || (alt_smaller
1329 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1330 && (operand_equal_for_phi_arg_p (arg_true, larger)
1331 || (alt_larger
1332 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1333 minmax = MAX_EXPR;
1334 else
1335 return false;
1337 else
1339 /* Recognize the following case, assuming d <= u:
1341 if (a <= u)
1342 b = MAX (a, d);
1343 x = PHI <b, u>
1345 This is equivalent to
1347 b = MAX (a, d);
1348 x = MIN (b, u); */
1350 gimple *assign = last_and_only_stmt (middle_bb);
1351 tree lhs, op0, op1, bound;
1353 if (!assign
1354 || gimple_code (assign) != GIMPLE_ASSIGN)
1355 return false;
1357 lhs = gimple_assign_lhs (assign);
1358 ass_code = gimple_assign_rhs_code (assign);
1359 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1360 return false;
1361 op0 = gimple_assign_rhs1 (assign);
1362 op1 = gimple_assign_rhs2 (assign);
1364 if (true_edge->src == middle_bb)
1366 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1367 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1368 return false;
1370 if (operand_equal_for_phi_arg_p (arg_false, larger)
1371 || (alt_larger
1372 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1374 /* Case
1376 if (smaller < larger)
1378 r' = MAX_EXPR (smaller, bound)
1380 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1381 if (ass_code != MAX_EXPR)
1382 return false;
1384 minmax = MIN_EXPR;
1385 if (operand_equal_for_phi_arg_p (op0, smaller)
1386 || (alt_smaller
1387 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1388 bound = op1;
1389 else if (operand_equal_for_phi_arg_p (op1, smaller)
1390 || (alt_smaller
1391 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1392 bound = op0;
1393 else
1394 return false;
1396 /* We need BOUND <= LARGER. */
1397 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1398 bound, larger)))
1399 return false;
1401 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1402 || (alt_smaller
1403 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1405 /* Case
1407 if (smaller < larger)
1409 r' = MIN_EXPR (larger, bound)
1411 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1412 if (ass_code != MIN_EXPR)
1413 return false;
1415 minmax = MAX_EXPR;
1416 if (operand_equal_for_phi_arg_p (op0, larger)
1417 || (alt_larger
1418 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1419 bound = op1;
1420 else if (operand_equal_for_phi_arg_p (op1, larger)
1421 || (alt_larger
1422 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1423 bound = op0;
1424 else
1425 return false;
1427 /* We need BOUND >= SMALLER. */
1428 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1429 bound, smaller)))
1430 return false;
1432 else
1433 return false;
1435 else
1437 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1438 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1439 return false;
1441 if (operand_equal_for_phi_arg_p (arg_true, larger)
1442 || (alt_larger
1443 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1445 /* Case
1447 if (smaller > larger)
1449 r' = MIN_EXPR (smaller, bound)
1451 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1452 if (ass_code != MIN_EXPR)
1453 return false;
1455 minmax = MAX_EXPR;
1456 if (operand_equal_for_phi_arg_p (op0, smaller)
1457 || (alt_smaller
1458 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1459 bound = op1;
1460 else if (operand_equal_for_phi_arg_p (op1, smaller)
1461 || (alt_smaller
1462 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1463 bound = op0;
1464 else
1465 return false;
1467 /* We need BOUND >= LARGER. */
1468 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1469 bound, larger)))
1470 return false;
1472 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1473 || (alt_smaller
1474 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1476 /* Case
1478 if (smaller > larger)
1480 r' = MAX_EXPR (larger, bound)
1482 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1483 if (ass_code != MAX_EXPR)
1484 return false;
1486 minmax = MIN_EXPR;
1487 if (operand_equal_for_phi_arg_p (op0, larger))
1488 bound = op1;
1489 else if (operand_equal_for_phi_arg_p (op1, larger))
1490 bound = op0;
1491 else
1492 return false;
1494 /* We need BOUND <= SMALLER. */
1495 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1496 bound, smaller)))
1497 return false;
1499 else
1500 return false;
1503 /* Move the statement from the middle block. */
1504 gsi = gsi_last_bb (cond_bb);
1505 gsi_from = gsi_last_nondebug_bb (middle_bb);
1506 reset_flow_sensitive_info (SINGLE_SSA_TREE_OPERAND (gsi_stmt (gsi_from),
1507 SSA_OP_DEF));
1508 gsi_move_before (&gsi_from, &gsi);
1511 /* Create an SSA var to hold the min/max result. If we're the only
1512 things setting the target PHI, then we can clone the PHI
1513 variable. Otherwise we must create a new one. */
1514 result = PHI_RESULT (phi);
1515 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1516 result = duplicate_ssa_name (result, NULL);
1517 else
1518 result = make_ssa_name (TREE_TYPE (result));
1520 /* Emit the statement to compute min/max. */
1521 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1522 gsi = gsi_last_bb (cond_bb);
1523 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1525 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1527 return true;
1530 /* Convert
1532 <bb 2>
1533 if (b_4(D) != 0)
1534 goto <bb 3>
1535 else
1536 goto <bb 4>
1538 <bb 3>
1539 _2 = (unsigned long) b_4(D);
1540 _9 = __builtin_popcountl (_2);
1542 _9 = __builtin_popcountl (b_4(D));
1544 <bb 4>
1545 c_12 = PHI <0(2), _9(3)>
1547 Into
1548 <bb 2>
1549 _2 = (unsigned long) b_4(D);
1550 _9 = __builtin_popcountl (_2);
1552 _9 = __builtin_popcountl (b_4(D));
1554 <bb 4>
1555 c_12 = PHI <_9(2)>
1558 static bool
1559 cond_removal_in_popcount_pattern (basic_block cond_bb, basic_block middle_bb,
1560 edge e1, edge e2,
1561 gimple *phi, tree arg0, tree arg1)
1563 gimple *cond;
1564 gimple_stmt_iterator gsi, gsi_from;
1565 gimple *popcount;
1566 gimple *cast = NULL;
1567 tree lhs, arg;
1569 /* Check that
1570 _2 = (unsigned long) b_4(D);
1571 _9 = __builtin_popcountl (_2);
1573 _9 = __builtin_popcountl (b_4(D));
1574 are the only stmts in the middle_bb. */
1576 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1577 if (gsi_end_p (gsi))
1578 return false;
1579 cast = gsi_stmt (gsi);
1580 gsi_next_nondebug (&gsi);
1581 if (!gsi_end_p (gsi))
1583 popcount = gsi_stmt (gsi);
1584 gsi_next_nondebug (&gsi);
1585 if (!gsi_end_p (gsi))
1586 return false;
1588 else
1590 popcount = cast;
1591 cast = NULL;
1594 /* Check that we have a popcount builtin. */
1595 if (!is_gimple_call (popcount))
1596 return false;
1597 combined_fn cfn = gimple_call_combined_fn (popcount);
1598 switch (cfn)
1600 CASE_CFN_POPCOUNT:
1601 break;
1602 default:
1603 return false;
1606 arg = gimple_call_arg (popcount, 0);
1607 lhs = gimple_get_lhs (popcount);
1609 if (cast)
1611 /* We have a cast stmt feeding popcount builtin. */
1612 /* Check that we have a cast prior to that. */
1613 if (gimple_code (cast) != GIMPLE_ASSIGN
1614 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (cast)))
1615 return false;
1616 /* Result of the cast stmt is the argument to the builtin. */
1617 if (arg != gimple_assign_lhs (cast))
1618 return false;
1619 arg = gimple_assign_rhs1 (cast);
1622 cond = last_stmt (cond_bb);
1624 /* Cond_bb has a check for b_4 [!=|==] 0 before calling the popcount
1625 builtin. */
1626 if (gimple_code (cond) != GIMPLE_COND
1627 || (gimple_cond_code (cond) != NE_EXPR
1628 && gimple_cond_code (cond) != EQ_EXPR)
1629 || !integer_zerop (gimple_cond_rhs (cond))
1630 || arg != gimple_cond_lhs (cond))
1631 return false;
1633 /* Canonicalize. */
1634 if ((e2->flags & EDGE_TRUE_VALUE
1635 && gimple_cond_code (cond) == NE_EXPR)
1636 || (e1->flags & EDGE_TRUE_VALUE
1637 && gimple_cond_code (cond) == EQ_EXPR))
1639 std::swap (arg0, arg1);
1640 std::swap (e1, e2);
1643 /* Check PHI arguments. */
1644 if (lhs != arg0 || !integer_zerop (arg1))
1645 return false;
1647 /* And insert the popcount builtin and cast stmt before the cond_bb. */
1648 gsi = gsi_last_bb (cond_bb);
1649 if (cast)
1651 gsi_from = gsi_for_stmt (cast);
1652 gsi_move_before (&gsi_from, &gsi);
1653 reset_flow_sensitive_info (gimple_get_lhs (cast));
1655 gsi_from = gsi_for_stmt (popcount);
1656 gsi_move_before (&gsi_from, &gsi);
1657 reset_flow_sensitive_info (gimple_get_lhs (popcount));
1659 /* Now update the PHI and remove unneeded bbs. */
1660 replace_phi_edge_with_variable (cond_bb, e2, phi, lhs);
1661 return true;
1664 /* The function absolute_replacement does the main work of doing the absolute
1665 replacement. Return true if the replacement is done. Otherwise return
1666 false.
1667 bb is the basic block where the replacement is going to be done on. arg0
1668 is argument 0 from the phi. Likewise for arg1. */
1670 static bool
1671 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1672 edge e0 ATTRIBUTE_UNUSED, edge e1,
1673 gimple *phi, tree arg0, tree arg1)
1675 tree result;
1676 gassign *new_stmt;
1677 gimple *cond;
1678 gimple_stmt_iterator gsi;
1679 edge true_edge, false_edge;
1680 gimple *assign;
1681 edge e;
1682 tree rhs, lhs;
1683 bool negate;
1684 enum tree_code cond_code;
1686 /* If the type says honor signed zeros we cannot do this
1687 optimization. */
1688 if (HONOR_SIGNED_ZEROS (arg1))
1689 return false;
1691 /* OTHER_BLOCK must have only one executable statement which must have the
1692 form arg0 = -arg1 or arg1 = -arg0. */
1694 assign = last_and_only_stmt (middle_bb);
1695 /* If we did not find the proper negation assignment, then we can not
1696 optimize. */
1697 if (assign == NULL)
1698 return false;
1700 /* If we got here, then we have found the only executable statement
1701 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1702 arg1 = -arg0, then we can not optimize. */
1703 if (gimple_code (assign) != GIMPLE_ASSIGN)
1704 return false;
1706 lhs = gimple_assign_lhs (assign);
1708 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1709 return false;
1711 rhs = gimple_assign_rhs1 (assign);
1713 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1714 if (!(lhs == arg0 && rhs == arg1)
1715 && !(lhs == arg1 && rhs == arg0))
1716 return false;
1718 cond = last_stmt (cond_bb);
1719 result = PHI_RESULT (phi);
1721 /* Only relationals comparing arg[01] against zero are interesting. */
1722 cond_code = gimple_cond_code (cond);
1723 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1724 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1725 return false;
1727 /* Make sure the conditional is arg[01] OP y. */
1728 if (gimple_cond_lhs (cond) != rhs)
1729 return false;
1731 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1732 ? real_zerop (gimple_cond_rhs (cond))
1733 : integer_zerop (gimple_cond_rhs (cond)))
1735 else
1736 return false;
1738 /* We need to know which is the true edge and which is the false
1739 edge so that we know if have abs or negative abs. */
1740 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1742 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1743 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1744 the false edge goes to OTHER_BLOCK. */
1745 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1746 e = true_edge;
1747 else
1748 e = false_edge;
1750 if (e->dest == middle_bb)
1751 negate = true;
1752 else
1753 negate = false;
1755 /* If the code negates only iff positive then make sure to not
1756 introduce undefined behavior when negating or computing the absolute.
1757 ??? We could use range info if present to check for arg1 == INT_MIN. */
1758 if (negate
1759 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1760 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1761 return false;
1763 result = duplicate_ssa_name (result, NULL);
1765 if (negate)
1766 lhs = make_ssa_name (TREE_TYPE (result));
1767 else
1768 lhs = result;
1770 /* Build the modify expression with abs expression. */
1771 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1773 gsi = gsi_last_bb (cond_bb);
1774 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1776 if (negate)
1778 /* Get the right GSI. We want to insert after the recently
1779 added ABS_EXPR statement (which we know is the first statement
1780 in the block. */
1781 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1783 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1786 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1788 /* Note that we optimized this PHI. */
1789 return true;
1792 /* Auxiliary functions to determine the set of memory accesses which
1793 can't trap because they are preceded by accesses to the same memory
1794 portion. We do that for MEM_REFs, so we only need to track
1795 the SSA_NAME of the pointer indirectly referenced. The algorithm
1796 simply is a walk over all instructions in dominator order. When
1797 we see an MEM_REF we determine if we've already seen a same
1798 ref anywhere up to the root of the dominator tree. If we do the
1799 current access can't trap. If we don't see any dominating access
1800 the current access might trap, but might also make later accesses
1801 non-trapping, so we remember it. We need to be careful with loads
1802 or stores, for instance a load might not trap, while a store would,
1803 so if we see a dominating read access this doesn't mean that a later
1804 write access would not trap. Hence we also need to differentiate the
1805 type of access(es) seen.
1807 ??? We currently are very conservative and assume that a load might
1808 trap even if a store doesn't (write-only memory). This probably is
1809 overly conservative. */
1811 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1812 through it was seen, which would constitute a no-trap region for
1813 same accesses. */
1814 struct name_to_bb
1816 unsigned int ssa_name_ver;
1817 unsigned int phase;
1818 bool store;
1819 HOST_WIDE_INT offset, size;
1820 basic_block bb;
1823 /* Hashtable helpers. */
1825 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1827 static inline hashval_t hash (const name_to_bb *);
1828 static inline bool equal (const name_to_bb *, const name_to_bb *);
1831 /* Used for quick clearing of the hash-table when we see calls.
1832 Hash entries with phase < nt_call_phase are invalid. */
1833 static unsigned int nt_call_phase;
1835 /* The hash function. */
1837 inline hashval_t
1838 ssa_names_hasher::hash (const name_to_bb *n)
1840 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1841 ^ (n->offset << 6) ^ (n->size << 3);
1844 /* The equality function of *P1 and *P2. */
1846 inline bool
1847 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1849 return n1->ssa_name_ver == n2->ssa_name_ver
1850 && n1->store == n2->store
1851 && n1->offset == n2->offset
1852 && n1->size == n2->size;
1855 class nontrapping_dom_walker : public dom_walker
1857 public:
1858 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1859 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1861 virtual edge before_dom_children (basic_block);
1862 virtual void after_dom_children (basic_block);
1864 private:
1866 /* We see the expression EXP in basic block BB. If it's an interesting
1867 expression (an MEM_REF through an SSA_NAME) possibly insert the
1868 expression into the set NONTRAP or the hash table of seen expressions.
1869 STORE is true if this expression is on the LHS, otherwise it's on
1870 the RHS. */
1871 void add_or_mark_expr (basic_block, tree, bool);
1873 hash_set<tree> *m_nontrapping;
1875 /* The hash table for remembering what we've seen. */
1876 hash_table<ssa_names_hasher> m_seen_ssa_names;
1879 /* Called by walk_dominator_tree, when entering the block BB. */
1880 edge
1881 nontrapping_dom_walker::before_dom_children (basic_block bb)
1883 edge e;
1884 edge_iterator ei;
1885 gimple_stmt_iterator gsi;
1887 /* If we haven't seen all our predecessors, clear the hash-table. */
1888 FOR_EACH_EDGE (e, ei, bb->preds)
1889 if ((((size_t)e->src->aux) & 2) == 0)
1891 nt_call_phase++;
1892 break;
1895 /* Mark this BB as being on the path to dominator root and as visited. */
1896 bb->aux = (void*)(1 | 2);
1898 /* And walk the statements in order. */
1899 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1901 gimple *stmt = gsi_stmt (gsi);
1903 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
1904 || (is_gimple_call (stmt)
1905 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
1906 nt_call_phase++;
1907 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1909 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1910 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1913 return NULL;
1916 /* Called by walk_dominator_tree, when basic block BB is exited. */
1917 void
1918 nontrapping_dom_walker::after_dom_children (basic_block bb)
1920 /* This BB isn't on the path to dominator root anymore. */
1921 bb->aux = (void*)2;
1924 /* We see the expression EXP in basic block BB. If it's an interesting
1925 expression (an MEM_REF through an SSA_NAME) possibly insert the
1926 expression into the set NONTRAP or the hash table of seen expressions.
1927 STORE is true if this expression is on the LHS, otherwise it's on
1928 the RHS. */
1929 void
1930 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1932 HOST_WIDE_INT size;
1934 if (TREE_CODE (exp) == MEM_REF
1935 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1936 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1937 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1939 tree name = TREE_OPERAND (exp, 0);
1940 struct name_to_bb map;
1941 name_to_bb **slot;
1942 struct name_to_bb *n2bb;
1943 basic_block found_bb = 0;
1945 /* Try to find the last seen MEM_REF through the same
1946 SSA_NAME, which can trap. */
1947 map.ssa_name_ver = SSA_NAME_VERSION (name);
1948 map.phase = 0;
1949 map.bb = 0;
1950 map.store = store;
1951 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1952 map.size = size;
1954 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1955 n2bb = *slot;
1956 if (n2bb && n2bb->phase >= nt_call_phase)
1957 found_bb = n2bb->bb;
1959 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1960 (it's in a basic block on the path from us to the dominator root)
1961 then we can't trap. */
1962 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1964 m_nontrapping->add (exp);
1966 else
1968 /* EXP might trap, so insert it into the hash table. */
1969 if (n2bb)
1971 n2bb->phase = nt_call_phase;
1972 n2bb->bb = bb;
1974 else
1976 n2bb = XNEW (struct name_to_bb);
1977 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1978 n2bb->phase = nt_call_phase;
1979 n2bb->bb = bb;
1980 n2bb->store = store;
1981 n2bb->offset = map.offset;
1982 n2bb->size = size;
1983 *slot = n2bb;
1989 /* This is the entry point of gathering non trapping memory accesses.
1990 It will do a dominator walk over the whole function, and it will
1991 make use of the bb->aux pointers. It returns a set of trees
1992 (the MEM_REFs itself) which can't trap. */
1993 static hash_set<tree> *
1994 get_non_trapping (void)
1996 nt_call_phase = 0;
1997 hash_set<tree> *nontrap = new hash_set<tree>;
1998 /* We're going to do a dominator walk, so ensure that we have
1999 dominance information. */
2000 calculate_dominance_info (CDI_DOMINATORS);
2002 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
2003 .walk (cfun->cfg->x_entry_block_ptr);
2005 clear_aux_for_blocks ();
2006 return nontrap;
2009 /* Do the main work of conditional store replacement. We already know
2010 that the recognized pattern looks like so:
2012 split:
2013 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
2014 MIDDLE_BB:
2015 something
2016 fallthrough (edge E0)
2017 JOIN_BB:
2018 some more
2020 We check that MIDDLE_BB contains only one store, that that store
2021 doesn't trap (not via NOTRAP, but via checking if an access to the same
2022 memory location dominates us) and that the store has a "simple" RHS. */
2024 static bool
2025 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
2026 edge e0, edge e1, hash_set<tree> *nontrap)
2028 gimple *assign = last_and_only_stmt (middle_bb);
2029 tree lhs, rhs, name, name2;
2030 gphi *newphi;
2031 gassign *new_stmt;
2032 gimple_stmt_iterator gsi;
2033 source_location locus;
2035 /* Check if middle_bb contains of only one store. */
2036 if (!assign
2037 || !gimple_assign_single_p (assign)
2038 || gimple_has_volatile_ops (assign))
2039 return false;
2041 locus = gimple_location (assign);
2042 lhs = gimple_assign_lhs (assign);
2043 rhs = gimple_assign_rhs1 (assign);
2044 if (TREE_CODE (lhs) != MEM_REF
2045 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
2046 || !is_gimple_reg_type (TREE_TYPE (lhs)))
2047 return false;
2049 /* Prove that we can move the store down. We could also check
2050 TREE_THIS_NOTRAP here, but in that case we also could move stores,
2051 whose value is not available readily, which we want to avoid. */
2052 if (!nontrap->contains (lhs))
2053 return false;
2055 /* Now we've checked the constraints, so do the transformation:
2056 1) Remove the single store. */
2057 gsi = gsi_for_stmt (assign);
2058 unlink_stmt_vdef (assign);
2059 gsi_remove (&gsi, true);
2060 release_defs (assign);
2062 /* Make both store and load use alias-set zero as we have to
2063 deal with the case of the store being a conditional change
2064 of the dynamic type. */
2065 lhs = unshare_expr (lhs);
2066 tree *basep = &lhs;
2067 while (handled_component_p (*basep))
2068 basep = &TREE_OPERAND (*basep, 0);
2069 if (TREE_CODE (*basep) == MEM_REF
2070 || TREE_CODE (*basep) == TARGET_MEM_REF)
2071 TREE_OPERAND (*basep, 1)
2072 = fold_convert (ptr_type_node, TREE_OPERAND (*basep, 1));
2073 else
2074 *basep = build2 (MEM_REF, TREE_TYPE (*basep),
2075 build_fold_addr_expr (*basep),
2076 build_zero_cst (ptr_type_node));
2078 /* 2) Insert a load from the memory of the store to the temporary
2079 on the edge which did not contain the store. */
2080 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2081 new_stmt = gimple_build_assign (name, lhs);
2082 gimple_set_location (new_stmt, locus);
2083 gsi_insert_on_edge (e1, new_stmt);
2085 /* 3) Create a PHI node at the join block, with one argument
2086 holding the old RHS, and the other holding the temporary
2087 where we stored the old memory contents. */
2088 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2089 newphi = create_phi_node (name2, join_bb);
2090 add_phi_arg (newphi, rhs, e0, locus);
2091 add_phi_arg (newphi, name, e1, locus);
2093 lhs = unshare_expr (lhs);
2094 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2096 /* 4) Insert that PHI node. */
2097 gsi = gsi_after_labels (join_bb);
2098 if (gsi_end_p (gsi))
2100 gsi = gsi_last_bb (join_bb);
2101 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2103 else
2104 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2106 return true;
2109 /* Do the main work of conditional store replacement. */
2111 static bool
2112 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
2113 basic_block join_bb, gimple *then_assign,
2114 gimple *else_assign)
2116 tree lhs_base, lhs, then_rhs, else_rhs, name;
2117 source_location then_locus, else_locus;
2118 gimple_stmt_iterator gsi;
2119 gphi *newphi;
2120 gassign *new_stmt;
2122 if (then_assign == NULL
2123 || !gimple_assign_single_p (then_assign)
2124 || gimple_clobber_p (then_assign)
2125 || gimple_has_volatile_ops (then_assign)
2126 || else_assign == NULL
2127 || !gimple_assign_single_p (else_assign)
2128 || gimple_clobber_p (else_assign)
2129 || gimple_has_volatile_ops (else_assign))
2130 return false;
2132 lhs = gimple_assign_lhs (then_assign);
2133 if (!is_gimple_reg_type (TREE_TYPE (lhs))
2134 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
2135 return false;
2137 lhs_base = get_base_address (lhs);
2138 if (lhs_base == NULL_TREE
2139 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
2140 return false;
2142 then_rhs = gimple_assign_rhs1 (then_assign);
2143 else_rhs = gimple_assign_rhs1 (else_assign);
2144 then_locus = gimple_location (then_assign);
2145 else_locus = gimple_location (else_assign);
2147 /* Now we've checked the constraints, so do the transformation:
2148 1) Remove the stores. */
2149 gsi = gsi_for_stmt (then_assign);
2150 unlink_stmt_vdef (then_assign);
2151 gsi_remove (&gsi, true);
2152 release_defs (then_assign);
2154 gsi = gsi_for_stmt (else_assign);
2155 unlink_stmt_vdef (else_assign);
2156 gsi_remove (&gsi, true);
2157 release_defs (else_assign);
2159 /* 2) Create a PHI node at the join block, with one argument
2160 holding the old RHS, and the other holding the temporary
2161 where we stored the old memory contents. */
2162 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2163 newphi = create_phi_node (name, join_bb);
2164 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
2165 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
2167 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2169 /* 3) Insert that PHI node. */
2170 gsi = gsi_after_labels (join_bb);
2171 if (gsi_end_p (gsi))
2173 gsi = gsi_last_bb (join_bb);
2174 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2176 else
2177 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2179 return true;
2182 /* Return the single store in BB with VDEF or NULL if there are
2183 other stores in the BB or loads following the store. */
2185 static gimple *
2186 single_trailing_store_in_bb (basic_block bb, tree vdef)
2188 if (SSA_NAME_IS_DEFAULT_DEF (vdef))
2189 return NULL;
2190 gimple *store = SSA_NAME_DEF_STMT (vdef);
2191 if (gimple_bb (store) != bb
2192 || gimple_code (store) == GIMPLE_PHI)
2193 return NULL;
2195 /* Verify there is no other store in this BB. */
2196 if (!SSA_NAME_IS_DEFAULT_DEF (gimple_vuse (store))
2197 && gimple_bb (SSA_NAME_DEF_STMT (gimple_vuse (store))) == bb
2198 && gimple_code (SSA_NAME_DEF_STMT (gimple_vuse (store))) != GIMPLE_PHI)
2199 return NULL;
2201 /* Verify there is no load or store after the store. */
2202 use_operand_p use_p;
2203 imm_use_iterator imm_iter;
2204 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vdef (store))
2205 if (USE_STMT (use_p) != store
2206 && gimple_bb (USE_STMT (use_p)) == bb)
2207 return NULL;
2209 return store;
2212 /* Conditional store replacement. We already know
2213 that the recognized pattern looks like so:
2215 split:
2216 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
2217 THEN_BB:
2219 X = Y;
2221 goto JOIN_BB;
2222 ELSE_BB:
2224 X = Z;
2226 fallthrough (edge E0)
2227 JOIN_BB:
2228 some more
2230 We check that it is safe to sink the store to JOIN_BB by verifying that
2231 there are no read-after-write or write-after-write dependencies in
2232 THEN_BB and ELSE_BB. */
2234 static bool
2235 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
2236 basic_block join_bb)
2238 vec<data_reference_p> then_datarefs, else_datarefs;
2239 vec<ddr_p> then_ddrs, else_ddrs;
2240 gimple *then_store, *else_store;
2241 bool found, ok = false, res;
2242 struct data_dependence_relation *ddr;
2243 data_reference_p then_dr, else_dr;
2244 int i, j;
2245 tree then_lhs, else_lhs;
2246 basic_block blocks[3];
2248 /* Handle the case with single store in THEN_BB and ELSE_BB. That is
2249 cheap enough to always handle as it allows us to elide dependence
2250 checking. */
2251 gphi *vphi = NULL;
2252 for (gphi_iterator si = gsi_start_phis (join_bb); !gsi_end_p (si);
2253 gsi_next (&si))
2254 if (virtual_operand_p (gimple_phi_result (si.phi ())))
2256 vphi = si.phi ();
2257 break;
2259 if (!vphi)
2260 return false;
2261 tree then_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (then_bb));
2262 tree else_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (else_bb));
2263 gimple *then_assign = single_trailing_store_in_bb (then_bb, then_vdef);
2264 if (then_assign)
2266 gimple *else_assign = single_trailing_store_in_bb (else_bb, else_vdef);
2267 if (else_assign)
2268 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2269 then_assign, else_assign);
2272 if (MAX_STORES_TO_SINK == 0)
2273 return false;
2275 /* Find data references. */
2276 then_datarefs.create (1);
2277 else_datarefs.create (1);
2278 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
2279 == chrec_dont_know)
2280 || !then_datarefs.length ()
2281 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
2282 == chrec_dont_know)
2283 || !else_datarefs.length ())
2285 free_data_refs (then_datarefs);
2286 free_data_refs (else_datarefs);
2287 return false;
2290 /* Find pairs of stores with equal LHS. */
2291 auto_vec<gimple *, 1> then_stores, else_stores;
2292 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
2294 if (DR_IS_READ (then_dr))
2295 continue;
2297 then_store = DR_STMT (then_dr);
2298 then_lhs = gimple_get_lhs (then_store);
2299 if (then_lhs == NULL_TREE)
2300 continue;
2301 found = false;
2303 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
2305 if (DR_IS_READ (else_dr))
2306 continue;
2308 else_store = DR_STMT (else_dr);
2309 else_lhs = gimple_get_lhs (else_store);
2310 if (else_lhs == NULL_TREE)
2311 continue;
2313 if (operand_equal_p (then_lhs, else_lhs, 0))
2315 found = true;
2316 break;
2320 if (!found)
2321 continue;
2323 then_stores.safe_push (then_store);
2324 else_stores.safe_push (else_store);
2327 /* No pairs of stores found. */
2328 if (!then_stores.length ()
2329 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
2331 free_data_refs (then_datarefs);
2332 free_data_refs (else_datarefs);
2333 return false;
2336 /* Compute and check data dependencies in both basic blocks. */
2337 then_ddrs.create (1);
2338 else_ddrs.create (1);
2339 if (!compute_all_dependences (then_datarefs, &then_ddrs,
2340 vNULL, false)
2341 || !compute_all_dependences (else_datarefs, &else_ddrs,
2342 vNULL, false))
2344 free_dependence_relations (then_ddrs);
2345 free_dependence_relations (else_ddrs);
2346 free_data_refs (then_datarefs);
2347 free_data_refs (else_datarefs);
2348 return false;
2350 blocks[0] = then_bb;
2351 blocks[1] = else_bb;
2352 blocks[2] = join_bb;
2353 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2355 /* Check that there are no read-after-write or write-after-write dependencies
2356 in THEN_BB. */
2357 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2359 struct data_reference *dra = DDR_A (ddr);
2360 struct data_reference *drb = DDR_B (ddr);
2362 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2363 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2364 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2365 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2366 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2367 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2369 free_dependence_relations (then_ddrs);
2370 free_dependence_relations (else_ddrs);
2371 free_data_refs (then_datarefs);
2372 free_data_refs (else_datarefs);
2373 return false;
2377 /* Check that there are no read-after-write or write-after-write dependencies
2378 in ELSE_BB. */
2379 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2381 struct data_reference *dra = DDR_A (ddr);
2382 struct data_reference *drb = DDR_B (ddr);
2384 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2385 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2386 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2387 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2388 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2389 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2391 free_dependence_relations (then_ddrs);
2392 free_dependence_relations (else_ddrs);
2393 free_data_refs (then_datarefs);
2394 free_data_refs (else_datarefs);
2395 return false;
2399 /* Sink stores with same LHS. */
2400 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2402 else_store = else_stores[i];
2403 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2404 then_store, else_store);
2405 ok = ok || res;
2408 free_dependence_relations (then_ddrs);
2409 free_dependence_relations (else_ddrs);
2410 free_data_refs (then_datarefs);
2411 free_data_refs (else_datarefs);
2413 return ok;
2416 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2418 static bool
2419 local_mem_dependence (gimple *stmt, basic_block bb)
2421 tree vuse = gimple_vuse (stmt);
2422 gimple *def;
2424 if (!vuse)
2425 return false;
2427 def = SSA_NAME_DEF_STMT (vuse);
2428 return (def && gimple_bb (def) == bb);
2431 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2432 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2433 and BB3 rejoins control flow following BB1 and BB2, look for
2434 opportunities to hoist loads as follows. If BB3 contains a PHI of
2435 two loads, one each occurring in BB1 and BB2, and the loads are
2436 provably of adjacent fields in the same structure, then move both
2437 loads into BB0. Of course this can only be done if there are no
2438 dependencies preventing such motion.
2440 One of the hoisted loads will always be speculative, so the
2441 transformation is currently conservative:
2443 - The fields must be strictly adjacent.
2444 - The two fields must occupy a single memory block that is
2445 guaranteed to not cross a page boundary.
2447 The last is difficult to prove, as such memory blocks should be
2448 aligned on the minimum of the stack alignment boundary and the
2449 alignment guaranteed by heap allocation interfaces. Thus we rely
2450 on a parameter for the alignment value.
2452 Provided a good value is used for the last case, the first
2453 restriction could possibly be relaxed. */
2455 static void
2456 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2457 basic_block bb2, basic_block bb3)
2459 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2460 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2461 gphi_iterator gsi;
2463 /* Walk the phis in bb3 looking for an opportunity. We are looking
2464 for phis of two SSA names, one each of which is defined in bb1 and
2465 bb2. */
2466 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2468 gphi *phi_stmt = gsi.phi ();
2469 gimple *def1, *def2;
2470 tree arg1, arg2, ref1, ref2, field1, field2;
2471 tree tree_offset1, tree_offset2, tree_size2, next;
2472 int offset1, offset2, size2;
2473 unsigned align1;
2474 gimple_stmt_iterator gsi2;
2475 basic_block bb_for_def1, bb_for_def2;
2477 if (gimple_phi_num_args (phi_stmt) != 2
2478 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2479 continue;
2481 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2482 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2484 if (TREE_CODE (arg1) != SSA_NAME
2485 || TREE_CODE (arg2) != SSA_NAME
2486 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2487 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2488 continue;
2490 def1 = SSA_NAME_DEF_STMT (arg1);
2491 def2 = SSA_NAME_DEF_STMT (arg2);
2493 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2494 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2495 continue;
2497 /* Check the mode of the arguments to be sure a conditional move
2498 can be generated for it. */
2499 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2500 == CODE_FOR_nothing)
2501 continue;
2503 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2504 if (!gimple_assign_single_p (def1)
2505 || !gimple_assign_single_p (def2)
2506 || gimple_has_volatile_ops (def1)
2507 || gimple_has_volatile_ops (def2))
2508 continue;
2510 ref1 = gimple_assign_rhs1 (def1);
2511 ref2 = gimple_assign_rhs1 (def2);
2513 if (TREE_CODE (ref1) != COMPONENT_REF
2514 || TREE_CODE (ref2) != COMPONENT_REF)
2515 continue;
2517 /* The zeroth operand of the two component references must be
2518 identical. It is not sufficient to compare get_base_address of
2519 the two references, because this could allow for different
2520 elements of the same array in the two trees. It is not safe to
2521 assume that the existence of one array element implies the
2522 existence of a different one. */
2523 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2524 continue;
2526 field1 = TREE_OPERAND (ref1, 1);
2527 field2 = TREE_OPERAND (ref2, 1);
2529 /* Check for field adjacency, and ensure field1 comes first. */
2530 for (next = DECL_CHAIN (field1);
2531 next && TREE_CODE (next) != FIELD_DECL;
2532 next = DECL_CHAIN (next))
2535 if (next != field2)
2537 for (next = DECL_CHAIN (field2);
2538 next && TREE_CODE (next) != FIELD_DECL;
2539 next = DECL_CHAIN (next))
2542 if (next != field1)
2543 continue;
2545 std::swap (field1, field2);
2546 std::swap (def1, def2);
2549 bb_for_def1 = gimple_bb (def1);
2550 bb_for_def2 = gimple_bb (def2);
2552 /* Check for proper alignment of the first field. */
2553 tree_offset1 = bit_position (field1);
2554 tree_offset2 = bit_position (field2);
2555 tree_size2 = DECL_SIZE (field2);
2557 if (!tree_fits_uhwi_p (tree_offset1)
2558 || !tree_fits_uhwi_p (tree_offset2)
2559 || !tree_fits_uhwi_p (tree_size2))
2560 continue;
2562 offset1 = tree_to_uhwi (tree_offset1);
2563 offset2 = tree_to_uhwi (tree_offset2);
2564 size2 = tree_to_uhwi (tree_size2);
2565 align1 = DECL_ALIGN (field1) % param_align_bits;
2567 if (offset1 % BITS_PER_UNIT != 0)
2568 continue;
2570 /* For profitability, the two field references should fit within
2571 a single cache line. */
2572 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2573 continue;
2575 /* The two expressions cannot be dependent upon vdefs defined
2576 in bb1/bb2. */
2577 if (local_mem_dependence (def1, bb_for_def1)
2578 || local_mem_dependence (def2, bb_for_def2))
2579 continue;
2581 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2582 bb0. We hoist the first one first so that a cache miss is handled
2583 efficiently regardless of hardware cache-fill policy. */
2584 gsi2 = gsi_for_stmt (def1);
2585 gsi_move_to_bb_end (&gsi2, bb0);
2586 gsi2 = gsi_for_stmt (def2);
2587 gsi_move_to_bb_end (&gsi2, bb0);
2589 if (dump_file && (dump_flags & TDF_DETAILS))
2591 fprintf (dump_file,
2592 "\nHoisting adjacent loads from %d and %d into %d: \n",
2593 bb_for_def1->index, bb_for_def2->index, bb0->index);
2594 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2595 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2600 /* Determine whether we should attempt to hoist adjacent loads out of
2601 diamond patterns in pass_phiopt. Always hoist loads if
2602 -fhoist-adjacent-loads is specified and the target machine has
2603 both a conditional move instruction and a defined cache line size. */
2605 static bool
2606 gate_hoist_loads (void)
2608 return (flag_hoist_adjacent_loads == 1
2609 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2610 && HAVE_conditional_move);
2613 /* This pass tries to replaces an if-then-else block with an
2614 assignment. We have four kinds of transformations. Some of these
2615 transformations are also performed by the ifcvt RTL optimizer.
2617 Conditional Replacement
2618 -----------------------
2620 This transformation, implemented in conditional_replacement,
2621 replaces
2623 bb0:
2624 if (cond) goto bb2; else goto bb1;
2625 bb1:
2626 bb2:
2627 x = PHI <0 (bb1), 1 (bb0), ...>;
2629 with
2631 bb0:
2632 x' = cond;
2633 goto bb2;
2634 bb2:
2635 x = PHI <x' (bb0), ...>;
2637 We remove bb1 as it becomes unreachable. This occurs often due to
2638 gimplification of conditionals.
2640 Value Replacement
2641 -----------------
2643 This transformation, implemented in value_replacement, replaces
2645 bb0:
2646 if (a != b) goto bb2; else goto bb1;
2647 bb1:
2648 bb2:
2649 x = PHI <a (bb1), b (bb0), ...>;
2651 with
2653 bb0:
2654 bb2:
2655 x = PHI <b (bb0), ...>;
2657 This opportunity can sometimes occur as a result of other
2658 optimizations.
2661 Another case caught by value replacement looks like this:
2663 bb0:
2664 t1 = a == CONST;
2665 t2 = b > c;
2666 t3 = t1 & t2;
2667 if (t3 != 0) goto bb1; else goto bb2;
2668 bb1:
2669 bb2:
2670 x = PHI (CONST, a)
2672 Gets replaced with:
2673 bb0:
2674 bb2:
2675 t1 = a == CONST;
2676 t2 = b > c;
2677 t3 = t1 & t2;
2678 x = a;
2680 ABS Replacement
2681 ---------------
2683 This transformation, implemented in abs_replacement, replaces
2685 bb0:
2686 if (a >= 0) goto bb2; else goto bb1;
2687 bb1:
2688 x = -a;
2689 bb2:
2690 x = PHI <x (bb1), a (bb0), ...>;
2692 with
2694 bb0:
2695 x' = ABS_EXPR< a >;
2696 bb2:
2697 x = PHI <x' (bb0), ...>;
2699 MIN/MAX Replacement
2700 -------------------
2702 This transformation, minmax_replacement replaces
2704 bb0:
2705 if (a <= b) goto bb2; else goto bb1;
2706 bb1:
2707 bb2:
2708 x = PHI <b (bb1), a (bb0), ...>;
2710 with
2712 bb0:
2713 x' = MIN_EXPR (a, b)
2714 bb2:
2715 x = PHI <x' (bb0), ...>;
2717 A similar transformation is done for MAX_EXPR.
2720 This pass also performs a fifth transformation of a slightly different
2721 flavor.
2723 Factor conversion in COND_EXPR
2724 ------------------------------
2726 This transformation factors the conversion out of COND_EXPR with
2727 factor_out_conditional_conversion.
2729 For example:
2730 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2731 <bb 3>:
2732 tmp = (int) a;
2733 <bb 4>:
2734 tmp = PHI <tmp, CST>
2736 Into:
2737 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2738 <bb 3>:
2739 <bb 4>:
2740 a = PHI <a, CST>
2741 tmp = (int) a;
2743 Adjacent Load Hoisting
2744 ----------------------
2746 This transformation replaces
2748 bb0:
2749 if (...) goto bb2; else goto bb1;
2750 bb1:
2751 x1 = (<expr>).field1;
2752 goto bb3;
2753 bb2:
2754 x2 = (<expr>).field2;
2755 bb3:
2756 # x = PHI <x1, x2>;
2758 with
2760 bb0:
2761 x1 = (<expr>).field1;
2762 x2 = (<expr>).field2;
2763 if (...) goto bb2; else goto bb1;
2764 bb1:
2765 goto bb3;
2766 bb2:
2767 bb3:
2768 # x = PHI <x1, x2>;
2770 The purpose of this transformation is to enable generation of conditional
2771 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2772 the loads is speculative, the transformation is restricted to very
2773 specific cases to avoid introducing a page fault. We are looking for
2774 the common idiom:
2776 if (...)
2777 x = y->left;
2778 else
2779 x = y->right;
2781 where left and right are typically adjacent pointers in a tree structure. */
2783 namespace {
2785 const pass_data pass_data_phiopt =
2787 GIMPLE_PASS, /* type */
2788 "phiopt", /* name */
2789 OPTGROUP_NONE, /* optinfo_flags */
2790 TV_TREE_PHIOPT, /* tv_id */
2791 ( PROP_cfg | PROP_ssa ), /* properties_required */
2792 0, /* properties_provided */
2793 0, /* properties_destroyed */
2794 0, /* todo_flags_start */
2795 0, /* todo_flags_finish */
2798 class pass_phiopt : public gimple_opt_pass
2800 public:
2801 pass_phiopt (gcc::context *ctxt)
2802 : gimple_opt_pass (pass_data_phiopt, ctxt), early_p (false)
2805 /* opt_pass methods: */
2806 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2807 void set_pass_param (unsigned n, bool param)
2809 gcc_assert (n == 0);
2810 early_p = param;
2812 virtual bool gate (function *) { return flag_ssa_phiopt; }
2813 virtual unsigned int execute (function *)
2815 return tree_ssa_phiopt_worker (false,
2816 !early_p ? gate_hoist_loads () : false,
2817 early_p);
2820 private:
2821 bool early_p;
2822 }; // class pass_phiopt
2824 } // anon namespace
2826 gimple_opt_pass *
2827 make_pass_phiopt (gcc::context *ctxt)
2829 return new pass_phiopt (ctxt);
2832 namespace {
2834 const pass_data pass_data_cselim =
2836 GIMPLE_PASS, /* type */
2837 "cselim", /* name */
2838 OPTGROUP_NONE, /* optinfo_flags */
2839 TV_TREE_PHIOPT, /* tv_id */
2840 ( PROP_cfg | PROP_ssa ), /* properties_required */
2841 0, /* properties_provided */
2842 0, /* properties_destroyed */
2843 0, /* todo_flags_start */
2844 0, /* todo_flags_finish */
2847 class pass_cselim : public gimple_opt_pass
2849 public:
2850 pass_cselim (gcc::context *ctxt)
2851 : gimple_opt_pass (pass_data_cselim, ctxt)
2854 /* opt_pass methods: */
2855 virtual bool gate (function *) { return flag_tree_cselim; }
2856 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2858 }; // class pass_cselim
2860 } // anon namespace
2862 gimple_opt_pass *
2863 make_pass_cselim (gcc::context *ctxt)
2865 return new pass_cselim (ctxt);