1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51 #include "cfn-operators.pd"
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
57 Also define operand lists:
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 (define_operator_list X##FN BUILT_IN_I##FN \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
81 mult trunc_div trunc_mod rdiv
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
90 /* Same for ternary operations. */
91 (define_operator_list UNCOND_TERNARY
92 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
93 (define_operator_list COND_TERNARY
94 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
96 /* As opposed to convert?, this still creates a single pattern, so
97 it is not a suitable replacement for convert? in all cases. */
98 (match (nop_convert @0)
100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
101 (match (nop_convert @0)
103 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
104 && known_eq (TYPE_VECTOR_SUBPARTS (type),
105 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
106 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
107 /* This one has to be last, or it shadows the others. */
108 (match (nop_convert @0)
111 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
112 ABSU_EXPR returns unsigned absolute value of the operand and the operand
113 of the ABSU_EXPR will have the corresponding signed type. */
114 (simplify (abs (convert @0))
115 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
116 && !TYPE_UNSIGNED (TREE_TYPE (@0))
117 && element_precision (type) > element_precision (TREE_TYPE (@0)))
118 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
119 (convert (absu:utype @0)))))
122 /* Simplifications of operations with one constant operand and
123 simplifications to constants or single values. */
125 (for op (plus pointer_plus minus bit_ior bit_xor)
127 (op @0 integer_zerop)
130 /* 0 +p index -> (type)index */
132 (pointer_plus integer_zerop @1)
133 (non_lvalue (convert @1)))
135 /* ptr - 0 -> (type)ptr */
137 (pointer_diff @0 integer_zerop)
140 /* See if ARG1 is zero and X + ARG1 reduces to X.
141 Likewise if the operands are reversed. */
143 (plus:c @0 real_zerop@1)
144 (if (fold_real_zero_addition_p (type, @1, 0))
147 /* See if ARG1 is zero and X - ARG1 reduces to X. */
149 (minus @0 real_zerop@1)
150 (if (fold_real_zero_addition_p (type, @1, 1))
154 This is unsafe for certain floats even in non-IEEE formats.
155 In IEEE, it is unsafe because it does wrong for NaNs.
156 Also note that operand_equal_p is always false if an operand
160 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
161 { build_zero_cst (type); }))
163 (pointer_diff @@0 @0)
164 { build_zero_cst (type); })
167 (mult @0 integer_zerop@1)
170 /* Maybe fold x * 0 to 0. The expressions aren't the same
171 when x is NaN, since x * 0 is also NaN. Nor are they the
172 same in modes with signed zeros, since multiplying a
173 negative value by 0 gives -0, not +0. */
175 (mult @0 real_zerop@1)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
179 /* In IEEE floating point, x*1 is not equivalent to x for snans.
180 Likewise for complex arithmetic with signed zeros. */
183 (if (!HONOR_SNANS (type)
184 && (!HONOR_SIGNED_ZEROS (type)
185 || !COMPLEX_FLOAT_TYPE_P (type)))
188 /* Transform x * -1.0 into -x. */
190 (mult @0 real_minus_onep)
191 (if (!HONOR_SNANS (type)
192 && (!HONOR_SIGNED_ZEROS (type)
193 || !COMPLEX_FLOAT_TYPE_P (type)))
196 (for cmp (gt ge lt le)
197 outp (convert convert negate negate)
198 outn (negate negate convert convert)
199 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
200 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
202 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
204 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
205 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
206 && types_match (type, TREE_TYPE (@0)))
208 (if (types_match (type, float_type_node))
209 (BUILT_IN_COPYSIGNF @1 (outp @0)))
210 (if (types_match (type, double_type_node))
211 (BUILT_IN_COPYSIGN @1 (outp @0)))
212 (if (types_match (type, long_double_type_node))
213 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
214 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
215 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
217 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
219 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
220 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
221 && types_match (type, TREE_TYPE (@0)))
223 (if (types_match (type, float_type_node))
224 (BUILT_IN_COPYSIGNF @1 (outn @0)))
225 (if (types_match (type, double_type_node))
226 (BUILT_IN_COPYSIGN @1 (outn @0)))
227 (if (types_match (type, long_double_type_node))
228 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
230 /* Transform X * copysign (1.0, X) into abs(X). */
232 (mult:c @0 (COPYSIGN_ALL real_onep @0))
233 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
236 /* Transform X * copysign (1.0, -X) into -abs(X). */
238 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
239 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
242 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
244 (COPYSIGN_ALL REAL_CST@0 @1)
245 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
246 (COPYSIGN_ALL (negate @0) @1)))
248 /* X * 1, X / 1 -> X. */
249 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
254 /* (A / (1 << B)) -> (A >> B).
255 Only for unsigned A. For signed A, this would not preserve rounding
257 For example: (-1 / ( 1 << B)) != -1 >> B. */
259 (trunc_div @0 (lshift integer_onep@1 @2))
260 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
261 && (!VECTOR_TYPE_P (type)
262 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
266 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
267 undefined behavior in constexpr evaluation, and assuming that the division
268 traps enables better optimizations than these anyway. */
269 (for div (trunc_div ceil_div floor_div round_div exact_div)
270 /* 0 / X is always zero. */
272 (div integer_zerop@0 @1)
273 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
274 (if (!integer_zerop (@1))
278 (div @0 integer_minus_onep@1)
279 (if (!TYPE_UNSIGNED (type))
284 /* But not for 0 / 0 so that we can get the proper warnings and errors.
285 And not for _Fract types where we can't build 1. */
286 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
287 { build_one_cst (type); }))
288 /* X / abs (X) is X < 0 ? -1 : 1. */
291 (if (INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type))
293 (cond (lt @0 { build_zero_cst (type); })
294 { build_minus_one_cst (type); } { build_one_cst (type); })))
297 (div:C @0 (negate @0))
298 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
299 && TYPE_OVERFLOW_UNDEFINED (type))
300 { build_minus_one_cst (type); })))
302 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
303 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
306 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
307 && TYPE_UNSIGNED (type))
310 /* Combine two successive divisions. Note that combining ceil_div
311 and floor_div is trickier and combining round_div even more so. */
312 (for div (trunc_div exact_div)
314 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
316 wi::overflow_type overflow;
317 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
318 TYPE_SIGN (type), &overflow);
321 (div @0 { wide_int_to_tree (type, mul); })
322 (if (TYPE_UNSIGNED (type)
323 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
324 { build_zero_cst (type); })))))
326 /* Combine successive multiplications. Similar to above, but handling
327 overflow is different. */
329 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
331 wi::overflow_type overflow;
332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
333 TYPE_SIGN (type), &overflow);
335 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
336 otherwise undefined overflow implies that @0 must be zero. */
337 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
338 (mult @0 { wide_int_to_tree (type, mul); }))))
340 /* Optimize A / A to 1.0 if we don't care about
341 NaNs or Infinities. */
344 (if (FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 { build_one_cst (type); }))
349 /* Optimize -A / A to -1.0 if we don't care about
350 NaNs or Infinities. */
352 (rdiv:C @0 (negate @0))
353 (if (FLOAT_TYPE_P (type)
354 && ! HONOR_NANS (type)
355 && ! HONOR_INFINITIES (type))
356 { build_minus_one_cst (type); }))
358 /* PR71078: x / abs(x) -> copysign (1.0, x) */
360 (rdiv:C (convert? @0) (convert? (abs @0)))
361 (if (SCALAR_FLOAT_TYPE_P (type)
362 && ! HONOR_NANS (type)
363 && ! HONOR_INFINITIES (type))
365 (if (types_match (type, float_type_node))
366 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
367 (if (types_match (type, double_type_node))
368 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
369 (if (types_match (type, long_double_type_node))
370 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
372 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
375 (if (!HONOR_SNANS (type))
378 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
380 (rdiv @0 real_minus_onep)
381 (if (!HONOR_SNANS (type))
384 (if (flag_reciprocal_math)
385 /* Convert (A/B)/C to A/(B*C). */
387 (rdiv (rdiv:s @0 @1) @2)
388 (rdiv @0 (mult @1 @2)))
390 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
392 (rdiv @0 (mult:s @1 REAL_CST@2))
394 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
396 (rdiv (mult @0 { tem; } ) @1))))
398 /* Convert A/(B/C) to (A/B)*C */
400 (rdiv @0 (rdiv:s @1 @2))
401 (mult (rdiv @0 @1) @2)))
403 /* Simplify x / (- y) to -x / y. */
405 (rdiv @0 (negate @1))
406 (rdiv (negate @0) @1))
408 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
409 (for div (trunc_div ceil_div floor_div round_div exact_div)
411 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
412 (if (integer_pow2p (@2)
413 && tree_int_cst_sgn (@2) > 0
414 && tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
417 { build_int_cst (integer_type_node,
418 wi::exact_log2 (wi::to_wide (@2))); }))))
420 /* If ARG1 is a constant, we can convert this to a multiply by the
421 reciprocal. This does not have the same rounding properties,
422 so only do this if -freciprocal-math. We can actually
423 always safely do it if ARG1 is a power of two, but it's hard to
424 tell if it is or not in a portable manner. */
425 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
429 (if (flag_reciprocal_math
432 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
434 (mult @0 { tem; } )))
435 (if (cst != COMPLEX_CST)
436 (with { tree inverse = exact_inverse (type, @1); }
438 (mult @0 { inverse; } ))))))))
440 (for mod (ceil_mod floor_mod round_mod trunc_mod)
441 /* 0 % X is always zero. */
443 (mod integer_zerop@0 @1)
444 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
445 (if (!integer_zerop (@1))
447 /* X % 1 is always zero. */
449 (mod @0 integer_onep)
450 { build_zero_cst (type); })
451 /* X % -1 is zero. */
453 (mod @0 integer_minus_onep@1)
454 (if (!TYPE_UNSIGNED (type))
455 { build_zero_cst (type); }))
459 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
460 (if (!integer_zerop (@0))
461 { build_zero_cst (type); }))
462 /* (X % Y) % Y is just X % Y. */
464 (mod (mod@2 @0 @1) @1)
466 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
468 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
469 (if (ANY_INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_UNDEFINED (type)
471 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
473 { build_zero_cst (type); }))
474 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
475 modulo and comparison, since it is simpler and equivalent. */
478 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
479 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
480 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
481 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
483 /* X % -C is the same as X % C. */
485 (trunc_mod @0 INTEGER_CST@1)
486 (if (TYPE_SIGN (type) == SIGNED
487 && !TREE_OVERFLOW (@1)
488 && wi::neg_p (wi::to_wide (@1))
489 && !TYPE_OVERFLOW_TRAPS (type)
490 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
491 && !sign_bit_p (@1, @1))
492 (trunc_mod @0 (negate @1))))
494 /* X % -Y is the same as X % Y. */
496 (trunc_mod @0 (convert? (negate @1)))
497 (if (INTEGRAL_TYPE_P (type)
498 && !TYPE_UNSIGNED (type)
499 && !TYPE_OVERFLOW_TRAPS (type)
500 && tree_nop_conversion_p (type, TREE_TYPE (@1))
501 /* Avoid this transformation if X might be INT_MIN or
502 Y might be -1, because we would then change valid
503 INT_MIN % -(-1) into invalid INT_MIN % -1. */
504 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
505 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
507 (trunc_mod @0 (convert @1))))
509 /* X - (X / Y) * Y is the same as X % Y. */
511 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
512 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
513 (convert (trunc_mod @0 @1))))
515 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
516 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
517 Also optimize A % (C << N) where C is a power of 2,
518 to A & ((C << N) - 1). */
519 (match (power_of_two_cand @1)
521 (match (power_of_two_cand @1)
522 (lshift INTEGER_CST@1 @2))
523 (for mod (trunc_mod floor_mod)
525 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
526 (if ((TYPE_UNSIGNED (type)
527 || tree_expr_nonnegative_p (@0))
528 && tree_nop_conversion_p (type, TREE_TYPE (@3))
529 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
530 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
532 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
534 (trunc_div (mult @0 integer_pow2p@1) @1)
535 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
536 (bit_and @0 { wide_int_to_tree
537 (type, wi::mask (TYPE_PRECISION (type)
538 - wi::exact_log2 (wi::to_wide (@1)),
539 false, TYPE_PRECISION (type))); })))
541 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
543 (mult (trunc_div @0 integer_pow2p@1) @1)
544 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
545 (bit_and @0 (negate @1))))
547 /* Simplify (t * 2) / 2) -> t. */
548 (for div (trunc_div ceil_div floor_div round_div exact_div)
550 (div (mult:c @0 @1) @1)
551 (if (ANY_INTEGRAL_TYPE_P (type)
552 && TYPE_OVERFLOW_UNDEFINED (type))
556 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
561 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
564 (pows (op @0) REAL_CST@1)
565 (with { HOST_WIDE_INT n; }
566 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
568 /* Likewise for powi. */
571 (pows (op @0) INTEGER_CST@1)
572 (if ((wi::to_wide (@1) & 1) == 0)
574 /* Strip negate and abs from both operands of hypot. */
582 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
583 (for copysigns (COPYSIGN_ALL)
585 (copysigns (op @0) @1)
588 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
593 /* Convert absu(x)*absu(x) -> x*x. */
595 (mult (absu@1 @0) @1)
596 (mult (convert@2 @0) @2))
598 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
602 (coss (copysigns @0 @1))
605 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
609 (pows (copysigns @0 @2) REAL_CST@1)
610 (with { HOST_WIDE_INT n; }
611 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
613 /* Likewise for powi. */
617 (pows (copysigns @0 @2) INTEGER_CST@1)
618 (if ((wi::to_wide (@1) & 1) == 0)
623 /* hypot(copysign(x, y), z) -> hypot(x, z). */
625 (hypots (copysigns @0 @1) @2)
627 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
629 (hypots @0 (copysigns @1 @2))
632 /* copysign(x, CST) -> [-]abs (x). */
633 (for copysigns (COPYSIGN_ALL)
635 (copysigns @0 REAL_CST@1)
636 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
640 /* copysign(copysign(x, y), z) -> copysign(x, z). */
641 (for copysigns (COPYSIGN_ALL)
643 (copysigns (copysigns @0 @1) @2)
646 /* copysign(x,y)*copysign(x,y) -> x*x. */
647 (for copysigns (COPYSIGN_ALL)
649 (mult (copysigns@2 @0 @1) @2)
652 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
653 (for ccoss (CCOS CCOSH)
658 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
659 (for ops (conj negate)
665 /* Fold (a * (1 << b)) into (a << b) */
667 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
668 (if (! FLOAT_TYPE_P (type)
669 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
672 /* Fold (1 << (C - x)) where C = precision(type) - 1
673 into ((1 << C) >> x). */
675 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
676 (if (INTEGRAL_TYPE_P (type)
677 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
679 (if (TYPE_UNSIGNED (type))
680 (rshift (lshift @0 @2) @3)
682 { tree utype = unsigned_type_for (type); }
683 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
685 /* Fold (C1/X)*C2 into (C1*C2)/X. */
687 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
688 (if (flag_associative_math
691 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
693 (rdiv { tem; } @1)))))
695 /* Simplify ~X & X as zero. */
697 (bit_and:c (convert? @0) (convert? (bit_not @0)))
698 { build_zero_cst (type); })
700 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
702 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
703 (if (TYPE_UNSIGNED (type))
704 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
706 (for bitop (bit_and bit_ior)
708 /* PR35691: Transform
709 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
710 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
712 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
713 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
714 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
715 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
716 (cmp (bit_ior @0 (convert @1)) @2)))
718 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
719 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
721 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
722 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
723 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
724 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
725 (cmp (bit_and @0 (convert @1)) @2))))
727 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
729 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
730 (minus (bit_xor @0 @1) @1))
732 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
733 (if (~wi::to_wide (@2) == wi::to_wide (@1))
734 (minus (bit_xor @0 @1) @1)))
736 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
738 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
739 (minus @1 (bit_xor @0 @1)))
741 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
742 (for op (bit_ior bit_xor plus)
744 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
747 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
748 (if (~wi::to_wide (@2) == wi::to_wide (@1))
751 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
753 (bit_ior:c (bit_xor:c @0 @1) @0)
756 /* (a & ~b) | (a ^ b) --> a ^ b */
758 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
761 /* (a & ~b) ^ ~a --> ~(a & b) */
763 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
764 (bit_not (bit_and @0 @1)))
766 /* (a | b) & ~(a ^ b) --> a & b */
768 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
771 /* a | ~(a ^ b) --> a | ~b */
773 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
774 (bit_ior @0 (bit_not @1)))
776 /* (a | b) | (a &^ b) --> a | b */
777 (for op (bit_and bit_xor)
779 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
782 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
784 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
787 /* ~(~a & b) --> a | ~b */
789 (bit_not (bit_and:cs (bit_not @0) @1))
790 (bit_ior @0 (bit_not @1)))
792 /* ~(~a | b) --> a & ~b */
794 (bit_not (bit_ior:cs (bit_not @0) @1))
795 (bit_and @0 (bit_not @1)))
797 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
800 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
801 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
802 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
806 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
807 ((A & N) + B) & M -> (A + B) & M
808 Similarly if (N & M) == 0,
809 ((A | N) + B) & M -> (A + B) & M
810 and for - instead of + (or unary - instead of +)
811 and/or ^ instead of |.
812 If B is constant and (B & M) == 0, fold into A & M. */
814 (for bitop (bit_and bit_ior bit_xor)
816 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
819 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
820 @3, @4, @1, ERROR_MARK, NULL_TREE,
823 (convert (bit_and (op (convert:utype { pmop[0]; })
824 (convert:utype { pmop[1]; }))
825 (convert:utype @2))))))
827 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
830 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
831 NULL_TREE, NULL_TREE, @1, bitop, @3,
834 (convert (bit_and (op (convert:utype { pmop[0]; })
835 (convert:utype { pmop[1]; }))
836 (convert:utype @2)))))))
838 (bit_and (op:s @0 @1) INTEGER_CST@2)
841 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
842 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
843 NULL_TREE, NULL_TREE, pmop); }
845 (convert (bit_and (op (convert:utype { pmop[0]; })
846 (convert:utype { pmop[1]; }))
847 (convert:utype @2)))))))
848 (for bitop (bit_and bit_ior bit_xor)
850 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
853 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
854 bitop, @2, @3, NULL_TREE, ERROR_MARK,
855 NULL_TREE, NULL_TREE, pmop); }
857 (convert (bit_and (negate (convert:utype { pmop[0]; }))
858 (convert:utype @1)))))))
860 /* X % Y is smaller than Y. */
863 (cmp (trunc_mod @0 @1) @1)
864 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
865 { constant_boolean_node (cmp == LT_EXPR, type); })))
868 (cmp @1 (trunc_mod @0 @1))
869 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
870 { constant_boolean_node (cmp == GT_EXPR, type); })))
874 (bit_ior @0 integer_all_onesp@1)
879 (bit_ior @0 integer_zerop)
884 (bit_and @0 integer_zerop@1)
890 (for op (bit_ior bit_xor plus)
892 (op:c (convert? @0) (convert? (bit_not @0)))
893 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
898 { build_zero_cst (type); })
900 /* Canonicalize X ^ ~0 to ~X. */
902 (bit_xor @0 integer_all_onesp@1)
907 (bit_and @0 integer_all_onesp)
910 /* x & x -> x, x | x -> x */
911 (for bitop (bit_and bit_ior)
916 /* x & C -> x if we know that x & ~C == 0. */
919 (bit_and SSA_NAME@0 INTEGER_CST@1)
920 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
921 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
925 /* x + (x & 1) -> (x + 1) & ~1 */
927 (plus:c @0 (bit_and:s @0 integer_onep@1))
928 (bit_and (plus @0 @1) (bit_not @1)))
930 /* x & ~(x & y) -> x & ~y */
931 /* x | ~(x | y) -> x | ~y */
932 (for bitop (bit_and bit_ior)
934 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
935 (bitop @0 (bit_not @1))))
937 /* (~x & y) | ~(x | y) -> ~x */
939 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
942 /* (x | y) ^ (x | ~y) -> ~x */
944 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
947 /* (x & y) | ~(x | y) -> ~(x ^ y) */
949 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
950 (bit_not (bit_xor @0 @1)))
952 /* (~x | y) ^ (x ^ y) -> x | ~y */
954 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
955 (bit_ior @0 (bit_not @1)))
957 /* (x ^ y) | ~(x | y) -> ~(x & y) */
959 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
960 (bit_not (bit_and @0 @1)))
962 /* (x | y) & ~x -> y & ~x */
963 /* (x & y) | ~x -> y | ~x */
964 (for bitop (bit_and bit_ior)
965 rbitop (bit_ior bit_and)
967 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
970 /* (x & y) ^ (x | y) -> x ^ y */
972 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
975 /* (x ^ y) ^ (x | y) -> x & y */
977 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
980 /* (x & y) + (x ^ y) -> x | y */
981 /* (x & y) | (x ^ y) -> x | y */
982 /* (x & y) ^ (x ^ y) -> x | y */
983 (for op (plus bit_ior bit_xor)
985 (op:c (bit_and @0 @1) (bit_xor @0 @1))
988 /* (x & y) + (x | y) -> x + y */
990 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
993 /* (x + y) - (x | y) -> x & y */
995 (minus (plus @0 @1) (bit_ior @0 @1))
996 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
997 && !TYPE_SATURATING (type))
1000 /* (x + y) - (x & y) -> x | y */
1002 (minus (plus @0 @1) (bit_and @0 @1))
1003 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1004 && !TYPE_SATURATING (type))
1007 /* (x | y) - (x ^ y) -> x & y */
1009 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1012 /* (x | y) - (x & y) -> x ^ y */
1014 (minus (bit_ior @0 @1) (bit_and @0 @1))
1017 /* (x | y) & ~(x & y) -> x ^ y */
1019 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1022 /* (x | y) & (~x ^ y) -> x & y */
1024 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1027 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1029 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1030 (bit_not (bit_xor @0 @1)))
1032 /* (~x | y) ^ (x | ~y) -> x ^ y */
1034 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1037 /* ~x & ~y -> ~(x | y)
1038 ~x | ~y -> ~(x & y) */
1039 (for op (bit_and bit_ior)
1040 rop (bit_ior bit_and)
1042 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1043 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1044 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1045 (bit_not (rop (convert @0) (convert @1))))))
1047 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1048 with a constant, and the two constants have no bits in common,
1049 we should treat this as a BIT_IOR_EXPR since this may produce more
1051 (for op (bit_xor plus)
1053 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1054 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1055 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1056 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1057 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1058 (bit_ior (convert @4) (convert @5)))))
1060 /* (X | Y) ^ X -> Y & ~ X*/
1062 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1063 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1064 (convert (bit_and @1 (bit_not @0)))))
1066 /* Convert ~X ^ ~Y to X ^ Y. */
1068 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1069 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1070 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1071 (bit_xor (convert @0) (convert @1))))
1073 /* Convert ~X ^ C to X ^ ~C. */
1075 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1076 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1077 (bit_xor (convert @0) (bit_not @1))))
1079 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1080 (for opo (bit_and bit_xor)
1081 opi (bit_xor bit_and)
1083 (opo:c (opi:cs @0 @1) @1)
1084 (bit_and (bit_not @0) @1)))
1086 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1087 operands are another bit-wise operation with a common input. If so,
1088 distribute the bit operations to save an operation and possibly two if
1089 constants are involved. For example, convert
1090 (A | B) & (A | C) into A | (B & C)
1091 Further simplification will occur if B and C are constants. */
1092 (for op (bit_and bit_ior bit_xor)
1093 rop (bit_ior bit_and bit_and)
1095 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1096 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1097 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1098 (rop (convert @0) (op (convert @1) (convert @2))))))
1100 /* Some simple reassociation for bit operations, also handled in reassoc. */
1101 /* (X & Y) & Y -> X & Y
1102 (X | Y) | Y -> X | Y */
1103 (for op (bit_and bit_ior)
1105 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1107 /* (X ^ Y) ^ Y -> X */
1109 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1111 /* (X & Y) & (X & Z) -> (X & Y) & Z
1112 (X | Y) | (X | Z) -> (X | Y) | Z */
1113 (for op (bit_and bit_ior)
1115 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1116 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1117 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1118 (if (single_use (@5) && single_use (@6))
1119 (op @3 (convert @2))
1120 (if (single_use (@3) && single_use (@4))
1121 (op (convert @1) @5))))))
1122 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1124 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1125 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1126 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1127 (bit_xor (convert @1) (convert @2))))
1129 /* Convert abs (abs (X)) into abs (X).
1130 also absu (absu (X)) into absu (X). */
1136 (absu (convert@2 (absu@1 @0)))
1137 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1140 /* Convert abs[u] (-X) -> abs[u] (X). */
1149 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1151 (abs tree_expr_nonnegative_p@0)
1155 (absu tree_expr_nonnegative_p@0)
1158 /* A few cases of fold-const.c negate_expr_p predicate. */
1159 (match negate_expr_p
1161 (if ((INTEGRAL_TYPE_P (type)
1162 && TYPE_UNSIGNED (type))
1163 || (!TYPE_OVERFLOW_SANITIZED (type)
1164 && may_negate_without_overflow_p (t)))))
1165 (match negate_expr_p
1167 (match negate_expr_p
1169 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1170 (match negate_expr_p
1172 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1173 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1175 (match negate_expr_p
1177 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1178 (match negate_expr_p
1180 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1181 || (FLOAT_TYPE_P (type)
1182 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1183 && !HONOR_SIGNED_ZEROS (type)))))
1185 /* (-A) * (-B) -> A * B */
1187 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1188 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1189 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1190 (mult (convert @0) (convert (negate @1)))))
1192 /* -(A + B) -> (-B) - A. */
1194 (negate (plus:c @0 negate_expr_p@1))
1195 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1196 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1197 (minus (negate @1) @0)))
1199 /* -(A - B) -> B - A. */
1201 (negate (minus @0 @1))
1202 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1203 || (FLOAT_TYPE_P (type)
1204 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1205 && !HONOR_SIGNED_ZEROS (type)))
1208 (negate (pointer_diff @0 @1))
1209 (if (TYPE_OVERFLOW_UNDEFINED (type))
1210 (pointer_diff @1 @0)))
1212 /* A - B -> A + (-B) if B is easily negatable. */
1214 (minus @0 negate_expr_p@1)
1215 (if (!FIXED_POINT_TYPE_P (type))
1216 (plus @0 (negate @1))))
1218 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1220 For bitwise binary operations apply operand conversions to the
1221 binary operation result instead of to the operands. This allows
1222 to combine successive conversions and bitwise binary operations.
1223 We combine the above two cases by using a conditional convert. */
1224 (for bitop (bit_and bit_ior bit_xor)
1226 (bitop (convert @0) (convert? @1))
1227 (if (((TREE_CODE (@1) == INTEGER_CST
1228 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1229 && int_fits_type_p (@1, TREE_TYPE (@0)))
1230 || types_match (@0, @1))
1231 /* ??? This transform conflicts with fold-const.c doing
1232 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1233 constants (if x has signed type, the sign bit cannot be set
1234 in c). This folds extension into the BIT_AND_EXPR.
1235 Restrict it to GIMPLE to avoid endless recursions. */
1236 && (bitop != BIT_AND_EXPR || GIMPLE)
1237 && (/* That's a good idea if the conversion widens the operand, thus
1238 after hoisting the conversion the operation will be narrower. */
1239 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1240 /* It's also a good idea if the conversion is to a non-integer
1242 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1243 /* Or if the precision of TO is not the same as the precision
1245 || !type_has_mode_precision_p (type)))
1246 (convert (bitop @0 (convert @1))))))
1248 (for bitop (bit_and bit_ior)
1249 rbitop (bit_ior bit_and)
1250 /* (x | y) & x -> x */
1251 /* (x & y) | x -> x */
1253 (bitop:c (rbitop:c @0 @1) @0)
1255 /* (~x | y) & x -> x & y */
1256 /* (~x & y) | x -> x | y */
1258 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1261 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1263 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1264 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1266 /* Combine successive equal operations with constants. */
1267 (for bitop (bit_and bit_ior bit_xor)
1269 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1270 (if (!CONSTANT_CLASS_P (@0))
1271 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1272 folded to a constant. */
1273 (bitop @0 (bitop @1 @2))
1274 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1275 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1276 the values involved are such that the operation can't be decided at
1277 compile time. Try folding one of @0 or @1 with @2 to see whether
1278 that combination can be decided at compile time.
1280 Keep the existing form if both folds fail, to avoid endless
1282 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1284 (bitop @1 { cst1; })
1285 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1287 (bitop @0 { cst2; }))))))))
1289 /* Try simple folding for X op !X, and X op X with the help
1290 of the truth_valued_p and logical_inverted_value predicates. */
1291 (match truth_valued_p
1293 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1294 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1295 (match truth_valued_p
1297 (match truth_valued_p
1300 (match (logical_inverted_value @0)
1302 (match (logical_inverted_value @0)
1303 (bit_not truth_valued_p@0))
1304 (match (logical_inverted_value @0)
1305 (eq @0 integer_zerop))
1306 (match (logical_inverted_value @0)
1307 (ne truth_valued_p@0 integer_truep))
1308 (match (logical_inverted_value @0)
1309 (bit_xor truth_valued_p@0 integer_truep))
1313 (bit_and:c @0 (logical_inverted_value @0))
1314 { build_zero_cst (type); })
1315 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1316 (for op (bit_ior bit_xor)
1318 (op:c truth_valued_p@0 (logical_inverted_value @0))
1319 { constant_boolean_node (true, type); }))
1320 /* X ==/!= !X is false/true. */
1323 (op:c truth_valued_p@0 (logical_inverted_value @0))
1324 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1328 (bit_not (bit_not @0))
1331 /* Convert ~ (-A) to A - 1. */
1333 (bit_not (convert? (negate @0)))
1334 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1335 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1336 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1338 /* Convert - (~A) to A + 1. */
1340 (negate (nop_convert (bit_not @0)))
1341 (plus (view_convert @0) { build_each_one_cst (type); }))
1343 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1345 (bit_not (convert? (minus @0 integer_each_onep)))
1346 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1347 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1348 (convert (negate @0))))
1350 (bit_not (convert? (plus @0 integer_all_onesp)))
1351 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1352 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1353 (convert (negate @0))))
1355 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1357 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1358 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1359 (convert (bit_xor @0 (bit_not @1)))))
1361 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1362 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1363 (convert (bit_xor @0 @1))))
1365 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1367 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1368 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1369 (bit_not (bit_xor (view_convert @0) @1))))
1371 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1373 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1374 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1376 /* Fold A - (A & B) into ~B & A. */
1378 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1379 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1380 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1381 (convert (bit_and (bit_not @1) @0))))
1383 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1384 (for cmp (gt lt ge le)
1386 (mult (convert (cmp @0 @1)) @2)
1387 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1389 /* For integral types with undefined overflow and C != 0 fold
1390 x * C EQ/NE y * C into x EQ/NE y. */
1393 (cmp (mult:c @0 @1) (mult:c @2 @1))
1394 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1395 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1396 && tree_expr_nonzero_p (@1))
1399 /* For integral types with wrapping overflow and C odd fold
1400 x * C EQ/NE y * C into x EQ/NE y. */
1403 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1404 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1405 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1406 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1409 /* For integral types with undefined overflow and C != 0 fold
1410 x * C RELOP y * C into:
1412 x RELOP y for nonnegative C
1413 y RELOP x for negative C */
1414 (for cmp (lt gt le ge)
1416 (cmp (mult:c @0 @1) (mult:c @2 @1))
1417 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1418 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1419 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1421 (if (TREE_CODE (@1) == INTEGER_CST
1422 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1425 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1429 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1430 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1431 && TYPE_UNSIGNED (TREE_TYPE (@0))
1432 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1433 && (wi::to_wide (@2)
1434 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1435 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1436 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1438 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1439 (for cmp (simple_comparison)
1441 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1442 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1445 /* X / C1 op C2 into a simple range test. */
1446 (for cmp (simple_comparison)
1448 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1449 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1450 && integer_nonzerop (@1)
1451 && !TREE_OVERFLOW (@1)
1452 && !TREE_OVERFLOW (@2))
1453 (with { tree lo, hi; bool neg_overflow;
1454 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1457 (if (code == LT_EXPR || code == GE_EXPR)
1458 (if (TREE_OVERFLOW (lo))
1459 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1460 (if (code == LT_EXPR)
1463 (if (code == LE_EXPR || code == GT_EXPR)
1464 (if (TREE_OVERFLOW (hi))
1465 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1466 (if (code == LE_EXPR)
1470 { build_int_cst (type, code == NE_EXPR); })
1471 (if (code == EQ_EXPR && !hi)
1473 (if (code == EQ_EXPR && !lo)
1475 (if (code == NE_EXPR && !hi)
1477 (if (code == NE_EXPR && !lo)
1480 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1484 tree etype = range_check_type (TREE_TYPE (@0));
1487 if (! TYPE_UNSIGNED (etype))
1488 etype = unsigned_type_for (etype);
1489 hi = fold_convert (etype, hi);
1490 lo = fold_convert (etype, lo);
1491 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1494 (if (etype && hi && !TREE_OVERFLOW (hi))
1495 (if (code == EQ_EXPR)
1496 (le (minus (convert:etype @0) { lo; }) { hi; })
1497 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1499 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1500 (for op (lt le ge gt)
1502 (op (plus:c @0 @2) (plus:c @1 @2))
1503 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1504 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1506 /* For equality and subtraction, this is also true with wrapping overflow. */
1507 (for op (eq ne minus)
1509 (op (plus:c @0 @2) (plus:c @1 @2))
1510 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1511 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1512 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1515 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1516 (for op (lt le ge gt)
1518 (op (minus @0 @2) (minus @1 @2))
1519 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1520 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1522 /* For equality and subtraction, this is also true with wrapping overflow. */
1523 (for op (eq ne minus)
1525 (op (minus @0 @2) (minus @1 @2))
1526 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1527 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1528 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1530 /* And for pointers... */
1531 (for op (simple_comparison)
1533 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1534 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1537 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1538 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1539 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1540 (pointer_diff @0 @1)))
1542 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1543 (for op (lt le ge gt)
1545 (op (minus @2 @0) (minus @2 @1))
1546 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1547 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1549 /* For equality and subtraction, this is also true with wrapping overflow. */
1550 (for op (eq ne minus)
1552 (op (minus @2 @0) (minus @2 @1))
1553 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1554 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1555 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1557 /* And for pointers... */
1558 (for op (simple_comparison)
1560 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1561 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1564 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1565 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1566 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1567 (pointer_diff @1 @0)))
1569 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1570 (for op (lt le gt ge)
1572 (op:c (plus:c@2 @0 @1) @1)
1573 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1574 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1575 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1576 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1577 /* For equality, this is also true with wrapping overflow. */
1580 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1581 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1582 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1583 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1584 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1585 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1586 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1587 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1589 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1590 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1591 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1592 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1593 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1595 /* X - Y < X is the same as Y > 0 when there is no overflow.
1596 For equality, this is also true with wrapping overflow. */
1597 (for op (simple_comparison)
1599 (op:c @0 (minus@2 @0 @1))
1600 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1601 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1602 || ((op == EQ_EXPR || op == NE_EXPR)
1603 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1604 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1605 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1608 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1609 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1613 (cmp (trunc_div @0 @1) integer_zerop)
1614 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1615 /* Complex ==/!= is allowed, but not </>=. */
1616 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1617 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1620 /* X == C - X can never be true if C is odd. */
1623 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1624 (if (TREE_INT_CST_LOW (@1) & 1)
1625 { constant_boolean_node (cmp == NE_EXPR, type); })))
1627 /* Arguments on which one can call get_nonzero_bits to get the bits
1629 (match with_possible_nonzero_bits
1631 (match with_possible_nonzero_bits
1633 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1634 /* Slightly extended version, do not make it recursive to keep it cheap. */
1635 (match (with_possible_nonzero_bits2 @0)
1636 with_possible_nonzero_bits@0)
1637 (match (with_possible_nonzero_bits2 @0)
1638 (bit_and:c with_possible_nonzero_bits@0 @2))
1640 /* Same for bits that are known to be set, but we do not have
1641 an equivalent to get_nonzero_bits yet. */
1642 (match (with_certain_nonzero_bits2 @0)
1644 (match (with_certain_nonzero_bits2 @0)
1645 (bit_ior @1 INTEGER_CST@0))
1647 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1650 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1651 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1652 { constant_boolean_node (cmp == NE_EXPR, type); })))
1654 /* ((X inner_op C0) outer_op C1)
1655 With X being a tree where value_range has reasoned certain bits to always be
1656 zero throughout its computed value range,
1657 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1658 where zero_mask has 1's for all bits that are sure to be 0 in
1660 if (inner_op == '^') C0 &= ~C1;
1661 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1662 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1664 (for inner_op (bit_ior bit_xor)
1665 outer_op (bit_xor bit_ior)
1668 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1672 wide_int zero_mask_not;
1676 if (TREE_CODE (@2) == SSA_NAME)
1677 zero_mask_not = get_nonzero_bits (@2);
1681 if (inner_op == BIT_XOR_EXPR)
1683 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1684 cst_emit = C0 | wi::to_wide (@1);
1688 C0 = wi::to_wide (@0);
1689 cst_emit = C0 ^ wi::to_wide (@1);
1692 (if (!fail && (C0 & zero_mask_not) == 0)
1693 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1694 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1695 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1697 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1699 (pointer_plus (pointer_plus:s @0 @1) @3)
1700 (pointer_plus @0 (plus @1 @3)))
1706 tem4 = (unsigned long) tem3;
1711 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1712 /* Conditionally look through a sign-changing conversion. */
1713 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1714 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1715 || (GENERIC && type == TREE_TYPE (@1))))
1718 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1719 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1723 tem = (sizetype) ptr;
1727 and produce the simpler and easier to analyze with respect to alignment
1728 ... = ptr & ~algn; */
1730 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1731 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1732 (bit_and @0 { algn; })))
1734 /* Try folding difference of addresses. */
1736 (minus (convert ADDR_EXPR@0) (convert @1))
1737 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1738 (with { poly_int64 diff; }
1739 (if (ptr_difference_const (@0, @1, &diff))
1740 { build_int_cst_type (type, diff); }))))
1742 (minus (convert @0) (convert ADDR_EXPR@1))
1743 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1744 (with { poly_int64 diff; }
1745 (if (ptr_difference_const (@0, @1, &diff))
1746 { build_int_cst_type (type, diff); }))))
1748 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1749 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1750 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1751 (with { poly_int64 diff; }
1752 (if (ptr_difference_const (@0, @1, &diff))
1753 { build_int_cst_type (type, diff); }))))
1755 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1756 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1757 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1758 (with { poly_int64 diff; }
1759 (if (ptr_difference_const (@0, @1, &diff))
1760 { build_int_cst_type (type, diff); }))))
1762 /* If arg0 is derived from the address of an object or function, we may
1763 be able to fold this expression using the object or function's
1766 (bit_and (convert? @0) INTEGER_CST@1)
1767 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1768 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1772 unsigned HOST_WIDE_INT bitpos;
1773 get_pointer_alignment_1 (@0, &align, &bitpos);
1775 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1776 { wide_int_to_tree (type, (wi::to_wide (@1)
1777 & (bitpos / BITS_PER_UNIT))); }))))
1780 /* We can't reassociate at all for saturating types. */
1781 (if (!TYPE_SATURATING (type))
1783 /* Contract negates. */
1784 /* A + (-B) -> A - B */
1786 (plus:c @0 (convert? (negate @1)))
1787 /* Apply STRIP_NOPS on the negate. */
1788 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1789 && !TYPE_OVERFLOW_SANITIZED (type))
1793 if (INTEGRAL_TYPE_P (type)
1794 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1795 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1797 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1798 /* A - (-B) -> A + B */
1800 (minus @0 (convert? (negate @1)))
1801 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1802 && !TYPE_OVERFLOW_SANITIZED (type))
1806 if (INTEGRAL_TYPE_P (type)
1807 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1808 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1810 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1812 Sign-extension is ok except for INT_MIN, which thankfully cannot
1813 happen without overflow. */
1815 (negate (convert (negate @1)))
1816 (if (INTEGRAL_TYPE_P (type)
1817 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1818 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1819 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1820 && !TYPE_OVERFLOW_SANITIZED (type)
1821 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1824 (negate (convert negate_expr_p@1))
1825 (if (SCALAR_FLOAT_TYPE_P (type)
1826 && ((DECIMAL_FLOAT_TYPE_P (type)
1827 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1828 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1829 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1830 (convert (negate @1))))
1832 (negate (nop_convert (negate @1)))
1833 (if (!TYPE_OVERFLOW_SANITIZED (type)
1834 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1837 /* We can't reassociate floating-point unless -fassociative-math
1838 or fixed-point plus or minus because of saturation to +-Inf. */
1839 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1840 && !FIXED_POINT_TYPE_P (type))
1842 /* Match patterns that allow contracting a plus-minus pair
1843 irrespective of overflow issues. */
1844 /* (A +- B) - A -> +- B */
1845 /* (A +- B) -+ B -> A */
1846 /* A - (A +- B) -> -+ B */
1847 /* A +- (B -+ A) -> +- B */
1849 (minus (plus:c @0 @1) @0)
1852 (minus (minus @0 @1) @0)
1855 (plus:c (minus @0 @1) @1)
1858 (minus @0 (plus:c @0 @1))
1861 (minus @0 (minus @0 @1))
1863 /* (A +- B) + (C - A) -> C +- B */
1864 /* (A + B) - (A - C) -> B + C */
1865 /* More cases are handled with comparisons. */
1867 (plus:c (plus:c @0 @1) (minus @2 @0))
1870 (plus:c (minus @0 @1) (minus @2 @0))
1873 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1874 (if (TYPE_OVERFLOW_UNDEFINED (type)
1875 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1876 (pointer_diff @2 @1)))
1878 (minus (plus:c @0 @1) (minus @0 @2))
1881 /* (A +- CST1) +- CST2 -> A + CST3
1882 Use view_convert because it is safe for vectors and equivalent for
1884 (for outer_op (plus minus)
1885 (for inner_op (plus minus)
1886 neg_inner_op (minus plus)
1888 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1890 /* If one of the types wraps, use that one. */
1891 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1892 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1893 forever if something doesn't simplify into a constant. */
1894 (if (!CONSTANT_CLASS_P (@0))
1895 (if (outer_op == PLUS_EXPR)
1896 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1897 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1898 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1899 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1900 (if (outer_op == PLUS_EXPR)
1901 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1902 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1903 /* If the constant operation overflows we cannot do the transform
1904 directly as we would introduce undefined overflow, for example
1905 with (a - 1) + INT_MIN. */
1906 (if (types_match (type, @0))
1907 (with { tree cst = const_binop (outer_op == inner_op
1908 ? PLUS_EXPR : MINUS_EXPR,
1910 (if (cst && !TREE_OVERFLOW (cst))
1911 (inner_op @0 { cst; } )
1912 /* X+INT_MAX+1 is X-INT_MIN. */
1913 (if (INTEGRAL_TYPE_P (type) && cst
1914 && wi::to_wide (cst) == wi::min_value (type))
1915 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1916 /* Last resort, use some unsigned type. */
1917 (with { tree utype = unsigned_type_for (type); }
1919 (view_convert (inner_op
1920 (view_convert:utype @0)
1922 { drop_tree_overflow (cst); }))))))))))))))
1924 /* (CST1 - A) +- CST2 -> CST3 - A */
1925 (for outer_op (plus minus)
1927 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1928 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1929 (if (cst && !TREE_OVERFLOW (cst))
1930 (minus { cst; } @0)))))
1932 /* CST1 - (CST2 - A) -> CST3 + A */
1934 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1935 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1936 (if (cst && !TREE_OVERFLOW (cst))
1937 (plus { cst; } @0))))
1941 (plus:c (bit_not @0) @0)
1942 (if (!TYPE_OVERFLOW_TRAPS (type))
1943 { build_all_ones_cst (type); }))
1947 (plus (convert? (bit_not @0)) integer_each_onep)
1948 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1949 (negate (convert @0))))
1953 (minus (convert? (negate @0)) integer_each_onep)
1954 (if (!TYPE_OVERFLOW_TRAPS (type)
1955 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1956 (bit_not (convert @0))))
1960 (minus integer_all_onesp @0)
1963 /* (T)(P + A) - (T)P -> (T) A */
1965 (minus (convert (plus:c @@0 @1))
1967 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1968 /* For integer types, if A has a smaller type
1969 than T the result depends on the possible
1971 E.g. T=size_t, A=(unsigned)429497295, P>0.
1972 However, if an overflow in P + A would cause
1973 undefined behavior, we can assume that there
1975 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1976 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1979 (minus (convert (pointer_plus @@0 @1))
1981 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1982 /* For pointer types, if the conversion of A to the
1983 final type requires a sign- or zero-extension,
1984 then we have to punt - it is not defined which
1986 || (POINTER_TYPE_P (TREE_TYPE (@0))
1987 && TREE_CODE (@1) == INTEGER_CST
1988 && tree_int_cst_sign_bit (@1) == 0))
1991 (pointer_diff (pointer_plus @@0 @1) @0)
1992 /* The second argument of pointer_plus must be interpreted as signed, and
1993 thus sign-extended if necessary. */
1994 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1995 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1996 second arg is unsigned even when we need to consider it as signed,
1997 we don't want to diagnose overflow here. */
1998 (convert (view_convert:stype @1))))
2000 /* (T)P - (T)(P + A) -> -(T) A */
2002 (minus (convert? @0)
2003 (convert (plus:c @@0 @1)))
2004 (if (INTEGRAL_TYPE_P (type)
2005 && TYPE_OVERFLOW_UNDEFINED (type)
2006 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2007 (with { tree utype = unsigned_type_for (type); }
2008 (convert (negate (convert:utype @1))))
2009 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2010 /* For integer types, if A has a smaller type
2011 than T the result depends on the possible
2013 E.g. T=size_t, A=(unsigned)429497295, P>0.
2014 However, if an overflow in P + A would cause
2015 undefined behavior, we can assume that there
2017 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2019 (negate (convert @1)))))
2022 (convert (pointer_plus @@0 @1)))
2023 (if (INTEGRAL_TYPE_P (type)
2024 && TYPE_OVERFLOW_UNDEFINED (type)
2025 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2026 (with { tree utype = unsigned_type_for (type); }
2027 (convert (negate (convert:utype @1))))
2028 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2029 /* For pointer types, if the conversion of A to the
2030 final type requires a sign- or zero-extension,
2031 then we have to punt - it is not defined which
2033 || (POINTER_TYPE_P (TREE_TYPE (@0))
2034 && TREE_CODE (@1) == INTEGER_CST
2035 && tree_int_cst_sign_bit (@1) == 0))
2036 (negate (convert @1)))))
2038 (pointer_diff @0 (pointer_plus @@0 @1))
2039 /* The second argument of pointer_plus must be interpreted as signed, and
2040 thus sign-extended if necessary. */
2041 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2042 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2043 second arg is unsigned even when we need to consider it as signed,
2044 we don't want to diagnose overflow here. */
2045 (negate (convert (view_convert:stype @1)))))
2047 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2049 (minus (convert (plus:c @@0 @1))
2050 (convert (plus:c @0 @2)))
2051 (if (INTEGRAL_TYPE_P (type)
2052 && TYPE_OVERFLOW_UNDEFINED (type)
2053 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2054 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2055 (with { tree utype = unsigned_type_for (type); }
2056 (convert (minus (convert:utype @1) (convert:utype @2))))
2057 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2058 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2059 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2060 /* For integer types, if A has a smaller type
2061 than T the result depends on the possible
2063 E.g. T=size_t, A=(unsigned)429497295, P>0.
2064 However, if an overflow in P + A would cause
2065 undefined behavior, we can assume that there
2067 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2068 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2069 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2070 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2071 (minus (convert @1) (convert @2)))))
2073 (minus (convert (pointer_plus @@0 @1))
2074 (convert (pointer_plus @0 @2)))
2075 (if (INTEGRAL_TYPE_P (type)
2076 && TYPE_OVERFLOW_UNDEFINED (type)
2077 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2078 (with { tree utype = unsigned_type_for (type); }
2079 (convert (minus (convert:utype @1) (convert:utype @2))))
2080 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2081 /* For pointer types, if the conversion of A to the
2082 final type requires a sign- or zero-extension,
2083 then we have to punt - it is not defined which
2085 || (POINTER_TYPE_P (TREE_TYPE (@0))
2086 && TREE_CODE (@1) == INTEGER_CST
2087 && tree_int_cst_sign_bit (@1) == 0
2088 && TREE_CODE (@2) == INTEGER_CST
2089 && tree_int_cst_sign_bit (@2) == 0))
2090 (minus (convert @1) (convert @2)))))
2092 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2093 /* The second argument of pointer_plus must be interpreted as signed, and
2094 thus sign-extended if necessary. */
2095 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2096 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2097 second arg is unsigned even when we need to consider it as signed,
2098 we don't want to diagnose overflow here. */
2099 (minus (convert (view_convert:stype @1))
2100 (convert (view_convert:stype @2)))))))
2102 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2103 Modeled after fold_plusminus_mult_expr. */
2104 (if (!TYPE_SATURATING (type)
2105 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2106 (for plusminus (plus minus)
2108 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2109 (if ((!ANY_INTEGRAL_TYPE_P (type)
2110 || TYPE_OVERFLOW_WRAPS (type)
2111 || (INTEGRAL_TYPE_P (type)
2112 && tree_expr_nonzero_p (@0)
2113 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2114 /* If @1 +- @2 is constant require a hard single-use on either
2115 original operand (but not on both). */
2116 && (single_use (@3) || single_use (@4)))
2117 (mult (plusminus @1 @2) @0)))
2118 /* We cannot generate constant 1 for fract. */
2119 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2121 (plusminus @0 (mult:c@3 @0 @2))
2122 (if ((!ANY_INTEGRAL_TYPE_P (type)
2123 || TYPE_OVERFLOW_WRAPS (type)
2124 || (INTEGRAL_TYPE_P (type)
2125 && tree_expr_nonzero_p (@0)
2126 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2128 (mult (plusminus { build_one_cst (type); } @2) @0)))
2130 (plusminus (mult:c@3 @0 @2) @0)
2131 (if ((!ANY_INTEGRAL_TYPE_P (type)
2132 || TYPE_OVERFLOW_WRAPS (type)
2133 || (INTEGRAL_TYPE_P (type)
2134 && tree_expr_nonzero_p (@0)
2135 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2137 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2139 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2141 (for minmax (min max FMIN_ALL FMAX_ALL)
2145 /* min(max(x,y),y) -> y. */
2147 (min:c (max:c @0 @1) @1)
2149 /* max(min(x,y),y) -> y. */
2151 (max:c (min:c @0 @1) @1)
2153 /* max(a,-a) -> abs(a). */
2155 (max:c @0 (negate @0))
2156 (if (TREE_CODE (type) != COMPLEX_TYPE
2157 && (! ANY_INTEGRAL_TYPE_P (type)
2158 || TYPE_OVERFLOW_UNDEFINED (type)))
2160 /* min(a,-a) -> -abs(a). */
2162 (min:c @0 (negate @0))
2163 (if (TREE_CODE (type) != COMPLEX_TYPE
2164 && (! ANY_INTEGRAL_TYPE_P (type)
2165 || TYPE_OVERFLOW_UNDEFINED (type)))
2170 (if (INTEGRAL_TYPE_P (type)
2171 && TYPE_MIN_VALUE (type)
2172 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2174 (if (INTEGRAL_TYPE_P (type)
2175 && TYPE_MAX_VALUE (type)
2176 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2181 (if (INTEGRAL_TYPE_P (type)
2182 && TYPE_MAX_VALUE (type)
2183 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2185 (if (INTEGRAL_TYPE_P (type)
2186 && TYPE_MIN_VALUE (type)
2187 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2190 /* max (a, a + CST) -> a + CST where CST is positive. */
2191 /* max (a, a + CST) -> a where CST is negative. */
2193 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2194 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2195 (if (tree_int_cst_sgn (@1) > 0)
2199 /* min (a, a + CST) -> a where CST is positive. */
2200 /* min (a, a + CST) -> a + CST where CST is negative. */
2202 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2203 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2204 (if (tree_int_cst_sgn (@1) > 0)
2208 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2209 and the outer convert demotes the expression back to x's type. */
2210 (for minmax (min max)
2212 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2213 (if (INTEGRAL_TYPE_P (type)
2214 && types_match (@1, type) && int_fits_type_p (@2, type)
2215 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2216 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2217 (minmax @1 (convert @2)))))
2219 (for minmax (FMIN_ALL FMAX_ALL)
2220 /* If either argument is NaN, return the other one. Avoid the
2221 transformation if we get (and honor) a signalling NaN. */
2223 (minmax:c @0 REAL_CST@1)
2224 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2225 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2227 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2228 functions to return the numeric arg if the other one is NaN.
2229 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2230 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2231 worry about it either. */
2232 (if (flag_finite_math_only)
2239 /* min (-A, -B) -> -max (A, B) */
2240 (for minmax (min max FMIN_ALL FMAX_ALL)
2241 maxmin (max min FMAX_ALL FMIN_ALL)
2243 (minmax (negate:s@2 @0) (negate:s@3 @1))
2244 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2245 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2246 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2247 (negate (maxmin @0 @1)))))
2248 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2249 MAX (~X, ~Y) -> ~MIN (X, Y) */
2250 (for minmax (min max)
2253 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2254 (bit_not (maxmin @0 @1))))
2256 /* MIN (X, Y) == X -> X <= Y */
2257 (for minmax (min min max max)
2261 (cmp:c (minmax:c @0 @1) @0)
2262 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2264 /* MIN (X, 5) == 0 -> X == 0
2265 MIN (X, 5) == 7 -> false */
2268 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2269 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2270 TYPE_SIGN (TREE_TYPE (@0))))
2271 { constant_boolean_node (cmp == NE_EXPR, type); }
2272 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2273 TYPE_SIGN (TREE_TYPE (@0))))
2277 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2278 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2279 TYPE_SIGN (TREE_TYPE (@0))))
2280 { constant_boolean_node (cmp == NE_EXPR, type); }
2281 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2282 TYPE_SIGN (TREE_TYPE (@0))))
2284 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2285 (for minmax (min min max max min min max max )
2286 cmp (lt le gt ge gt ge lt le )
2287 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2289 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2290 (comb (cmp @0 @2) (cmp @1 @2))))
2292 /* Simplifications of shift and rotates. */
2294 (for rotate (lrotate rrotate)
2296 (rotate integer_all_onesp@0 @1)
2299 /* Optimize -1 >> x for arithmetic right shifts. */
2301 (rshift integer_all_onesp@0 @1)
2302 (if (!TYPE_UNSIGNED (type)
2303 && tree_expr_nonnegative_p (@1))
2306 /* Optimize (x >> c) << c into x & (-1<<c). */
2308 (lshift (rshift @0 INTEGER_CST@1) @1)
2309 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2310 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2312 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2315 (rshift (lshift @0 INTEGER_CST@1) @1)
2316 (if (TYPE_UNSIGNED (type)
2317 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2318 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2320 (for shiftrotate (lrotate rrotate lshift rshift)
2322 (shiftrotate @0 integer_zerop)
2325 (shiftrotate integer_zerop@0 @1)
2327 /* Prefer vector1 << scalar to vector1 << vector2
2328 if vector2 is uniform. */
2329 (for vec (VECTOR_CST CONSTRUCTOR)
2331 (shiftrotate @0 vec@1)
2332 (with { tree tem = uniform_vector_p (@1); }
2334 (shiftrotate @0 { tem; }))))))
2336 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2337 Y is 0. Similarly for X >> Y. */
2339 (for shift (lshift rshift)
2341 (shift @0 SSA_NAME@1)
2342 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2344 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2345 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2347 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2351 /* Rewrite an LROTATE_EXPR by a constant into an
2352 RROTATE_EXPR by a new constant. */
2354 (lrotate @0 INTEGER_CST@1)
2355 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2356 build_int_cst (TREE_TYPE (@1),
2357 element_precision (type)), @1); }))
2359 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2360 (for op (lrotate rrotate rshift lshift)
2362 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2363 (with { unsigned int prec = element_precision (type); }
2364 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2365 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2366 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2367 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2368 (with { unsigned int low = (tree_to_uhwi (@1)
2369 + tree_to_uhwi (@2)); }
2370 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2371 being well defined. */
2373 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2374 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2375 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2376 { build_zero_cst (type); }
2377 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2378 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2381 /* ((1 << A) & 1) != 0 -> A == 0
2382 ((1 << A) & 1) == 0 -> A != 0 */
2386 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2387 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2389 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2390 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2394 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2395 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2397 || (!integer_zerop (@2)
2398 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2399 { constant_boolean_node (cmp == NE_EXPR, type); }
2400 (if (!integer_zerop (@2)
2401 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2402 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2404 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2405 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2406 if the new mask might be further optimized. */
2407 (for shift (lshift rshift)
2409 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2411 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2412 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2413 && tree_fits_uhwi_p (@1)
2414 && tree_to_uhwi (@1) > 0
2415 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2418 unsigned int shiftc = tree_to_uhwi (@1);
2419 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2420 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2421 tree shift_type = TREE_TYPE (@3);
2424 if (shift == LSHIFT_EXPR)
2425 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2426 else if (shift == RSHIFT_EXPR
2427 && type_has_mode_precision_p (shift_type))
2429 prec = TYPE_PRECISION (TREE_TYPE (@3));
2431 /* See if more bits can be proven as zero because of
2434 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2436 tree inner_type = TREE_TYPE (@0);
2437 if (type_has_mode_precision_p (inner_type)
2438 && TYPE_PRECISION (inner_type) < prec)
2440 prec = TYPE_PRECISION (inner_type);
2441 /* See if we can shorten the right shift. */
2443 shift_type = inner_type;
2444 /* Otherwise X >> C1 is all zeros, so we'll optimize
2445 it into (X, 0) later on by making sure zerobits
2449 zerobits = HOST_WIDE_INT_M1U;
2452 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2453 zerobits <<= prec - shiftc;
2455 /* For arithmetic shift if sign bit could be set, zerobits
2456 can contain actually sign bits, so no transformation is
2457 possible, unless MASK masks them all away. In that
2458 case the shift needs to be converted into logical shift. */
2459 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2460 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2462 if ((mask & zerobits) == 0)
2463 shift_type = unsigned_type_for (TREE_TYPE (@3));
2469 /* ((X << 16) & 0xff00) is (X, 0). */
2470 (if ((mask & zerobits) == mask)
2471 { build_int_cst (type, 0); }
2472 (with { newmask = mask | zerobits; }
2473 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2476 /* Only do the transformation if NEWMASK is some integer
2478 for (prec = BITS_PER_UNIT;
2479 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2480 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2483 (if (prec < HOST_BITS_PER_WIDE_INT
2484 || newmask == HOST_WIDE_INT_M1U)
2486 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2487 (if (!tree_int_cst_equal (newmaskt, @2))
2488 (if (shift_type != TREE_TYPE (@3))
2489 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2490 (bit_and @4 { newmaskt; })))))))))))))
2492 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2493 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2494 (for shift (lshift rshift)
2495 (for bit_op (bit_and bit_xor bit_ior)
2497 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2498 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2499 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2500 (bit_op (shift (convert @0) @1) { mask; }))))))
2502 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2504 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2505 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2506 && (element_precision (TREE_TYPE (@0))
2507 <= element_precision (TREE_TYPE (@1))
2508 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2510 { tree shift_type = TREE_TYPE (@0); }
2511 (convert (rshift (convert:shift_type @1) @2)))))
2513 /* ~(~X >>r Y) -> X >>r Y
2514 ~(~X <<r Y) -> X <<r Y */
2515 (for rotate (lrotate rrotate)
2517 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2518 (if ((element_precision (TREE_TYPE (@0))
2519 <= element_precision (TREE_TYPE (@1))
2520 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2521 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2522 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2524 { tree rotate_type = TREE_TYPE (@0); }
2525 (convert (rotate (convert:rotate_type @1) @2))))))
2527 /* Simplifications of conversions. */
2529 /* Basic strip-useless-type-conversions / strip_nops. */
2530 (for cvt (convert view_convert float fix_trunc)
2533 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2534 || (GENERIC && type == TREE_TYPE (@0)))
2537 /* Contract view-conversions. */
2539 (view_convert (view_convert @0))
2542 /* For integral conversions with the same precision or pointer
2543 conversions use a NOP_EXPR instead. */
2546 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2547 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2548 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2551 /* Strip inner integral conversions that do not change precision or size, or
2552 zero-extend while keeping the same size (for bool-to-char). */
2554 (view_convert (convert@0 @1))
2555 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2556 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2557 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2558 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2559 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2560 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2563 /* Re-association barriers around constants and other re-association
2564 barriers can be removed. */
2566 (paren CONSTANT_CLASS_P@0)
2569 (paren (paren@1 @0))
2572 /* Handle cases of two conversions in a row. */
2573 (for ocvt (convert float fix_trunc)
2574 (for icvt (convert float)
2579 tree inside_type = TREE_TYPE (@0);
2580 tree inter_type = TREE_TYPE (@1);
2581 int inside_int = INTEGRAL_TYPE_P (inside_type);
2582 int inside_ptr = POINTER_TYPE_P (inside_type);
2583 int inside_float = FLOAT_TYPE_P (inside_type);
2584 int inside_vec = VECTOR_TYPE_P (inside_type);
2585 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2586 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2587 int inter_int = INTEGRAL_TYPE_P (inter_type);
2588 int inter_ptr = POINTER_TYPE_P (inter_type);
2589 int inter_float = FLOAT_TYPE_P (inter_type);
2590 int inter_vec = VECTOR_TYPE_P (inter_type);
2591 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2592 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2593 int final_int = INTEGRAL_TYPE_P (type);
2594 int final_ptr = POINTER_TYPE_P (type);
2595 int final_float = FLOAT_TYPE_P (type);
2596 int final_vec = VECTOR_TYPE_P (type);
2597 unsigned int final_prec = TYPE_PRECISION (type);
2598 int final_unsignedp = TYPE_UNSIGNED (type);
2601 /* In addition to the cases of two conversions in a row
2602 handled below, if we are converting something to its own
2603 type via an object of identical or wider precision, neither
2604 conversion is needed. */
2605 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2607 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2608 && (((inter_int || inter_ptr) && final_int)
2609 || (inter_float && final_float))
2610 && inter_prec >= final_prec)
2613 /* Likewise, if the intermediate and initial types are either both
2614 float or both integer, we don't need the middle conversion if the
2615 former is wider than the latter and doesn't change the signedness
2616 (for integers). Avoid this if the final type is a pointer since
2617 then we sometimes need the middle conversion. */
2618 (if (((inter_int && inside_int) || (inter_float && inside_float))
2619 && (final_int || final_float)
2620 && inter_prec >= inside_prec
2621 && (inter_float || inter_unsignedp == inside_unsignedp))
2624 /* If we have a sign-extension of a zero-extended value, we can
2625 replace that by a single zero-extension. Likewise if the
2626 final conversion does not change precision we can drop the
2627 intermediate conversion. */
2628 (if (inside_int && inter_int && final_int
2629 && ((inside_prec < inter_prec && inter_prec < final_prec
2630 && inside_unsignedp && !inter_unsignedp)
2631 || final_prec == inter_prec))
2634 /* Two conversions in a row are not needed unless:
2635 - some conversion is floating-point (overstrict for now), or
2636 - some conversion is a vector (overstrict for now), or
2637 - the intermediate type is narrower than both initial and
2639 - the intermediate type and innermost type differ in signedness,
2640 and the outermost type is wider than the intermediate, or
2641 - the initial type is a pointer type and the precisions of the
2642 intermediate and final types differ, or
2643 - the final type is a pointer type and the precisions of the
2644 initial and intermediate types differ. */
2645 (if (! inside_float && ! inter_float && ! final_float
2646 && ! inside_vec && ! inter_vec && ! final_vec
2647 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2648 && ! (inside_int && inter_int
2649 && inter_unsignedp != inside_unsignedp
2650 && inter_prec < final_prec)
2651 && ((inter_unsignedp && inter_prec > inside_prec)
2652 == (final_unsignedp && final_prec > inter_prec))
2653 && ! (inside_ptr && inter_prec != final_prec)
2654 && ! (final_ptr && inside_prec != inter_prec))
2657 /* A truncation to an unsigned type (a zero-extension) should be
2658 canonicalized as bitwise and of a mask. */
2659 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2660 && final_int && inter_int && inside_int
2661 && final_prec == inside_prec
2662 && final_prec > inter_prec
2664 (convert (bit_and @0 { wide_int_to_tree
2666 wi::mask (inter_prec, false,
2667 TYPE_PRECISION (inside_type))); })))
2669 /* If we are converting an integer to a floating-point that can
2670 represent it exactly and back to an integer, we can skip the
2671 floating-point conversion. */
2672 (if (GIMPLE /* PR66211 */
2673 && inside_int && inter_float && final_int &&
2674 (unsigned) significand_size (TYPE_MODE (inter_type))
2675 >= inside_prec - !inside_unsignedp)
2678 /* If we have a narrowing conversion to an integral type that is fed by a
2679 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2680 masks off bits outside the final type (and nothing else). */
2682 (convert (bit_and @0 INTEGER_CST@1))
2683 (if (INTEGRAL_TYPE_P (type)
2684 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2685 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2686 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2687 TYPE_PRECISION (type)), 0))
2691 /* (X /[ex] A) * A -> X. */
2693 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2696 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
2697 (for op (plus minus)
2699 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2700 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2701 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2704 wi::overflow_type overflow;
2705 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2706 TYPE_SIGN (type), &overflow);
2708 (if (types_match (type, TREE_TYPE (@2))
2709 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2710 (op @0 { wide_int_to_tree (type, mul); })
2711 (with { tree utype = unsigned_type_for (type); }
2712 (convert (op (convert:utype @0)
2713 (mult (convert:utype @1) (convert:utype @2))))))))))
2715 /* Canonicalization of binary operations. */
2717 /* Convert X + -C into X - C. */
2719 (plus @0 REAL_CST@1)
2720 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2721 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2722 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2723 (minus @0 { tem; })))))
2725 /* Convert x+x into x*2. */
2728 (if (SCALAR_FLOAT_TYPE_P (type))
2729 (mult @0 { build_real (type, dconst2); })
2730 (if (INTEGRAL_TYPE_P (type))
2731 (mult @0 { build_int_cst (type, 2); }))))
2735 (minus integer_zerop @1)
2738 (pointer_diff integer_zerop @1)
2739 (negate (convert @1)))
2741 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2742 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2743 (-ARG1 + ARG0) reduces to -ARG1. */
2745 (minus real_zerop@0 @1)
2746 (if (fold_real_zero_addition_p (type, @0, 0))
2749 /* Transform x * -1 into -x. */
2751 (mult @0 integer_minus_onep)
2754 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2755 signed overflow for CST != 0 && CST != -1. */
2757 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2758 (if (TREE_CODE (@2) != INTEGER_CST
2760 && !integer_zerop (@1) && !integer_minus_onep (@1))
2761 (mult (mult @0 @2) @1)))
2763 /* True if we can easily extract the real and imaginary parts of a complex
2765 (match compositional_complex
2766 (convert? (complex @0 @1)))
2768 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2770 (complex (realpart @0) (imagpart @0))
2773 (realpart (complex @0 @1))
2776 (imagpart (complex @0 @1))
2779 /* Sometimes we only care about half of a complex expression. */
2781 (realpart (convert?:s (conj:s @0)))
2782 (convert (realpart @0)))
2784 (imagpart (convert?:s (conj:s @0)))
2785 (convert (negate (imagpart @0))))
2786 (for part (realpart imagpart)
2787 (for op (plus minus)
2789 (part (convert?:s@2 (op:s @0 @1)))
2790 (convert (op (part @0) (part @1))))))
2792 (realpart (convert?:s (CEXPI:s @0)))
2795 (imagpart (convert?:s (CEXPI:s @0)))
2798 /* conj(conj(x)) -> x */
2800 (conj (convert? (conj @0)))
2801 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2804 /* conj({x,y}) -> {x,-y} */
2806 (conj (convert?:s (complex:s @0 @1)))
2807 (with { tree itype = TREE_TYPE (type); }
2808 (complex (convert:itype @0) (negate (convert:itype @1)))))
2810 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2811 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2816 (bswap (bit_not (bswap @0)))
2818 (for bitop (bit_xor bit_ior bit_and)
2820 (bswap (bitop:c (bswap @0) @1))
2821 (bitop @0 (bswap @1)))))
2824 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2826 /* Simplify constant conditions.
2827 Only optimize constant conditions when the selected branch
2828 has the same type as the COND_EXPR. This avoids optimizing
2829 away "c ? x : throw", where the throw has a void type.
2830 Note that we cannot throw away the fold-const.c variant nor
2831 this one as we depend on doing this transform before possibly
2832 A ? B : B -> B triggers and the fold-const.c one can optimize
2833 0 ? A : B to B even if A has side-effects. Something
2834 genmatch cannot handle. */
2836 (cond INTEGER_CST@0 @1 @2)
2837 (if (integer_zerop (@0))
2838 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2840 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2843 (vec_cond VECTOR_CST@0 @1 @2)
2844 (if (integer_all_onesp (@0))
2846 (if (integer_zerop (@0))
2849 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2851 /* This pattern implements two kinds simplification:
2854 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2855 1) Conversions are type widening from smaller type.
2856 2) Const c1 equals to c2 after canonicalizing comparison.
2857 3) Comparison has tree code LT, LE, GT or GE.
2858 This specific pattern is needed when (cmp (convert x) c) may not
2859 be simplified by comparison patterns because of multiple uses of
2860 x. It also makes sense here because simplifying across multiple
2861 referred var is always benefitial for complicated cases.
2864 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2865 (for cmp (lt le gt ge eq)
2867 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2870 tree from_type = TREE_TYPE (@1);
2871 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2872 enum tree_code code = ERROR_MARK;
2874 if (INTEGRAL_TYPE_P (from_type)
2875 && int_fits_type_p (@2, from_type)
2876 && (types_match (c1_type, from_type)
2877 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2878 && (TYPE_UNSIGNED (from_type)
2879 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2880 && (types_match (c2_type, from_type)
2881 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2882 && (TYPE_UNSIGNED (from_type)
2883 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2887 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2889 /* X <= Y - 1 equals to X < Y. */
2892 /* X > Y - 1 equals to X >= Y. */
2896 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2898 /* X < Y + 1 equals to X <= Y. */
2901 /* X >= Y + 1 equals to X > Y. */
2905 if (code != ERROR_MARK
2906 || wi::to_widest (@2) == wi::to_widest (@3))
2908 if (cmp == LT_EXPR || cmp == LE_EXPR)
2910 if (cmp == GT_EXPR || cmp == GE_EXPR)
2914 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2915 else if (int_fits_type_p (@3, from_type))
2919 (if (code == MAX_EXPR)
2920 (convert (max @1 (convert @2)))
2921 (if (code == MIN_EXPR)
2922 (convert (min @1 (convert @2)))
2923 (if (code == EQ_EXPR)
2924 (convert (cond (eq @1 (convert @3))
2925 (convert:from_type @3) (convert:from_type @2)))))))))
2927 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2929 1) OP is PLUS or MINUS.
2930 2) CMP is LT, LE, GT or GE.
2931 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2933 This pattern also handles special cases like:
2935 A) Operand x is a unsigned to signed type conversion and c1 is
2936 integer zero. In this case,
2937 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2938 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2939 B) Const c1 may not equal to (C3 op' C2). In this case we also
2940 check equality for (c1+1) and (c1-1) by adjusting comparison
2943 TODO: Though signed type is handled by this pattern, it cannot be
2944 simplified at the moment because C standard requires additional
2945 type promotion. In order to match&simplify it here, the IR needs
2946 to be cleaned up by other optimizers, i.e, VRP. */
2947 (for op (plus minus)
2948 (for cmp (lt le gt ge)
2950 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2951 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2952 (if (types_match (from_type, to_type)
2953 /* Check if it is special case A). */
2954 || (TYPE_UNSIGNED (from_type)
2955 && !TYPE_UNSIGNED (to_type)
2956 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2957 && integer_zerop (@1)
2958 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2961 wi::overflow_type overflow = wi::OVF_NONE;
2962 enum tree_code code, cmp_code = cmp;
2964 wide_int c1 = wi::to_wide (@1);
2965 wide_int c2 = wi::to_wide (@2);
2966 wide_int c3 = wi::to_wide (@3);
2967 signop sgn = TYPE_SIGN (from_type);
2969 /* Handle special case A), given x of unsigned type:
2970 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2971 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2972 if (!types_match (from_type, to_type))
2974 if (cmp_code == LT_EXPR)
2976 if (cmp_code == GE_EXPR)
2978 c1 = wi::max_value (to_type);
2980 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2981 compute (c3 op' c2) and check if it equals to c1 with op' being
2982 the inverted operator of op. Make sure overflow doesn't happen
2983 if it is undefined. */
2984 if (op == PLUS_EXPR)
2985 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2987 real_c1 = wi::add (c3, c2, sgn, &overflow);
2990 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2992 /* Check if c1 equals to real_c1. Boundary condition is handled
2993 by adjusting comparison operation if necessary. */
2994 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2997 /* X <= Y - 1 equals to X < Y. */
2998 if (cmp_code == LE_EXPR)
3000 /* X > Y - 1 equals to X >= Y. */
3001 if (cmp_code == GT_EXPR)
3004 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3007 /* X < Y + 1 equals to X <= Y. */
3008 if (cmp_code == LT_EXPR)
3010 /* X >= Y + 1 equals to X > Y. */
3011 if (cmp_code == GE_EXPR)
3014 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3016 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3018 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3023 (if (code == MAX_EXPR)
3024 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3025 { wide_int_to_tree (from_type, c2); })
3026 (if (code == MIN_EXPR)
3027 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3028 { wide_int_to_tree (from_type, c2); })))))))))
3030 (for cnd (cond vec_cond)
3031 /* A ? B : (A ? X : C) -> A ? B : C. */
3033 (cnd @0 (cnd @0 @1 @2) @3)
3036 (cnd @0 @1 (cnd @0 @2 @3))
3038 /* A ? B : (!A ? C : X) -> A ? B : C. */
3039 /* ??? This matches embedded conditions open-coded because genmatch
3040 would generate matching code for conditions in separate stmts only.
3041 The following is still important to merge then and else arm cases
3042 from if-conversion. */
3044 (cnd @0 @1 (cnd @2 @3 @4))
3045 (if (inverse_conditions_p (@0, @2))
3048 (cnd @0 (cnd @1 @2 @3) @4)
3049 (if (inverse_conditions_p (@0, @1))
3052 /* A ? B : B -> B. */
3057 /* !A ? B : C -> A ? C : B. */
3059 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3062 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3063 return all -1 or all 0 results. */
3064 /* ??? We could instead convert all instances of the vec_cond to negate,
3065 but that isn't necessarily a win on its own. */
3067 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3068 (if (VECTOR_TYPE_P (type)
3069 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3070 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3071 && (TYPE_MODE (TREE_TYPE (type))
3072 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3073 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3075 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3077 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3078 (if (VECTOR_TYPE_P (type)
3079 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3080 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3081 && (TYPE_MODE (TREE_TYPE (type))
3082 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3083 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3086 /* Simplifications of comparisons. */
3088 /* See if we can reduce the magnitude of a constant involved in a
3089 comparison by changing the comparison code. This is a canonicalization
3090 formerly done by maybe_canonicalize_comparison_1. */
3094 (cmp @0 INTEGER_CST@1)
3095 (if (tree_int_cst_sgn (@1) == -1)
3096 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3100 (cmp @0 INTEGER_CST@1)
3101 (if (tree_int_cst_sgn (@1) == 1)
3102 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3105 /* We can simplify a logical negation of a comparison to the
3106 inverted comparison. As we cannot compute an expression
3107 operator using invert_tree_comparison we have to simulate
3108 that with expression code iteration. */
3109 (for cmp (tcc_comparison)
3110 icmp (inverted_tcc_comparison)
3111 ncmp (inverted_tcc_comparison_with_nans)
3112 /* Ideally we'd like to combine the following two patterns
3113 and handle some more cases by using
3114 (logical_inverted_value (cmp @0 @1))
3115 here but for that genmatch would need to "inline" that.
3116 For now implement what forward_propagate_comparison did. */
3118 (bit_not (cmp @0 @1))
3119 (if (VECTOR_TYPE_P (type)
3120 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3121 /* Comparison inversion may be impossible for trapping math,
3122 invert_tree_comparison will tell us. But we can't use
3123 a computed operator in the replacement tree thus we have
3124 to play the trick below. */
3125 (with { enum tree_code ic = invert_tree_comparison
3126 (cmp, HONOR_NANS (@0)); }
3132 (bit_xor (cmp @0 @1) integer_truep)
3133 (with { enum tree_code ic = invert_tree_comparison
3134 (cmp, HONOR_NANS (@0)); }
3140 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3141 ??? The transformation is valid for the other operators if overflow
3142 is undefined for the type, but performing it here badly interacts
3143 with the transformation in fold_cond_expr_with_comparison which
3144 attempts to synthetize ABS_EXPR. */
3146 (for sub (minus pointer_diff)
3148 (cmp (sub@2 @0 @1) integer_zerop)
3149 (if (single_use (@2))
3152 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3153 signed arithmetic case. That form is created by the compiler
3154 often enough for folding it to be of value. One example is in
3155 computing loop trip counts after Operator Strength Reduction. */
3156 (for cmp (simple_comparison)
3157 scmp (swapped_simple_comparison)
3159 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3160 /* Handle unfolded multiplication by zero. */
3161 (if (integer_zerop (@1))
3163 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3164 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3166 /* If @1 is negative we swap the sense of the comparison. */
3167 (if (tree_int_cst_sgn (@1) < 0)
3171 /* Simplify comparison of something with itself. For IEEE
3172 floating-point, we can only do some of these simplifications. */
3176 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3177 || ! HONOR_NANS (@0))
3178 { constant_boolean_node (true, type); }
3179 (if (cmp != EQ_EXPR)
3185 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3186 || ! HONOR_NANS (@0))
3187 { constant_boolean_node (false, type); })))
3188 (for cmp (unle unge uneq)
3191 { constant_boolean_node (true, type); }))
3192 (for cmp (unlt ungt)
3198 (if (!flag_trapping_math)
3199 { constant_boolean_node (false, type); }))
3201 /* Fold ~X op ~Y as Y op X. */
3202 (for cmp (simple_comparison)
3204 (cmp (bit_not@2 @0) (bit_not@3 @1))
3205 (if (single_use (@2) && single_use (@3))
3208 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3209 (for cmp (simple_comparison)
3210 scmp (swapped_simple_comparison)
3212 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3213 (if (single_use (@2)
3214 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3215 (scmp @0 (bit_not @1)))))
3217 (for cmp (simple_comparison)
3218 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3220 (cmp (convert@2 @0) (convert? @1))
3221 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3222 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3223 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3224 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3225 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3228 tree type1 = TREE_TYPE (@1);
3229 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3231 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3232 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3233 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3234 type1 = float_type_node;
3235 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3236 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3237 type1 = double_type_node;
3240 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3241 ? TREE_TYPE (@0) : type1);
3243 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3244 (cmp (convert:newtype @0) (convert:newtype @1))))))
3248 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3250 /* a CMP (-0) -> a CMP 0 */
3251 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3252 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3253 /* x != NaN is always true, other ops are always false. */
3254 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3255 && ! HONOR_SNANS (@1))
3256 { constant_boolean_node (cmp == NE_EXPR, type); })
3257 /* Fold comparisons against infinity. */
3258 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3259 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3262 REAL_VALUE_TYPE max;
3263 enum tree_code code = cmp;
3264 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3266 code = swap_tree_comparison (code);
3269 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3270 (if (code == GT_EXPR
3271 && !(HONOR_NANS (@0) && flag_trapping_math))
3272 { constant_boolean_node (false, type); })
3273 (if (code == LE_EXPR)
3274 /* x <= +Inf is always true, if we don't care about NaNs. */
3275 (if (! HONOR_NANS (@0))
3276 { constant_boolean_node (true, type); }
3277 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3278 an "invalid" exception. */
3279 (if (!flag_trapping_math)
3281 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3282 for == this introduces an exception for x a NaN. */
3283 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3285 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3287 (lt @0 { build_real (TREE_TYPE (@0), max); })
3288 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3289 /* x < +Inf is always equal to x <= DBL_MAX. */
3290 (if (code == LT_EXPR)
3291 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3293 (ge @0 { build_real (TREE_TYPE (@0), max); })
3294 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3295 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3296 an exception for x a NaN so use an unordered comparison. */
3297 (if (code == NE_EXPR)
3298 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3299 (if (! HONOR_NANS (@0))
3301 (ge @0 { build_real (TREE_TYPE (@0), max); })
3302 (le @0 { build_real (TREE_TYPE (@0), max); }))
3304 (unge @0 { build_real (TREE_TYPE (@0), max); })
3305 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3307 /* If this is a comparison of a real constant with a PLUS_EXPR
3308 or a MINUS_EXPR of a real constant, we can convert it into a
3309 comparison with a revised real constant as long as no overflow
3310 occurs when unsafe_math_optimizations are enabled. */
3311 (if (flag_unsafe_math_optimizations)
3312 (for op (plus minus)
3314 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3317 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3318 TREE_TYPE (@1), @2, @1);
3320 (if (tem && !TREE_OVERFLOW (tem))
3321 (cmp @0 { tem; }))))))
3323 /* Likewise, we can simplify a comparison of a real constant with
3324 a MINUS_EXPR whose first operand is also a real constant, i.e.
3325 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3326 floating-point types only if -fassociative-math is set. */
3327 (if (flag_associative_math)
3329 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3330 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3331 (if (tem && !TREE_OVERFLOW (tem))
3332 (cmp { tem; } @1)))))
3334 /* Fold comparisons against built-in math functions. */
3335 (if (flag_unsafe_math_optimizations
3336 && ! flag_errno_math)
3339 (cmp (sq @0) REAL_CST@1)
3341 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3343 /* sqrt(x) < y is always false, if y is negative. */
3344 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3345 { constant_boolean_node (false, type); })
3346 /* sqrt(x) > y is always true, if y is negative and we
3347 don't care about NaNs, i.e. negative values of x. */
3348 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3349 { constant_boolean_node (true, type); })
3350 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3351 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3352 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3354 /* sqrt(x) < 0 is always false. */
3355 (if (cmp == LT_EXPR)
3356 { constant_boolean_node (false, type); })
3357 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3358 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3359 { constant_boolean_node (true, type); })
3360 /* sqrt(x) <= 0 -> x == 0. */
3361 (if (cmp == LE_EXPR)
3363 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3364 == or !=. In the last case:
3366 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3368 if x is negative or NaN. Due to -funsafe-math-optimizations,
3369 the results for other x follow from natural arithmetic. */
3371 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3375 real_arithmetic (&c2, MULT_EXPR,
3376 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3377 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3379 (if (REAL_VALUE_ISINF (c2))
3380 /* sqrt(x) > y is x == +Inf, when y is very large. */
3381 (if (HONOR_INFINITIES (@0))
3382 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3383 { constant_boolean_node (false, type); })
3384 /* sqrt(x) > c is the same as x > c*c. */
3385 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3386 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3390 real_arithmetic (&c2, MULT_EXPR,
3391 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3392 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3394 (if (REAL_VALUE_ISINF (c2))
3396 /* sqrt(x) < y is always true, when y is a very large
3397 value and we don't care about NaNs or Infinities. */
3398 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3399 { constant_boolean_node (true, type); })
3400 /* sqrt(x) < y is x != +Inf when y is very large and we
3401 don't care about NaNs. */
3402 (if (! HONOR_NANS (@0))
3403 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3404 /* sqrt(x) < y is x >= 0 when y is very large and we
3405 don't care about Infinities. */
3406 (if (! HONOR_INFINITIES (@0))
3407 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3408 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3411 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3412 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3413 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3414 (if (! HONOR_NANS (@0))
3415 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3416 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3419 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3420 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3421 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3423 (cmp (sq @0) (sq @1))
3424 (if (! HONOR_NANS (@0))
3427 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3428 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3429 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3431 (cmp (float@0 @1) (float @2))
3432 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3433 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3436 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3437 tree type1 = TREE_TYPE (@1);
3438 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3439 tree type2 = TREE_TYPE (@2);
3440 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3442 (if (fmt.can_represent_integral_type_p (type1)
3443 && fmt.can_represent_integral_type_p (type2))
3444 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3445 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3446 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3447 && type1_signed_p >= type2_signed_p)
3448 (icmp @1 (convert @2))
3449 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3450 && type1_signed_p <= type2_signed_p)
3451 (icmp (convert:type2 @1) @2)
3452 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3453 && type1_signed_p == type2_signed_p)
3454 (icmp @1 @2))))))))))
3456 /* Optimize various special cases of (FTYPE) N CMP CST. */
3457 (for cmp (lt le eq ne ge gt)
3458 icmp (le le eq ne ge ge)
3460 (cmp (float @0) REAL_CST@1)
3461 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3462 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3465 tree itype = TREE_TYPE (@0);
3466 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3467 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3468 /* Be careful to preserve any potential exceptions due to
3469 NaNs. qNaNs are ok in == or != context.
3470 TODO: relax under -fno-trapping-math or
3471 -fno-signaling-nans. */
3473 = real_isnan (cst) && (cst->signalling
3474 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3476 /* TODO: allow non-fitting itype and SNaNs when
3477 -fno-trapping-math. */
3478 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3481 signop isign = TYPE_SIGN (itype);
3482 REAL_VALUE_TYPE imin, imax;
3483 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3484 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3486 REAL_VALUE_TYPE icst;
3487 if (cmp == GT_EXPR || cmp == GE_EXPR)
3488 real_ceil (&icst, fmt, cst);
3489 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3490 real_floor (&icst, fmt, cst);
3492 real_trunc (&icst, fmt, cst);
3494 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3496 bool overflow_p = false;
3498 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3501 /* Optimize cases when CST is outside of ITYPE's range. */
3502 (if (real_compare (LT_EXPR, cst, &imin))
3503 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3505 (if (real_compare (GT_EXPR, cst, &imax))
3506 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3508 /* Remove cast if CST is an integer representable by ITYPE. */
3510 (cmp @0 { gcc_assert (!overflow_p);
3511 wide_int_to_tree (itype, icst_val); })
3513 /* When CST is fractional, optimize
3514 (FTYPE) N == CST -> 0
3515 (FTYPE) N != CST -> 1. */
3516 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3517 { constant_boolean_node (cmp == NE_EXPR, type); })
3518 /* Otherwise replace with sensible integer constant. */
3521 gcc_checking_assert (!overflow_p);
3523 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3525 /* Fold A /[ex] B CMP C to A CMP B * C. */
3528 (cmp (exact_div @0 @1) INTEGER_CST@2)
3529 (if (!integer_zerop (@1))
3530 (if (wi::to_wide (@2) == 0)
3532 (if (TREE_CODE (@1) == INTEGER_CST)
3535 wi::overflow_type ovf;
3536 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3537 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3540 { constant_boolean_node (cmp == NE_EXPR, type); }
3541 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3542 (for cmp (lt le gt ge)
3544 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3545 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3548 wi::overflow_type ovf;
3549 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3550 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3553 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3554 TYPE_SIGN (TREE_TYPE (@2)))
3555 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3556 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3558 /* Unordered tests if either argument is a NaN. */
3560 (bit_ior (unordered @0 @0) (unordered @1 @1))
3561 (if (types_match (@0, @1))
3564 (bit_and (ordered @0 @0) (ordered @1 @1))
3565 (if (types_match (@0, @1))
3568 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3571 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3574 /* Simple range test simplifications. */
3575 /* A < B || A >= B -> true. */
3576 (for test1 (lt le le le ne ge)
3577 test2 (ge gt ge ne eq ne)
3579 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3580 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3581 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3582 { constant_boolean_node (true, type); })))
3583 /* A < B && A >= B -> false. */
3584 (for test1 (lt lt lt le ne eq)
3585 test2 (ge gt eq gt eq gt)
3587 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3588 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3589 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3590 { constant_boolean_node (false, type); })))
3592 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3593 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3595 Note that comparisons
3596 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3597 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3598 will be canonicalized to above so there's no need to
3605 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3606 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3609 tree ty = TREE_TYPE (@0);
3610 unsigned prec = TYPE_PRECISION (ty);
3611 wide_int mask = wi::to_wide (@2, prec);
3612 wide_int rhs = wi::to_wide (@3, prec);
3613 signop sgn = TYPE_SIGN (ty);
3615 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3616 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3617 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3618 { build_zero_cst (ty); }))))))
3620 /* -A CMP -B -> B CMP A. */
3621 (for cmp (tcc_comparison)
3622 scmp (swapped_tcc_comparison)
3624 (cmp (negate @0) (negate @1))
3625 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3626 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3627 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3630 (cmp (negate @0) CONSTANT_CLASS_P@1)
3631 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3632 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3633 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3634 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3635 (if (tem && !TREE_OVERFLOW (tem))
3636 (scmp @0 { tem; }))))))
3638 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3641 (op (abs @0) zerop@1)
3644 /* From fold_sign_changed_comparison and fold_widened_comparison.
3645 FIXME: the lack of symmetry is disturbing. */
3646 (for cmp (simple_comparison)
3648 (cmp (convert@0 @00) (convert?@1 @10))
3649 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3650 /* Disable this optimization if we're casting a function pointer
3651 type on targets that require function pointer canonicalization. */
3652 && !(targetm.have_canonicalize_funcptr_for_compare ()
3653 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3654 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3655 || (POINTER_TYPE_P (TREE_TYPE (@10))
3656 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
3658 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3659 && (TREE_CODE (@10) == INTEGER_CST
3661 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3664 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3665 /* ??? The special-casing of INTEGER_CST conversion was in the original
3666 code and here to avoid a spurious overflow flag on the resulting
3667 constant which fold_convert produces. */
3668 (if (TREE_CODE (@1) == INTEGER_CST)
3669 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3670 TREE_OVERFLOW (@1)); })
3671 (cmp @00 (convert @1)))
3673 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3674 /* If possible, express the comparison in the shorter mode. */
3675 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3676 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3677 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3678 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3679 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3680 || ((TYPE_PRECISION (TREE_TYPE (@00))
3681 >= TYPE_PRECISION (TREE_TYPE (@10)))
3682 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3683 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3684 || (TREE_CODE (@10) == INTEGER_CST
3685 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3686 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3687 (cmp @00 (convert @10))
3688 (if (TREE_CODE (@10) == INTEGER_CST
3689 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3690 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3693 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3694 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3695 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3696 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3698 (if (above || below)
3699 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3700 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3701 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3702 { constant_boolean_node (above ? true : false, type); }
3703 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3704 { constant_boolean_node (above ? false : true, type); }))))))))))))
3707 /* A local variable can never be pointed to by
3708 the default SSA name of an incoming parameter.
3709 SSA names are canonicalized to 2nd place. */
3711 (cmp addr@0 SSA_NAME@1)
3712 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3713 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3714 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3715 (if (TREE_CODE (base) == VAR_DECL
3716 && auto_var_in_fn_p (base, current_function_decl))
3717 (if (cmp == NE_EXPR)
3718 { constant_boolean_node (true, type); }
3719 { constant_boolean_node (false, type); }))))))
3721 /* Equality compare simplifications from fold_binary */
3724 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3725 Similarly for NE_EXPR. */
3727 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3728 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3729 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3730 { constant_boolean_node (cmp == NE_EXPR, type); }))
3732 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3734 (cmp (bit_xor @0 @1) integer_zerop)
3737 /* (X ^ Y) == Y becomes X == 0.
3738 Likewise (X ^ Y) == X becomes Y == 0. */
3740 (cmp:c (bit_xor:c @0 @1) @0)
3741 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3743 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3745 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3746 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3747 (cmp @0 (bit_xor @1 (convert @2)))))
3750 (cmp (convert? addr@0) integer_zerop)
3751 (if (tree_single_nonzero_warnv_p (@0, NULL))
3752 { constant_boolean_node (cmp == NE_EXPR, type); })))
3754 /* If we have (A & C) == C where C is a power of 2, convert this into
3755 (A & C) != 0. Similarly for NE_EXPR. */
3759 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3760 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3762 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3763 convert this into a shift followed by ANDing with D. */
3766 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3767 INTEGER_CST@2 integer_zerop)
3768 (if (integer_pow2p (@2))
3770 int shift = (wi::exact_log2 (wi::to_wide (@2))
3771 - wi::exact_log2 (wi::to_wide (@1)));
3775 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3777 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3780 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3781 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3785 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3786 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3787 && type_has_mode_precision_p (TREE_TYPE (@0))
3788 && element_precision (@2) >= element_precision (@0)
3789 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3790 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3791 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3793 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3794 this into a right shift or sign extension followed by ANDing with C. */
3797 (lt @0 integer_zerop)
3798 INTEGER_CST@1 integer_zerop)
3799 (if (integer_pow2p (@1)
3800 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3802 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3806 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3808 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3809 sign extension followed by AND with C will achieve the effect. */
3810 (bit_and (convert @0) @1)))))
3812 /* When the addresses are not directly of decls compare base and offset.
3813 This implements some remaining parts of fold_comparison address
3814 comparisons but still no complete part of it. Still it is good
3815 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3816 (for cmp (simple_comparison)
3818 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3821 poly_int64 off0, off1;
3822 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3823 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3824 if (base0 && TREE_CODE (base0) == MEM_REF)
3826 off0 += mem_ref_offset (base0).force_shwi ();
3827 base0 = TREE_OPERAND (base0, 0);
3829 if (base1 && TREE_CODE (base1) == MEM_REF)
3831 off1 += mem_ref_offset (base1).force_shwi ();
3832 base1 = TREE_OPERAND (base1, 0);
3835 (if (base0 && base1)
3839 /* Punt in GENERIC on variables with value expressions;
3840 the value expressions might point to fields/elements
3841 of other vars etc. */
3843 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3844 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3846 else if (decl_in_symtab_p (base0)
3847 && decl_in_symtab_p (base1))
3848 equal = symtab_node::get_create (base0)
3849 ->equal_address_to (symtab_node::get_create (base1));
3850 else if ((DECL_P (base0)
3851 || TREE_CODE (base0) == SSA_NAME
3852 || TREE_CODE (base0) == STRING_CST)
3854 || TREE_CODE (base1) == SSA_NAME
3855 || TREE_CODE (base1) == STRING_CST))
3856 equal = (base0 == base1);
3859 && (cmp == EQ_EXPR || cmp == NE_EXPR
3860 /* If the offsets are equal we can ignore overflow. */
3861 || known_eq (off0, off1)
3862 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3863 /* Or if we compare using pointers to decls or strings. */
3864 || (POINTER_TYPE_P (TREE_TYPE (@2))
3865 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3867 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3868 { constant_boolean_node (known_eq (off0, off1), type); })
3869 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3870 { constant_boolean_node (known_ne (off0, off1), type); })
3871 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3872 { constant_boolean_node (known_lt (off0, off1), type); })
3873 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3874 { constant_boolean_node (known_le (off0, off1), type); })
3875 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3876 { constant_boolean_node (known_ge (off0, off1), type); })
3877 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3878 { constant_boolean_node (known_gt (off0, off1), type); }))
3880 && DECL_P (base0) && DECL_P (base1)
3881 /* If we compare this as integers require equal offset. */
3882 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3883 || known_eq (off0, off1)))
3885 (if (cmp == EQ_EXPR)
3886 { constant_boolean_node (false, type); })
3887 (if (cmp == NE_EXPR)
3888 { constant_boolean_node (true, type); })))))))))
3890 /* Simplify pointer equality compares using PTA. */
3894 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3895 && ptrs_compare_unequal (@0, @1))
3896 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3898 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3899 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3900 Disable the transform if either operand is pointer to function.
3901 This broke pr22051-2.c for arm where function pointer
3902 canonicalizaion is not wanted. */
3906 (cmp (convert @0) INTEGER_CST@1)
3907 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3908 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3909 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3910 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3911 && POINTER_TYPE_P (TREE_TYPE (@1))
3912 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3913 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3914 (cmp @0 (convert @1)))))
3916 /* Non-equality compare simplifications from fold_binary */
3917 (for cmp (lt gt le ge)
3918 /* Comparisons with the highest or lowest possible integer of
3919 the specified precision will have known values. */
3921 (cmp (convert?@2 @0) INTEGER_CST@1)
3922 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3923 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3926 tree arg1_type = TREE_TYPE (@1);
3927 unsigned int prec = TYPE_PRECISION (arg1_type);
3928 wide_int max = wi::max_value (arg1_type);
3929 wide_int signed_max = wi::max_value (prec, SIGNED);
3930 wide_int min = wi::min_value (arg1_type);
3933 (if (wi::to_wide (@1) == max)
3935 (if (cmp == GT_EXPR)
3936 { constant_boolean_node (false, type); })
3937 (if (cmp == GE_EXPR)
3939 (if (cmp == LE_EXPR)
3940 { constant_boolean_node (true, type); })
3941 (if (cmp == LT_EXPR)
3943 (if (wi::to_wide (@1) == min)
3945 (if (cmp == LT_EXPR)
3946 { constant_boolean_node (false, type); })
3947 (if (cmp == LE_EXPR)
3949 (if (cmp == GE_EXPR)
3950 { constant_boolean_node (true, type); })
3951 (if (cmp == GT_EXPR)
3953 (if (wi::to_wide (@1) == max - 1)
3955 (if (cmp == GT_EXPR)
3956 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3957 (if (cmp == LE_EXPR)
3958 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3959 (if (wi::to_wide (@1) == min + 1)
3961 (if (cmp == GE_EXPR)
3962 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3963 (if (cmp == LT_EXPR)
3964 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3965 (if (wi::to_wide (@1) == signed_max
3966 && TYPE_UNSIGNED (arg1_type)
3967 /* We will flip the signedness of the comparison operator
3968 associated with the mode of @1, so the sign bit is
3969 specified by this mode. Check that @1 is the signed
3970 max associated with this sign bit. */
3971 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3972 /* signed_type does not work on pointer types. */
3973 && INTEGRAL_TYPE_P (arg1_type))
3974 /* The following case also applies to X < signed_max+1
3975 and X >= signed_max+1 because previous transformations. */
3976 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3977 (with { tree st = signed_type_for (arg1_type); }
3978 (if (cmp == LE_EXPR)
3979 (ge (convert:st @0) { build_zero_cst (st); })
3980 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3982 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3983 /* If the second operand is NaN, the result is constant. */
3986 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3987 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3988 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3989 ? false : true, type); })))
3991 /* bool_var != 0 becomes bool_var. */
3993 (ne @0 integer_zerop)
3994 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3995 && types_match (type, TREE_TYPE (@0)))
3997 /* bool_var == 1 becomes bool_var. */
3999 (eq @0 integer_onep)
4000 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4001 && types_match (type, TREE_TYPE (@0)))
4004 bool_var == 0 becomes !bool_var or
4005 bool_var != 1 becomes !bool_var
4006 here because that only is good in assignment context as long
4007 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4008 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4009 clearly less optimal and which we'll transform again in forwprop. */
4011 /* When one argument is a constant, overflow detection can be simplified.
4012 Currently restricted to single use so as not to interfere too much with
4013 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4014 A + CST CMP A -> A CMP' CST' */
4015 (for cmp (lt le ge gt)
4018 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4019 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4020 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4021 && wi::to_wide (@1) != 0
4023 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4024 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4025 wi::max_value (prec, UNSIGNED)
4026 - wi::to_wide (@1)); })))))
4028 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4029 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4030 expects the long form, so we restrict the transformation for now. */
4033 (cmp:c (minus@2 @0 @1) @0)
4034 (if (single_use (@2)
4035 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4036 && TYPE_UNSIGNED (TREE_TYPE (@0))
4037 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4040 /* Testing for overflow is unnecessary if we already know the result. */
4045 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4046 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4047 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4048 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4053 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4054 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4055 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4056 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4058 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4059 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4063 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4064 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4065 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4066 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4068 /* Simplification of math builtins. These rules must all be optimizations
4069 as well as IL simplifications. If there is a possibility that the new
4070 form could be a pessimization, the rule should go in the canonicalization
4071 section that follows this one.
4073 Rules can generally go in this section if they satisfy one of
4076 - the rule describes an identity
4078 - the rule replaces calls with something as simple as addition or
4081 - the rule contains unary calls only and simplifies the surrounding
4082 arithmetic. (The idea here is to exclude non-unary calls in which
4083 one operand is constant and in which the call is known to be cheap
4084 when the operand has that value.) */
4086 (if (flag_unsafe_math_optimizations)
4087 /* Simplify sqrt(x) * sqrt(x) -> x. */
4089 (mult (SQRT_ALL@1 @0) @1)
4090 (if (!HONOR_SNANS (type))
4093 (for op (plus minus)
4094 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4098 (rdiv (op @0 @2) @1)))
4100 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4101 (for root (SQRT CBRT)
4103 (mult (root:s @0) (root:s @1))
4104 (root (mult @0 @1))))
4106 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4107 (for exps (EXP EXP2 EXP10 POW10)
4109 (mult (exps:s @0) (exps:s @1))
4110 (exps (plus @0 @1))))
4112 /* Simplify a/root(b/c) into a*root(c/b). */
4113 (for root (SQRT CBRT)
4115 (rdiv @0 (root:s (rdiv:s @1 @2)))
4116 (mult @0 (root (rdiv @2 @1)))))
4118 /* Simplify x/expN(y) into x*expN(-y). */
4119 (for exps (EXP EXP2 EXP10 POW10)
4121 (rdiv @0 (exps:s @1))
4122 (mult @0 (exps (negate @1)))))
4124 (for logs (LOG LOG2 LOG10 LOG10)
4125 exps (EXP EXP2 EXP10 POW10)
4126 /* logN(expN(x)) -> x. */
4130 /* expN(logN(x)) -> x. */
4135 /* Optimize logN(func()) for various exponential functions. We
4136 want to determine the value "x" and the power "exponent" in
4137 order to transform logN(x**exponent) into exponent*logN(x). */
4138 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4139 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4142 (if (SCALAR_FLOAT_TYPE_P (type))
4148 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4149 x = build_real_truncate (type, dconst_e ());
4152 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4153 x = build_real (type, dconst2);
4157 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4159 REAL_VALUE_TYPE dconst10;
4160 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4161 x = build_real (type, dconst10);
4168 (mult (logs { x; }) @0)))))
4176 (if (SCALAR_FLOAT_TYPE_P (type))
4182 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4183 x = build_real (type, dconsthalf);
4186 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4187 x = build_real_truncate (type, dconst_third ());
4193 (mult { x; } (logs @0))))))
4195 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4196 (for logs (LOG LOG2 LOG10)
4200 (mult @1 (logs @0))))
4202 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4203 or if C is a positive power of 2,
4204 pow(C,x) -> exp2(log2(C)*x). */
4212 (pows REAL_CST@0 @1)
4213 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4214 && real_isfinite (TREE_REAL_CST_PTR (@0))
4215 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4216 the use_exp2 case until after vectorization. It seems actually
4217 beneficial for all constants to postpone this until later,
4218 because exp(log(C)*x), while faster, will have worse precision
4219 and if x folds into a constant too, that is unnecessary
4221 && canonicalize_math_after_vectorization_p ())
4223 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4224 bool use_exp2 = false;
4225 if (targetm.libc_has_function (function_c99_misc)
4226 && value->cl == rvc_normal)
4228 REAL_VALUE_TYPE frac_rvt = *value;
4229 SET_REAL_EXP (&frac_rvt, 1);
4230 if (real_equal (&frac_rvt, &dconst1))
4235 (if (optimize_pow_to_exp (@0, @1))
4236 (exps (mult (logs @0) @1)))
4237 (exp2s (mult (log2s @0) @1)))))))
4240 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4242 exps (EXP EXP2 EXP10 POW10)
4243 logs (LOG LOG2 LOG10 LOG10)
4245 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4246 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4247 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4248 (exps (plus (mult (logs @0) @1) @2)))))
4253 exps (EXP EXP2 EXP10 POW10)
4254 /* sqrt(expN(x)) -> expN(x*0.5). */
4257 (exps (mult @0 { build_real (type, dconsthalf); })))
4258 /* cbrt(expN(x)) -> expN(x/3). */
4261 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4262 /* pow(expN(x), y) -> expN(x*y). */
4265 (exps (mult @0 @1))))
4267 /* tan(atan(x)) -> x. */
4274 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4278 copysigns (COPYSIGN)
4283 REAL_VALUE_TYPE r_cst;
4284 build_sinatan_real (&r_cst, type);
4285 tree t_cst = build_real (type, r_cst);
4286 tree t_one = build_one_cst (type);
4288 (if (SCALAR_FLOAT_TYPE_P (type))
4289 (cond (le (abs @0) { t_cst; })
4290 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4291 (copysigns { t_one; } @0))))))
4293 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4297 copysigns (COPYSIGN)
4302 REAL_VALUE_TYPE r_cst;
4303 build_sinatan_real (&r_cst, type);
4304 tree t_cst = build_real (type, r_cst);
4305 tree t_one = build_one_cst (type);
4306 tree t_zero = build_zero_cst (type);
4308 (if (SCALAR_FLOAT_TYPE_P (type))
4309 (cond (le (abs @0) { t_cst; })
4310 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4311 (copysigns { t_zero; } @0))))))
4313 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4315 (CABS (complex:C @0 real_zerop@1))
4318 /* trunc(trunc(x)) -> trunc(x), etc. */
4319 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4323 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4324 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4326 (fns integer_valued_real_p@0)
4329 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4331 (HYPOT:c @0 real_zerop@1)
4334 /* pow(1,x) -> 1. */
4336 (POW real_onep@0 @1)
4340 /* copysign(x,x) -> x. */
4341 (COPYSIGN_ALL @0 @0)
4345 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4346 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4349 (for scale (LDEXP SCALBN SCALBLN)
4350 /* ldexp(0, x) -> 0. */
4352 (scale real_zerop@0 @1)
4354 /* ldexp(x, 0) -> x. */
4356 (scale @0 integer_zerop@1)
4358 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4360 (scale REAL_CST@0 @1)
4361 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4364 /* Canonicalization of sequences of math builtins. These rules represent
4365 IL simplifications but are not necessarily optimizations.
4367 The sincos pass is responsible for picking "optimal" implementations
4368 of math builtins, which may be more complicated and can sometimes go
4369 the other way, e.g. converting pow into a sequence of sqrts.
4370 We only want to do these canonicalizations before the pass has run. */
4372 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4373 /* Simplify tan(x) * cos(x) -> sin(x). */
4375 (mult:c (TAN:s @0) (COS:s @0))
4378 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4380 (mult:c @0 (POW:s @0 REAL_CST@1))
4381 (if (!TREE_OVERFLOW (@1))
4382 (POW @0 (plus @1 { build_one_cst (type); }))))
4384 /* Simplify sin(x) / cos(x) -> tan(x). */
4386 (rdiv (SIN:s @0) (COS:s @0))
4389 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4391 (rdiv (COS:s @0) (SIN:s @0))
4392 (rdiv { build_one_cst (type); } (TAN @0)))
4394 /* Simplify sin(x) / tan(x) -> cos(x). */
4396 (rdiv (SIN:s @0) (TAN:s @0))
4397 (if (! HONOR_NANS (@0)
4398 && ! HONOR_INFINITIES (@0))
4401 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4403 (rdiv (TAN:s @0) (SIN:s @0))
4404 (if (! HONOR_NANS (@0)
4405 && ! HONOR_INFINITIES (@0))
4406 (rdiv { build_one_cst (type); } (COS @0))))
4408 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4410 (mult (POW:s @0 @1) (POW:s @0 @2))
4411 (POW @0 (plus @1 @2)))
4413 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4415 (mult (POW:s @0 @1) (POW:s @2 @1))
4416 (POW (mult @0 @2) @1))
4418 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4420 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4421 (POWI (mult @0 @2) @1))
4423 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4425 (rdiv (POW:s @0 REAL_CST@1) @0)
4426 (if (!TREE_OVERFLOW (@1))
4427 (POW @0 (minus @1 { build_one_cst (type); }))))
4429 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4431 (rdiv @0 (POW:s @1 @2))
4432 (mult @0 (POW @1 (negate @2))))
4437 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4440 (pows @0 { build_real (type, dconst_quarter ()); }))
4441 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4444 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4445 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4448 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4449 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4451 (cbrts (cbrts tree_expr_nonnegative_p@0))
4452 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4453 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4455 (sqrts (pows @0 @1))
4456 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4457 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4459 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4460 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4461 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4463 (pows (sqrts @0) @1)
4464 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4465 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4467 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4468 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4469 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4471 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4472 (pows @0 (mult @1 @2))))
4474 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4476 (CABS (complex @0 @0))
4477 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4479 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4482 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4484 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4489 (cexps compositional_complex@0)
4490 (if (targetm.libc_has_function (function_c99_math_complex))
4492 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4493 (mult @1 (imagpart @2)))))))
4495 (if (canonicalize_math_p ())
4496 /* floor(x) -> trunc(x) if x is nonnegative. */
4497 (for floors (FLOOR_ALL)
4500 (floors tree_expr_nonnegative_p@0)
4503 (match double_value_p
4505 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4506 (for froms (BUILT_IN_TRUNCL
4518 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4519 (if (optimize && canonicalize_math_p ())
4521 (froms (convert double_value_p@0))
4522 (convert (tos @0)))))
4524 (match float_value_p
4526 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4527 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4528 BUILT_IN_FLOORL BUILT_IN_FLOOR
4529 BUILT_IN_CEILL BUILT_IN_CEIL
4530 BUILT_IN_ROUNDL BUILT_IN_ROUND
4531 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4532 BUILT_IN_RINTL BUILT_IN_RINT)
4533 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4534 BUILT_IN_FLOORF BUILT_IN_FLOORF
4535 BUILT_IN_CEILF BUILT_IN_CEILF
4536 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4537 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4538 BUILT_IN_RINTF BUILT_IN_RINTF)
4539 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4541 (if (optimize && canonicalize_math_p ()
4542 && targetm.libc_has_function (function_c99_misc))
4544 (froms (convert float_value_p@0))
4545 (convert (tos @0)))))
4547 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4548 tos (XFLOOR XCEIL XROUND XRINT)
4549 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4550 (if (optimize && canonicalize_math_p ())
4552 (froms (convert double_value_p@0))
4555 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4556 XFLOOR XCEIL XROUND XRINT)
4557 tos (XFLOORF XCEILF XROUNDF XRINTF)
4558 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4560 (if (optimize && canonicalize_math_p ())
4562 (froms (convert float_value_p@0))
4565 (if (canonicalize_math_p ())
4566 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4567 (for floors (IFLOOR LFLOOR LLFLOOR)
4569 (floors tree_expr_nonnegative_p@0)
4572 (if (canonicalize_math_p ())
4573 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4574 (for fns (IFLOOR LFLOOR LLFLOOR
4576 IROUND LROUND LLROUND)
4578 (fns integer_valued_real_p@0)
4580 (if (!flag_errno_math)
4581 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4582 (for rints (IRINT LRINT LLRINT)
4584 (rints integer_valued_real_p@0)
4587 (if (canonicalize_math_p ())
4588 (for ifn (IFLOOR ICEIL IROUND IRINT)
4589 lfn (LFLOOR LCEIL LROUND LRINT)
4590 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4591 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4592 sizeof (int) == sizeof (long). */
4593 (if (TYPE_PRECISION (integer_type_node)
4594 == TYPE_PRECISION (long_integer_type_node))
4597 (lfn:long_integer_type_node @0)))
4598 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4599 sizeof (long long) == sizeof (long). */
4600 (if (TYPE_PRECISION (long_long_integer_type_node)
4601 == TYPE_PRECISION (long_integer_type_node))
4604 (lfn:long_integer_type_node @0)))))
4606 /* cproj(x) -> x if we're ignoring infinities. */
4609 (if (!HONOR_INFINITIES (type))
4612 /* If the real part is inf and the imag part is known to be
4613 nonnegative, return (inf + 0i). */
4615 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4616 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4617 { build_complex_inf (type, false); }))
4619 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4621 (CPROJ (complex @0 REAL_CST@1))
4622 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4623 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4629 (pows @0 REAL_CST@1)
4631 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4632 REAL_VALUE_TYPE tmp;
4635 /* pow(x,0) -> 1. */
4636 (if (real_equal (value, &dconst0))
4637 { build_real (type, dconst1); })
4638 /* pow(x,1) -> x. */
4639 (if (real_equal (value, &dconst1))
4641 /* pow(x,-1) -> 1/x. */
4642 (if (real_equal (value, &dconstm1))
4643 (rdiv { build_real (type, dconst1); } @0))
4644 /* pow(x,0.5) -> sqrt(x). */
4645 (if (flag_unsafe_math_optimizations
4646 && canonicalize_math_p ()
4647 && real_equal (value, &dconsthalf))
4649 /* pow(x,1/3) -> cbrt(x). */
4650 (if (flag_unsafe_math_optimizations
4651 && canonicalize_math_p ()
4652 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4653 real_equal (value, &tmp)))
4656 /* powi(1,x) -> 1. */
4658 (POWI real_onep@0 @1)
4662 (POWI @0 INTEGER_CST@1)
4664 /* powi(x,0) -> 1. */
4665 (if (wi::to_wide (@1) == 0)
4666 { build_real (type, dconst1); })
4667 /* powi(x,1) -> x. */
4668 (if (wi::to_wide (@1) == 1)
4670 /* powi(x,-1) -> 1/x. */
4671 (if (wi::to_wide (@1) == -1)
4672 (rdiv { build_real (type, dconst1); } @0))))
4674 /* Narrowing of arithmetic and logical operations.
4676 These are conceptually similar to the transformations performed for
4677 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4678 term we want to move all that code out of the front-ends into here. */
4680 /* If we have a narrowing conversion of an arithmetic operation where
4681 both operands are widening conversions from the same type as the outer
4682 narrowing conversion. Then convert the innermost operands to a suitable
4683 unsigned type (to avoid introducing undefined behavior), perform the
4684 operation and convert the result to the desired type. */
4685 (for op (plus minus)
4687 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4688 (if (INTEGRAL_TYPE_P (type)
4689 /* We check for type compatibility between @0 and @1 below,
4690 so there's no need to check that @1/@3 are integral types. */
4691 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4692 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4693 /* The precision of the type of each operand must match the
4694 precision of the mode of each operand, similarly for the
4696 && type_has_mode_precision_p (TREE_TYPE (@0))
4697 && type_has_mode_precision_p (TREE_TYPE (@1))
4698 && type_has_mode_precision_p (type)
4699 /* The inner conversion must be a widening conversion. */
4700 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4701 && types_match (@0, type)
4702 && (types_match (@0, @1)
4703 /* Or the second operand is const integer or converted const
4704 integer from valueize. */
4705 || TREE_CODE (@1) == INTEGER_CST))
4706 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4707 (op @0 (convert @1))
4708 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4709 (convert (op (convert:utype @0)
4710 (convert:utype @1))))))))
4712 /* This is another case of narrowing, specifically when there's an outer
4713 BIT_AND_EXPR which masks off bits outside the type of the innermost
4714 operands. Like the previous case we have to convert the operands
4715 to unsigned types to avoid introducing undefined behavior for the
4716 arithmetic operation. */
4717 (for op (minus plus)
4719 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4720 (if (INTEGRAL_TYPE_P (type)
4721 /* We check for type compatibility between @0 and @1 below,
4722 so there's no need to check that @1/@3 are integral types. */
4723 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4724 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4725 /* The precision of the type of each operand must match the
4726 precision of the mode of each operand, similarly for the
4728 && type_has_mode_precision_p (TREE_TYPE (@0))
4729 && type_has_mode_precision_p (TREE_TYPE (@1))
4730 && type_has_mode_precision_p (type)
4731 /* The inner conversion must be a widening conversion. */
4732 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4733 && types_match (@0, @1)
4734 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4735 <= TYPE_PRECISION (TREE_TYPE (@0)))
4736 && (wi::to_wide (@4)
4737 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4738 true, TYPE_PRECISION (type))) == 0)
4739 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4740 (with { tree ntype = TREE_TYPE (@0); }
4741 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4742 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4743 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4744 (convert:utype @4))))))))
4746 /* Transform (@0 < @1 and @0 < @2) to use min,
4747 (@0 > @1 and @0 > @2) to use max */
4748 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4749 op (lt le gt ge lt le gt ge )
4750 ext (min min max max max max min min )
4752 (logic (op:cs @0 @1) (op:cs @0 @2))
4753 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4754 && TREE_CODE (@0) != INTEGER_CST)
4755 (op @0 (ext @1 @2)))))
4758 /* signbit(x) -> 0 if x is nonnegative. */
4759 (SIGNBIT tree_expr_nonnegative_p@0)
4760 { integer_zero_node; })
4763 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4765 (if (!HONOR_SIGNED_ZEROS (@0))
4766 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4768 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4770 (for op (plus minus)
4773 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4774 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4775 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4776 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4777 && !TYPE_SATURATING (TREE_TYPE (@0)))
4778 (with { tree res = int_const_binop (rop, @2, @1); }
4779 (if (TREE_OVERFLOW (res)
4780 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4781 { constant_boolean_node (cmp == NE_EXPR, type); }
4782 (if (single_use (@3))
4783 (cmp @0 { TREE_OVERFLOW (res)
4784 ? drop_tree_overflow (res) : res; }))))))))
4785 (for cmp (lt le gt ge)
4786 (for op (plus minus)
4789 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4790 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4791 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4792 (with { tree res = int_const_binop (rop, @2, @1); }
4793 (if (TREE_OVERFLOW (res))
4795 fold_overflow_warning (("assuming signed overflow does not occur "
4796 "when simplifying conditional to constant"),
4797 WARN_STRICT_OVERFLOW_CONDITIONAL);
4798 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4799 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4800 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4801 TYPE_SIGN (TREE_TYPE (@1)))
4802 != (op == MINUS_EXPR);
4803 constant_boolean_node (less == ovf_high, type);
4805 (if (single_use (@3))
4808 fold_overflow_warning (("assuming signed overflow does not occur "
4809 "when changing X +- C1 cmp C2 to "
4811 WARN_STRICT_OVERFLOW_COMPARISON);
4813 (cmp @0 { res; })))))))))
4815 /* Canonicalizations of BIT_FIELD_REFs. */
4818 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4819 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4822 (BIT_FIELD_REF (view_convert @0) @1 @2)
4823 (BIT_FIELD_REF @0 @1 @2))
4826 (BIT_FIELD_REF @0 @1 integer_zerop)
4827 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4831 (BIT_FIELD_REF @0 @1 @2)
4833 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4834 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4836 (if (integer_zerop (@2))
4837 (view_convert (realpart @0)))
4838 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4839 (view_convert (imagpart @0)))))
4840 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4841 && INTEGRAL_TYPE_P (type)
4842 /* On GIMPLE this should only apply to register arguments. */
4843 && (! GIMPLE || is_gimple_reg (@0))
4844 /* A bit-field-ref that referenced the full argument can be stripped. */
4845 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4846 && integer_zerop (@2))
4847 /* Low-parts can be reduced to integral conversions.
4848 ??? The following doesn't work for PDP endian. */
4849 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4850 /* Don't even think about BITS_BIG_ENDIAN. */
4851 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4852 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4853 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4854 ? (TYPE_PRECISION (TREE_TYPE (@0))
4855 - TYPE_PRECISION (type))
4859 /* Simplify vector extracts. */
4862 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4863 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4864 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4865 || (VECTOR_TYPE_P (type)
4866 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4869 tree ctor = (TREE_CODE (@0) == SSA_NAME
4870 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4871 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4872 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4873 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4874 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4877 && (idx % width) == 0
4879 && known_le ((idx + n) / width,
4880 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4885 /* Constructor elements can be subvectors. */
4887 if (CONSTRUCTOR_NELTS (ctor) != 0)
4889 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4890 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4891 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4893 unsigned HOST_WIDE_INT elt, count, const_k;
4896 /* We keep an exact subset of the constructor elements. */
4897 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4898 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4899 { build_constructor (type, NULL); }
4901 (if (elt < CONSTRUCTOR_NELTS (ctor))
4902 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4903 { build_zero_cst (type); })
4905 vec<constructor_elt, va_gc> *vals;
4906 vec_alloc (vals, count);
4907 for (unsigned i = 0;
4908 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4909 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4910 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4911 build_constructor (type, vals);
4913 /* The bitfield references a single constructor element. */
4914 (if (k.is_constant (&const_k)
4915 && idx + n <= (idx / const_k + 1) * const_k)
4917 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4918 { build_zero_cst (type); })
4920 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4921 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4922 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4924 /* Simplify a bit extraction from a bit insertion for the cases with
4925 the inserted element fully covering the extraction or the insertion
4926 not touching the extraction. */
4928 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4931 unsigned HOST_WIDE_INT isize;
4932 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4933 isize = TYPE_PRECISION (TREE_TYPE (@1));
4935 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4938 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4939 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4940 wi::to_wide (@ipos) + isize))
4941 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4943 - wi::to_wide (@ipos)); }))
4944 (if (wi::geu_p (wi::to_wide (@ipos),
4945 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4946 || wi::geu_p (wi::to_wide (@rpos),
4947 wi::to_wide (@ipos) + isize))
4948 (BIT_FIELD_REF @0 @rsize @rpos)))))
4950 (if (canonicalize_math_after_vectorization_p ())
4953 (fmas:c (negate @0) @1 @2)
4954 (IFN_FNMA @0 @1 @2))
4956 (fmas @0 @1 (negate @2))
4959 (fmas:c (negate @0) @1 (negate @2))
4960 (IFN_FNMS @0 @1 @2))
4962 (negate (fmas@3 @0 @1 @2))
4963 (if (single_use (@3))
4964 (IFN_FNMS @0 @1 @2))))
4967 (IFN_FMS:c (negate @0) @1 @2)
4968 (IFN_FNMS @0 @1 @2))
4970 (IFN_FMS @0 @1 (negate @2))
4973 (IFN_FMS:c (negate @0) @1 (negate @2))
4974 (IFN_FNMA @0 @1 @2))
4976 (negate (IFN_FMS@3 @0 @1 @2))
4977 (if (single_use (@3))
4978 (IFN_FNMA @0 @1 @2)))
4981 (IFN_FNMA:c (negate @0) @1 @2)
4984 (IFN_FNMA @0 @1 (negate @2))
4985 (IFN_FNMS @0 @1 @2))
4987 (IFN_FNMA:c (negate @0) @1 (negate @2))
4990 (negate (IFN_FNMA@3 @0 @1 @2))
4991 (if (single_use (@3))
4992 (IFN_FMS @0 @1 @2)))
4995 (IFN_FNMS:c (negate @0) @1 @2)
4998 (IFN_FNMS @0 @1 (negate @2))
4999 (IFN_FNMA @0 @1 @2))
5001 (IFN_FNMS:c (negate @0) @1 (negate @2))
5004 (negate (IFN_FNMS@3 @0 @1 @2))
5005 (if (single_use (@3))
5006 (IFN_FMA @0 @1 @2))))
5008 /* POPCOUNT simplifications. */
5009 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5010 BUILT_IN_POPCOUNTIMAX)
5011 /* popcount(X&1) is nop_expr(X&1). */
5014 (if (tree_nonzero_bits (@0) == 1)
5016 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5018 (plus (popcount:s @0) (popcount:s @1))
5019 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5020 (popcount (bit_ior @0 @1))))
5021 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5022 (for cmp (le eq ne gt)
5025 (cmp (popcount @0) integer_zerop)
5026 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5035 r = c ? a1 op a2 : b;
5037 if the target can do it in one go. This makes the operation conditional
5038 on c, so could drop potentially-trapping arithmetic, but that's a valid
5039 simplification if the result of the operation isn't needed. */
5040 (for uncond_op (UNCOND_BINARY)
5041 cond_op (COND_BINARY)
5043 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5044 (with { tree op_type = TREE_TYPE (@4); }
5045 (if (element_precision (type) == element_precision (op_type))
5046 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5048 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5049 (with { tree op_type = TREE_TYPE (@4); }
5050 (if (element_precision (type) == element_precision (op_type))
5051 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5053 /* Same for ternary operations. */
5054 (for uncond_op (UNCOND_TERNARY)
5055 cond_op (COND_TERNARY)
5057 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5058 (with { tree op_type = TREE_TYPE (@5); }
5059 (if (element_precision (type) == element_precision (op_type))
5060 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5062 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5063 (with { tree op_type = TREE_TYPE (@5); }
5064 (if (element_precision (type) == element_precision (op_type))
5065 (view_convert (cond_op (bit_not @0) @2 @3 @4
5066 (view_convert:op_type @1)))))))
5068 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5069 "else" value of an IFN_COND_*. */
5070 (for cond_op (COND_BINARY)
5072 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5073 (with { tree op_type = TREE_TYPE (@3); }
5074 (if (element_precision (type) == element_precision (op_type))
5075 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5077 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5078 (with { tree op_type = TREE_TYPE (@5); }
5079 (if (inverse_conditions_p (@0, @2)
5080 && element_precision (type) == element_precision (op_type))
5081 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5083 /* Same for ternary operations. */
5084 (for cond_op (COND_TERNARY)
5086 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5087 (with { tree op_type = TREE_TYPE (@4); }
5088 (if (element_precision (type) == element_precision (op_type))
5089 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5091 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5092 (with { tree op_type = TREE_TYPE (@6); }
5093 (if (inverse_conditions_p (@0, @2)
5094 && element_precision (type) == element_precision (op_type))
5095 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5097 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5100 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5101 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5103 If pointers are known not to wrap, B checks whether @1 bytes starting
5104 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5105 bytes. A is more efficiently tested as:
5107 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5109 The equivalent expression for B is given by replacing @1 with @1 - 1:
5111 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5113 @0 and @2 can be swapped in both expressions without changing the result.
5115 The folds rely on sizetype's being unsigned (which is always true)
5116 and on its being the same width as the pointer (which we have to check).
5118 The fold replaces two pointer_plus expressions, two comparisons and
5119 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5120 the best case it's a saving of two operations. The A fold retains one
5121 of the original pointer_pluses, so is a win even if both pointer_pluses
5122 are used elsewhere. The B fold is a wash if both pointer_pluses are
5123 used elsewhere, since all we end up doing is replacing a comparison with
5124 a pointer_plus. We do still apply the fold under those circumstances
5125 though, in case applying it to other conditions eventually makes one of the
5126 pointer_pluses dead. */
5127 (for ior (truth_orif truth_or bit_ior)
5130 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5131 (cmp:cs (pointer_plus@4 @2 @1) @0))
5132 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5133 && TYPE_OVERFLOW_WRAPS (sizetype)
5134 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5135 /* Calculate the rhs constant. */
5136 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5137 offset_int rhs = off * 2; }
5138 /* Always fails for negative values. */
5139 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5140 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5141 pick a canonical order. This increases the chances of using the
5142 same pointer_plus in multiple checks. */
5143 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5144 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5145 (if (cmp == LT_EXPR)
5146 (gt (convert:sizetype
5147 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5148 { swap_p ? @0 : @2; }))
5150 (gt (convert:sizetype
5151 (pointer_diff:ssizetype
5152 (pointer_plus { swap_p ? @2 : @0; }
5153 { wide_int_to_tree (sizetype, off); })
5154 { swap_p ? @0 : @2; }))
5155 { rhs_tree; })))))))))