* tree-cfg.c (verify_gimple_in_cfg): Call verify_location on the
[official-gcc.git] / libsanitizer / tsan / tsan_mman.cc
blob18505aca70e429556f605da96f3bd9fcf870b99c
1 //===-- tsan_mman.cc ------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
11 #include "sanitizer_common/sanitizer_allocator_checks.h"
12 #include "sanitizer_common/sanitizer_allocator_interface.h"
13 #include "sanitizer_common/sanitizer_common.h"
14 #include "sanitizer_common/sanitizer_errno.h"
15 #include "sanitizer_common/sanitizer_placement_new.h"
16 #include "tsan_mman.h"
17 #include "tsan_rtl.h"
18 #include "tsan_report.h"
19 #include "tsan_flags.h"
21 // May be overriden by front-end.
22 SANITIZER_WEAK_DEFAULT_IMPL
23 void __sanitizer_malloc_hook(void *ptr, uptr size) {
24 (void)ptr;
25 (void)size;
28 SANITIZER_WEAK_DEFAULT_IMPL
29 void __sanitizer_free_hook(void *ptr) {
30 (void)ptr;
33 namespace __tsan {
35 struct MapUnmapCallback {
36 void OnMap(uptr p, uptr size) const { }
37 void OnUnmap(uptr p, uptr size) const {
38 // We are about to unmap a chunk of user memory.
39 // Mark the corresponding shadow memory as not needed.
40 DontNeedShadowFor(p, size);
41 // Mark the corresponding meta shadow memory as not needed.
42 // Note the block does not contain any meta info at this point
43 // (this happens after free).
44 const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
45 const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
46 // Block came from LargeMmapAllocator, so must be large.
47 // We rely on this in the calculations below.
48 CHECK_GE(size, 2 * kPageSize);
49 uptr diff = RoundUp(p, kPageSize) - p;
50 if (diff != 0) {
51 p += diff;
52 size -= diff;
54 diff = p + size - RoundDown(p + size, kPageSize);
55 if (diff != 0)
56 size -= diff;
57 uptr p_meta = (uptr)MemToMeta(p);
58 ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
62 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
63 Allocator *allocator() {
64 return reinterpret_cast<Allocator*>(&allocator_placeholder);
67 struct GlobalProc {
68 Mutex mtx;
69 Processor *proc;
71 GlobalProc()
72 : mtx(MutexTypeGlobalProc, StatMtxGlobalProc)
73 , proc(ProcCreate()) {
77 static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
78 GlobalProc *global_proc() {
79 return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
82 ScopedGlobalProcessor::ScopedGlobalProcessor() {
83 GlobalProc *gp = global_proc();
84 ThreadState *thr = cur_thread();
85 if (thr->proc())
86 return;
87 // If we don't have a proc, use the global one.
88 // There are currently only two known case where this path is triggered:
89 // __interceptor_free
90 // __nptl_deallocate_tsd
91 // start_thread
92 // clone
93 // and:
94 // ResetRange
95 // __interceptor_munmap
96 // __deallocate_stack
97 // start_thread
98 // clone
99 // Ideally, we destroy thread state (and unwire proc) when a thread actually
100 // exits (i.e. when we join/wait it). Then we would not need the global proc
101 gp->mtx.Lock();
102 ProcWire(gp->proc, thr);
105 ScopedGlobalProcessor::~ScopedGlobalProcessor() {
106 GlobalProc *gp = global_proc();
107 ThreadState *thr = cur_thread();
108 if (thr->proc() != gp->proc)
109 return;
110 ProcUnwire(gp->proc, thr);
111 gp->mtx.Unlock();
114 void InitializeAllocator() {
115 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
116 allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
119 void InitializeAllocatorLate() {
120 new(global_proc()) GlobalProc();
123 void AllocatorProcStart(Processor *proc) {
124 allocator()->InitCache(&proc->alloc_cache);
125 internal_allocator()->InitCache(&proc->internal_alloc_cache);
128 void AllocatorProcFinish(Processor *proc) {
129 allocator()->DestroyCache(&proc->alloc_cache);
130 internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
133 void AllocatorPrintStats() {
134 allocator()->PrintStats();
137 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
138 if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
139 !flags()->report_signal_unsafe)
140 return;
141 VarSizeStackTrace stack;
142 ObtainCurrentStack(thr, pc, &stack);
143 if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
144 return;
145 ThreadRegistryLock l(ctx->thread_registry);
146 ScopedReport rep(ReportTypeSignalUnsafe);
147 rep.AddStack(stack, true);
148 OutputReport(thr, rep);
151 void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
152 bool signal) {
153 if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
154 return Allocator::FailureHandler::OnBadRequest();
155 void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
156 if (UNLIKELY(p == 0))
157 return 0;
158 if (ctx && ctx->initialized)
159 OnUserAlloc(thr, pc, (uptr)p, sz, true);
160 if (signal)
161 SignalUnsafeCall(thr, pc);
162 return p;
165 void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
166 ScopedGlobalProcessor sgp;
167 if (ctx && ctx->initialized)
168 OnUserFree(thr, pc, (uptr)p, true);
169 allocator()->Deallocate(&thr->proc()->alloc_cache, p);
170 if (signal)
171 SignalUnsafeCall(thr, pc);
174 void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
175 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
178 void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
179 if (UNLIKELY(CheckForCallocOverflow(size, n)))
180 return SetErrnoOnNull(Allocator::FailureHandler::OnBadRequest());
181 void *p = user_alloc_internal(thr, pc, n * size);
182 if (p)
183 internal_memset(p, 0, n * size);
184 return SetErrnoOnNull(p);
187 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
188 DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
189 ctx->metamap.AllocBlock(thr, pc, p, sz);
190 if (write && thr->ignore_reads_and_writes == 0)
191 MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
192 else
193 MemoryResetRange(thr, pc, (uptr)p, sz);
196 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
197 CHECK_NE(p, (void*)0);
198 uptr sz = ctx->metamap.FreeBlock(thr->proc(), p);
199 DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
200 if (write && thr->ignore_reads_and_writes == 0)
201 MemoryRangeFreed(thr, pc, (uptr)p, sz);
204 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
205 // FIXME: Handle "shrinking" more efficiently,
206 // it seems that some software actually does this.
207 if (!p)
208 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
209 if (!sz) {
210 user_free(thr, pc, p);
211 return nullptr;
213 void *new_p = user_alloc_internal(thr, pc, sz);
214 if (new_p) {
215 uptr old_sz = user_alloc_usable_size(p);
216 internal_memcpy(new_p, p, min(old_sz, sz));
217 user_free(thr, pc, p);
219 return SetErrnoOnNull(new_p);
222 void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
223 if (UNLIKELY(!IsPowerOfTwo(align))) {
224 errno = errno_EINVAL;
225 return Allocator::FailureHandler::OnBadRequest();
227 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
230 int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
231 uptr sz) {
232 if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
233 Allocator::FailureHandler::OnBadRequest();
234 return errno_EINVAL;
236 void *ptr = user_alloc_internal(thr, pc, sz, align);
237 if (UNLIKELY(!ptr))
238 return errno_ENOMEM;
239 CHECK(IsAligned((uptr)ptr, align));
240 *memptr = ptr;
241 return 0;
244 void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
245 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
246 errno = errno_EINVAL;
247 return Allocator::FailureHandler::OnBadRequest();
249 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
252 void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
253 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
256 void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
257 uptr PageSize = GetPageSizeCached();
258 if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
259 errno = errno_ENOMEM;
260 return Allocator::FailureHandler::OnBadRequest();
262 // pvalloc(0) should allocate one page.
263 sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
264 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
267 uptr user_alloc_usable_size(const void *p) {
268 if (p == 0)
269 return 0;
270 MBlock *b = ctx->metamap.GetBlock((uptr)p);
271 if (!b)
272 return 0; // Not a valid pointer.
273 if (b->siz == 0)
274 return 1; // Zero-sized allocations are actually 1 byte.
275 return b->siz;
278 void invoke_malloc_hook(void *ptr, uptr size) {
279 ThreadState *thr = cur_thread();
280 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
281 return;
282 __sanitizer_malloc_hook(ptr, size);
283 RunMallocHooks(ptr, size);
286 void invoke_free_hook(void *ptr) {
287 ThreadState *thr = cur_thread();
288 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
289 return;
290 __sanitizer_free_hook(ptr);
291 RunFreeHooks(ptr);
294 void *internal_alloc(MBlockType typ, uptr sz) {
295 ThreadState *thr = cur_thread();
296 if (thr->nomalloc) {
297 thr->nomalloc = 0; // CHECK calls internal_malloc().
298 CHECK(0);
300 return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
303 void internal_free(void *p) {
304 ThreadState *thr = cur_thread();
305 if (thr->nomalloc) {
306 thr->nomalloc = 0; // CHECK calls internal_malloc().
307 CHECK(0);
309 InternalFree(p, &thr->proc()->internal_alloc_cache);
312 } // namespace __tsan
314 using namespace __tsan;
316 extern "C" {
317 uptr __sanitizer_get_current_allocated_bytes() {
318 uptr stats[AllocatorStatCount];
319 allocator()->GetStats(stats);
320 return stats[AllocatorStatAllocated];
323 uptr __sanitizer_get_heap_size() {
324 uptr stats[AllocatorStatCount];
325 allocator()->GetStats(stats);
326 return stats[AllocatorStatMapped];
329 uptr __sanitizer_get_free_bytes() {
330 return 1;
333 uptr __sanitizer_get_unmapped_bytes() {
334 return 1;
337 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
338 return size;
341 int __sanitizer_get_ownership(const void *p) {
342 return allocator()->GetBlockBegin(p) != 0;
345 uptr __sanitizer_get_allocated_size(const void *p) {
346 return user_alloc_usable_size(p);
349 void __tsan_on_thread_idle() {
350 ThreadState *thr = cur_thread();
351 thr->clock.ResetCached(&thr->proc()->clock_cache);
352 thr->last_sleep_clock.ResetCached(&thr->proc()->clock_cache);
353 allocator()->SwallowCache(&thr->proc()->alloc_cache);
354 internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
355 ctx->metamap.OnProcIdle(thr->proc());
357 } // extern "C"