2016-04-21 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob096ba39bcdd5566a2e57f998b471081b6246039b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Itypes; use Itypes;
45 with Layout; use Layout;
46 with Lib; use Lib;
47 with Lib.Xref; use Lib.Xref;
48 with Namet; use Namet;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Case; use Sem_Case;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch6; use Sem_Ch6;
59 with Sem_Ch7; use Sem_Ch7;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Propagate_Default_Init_Cond_Attributes
650 (From_Typ : Entity_Id;
651 To_Typ : Entity_Id;
652 Parent_To_Derivation : Boolean := False;
653 Private_To_Full_View : Boolean := False);
654 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
655 -- all attributes related to pragma Default_Initial_Condition from From_Typ
656 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
657 -- the creation of a derived type. Flag Private_To_Full_View should be set
658 -- when processing both views of a private type.
660 procedure Record_Type_Declaration
661 (T : Entity_Id;
662 N : Node_Id;
663 Prev : Entity_Id);
664 -- Process a record type declaration (for both untagged and tagged
665 -- records). Parameters T and N are exactly like in procedure
666 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
667 -- for this routine. If this is the completion of an incomplete type
668 -- declaration, Prev is the entity of the incomplete declaration, used for
669 -- cross-referencing. Otherwise Prev = T.
671 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
672 -- This routine is used to process the actual record type definition (both
673 -- for untagged and tagged records). Def is a record type definition node.
674 -- This procedure analyzes the components in this record type definition.
675 -- Prev_T is the entity for the enclosing record type. It is provided so
676 -- that its Has_Task flag can be set if any of the component have Has_Task
677 -- set. If the declaration is the completion of an incomplete type
678 -- declaration, Prev_T is the original incomplete type, whose full view is
679 -- the record type.
681 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
682 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
683 -- build a copy of the declaration tree of the parent, and we create
684 -- independently the list of components for the derived type. Semantic
685 -- information uses the component entities, but record representation
686 -- clauses are validated on the declaration tree. This procedure replaces
687 -- discriminants and components in the declaration with those that have
688 -- been created by Inherit_Components.
690 procedure Set_Fixed_Range
691 (E : Entity_Id;
692 Loc : Source_Ptr;
693 Lo : Ureal;
694 Hi : Ureal);
695 -- Build a range node with the given bounds and set it as the Scalar_Range
696 -- of the given fixed-point type entity. Loc is the source location used
697 -- for the constructed range. See body for further details.
699 procedure Set_Scalar_Range_For_Subtype
700 (Def_Id : Entity_Id;
701 R : Node_Id;
702 Subt : Entity_Id);
703 -- This routine is used to set the scalar range field for a subtype given
704 -- Def_Id, the entity for the subtype, and R, the range expression for the
705 -- scalar range. Subt provides the parent subtype to be used to analyze,
706 -- resolve, and check the given range.
708 procedure Set_Default_SSO (T : Entity_Id);
709 -- T is the entity for an array or record being declared. This procedure
710 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
711 -- to the setting of Opt.Default_SSO.
713 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
714 -- Create a new signed integer entity, and apply the constraint to obtain
715 -- the required first named subtype of this type.
717 procedure Set_Stored_Constraint_From_Discriminant_Constraint
718 (E : Entity_Id);
719 -- E is some record type. This routine computes E's Stored_Constraint
720 -- from its Discriminant_Constraint.
722 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
723 -- Check that an entity in a list of progenitors is an interface,
724 -- emit error otherwise.
726 -----------------------
727 -- Access_Definition --
728 -----------------------
730 function Access_Definition
731 (Related_Nod : Node_Id;
732 N : Node_Id) return Entity_Id
734 Anon_Type : Entity_Id;
735 Anon_Scope : Entity_Id;
736 Desig_Type : Entity_Id;
737 Enclosing_Prot_Type : Entity_Id := Empty;
739 begin
740 Check_SPARK_05_Restriction ("access type is not allowed", N);
742 if Is_Entry (Current_Scope)
743 and then Is_Task_Type (Etype (Scope (Current_Scope)))
744 then
745 Error_Msg_N ("task entries cannot have access parameters", N);
746 return Empty;
747 end if;
749 -- Ada 2005: For an object declaration the corresponding anonymous
750 -- type is declared in the current scope.
752 -- If the access definition is the return type of another access to
753 -- function, scope is the current one, because it is the one of the
754 -- current type declaration, except for the pathological case below.
756 if Nkind_In (Related_Nod, N_Object_Declaration,
757 N_Access_Function_Definition)
758 then
759 Anon_Scope := Current_Scope;
761 -- A pathological case: function returning access functions that
762 -- return access functions, etc. Each anonymous access type created
763 -- is in the enclosing scope of the outermost function.
765 declare
766 Par : Node_Id;
768 begin
769 Par := Related_Nod;
770 while Nkind_In (Par, N_Access_Function_Definition,
771 N_Access_Definition)
772 loop
773 Par := Parent (Par);
774 end loop;
776 if Nkind (Par) = N_Function_Specification then
777 Anon_Scope := Scope (Defining_Entity (Par));
778 end if;
779 end;
781 -- For the anonymous function result case, retrieve the scope of the
782 -- function specification's associated entity rather than using the
783 -- current scope. The current scope will be the function itself if the
784 -- formal part is currently being analyzed, but will be the parent scope
785 -- in the case of a parameterless function, and we always want to use
786 -- the function's parent scope. Finally, if the function is a child
787 -- unit, we must traverse the tree to retrieve the proper entity.
789 elsif Nkind (Related_Nod) = N_Function_Specification
790 and then Nkind (Parent (N)) /= N_Parameter_Specification
791 then
792 -- If the current scope is a protected type, the anonymous access
793 -- is associated with one of the protected operations, and must
794 -- be available in the scope that encloses the protected declaration.
795 -- Otherwise the type is in the scope enclosing the subprogram.
797 -- If the function has formals, The return type of a subprogram
798 -- declaration is analyzed in the scope of the subprogram (see
799 -- Process_Formals) and thus the protected type, if present, is
800 -- the scope of the current function scope.
802 if Ekind (Current_Scope) = E_Protected_Type then
803 Enclosing_Prot_Type := Current_Scope;
805 elsif Ekind (Current_Scope) = E_Function
806 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
807 then
808 Enclosing_Prot_Type := Scope (Current_Scope);
809 end if;
811 if Present (Enclosing_Prot_Type) then
812 Anon_Scope := Scope (Enclosing_Prot_Type);
814 else
815 Anon_Scope := Scope (Defining_Entity (Related_Nod));
816 end if;
818 -- For an access type definition, if the current scope is a child
819 -- unit it is the scope of the type.
821 elsif Is_Compilation_Unit (Current_Scope) then
822 Anon_Scope := Current_Scope;
824 -- For access formals, access components, and access discriminants, the
825 -- scope is that of the enclosing declaration,
827 else
828 Anon_Scope := Scope (Current_Scope);
829 end if;
831 Anon_Type :=
832 Create_Itype
833 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
835 if All_Present (N)
836 and then Ada_Version >= Ada_2005
837 then
838 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
839 end if;
841 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
842 -- the corresponding semantic routine
844 if Present (Access_To_Subprogram_Definition (N)) then
846 -- Compiler runtime units are compiled in Ada 2005 mode when building
847 -- the runtime library but must also be compilable in Ada 95 mode
848 -- (when bootstrapping the compiler).
850 Check_Compiler_Unit ("anonymous access to subprogram", N);
852 Access_Subprogram_Declaration
853 (T_Name => Anon_Type,
854 T_Def => Access_To_Subprogram_Definition (N));
856 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
857 Set_Ekind
858 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
859 else
860 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
861 end if;
863 Set_Can_Use_Internal_Rep
864 (Anon_Type, not Always_Compatible_Rep_On_Target);
866 -- If the anonymous access is associated with a protected operation,
867 -- create a reference to it after the enclosing protected definition
868 -- because the itype will be used in the subsequent bodies.
870 -- If the anonymous access itself is protected, a full type
871 -- declaratiton will be created for it, so that the equivalent
872 -- record type can be constructed. For further details, see
873 -- Replace_Anonymous_Access_To_Protected-Subprogram.
875 if Ekind (Current_Scope) = E_Protected_Type
876 and then not Protected_Present (Access_To_Subprogram_Definition (N))
877 then
878 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
879 end if;
881 return Anon_Type;
882 end if;
884 Find_Type (Subtype_Mark (N));
885 Desig_Type := Entity (Subtype_Mark (N));
887 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
888 Set_Etype (Anon_Type, Anon_Type);
890 -- Make sure the anonymous access type has size and alignment fields
891 -- set, as required by gigi. This is necessary in the case of the
892 -- Task_Body_Procedure.
894 if not Has_Private_Component (Desig_Type) then
895 Layout_Type (Anon_Type);
896 end if;
898 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
899 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
900 -- the null value is allowed. In Ada 95 the null value is never allowed.
902 if Ada_Version >= Ada_2005 then
903 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
904 else
905 Set_Can_Never_Be_Null (Anon_Type, True);
906 end if;
908 -- The anonymous access type is as public as the discriminated type or
909 -- subprogram that defines it. It is imported (for back-end purposes)
910 -- if the designated type is.
912 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
914 -- Ada 2005 (AI-231): Propagate the access-constant attribute
916 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
918 -- The context is either a subprogram declaration, object declaration,
919 -- or an access discriminant, in a private or a full type declaration.
920 -- In the case of a subprogram, if the designated type is incomplete,
921 -- the operation will be a primitive operation of the full type, to be
922 -- updated subsequently. If the type is imported through a limited_with
923 -- clause, the subprogram is not a primitive operation of the type
924 -- (which is declared elsewhere in some other scope).
926 if Ekind (Desig_Type) = E_Incomplete_Type
927 and then not From_Limited_With (Desig_Type)
928 and then Is_Overloadable (Current_Scope)
929 then
930 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
931 Set_Has_Delayed_Freeze (Current_Scope);
932 end if;
934 -- Ada 2005: If the designated type is an interface that may contain
935 -- tasks, create a Master entity for the declaration. This must be done
936 -- before expansion of the full declaration, because the declaration may
937 -- include an expression that is an allocator, whose expansion needs the
938 -- proper Master for the created tasks.
940 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
941 then
942 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
943 then
944 Build_Class_Wide_Master (Anon_Type);
946 -- Similarly, if the type is an anonymous access that designates
947 -- tasks, create a master entity for it in the current context.
949 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
950 then
951 Build_Master_Entity (Defining_Identifier (Related_Nod));
952 Build_Master_Renaming (Anon_Type);
953 end if;
954 end if;
956 -- For a private component of a protected type, it is imperative that
957 -- the back-end elaborate the type immediately after the protected
958 -- declaration, because this type will be used in the declarations
959 -- created for the component within each protected body, so we must
960 -- create an itype reference for it now.
962 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
963 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
965 -- Similarly, if the access definition is the return result of a
966 -- function, create an itype reference for it because it will be used
967 -- within the function body. For a regular function that is not a
968 -- compilation unit, insert reference after the declaration. For a
969 -- protected operation, insert it after the enclosing protected type
970 -- declaration. In either case, do not create a reference for a type
971 -- obtained through a limited_with clause, because this would introduce
972 -- semantic dependencies.
974 -- Similarly, do not create a reference if the designated type is a
975 -- generic formal, because no use of it will reach the backend.
977 elsif Nkind (Related_Nod) = N_Function_Specification
978 and then not From_Limited_With (Desig_Type)
979 and then not Is_Generic_Type (Desig_Type)
980 then
981 if Present (Enclosing_Prot_Type) then
982 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
984 elsif Is_List_Member (Parent (Related_Nod))
985 and then Nkind (Parent (N)) /= N_Parameter_Specification
986 then
987 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
988 end if;
990 -- Finally, create an itype reference for an object declaration of an
991 -- anonymous access type. This is strictly necessary only for deferred
992 -- constants, but in any case will avoid out-of-scope problems in the
993 -- back-end.
995 elsif Nkind (Related_Nod) = N_Object_Declaration then
996 Build_Itype_Reference (Anon_Type, Related_Nod);
997 end if;
999 return Anon_Type;
1000 end Access_Definition;
1002 -----------------------------------
1003 -- Access_Subprogram_Declaration --
1004 -----------------------------------
1006 procedure Access_Subprogram_Declaration
1007 (T_Name : Entity_Id;
1008 T_Def : Node_Id)
1010 procedure Check_For_Premature_Usage (Def : Node_Id);
1011 -- Check that type T_Name is not used, directly or recursively, as a
1012 -- parameter or a return type in Def. Def is either a subtype, an
1013 -- access_definition, or an access_to_subprogram_definition.
1015 -------------------------------
1016 -- Check_For_Premature_Usage --
1017 -------------------------------
1019 procedure Check_For_Premature_Usage (Def : Node_Id) is
1020 Param : Node_Id;
1022 begin
1023 -- Check for a subtype mark
1025 if Nkind (Def) in N_Has_Etype then
1026 if Etype (Def) = T_Name then
1027 Error_Msg_N
1028 ("type& cannot be used before end of its declaration", Def);
1029 end if;
1031 -- If this is not a subtype, then this is an access_definition
1033 elsif Nkind (Def) = N_Access_Definition then
1034 if Present (Access_To_Subprogram_Definition (Def)) then
1035 Check_For_Premature_Usage
1036 (Access_To_Subprogram_Definition (Def));
1037 else
1038 Check_For_Premature_Usage (Subtype_Mark (Def));
1039 end if;
1041 -- The only cases left are N_Access_Function_Definition and
1042 -- N_Access_Procedure_Definition.
1044 else
1045 if Present (Parameter_Specifications (Def)) then
1046 Param := First (Parameter_Specifications (Def));
1047 while Present (Param) loop
1048 Check_For_Premature_Usage (Parameter_Type (Param));
1049 Param := Next (Param);
1050 end loop;
1051 end if;
1053 if Nkind (Def) = N_Access_Function_Definition then
1054 Check_For_Premature_Usage (Result_Definition (Def));
1055 end if;
1056 end if;
1057 end Check_For_Premature_Usage;
1059 -- Local variables
1061 Formals : constant List_Id := Parameter_Specifications (T_Def);
1062 Formal : Entity_Id;
1063 D_Ityp : Node_Id;
1064 Desig_Type : constant Entity_Id :=
1065 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1067 -- Start of processing for Access_Subprogram_Declaration
1069 begin
1070 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1072 -- Associate the Itype node with the inner full-type declaration or
1073 -- subprogram spec or entry body. This is required to handle nested
1074 -- anonymous declarations. For example:
1076 -- procedure P
1077 -- (X : access procedure
1078 -- (Y : access procedure
1079 -- (Z : access T)))
1081 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1082 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1083 N_Private_Type_Declaration,
1084 N_Private_Extension_Declaration,
1085 N_Procedure_Specification,
1086 N_Function_Specification,
1087 N_Entry_Body)
1089 or else
1090 Nkind_In (D_Ityp, N_Object_Declaration,
1091 N_Object_Renaming_Declaration,
1092 N_Formal_Object_Declaration,
1093 N_Formal_Type_Declaration,
1094 N_Task_Type_Declaration,
1095 N_Protected_Type_Declaration))
1096 loop
1097 D_Ityp := Parent (D_Ityp);
1098 pragma Assert (D_Ityp /= Empty);
1099 end loop;
1101 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1103 if Nkind_In (D_Ityp, N_Procedure_Specification,
1104 N_Function_Specification)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1108 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1109 N_Object_Declaration,
1110 N_Object_Renaming_Declaration,
1111 N_Formal_Type_Declaration)
1112 then
1113 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1114 end if;
1116 if Nkind (T_Def) = N_Access_Function_Definition then
1117 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1118 declare
1119 Acc : constant Node_Id := Result_Definition (T_Def);
1121 begin
1122 if Present (Access_To_Subprogram_Definition (Acc))
1123 and then
1124 Protected_Present (Access_To_Subprogram_Definition (Acc))
1125 then
1126 Set_Etype
1127 (Desig_Type,
1128 Replace_Anonymous_Access_To_Protected_Subprogram
1129 (T_Def));
1131 else
1132 Set_Etype
1133 (Desig_Type,
1134 Access_Definition (T_Def, Result_Definition (T_Def)));
1135 end if;
1136 end;
1138 else
1139 Analyze (Result_Definition (T_Def));
1141 declare
1142 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1144 begin
1145 -- If a null exclusion is imposed on the result type, then
1146 -- create a null-excluding itype (an access subtype) and use
1147 -- it as the function's Etype.
1149 if Is_Access_Type (Typ)
1150 and then Null_Exclusion_In_Return_Present (T_Def)
1151 then
1152 Set_Etype (Desig_Type,
1153 Create_Null_Excluding_Itype
1154 (T => Typ,
1155 Related_Nod => T_Def,
1156 Scope_Id => Current_Scope));
1158 else
1159 if From_Limited_With (Typ) then
1161 -- AI05-151: Incomplete types are allowed in all basic
1162 -- declarations, including access to subprograms.
1164 if Ada_Version >= Ada_2012 then
1165 null;
1167 else
1168 Error_Msg_NE
1169 ("illegal use of incomplete type&",
1170 Result_Definition (T_Def), Typ);
1171 end if;
1173 elsif Ekind (Current_Scope) = E_Package
1174 and then In_Private_Part (Current_Scope)
1175 then
1176 if Ekind (Typ) = E_Incomplete_Type then
1177 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1179 elsif Is_Class_Wide_Type (Typ)
1180 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1181 then
1182 Append_Elmt
1183 (Desig_Type, Private_Dependents (Etype (Typ)));
1184 end if;
1185 end if;
1187 Set_Etype (Desig_Type, Typ);
1188 end if;
1189 end;
1190 end if;
1192 if not (Is_Type (Etype (Desig_Type))) then
1193 Error_Msg_N
1194 ("expect type in function specification",
1195 Result_Definition (T_Def));
1196 end if;
1198 else
1199 Set_Etype (Desig_Type, Standard_Void_Type);
1200 end if;
1202 if Present (Formals) then
1203 Push_Scope (Desig_Type);
1205 -- Some special tests here. These special tests can be removed
1206 -- if and when Itypes always have proper parent pointers to their
1207 -- declarations???
1209 -- Special test 1) Link defining_identifier of formals. Required by
1210 -- First_Formal to provide its functionality.
1212 declare
1213 F : Node_Id;
1215 begin
1216 F := First (Formals);
1218 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1219 -- when it is part of an unconstrained type and subtype expansion
1220 -- is disabled. To avoid back-end problems with shared profiles,
1221 -- use previous subprogram type as the designated type, and then
1222 -- remove scope added above.
1224 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1225 then
1226 Set_Etype (T_Name, T_Name);
1227 Init_Size_Align (T_Name);
1228 Set_Directly_Designated_Type (T_Name,
1229 Scope (Defining_Identifier (F)));
1230 End_Scope;
1231 return;
1232 end if;
1234 while Present (F) loop
1235 if No (Parent (Defining_Identifier (F))) then
1236 Set_Parent (Defining_Identifier (F), F);
1237 end if;
1239 Next (F);
1240 end loop;
1241 end;
1243 Process_Formals (Formals, Parent (T_Def));
1245 -- Special test 2) End_Scope requires that the parent pointer be set
1246 -- to something reasonable, but Itypes don't have parent pointers. So
1247 -- we set it and then unset it ???
1249 Set_Parent (Desig_Type, T_Name);
1250 End_Scope;
1251 Set_Parent (Desig_Type, Empty);
1252 end if;
1254 -- Check for premature usage of the type being defined
1256 Check_For_Premature_Usage (T_Def);
1258 -- The return type and/or any parameter type may be incomplete. Mark the
1259 -- subprogram_type as depending on the incomplete type, so that it can
1260 -- be updated when the full type declaration is seen. This only applies
1261 -- to incomplete types declared in some enclosing scope, not to limited
1262 -- views from other packages.
1264 -- Prior to Ada 2012, access to functions can only have in_parameters.
1266 if Present (Formals) then
1267 Formal := First_Formal (Desig_Type);
1268 while Present (Formal) loop
1269 if Ekind (Formal) /= E_In_Parameter
1270 and then Nkind (T_Def) = N_Access_Function_Definition
1271 and then Ada_Version < Ada_2012
1272 then
1273 Error_Msg_N ("functions can only have IN parameters", Formal);
1274 end if;
1276 if Ekind (Etype (Formal)) = E_Incomplete_Type
1277 and then In_Open_Scopes (Scope (Etype (Formal)))
1278 then
1279 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1280 Set_Has_Delayed_Freeze (Desig_Type);
1281 end if;
1283 Next_Formal (Formal);
1284 end loop;
1285 end if;
1287 -- Check whether an indirect call without actuals may be possible. This
1288 -- is used when resolving calls whose result is then indexed.
1290 May_Need_Actuals (Desig_Type);
1292 -- If the return type is incomplete, this is legal as long as the type
1293 -- is declared in the current scope and will be completed in it (rather
1294 -- than being part of limited view).
1296 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1297 and then not Has_Delayed_Freeze (Desig_Type)
1298 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1299 then
1300 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1301 Set_Has_Delayed_Freeze (Desig_Type);
1302 end if;
1304 Check_Delayed_Subprogram (Desig_Type);
1306 if Protected_Present (T_Def) then
1307 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1308 Set_Convention (Desig_Type, Convention_Protected);
1309 else
1310 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1311 end if;
1313 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1315 Set_Etype (T_Name, T_Name);
1316 Init_Size_Align (T_Name);
1317 Set_Directly_Designated_Type (T_Name, Desig_Type);
1319 Generate_Reference_To_Formals (T_Name);
1321 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1323 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1325 Check_Restriction (No_Access_Subprograms, T_Def);
1326 end Access_Subprogram_Declaration;
1328 ----------------------------
1329 -- Access_Type_Declaration --
1330 ----------------------------
1332 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1333 P : constant Node_Id := Parent (Def);
1334 S : constant Node_Id := Subtype_Indication (Def);
1336 Full_Desig : Entity_Id;
1338 begin
1339 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1341 -- Check for permissible use of incomplete type
1343 if Nkind (S) /= N_Subtype_Indication then
1344 Analyze (S);
1346 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1347 Set_Directly_Designated_Type (T, Entity (S));
1349 -- If the designated type is a limited view, we cannot tell if
1350 -- the full view contains tasks, and there is no way to handle
1351 -- that full view in a client. We create a master entity for the
1352 -- scope, which will be used when a client determines that one
1353 -- is needed.
1355 if From_Limited_With (Entity (S))
1356 and then not Is_Class_Wide_Type (Entity (S))
1357 then
1358 Set_Ekind (T, E_Access_Type);
1359 Build_Master_Entity (T);
1360 Build_Master_Renaming (T);
1361 end if;
1363 else
1364 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1365 end if;
1367 -- If the access definition is of the form: ACCESS NOT NULL ..
1368 -- the subtype indication must be of an access type. Create
1369 -- a null-excluding subtype of it.
1371 if Null_Excluding_Subtype (Def) then
1372 if not Is_Access_Type (Entity (S)) then
1373 Error_Msg_N ("null exclusion must apply to access type", Def);
1375 else
1376 declare
1377 Loc : constant Source_Ptr := Sloc (S);
1378 Decl : Node_Id;
1379 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1381 begin
1382 Decl :=
1383 Make_Subtype_Declaration (Loc,
1384 Defining_Identifier => Nam,
1385 Subtype_Indication =>
1386 New_Occurrence_Of (Entity (S), Loc));
1387 Set_Null_Exclusion_Present (Decl);
1388 Insert_Before (Parent (Def), Decl);
1389 Analyze (Decl);
1390 Set_Entity (S, Nam);
1391 end;
1392 end if;
1393 end if;
1395 else
1396 Set_Directly_Designated_Type (T,
1397 Process_Subtype (S, P, T, 'P'));
1398 end if;
1400 if All_Present (Def) or Constant_Present (Def) then
1401 Set_Ekind (T, E_General_Access_Type);
1402 else
1403 Set_Ekind (T, E_Access_Type);
1404 end if;
1406 Full_Desig := Designated_Type (T);
1408 if Base_Type (Full_Desig) = T then
1409 Error_Msg_N ("access type cannot designate itself", S);
1411 -- In Ada 2005, the type may have a limited view through some unit in
1412 -- its own context, allowing the following circularity that cannot be
1413 -- detected earlier.
1415 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1416 then
1417 Error_Msg_N
1418 ("access type cannot designate its own classwide type", S);
1420 -- Clean up indication of tagged status to prevent cascaded errors
1422 Set_Is_Tagged_Type (T, False);
1423 end if;
1425 Set_Etype (T, T);
1427 -- If the type has appeared already in a with_type clause, it is frozen
1428 -- and the pointer size is already set. Else, initialize.
1430 if not From_Limited_With (T) then
1431 Init_Size_Align (T);
1432 end if;
1434 -- Note that Has_Task is always false, since the access type itself
1435 -- is not a task type. See Einfo for more description on this point.
1436 -- Exactly the same consideration applies to Has_Controlled_Component
1437 -- and to Has_Protected.
1439 Set_Has_Task (T, False);
1440 Set_Has_Controlled_Component (T, False);
1441 Set_Has_Protected (T, False);
1443 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1444 -- problems where an incomplete view of this entity has been previously
1445 -- established by a limited with and an overlaid version of this field
1446 -- (Stored_Constraint) was initialized for the incomplete view.
1448 -- This reset is performed in most cases except where the access type
1449 -- has been created for the purposes of allocating or deallocating a
1450 -- build-in-place object. Such access types have explicitly set pools
1451 -- and finalization masters.
1453 if No (Associated_Storage_Pool (T)) then
1454 Set_Finalization_Master (T, Empty);
1455 end if;
1457 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1458 -- attributes
1460 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1461 Set_Is_Access_Constant (T, Constant_Present (Def));
1462 end Access_Type_Declaration;
1464 ----------------------------------
1465 -- Add_Interface_Tag_Components --
1466 ----------------------------------
1468 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1469 Loc : constant Source_Ptr := Sloc (N);
1470 L : List_Id;
1471 Last_Tag : Node_Id;
1473 procedure Add_Tag (Iface : Entity_Id);
1474 -- Add tag for one of the progenitor interfaces
1476 -------------
1477 -- Add_Tag --
1478 -------------
1480 procedure Add_Tag (Iface : Entity_Id) is
1481 Decl : Node_Id;
1482 Def : Node_Id;
1483 Tag : Entity_Id;
1484 Offset : Entity_Id;
1486 begin
1487 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1489 -- This is a reasonable place to propagate predicates
1491 if Has_Predicates (Iface) then
1492 Set_Has_Predicates (Typ);
1493 end if;
1495 Def :=
1496 Make_Component_Definition (Loc,
1497 Aliased_Present => True,
1498 Subtype_Indication =>
1499 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1501 Tag := Make_Temporary (Loc, 'V');
1503 Decl :=
1504 Make_Component_Declaration (Loc,
1505 Defining_Identifier => Tag,
1506 Component_Definition => Def);
1508 Analyze_Component_Declaration (Decl);
1510 Set_Analyzed (Decl);
1511 Set_Ekind (Tag, E_Component);
1512 Set_Is_Tag (Tag);
1513 Set_Is_Aliased (Tag);
1514 Set_Related_Type (Tag, Iface);
1515 Init_Component_Location (Tag);
1517 pragma Assert (Is_Frozen (Iface));
1519 Set_DT_Entry_Count (Tag,
1520 DT_Entry_Count (First_Entity (Iface)));
1522 if No (Last_Tag) then
1523 Prepend (Decl, L);
1524 else
1525 Insert_After (Last_Tag, Decl);
1526 end if;
1528 Last_Tag := Decl;
1530 -- If the ancestor has discriminants we need to give special support
1531 -- to store the offset_to_top value of the secondary dispatch tables.
1532 -- For this purpose we add a supplementary component just after the
1533 -- field that contains the tag associated with each secondary DT.
1535 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1536 Def :=
1537 Make_Component_Definition (Loc,
1538 Subtype_Indication =>
1539 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1541 Offset := Make_Temporary (Loc, 'V');
1543 Decl :=
1544 Make_Component_Declaration (Loc,
1545 Defining_Identifier => Offset,
1546 Component_Definition => Def);
1548 Analyze_Component_Declaration (Decl);
1550 Set_Analyzed (Decl);
1551 Set_Ekind (Offset, E_Component);
1552 Set_Is_Aliased (Offset);
1553 Set_Related_Type (Offset, Iface);
1554 Init_Component_Location (Offset);
1555 Insert_After (Last_Tag, Decl);
1556 Last_Tag := Decl;
1557 end if;
1558 end Add_Tag;
1560 -- Local variables
1562 Elmt : Elmt_Id;
1563 Ext : Node_Id;
1564 Comp : Node_Id;
1566 -- Start of processing for Add_Interface_Tag_Components
1568 begin
1569 if not RTE_Available (RE_Interface_Tag) then
1570 Error_Msg
1571 ("(Ada 2005) interface types not supported by this run-time!",
1572 Sloc (N));
1573 return;
1574 end if;
1576 if Ekind (Typ) /= E_Record_Type
1577 or else (Is_Concurrent_Record_Type (Typ)
1578 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1579 or else (not Is_Concurrent_Record_Type (Typ)
1580 and then No (Interfaces (Typ))
1581 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1582 then
1583 return;
1584 end if;
1586 -- Find the current last tag
1588 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1589 Ext := Record_Extension_Part (Type_Definition (N));
1590 else
1591 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1592 Ext := Type_Definition (N);
1593 end if;
1595 Last_Tag := Empty;
1597 if not (Present (Component_List (Ext))) then
1598 Set_Null_Present (Ext, False);
1599 L := New_List;
1600 Set_Component_List (Ext,
1601 Make_Component_List (Loc,
1602 Component_Items => L,
1603 Null_Present => False));
1604 else
1605 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1606 L := Component_Items
1607 (Component_List
1608 (Record_Extension_Part
1609 (Type_Definition (N))));
1610 else
1611 L := Component_Items
1612 (Component_List
1613 (Type_Definition (N)));
1614 end if;
1616 -- Find the last tag component
1618 Comp := First (L);
1619 while Present (Comp) loop
1620 if Nkind (Comp) = N_Component_Declaration
1621 and then Is_Tag (Defining_Identifier (Comp))
1622 then
1623 Last_Tag := Comp;
1624 end if;
1626 Next (Comp);
1627 end loop;
1628 end if;
1630 -- At this point L references the list of components and Last_Tag
1631 -- references the current last tag (if any). Now we add the tag
1632 -- corresponding with all the interfaces that are not implemented
1633 -- by the parent.
1635 if Present (Interfaces (Typ)) then
1636 Elmt := First_Elmt (Interfaces (Typ));
1637 while Present (Elmt) loop
1638 Add_Tag (Node (Elmt));
1639 Next_Elmt (Elmt);
1640 end loop;
1641 end if;
1642 end Add_Interface_Tag_Components;
1644 -------------------------------------
1645 -- Add_Internal_Interface_Entities --
1646 -------------------------------------
1648 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1649 Elmt : Elmt_Id;
1650 Iface : Entity_Id;
1651 Iface_Elmt : Elmt_Id;
1652 Iface_Prim : Entity_Id;
1653 Ifaces_List : Elist_Id;
1654 New_Subp : Entity_Id := Empty;
1655 Prim : Entity_Id;
1656 Restore_Scope : Boolean := False;
1658 begin
1659 pragma Assert (Ada_Version >= Ada_2005
1660 and then Is_Record_Type (Tagged_Type)
1661 and then Is_Tagged_Type (Tagged_Type)
1662 and then Has_Interfaces (Tagged_Type)
1663 and then not Is_Interface (Tagged_Type));
1665 -- Ensure that the internal entities are added to the scope of the type
1667 if Scope (Tagged_Type) /= Current_Scope then
1668 Push_Scope (Scope (Tagged_Type));
1669 Restore_Scope := True;
1670 end if;
1672 Collect_Interfaces (Tagged_Type, Ifaces_List);
1674 Iface_Elmt := First_Elmt (Ifaces_List);
1675 while Present (Iface_Elmt) loop
1676 Iface := Node (Iface_Elmt);
1678 -- Originally we excluded here from this processing interfaces that
1679 -- are parents of Tagged_Type because their primitives are located
1680 -- in the primary dispatch table (and hence no auxiliary internal
1681 -- entities are required to handle secondary dispatch tables in such
1682 -- case). However, these auxiliary entities are also required to
1683 -- handle derivations of interfaces in formals of generics (see
1684 -- Derive_Subprograms).
1686 Elmt := First_Elmt (Primitive_Operations (Iface));
1687 while Present (Elmt) loop
1688 Iface_Prim := Node (Elmt);
1690 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1691 Prim :=
1692 Find_Primitive_Covering_Interface
1693 (Tagged_Type => Tagged_Type,
1694 Iface_Prim => Iface_Prim);
1696 if No (Prim) and then Serious_Errors_Detected > 0 then
1697 goto Continue;
1698 end if;
1700 pragma Assert (Present (Prim));
1702 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1703 -- differs from the name of the interface primitive then it is
1704 -- a private primitive inherited from a parent type. In such
1705 -- case, given that Tagged_Type covers the interface, the
1706 -- inherited private primitive becomes visible. For such
1707 -- purpose we add a new entity that renames the inherited
1708 -- private primitive.
1710 if Chars (Prim) /= Chars (Iface_Prim) then
1711 pragma Assert (Has_Suffix (Prim, 'P'));
1712 Derive_Subprogram
1713 (New_Subp => New_Subp,
1714 Parent_Subp => Iface_Prim,
1715 Derived_Type => Tagged_Type,
1716 Parent_Type => Iface);
1717 Set_Alias (New_Subp, Prim);
1718 Set_Is_Abstract_Subprogram
1719 (New_Subp, Is_Abstract_Subprogram (Prim));
1720 end if;
1722 Derive_Subprogram
1723 (New_Subp => New_Subp,
1724 Parent_Subp => Iface_Prim,
1725 Derived_Type => Tagged_Type,
1726 Parent_Type => Iface);
1728 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1729 -- associated with interface types. These entities are
1730 -- only registered in the list of primitives of its
1731 -- corresponding tagged type because they are only used
1732 -- to fill the contents of the secondary dispatch tables.
1733 -- Therefore they are removed from the homonym chains.
1735 Set_Is_Hidden (New_Subp);
1736 Set_Is_Internal (New_Subp);
1737 Set_Alias (New_Subp, Prim);
1738 Set_Is_Abstract_Subprogram
1739 (New_Subp, Is_Abstract_Subprogram (Prim));
1740 Set_Interface_Alias (New_Subp, Iface_Prim);
1742 -- If the returned type is an interface then propagate it to
1743 -- the returned type. Needed by the thunk to generate the code
1744 -- which displaces "this" to reference the corresponding
1745 -- secondary dispatch table in the returned object.
1747 if Is_Interface (Etype (Iface_Prim)) then
1748 Set_Etype (New_Subp, Etype (Iface_Prim));
1749 end if;
1751 -- Internal entities associated with interface types are only
1752 -- registered in the list of primitives of the tagged type.
1753 -- They are only used to fill the contents of the secondary
1754 -- dispatch tables. Therefore they are not needed in the
1755 -- homonym chains.
1757 Remove_Homonym (New_Subp);
1759 -- Hidden entities associated with interfaces must have set
1760 -- the Has_Delay_Freeze attribute to ensure that, in case
1761 -- of locally defined tagged types (or compiling with static
1762 -- dispatch tables generation disabled) the corresponding
1763 -- entry of the secondary dispatch table is filled when such
1764 -- an entity is frozen. This is an expansion activity that must
1765 -- be suppressed for ASIS because it leads to gigi elaboration
1766 -- issues in annotate mode.
1768 if not ASIS_Mode then
1769 Set_Has_Delayed_Freeze (New_Subp);
1770 end if;
1771 end if;
1773 <<Continue>>
1774 Next_Elmt (Elmt);
1775 end loop;
1777 Next_Elmt (Iface_Elmt);
1778 end loop;
1780 if Restore_Scope then
1781 Pop_Scope;
1782 end if;
1783 end Add_Internal_Interface_Entities;
1785 -----------------------------------
1786 -- Analyze_Component_Declaration --
1787 -----------------------------------
1789 procedure Analyze_Component_Declaration (N : Node_Id) is
1790 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1791 Id : constant Entity_Id := Defining_Identifier (N);
1792 E : constant Node_Id := Expression (N);
1793 Typ : constant Node_Id :=
1794 Subtype_Indication (Component_Definition (N));
1795 T : Entity_Id;
1796 P : Entity_Id;
1798 function Contains_POC (Constr : Node_Id) return Boolean;
1799 -- Determines whether a constraint uses the discriminant of a record
1800 -- type thus becoming a per-object constraint (POC).
1802 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1803 -- Typ is the type of the current component, check whether this type is
1804 -- a limited type. Used to validate declaration against that of
1805 -- enclosing record.
1807 ------------------
1808 -- Contains_POC --
1809 ------------------
1811 function Contains_POC (Constr : Node_Id) return Boolean is
1812 begin
1813 -- Prevent cascaded errors
1815 if Error_Posted (Constr) then
1816 return False;
1817 end if;
1819 case Nkind (Constr) is
1820 when N_Attribute_Reference =>
1821 return Attribute_Name (Constr) = Name_Access
1822 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1824 when N_Discriminant_Association =>
1825 return Denotes_Discriminant (Expression (Constr));
1827 when N_Identifier =>
1828 return Denotes_Discriminant (Constr);
1830 when N_Index_Or_Discriminant_Constraint =>
1831 declare
1832 IDC : Node_Id;
1834 begin
1835 IDC := First (Constraints (Constr));
1836 while Present (IDC) loop
1838 -- One per-object constraint is sufficient
1840 if Contains_POC (IDC) then
1841 return True;
1842 end if;
1844 Next (IDC);
1845 end loop;
1847 return False;
1848 end;
1850 when N_Range =>
1851 return Denotes_Discriminant (Low_Bound (Constr))
1852 or else
1853 Denotes_Discriminant (High_Bound (Constr));
1855 when N_Range_Constraint =>
1856 return Denotes_Discriminant (Range_Expression (Constr));
1858 when others =>
1859 return False;
1861 end case;
1862 end Contains_POC;
1864 ----------------------
1865 -- Is_Known_Limited --
1866 ----------------------
1868 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1869 P : constant Entity_Id := Etype (Typ);
1870 R : constant Entity_Id := Root_Type (Typ);
1872 begin
1873 if Is_Limited_Record (Typ) then
1874 return True;
1876 -- If the root type is limited (and not a limited interface)
1877 -- so is the current type
1879 elsif Is_Limited_Record (R)
1880 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1881 then
1882 return True;
1884 -- Else the type may have a limited interface progenitor, but a
1885 -- limited record parent.
1887 elsif R /= P and then Is_Limited_Record (P) then
1888 return True;
1890 else
1891 return False;
1892 end if;
1893 end Is_Known_Limited;
1895 -- Start of processing for Analyze_Component_Declaration
1897 begin
1898 Generate_Definition (Id);
1899 Enter_Name (Id);
1901 if Present (Typ) then
1902 T := Find_Type_Of_Object
1903 (Subtype_Indication (Component_Definition (N)), N);
1905 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1906 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1907 end if;
1909 -- Ada 2005 (AI-230): Access Definition case
1911 else
1912 pragma Assert (Present
1913 (Access_Definition (Component_Definition (N))));
1915 T := Access_Definition
1916 (Related_Nod => N,
1917 N => Access_Definition (Component_Definition (N)));
1918 Set_Is_Local_Anonymous_Access (T);
1920 -- Ada 2005 (AI-254)
1922 if Present (Access_To_Subprogram_Definition
1923 (Access_Definition (Component_Definition (N))))
1924 and then Protected_Present (Access_To_Subprogram_Definition
1925 (Access_Definition
1926 (Component_Definition (N))))
1927 then
1928 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1929 end if;
1930 end if;
1932 -- If the subtype is a constrained subtype of the enclosing record,
1933 -- (which must have a partial view) the back-end does not properly
1934 -- handle the recursion. Rewrite the component declaration with an
1935 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1936 -- the tree directly because side effects have already been removed from
1937 -- discriminant constraints.
1939 if Ekind (T) = E_Access_Subtype
1940 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1941 and then Comes_From_Source (T)
1942 and then Nkind (Parent (T)) = N_Subtype_Declaration
1943 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1944 then
1945 Rewrite
1946 (Subtype_Indication (Component_Definition (N)),
1947 New_Copy_Tree (Subtype_Indication (Parent (T))));
1948 T := Find_Type_Of_Object
1949 (Subtype_Indication (Component_Definition (N)), N);
1950 end if;
1952 -- If the component declaration includes a default expression, then we
1953 -- check that the component is not of a limited type (RM 3.7(5)),
1954 -- and do the special preanalysis of the expression (see section on
1955 -- "Handling of Default and Per-Object Expressions" in the spec of
1956 -- package Sem).
1958 if Present (E) then
1959 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1960 Preanalyze_Default_Expression (E, T);
1961 Check_Initialization (T, E);
1963 if Ada_Version >= Ada_2005
1964 and then Ekind (T) = E_Anonymous_Access_Type
1965 and then Etype (E) /= Any_Type
1966 then
1967 -- Check RM 3.9.2(9): "if the expected type for an expression is
1968 -- an anonymous access-to-specific tagged type, then the object
1969 -- designated by the expression shall not be dynamically tagged
1970 -- unless it is a controlling operand in a call on a dispatching
1971 -- operation"
1973 if Is_Tagged_Type (Directly_Designated_Type (T))
1974 and then
1975 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1976 and then
1977 Ekind (Directly_Designated_Type (Etype (E))) =
1978 E_Class_Wide_Type
1979 then
1980 Error_Msg_N
1981 ("access to specific tagged type required (RM 3.9.2(9))", E);
1982 end if;
1984 -- (Ada 2005: AI-230): Accessibility check for anonymous
1985 -- components
1987 if Type_Access_Level (Etype (E)) >
1988 Deepest_Type_Access_Level (T)
1989 then
1990 Error_Msg_N
1991 ("expression has deeper access level than component " &
1992 "(RM 3.10.2 (12.2))", E);
1993 end if;
1995 -- The initialization expression is a reference to an access
1996 -- discriminant. The type of the discriminant is always deeper
1997 -- than any access type.
1999 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2000 and then Is_Entity_Name (E)
2001 and then Ekind (Entity (E)) = E_In_Parameter
2002 and then Present (Discriminal_Link (Entity (E)))
2003 then
2004 Error_Msg_N
2005 ("discriminant has deeper accessibility level than target",
2007 end if;
2008 end if;
2009 end if;
2011 -- The parent type may be a private view with unknown discriminants,
2012 -- and thus unconstrained. Regular components must be constrained.
2014 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2015 if Is_Class_Wide_Type (T) then
2016 Error_Msg_N
2017 ("class-wide subtype with unknown discriminants" &
2018 " in component declaration",
2019 Subtype_Indication (Component_Definition (N)));
2020 else
2021 Error_Msg_N
2022 ("unconstrained subtype in component declaration",
2023 Subtype_Indication (Component_Definition (N)));
2024 end if;
2026 -- Components cannot be abstract, except for the special case of
2027 -- the _Parent field (case of extending an abstract tagged type)
2029 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2030 Error_Msg_N ("type of a component cannot be abstract", N);
2031 end if;
2033 Set_Etype (Id, T);
2034 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2036 -- The component declaration may have a per-object constraint, set
2037 -- the appropriate flag in the defining identifier of the subtype.
2039 if Present (Subtype_Indication (Component_Definition (N))) then
2040 declare
2041 Sindic : constant Node_Id :=
2042 Subtype_Indication (Component_Definition (N));
2043 begin
2044 if Nkind (Sindic) = N_Subtype_Indication
2045 and then Present (Constraint (Sindic))
2046 and then Contains_POC (Constraint (Sindic))
2047 then
2048 Set_Has_Per_Object_Constraint (Id);
2049 end if;
2050 end;
2051 end if;
2053 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2054 -- out some static checks.
2056 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2057 Null_Exclusion_Static_Checks (N);
2058 end if;
2060 -- If this component is private (or depends on a private type), flag the
2061 -- record type to indicate that some operations are not available.
2063 P := Private_Component (T);
2065 if Present (P) then
2067 -- Check for circular definitions
2069 if P = Any_Type then
2070 Set_Etype (Id, Any_Type);
2072 -- There is a gap in the visibility of operations only if the
2073 -- component type is not defined in the scope of the record type.
2075 elsif Scope (P) = Scope (Current_Scope) then
2076 null;
2078 elsif Is_Limited_Type (P) then
2079 Set_Is_Limited_Composite (Current_Scope);
2081 else
2082 Set_Is_Private_Composite (Current_Scope);
2083 end if;
2084 end if;
2086 if P /= Any_Type
2087 and then Is_Limited_Type (T)
2088 and then Chars (Id) /= Name_uParent
2089 and then Is_Tagged_Type (Current_Scope)
2090 then
2091 if Is_Derived_Type (Current_Scope)
2092 and then not Is_Known_Limited (Current_Scope)
2093 then
2094 Error_Msg_N
2095 ("extension of nonlimited type cannot have limited components",
2098 if Is_Interface (Root_Type (Current_Scope)) then
2099 Error_Msg_N
2100 ("\limitedness is not inherited from limited interface", N);
2101 Error_Msg_N ("\add LIMITED to type indication", N);
2102 end if;
2104 Explain_Limited_Type (T, N);
2105 Set_Etype (Id, Any_Type);
2106 Set_Is_Limited_Composite (Current_Scope, False);
2108 elsif not Is_Derived_Type (Current_Scope)
2109 and then not Is_Limited_Record (Current_Scope)
2110 and then not Is_Concurrent_Type (Current_Scope)
2111 then
2112 Error_Msg_N
2113 ("nonlimited tagged type cannot have limited components", N);
2114 Explain_Limited_Type (T, N);
2115 Set_Etype (Id, Any_Type);
2116 Set_Is_Limited_Composite (Current_Scope, False);
2117 end if;
2118 end if;
2120 -- If the component is an unconstrained task or protected type with
2121 -- discriminants, the component and the enclosing record are limited
2122 -- and the component is constrained by its default values. Compute
2123 -- its actual subtype, else it may be allocated the maximum size by
2124 -- the backend, and possibly overflow.
2126 if Is_Concurrent_Type (T)
2127 and then not Is_Constrained (T)
2128 and then Has_Discriminants (T)
2129 and then not Has_Discriminants (Current_Scope)
2130 then
2131 declare
2132 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2134 begin
2135 Set_Etype (Id, Act_T);
2137 -- Rewrite component definition to use the constrained subtype
2139 Rewrite (Component_Definition (N),
2140 Make_Component_Definition (Loc,
2141 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2142 end;
2143 end if;
2145 Set_Original_Record_Component (Id, Id);
2147 if Has_Aspects (N) then
2148 Analyze_Aspect_Specifications (N, Id);
2149 end if;
2151 Analyze_Dimension (N);
2152 end Analyze_Component_Declaration;
2154 --------------------------
2155 -- Analyze_Declarations --
2156 --------------------------
2158 procedure Analyze_Declarations (L : List_Id) is
2159 Decl : Node_Id;
2161 procedure Adjust_Decl;
2162 -- Adjust Decl not to include implicit label declarations, since these
2163 -- have strange Sloc values that result in elaboration check problems.
2164 -- (They have the sloc of the label as found in the source, and that
2165 -- is ahead of the current declarative part).
2167 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2168 -- Determine whether Body_Decl denotes the body of a late controlled
2169 -- primitive (either Initialize, Adjust or Finalize). If this is the
2170 -- case, add a proper spec if the body lacks one. The spec is inserted
2171 -- before Body_Decl and immedately analyzed.
2173 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2174 -- Spec_Id is the entity of a package that may define abstract states.
2175 -- If the states have visible refinement, remove the visibility of each
2176 -- constituent at the end of the package body declarations.
2178 -----------------
2179 -- Adjust_Decl --
2180 -----------------
2182 procedure Adjust_Decl is
2183 begin
2184 while Present (Prev (Decl))
2185 and then Nkind (Decl) = N_Implicit_Label_Declaration
2186 loop
2187 Prev (Decl);
2188 end loop;
2189 end Adjust_Decl;
2191 --------------------------------------
2192 -- Handle_Late_Controlled_Primitive --
2193 --------------------------------------
2195 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2196 Body_Spec : constant Node_Id := Specification (Body_Decl);
2197 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2198 Loc : constant Source_Ptr := Sloc (Body_Id);
2199 Params : constant List_Id :=
2200 Parameter_Specifications (Body_Spec);
2201 Spec : Node_Id;
2202 Spec_Id : Entity_Id;
2203 Typ : Node_Id;
2205 begin
2206 -- Consider only procedure bodies whose name matches one of the three
2207 -- controlled primitives.
2209 if Nkind (Body_Spec) /= N_Procedure_Specification
2210 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2211 Name_Finalize,
2212 Name_Initialize)
2213 then
2214 return;
2216 -- A controlled primitive must have exactly one formal which is not
2217 -- an anonymous access type.
2219 elsif List_Length (Params) /= 1 then
2220 return;
2221 end if;
2223 Typ := Parameter_Type (First (Params));
2225 if Nkind (Typ) = N_Access_Definition then
2226 return;
2227 end if;
2229 Find_Type (Typ);
2231 -- The type of the formal must be derived from [Limited_]Controlled
2233 if not Is_Controlled (Entity (Typ)) then
2234 return;
2235 end if;
2237 -- Check whether a specification exists for this body. We do not
2238 -- analyze the spec of the body in full, because it will be analyzed
2239 -- again when the body is properly analyzed, and we cannot create
2240 -- duplicate entries in the formals chain. We look for an explicit
2241 -- specification because the body may be an overriding operation and
2242 -- an inherited spec may be present.
2244 Spec_Id := Current_Entity (Body_Id);
2246 while Present (Spec_Id) loop
2247 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2248 and then Scope (Spec_Id) = Current_Scope
2249 and then Present (First_Formal (Spec_Id))
2250 and then No (Next_Formal (First_Formal (Spec_Id)))
2251 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2252 and then Comes_From_Source (Spec_Id)
2253 then
2254 return;
2255 end if;
2257 Spec_Id := Homonym (Spec_Id);
2258 end loop;
2260 -- At this point the body is known to be a late controlled primitive.
2261 -- Generate a matching spec and insert it before the body. Note the
2262 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2263 -- tree in this case.
2265 Spec := Copy_Separate_Tree (Body_Spec);
2267 -- Ensure that the subprogram declaration does not inherit the null
2268 -- indicator from the body as we now have a proper spec/body pair.
2270 Set_Null_Present (Spec, False);
2272 Insert_Before_And_Analyze (Body_Decl,
2273 Make_Subprogram_Declaration (Loc, Specification => Spec));
2274 end Handle_Late_Controlled_Primitive;
2276 --------------------------------
2277 -- Remove_Visible_Refinements --
2278 --------------------------------
2280 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2281 State_Elmt : Elmt_Id;
2282 begin
2283 if Present (Abstract_States (Spec_Id)) then
2284 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2285 while Present (State_Elmt) loop
2286 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2287 Next_Elmt (State_Elmt);
2288 end loop;
2289 end if;
2290 end Remove_Visible_Refinements;
2292 -- Local variables
2294 Context : Node_Id := Empty;
2295 Freeze_From : Entity_Id := Empty;
2296 Next_Decl : Node_Id;
2298 Body_Seen : Boolean := False;
2299 -- Flag set when the first body [stub] is encountered
2301 -- Start of processing for Analyze_Declarations
2303 begin
2304 if Restriction_Check_Required (SPARK_05) then
2305 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2306 end if;
2308 Decl := First (L);
2309 while Present (Decl) loop
2311 -- Package spec cannot contain a package declaration in SPARK
2313 if Nkind (Decl) = N_Package_Declaration
2314 and then Nkind (Parent (L)) = N_Package_Specification
2315 then
2316 Check_SPARK_05_Restriction
2317 ("package specification cannot contain a package declaration",
2318 Decl);
2319 end if;
2321 -- Complete analysis of declaration
2323 Analyze (Decl);
2324 Next_Decl := Next (Decl);
2326 if No (Freeze_From) then
2327 Freeze_From := First_Entity (Current_Scope);
2328 end if;
2330 -- At the end of a declarative part, freeze remaining entities
2331 -- declared in it. The end of the visible declarations of package
2332 -- specification is not the end of a declarative part if private
2333 -- declarations are present. The end of a package declaration is a
2334 -- freezing point only if it a library package. A task definition or
2335 -- protected type definition is not a freeze point either. Finally,
2336 -- we do not freeze entities in generic scopes, because there is no
2337 -- code generated for them and freeze nodes will be generated for
2338 -- the instance.
2340 -- The end of a package instantiation is not a freeze point, but
2341 -- for now we make it one, because the generic body is inserted
2342 -- (currently) immediately after. Generic instantiations will not
2343 -- be a freeze point once delayed freezing of bodies is implemented.
2344 -- (This is needed in any case for early instantiations ???).
2346 if No (Next_Decl) then
2347 if Nkind_In (Parent (L), N_Component_List,
2348 N_Task_Definition,
2349 N_Protected_Definition)
2350 then
2351 null;
2353 elsif Nkind (Parent (L)) /= N_Package_Specification then
2354 if Nkind (Parent (L)) = N_Package_Body then
2355 Freeze_From := First_Entity (Current_Scope);
2356 end if;
2358 -- There may have been several freezing points previously,
2359 -- for example object declarations or subprogram bodies, but
2360 -- at the end of a declarative part we check freezing from
2361 -- the beginning, even though entities may already be frozen,
2362 -- in order to perform visibility checks on delayed aspects.
2364 Adjust_Decl;
2365 Freeze_All (First_Entity (Current_Scope), Decl);
2366 Freeze_From := Last_Entity (Current_Scope);
2368 elsif Scope (Current_Scope) /= Standard_Standard
2369 and then not Is_Child_Unit (Current_Scope)
2370 and then No (Generic_Parent (Parent (L)))
2371 then
2372 null;
2374 elsif L /= Visible_Declarations (Parent (L))
2375 or else No (Private_Declarations (Parent (L)))
2376 or else Is_Empty_List (Private_Declarations (Parent (L)))
2377 then
2378 Adjust_Decl;
2379 Freeze_All (First_Entity (Current_Scope), Decl);
2380 Freeze_From := Last_Entity (Current_Scope);
2382 -- At the end of the visible declarations the expressions in
2383 -- aspects of all entities declared so far must be resolved.
2384 -- The entities themselves might be frozen later, and the
2385 -- generated pragmas and attribute definition clauses analyzed
2386 -- in full at that point, but name resolution must take place
2387 -- now.
2388 -- In addition to being the proper semantics, this is mandatory
2389 -- within generic units, because global name capture requires
2390 -- those expressions to be analyzed, given that the generated
2391 -- pragmas do not appear in the original generic tree.
2393 elsif Serious_Errors_Detected = 0 then
2394 declare
2395 E : Entity_Id;
2397 begin
2398 E := First_Entity (Current_Scope);
2399 while Present (E) loop
2400 Resolve_Aspect_Expressions (E);
2401 Next_Entity (E);
2402 end loop;
2403 end;
2404 end if;
2406 -- If next node is a body then freeze all types before the body.
2407 -- An exception occurs for some expander-generated bodies. If these
2408 -- are generated at places where in general language rules would not
2409 -- allow a freeze point, then we assume that the expander has
2410 -- explicitly checked that all required types are properly frozen,
2411 -- and we do not cause general freezing here. This special circuit
2412 -- is used when the encountered body is marked as having already
2413 -- been analyzed.
2415 -- In all other cases (bodies that come from source, and expander
2416 -- generated bodies that have not been analyzed yet), freeze all
2417 -- types now. Note that in the latter case, the expander must take
2418 -- care to attach the bodies at a proper place in the tree so as to
2419 -- not cause unwanted freezing at that point.
2421 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2423 -- When a controlled type is frozen, the expander generates stream
2424 -- and controlled type support routines. If the freeze is caused
2425 -- by the stand alone body of Initialize, Adjust and Finalize, the
2426 -- expander will end up using the wrong version of these routines
2427 -- as the body has not been processed yet. To remedy this, detect
2428 -- a late controlled primitive and create a proper spec for it.
2429 -- This ensures that the primitive will override its inherited
2430 -- counterpart before the freeze takes place.
2432 -- If the declaration we just processed is a body, do not attempt
2433 -- to examine Next_Decl as the late primitive idiom can only apply
2434 -- to the first encountered body.
2436 -- The spec of the late primitive is not generated in ASIS mode to
2437 -- ensure a consistent list of primitives that indicates the true
2438 -- semantic structure of the program (which is not relevant when
2439 -- generating executable code.
2441 -- ??? a cleaner approach may be possible and/or this solution
2442 -- could be extended to general-purpose late primitives, TBD.
2444 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2445 then
2446 Body_Seen := True;
2448 if Nkind (Next_Decl) = N_Subprogram_Body then
2449 Handle_Late_Controlled_Primitive (Next_Decl);
2450 end if;
2451 end if;
2453 Adjust_Decl;
2454 Freeze_All (Freeze_From, Decl);
2455 Freeze_From := Last_Entity (Current_Scope);
2456 end if;
2458 Decl := Next_Decl;
2459 end loop;
2461 -- Analyze the contracts of packages and their bodies
2463 if Present (L) then
2464 Context := Parent (L);
2466 if Nkind (Context) = N_Package_Specification then
2468 -- When a package has private declarations, its contract must be
2469 -- analyzed at the end of the said declarations. This way both the
2470 -- analysis and freeze actions are properly synchronized in case
2471 -- of private type use within the contract.
2473 if L = Private_Declarations (Context) then
2474 Analyze_Package_Contract (Defining_Entity (Context));
2476 -- Build the bodies of the default initial condition procedures
2477 -- for all types subject to pragma Default_Initial_Condition.
2478 -- From a purely Ada stand point, this is a freezing activity,
2479 -- however freezing is not available under GNATprove_Mode. To
2480 -- accomodate both scenarios, the bodies are build at the end
2481 -- of private declaration analysis.
2483 Build_Default_Init_Cond_Procedure_Bodies (L);
2485 -- Otherwise the contract is analyzed at the end of the visible
2486 -- declarations.
2488 elsif L = Visible_Declarations (Context)
2489 and then No (Private_Declarations (Context))
2490 then
2491 Analyze_Package_Contract (Defining_Entity (Context));
2492 end if;
2494 elsif Nkind (Context) = N_Package_Body then
2495 Analyze_Package_Body_Contract (Defining_Entity (Context));
2496 end if;
2498 -- Analyze the contracts of various constructs now due to the delayed
2499 -- visibility needs of their aspects and pragmas.
2501 Analyze_Contracts (L);
2503 if Nkind (Context) = N_Package_Body then
2505 -- Ensure that all abstract states and objects declared in the
2506 -- state space of a package body are utilized as constituents.
2508 Check_Unused_Body_States (Defining_Entity (Context));
2510 -- State refinements are visible up to the end of the package body
2511 -- declarations. Hide the state refinements from visibility to
2512 -- restore the original state conditions.
2514 Remove_Visible_Refinements (Corresponding_Spec (Context));
2515 end if;
2516 end if;
2517 end Analyze_Declarations;
2519 -----------------------------------
2520 -- Analyze_Full_Type_Declaration --
2521 -----------------------------------
2523 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2524 Def : constant Node_Id := Type_Definition (N);
2525 Def_Id : constant Entity_Id := Defining_Identifier (N);
2526 T : Entity_Id;
2527 Prev : Entity_Id;
2529 Is_Remote : constant Boolean :=
2530 (Is_Remote_Types (Current_Scope)
2531 or else Is_Remote_Call_Interface (Current_Scope))
2532 and then not (In_Private_Part (Current_Scope)
2533 or else In_Package_Body (Current_Scope));
2535 procedure Check_Nonoverridable_Aspects;
2536 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2537 -- be overridden, and can only be confirmed on derivation.
2539 procedure Check_Ops_From_Incomplete_Type;
2540 -- If there is a tagged incomplete partial view of the type, traverse
2541 -- the primitives of the incomplete view and change the type of any
2542 -- controlling formals and result to indicate the full view. The
2543 -- primitives will be added to the full type's primitive operations
2544 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2545 -- is called from Process_Incomplete_Dependents).
2547 ----------------------------------
2548 -- Check_Nonoverridable_Aspects --
2549 ----------------------------------
2551 procedure Check_Nonoverridable_Aspects is
2552 Prev_Aspects : constant List_Id :=
2553 Aspect_Specifications (Parent (Def_Id));
2554 Par_Type : Entity_Id;
2556 function Has_Aspect_Spec
2557 (Specs : List_Id;
2558 Aspect_Name : Name_Id) return Boolean;
2559 -- Check whether a list of aspect specifications includes an entry
2560 -- for a specific aspect. The list is either that of a partial or
2561 -- a full view.
2563 ---------------------
2564 -- Has_Aspect_Spec --
2565 ---------------------
2567 function Has_Aspect_Spec
2568 (Specs : List_Id;
2569 Aspect_Name : Name_Id) return Boolean
2571 Spec : Node_Id;
2572 begin
2573 Spec := First (Specs);
2574 while Present (Spec) loop
2575 if Chars (Identifier (Spec)) = Aspect_Name then
2576 return True;
2577 end if;
2578 Next (Spec);
2579 end loop;
2580 return False;
2581 end Has_Aspect_Spec;
2583 -- Start of processing for Check_Nonoverridable_Aspects
2585 begin
2587 -- Get parent type of derived type. Note that Prev is the entity
2588 -- in the partial declaration, but its contents are now those of
2589 -- full view, while Def_Id reflects the partial view.
2591 if Is_Private_Type (Def_Id) then
2592 Par_Type := Etype (Full_View (Def_Id));
2593 else
2594 Par_Type := Etype (Def_Id);
2595 end if;
2597 -- If there is an inherited Implicit_Dereference, verify that it is
2598 -- made explicit in the partial view.
2600 if Has_Discriminants (Base_Type (Par_Type))
2601 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2602 and then Present (Discriminant_Specifications (Parent (Prev)))
2603 and then Present (Get_Reference_Discriminant (Par_Type))
2604 then
2606 not Has_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference)
2607 then
2608 Error_Msg_N
2609 ("type does not inherit implicit dereference", Prev);
2611 else
2612 -- If one of the views has the aspect specified, verify that it
2613 -- is consistent with that of the parent.
2615 declare
2616 Par_Discr : constant Entity_Id :=
2617 Get_Reference_Discriminant (Par_Type);
2618 Cur_Discr : constant Entity_Id :=
2619 Get_Reference_Discriminant (Prev);
2620 begin
2621 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2622 Error_Msg_N ("aspect incosistent with that of parent", N);
2623 end if;
2624 end;
2625 end if;
2626 end if;
2628 -- TBD : other nonoverridable aspects.
2629 end Check_Nonoverridable_Aspects;
2631 ------------------------------------
2632 -- Check_Ops_From_Incomplete_Type --
2633 ------------------------------------
2635 procedure Check_Ops_From_Incomplete_Type is
2636 Elmt : Elmt_Id;
2637 Formal : Entity_Id;
2638 Op : Entity_Id;
2640 begin
2641 if Prev /= T
2642 and then Ekind (Prev) = E_Incomplete_Type
2643 and then Is_Tagged_Type (Prev)
2644 and then Is_Tagged_Type (T)
2645 then
2646 Elmt := First_Elmt (Primitive_Operations (Prev));
2647 while Present (Elmt) loop
2648 Op := Node (Elmt);
2650 Formal := First_Formal (Op);
2651 while Present (Formal) loop
2652 if Etype (Formal) = Prev then
2653 Set_Etype (Formal, T);
2654 end if;
2656 Next_Formal (Formal);
2657 end loop;
2659 if Etype (Op) = Prev then
2660 Set_Etype (Op, T);
2661 end if;
2663 Next_Elmt (Elmt);
2664 end loop;
2665 end if;
2666 end Check_Ops_From_Incomplete_Type;
2668 -- Start of processing for Analyze_Full_Type_Declaration
2670 begin
2671 Prev := Find_Type_Name (N);
2673 -- The full view, if present, now points to the current type. If there
2674 -- is an incomplete partial view, set a link to it, to simplify the
2675 -- retrieval of primitive operations of the type.
2677 -- Ada 2005 (AI-50217): If the type was previously decorated when
2678 -- imported through a LIMITED WITH clause, it appears as incomplete
2679 -- but has no full view.
2681 if Ekind (Prev) = E_Incomplete_Type
2682 and then Present (Full_View (Prev))
2683 then
2684 T := Full_View (Prev);
2685 Set_Incomplete_View (N, Parent (Prev));
2686 else
2687 T := Prev;
2688 end if;
2690 Set_Is_Pure (T, Is_Pure (Current_Scope));
2692 -- We set the flag Is_First_Subtype here. It is needed to set the
2693 -- corresponding flag for the Implicit class-wide-type created
2694 -- during tagged types processing.
2696 Set_Is_First_Subtype (T, True);
2698 -- Only composite types other than array types are allowed to have
2699 -- discriminants.
2701 case Nkind (Def) is
2703 -- For derived types, the rule will be checked once we've figured
2704 -- out the parent type.
2706 when N_Derived_Type_Definition =>
2707 null;
2709 -- For record types, discriminants are allowed, unless we are in
2710 -- SPARK.
2712 when N_Record_Definition =>
2713 if Present (Discriminant_Specifications (N)) then
2714 Check_SPARK_05_Restriction
2715 ("discriminant type is not allowed",
2716 Defining_Identifier
2717 (First (Discriminant_Specifications (N))));
2718 end if;
2720 when others =>
2721 if Present (Discriminant_Specifications (N)) then
2722 Error_Msg_N
2723 ("elementary or array type cannot have discriminants",
2724 Defining_Identifier
2725 (First (Discriminant_Specifications (N))));
2726 end if;
2727 end case;
2729 -- Elaborate the type definition according to kind, and generate
2730 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2731 -- already done (this happens during the reanalysis that follows a call
2732 -- to the high level optimizer).
2734 if not Analyzed (T) then
2735 Set_Analyzed (T);
2737 case Nkind (Def) is
2738 when N_Access_To_Subprogram_Definition =>
2739 Access_Subprogram_Declaration (T, Def);
2741 -- If this is a remote access to subprogram, we must create the
2742 -- equivalent fat pointer type, and related subprograms.
2744 if Is_Remote then
2745 Process_Remote_AST_Declaration (N);
2746 end if;
2748 -- Validate categorization rule against access type declaration
2749 -- usually a violation in Pure unit, Shared_Passive unit.
2751 Validate_Access_Type_Declaration (T, N);
2753 when N_Access_To_Object_Definition =>
2754 Access_Type_Declaration (T, Def);
2756 -- Validate categorization rule against access type declaration
2757 -- usually a violation in Pure unit, Shared_Passive unit.
2759 Validate_Access_Type_Declaration (T, N);
2761 -- If we are in a Remote_Call_Interface package and define a
2762 -- RACW, then calling stubs and specific stream attributes
2763 -- must be added.
2765 if Is_Remote
2766 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2767 then
2768 Add_RACW_Features (Def_Id);
2769 end if;
2771 when N_Array_Type_Definition =>
2772 Array_Type_Declaration (T, Def);
2774 when N_Derived_Type_Definition =>
2775 Derived_Type_Declaration (T, N, T /= Def_Id);
2777 when N_Enumeration_Type_Definition =>
2778 Enumeration_Type_Declaration (T, Def);
2780 when N_Floating_Point_Definition =>
2781 Floating_Point_Type_Declaration (T, Def);
2783 when N_Decimal_Fixed_Point_Definition =>
2784 Decimal_Fixed_Point_Type_Declaration (T, Def);
2786 when N_Ordinary_Fixed_Point_Definition =>
2787 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2789 when N_Signed_Integer_Type_Definition =>
2790 Signed_Integer_Type_Declaration (T, Def);
2792 when N_Modular_Type_Definition =>
2793 Modular_Type_Declaration (T, Def);
2795 when N_Record_Definition =>
2796 Record_Type_Declaration (T, N, Prev);
2798 -- If declaration has a parse error, nothing to elaborate.
2800 when N_Error =>
2801 null;
2803 when others =>
2804 raise Program_Error;
2806 end case;
2807 end if;
2809 if Etype (T) = Any_Type then
2810 return;
2811 end if;
2813 -- Controlled type is not allowed in SPARK
2815 if Is_Visibly_Controlled (T) then
2816 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2817 end if;
2819 -- A type declared within a Ghost region is automatically Ghost
2820 -- (SPARK RM 6.9(2)).
2822 if Ghost_Mode > None then
2823 Set_Is_Ghost_Entity (T);
2824 end if;
2826 -- Some common processing for all types
2828 Set_Depends_On_Private (T, Has_Private_Component (T));
2829 Check_Ops_From_Incomplete_Type;
2831 -- Both the declared entity, and its anonymous base type if one was
2832 -- created, need freeze nodes allocated.
2834 declare
2835 B : constant Entity_Id := Base_Type (T);
2837 begin
2838 -- In the case where the base type differs from the first subtype, we
2839 -- pre-allocate a freeze node, and set the proper link to the first
2840 -- subtype. Freeze_Entity will use this preallocated freeze node when
2841 -- it freezes the entity.
2843 -- This does not apply if the base type is a generic type, whose
2844 -- declaration is independent of the current derived definition.
2846 if B /= T and then not Is_Generic_Type (B) then
2847 Ensure_Freeze_Node (B);
2848 Set_First_Subtype_Link (Freeze_Node (B), T);
2849 end if;
2851 -- A type that is imported through a limited_with clause cannot
2852 -- generate any code, and thus need not be frozen. However, an access
2853 -- type with an imported designated type needs a finalization list,
2854 -- which may be referenced in some other package that has non-limited
2855 -- visibility on the designated type. Thus we must create the
2856 -- finalization list at the point the access type is frozen, to
2857 -- prevent unsatisfied references at link time.
2859 if not From_Limited_With (T) or else Is_Access_Type (T) then
2860 Set_Has_Delayed_Freeze (T);
2861 end if;
2862 end;
2864 -- Case where T is the full declaration of some private type which has
2865 -- been swapped in Defining_Identifier (N).
2867 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2868 Process_Full_View (N, T, Def_Id);
2870 -- Record the reference. The form of this is a little strange, since
2871 -- the full declaration has been swapped in. So the first parameter
2872 -- here represents the entity to which a reference is made which is
2873 -- the "real" entity, i.e. the one swapped in, and the second
2874 -- parameter provides the reference location.
2876 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2877 -- since we don't want a complaint about the full type being an
2878 -- unwanted reference to the private type
2880 declare
2881 B : constant Boolean := Has_Pragma_Unreferenced (T);
2882 begin
2883 Set_Has_Pragma_Unreferenced (T, False);
2884 Generate_Reference (T, T, 'c');
2885 Set_Has_Pragma_Unreferenced (T, B);
2886 end;
2888 Set_Completion_Referenced (Def_Id);
2890 -- For completion of incomplete type, process incomplete dependents
2891 -- and always mark the full type as referenced (it is the incomplete
2892 -- type that we get for any real reference).
2894 elsif Ekind (Prev) = E_Incomplete_Type then
2895 Process_Incomplete_Dependents (N, T, Prev);
2896 Generate_Reference (Prev, Def_Id, 'c');
2897 Set_Completion_Referenced (Def_Id);
2899 -- If not private type or incomplete type completion, this is a real
2900 -- definition of a new entity, so record it.
2902 else
2903 Generate_Definition (Def_Id);
2904 end if;
2906 -- Propagate any pending access types whose finalization masters need to
2907 -- be fully initialized from the partial to the full view. Guard against
2908 -- an illegal full view that remains unanalyzed.
2910 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2911 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2912 end if;
2914 if Chars (Scope (Def_Id)) = Name_System
2915 and then Chars (Def_Id) = Name_Address
2916 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2917 then
2918 Set_Is_Descendant_Of_Address (Def_Id);
2919 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
2920 Set_Is_Descendant_Of_Address (Prev);
2921 end if;
2923 Set_Optimize_Alignment_Flags (Def_Id);
2924 Check_Eliminated (Def_Id);
2926 -- If the declaration is a completion and aspects are present, apply
2927 -- them to the entity for the type which is currently the partial
2928 -- view, but which is the one that will be frozen.
2930 if Has_Aspects (N) then
2932 -- In most cases the partial view is a private type, and both views
2933 -- appear in different declarative parts. In the unusual case where
2934 -- the partial view is incomplete, perform the analysis on the
2935 -- full view, to prevent freezing anomalies with the corresponding
2936 -- class-wide type, which otherwise might be frozen before the
2937 -- dispatch table is built.
2939 if Prev /= Def_Id
2940 and then Ekind (Prev) /= E_Incomplete_Type
2941 then
2942 Analyze_Aspect_Specifications (N, Prev);
2944 -- Normal case
2946 else
2947 Analyze_Aspect_Specifications (N, Def_Id);
2948 end if;
2949 end if;
2951 if Is_Derived_Type (Prev)
2952 and then Def_Id /= Prev
2953 then
2954 Check_Nonoverridable_Aspects;
2955 end if;
2956 end Analyze_Full_Type_Declaration;
2958 ----------------------------------
2959 -- Analyze_Incomplete_Type_Decl --
2960 ----------------------------------
2962 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2963 F : constant Boolean := Is_Pure (Current_Scope);
2964 T : Entity_Id;
2966 begin
2967 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2969 Generate_Definition (Defining_Identifier (N));
2971 -- Process an incomplete declaration. The identifier must not have been
2972 -- declared already in the scope. However, an incomplete declaration may
2973 -- appear in the private part of a package, for a private type that has
2974 -- already been declared.
2976 -- In this case, the discriminants (if any) must match
2978 T := Find_Type_Name (N);
2980 Set_Ekind (T, E_Incomplete_Type);
2981 Init_Size_Align (T);
2982 Set_Is_First_Subtype (T, True);
2983 Set_Etype (T, T);
2985 -- An incomplete type declared within a Ghost region is automatically
2986 -- Ghost (SPARK RM 6.9(2)).
2988 if Ghost_Mode > None then
2989 Set_Is_Ghost_Entity (T);
2990 end if;
2992 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2993 -- incomplete types.
2995 if Tagged_Present (N) then
2996 Set_Is_Tagged_Type (T, True);
2997 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2998 Make_Class_Wide_Type (T);
2999 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3000 end if;
3002 Set_Stored_Constraint (T, No_Elist);
3004 if Present (Discriminant_Specifications (N)) then
3005 Push_Scope (T);
3006 Process_Discriminants (N);
3007 End_Scope;
3008 end if;
3010 -- If the type has discriminants, nontrivial subtypes may be declared
3011 -- before the full view of the type. The full views of those subtypes
3012 -- will be built after the full view of the type.
3014 Set_Private_Dependents (T, New_Elmt_List);
3015 Set_Is_Pure (T, F);
3016 end Analyze_Incomplete_Type_Decl;
3018 -----------------------------------
3019 -- Analyze_Interface_Declaration --
3020 -----------------------------------
3022 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3023 CW : constant Entity_Id := Class_Wide_Type (T);
3025 begin
3026 Set_Is_Tagged_Type (T);
3027 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3029 Set_Is_Limited_Record (T, Limited_Present (Def)
3030 or else Task_Present (Def)
3031 or else Protected_Present (Def)
3032 or else Synchronized_Present (Def));
3034 -- Type is abstract if full declaration carries keyword, or if previous
3035 -- partial view did.
3037 Set_Is_Abstract_Type (T);
3038 Set_Is_Interface (T);
3040 -- Type is a limited interface if it includes the keyword limited, task,
3041 -- protected, or synchronized.
3043 Set_Is_Limited_Interface
3044 (T, Limited_Present (Def)
3045 or else Protected_Present (Def)
3046 or else Synchronized_Present (Def)
3047 or else Task_Present (Def));
3049 Set_Interfaces (T, New_Elmt_List);
3050 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3052 -- Complete the decoration of the class-wide entity if it was already
3053 -- built (i.e. during the creation of the limited view)
3055 if Present (CW) then
3056 Set_Is_Interface (CW);
3057 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3058 end if;
3060 -- Check runtime support for synchronized interfaces
3062 if (Is_Task_Interface (T)
3063 or else Is_Protected_Interface (T)
3064 or else Is_Synchronized_Interface (T))
3065 and then not RTE_Available (RE_Select_Specific_Data)
3066 then
3067 Error_Msg_CRT ("synchronized interfaces", T);
3068 end if;
3069 end Analyze_Interface_Declaration;
3071 -----------------------------
3072 -- Analyze_Itype_Reference --
3073 -----------------------------
3075 -- Nothing to do. This node is placed in the tree only for the benefit of
3076 -- back end processing, and has no effect on the semantic processing.
3078 procedure Analyze_Itype_Reference (N : Node_Id) is
3079 begin
3080 pragma Assert (Is_Itype (Itype (N)));
3081 null;
3082 end Analyze_Itype_Reference;
3084 --------------------------------
3085 -- Analyze_Number_Declaration --
3086 --------------------------------
3088 procedure Analyze_Number_Declaration (N : Node_Id) is
3089 E : constant Node_Id := Expression (N);
3090 Id : constant Entity_Id := Defining_Identifier (N);
3091 Index : Interp_Index;
3092 It : Interp;
3093 T : Entity_Id;
3095 begin
3096 Generate_Definition (Id);
3097 Enter_Name (Id);
3099 -- A number declared within a Ghost region is automatically Ghost
3100 -- (SPARK RM 6.9(2)).
3102 if Ghost_Mode > None then
3103 Set_Is_Ghost_Entity (Id);
3104 end if;
3106 -- This is an optimization of a common case of an integer literal
3108 if Nkind (E) = N_Integer_Literal then
3109 Set_Is_Static_Expression (E, True);
3110 Set_Etype (E, Universal_Integer);
3112 Set_Etype (Id, Universal_Integer);
3113 Set_Ekind (Id, E_Named_Integer);
3114 Set_Is_Frozen (Id, True);
3115 return;
3116 end if;
3118 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3120 -- Process expression, replacing error by integer zero, to avoid
3121 -- cascaded errors or aborts further along in the processing
3123 -- Replace Error by integer zero, which seems least likely to cause
3124 -- cascaded errors.
3126 if E = Error then
3127 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3128 Set_Error_Posted (E);
3129 end if;
3131 Analyze (E);
3133 -- Verify that the expression is static and numeric. If
3134 -- the expression is overloaded, we apply the preference
3135 -- rule that favors root numeric types.
3137 if not Is_Overloaded (E) then
3138 T := Etype (E);
3139 if Has_Dynamic_Predicate_Aspect (T) then
3140 Error_Msg_N
3141 ("subtype has dynamic predicate, "
3142 & "not allowed in number declaration", N);
3143 end if;
3145 else
3146 T := Any_Type;
3148 Get_First_Interp (E, Index, It);
3149 while Present (It.Typ) loop
3150 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3151 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3152 then
3153 if T = Any_Type then
3154 T := It.Typ;
3156 elsif It.Typ = Universal_Real
3157 or else
3158 It.Typ = Universal_Integer
3159 then
3160 -- Choose universal interpretation over any other
3162 T := It.Typ;
3163 exit;
3164 end if;
3165 end if;
3167 Get_Next_Interp (Index, It);
3168 end loop;
3169 end if;
3171 if Is_Integer_Type (T) then
3172 Resolve (E, T);
3173 Set_Etype (Id, Universal_Integer);
3174 Set_Ekind (Id, E_Named_Integer);
3176 elsif Is_Real_Type (T) then
3178 -- Because the real value is converted to universal_real, this is a
3179 -- legal context for a universal fixed expression.
3181 if T = Universal_Fixed then
3182 declare
3183 Loc : constant Source_Ptr := Sloc (N);
3184 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3185 Subtype_Mark =>
3186 New_Occurrence_Of (Universal_Real, Loc),
3187 Expression => Relocate_Node (E));
3189 begin
3190 Rewrite (E, Conv);
3191 Analyze (E);
3192 end;
3194 elsif T = Any_Fixed then
3195 Error_Msg_N ("illegal context for mixed mode operation", E);
3197 -- Expression is of the form : universal_fixed * integer. Try to
3198 -- resolve as universal_real.
3200 T := Universal_Real;
3201 Set_Etype (E, T);
3202 end if;
3204 Resolve (E, T);
3205 Set_Etype (Id, Universal_Real);
3206 Set_Ekind (Id, E_Named_Real);
3208 else
3209 Wrong_Type (E, Any_Numeric);
3210 Resolve (E, T);
3212 Set_Etype (Id, T);
3213 Set_Ekind (Id, E_Constant);
3214 Set_Never_Set_In_Source (Id, True);
3215 Set_Is_True_Constant (Id, True);
3216 return;
3217 end if;
3219 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3220 Set_Etype (E, Etype (Id));
3221 end if;
3223 if not Is_OK_Static_Expression (E) then
3224 Flag_Non_Static_Expr
3225 ("non-static expression used in number declaration!", E);
3226 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3227 Set_Etype (E, Any_Type);
3228 end if;
3230 Analyze_Dimension (N);
3231 end Analyze_Number_Declaration;
3233 --------------------------------
3234 -- Analyze_Object_Declaration --
3235 --------------------------------
3237 procedure Analyze_Object_Declaration (N : Node_Id) is
3238 Loc : constant Source_Ptr := Sloc (N);
3239 Id : constant Entity_Id := Defining_Identifier (N);
3240 Act_T : Entity_Id;
3241 T : Entity_Id;
3243 E : Node_Id := Expression (N);
3244 -- E is set to Expression (N) throughout this routine. When
3245 -- Expression (N) is modified, E is changed accordingly.
3247 Prev_Entity : Entity_Id := Empty;
3249 function Count_Tasks (T : Entity_Id) return Uint;
3250 -- This function is called when a non-generic library level object of a
3251 -- task type is declared. Its function is to count the static number of
3252 -- tasks declared within the type (it is only called if Has_Task is set
3253 -- for T). As a side effect, if an array of tasks with non-static bounds
3254 -- or a variant record type is encountered, Check_Restriction is called
3255 -- indicating the count is unknown.
3257 function Delayed_Aspect_Present return Boolean;
3258 -- If the declaration has an expression that is an aggregate, and it
3259 -- has aspects that require delayed analysis, the resolution of the
3260 -- aggregate must be deferred to the freeze point of the objet. This
3261 -- special processing was created for address clauses, but it must
3262 -- also apply to Alignment. This must be done before the aspect
3263 -- specifications are analyzed because we must handle the aggregate
3264 -- before the analysis of the object declaration is complete.
3266 -- Any other relevant delayed aspects on object declarations ???
3268 -----------------
3269 -- Count_Tasks --
3270 -----------------
3272 function Count_Tasks (T : Entity_Id) return Uint is
3273 C : Entity_Id;
3274 X : Node_Id;
3275 V : Uint;
3277 begin
3278 if Is_Task_Type (T) then
3279 return Uint_1;
3281 elsif Is_Record_Type (T) then
3282 if Has_Discriminants (T) then
3283 Check_Restriction (Max_Tasks, N);
3284 return Uint_0;
3286 else
3287 V := Uint_0;
3288 C := First_Component (T);
3289 while Present (C) loop
3290 V := V + Count_Tasks (Etype (C));
3291 Next_Component (C);
3292 end loop;
3294 return V;
3295 end if;
3297 elsif Is_Array_Type (T) then
3298 X := First_Index (T);
3299 V := Count_Tasks (Component_Type (T));
3300 while Present (X) loop
3301 C := Etype (X);
3303 if not Is_OK_Static_Subtype (C) then
3304 Check_Restriction (Max_Tasks, N);
3305 return Uint_0;
3306 else
3307 V := V * (UI_Max (Uint_0,
3308 Expr_Value (Type_High_Bound (C)) -
3309 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3310 end if;
3312 Next_Index (X);
3313 end loop;
3315 return V;
3317 else
3318 return Uint_0;
3319 end if;
3320 end Count_Tasks;
3322 ----------------------------
3323 -- Delayed_Aspect_Present --
3324 ----------------------------
3326 function Delayed_Aspect_Present return Boolean is
3327 A : Node_Id;
3328 A_Id : Aspect_Id;
3330 begin
3331 if Present (Aspect_Specifications (N)) then
3332 A := First (Aspect_Specifications (N));
3333 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3334 while Present (A) loop
3335 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3336 return True;
3337 end if;
3339 Next (A);
3340 end loop;
3341 end if;
3343 return False;
3344 end Delayed_Aspect_Present;
3346 -- Local variables
3348 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
3349 Related_Id : Entity_Id;
3351 -- Start of processing for Analyze_Object_Declaration
3353 begin
3354 -- There are three kinds of implicit types generated by an
3355 -- object declaration:
3357 -- 1. Those generated by the original Object Definition
3359 -- 2. Those generated by the Expression
3361 -- 3. Those used to constrain the Object Definition with the
3362 -- expression constraints when the definition is unconstrained.
3364 -- They must be generated in this order to avoid order of elaboration
3365 -- issues. Thus the first step (after entering the name) is to analyze
3366 -- the object definition.
3368 if Constant_Present (N) then
3369 Prev_Entity := Current_Entity_In_Scope (Id);
3371 if Present (Prev_Entity)
3372 and then
3373 -- If the homograph is an implicit subprogram, it is overridden
3374 -- by the current declaration.
3376 ((Is_Overloadable (Prev_Entity)
3377 and then Is_Inherited_Operation (Prev_Entity))
3379 -- The current object is a discriminal generated for an entry
3380 -- family index. Even though the index is a constant, in this
3381 -- particular context there is no true constant redeclaration.
3382 -- Enter_Name will handle the visibility.
3384 or else
3385 (Is_Discriminal (Id)
3386 and then Ekind (Discriminal_Link (Id)) =
3387 E_Entry_Index_Parameter)
3389 -- The current object is the renaming for a generic declared
3390 -- within the instance.
3392 or else
3393 (Ekind (Prev_Entity) = E_Package
3394 and then Nkind (Parent (Prev_Entity)) =
3395 N_Package_Renaming_Declaration
3396 and then not Comes_From_Source (Prev_Entity)
3397 and then
3398 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3399 then
3400 Prev_Entity := Empty;
3401 end if;
3402 end if;
3404 -- The object declaration is Ghost when it is subject to pragma Ghost or
3405 -- completes a deferred Ghost constant. Set the mode now to ensure that
3406 -- any nodes generated during analysis and expansion are properly marked
3407 -- as Ghost.
3409 Set_Ghost_Mode (N, Prev_Entity);
3411 if Present (Prev_Entity) then
3412 Constant_Redeclaration (Id, N, T);
3414 Generate_Reference (Prev_Entity, Id, 'c');
3415 Set_Completion_Referenced (Id);
3417 if Error_Posted (N) then
3419 -- Type mismatch or illegal redeclaration, Do not analyze
3420 -- expression to avoid cascaded errors.
3422 T := Find_Type_Of_Object (Object_Definition (N), N);
3423 Set_Etype (Id, T);
3424 Set_Ekind (Id, E_Variable);
3425 goto Leave;
3426 end if;
3428 -- In the normal case, enter identifier at the start to catch premature
3429 -- usage in the initialization expression.
3431 else
3432 Generate_Definition (Id);
3433 Enter_Name (Id);
3435 Mark_Coextensions (N, Object_Definition (N));
3437 T := Find_Type_Of_Object (Object_Definition (N), N);
3439 if Nkind (Object_Definition (N)) = N_Access_Definition
3440 and then Present
3441 (Access_To_Subprogram_Definition (Object_Definition (N)))
3442 and then Protected_Present
3443 (Access_To_Subprogram_Definition (Object_Definition (N)))
3444 then
3445 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3446 end if;
3448 if Error_Posted (Id) then
3449 Set_Etype (Id, T);
3450 Set_Ekind (Id, E_Variable);
3451 goto Leave;
3452 end if;
3453 end if;
3455 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3456 -- out some static checks
3458 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3460 -- In case of aggregates we must also take care of the correct
3461 -- initialization of nested aggregates bug this is done at the
3462 -- point of the analysis of the aggregate (see sem_aggr.adb).
3464 if Present (Expression (N))
3465 and then Nkind (Expression (N)) = N_Aggregate
3466 then
3467 null;
3469 else
3470 declare
3471 Save_Typ : constant Entity_Id := Etype (Id);
3472 begin
3473 Set_Etype (Id, T); -- Temp. decoration for static checks
3474 Null_Exclusion_Static_Checks (N);
3475 Set_Etype (Id, Save_Typ);
3476 end;
3477 end if;
3478 end if;
3480 -- Object is marked pure if it is in a pure scope
3482 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3484 -- If deferred constant, make sure context is appropriate. We detect
3485 -- a deferred constant as a constant declaration with no expression.
3486 -- A deferred constant can appear in a package body if its completion
3487 -- is by means of an interface pragma.
3489 if Constant_Present (N) and then No (E) then
3491 -- A deferred constant may appear in the declarative part of the
3492 -- following constructs:
3494 -- blocks
3495 -- entry bodies
3496 -- extended return statements
3497 -- package specs
3498 -- package bodies
3499 -- subprogram bodies
3500 -- task bodies
3502 -- When declared inside a package spec, a deferred constant must be
3503 -- completed by a full constant declaration or pragma Import. In all
3504 -- other cases, the only proper completion is pragma Import. Extended
3505 -- return statements are flagged as invalid contexts because they do
3506 -- not have a declarative part and so cannot accommodate the pragma.
3508 if Ekind (Current_Scope) = E_Return_Statement then
3509 Error_Msg_N
3510 ("invalid context for deferred constant declaration (RM 7.4)",
3512 Error_Msg_N
3513 ("\declaration requires an initialization expression",
3515 Set_Constant_Present (N, False);
3517 -- In Ada 83, deferred constant must be of private type
3519 elsif not Is_Private_Type (T) then
3520 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3521 Error_Msg_N
3522 ("(Ada 83) deferred constant must be private type", N);
3523 end if;
3524 end if;
3526 -- If not a deferred constant, then the object declaration freezes
3527 -- its type, unless the object is of an anonymous type and has delayed
3528 -- aspects. In that case the type is frozen when the object itself is.
3530 else
3531 Check_Fully_Declared (T, N);
3533 if Has_Delayed_Aspects (Id)
3534 and then Is_Array_Type (T)
3535 and then Is_Itype (T)
3536 then
3537 Set_Has_Delayed_Freeze (T);
3538 else
3539 Freeze_Before (N, T);
3540 end if;
3541 end if;
3543 -- If the object was created by a constrained array definition, then
3544 -- set the link in both the anonymous base type and anonymous subtype
3545 -- that are built to represent the array type to point to the object.
3547 if Nkind (Object_Definition (Declaration_Node (Id))) =
3548 N_Constrained_Array_Definition
3549 then
3550 Set_Related_Array_Object (T, Id);
3551 Set_Related_Array_Object (Base_Type (T), Id);
3552 end if;
3554 -- Special checks for protected objects not at library level
3556 if Is_Protected_Type (T)
3557 and then not Is_Library_Level_Entity (Id)
3558 then
3559 Check_Restriction (No_Local_Protected_Objects, Id);
3561 -- Protected objects with interrupt handlers must be at library level
3563 -- Ada 2005: This test is not needed (and the corresponding clause
3564 -- in the RM is removed) because accessibility checks are sufficient
3565 -- to make handlers not at the library level illegal.
3567 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3568 -- applies to the '95 version of the language as well.
3570 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3571 Error_Msg_N
3572 ("interrupt object can only be declared at library level", Id);
3573 end if;
3574 end if;
3576 -- The actual subtype of the object is the nominal subtype, unless
3577 -- the nominal one is unconstrained and obtained from the expression.
3579 Act_T := T;
3581 -- These checks should be performed before the initialization expression
3582 -- is considered, so that the Object_Definition node is still the same
3583 -- as in source code.
3585 -- In SPARK, the nominal subtype is always given by a subtype mark
3586 -- and must not be unconstrained. (The only exception to this is the
3587 -- acceptance of declarations of constants of type String.)
3589 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3590 then
3591 Check_SPARK_05_Restriction
3592 ("subtype mark required", Object_Definition (N));
3594 elsif Is_Array_Type (T)
3595 and then not Is_Constrained (T)
3596 and then T /= Standard_String
3597 then
3598 Check_SPARK_05_Restriction
3599 ("subtype mark of constrained type expected",
3600 Object_Definition (N));
3601 end if;
3603 -- There are no aliased objects in SPARK
3605 if Aliased_Present (N) then
3606 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3607 end if;
3609 -- Process initialization expression if present and not in error
3611 if Present (E) and then E /= Error then
3613 -- Generate an error in case of CPP class-wide object initialization.
3614 -- Required because otherwise the expansion of the class-wide
3615 -- assignment would try to use 'size to initialize the object
3616 -- (primitive that is not available in CPP tagged types).
3618 if Is_Class_Wide_Type (Act_T)
3619 and then
3620 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3621 or else
3622 (Present (Full_View (Root_Type (Etype (Act_T))))
3623 and then
3624 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3625 then
3626 Error_Msg_N
3627 ("predefined assignment not available for 'C'P'P tagged types",
3629 end if;
3631 Mark_Coextensions (N, E);
3632 Analyze (E);
3634 -- In case of errors detected in the analysis of the expression,
3635 -- decorate it with the expected type to avoid cascaded errors
3637 if No (Etype (E)) then
3638 Set_Etype (E, T);
3639 end if;
3641 -- If an initialization expression is present, then we set the
3642 -- Is_True_Constant flag. It will be reset if this is a variable
3643 -- and it is indeed modified.
3645 Set_Is_True_Constant (Id, True);
3647 -- If we are analyzing a constant declaration, set its completion
3648 -- flag after analyzing and resolving the expression.
3650 if Constant_Present (N) then
3651 Set_Has_Completion (Id);
3652 end if;
3654 -- Set type and resolve (type may be overridden later on). Note:
3655 -- Ekind (Id) must still be E_Void at this point so that incorrect
3656 -- early usage within E is properly diagnosed.
3658 Set_Etype (Id, T);
3660 -- If the expression is an aggregate we must look ahead to detect
3661 -- the possible presence of an address clause, and defer resolution
3662 -- and expansion of the aggregate to the freeze point of the entity.
3664 -- This is not always legal because the aggregate may contain other
3665 -- references that need freezing, e.g. references to other entities
3666 -- with address clauses. In any case, when compiling with -gnatI the
3667 -- presence of the address clause must be ignored.
3669 if Comes_From_Source (N)
3670 and then Expander_Active
3671 and then Nkind (E) = N_Aggregate
3672 and then
3673 ((Present (Following_Address_Clause (N))
3674 and then not Ignore_Rep_Clauses)
3675 or else Delayed_Aspect_Present)
3676 then
3677 Set_Etype (E, T);
3679 else
3680 Resolve (E, T);
3681 end if;
3683 -- No further action needed if E is a call to an inlined function
3684 -- which returns an unconstrained type and it has been expanded into
3685 -- a procedure call. In that case N has been replaced by an object
3686 -- declaration without initializing expression and it has been
3687 -- analyzed (see Expand_Inlined_Call).
3689 if Back_End_Inlining
3690 and then Expander_Active
3691 and then Nkind (E) = N_Function_Call
3692 and then Nkind (Name (E)) in N_Has_Entity
3693 and then Is_Inlined (Entity (Name (E)))
3694 and then not Is_Constrained (Etype (E))
3695 and then Analyzed (N)
3696 and then No (Expression (N))
3697 then
3698 Ghost_Mode := Save_Ghost_Mode;
3699 return;
3700 end if;
3702 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3703 -- node (which was marked already-analyzed), we need to set the type
3704 -- to something other than Any_Access in order to keep gigi happy.
3706 if Etype (E) = Any_Access then
3707 Set_Etype (E, T);
3708 end if;
3710 -- If the object is an access to variable, the initialization
3711 -- expression cannot be an access to constant.
3713 if Is_Access_Type (T)
3714 and then not Is_Access_Constant (T)
3715 and then Is_Access_Type (Etype (E))
3716 and then Is_Access_Constant (Etype (E))
3717 then
3718 Error_Msg_N
3719 ("access to variable cannot be initialized with an "
3720 & "access-to-constant expression", E);
3721 end if;
3723 if not Assignment_OK (N) then
3724 Check_Initialization (T, E);
3725 end if;
3727 Check_Unset_Reference (E);
3729 -- If this is a variable, then set current value. If this is a
3730 -- declared constant of a scalar type with a static expression,
3731 -- indicate that it is always valid.
3733 if not Constant_Present (N) then
3734 if Compile_Time_Known_Value (E) then
3735 Set_Current_Value (Id, E);
3736 end if;
3738 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3739 Set_Is_Known_Valid (Id);
3740 end if;
3742 -- Deal with setting of null flags
3744 if Is_Access_Type (T) then
3745 if Known_Non_Null (E) then
3746 Set_Is_Known_Non_Null (Id, True);
3747 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3748 Set_Is_Known_Null (Id, True);
3749 end if;
3750 end if;
3752 -- Check incorrect use of dynamically tagged expressions
3754 if Is_Tagged_Type (T) then
3755 Check_Dynamically_Tagged_Expression
3756 (Expr => E,
3757 Typ => T,
3758 Related_Nod => N);
3759 end if;
3761 Apply_Scalar_Range_Check (E, T);
3762 Apply_Static_Length_Check (E, T);
3764 if Nkind (Original_Node (N)) = N_Object_Declaration
3765 and then Comes_From_Source (Original_Node (N))
3767 -- Only call test if needed
3769 and then Restriction_Check_Required (SPARK_05)
3770 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3771 then
3772 Check_SPARK_05_Restriction
3773 ("initialization expression is not appropriate", E);
3774 end if;
3776 -- A formal parameter of a specific tagged type whose related
3777 -- subprogram is subject to pragma Extensions_Visible with value
3778 -- "False" cannot be implicitly converted to a class-wide type by
3779 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
3780 -- not consider internally generated expressions.
3782 if Is_Class_Wide_Type (T)
3783 and then Comes_From_Source (E)
3784 and then Is_EVF_Expression (E)
3785 then
3786 Error_Msg_N
3787 ("formal parameter with Extensions_Visible False cannot be "
3788 & "implicitly converted to class-wide type", E);
3789 end if;
3790 end if;
3792 -- If the No_Streams restriction is set, check that the type of the
3793 -- object is not, and does not contain, any subtype derived from
3794 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3795 -- Has_Stream just for efficiency reasons. There is no point in
3796 -- spending time on a Has_Stream check if the restriction is not set.
3798 if Restriction_Check_Required (No_Streams) then
3799 if Has_Stream (T) then
3800 Check_Restriction (No_Streams, N);
3801 end if;
3802 end if;
3804 -- Deal with predicate check before we start to do major rewriting. It
3805 -- is OK to initialize and then check the initialized value, since the
3806 -- object goes out of scope if we get a predicate failure. Note that we
3807 -- do this in the analyzer and not the expander because the analyzer
3808 -- does some substantial rewriting in some cases.
3810 -- We need a predicate check if the type has predicates, and if either
3811 -- there is an initializing expression, or for default initialization
3812 -- when we have at least one case of an explicit default initial value
3813 -- and then this is not an internal declaration whose initialization
3814 -- comes later (as for an aggregate expansion).
3816 if not Suppress_Assignment_Checks (N)
3817 and then Present (Predicate_Function (T))
3818 and then not No_Initialization (N)
3819 and then
3820 (Present (E)
3821 or else
3822 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3823 then
3824 -- If the type has a static predicate and the expression is known at
3825 -- compile time, see if the expression satisfies the predicate.
3827 if Present (E) then
3828 Check_Expression_Against_Static_Predicate (E, T);
3829 end if;
3831 Insert_After (N,
3832 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3833 end if;
3835 -- Case of unconstrained type
3837 if not Is_Definite_Subtype (T) then
3839 -- In SPARK, a declaration of unconstrained type is allowed
3840 -- only for constants of type string.
3842 if Is_String_Type (T) and then not Constant_Present (N) then
3843 Check_SPARK_05_Restriction
3844 ("declaration of object of unconstrained type not allowed", N);
3845 end if;
3847 -- Nothing to do in deferred constant case
3849 if Constant_Present (N) and then No (E) then
3850 null;
3852 -- Case of no initialization present
3854 elsif No (E) then
3855 if No_Initialization (N) then
3856 null;
3858 elsif Is_Class_Wide_Type (T) then
3859 Error_Msg_N
3860 ("initialization required in class-wide declaration ", N);
3862 else
3863 Error_Msg_N
3864 ("unconstrained subtype not allowed (need initialization)",
3865 Object_Definition (N));
3867 if Is_Record_Type (T) and then Has_Discriminants (T) then
3868 Error_Msg_N
3869 ("\provide initial value or explicit discriminant values",
3870 Object_Definition (N));
3872 Error_Msg_NE
3873 ("\or give default discriminant values for type&",
3874 Object_Definition (N), T);
3876 elsif Is_Array_Type (T) then
3877 Error_Msg_N
3878 ("\provide initial value or explicit array bounds",
3879 Object_Definition (N));
3880 end if;
3881 end if;
3883 -- Case of initialization present but in error. Set initial
3884 -- expression as absent (but do not make above complaints)
3886 elsif E = Error then
3887 Set_Expression (N, Empty);
3888 E := Empty;
3890 -- Case of initialization present
3892 else
3893 -- Check restrictions in Ada 83
3895 if not Constant_Present (N) then
3897 -- Unconstrained variables not allowed in Ada 83 mode
3899 if Ada_Version = Ada_83
3900 and then Comes_From_Source (Object_Definition (N))
3901 then
3902 Error_Msg_N
3903 ("(Ada 83) unconstrained variable not allowed",
3904 Object_Definition (N));
3905 end if;
3906 end if;
3908 -- Now we constrain the variable from the initializing expression
3910 -- If the expression is an aggregate, it has been expanded into
3911 -- individual assignments. Retrieve the actual type from the
3912 -- expanded construct.
3914 if Is_Array_Type (T)
3915 and then No_Initialization (N)
3916 and then Nkind (Original_Node (E)) = N_Aggregate
3917 then
3918 Act_T := Etype (E);
3920 -- In case of class-wide interface object declarations we delay
3921 -- the generation of the equivalent record type declarations until
3922 -- its expansion because there are cases in they are not required.
3924 elsif Is_Interface (T) then
3925 null;
3927 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3928 -- we should prevent the generation of another Itype with the
3929 -- same name as the one already generated, or we end up with
3930 -- two identical types in GNATprove.
3932 elsif GNATprove_Mode then
3933 null;
3935 -- If the type is an unchecked union, no subtype can be built from
3936 -- the expression. Rewrite declaration as a renaming, which the
3937 -- back-end can handle properly. This is a rather unusual case,
3938 -- because most unchecked_union declarations have default values
3939 -- for discriminants and are thus not indefinite.
3941 elsif Is_Unchecked_Union (T) then
3942 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3943 Set_Ekind (Id, E_Constant);
3944 else
3945 Set_Ekind (Id, E_Variable);
3946 end if;
3948 -- An object declared within a Ghost region is automatically
3949 -- Ghost (SPARK RM 6.9(2)).
3951 if Ghost_Mode > None then
3952 Set_Is_Ghost_Entity (Id);
3954 -- The Ghost policy in effect at the point of declaration
3955 -- and at the point of completion must match
3956 -- (SPARK RM 6.9(14)).
3958 if Present (Prev_Entity)
3959 and then Is_Ghost_Entity (Prev_Entity)
3960 then
3961 Check_Ghost_Completion (Prev_Entity, Id);
3962 end if;
3963 end if;
3965 Rewrite (N,
3966 Make_Object_Renaming_Declaration (Loc,
3967 Defining_Identifier => Id,
3968 Subtype_Mark => New_Occurrence_Of (T, Loc),
3969 Name => E));
3971 Set_Renamed_Object (Id, E);
3972 Freeze_Before (N, T);
3973 Set_Is_Frozen (Id);
3975 Ghost_Mode := Save_Ghost_Mode;
3976 return;
3978 else
3979 -- Ensure that the generated subtype has a unique external name
3980 -- when the related object is public. This guarantees that the
3981 -- subtype and its bounds will not be affected by switches or
3982 -- pragmas that may offset the internal counter due to extra
3983 -- generated code.
3985 if Is_Public (Id) then
3986 Related_Id := Id;
3987 else
3988 Related_Id := Empty;
3989 end if;
3991 Expand_Subtype_From_Expr
3992 (N => N,
3993 Unc_Type => T,
3994 Subtype_Indic => Object_Definition (N),
3995 Exp => E,
3996 Related_Id => Related_Id);
3998 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3999 end if;
4001 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4003 if Aliased_Present (N) then
4004 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4005 end if;
4007 Freeze_Before (N, Act_T);
4008 Freeze_Before (N, T);
4009 end if;
4011 elsif Is_Array_Type (T)
4012 and then No_Initialization (N)
4013 and then Nkind (Original_Node (E)) = N_Aggregate
4014 then
4015 if not Is_Entity_Name (Object_Definition (N)) then
4016 Act_T := Etype (E);
4017 Check_Compile_Time_Size (Act_T);
4019 if Aliased_Present (N) then
4020 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4021 end if;
4022 end if;
4024 -- When the given object definition and the aggregate are specified
4025 -- independently, and their lengths might differ do a length check.
4026 -- This cannot happen if the aggregate is of the form (others =>...)
4028 if not Is_Constrained (T) then
4029 null;
4031 elsif Nkind (E) = N_Raise_Constraint_Error then
4033 -- Aggregate is statically illegal. Place back in declaration
4035 Set_Expression (N, E);
4036 Set_No_Initialization (N, False);
4038 elsif T = Etype (E) then
4039 null;
4041 elsif Nkind (E) = N_Aggregate
4042 and then Present (Component_Associations (E))
4043 and then Present (Choices (First (Component_Associations (E))))
4044 and then Nkind (First
4045 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4046 then
4047 null;
4049 else
4050 Apply_Length_Check (E, T);
4051 end if;
4053 -- If the type is limited unconstrained with defaulted discriminants and
4054 -- there is no expression, then the object is constrained by the
4055 -- defaults, so it is worthwhile building the corresponding subtype.
4057 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4058 and then not Is_Constrained (T)
4059 and then Has_Discriminants (T)
4060 then
4061 if No (E) then
4062 Act_T := Build_Default_Subtype (T, N);
4063 else
4064 -- Ada 2005: A limited object may be initialized by means of an
4065 -- aggregate. If the type has default discriminants it has an
4066 -- unconstrained nominal type, Its actual subtype will be obtained
4067 -- from the aggregate, and not from the default discriminants.
4069 Act_T := Etype (E);
4070 end if;
4072 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4074 elsif Nkind (E) = N_Function_Call
4075 and then Constant_Present (N)
4076 and then Has_Unconstrained_Elements (Etype (E))
4077 then
4078 -- The back-end has problems with constants of a discriminated type
4079 -- with defaults, if the initial value is a function call. We
4080 -- generate an intermediate temporary that will receive a reference
4081 -- to the result of the call. The initialization expression then
4082 -- becomes a dereference of that temporary.
4084 Remove_Side_Effects (E);
4086 -- If this is a constant declaration of an unconstrained type and
4087 -- the initialization is an aggregate, we can use the subtype of the
4088 -- aggregate for the declared entity because it is immutable.
4090 elsif not Is_Constrained (T)
4091 and then Has_Discriminants (T)
4092 and then Constant_Present (N)
4093 and then not Has_Unchecked_Union (T)
4094 and then Nkind (E) = N_Aggregate
4095 then
4096 Act_T := Etype (E);
4097 end if;
4099 -- Check No_Wide_Characters restriction
4101 Check_Wide_Character_Restriction (T, Object_Definition (N));
4103 -- Indicate this is not set in source. Certainly true for constants, and
4104 -- true for variables so far (will be reset for a variable if and when
4105 -- we encounter a modification in the source).
4107 Set_Never_Set_In_Source (Id);
4109 -- Now establish the proper kind and type of the object
4111 if Constant_Present (N) then
4112 Set_Ekind (Id, E_Constant);
4113 Set_Is_True_Constant (Id);
4115 else
4116 Set_Ekind (Id, E_Variable);
4118 -- A variable is set as shared passive if it appears in a shared
4119 -- passive package, and is at the outer level. This is not done for
4120 -- entities generated during expansion, because those are always
4121 -- manipulated locally.
4123 if Is_Shared_Passive (Current_Scope)
4124 and then Is_Library_Level_Entity (Id)
4125 and then Comes_From_Source (Id)
4126 then
4127 Set_Is_Shared_Passive (Id);
4128 Check_Shared_Var (Id, T, N);
4129 end if;
4131 -- Set Has_Initial_Value if initializing expression present. Note
4132 -- that if there is no initializing expression, we leave the state
4133 -- of this flag unchanged (usually it will be False, but notably in
4134 -- the case of exception choice variables, it will already be true).
4136 if Present (E) then
4137 Set_Has_Initial_Value (Id);
4138 end if;
4139 end if;
4141 -- Initialize alignment and size and capture alignment setting
4143 Init_Alignment (Id);
4144 Init_Esize (Id);
4145 Set_Optimize_Alignment_Flags (Id);
4147 -- An object declared within a Ghost region is automatically Ghost
4148 -- (SPARK RM 6.9(2)).
4150 if Ghost_Mode > None
4151 or else (Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity))
4152 then
4153 Set_Is_Ghost_Entity (Id);
4155 -- The Ghost policy in effect at the point of declaration and at the
4156 -- point of completion must match (SPARK RM 6.9(14)).
4158 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4159 Check_Ghost_Completion (Prev_Entity, Id);
4160 end if;
4161 end if;
4163 -- Deal with aliased case
4165 if Aliased_Present (N) then
4166 Set_Is_Aliased (Id);
4168 -- If the object is aliased and the type is unconstrained with
4169 -- defaulted discriminants and there is no expression, then the
4170 -- object is constrained by the defaults, so it is worthwhile
4171 -- building the corresponding subtype.
4173 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4174 -- unconstrained, then only establish an actual subtype if the
4175 -- nominal subtype is indefinite. In definite cases the object is
4176 -- unconstrained in Ada 2005.
4178 if No (E)
4179 and then Is_Record_Type (T)
4180 and then not Is_Constrained (T)
4181 and then Has_Discriminants (T)
4182 and then (Ada_Version < Ada_2005
4183 or else not Is_Definite_Subtype (T))
4184 then
4185 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4186 end if;
4187 end if;
4189 -- Now we can set the type of the object
4191 Set_Etype (Id, Act_T);
4193 -- Non-constant object is marked to be treated as volatile if type is
4194 -- volatile and we clear the Current_Value setting that may have been
4195 -- set above. Doing so for constants isn't required and might interfere
4196 -- with possible uses of the object as a static expression in contexts
4197 -- incompatible with volatility (e.g. as a case-statement alternative).
4199 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4200 Set_Treat_As_Volatile (Id);
4201 Set_Current_Value (Id, Empty);
4202 end if;
4204 -- Deal with controlled types
4206 if Has_Controlled_Component (Etype (Id))
4207 or else Is_Controlled (Etype (Id))
4208 then
4209 if not Is_Library_Level_Entity (Id) then
4210 Check_Restriction (No_Nested_Finalization, N);
4211 else
4212 Validate_Controlled_Object (Id);
4213 end if;
4214 end if;
4216 if Has_Task (Etype (Id)) then
4217 Check_Restriction (No_Tasking, N);
4219 -- Deal with counting max tasks
4221 -- Nothing to do if inside a generic
4223 if Inside_A_Generic then
4224 null;
4226 -- If library level entity, then count tasks
4228 elsif Is_Library_Level_Entity (Id) then
4229 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4231 -- If not library level entity, then indicate we don't know max
4232 -- tasks and also check task hierarchy restriction and blocking
4233 -- operation (since starting a task is definitely blocking).
4235 else
4236 Check_Restriction (Max_Tasks, N);
4237 Check_Restriction (No_Task_Hierarchy, N);
4238 Check_Potentially_Blocking_Operation (N);
4239 end if;
4241 -- A rather specialized test. If we see two tasks being declared
4242 -- of the same type in the same object declaration, and the task
4243 -- has an entry with an address clause, we know that program error
4244 -- will be raised at run time since we can't have two tasks with
4245 -- entries at the same address.
4247 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4248 declare
4249 E : Entity_Id;
4251 begin
4252 E := First_Entity (Etype (Id));
4253 while Present (E) loop
4254 if Ekind (E) = E_Entry
4255 and then Present (Get_Attribute_Definition_Clause
4256 (E, Attribute_Address))
4257 then
4258 Error_Msg_Warn := SPARK_Mode /= On;
4259 Error_Msg_N
4260 ("more than one task with same entry address<<", N);
4261 Error_Msg_N ("\Program_Error [<<", N);
4262 Insert_Action (N,
4263 Make_Raise_Program_Error (Loc,
4264 Reason => PE_Duplicated_Entry_Address));
4265 exit;
4266 end if;
4268 Next_Entity (E);
4269 end loop;
4270 end;
4271 end if;
4272 end if;
4274 -- Some simple constant-propagation: if the expression is a constant
4275 -- string initialized with a literal, share the literal. This avoids
4276 -- a run-time copy.
4278 if Present (E)
4279 and then Is_Entity_Name (E)
4280 and then Ekind (Entity (E)) = E_Constant
4281 and then Base_Type (Etype (E)) = Standard_String
4282 then
4283 declare
4284 Val : constant Node_Id := Constant_Value (Entity (E));
4285 begin
4286 if Present (Val) and then Nkind (Val) = N_String_Literal then
4287 Rewrite (E, New_Copy (Val));
4288 end if;
4289 end;
4290 end if;
4292 -- Another optimization: if the nominal subtype is unconstrained and
4293 -- the expression is a function call that returns an unconstrained
4294 -- type, rewrite the declaration as a renaming of the result of the
4295 -- call. The exceptions below are cases where the copy is expected,
4296 -- either by the back end (Aliased case) or by the semantics, as for
4297 -- initializing controlled types or copying tags for classwide types.
4299 if Present (E)
4300 and then Nkind (E) = N_Explicit_Dereference
4301 and then Nkind (Original_Node (E)) = N_Function_Call
4302 and then not Is_Library_Level_Entity (Id)
4303 and then not Is_Constrained (Underlying_Type (T))
4304 and then not Is_Aliased (Id)
4305 and then not Is_Class_Wide_Type (T)
4306 and then not Is_Controlled_Active (T)
4307 and then not Has_Controlled_Component (Base_Type (T))
4308 and then Expander_Active
4309 then
4310 Rewrite (N,
4311 Make_Object_Renaming_Declaration (Loc,
4312 Defining_Identifier => Id,
4313 Access_Definition => Empty,
4314 Subtype_Mark => New_Occurrence_Of
4315 (Base_Type (Etype (Id)), Loc),
4316 Name => E));
4318 Set_Renamed_Object (Id, E);
4320 -- Force generation of debugging information for the constant and for
4321 -- the renamed function call.
4323 Set_Debug_Info_Needed (Id);
4324 Set_Debug_Info_Needed (Entity (Prefix (E)));
4325 end if;
4327 if Present (Prev_Entity)
4328 and then Is_Frozen (Prev_Entity)
4329 and then not Error_Posted (Id)
4330 then
4331 Error_Msg_N ("full constant declaration appears too late", N);
4332 end if;
4334 Check_Eliminated (Id);
4336 -- Deal with setting In_Private_Part flag if in private part
4338 if Ekind (Scope (Id)) = E_Package
4339 and then In_Private_Part (Scope (Id))
4340 then
4341 Set_In_Private_Part (Id);
4342 end if;
4344 -- Check for violation of No_Local_Timing_Events
4346 if Restriction_Check_Required (No_Local_Timing_Events)
4347 and then not Is_Library_Level_Entity (Id)
4348 and then Is_RTE (Etype (Id), RE_Timing_Event)
4349 then
4350 Check_Restriction (No_Local_Timing_Events, N);
4351 end if;
4353 <<Leave>>
4354 -- Initialize the refined state of a variable here because this is a
4355 -- common destination for legal and illegal object declarations.
4357 if Ekind (Id) = E_Variable then
4358 Set_Encapsulating_State (Id, Empty);
4359 end if;
4361 if Has_Aspects (N) then
4362 Analyze_Aspect_Specifications (N, Id);
4363 end if;
4365 Analyze_Dimension (N);
4367 -- Verify whether the object declaration introduces an illegal hidden
4368 -- state within a package subject to a null abstract state.
4370 if Ekind (Id) = E_Variable then
4371 Check_No_Hidden_State (Id);
4372 end if;
4374 Ghost_Mode := Save_Ghost_Mode;
4375 end Analyze_Object_Declaration;
4377 ---------------------------
4378 -- Analyze_Others_Choice --
4379 ---------------------------
4381 -- Nothing to do for the others choice node itself, the semantic analysis
4382 -- of the others choice will occur as part of the processing of the parent
4384 procedure Analyze_Others_Choice (N : Node_Id) is
4385 pragma Warnings (Off, N);
4386 begin
4387 null;
4388 end Analyze_Others_Choice;
4390 -------------------------------------------
4391 -- Analyze_Private_Extension_Declaration --
4392 -------------------------------------------
4394 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4395 Indic : constant Node_Id := Subtype_Indication (N);
4396 T : constant Entity_Id := Defining_Identifier (N);
4397 Parent_Base : Entity_Id;
4398 Parent_Type : Entity_Id;
4400 begin
4401 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4403 if Is_Non_Empty_List (Interface_List (N)) then
4404 declare
4405 Intf : Node_Id;
4406 T : Entity_Id;
4408 begin
4409 Intf := First (Interface_List (N));
4410 while Present (Intf) loop
4411 T := Find_Type_Of_Subtype_Indic (Intf);
4413 Diagnose_Interface (Intf, T);
4414 Next (Intf);
4415 end loop;
4416 end;
4417 end if;
4419 Generate_Definition (T);
4421 -- For other than Ada 2012, just enter the name in the current scope
4423 if Ada_Version < Ada_2012 then
4424 Enter_Name (T);
4426 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4427 -- case of private type that completes an incomplete type.
4429 else
4430 declare
4431 Prev : Entity_Id;
4433 begin
4434 Prev := Find_Type_Name (N);
4436 pragma Assert (Prev = T
4437 or else (Ekind (Prev) = E_Incomplete_Type
4438 and then Present (Full_View (Prev))
4439 and then Full_View (Prev) = T));
4440 end;
4441 end if;
4443 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4444 Parent_Base := Base_Type (Parent_Type);
4446 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4447 Set_Ekind (T, Ekind (Parent_Type));
4448 Set_Etype (T, Any_Type);
4449 goto Leave;
4451 elsif not Is_Tagged_Type (Parent_Type) then
4452 Error_Msg_N
4453 ("parent of type extension must be a tagged type ", Indic);
4454 goto Leave;
4456 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4457 Error_Msg_N ("premature derivation of incomplete type", Indic);
4458 goto Leave;
4460 elsif Is_Concurrent_Type (Parent_Type) then
4461 Error_Msg_N
4462 ("parent type of a private extension cannot be "
4463 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4465 Set_Etype (T, Any_Type);
4466 Set_Ekind (T, E_Limited_Private_Type);
4467 Set_Private_Dependents (T, New_Elmt_List);
4468 Set_Error_Posted (T);
4469 goto Leave;
4470 end if;
4472 -- Perhaps the parent type should be changed to the class-wide type's
4473 -- specific type in this case to prevent cascading errors ???
4475 if Is_Class_Wide_Type (Parent_Type) then
4476 Error_Msg_N
4477 ("parent of type extension must not be a class-wide type", Indic);
4478 goto Leave;
4479 end if;
4481 if (not Is_Package_Or_Generic_Package (Current_Scope)
4482 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4483 or else In_Private_Part (Current_Scope)
4485 then
4486 Error_Msg_N ("invalid context for private extension", N);
4487 end if;
4489 -- Set common attributes
4491 Set_Is_Pure (T, Is_Pure (Current_Scope));
4492 Set_Scope (T, Current_Scope);
4493 Set_Ekind (T, E_Record_Type_With_Private);
4494 Init_Size_Align (T);
4495 Set_Default_SSO (T);
4497 Set_Etype (T, Parent_Base);
4498 Set_Has_Task (T, Has_Task (Parent_Base));
4499 Set_Has_Protected (T, Has_Task (Parent_Base));
4501 Set_Convention (T, Convention (Parent_Type));
4502 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4503 Set_Is_First_Subtype (T);
4504 Make_Class_Wide_Type (T);
4506 if Unknown_Discriminants_Present (N) then
4507 Set_Discriminant_Constraint (T, No_Elist);
4508 end if;
4510 Build_Derived_Record_Type (N, Parent_Type, T);
4512 -- Propagate inherited invariant information. The new type has
4513 -- invariants, if the parent type has inheritable invariants,
4514 -- and these invariants can in turn be inherited.
4516 if Has_Inheritable_Invariants (Parent_Type) then
4517 Set_Has_Inheritable_Invariants (T);
4518 Set_Has_Invariants (T);
4519 end if;
4521 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4522 -- synchronized formal derived type.
4524 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4525 Set_Is_Limited_Record (T);
4527 -- Formal derived type case
4529 if Is_Generic_Type (T) then
4531 -- The parent must be a tagged limited type or a synchronized
4532 -- interface.
4534 if (not Is_Tagged_Type (Parent_Type)
4535 or else not Is_Limited_Type (Parent_Type))
4536 and then
4537 (not Is_Interface (Parent_Type)
4538 or else not Is_Synchronized_Interface (Parent_Type))
4539 then
4540 Error_Msg_NE ("parent type of & must be tagged limited " &
4541 "or synchronized", N, T);
4542 end if;
4544 -- The progenitors (if any) must be limited or synchronized
4545 -- interfaces.
4547 if Present (Interfaces (T)) then
4548 declare
4549 Iface : Entity_Id;
4550 Iface_Elmt : Elmt_Id;
4552 begin
4553 Iface_Elmt := First_Elmt (Interfaces (T));
4554 while Present (Iface_Elmt) loop
4555 Iface := Node (Iface_Elmt);
4557 if not Is_Limited_Interface (Iface)
4558 and then not Is_Synchronized_Interface (Iface)
4559 then
4560 Error_Msg_NE ("progenitor & must be limited " &
4561 "or synchronized", N, Iface);
4562 end if;
4564 Next_Elmt (Iface_Elmt);
4565 end loop;
4566 end;
4567 end if;
4569 -- Regular derived extension, the parent must be a limited or
4570 -- synchronized interface.
4572 else
4573 if not Is_Interface (Parent_Type)
4574 or else (not Is_Limited_Interface (Parent_Type)
4575 and then not Is_Synchronized_Interface (Parent_Type))
4576 then
4577 Error_Msg_NE
4578 ("parent type of & must be limited interface", N, T);
4579 end if;
4580 end if;
4582 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4583 -- extension with a synchronized parent must be explicitly declared
4584 -- synchronized, because the full view will be a synchronized type.
4585 -- This must be checked before the check for limited types below,
4586 -- to ensure that types declared limited are not allowed to extend
4587 -- synchronized interfaces.
4589 elsif Is_Interface (Parent_Type)
4590 and then Is_Synchronized_Interface (Parent_Type)
4591 and then not Synchronized_Present (N)
4592 then
4593 Error_Msg_NE
4594 ("private extension of& must be explicitly synchronized",
4595 N, Parent_Type);
4597 elsif Limited_Present (N) then
4598 Set_Is_Limited_Record (T);
4600 if not Is_Limited_Type (Parent_Type)
4601 and then
4602 (not Is_Interface (Parent_Type)
4603 or else not Is_Limited_Interface (Parent_Type))
4604 then
4605 Error_Msg_NE ("parent type& of limited extension must be limited",
4606 N, Parent_Type);
4607 end if;
4608 end if;
4610 <<Leave>>
4611 if Has_Aspects (N) then
4612 Analyze_Aspect_Specifications (N, T);
4613 end if;
4614 end Analyze_Private_Extension_Declaration;
4616 ---------------------------------
4617 -- Analyze_Subtype_Declaration --
4618 ---------------------------------
4620 procedure Analyze_Subtype_Declaration
4621 (N : Node_Id;
4622 Skip : Boolean := False)
4624 Id : constant Entity_Id := Defining_Identifier (N);
4625 R_Checks : Check_Result;
4626 T : Entity_Id;
4628 begin
4629 Generate_Definition (Id);
4630 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4631 Init_Size_Align (Id);
4633 -- The following guard condition on Enter_Name is to handle cases where
4634 -- the defining identifier has already been entered into the scope but
4635 -- the declaration as a whole needs to be analyzed.
4637 -- This case in particular happens for derived enumeration types. The
4638 -- derived enumeration type is processed as an inserted enumeration type
4639 -- declaration followed by a rewritten subtype declaration. The defining
4640 -- identifier, however, is entered into the name scope very early in the
4641 -- processing of the original type declaration and therefore needs to be
4642 -- avoided here, when the created subtype declaration is analyzed. (See
4643 -- Build_Derived_Types)
4645 -- This also happens when the full view of a private type is derived
4646 -- type with constraints. In this case the entity has been introduced
4647 -- in the private declaration.
4649 -- Finally this happens in some complex cases when validity checks are
4650 -- enabled, where the same subtype declaration may be analyzed twice.
4651 -- This can happen if the subtype is created by the pre-analysis of
4652 -- an attribute tht gives the range of a loop statement, and the loop
4653 -- itself appears within an if_statement that will be rewritten during
4654 -- expansion.
4656 if Skip
4657 or else (Present (Etype (Id))
4658 and then (Is_Private_Type (Etype (Id))
4659 or else Is_Task_Type (Etype (Id))
4660 or else Is_Rewrite_Substitution (N)))
4661 then
4662 null;
4664 elsif Current_Entity (Id) = Id then
4665 null;
4667 else
4668 Enter_Name (Id);
4669 end if;
4671 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4673 -- Class-wide equivalent types of records with unknown discriminants
4674 -- involve the generation of an itype which serves as the private view
4675 -- of a constrained record subtype. In such cases the base type of the
4676 -- current subtype we are processing is the private itype. Use the full
4677 -- of the private itype when decorating various attributes.
4679 if Is_Itype (T)
4680 and then Is_Private_Type (T)
4681 and then Present (Full_View (T))
4682 then
4683 T := Full_View (T);
4684 end if;
4686 -- Inherit common attributes
4688 Set_Is_Volatile (Id, Is_Volatile (T));
4689 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4690 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4691 Set_Convention (Id, Convention (T));
4693 -- If ancestor has predicates then so does the subtype, and in addition
4694 -- we must delay the freeze to properly arrange predicate inheritance.
4696 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4697 -- in which T = ID, so the above tests and assignments do nothing???
4699 if Has_Predicates (T)
4700 or else (Present (Ancestor_Subtype (T))
4701 and then Has_Predicates (Ancestor_Subtype (T)))
4702 then
4703 Set_Has_Predicates (Id);
4704 Set_Has_Delayed_Freeze (Id);
4705 end if;
4707 -- Subtype of Boolean cannot have a constraint in SPARK
4709 if Is_Boolean_Type (T)
4710 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4711 then
4712 Check_SPARK_05_Restriction
4713 ("subtype of Boolean cannot have constraint", N);
4714 end if;
4716 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4717 declare
4718 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4719 One_Cstr : Node_Id;
4720 Low : Node_Id;
4721 High : Node_Id;
4723 begin
4724 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4725 One_Cstr := First (Constraints (Cstr));
4726 while Present (One_Cstr) loop
4728 -- Index or discriminant constraint in SPARK must be a
4729 -- subtype mark.
4731 if not
4732 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4733 then
4734 Check_SPARK_05_Restriction
4735 ("subtype mark required", One_Cstr);
4737 -- String subtype must have a lower bound of 1 in SPARK.
4738 -- Note that we do not need to test for the non-static case
4739 -- here, since that was already taken care of in
4740 -- Process_Range_Expr_In_Decl.
4742 elsif Base_Type (T) = Standard_String then
4743 Get_Index_Bounds (One_Cstr, Low, High);
4745 if Is_OK_Static_Expression (Low)
4746 and then Expr_Value (Low) /= 1
4747 then
4748 Check_SPARK_05_Restriction
4749 ("String subtype must have lower bound of 1", N);
4750 end if;
4751 end if;
4753 Next (One_Cstr);
4754 end loop;
4755 end if;
4756 end;
4757 end if;
4759 -- In the case where there is no constraint given in the subtype
4760 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4761 -- semantic attributes must be established here.
4763 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4764 Set_Etype (Id, Base_Type (T));
4766 -- Subtype of unconstrained array without constraint is not allowed
4767 -- in SPARK.
4769 if Is_Array_Type (T) and then not Is_Constrained (T) then
4770 Check_SPARK_05_Restriction
4771 ("subtype of unconstrained array must have constraint", N);
4772 end if;
4774 case Ekind (T) is
4775 when Array_Kind =>
4776 Set_Ekind (Id, E_Array_Subtype);
4777 Copy_Array_Subtype_Attributes (Id, T);
4779 when Decimal_Fixed_Point_Kind =>
4780 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4781 Set_Digits_Value (Id, Digits_Value (T));
4782 Set_Delta_Value (Id, Delta_Value (T));
4783 Set_Scale_Value (Id, Scale_Value (T));
4784 Set_Small_Value (Id, Small_Value (T));
4785 Set_Scalar_Range (Id, Scalar_Range (T));
4786 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4787 Set_Is_Constrained (Id, Is_Constrained (T));
4788 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4789 Set_RM_Size (Id, RM_Size (T));
4791 when Enumeration_Kind =>
4792 Set_Ekind (Id, E_Enumeration_Subtype);
4793 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4794 Set_Scalar_Range (Id, Scalar_Range (T));
4795 Set_Is_Character_Type (Id, Is_Character_Type (T));
4796 Set_Is_Constrained (Id, Is_Constrained (T));
4797 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4798 Set_RM_Size (Id, RM_Size (T));
4799 Inherit_Predicate_Flags (Id, T);
4801 when Ordinary_Fixed_Point_Kind =>
4802 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4803 Set_Scalar_Range (Id, Scalar_Range (T));
4804 Set_Small_Value (Id, Small_Value (T));
4805 Set_Delta_Value (Id, Delta_Value (T));
4806 Set_Is_Constrained (Id, Is_Constrained (T));
4807 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4808 Set_RM_Size (Id, RM_Size (T));
4810 when Float_Kind =>
4811 Set_Ekind (Id, E_Floating_Point_Subtype);
4812 Set_Scalar_Range (Id, Scalar_Range (T));
4813 Set_Digits_Value (Id, Digits_Value (T));
4814 Set_Is_Constrained (Id, Is_Constrained (T));
4816 -- If the floating point type has dimensions, these will be
4817 -- inherited subsequently when Analyze_Dimensions is called.
4819 when Signed_Integer_Kind =>
4820 Set_Ekind (Id, E_Signed_Integer_Subtype);
4821 Set_Scalar_Range (Id, Scalar_Range (T));
4822 Set_Is_Constrained (Id, Is_Constrained (T));
4823 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4824 Set_RM_Size (Id, RM_Size (T));
4825 Inherit_Predicate_Flags (Id, T);
4827 when Modular_Integer_Kind =>
4828 Set_Ekind (Id, E_Modular_Integer_Subtype);
4829 Set_Scalar_Range (Id, Scalar_Range (T));
4830 Set_Is_Constrained (Id, Is_Constrained (T));
4831 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4832 Set_RM_Size (Id, RM_Size (T));
4833 Inherit_Predicate_Flags (Id, T);
4835 when Class_Wide_Kind =>
4836 Set_Ekind (Id, E_Class_Wide_Subtype);
4837 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4838 Set_Cloned_Subtype (Id, T);
4839 Set_Is_Tagged_Type (Id, True);
4840 Set_Has_Unknown_Discriminants
4841 (Id, True);
4842 Set_No_Tagged_Streams_Pragma
4843 (Id, No_Tagged_Streams_Pragma (T));
4845 if Ekind (T) = E_Class_Wide_Subtype then
4846 Set_Equivalent_Type (Id, Equivalent_Type (T));
4847 end if;
4849 when E_Record_Type | E_Record_Subtype =>
4850 Set_Ekind (Id, E_Record_Subtype);
4852 if Ekind (T) = E_Record_Subtype
4853 and then Present (Cloned_Subtype (T))
4854 then
4855 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4856 else
4857 Set_Cloned_Subtype (Id, T);
4858 end if;
4860 Set_First_Entity (Id, First_Entity (T));
4861 Set_Last_Entity (Id, Last_Entity (T));
4862 Set_Has_Discriminants (Id, Has_Discriminants (T));
4863 Set_Is_Constrained (Id, Is_Constrained (T));
4864 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4865 Set_Has_Implicit_Dereference
4866 (Id, Has_Implicit_Dereference (T));
4867 Set_Has_Unknown_Discriminants
4868 (Id, Has_Unknown_Discriminants (T));
4870 if Has_Discriminants (T) then
4871 Set_Discriminant_Constraint
4872 (Id, Discriminant_Constraint (T));
4873 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4875 elsif Has_Unknown_Discriminants (Id) then
4876 Set_Discriminant_Constraint (Id, No_Elist);
4877 end if;
4879 if Is_Tagged_Type (T) then
4880 Set_Is_Tagged_Type (Id, True);
4881 Set_No_Tagged_Streams_Pragma
4882 (Id, No_Tagged_Streams_Pragma (T));
4883 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4884 Set_Direct_Primitive_Operations
4885 (Id, Direct_Primitive_Operations (T));
4886 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4888 if Is_Interface (T) then
4889 Set_Is_Interface (Id);
4890 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4891 end if;
4892 end if;
4894 when Private_Kind =>
4895 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4896 Set_Has_Discriminants (Id, Has_Discriminants (T));
4897 Set_Is_Constrained (Id, Is_Constrained (T));
4898 Set_First_Entity (Id, First_Entity (T));
4899 Set_Last_Entity (Id, Last_Entity (T));
4900 Set_Private_Dependents (Id, New_Elmt_List);
4901 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4902 Set_Has_Implicit_Dereference
4903 (Id, Has_Implicit_Dereference (T));
4904 Set_Has_Unknown_Discriminants
4905 (Id, Has_Unknown_Discriminants (T));
4906 Set_Known_To_Have_Preelab_Init
4907 (Id, Known_To_Have_Preelab_Init (T));
4909 if Is_Tagged_Type (T) then
4910 Set_Is_Tagged_Type (Id);
4911 Set_No_Tagged_Streams_Pragma (Id,
4912 No_Tagged_Streams_Pragma (T));
4913 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4914 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4915 Set_Direct_Primitive_Operations (Id,
4916 Direct_Primitive_Operations (T));
4917 end if;
4919 -- In general the attributes of the subtype of a private type
4920 -- are the attributes of the partial view of parent. However,
4921 -- the full view may be a discriminated type, and the subtype
4922 -- must share the discriminant constraint to generate correct
4923 -- calls to initialization procedures.
4925 if Has_Discriminants (T) then
4926 Set_Discriminant_Constraint
4927 (Id, Discriminant_Constraint (T));
4928 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4930 elsif Present (Full_View (T))
4931 and then Has_Discriminants (Full_View (T))
4932 then
4933 Set_Discriminant_Constraint
4934 (Id, Discriminant_Constraint (Full_View (T)));
4935 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4937 -- This would seem semantically correct, but apparently
4938 -- generates spurious errors about missing components ???
4940 -- Set_Has_Discriminants (Id);
4941 end if;
4943 Prepare_Private_Subtype_Completion (Id, N);
4945 -- If this is the subtype of a constrained private type with
4946 -- discriminants that has got a full view and we also have
4947 -- built a completion just above, show that the completion
4948 -- is a clone of the full view to the back-end.
4950 if Has_Discriminants (T)
4951 and then not Has_Unknown_Discriminants (T)
4952 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4953 and then Present (Full_View (T))
4954 and then Present (Full_View (Id))
4955 then
4956 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4957 end if;
4959 when Access_Kind =>
4960 Set_Ekind (Id, E_Access_Subtype);
4961 Set_Is_Constrained (Id, Is_Constrained (T));
4962 Set_Is_Access_Constant
4963 (Id, Is_Access_Constant (T));
4964 Set_Directly_Designated_Type
4965 (Id, Designated_Type (T));
4966 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4968 -- A Pure library_item must not contain the declaration of a
4969 -- named access type, except within a subprogram, generic
4970 -- subprogram, task unit, or protected unit, or if it has
4971 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4973 if Comes_From_Source (Id)
4974 and then In_Pure_Unit
4975 and then not In_Subprogram_Task_Protected_Unit
4976 and then not No_Pool_Assigned (Id)
4977 then
4978 Error_Msg_N
4979 ("named access types not allowed in pure unit", N);
4980 end if;
4982 when Concurrent_Kind =>
4983 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4984 Set_Corresponding_Record_Type (Id,
4985 Corresponding_Record_Type (T));
4986 Set_First_Entity (Id, First_Entity (T));
4987 Set_First_Private_Entity (Id, First_Private_Entity (T));
4988 Set_Has_Discriminants (Id, Has_Discriminants (T));
4989 Set_Is_Constrained (Id, Is_Constrained (T));
4990 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4991 Set_Last_Entity (Id, Last_Entity (T));
4993 if Is_Tagged_Type (T) then
4994 Set_No_Tagged_Streams_Pragma
4995 (Id, No_Tagged_Streams_Pragma (T));
4996 end if;
4998 if Has_Discriminants (T) then
4999 Set_Discriminant_Constraint
5000 (Id, Discriminant_Constraint (T));
5001 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5002 end if;
5004 when Incomplete_Kind =>
5005 if Ada_Version >= Ada_2005 then
5007 -- In Ada 2005 an incomplete type can be explicitly tagged:
5008 -- propagate indication. Note that we also have to include
5009 -- subtypes for Ada 2012 extended use of incomplete types.
5011 Set_Ekind (Id, E_Incomplete_Subtype);
5012 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5013 Set_Private_Dependents (Id, New_Elmt_List);
5015 if Is_Tagged_Type (Id) then
5016 Set_No_Tagged_Streams_Pragma
5017 (Id, No_Tagged_Streams_Pragma (T));
5018 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5019 end if;
5021 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5022 -- incomplete type visible through a limited with clause.
5024 if From_Limited_With (T)
5025 and then Present (Non_Limited_View (T))
5026 then
5027 Set_From_Limited_With (Id);
5028 Set_Non_Limited_View (Id, Non_Limited_View (T));
5030 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5031 -- to the private dependents of the original incomplete
5032 -- type for future transformation.
5034 else
5035 Append_Elmt (Id, Private_Dependents (T));
5036 end if;
5038 -- If the subtype name denotes an incomplete type an error
5039 -- was already reported by Process_Subtype.
5041 else
5042 Set_Etype (Id, Any_Type);
5043 end if;
5045 when others =>
5046 raise Program_Error;
5047 end case;
5048 end if;
5050 if Etype (Id) = Any_Type then
5051 goto Leave;
5052 end if;
5054 -- Some common processing on all types
5056 Set_Size_Info (Id, T);
5057 Set_First_Rep_Item (Id, First_Rep_Item (T));
5059 -- If the parent type is a generic actual, so is the subtype. This may
5060 -- happen in a nested instance. Why Comes_From_Source test???
5062 if not Comes_From_Source (N) then
5063 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5064 end if;
5066 -- If this is a subtype declaration for an actual in an instance,
5067 -- inherit static and dynamic predicates if any.
5069 -- If declaration has no aspect specifications, inherit predicate
5070 -- info as well. Unclear how to handle the case of both specified
5071 -- and inherited predicates ??? Other inherited aspects, such as
5072 -- invariants, should be OK, but the combination with later pragmas
5073 -- may also require special merging.
5075 if Has_Predicates (T)
5076 and then Present (Predicate_Function (T))
5078 and then
5079 ((In_Instance and then not Comes_From_Source (N))
5080 or else No (Aspect_Specifications (N)))
5081 then
5082 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5084 if Has_Static_Predicate (T) then
5085 Set_Has_Static_Predicate (Id);
5086 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5087 end if;
5088 end if;
5090 -- Remaining processing depends on characteristics of base type
5092 T := Etype (Id);
5094 Set_Is_Immediately_Visible (Id, True);
5095 Set_Depends_On_Private (Id, Has_Private_Component (T));
5096 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5098 if Is_Interface (T) then
5099 Set_Is_Interface (Id);
5100 end if;
5102 if Present (Generic_Parent_Type (N))
5103 and then
5104 (Nkind (Parent (Generic_Parent_Type (N))) /=
5105 N_Formal_Type_Declaration
5106 or else Nkind (Formal_Type_Definition
5107 (Parent (Generic_Parent_Type (N)))) /=
5108 N_Formal_Private_Type_Definition)
5109 then
5110 if Is_Tagged_Type (Id) then
5112 -- If this is a generic actual subtype for a synchronized type,
5113 -- the primitive operations are those of the corresponding record
5114 -- for which there is a separate subtype declaration.
5116 if Is_Concurrent_Type (Id) then
5117 null;
5118 elsif Is_Class_Wide_Type (Id) then
5119 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5120 else
5121 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5122 end if;
5124 elsif Scope (Etype (Id)) /= Standard_Standard then
5125 Derive_Subprograms (Generic_Parent_Type (N), Id);
5126 end if;
5127 end if;
5129 if Is_Private_Type (T) and then Present (Full_View (T)) then
5130 Conditional_Delay (Id, Full_View (T));
5132 -- The subtypes of components or subcomponents of protected types
5133 -- do not need freeze nodes, which would otherwise appear in the
5134 -- wrong scope (before the freeze node for the protected type). The
5135 -- proper subtypes are those of the subcomponents of the corresponding
5136 -- record.
5138 elsif Ekind (Scope (Id)) /= E_Protected_Type
5139 and then Present (Scope (Scope (Id))) -- error defense
5140 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5141 then
5142 Conditional_Delay (Id, T);
5143 end if;
5145 -- Check that Constraint_Error is raised for a scalar subtype indication
5146 -- when the lower or upper bound of a non-null range lies outside the
5147 -- range of the type mark.
5149 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5150 if Is_Scalar_Type (Etype (Id))
5151 and then Scalar_Range (Id) /=
5152 Scalar_Range (Etype (Subtype_Mark
5153 (Subtype_Indication (N))))
5154 then
5155 Apply_Range_Check
5156 (Scalar_Range (Id),
5157 Etype (Subtype_Mark (Subtype_Indication (N))));
5159 -- In the array case, check compatibility for each index
5161 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5162 then
5163 -- This really should be a subprogram that finds the indications
5164 -- to check???
5166 declare
5167 Subt_Index : Node_Id := First_Index (Id);
5168 Target_Index : Node_Id :=
5169 First_Index (Etype
5170 (Subtype_Mark (Subtype_Indication (N))));
5171 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5173 begin
5174 while Present (Subt_Index) loop
5175 if ((Nkind (Subt_Index) = N_Identifier
5176 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5177 or else Nkind (Subt_Index) = N_Subtype_Indication)
5178 and then
5179 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5180 then
5181 declare
5182 Target_Typ : constant Entity_Id :=
5183 Etype (Target_Index);
5184 begin
5185 R_Checks :=
5186 Get_Range_Checks
5187 (Scalar_Range (Etype (Subt_Index)),
5188 Target_Typ,
5189 Etype (Subt_Index),
5190 Defining_Identifier (N));
5192 -- Reset Has_Dynamic_Range_Check on the subtype to
5193 -- prevent elision of the index check due to a dynamic
5194 -- check generated for a preceding index (needed since
5195 -- Insert_Range_Checks tries to avoid generating
5196 -- redundant checks on a given declaration).
5198 Set_Has_Dynamic_Range_Check (N, False);
5200 Insert_Range_Checks
5201 (R_Checks,
5203 Target_Typ,
5204 Sloc (Defining_Identifier (N)));
5206 -- Record whether this index involved a dynamic check
5208 Has_Dyn_Chk :=
5209 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5210 end;
5211 end if;
5213 Next_Index (Subt_Index);
5214 Next_Index (Target_Index);
5215 end loop;
5217 -- Finally, mark whether the subtype involves dynamic checks
5219 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5220 end;
5221 end if;
5222 end if;
5224 -- A type invariant applies to any subtype in its scope, in particular
5225 -- to a generic actual.
5227 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5228 Set_Has_Invariants (Id);
5229 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5230 end if;
5232 -- Make sure that generic actual types are properly frozen. The subtype
5233 -- is marked as a generic actual type when the enclosing instance is
5234 -- analyzed, so here we identify the subtype from the tree structure.
5236 if Expander_Active
5237 and then Is_Generic_Actual_Type (Id)
5238 and then In_Instance
5239 and then not Comes_From_Source (N)
5240 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5241 and then Is_Frozen (T)
5242 then
5243 Freeze_Before (N, Id);
5244 end if;
5246 Set_Optimize_Alignment_Flags (Id);
5247 Check_Eliminated (Id);
5249 <<Leave>>
5250 if Has_Aspects (N) then
5251 Analyze_Aspect_Specifications (N, Id);
5252 end if;
5254 Analyze_Dimension (N);
5256 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5257 -- indications on composite types where the constraints are dynamic.
5258 -- Note that object declarations and aggregates generate implicit
5259 -- subtype declarations, which this covers. One special case is that the
5260 -- implicitly generated "=" for discriminated types includes an
5261 -- offending subtype declaration, which is harmless, so we ignore it
5262 -- here.
5264 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5265 declare
5266 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5267 begin
5268 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5269 and then not (Is_Internal (Id)
5270 and then Is_TSS (Scope (Id),
5271 TSS_Composite_Equality))
5272 and then not Within_Init_Proc
5273 and then not All_Composite_Constraints_Static (Cstr)
5274 then
5275 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5276 end if;
5277 end;
5278 end if;
5279 end Analyze_Subtype_Declaration;
5281 --------------------------------
5282 -- Analyze_Subtype_Indication --
5283 --------------------------------
5285 procedure Analyze_Subtype_Indication (N : Node_Id) is
5286 T : constant Entity_Id := Subtype_Mark (N);
5287 R : constant Node_Id := Range_Expression (Constraint (N));
5289 begin
5290 Analyze (T);
5292 if R /= Error then
5293 Analyze (R);
5294 Set_Etype (N, Etype (R));
5295 Resolve (R, Entity (T));
5296 else
5297 Set_Error_Posted (R);
5298 Set_Error_Posted (T);
5299 end if;
5300 end Analyze_Subtype_Indication;
5302 --------------------------
5303 -- Analyze_Variant_Part --
5304 --------------------------
5306 procedure Analyze_Variant_Part (N : Node_Id) is
5307 Discr_Name : Node_Id;
5308 Discr_Type : Entity_Id;
5310 procedure Process_Variant (A : Node_Id);
5311 -- Analyze declarations for a single variant
5313 package Analyze_Variant_Choices is
5314 new Generic_Analyze_Choices (Process_Variant);
5315 use Analyze_Variant_Choices;
5317 ---------------------
5318 -- Process_Variant --
5319 ---------------------
5321 procedure Process_Variant (A : Node_Id) is
5322 CL : constant Node_Id := Component_List (A);
5323 begin
5324 if not Null_Present (CL) then
5325 Analyze_Declarations (Component_Items (CL));
5327 if Present (Variant_Part (CL)) then
5328 Analyze (Variant_Part (CL));
5329 end if;
5330 end if;
5331 end Process_Variant;
5333 -- Start of processing for Analyze_Variant_Part
5335 begin
5336 Discr_Name := Name (N);
5337 Analyze (Discr_Name);
5339 -- If Discr_Name bad, get out (prevent cascaded errors)
5341 if Etype (Discr_Name) = Any_Type then
5342 return;
5343 end if;
5345 -- Check invalid discriminant in variant part
5347 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5348 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5349 end if;
5351 Discr_Type := Etype (Entity (Discr_Name));
5353 if not Is_Discrete_Type (Discr_Type) then
5354 Error_Msg_N
5355 ("discriminant in a variant part must be of a discrete type",
5356 Name (N));
5357 return;
5358 end if;
5360 -- Now analyze the choices, which also analyzes the declarations that
5361 -- are associated with each choice.
5363 Analyze_Choices (Variants (N), Discr_Type);
5365 -- Note: we used to instantiate and call Check_Choices here to check
5366 -- that the choices covered the discriminant, but it's too early to do
5367 -- that because of statically predicated subtypes, whose analysis may
5368 -- be deferred to their freeze point which may be as late as the freeze
5369 -- point of the containing record. So this call is now to be found in
5370 -- Freeze_Record_Declaration.
5372 end Analyze_Variant_Part;
5374 ----------------------------
5375 -- Array_Type_Declaration --
5376 ----------------------------
5378 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5379 Component_Def : constant Node_Id := Component_Definition (Def);
5380 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5381 Element_Type : Entity_Id;
5382 Implicit_Base : Entity_Id;
5383 Index : Node_Id;
5384 Related_Id : Entity_Id := Empty;
5385 Nb_Index : Nat;
5386 P : constant Node_Id := Parent (Def);
5387 Priv : Entity_Id;
5389 begin
5390 if Nkind (Def) = N_Constrained_Array_Definition then
5391 Index := First (Discrete_Subtype_Definitions (Def));
5392 else
5393 Index := First (Subtype_Marks (Def));
5394 end if;
5396 -- Find proper names for the implicit types which may be public. In case
5397 -- of anonymous arrays we use the name of the first object of that type
5398 -- as prefix.
5400 if No (T) then
5401 Related_Id := Defining_Identifier (P);
5402 else
5403 Related_Id := T;
5404 end if;
5406 Nb_Index := 1;
5407 while Present (Index) loop
5408 Analyze (Index);
5410 -- Test for odd case of trying to index a type by the type itself
5412 if Is_Entity_Name (Index) and then Entity (Index) = T then
5413 Error_Msg_N ("type& cannot be indexed by itself", Index);
5414 Set_Entity (Index, Standard_Boolean);
5415 Set_Etype (Index, Standard_Boolean);
5416 end if;
5418 -- Check SPARK restriction requiring a subtype mark
5420 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5421 Check_SPARK_05_Restriction ("subtype mark required", Index);
5422 end if;
5424 -- Add a subtype declaration for each index of private array type
5425 -- declaration whose etype is also private. For example:
5427 -- package Pkg is
5428 -- type Index is private;
5429 -- private
5430 -- type Table is array (Index) of ...
5431 -- end;
5433 -- This is currently required by the expander for the internally
5434 -- generated equality subprogram of records with variant parts in
5435 -- which the etype of some component is such private type.
5437 if Ekind (Current_Scope) = E_Package
5438 and then In_Private_Part (Current_Scope)
5439 and then Has_Private_Declaration (Etype (Index))
5440 then
5441 declare
5442 Loc : constant Source_Ptr := Sloc (Def);
5443 New_E : Entity_Id;
5444 Decl : Entity_Id;
5446 begin
5447 New_E := Make_Temporary (Loc, 'T');
5448 Set_Is_Internal (New_E);
5450 Decl :=
5451 Make_Subtype_Declaration (Loc,
5452 Defining_Identifier => New_E,
5453 Subtype_Indication =>
5454 New_Occurrence_Of (Etype (Index), Loc));
5456 Insert_Before (Parent (Def), Decl);
5457 Analyze (Decl);
5458 Set_Etype (Index, New_E);
5460 -- If the index is a range the Entity attribute is not
5461 -- available. Example:
5463 -- package Pkg is
5464 -- type T is private;
5465 -- private
5466 -- type T is new Natural;
5467 -- Table : array (T(1) .. T(10)) of Boolean;
5468 -- end Pkg;
5470 if Nkind (Index) /= N_Range then
5471 Set_Entity (Index, New_E);
5472 end if;
5473 end;
5474 end if;
5476 Make_Index (Index, P, Related_Id, Nb_Index);
5478 -- Check error of subtype with predicate for index type
5480 Bad_Predicated_Subtype_Use
5481 ("subtype& has predicate, not allowed as index subtype",
5482 Index, Etype (Index));
5484 -- Move to next index
5486 Next_Index (Index);
5487 Nb_Index := Nb_Index + 1;
5488 end loop;
5490 -- Process subtype indication if one is present
5492 if Present (Component_Typ) then
5493 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5495 Set_Etype (Component_Typ, Element_Type);
5497 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5498 Check_SPARK_05_Restriction
5499 ("subtype mark required", Component_Typ);
5500 end if;
5502 -- Ada 2005 (AI-230): Access Definition case
5504 else pragma Assert (Present (Access_Definition (Component_Def)));
5506 -- Indicate that the anonymous access type is created by the
5507 -- array type declaration.
5509 Element_Type := Access_Definition
5510 (Related_Nod => P,
5511 N => Access_Definition (Component_Def));
5512 Set_Is_Local_Anonymous_Access (Element_Type);
5514 -- Propagate the parent. This field is needed if we have to generate
5515 -- the master_id associated with an anonymous access to task type
5516 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5518 Set_Parent (Element_Type, Parent (T));
5520 -- Ada 2005 (AI-230): In case of components that are anonymous access
5521 -- types the level of accessibility depends on the enclosing type
5522 -- declaration
5524 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5526 -- Ada 2005 (AI-254)
5528 declare
5529 CD : constant Node_Id :=
5530 Access_To_Subprogram_Definition
5531 (Access_Definition (Component_Def));
5532 begin
5533 if Present (CD) and then Protected_Present (CD) then
5534 Element_Type :=
5535 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5536 end if;
5537 end;
5538 end if;
5540 -- Constrained array case
5542 if No (T) then
5543 T := Create_Itype (E_Void, P, Related_Id, 'T');
5544 end if;
5546 if Nkind (Def) = N_Constrained_Array_Definition then
5548 -- Establish Implicit_Base as unconstrained base type
5550 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5552 Set_Etype (Implicit_Base, Implicit_Base);
5553 Set_Scope (Implicit_Base, Current_Scope);
5554 Set_Has_Delayed_Freeze (Implicit_Base);
5555 Set_Default_SSO (Implicit_Base);
5557 -- The constrained array type is a subtype of the unconstrained one
5559 Set_Ekind (T, E_Array_Subtype);
5560 Init_Size_Align (T);
5561 Set_Etype (T, Implicit_Base);
5562 Set_Scope (T, Current_Scope);
5563 Set_Is_Constrained (T);
5564 Set_First_Index (T,
5565 First (Discrete_Subtype_Definitions (Def)));
5566 Set_Has_Delayed_Freeze (T);
5568 -- Complete setup of implicit base type
5570 Set_First_Index (Implicit_Base, First_Index (T));
5571 Set_Component_Type (Implicit_Base, Element_Type);
5572 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5573 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5574 Set_Component_Size (Implicit_Base, Uint_0);
5575 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5576 Set_Has_Controlled_Component (Implicit_Base,
5577 Has_Controlled_Component (Element_Type)
5578 or else Is_Controlled_Active (Element_Type));
5579 Set_Finalize_Storage_Only (Implicit_Base,
5580 Finalize_Storage_Only (Element_Type));
5582 -- Inherit the "ghostness" from the constrained array type
5584 if Ghost_Mode > None or else Is_Ghost_Entity (T) then
5585 Set_Is_Ghost_Entity (Implicit_Base);
5586 end if;
5588 -- Unconstrained array case
5590 else
5591 Set_Ekind (T, E_Array_Type);
5592 Init_Size_Align (T);
5593 Set_Etype (T, T);
5594 Set_Scope (T, Current_Scope);
5595 Set_Component_Size (T, Uint_0);
5596 Set_Is_Constrained (T, False);
5597 Set_First_Index (T, First (Subtype_Marks (Def)));
5598 Set_Has_Delayed_Freeze (T, True);
5599 Set_Has_Task (T, Has_Task (Element_Type));
5600 Set_Has_Protected (T, Has_Protected (Element_Type));
5601 Set_Has_Controlled_Component (T, Has_Controlled_Component
5602 (Element_Type)
5603 or else
5604 Is_Controlled_Active (Element_Type));
5605 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5606 (Element_Type));
5607 Set_Default_SSO (T);
5608 end if;
5610 -- Common attributes for both cases
5612 Set_Component_Type (Base_Type (T), Element_Type);
5613 Set_Packed_Array_Impl_Type (T, Empty);
5615 if Aliased_Present (Component_Definition (Def)) then
5616 Check_SPARK_05_Restriction
5617 ("aliased is not allowed", Component_Definition (Def));
5618 Set_Has_Aliased_Components (Etype (T));
5619 end if;
5621 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5622 -- array type to ensure that objects of this type are initialized.
5624 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5625 Set_Can_Never_Be_Null (T);
5627 if Null_Exclusion_Present (Component_Definition (Def))
5629 -- No need to check itypes because in their case this check was
5630 -- done at their point of creation
5632 and then not Is_Itype (Element_Type)
5633 then
5634 Error_Msg_N
5635 ("`NOT NULL` not allowed (null already excluded)",
5636 Subtype_Indication (Component_Definition (Def)));
5637 end if;
5638 end if;
5640 Priv := Private_Component (Element_Type);
5642 if Present (Priv) then
5644 -- Check for circular definitions
5646 if Priv = Any_Type then
5647 Set_Component_Type (Etype (T), Any_Type);
5649 -- There is a gap in the visibility of operations on the composite
5650 -- type only if the component type is defined in a different scope.
5652 elsif Scope (Priv) = Current_Scope then
5653 null;
5655 elsif Is_Limited_Type (Priv) then
5656 Set_Is_Limited_Composite (Etype (T));
5657 Set_Is_Limited_Composite (T);
5658 else
5659 Set_Is_Private_Composite (Etype (T));
5660 Set_Is_Private_Composite (T);
5661 end if;
5662 end if;
5664 -- A syntax error in the declaration itself may lead to an empty index
5665 -- list, in which case do a minimal patch.
5667 if No (First_Index (T)) then
5668 Error_Msg_N ("missing index definition in array type declaration", T);
5670 declare
5671 Indexes : constant List_Id :=
5672 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5673 begin
5674 Set_Discrete_Subtype_Definitions (Def, Indexes);
5675 Set_First_Index (T, First (Indexes));
5676 return;
5677 end;
5678 end if;
5680 -- Create a concatenation operator for the new type. Internal array
5681 -- types created for packed entities do not need such, they are
5682 -- compatible with the user-defined type.
5684 if Number_Dimensions (T) = 1
5685 and then not Is_Packed_Array_Impl_Type (T)
5686 then
5687 New_Concatenation_Op (T);
5688 end if;
5690 -- In the case of an unconstrained array the parser has already verified
5691 -- that all the indexes are unconstrained but we still need to make sure
5692 -- that the element type is constrained.
5694 if not Is_Definite_Subtype (Element_Type) then
5695 Error_Msg_N
5696 ("unconstrained element type in array declaration",
5697 Subtype_Indication (Component_Def));
5699 elsif Is_Abstract_Type (Element_Type) then
5700 Error_Msg_N
5701 ("the type of a component cannot be abstract",
5702 Subtype_Indication (Component_Def));
5703 end if;
5705 -- There may be an invariant declared for the component type, but
5706 -- the construction of the component invariant checking procedure
5707 -- takes place during expansion.
5708 end Array_Type_Declaration;
5710 ------------------------------------------------------
5711 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5712 ------------------------------------------------------
5714 function Replace_Anonymous_Access_To_Protected_Subprogram
5715 (N : Node_Id) return Entity_Id
5717 Loc : constant Source_Ptr := Sloc (N);
5719 Curr_Scope : constant Scope_Stack_Entry :=
5720 Scope_Stack.Table (Scope_Stack.Last);
5722 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5724 Acc : Node_Id;
5725 -- Access definition in declaration
5727 Comp : Node_Id;
5728 -- Object definition or formal definition with an access definition
5730 Decl : Node_Id;
5731 -- Declaration of anonymous access to subprogram type
5733 Spec : Node_Id;
5734 -- Original specification in access to subprogram
5736 P : Node_Id;
5738 begin
5739 Set_Is_Internal (Anon);
5741 case Nkind (N) is
5742 when N_Component_Declaration |
5743 N_Unconstrained_Array_Definition |
5744 N_Constrained_Array_Definition =>
5745 Comp := Component_Definition (N);
5746 Acc := Access_Definition (Comp);
5748 when N_Discriminant_Specification =>
5749 Comp := Discriminant_Type (N);
5750 Acc := Comp;
5752 when N_Parameter_Specification =>
5753 Comp := Parameter_Type (N);
5754 Acc := Comp;
5756 when N_Access_Function_Definition =>
5757 Comp := Result_Definition (N);
5758 Acc := Comp;
5760 when N_Object_Declaration =>
5761 Comp := Object_Definition (N);
5762 Acc := Comp;
5764 when N_Function_Specification =>
5765 Comp := Result_Definition (N);
5766 Acc := Comp;
5768 when others =>
5769 raise Program_Error;
5770 end case;
5772 Spec := Access_To_Subprogram_Definition (Acc);
5774 Decl :=
5775 Make_Full_Type_Declaration (Loc,
5776 Defining_Identifier => Anon,
5777 Type_Definition => Copy_Separate_Tree (Spec));
5779 Mark_Rewrite_Insertion (Decl);
5781 -- In ASIS mode, analyze the profile on the original node, because
5782 -- the separate copy does not provide enough links to recover the
5783 -- original tree. Analysis is limited to type annotations, within
5784 -- a temporary scope that serves as an anonymous subprogram to collect
5785 -- otherwise useless temporaries and itypes.
5787 if ASIS_Mode then
5788 declare
5789 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5791 begin
5792 if Nkind (Spec) = N_Access_Function_Definition then
5793 Set_Ekind (Typ, E_Function);
5794 else
5795 Set_Ekind (Typ, E_Procedure);
5796 end if;
5798 Set_Parent (Typ, N);
5799 Set_Scope (Typ, Current_Scope);
5800 Push_Scope (Typ);
5802 -- Nothing to do if procedure is parameterless
5804 if Present (Parameter_Specifications (Spec)) then
5805 Process_Formals (Parameter_Specifications (Spec), Spec);
5806 end if;
5808 if Nkind (Spec) = N_Access_Function_Definition then
5809 declare
5810 Def : constant Node_Id := Result_Definition (Spec);
5812 begin
5813 -- The result might itself be an anonymous access type, so
5814 -- have to recurse.
5816 if Nkind (Def) = N_Access_Definition then
5817 if Present (Access_To_Subprogram_Definition (Def)) then
5818 Set_Etype
5819 (Def,
5820 Replace_Anonymous_Access_To_Protected_Subprogram
5821 (Spec));
5822 else
5823 Find_Type (Subtype_Mark (Def));
5824 end if;
5826 else
5827 Find_Type (Def);
5828 end if;
5829 end;
5830 end if;
5832 End_Scope;
5833 end;
5834 end if;
5836 -- Insert the new declaration in the nearest enclosing scope. If the
5837 -- node is a body and N is its return type, the declaration belongs in
5838 -- the enclosing scope.
5840 P := Parent (N);
5842 if Nkind (P) = N_Subprogram_Body
5843 and then Nkind (N) = N_Function_Specification
5844 then
5845 P := Parent (P);
5846 end if;
5848 while Present (P) and then not Has_Declarations (P) loop
5849 P := Parent (P);
5850 end loop;
5852 pragma Assert (Present (P));
5854 if Nkind (P) = N_Package_Specification then
5855 Prepend (Decl, Visible_Declarations (P));
5856 else
5857 Prepend (Decl, Declarations (P));
5858 end if;
5860 -- Replace the anonymous type with an occurrence of the new declaration.
5861 -- In all cases the rewritten node does not have the null-exclusion
5862 -- attribute because (if present) it was already inherited by the
5863 -- anonymous entity (Anon). Thus, in case of components we do not
5864 -- inherit this attribute.
5866 if Nkind (N) = N_Parameter_Specification then
5867 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5868 Set_Etype (Defining_Identifier (N), Anon);
5869 Set_Null_Exclusion_Present (N, False);
5871 elsif Nkind (N) = N_Object_Declaration then
5872 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5873 Set_Etype (Defining_Identifier (N), Anon);
5875 elsif Nkind (N) = N_Access_Function_Definition then
5876 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5878 elsif Nkind (N) = N_Function_Specification then
5879 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5880 Set_Etype (Defining_Unit_Name (N), Anon);
5882 else
5883 Rewrite (Comp,
5884 Make_Component_Definition (Loc,
5885 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5886 end if;
5888 Mark_Rewrite_Insertion (Comp);
5890 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
5891 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
5892 and then not Is_Type (Current_Scope))
5893 then
5895 -- Declaration can be analyzed in the current scope.
5897 Analyze (Decl);
5899 else
5900 -- Temporarily remove the current scope (record or subprogram) from
5901 -- the stack to add the new declarations to the enclosing scope.
5902 -- The anonymous entity is an Itype with the proper attributes.
5904 Scope_Stack.Decrement_Last;
5905 Analyze (Decl);
5906 Set_Is_Itype (Anon);
5907 Set_Associated_Node_For_Itype (Anon, N);
5908 Scope_Stack.Append (Curr_Scope);
5909 end if;
5911 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5912 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5913 return Anon;
5914 end Replace_Anonymous_Access_To_Protected_Subprogram;
5916 -------------------------------
5917 -- Build_Derived_Access_Type --
5918 -------------------------------
5920 procedure Build_Derived_Access_Type
5921 (N : Node_Id;
5922 Parent_Type : Entity_Id;
5923 Derived_Type : Entity_Id)
5925 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5927 Desig_Type : Entity_Id;
5928 Discr : Entity_Id;
5929 Discr_Con_Elist : Elist_Id;
5930 Discr_Con_El : Elmt_Id;
5931 Subt : Entity_Id;
5933 begin
5934 -- Set the designated type so it is available in case this is an access
5935 -- to a self-referential type, e.g. a standard list type with a next
5936 -- pointer. Will be reset after subtype is built.
5938 Set_Directly_Designated_Type
5939 (Derived_Type, Designated_Type (Parent_Type));
5941 Subt := Process_Subtype (S, N);
5943 if Nkind (S) /= N_Subtype_Indication
5944 and then Subt /= Base_Type (Subt)
5945 then
5946 Set_Ekind (Derived_Type, E_Access_Subtype);
5947 end if;
5949 if Ekind (Derived_Type) = E_Access_Subtype then
5950 declare
5951 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5952 Ibase : constant Entity_Id :=
5953 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5954 Svg_Chars : constant Name_Id := Chars (Ibase);
5955 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5957 begin
5958 Copy_Node (Pbase, Ibase);
5960 Set_Chars (Ibase, Svg_Chars);
5961 Set_Next_Entity (Ibase, Svg_Next_E);
5962 Set_Sloc (Ibase, Sloc (Derived_Type));
5963 Set_Scope (Ibase, Scope (Derived_Type));
5964 Set_Freeze_Node (Ibase, Empty);
5965 Set_Is_Frozen (Ibase, False);
5966 Set_Comes_From_Source (Ibase, False);
5967 Set_Is_First_Subtype (Ibase, False);
5969 Set_Etype (Ibase, Pbase);
5970 Set_Etype (Derived_Type, Ibase);
5971 end;
5972 end if;
5974 Set_Directly_Designated_Type
5975 (Derived_Type, Designated_Type (Subt));
5977 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5978 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5979 Set_Size_Info (Derived_Type, Parent_Type);
5980 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5981 Set_Depends_On_Private (Derived_Type,
5982 Has_Private_Component (Derived_Type));
5983 Conditional_Delay (Derived_Type, Subt);
5985 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5986 -- that it is not redundant.
5988 if Null_Exclusion_Present (Type_Definition (N)) then
5989 Set_Can_Never_Be_Null (Derived_Type);
5991 elsif Can_Never_Be_Null (Parent_Type) then
5992 Set_Can_Never_Be_Null (Derived_Type);
5993 end if;
5995 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5996 -- the root type for this information.
5998 -- Apply range checks to discriminants for derived record case
5999 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6001 Desig_Type := Designated_Type (Derived_Type);
6003 if Is_Composite_Type (Desig_Type)
6004 and then (not Is_Array_Type (Desig_Type))
6005 and then Has_Discriminants (Desig_Type)
6006 and then Base_Type (Desig_Type) /= Desig_Type
6007 then
6008 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6009 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6011 Discr := First_Discriminant (Base_Type (Desig_Type));
6012 while Present (Discr_Con_El) loop
6013 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6014 Next_Elmt (Discr_Con_El);
6015 Next_Discriminant (Discr);
6016 end loop;
6017 end if;
6018 end Build_Derived_Access_Type;
6020 ------------------------------
6021 -- Build_Derived_Array_Type --
6022 ------------------------------
6024 procedure Build_Derived_Array_Type
6025 (N : Node_Id;
6026 Parent_Type : Entity_Id;
6027 Derived_Type : Entity_Id)
6029 Loc : constant Source_Ptr := Sloc (N);
6030 Tdef : constant Node_Id := Type_Definition (N);
6031 Indic : constant Node_Id := Subtype_Indication (Tdef);
6032 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6033 Implicit_Base : Entity_Id;
6034 New_Indic : Node_Id;
6036 procedure Make_Implicit_Base;
6037 -- If the parent subtype is constrained, the derived type is a subtype
6038 -- of an implicit base type derived from the parent base.
6040 ------------------------
6041 -- Make_Implicit_Base --
6042 ------------------------
6044 procedure Make_Implicit_Base is
6045 begin
6046 Implicit_Base :=
6047 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6049 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6050 Set_Etype (Implicit_Base, Parent_Base);
6052 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6053 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6055 Set_Has_Delayed_Freeze (Implicit_Base, True);
6057 -- Inherit the "ghostness" from the parent base type
6059 if Ghost_Mode > None or else Is_Ghost_Entity (Parent_Base) then
6060 Set_Is_Ghost_Entity (Implicit_Base);
6061 end if;
6062 end Make_Implicit_Base;
6064 -- Start of processing for Build_Derived_Array_Type
6066 begin
6067 if not Is_Constrained (Parent_Type) then
6068 if Nkind (Indic) /= N_Subtype_Indication then
6069 Set_Ekind (Derived_Type, E_Array_Type);
6071 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6072 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6074 Set_Has_Delayed_Freeze (Derived_Type, True);
6076 else
6077 Make_Implicit_Base;
6078 Set_Etype (Derived_Type, Implicit_Base);
6080 New_Indic :=
6081 Make_Subtype_Declaration (Loc,
6082 Defining_Identifier => Derived_Type,
6083 Subtype_Indication =>
6084 Make_Subtype_Indication (Loc,
6085 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6086 Constraint => Constraint (Indic)));
6088 Rewrite (N, New_Indic);
6089 Analyze (N);
6090 end if;
6092 else
6093 if Nkind (Indic) /= N_Subtype_Indication then
6094 Make_Implicit_Base;
6096 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6097 Set_Etype (Derived_Type, Implicit_Base);
6098 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6100 else
6101 Error_Msg_N ("illegal constraint on constrained type", Indic);
6102 end if;
6103 end if;
6105 -- If parent type is not a derived type itself, and is declared in
6106 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6107 -- the new type's concatenation operator since Derive_Subprograms
6108 -- will not inherit the parent's operator. If the parent type is
6109 -- unconstrained, the operator is of the unconstrained base type.
6111 if Number_Dimensions (Parent_Type) = 1
6112 and then not Is_Limited_Type (Parent_Type)
6113 and then not Is_Derived_Type (Parent_Type)
6114 and then not Is_Package_Or_Generic_Package
6115 (Scope (Base_Type (Parent_Type)))
6116 then
6117 if not Is_Constrained (Parent_Type)
6118 and then Is_Constrained (Derived_Type)
6119 then
6120 New_Concatenation_Op (Implicit_Base);
6121 else
6122 New_Concatenation_Op (Derived_Type);
6123 end if;
6124 end if;
6125 end Build_Derived_Array_Type;
6127 -----------------------------------
6128 -- Build_Derived_Concurrent_Type --
6129 -----------------------------------
6131 procedure Build_Derived_Concurrent_Type
6132 (N : Node_Id;
6133 Parent_Type : Entity_Id;
6134 Derived_Type : Entity_Id)
6136 Loc : constant Source_Ptr := Sloc (N);
6138 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6139 Corr_Decl : Node_Id;
6140 Corr_Decl_Needed : Boolean;
6141 -- If the derived type has fewer discriminants than its parent, the
6142 -- corresponding record is also a derived type, in order to account for
6143 -- the bound discriminants. We create a full type declaration for it in
6144 -- this case.
6146 Constraint_Present : constant Boolean :=
6147 Nkind (Subtype_Indication (Type_Definition (N))) =
6148 N_Subtype_Indication;
6150 D_Constraint : Node_Id;
6151 New_Constraint : Elist_Id;
6152 Old_Disc : Entity_Id;
6153 New_Disc : Entity_Id;
6154 New_N : Node_Id;
6156 begin
6157 Set_Stored_Constraint (Derived_Type, No_Elist);
6158 Corr_Decl_Needed := False;
6159 Old_Disc := Empty;
6161 if Present (Discriminant_Specifications (N))
6162 and then Constraint_Present
6163 then
6164 Old_Disc := First_Discriminant (Parent_Type);
6165 New_Disc := First (Discriminant_Specifications (N));
6166 while Present (New_Disc) and then Present (Old_Disc) loop
6167 Next_Discriminant (Old_Disc);
6168 Next (New_Disc);
6169 end loop;
6170 end if;
6172 if Present (Old_Disc) and then Expander_Active then
6174 -- The new type has fewer discriminants, so we need to create a new
6175 -- corresponding record, which is derived from the corresponding
6176 -- record of the parent, and has a stored constraint that captures
6177 -- the values of the discriminant constraints. The corresponding
6178 -- record is needed only if expander is active and code generation is
6179 -- enabled.
6181 -- The type declaration for the derived corresponding record has the
6182 -- same discriminant part and constraints as the current declaration.
6183 -- Copy the unanalyzed tree to build declaration.
6185 Corr_Decl_Needed := True;
6186 New_N := Copy_Separate_Tree (N);
6188 Corr_Decl :=
6189 Make_Full_Type_Declaration (Loc,
6190 Defining_Identifier => Corr_Record,
6191 Discriminant_Specifications =>
6192 Discriminant_Specifications (New_N),
6193 Type_Definition =>
6194 Make_Derived_Type_Definition (Loc,
6195 Subtype_Indication =>
6196 Make_Subtype_Indication (Loc,
6197 Subtype_Mark =>
6198 New_Occurrence_Of
6199 (Corresponding_Record_Type (Parent_Type), Loc),
6200 Constraint =>
6201 Constraint
6202 (Subtype_Indication (Type_Definition (New_N))))));
6203 end if;
6205 -- Copy Storage_Size and Relative_Deadline variables if task case
6207 if Is_Task_Type (Parent_Type) then
6208 Set_Storage_Size_Variable (Derived_Type,
6209 Storage_Size_Variable (Parent_Type));
6210 Set_Relative_Deadline_Variable (Derived_Type,
6211 Relative_Deadline_Variable (Parent_Type));
6212 end if;
6214 if Present (Discriminant_Specifications (N)) then
6215 Push_Scope (Derived_Type);
6216 Check_Or_Process_Discriminants (N, Derived_Type);
6218 if Constraint_Present then
6219 New_Constraint :=
6220 Expand_To_Stored_Constraint
6221 (Parent_Type,
6222 Build_Discriminant_Constraints
6223 (Parent_Type,
6224 Subtype_Indication (Type_Definition (N)), True));
6225 end if;
6227 End_Scope;
6229 elsif Constraint_Present then
6231 -- Build constrained subtype, copying the constraint, and derive
6232 -- from it to create a derived constrained type.
6234 declare
6235 Loc : constant Source_Ptr := Sloc (N);
6236 Anon : constant Entity_Id :=
6237 Make_Defining_Identifier (Loc,
6238 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6239 Decl : Node_Id;
6241 begin
6242 Decl :=
6243 Make_Subtype_Declaration (Loc,
6244 Defining_Identifier => Anon,
6245 Subtype_Indication =>
6246 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6247 Insert_Before (N, Decl);
6248 Analyze (Decl);
6250 Rewrite (Subtype_Indication (Type_Definition (N)),
6251 New_Occurrence_Of (Anon, Loc));
6252 Set_Analyzed (Derived_Type, False);
6253 Analyze (N);
6254 return;
6255 end;
6256 end if;
6258 -- By default, operations and private data are inherited from parent.
6259 -- However, in the presence of bound discriminants, a new corresponding
6260 -- record will be created, see below.
6262 Set_Has_Discriminants
6263 (Derived_Type, Has_Discriminants (Parent_Type));
6264 Set_Corresponding_Record_Type
6265 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6267 -- Is_Constrained is set according the parent subtype, but is set to
6268 -- False if the derived type is declared with new discriminants.
6270 Set_Is_Constrained
6271 (Derived_Type,
6272 (Is_Constrained (Parent_Type) or else Constraint_Present)
6273 and then not Present (Discriminant_Specifications (N)));
6275 if Constraint_Present then
6276 if not Has_Discriminants (Parent_Type) then
6277 Error_Msg_N ("untagged parent must have discriminants", N);
6279 elsif Present (Discriminant_Specifications (N)) then
6281 -- Verify that new discriminants are used to constrain old ones
6283 D_Constraint :=
6284 First
6285 (Constraints
6286 (Constraint (Subtype_Indication (Type_Definition (N)))));
6288 Old_Disc := First_Discriminant (Parent_Type);
6290 while Present (D_Constraint) loop
6291 if Nkind (D_Constraint) /= N_Discriminant_Association then
6293 -- Positional constraint. If it is a reference to a new
6294 -- discriminant, it constrains the corresponding old one.
6296 if Nkind (D_Constraint) = N_Identifier then
6297 New_Disc := First_Discriminant (Derived_Type);
6298 while Present (New_Disc) loop
6299 exit when Chars (New_Disc) = Chars (D_Constraint);
6300 Next_Discriminant (New_Disc);
6301 end loop;
6303 if Present (New_Disc) then
6304 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6305 end if;
6306 end if;
6308 Next_Discriminant (Old_Disc);
6310 -- if this is a named constraint, search by name for the old
6311 -- discriminants constrained by the new one.
6313 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6315 -- Find new discriminant with that name
6317 New_Disc := First_Discriminant (Derived_Type);
6318 while Present (New_Disc) loop
6319 exit when
6320 Chars (New_Disc) = Chars (Expression (D_Constraint));
6321 Next_Discriminant (New_Disc);
6322 end loop;
6324 if Present (New_Disc) then
6326 -- Verify that new discriminant renames some discriminant
6327 -- of the parent type, and associate the new discriminant
6328 -- with one or more old ones that it renames.
6330 declare
6331 Selector : Node_Id;
6333 begin
6334 Selector := First (Selector_Names (D_Constraint));
6335 while Present (Selector) loop
6336 Old_Disc := First_Discriminant (Parent_Type);
6337 while Present (Old_Disc) loop
6338 exit when Chars (Old_Disc) = Chars (Selector);
6339 Next_Discriminant (Old_Disc);
6340 end loop;
6342 if Present (Old_Disc) then
6343 Set_Corresponding_Discriminant
6344 (New_Disc, Old_Disc);
6345 end if;
6347 Next (Selector);
6348 end loop;
6349 end;
6350 end if;
6351 end if;
6353 Next (D_Constraint);
6354 end loop;
6356 New_Disc := First_Discriminant (Derived_Type);
6357 while Present (New_Disc) loop
6358 if No (Corresponding_Discriminant (New_Disc)) then
6359 Error_Msg_NE
6360 ("new discriminant& must constrain old one", N, New_Disc);
6362 elsif not
6363 Subtypes_Statically_Compatible
6364 (Etype (New_Disc),
6365 Etype (Corresponding_Discriminant (New_Disc)))
6366 then
6367 Error_Msg_NE
6368 ("& not statically compatible with parent discriminant",
6369 N, New_Disc);
6370 end if;
6372 Next_Discriminant (New_Disc);
6373 end loop;
6374 end if;
6376 elsif Present (Discriminant_Specifications (N)) then
6377 Error_Msg_N
6378 ("missing discriminant constraint in untagged derivation", N);
6379 end if;
6381 -- The entity chain of the derived type includes the new discriminants
6382 -- but shares operations with the parent.
6384 if Present (Discriminant_Specifications (N)) then
6385 Old_Disc := First_Discriminant (Parent_Type);
6386 while Present (Old_Disc) loop
6387 if No (Next_Entity (Old_Disc))
6388 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6389 then
6390 Set_Next_Entity
6391 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6392 exit;
6393 end if;
6395 Next_Discriminant (Old_Disc);
6396 end loop;
6398 else
6399 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6400 if Has_Discriminants (Parent_Type) then
6401 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6402 Set_Discriminant_Constraint (
6403 Derived_Type, Discriminant_Constraint (Parent_Type));
6404 end if;
6405 end if;
6407 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6409 Set_Has_Completion (Derived_Type);
6411 if Corr_Decl_Needed then
6412 Set_Stored_Constraint (Derived_Type, New_Constraint);
6413 Insert_After (N, Corr_Decl);
6414 Analyze (Corr_Decl);
6415 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6416 end if;
6417 end Build_Derived_Concurrent_Type;
6419 ------------------------------------
6420 -- Build_Derived_Enumeration_Type --
6421 ------------------------------------
6423 procedure Build_Derived_Enumeration_Type
6424 (N : Node_Id;
6425 Parent_Type : Entity_Id;
6426 Derived_Type : Entity_Id)
6428 Loc : constant Source_Ptr := Sloc (N);
6429 Def : constant Node_Id := Type_Definition (N);
6430 Indic : constant Node_Id := Subtype_Indication (Def);
6431 Implicit_Base : Entity_Id;
6432 Literal : Entity_Id;
6433 New_Lit : Entity_Id;
6434 Literals_List : List_Id;
6435 Type_Decl : Node_Id;
6436 Hi, Lo : Node_Id;
6437 Rang_Expr : Node_Id;
6439 begin
6440 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6441 -- not have explicit literals lists we need to process types derived
6442 -- from them specially. This is handled by Derived_Standard_Character.
6443 -- If the parent type is a generic type, there are no literals either,
6444 -- and we construct the same skeletal representation as for the generic
6445 -- parent type.
6447 if Is_Standard_Character_Type (Parent_Type) then
6448 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6450 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6451 declare
6452 Lo : Node_Id;
6453 Hi : Node_Id;
6455 begin
6456 if Nkind (Indic) /= N_Subtype_Indication then
6457 Lo :=
6458 Make_Attribute_Reference (Loc,
6459 Attribute_Name => Name_First,
6460 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6461 Set_Etype (Lo, Derived_Type);
6463 Hi :=
6464 Make_Attribute_Reference (Loc,
6465 Attribute_Name => Name_Last,
6466 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6467 Set_Etype (Hi, Derived_Type);
6469 Set_Scalar_Range (Derived_Type,
6470 Make_Range (Loc,
6471 Low_Bound => Lo,
6472 High_Bound => Hi));
6473 else
6475 -- Analyze subtype indication and verify compatibility
6476 -- with parent type.
6478 if Base_Type (Process_Subtype (Indic, N)) /=
6479 Base_Type (Parent_Type)
6480 then
6481 Error_Msg_N
6482 ("illegal constraint for formal discrete type", N);
6483 end if;
6484 end if;
6485 end;
6487 else
6488 -- If a constraint is present, analyze the bounds to catch
6489 -- premature usage of the derived literals.
6491 if Nkind (Indic) = N_Subtype_Indication
6492 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6493 then
6494 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6495 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6496 end if;
6498 -- Introduce an implicit base type for the derived type even if there
6499 -- is no constraint attached to it, since this seems closer to the
6500 -- Ada semantics. Build a full type declaration tree for the derived
6501 -- type using the implicit base type as the defining identifier. The
6502 -- build a subtype declaration tree which applies the constraint (if
6503 -- any) have it replace the derived type declaration.
6505 Literal := First_Literal (Parent_Type);
6506 Literals_List := New_List;
6507 while Present (Literal)
6508 and then Ekind (Literal) = E_Enumeration_Literal
6509 loop
6510 -- Literals of the derived type have the same representation as
6511 -- those of the parent type, but this representation can be
6512 -- overridden by an explicit representation clause. Indicate
6513 -- that there is no explicit representation given yet. These
6514 -- derived literals are implicit operations of the new type,
6515 -- and can be overridden by explicit ones.
6517 if Nkind (Literal) = N_Defining_Character_Literal then
6518 New_Lit :=
6519 Make_Defining_Character_Literal (Loc, Chars (Literal));
6520 else
6521 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6522 end if;
6524 Set_Ekind (New_Lit, E_Enumeration_Literal);
6525 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6526 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6527 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6528 Set_Alias (New_Lit, Literal);
6529 Set_Is_Known_Valid (New_Lit, True);
6531 Append (New_Lit, Literals_List);
6532 Next_Literal (Literal);
6533 end loop;
6535 Implicit_Base :=
6536 Make_Defining_Identifier (Sloc (Derived_Type),
6537 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6539 -- Indicate the proper nature of the derived type. This must be done
6540 -- before analysis of the literals, to recognize cases when a literal
6541 -- may be hidden by a previous explicit function definition (cf.
6542 -- c83031a).
6544 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6545 Set_Etype (Derived_Type, Implicit_Base);
6547 Type_Decl :=
6548 Make_Full_Type_Declaration (Loc,
6549 Defining_Identifier => Implicit_Base,
6550 Discriminant_Specifications => No_List,
6551 Type_Definition =>
6552 Make_Enumeration_Type_Definition (Loc, Literals_List));
6554 Mark_Rewrite_Insertion (Type_Decl);
6555 Insert_Before (N, Type_Decl);
6556 Analyze (Type_Decl);
6558 -- The anonymous base now has a full declaration, but this base
6559 -- is not a first subtype.
6561 Set_Is_First_Subtype (Implicit_Base, False);
6563 -- After the implicit base is analyzed its Etype needs to be changed
6564 -- to reflect the fact that it is derived from the parent type which
6565 -- was ignored during analysis. We also set the size at this point.
6567 Set_Etype (Implicit_Base, Parent_Type);
6569 Set_Size_Info (Implicit_Base, Parent_Type);
6570 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6571 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6573 -- Copy other flags from parent type
6575 Set_Has_Non_Standard_Rep
6576 (Implicit_Base, Has_Non_Standard_Rep
6577 (Parent_Type));
6578 Set_Has_Pragma_Ordered
6579 (Implicit_Base, Has_Pragma_Ordered
6580 (Parent_Type));
6581 Set_Has_Delayed_Freeze (Implicit_Base);
6583 -- Process the subtype indication including a validation check on the
6584 -- constraint, if any. If a constraint is given, its bounds must be
6585 -- implicitly converted to the new type.
6587 if Nkind (Indic) = N_Subtype_Indication then
6588 declare
6589 R : constant Node_Id :=
6590 Range_Expression (Constraint (Indic));
6592 begin
6593 if Nkind (R) = N_Range then
6594 Hi := Build_Scalar_Bound
6595 (High_Bound (R), Parent_Type, Implicit_Base);
6596 Lo := Build_Scalar_Bound
6597 (Low_Bound (R), Parent_Type, Implicit_Base);
6599 else
6600 -- Constraint is a Range attribute. Replace with explicit
6601 -- mention of the bounds of the prefix, which must be a
6602 -- subtype.
6604 Analyze (Prefix (R));
6605 Hi :=
6606 Convert_To (Implicit_Base,
6607 Make_Attribute_Reference (Loc,
6608 Attribute_Name => Name_Last,
6609 Prefix =>
6610 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6612 Lo :=
6613 Convert_To (Implicit_Base,
6614 Make_Attribute_Reference (Loc,
6615 Attribute_Name => Name_First,
6616 Prefix =>
6617 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6618 end if;
6619 end;
6621 else
6622 Hi :=
6623 Build_Scalar_Bound
6624 (Type_High_Bound (Parent_Type),
6625 Parent_Type, Implicit_Base);
6626 Lo :=
6627 Build_Scalar_Bound
6628 (Type_Low_Bound (Parent_Type),
6629 Parent_Type, Implicit_Base);
6630 end if;
6632 Rang_Expr :=
6633 Make_Range (Loc,
6634 Low_Bound => Lo,
6635 High_Bound => Hi);
6637 -- If we constructed a default range for the case where no range
6638 -- was given, then the expressions in the range must not freeze
6639 -- since they do not correspond to expressions in the source.
6641 if Nkind (Indic) /= N_Subtype_Indication then
6642 Set_Must_Not_Freeze (Lo);
6643 Set_Must_Not_Freeze (Hi);
6644 Set_Must_Not_Freeze (Rang_Expr);
6645 end if;
6647 Rewrite (N,
6648 Make_Subtype_Declaration (Loc,
6649 Defining_Identifier => Derived_Type,
6650 Subtype_Indication =>
6651 Make_Subtype_Indication (Loc,
6652 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6653 Constraint =>
6654 Make_Range_Constraint (Loc,
6655 Range_Expression => Rang_Expr))));
6657 Analyze (N);
6659 -- Propagate the aspects from the original type declaration to the
6660 -- declaration of the implicit base.
6662 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6664 -- Apply a range check. Since this range expression doesn't have an
6665 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6666 -- this right???
6668 if Nkind (Indic) = N_Subtype_Indication then
6669 Apply_Range_Check
6670 (Range_Expression (Constraint (Indic)), Parent_Type,
6671 Source_Typ => Entity (Subtype_Mark (Indic)));
6672 end if;
6673 end if;
6674 end Build_Derived_Enumeration_Type;
6676 --------------------------------
6677 -- Build_Derived_Numeric_Type --
6678 --------------------------------
6680 procedure Build_Derived_Numeric_Type
6681 (N : Node_Id;
6682 Parent_Type : Entity_Id;
6683 Derived_Type : Entity_Id)
6685 Loc : constant Source_Ptr := Sloc (N);
6686 Tdef : constant Node_Id := Type_Definition (N);
6687 Indic : constant Node_Id := Subtype_Indication (Tdef);
6688 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6689 No_Constraint : constant Boolean := Nkind (Indic) /=
6690 N_Subtype_Indication;
6691 Implicit_Base : Entity_Id;
6693 Lo : Node_Id;
6694 Hi : Node_Id;
6696 begin
6697 -- Process the subtype indication including a validation check on
6698 -- the constraint if any.
6700 Discard_Node (Process_Subtype (Indic, N));
6702 -- Introduce an implicit base type for the derived type even if there
6703 -- is no constraint attached to it, since this seems closer to the Ada
6704 -- semantics.
6706 Implicit_Base :=
6707 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6709 Set_Etype (Implicit_Base, Parent_Base);
6710 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6711 Set_Size_Info (Implicit_Base, Parent_Base);
6712 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6713 Set_Parent (Implicit_Base, Parent (Derived_Type));
6714 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6716 -- Set RM Size for discrete type or decimal fixed-point type
6717 -- Ordinary fixed-point is excluded, why???
6719 if Is_Discrete_Type (Parent_Base)
6720 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6721 then
6722 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6723 end if;
6725 Set_Has_Delayed_Freeze (Implicit_Base);
6727 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6728 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6730 Set_Scalar_Range (Implicit_Base,
6731 Make_Range (Loc,
6732 Low_Bound => Lo,
6733 High_Bound => Hi));
6735 if Has_Infinities (Parent_Base) then
6736 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6737 end if;
6739 -- The Derived_Type, which is the entity of the declaration, is a
6740 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6741 -- absence of an explicit constraint.
6743 Set_Etype (Derived_Type, Implicit_Base);
6745 -- If we did not have a constraint, then the Ekind is set from the
6746 -- parent type (otherwise Process_Subtype has set the bounds)
6748 if No_Constraint then
6749 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6750 end if;
6752 -- If we did not have a range constraint, then set the range from the
6753 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6755 if No_Constraint or else not Has_Range_Constraint (Indic) then
6756 Set_Scalar_Range (Derived_Type,
6757 Make_Range (Loc,
6758 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6759 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6760 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6762 if Has_Infinities (Parent_Type) then
6763 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6764 end if;
6766 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6767 end if;
6769 Set_Is_Descendant_Of_Address (Derived_Type,
6770 Is_Descendant_Of_Address (Parent_Type));
6771 Set_Is_Descendant_Of_Address (Implicit_Base,
6772 Is_Descendant_Of_Address (Parent_Type));
6774 -- Set remaining type-specific fields, depending on numeric type
6776 if Is_Modular_Integer_Type (Parent_Type) then
6777 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6779 Set_Non_Binary_Modulus
6780 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6782 Set_Is_Known_Valid
6783 (Implicit_Base, Is_Known_Valid (Parent_Base));
6785 elsif Is_Floating_Point_Type (Parent_Type) then
6787 -- Digits of base type is always copied from the digits value of
6788 -- the parent base type, but the digits of the derived type will
6789 -- already have been set if there was a constraint present.
6791 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6792 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6794 if No_Constraint then
6795 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6796 end if;
6798 elsif Is_Fixed_Point_Type (Parent_Type) then
6800 -- Small of base type and derived type are always copied from the
6801 -- parent base type, since smalls never change. The delta of the
6802 -- base type is also copied from the parent base type. However the
6803 -- delta of the derived type will have been set already if a
6804 -- constraint was present.
6806 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6807 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6808 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6810 if No_Constraint then
6811 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6812 end if;
6814 -- The scale and machine radix in the decimal case are always
6815 -- copied from the parent base type.
6817 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6818 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6819 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6821 Set_Machine_Radix_10
6822 (Derived_Type, Machine_Radix_10 (Parent_Base));
6823 Set_Machine_Radix_10
6824 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6826 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6828 if No_Constraint then
6829 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6831 else
6832 -- the analysis of the subtype_indication sets the
6833 -- digits value of the derived type.
6835 null;
6836 end if;
6837 end if;
6838 end if;
6840 if Is_Integer_Type (Parent_Type) then
6841 Set_Has_Shift_Operator
6842 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6843 end if;
6845 -- The type of the bounds is that of the parent type, and they
6846 -- must be converted to the derived type.
6848 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6850 -- The implicit_base should be frozen when the derived type is frozen,
6851 -- but note that it is used in the conversions of the bounds. For fixed
6852 -- types we delay the determination of the bounds until the proper
6853 -- freezing point. For other numeric types this is rejected by GCC, for
6854 -- reasons that are currently unclear (???), so we choose to freeze the
6855 -- implicit base now. In the case of integers and floating point types
6856 -- this is harmless because subsequent representation clauses cannot
6857 -- affect anything, but it is still baffling that we cannot use the
6858 -- same mechanism for all derived numeric types.
6860 -- There is a further complication: actually some representation
6861 -- clauses can affect the implicit base type. For example, attribute
6862 -- definition clauses for stream-oriented attributes need to set the
6863 -- corresponding TSS entries on the base type, and this normally
6864 -- cannot be done after the base type is frozen, so the circuitry in
6865 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6866 -- and not use Set_TSS in this case.
6868 -- There are also consequences for the case of delayed representation
6869 -- aspects for some cases. For example, a Size aspect is delayed and
6870 -- should not be evaluated to the freeze point. This early freezing
6871 -- means that the size attribute evaluation happens too early???
6873 if Is_Fixed_Point_Type (Parent_Type) then
6874 Conditional_Delay (Implicit_Base, Parent_Type);
6875 else
6876 Freeze_Before (N, Implicit_Base);
6877 end if;
6878 end Build_Derived_Numeric_Type;
6880 --------------------------------
6881 -- Build_Derived_Private_Type --
6882 --------------------------------
6884 procedure Build_Derived_Private_Type
6885 (N : Node_Id;
6886 Parent_Type : Entity_Id;
6887 Derived_Type : Entity_Id;
6888 Is_Completion : Boolean;
6889 Derive_Subps : Boolean := True)
6891 Loc : constant Source_Ptr := Sloc (N);
6892 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6893 Par_Scope : constant Entity_Id := Scope (Par_Base);
6894 Full_N : constant Node_Id := New_Copy_Tree (N);
6895 Full_Der : Entity_Id := New_Copy (Derived_Type);
6896 Full_P : Entity_Id;
6898 procedure Build_Full_Derivation;
6899 -- Build full derivation, i.e. derive from the full view
6901 procedure Copy_And_Build;
6902 -- Copy derived type declaration, replace parent with its full view,
6903 -- and build derivation
6905 ---------------------------
6906 -- Build_Full_Derivation --
6907 ---------------------------
6909 procedure Build_Full_Derivation is
6910 begin
6911 -- If parent scope is not open, install the declarations
6913 if not In_Open_Scopes (Par_Scope) then
6914 Install_Private_Declarations (Par_Scope);
6915 Install_Visible_Declarations (Par_Scope);
6916 Copy_And_Build;
6917 Uninstall_Declarations (Par_Scope);
6919 -- If parent scope is open and in another unit, and parent has a
6920 -- completion, then the derivation is taking place in the visible
6921 -- part of a child unit. In that case retrieve the full view of
6922 -- the parent momentarily.
6924 elsif not In_Same_Source_Unit (N, Parent_Type) then
6925 Full_P := Full_View (Parent_Type);
6926 Exchange_Declarations (Parent_Type);
6927 Copy_And_Build;
6928 Exchange_Declarations (Full_P);
6930 -- Otherwise it is a local derivation
6932 else
6933 Copy_And_Build;
6934 end if;
6935 end Build_Full_Derivation;
6937 --------------------
6938 -- Copy_And_Build --
6939 --------------------
6941 procedure Copy_And_Build is
6942 Full_Parent : Entity_Id := Parent_Type;
6944 begin
6945 -- If the parent is itself derived from another private type,
6946 -- installing the private declarations has not affected its
6947 -- privacy status, so use its own full view explicitly.
6949 if Is_Private_Type (Full_Parent)
6950 and then Present (Full_View (Full_Parent))
6951 then
6952 Full_Parent := Full_View (Full_Parent);
6953 end if;
6955 -- And its underlying full view if necessary
6957 if Is_Private_Type (Full_Parent)
6958 and then Present (Underlying_Full_View (Full_Parent))
6959 then
6960 Full_Parent := Underlying_Full_View (Full_Parent);
6961 end if;
6963 -- For record, access and most enumeration types, derivation from
6964 -- the full view requires a fully-fledged declaration. In the other
6965 -- cases, just use an itype.
6967 if Ekind (Full_Parent) in Record_Kind
6968 or else Ekind (Full_Parent) in Access_Kind
6969 or else
6970 (Ekind (Full_Parent) in Enumeration_Kind
6971 and then not Is_Standard_Character_Type (Full_Parent)
6972 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6973 then
6974 -- Copy and adjust declaration to provide a completion for what
6975 -- is originally a private declaration. Indicate that full view
6976 -- is internally generated.
6978 Set_Comes_From_Source (Full_N, False);
6979 Set_Comes_From_Source (Full_Der, False);
6980 Set_Parent (Full_Der, Full_N);
6981 Set_Defining_Identifier (Full_N, Full_Der);
6983 -- If there are no constraints, adjust the subtype mark
6985 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6986 N_Subtype_Indication
6987 then
6988 Set_Subtype_Indication
6989 (Type_Definition (Full_N),
6990 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6991 end if;
6993 Insert_After (N, Full_N);
6995 -- Build full view of derived type from full view of parent which
6996 -- is now installed. Subprograms have been derived on the partial
6997 -- view, the completion does not derive them anew.
6999 if Ekind (Full_Parent) in Record_Kind then
7001 -- If parent type is tagged, the completion inherits the proper
7002 -- primitive operations.
7004 if Is_Tagged_Type (Parent_Type) then
7005 Build_Derived_Record_Type
7006 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7007 else
7008 Build_Derived_Record_Type
7009 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7010 end if;
7012 else
7013 Build_Derived_Type
7014 (Full_N, Full_Parent, Full_Der,
7015 Is_Completion => False, Derive_Subps => False);
7016 end if;
7018 -- The full declaration has been introduced into the tree and
7019 -- processed in the step above. It should not be analyzed again
7020 -- (when encountered later in the current list of declarations)
7021 -- to prevent spurious name conflicts. The full entity remains
7022 -- invisible.
7024 Set_Analyzed (Full_N);
7026 else
7027 Full_Der :=
7028 Make_Defining_Identifier (Sloc (Derived_Type),
7029 Chars => Chars (Derived_Type));
7030 Set_Is_Itype (Full_Der);
7031 Set_Associated_Node_For_Itype (Full_Der, N);
7032 Set_Parent (Full_Der, N);
7033 Build_Derived_Type
7034 (N, Full_Parent, Full_Der,
7035 Is_Completion => False, Derive_Subps => False);
7036 end if;
7038 Set_Has_Private_Declaration (Full_Der);
7039 Set_Has_Private_Declaration (Derived_Type);
7041 Set_Scope (Full_Der, Scope (Derived_Type));
7042 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7043 Set_Has_Size_Clause (Full_Der, False);
7044 Set_Has_Alignment_Clause (Full_Der, False);
7045 Set_Has_Delayed_Freeze (Full_Der);
7046 Set_Is_Frozen (Full_Der, False);
7047 Set_Freeze_Node (Full_Der, Empty);
7048 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7049 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7051 -- The convention on the base type may be set in the private part
7052 -- and not propagated to the subtype until later, so we obtain the
7053 -- convention from the base type of the parent.
7055 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7056 end Copy_And_Build;
7058 -- Start of processing for Build_Derived_Private_Type
7060 begin
7061 if Is_Tagged_Type (Parent_Type) then
7062 Full_P := Full_View (Parent_Type);
7064 -- A type extension of a type with unknown discriminants is an
7065 -- indefinite type that the back-end cannot handle directly.
7066 -- We treat it as a private type, and build a completion that is
7067 -- derived from the full view of the parent, and hopefully has
7068 -- known discriminants.
7070 -- If the full view of the parent type has an underlying record view,
7071 -- use it to generate the underlying record view of this derived type
7072 -- (required for chains of derivations with unknown discriminants).
7074 -- Minor optimization: we avoid the generation of useless underlying
7075 -- record view entities if the private type declaration has unknown
7076 -- discriminants but its corresponding full view has no
7077 -- discriminants.
7079 if Has_Unknown_Discriminants (Parent_Type)
7080 and then Present (Full_P)
7081 and then (Has_Discriminants (Full_P)
7082 or else Present (Underlying_Record_View (Full_P)))
7083 and then not In_Open_Scopes (Par_Scope)
7084 and then Expander_Active
7085 then
7086 declare
7087 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7088 New_Ext : constant Node_Id :=
7089 Copy_Separate_Tree
7090 (Record_Extension_Part (Type_Definition (N)));
7091 Decl : Node_Id;
7093 begin
7094 Build_Derived_Record_Type
7095 (N, Parent_Type, Derived_Type, Derive_Subps);
7097 -- Build anonymous completion, as a derivation from the full
7098 -- view of the parent. This is not a completion in the usual
7099 -- sense, because the current type is not private.
7101 Decl :=
7102 Make_Full_Type_Declaration (Loc,
7103 Defining_Identifier => Full_Der,
7104 Type_Definition =>
7105 Make_Derived_Type_Definition (Loc,
7106 Subtype_Indication =>
7107 New_Copy_Tree
7108 (Subtype_Indication (Type_Definition (N))),
7109 Record_Extension_Part => New_Ext));
7111 -- If the parent type has an underlying record view, use it
7112 -- here to build the new underlying record view.
7114 if Present (Underlying_Record_View (Full_P)) then
7115 pragma Assert
7116 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7117 = N_Identifier);
7118 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7119 Underlying_Record_View (Full_P));
7120 end if;
7122 Install_Private_Declarations (Par_Scope);
7123 Install_Visible_Declarations (Par_Scope);
7124 Insert_Before (N, Decl);
7126 -- Mark entity as an underlying record view before analysis,
7127 -- to avoid generating the list of its primitive operations
7128 -- (which is not really required for this entity) and thus
7129 -- prevent spurious errors associated with missing overriding
7130 -- of abstract primitives (overridden only for Derived_Type).
7132 Set_Ekind (Full_Der, E_Record_Type);
7133 Set_Is_Underlying_Record_View (Full_Der);
7134 Set_Default_SSO (Full_Der);
7136 Analyze (Decl);
7138 pragma Assert (Has_Discriminants (Full_Der)
7139 and then not Has_Unknown_Discriminants (Full_Der));
7141 Uninstall_Declarations (Par_Scope);
7143 -- Freeze the underlying record view, to prevent generation of
7144 -- useless dispatching information, which is simply shared with
7145 -- the real derived type.
7147 Set_Is_Frozen (Full_Der);
7149 -- If the derived type has access discriminants, create
7150 -- references to their anonymous types now, to prevent
7151 -- back-end problems when their first use is in generated
7152 -- bodies of primitives.
7154 declare
7155 E : Entity_Id;
7157 begin
7158 E := First_Entity (Full_Der);
7160 while Present (E) loop
7161 if Ekind (E) = E_Discriminant
7162 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7163 then
7164 Build_Itype_Reference (Etype (E), Decl);
7165 end if;
7167 Next_Entity (E);
7168 end loop;
7169 end;
7171 -- Set up links between real entity and underlying record view
7173 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7174 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7175 end;
7177 -- If discriminants are known, build derived record
7179 else
7180 Build_Derived_Record_Type
7181 (N, Parent_Type, Derived_Type, Derive_Subps);
7182 end if;
7184 return;
7186 elsif Has_Discriminants (Parent_Type) then
7188 -- Build partial view of derived type from partial view of parent.
7189 -- This must be done before building the full derivation because the
7190 -- second derivation will modify the discriminants of the first and
7191 -- the discriminants are chained with the rest of the components in
7192 -- the full derivation.
7194 Build_Derived_Record_Type
7195 (N, Parent_Type, Derived_Type, Derive_Subps);
7197 -- Build the full derivation if this is not the anonymous derived
7198 -- base type created by Build_Derived_Record_Type in the constrained
7199 -- case (see point 5. of its head comment) since we build it for the
7200 -- derived subtype. And skip it for protected types altogether, as
7201 -- gigi does not use these types directly.
7203 if Present (Full_View (Parent_Type))
7204 and then not Is_Itype (Derived_Type)
7205 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7206 then
7207 declare
7208 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7209 Discr : Entity_Id;
7210 Last_Discr : Entity_Id;
7212 begin
7213 -- If this is not a completion, construct the implicit full
7214 -- view by deriving from the full view of the parent type.
7215 -- But if this is a completion, the derived private type
7216 -- being built is a full view and the full derivation can
7217 -- only be its underlying full view.
7219 Build_Full_Derivation;
7221 if not Is_Completion then
7222 Set_Full_View (Derived_Type, Full_Der);
7223 else
7224 Set_Underlying_Full_View (Derived_Type, Full_Der);
7225 end if;
7227 if not Is_Base_Type (Derived_Type) then
7228 Set_Full_View (Der_Base, Base_Type (Full_Der));
7229 end if;
7231 -- Copy the discriminant list from full view to the partial
7232 -- view (base type and its subtype). Gigi requires that the
7233 -- partial and full views have the same discriminants.
7235 -- Note that since the partial view points to discriminants
7236 -- in the full view, their scope will be that of the full
7237 -- view. This might cause some front end problems and need
7238 -- adjustment???
7240 Discr := First_Discriminant (Base_Type (Full_Der));
7241 Set_First_Entity (Der_Base, Discr);
7243 loop
7244 Last_Discr := Discr;
7245 Next_Discriminant (Discr);
7246 exit when No (Discr);
7247 end loop;
7249 Set_Last_Entity (Der_Base, Last_Discr);
7250 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7251 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7253 Set_Stored_Constraint
7254 (Full_Der, Stored_Constraint (Derived_Type));
7255 end;
7256 end if;
7258 elsif Present (Full_View (Parent_Type))
7259 and then Has_Discriminants (Full_View (Parent_Type))
7260 then
7261 if Has_Unknown_Discriminants (Parent_Type)
7262 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7263 N_Subtype_Indication
7264 then
7265 Error_Msg_N
7266 ("cannot constrain type with unknown discriminants",
7267 Subtype_Indication (Type_Definition (N)));
7268 return;
7269 end if;
7271 -- If this is not a completion, construct the implicit full view by
7272 -- deriving from the full view of the parent type. But if this is a
7273 -- completion, the derived private type being built is a full view
7274 -- and the full derivation can only be its underlying full view.
7276 Build_Full_Derivation;
7278 if not Is_Completion then
7279 Set_Full_View (Derived_Type, Full_Der);
7280 else
7281 Set_Underlying_Full_View (Derived_Type, Full_Der);
7282 end if;
7284 -- In any case, the primitive operations are inherited from the
7285 -- parent type, not from the internal full view.
7287 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7289 if Derive_Subps then
7290 Derive_Subprograms (Parent_Type, Derived_Type);
7291 end if;
7293 Set_Stored_Constraint (Derived_Type, No_Elist);
7294 Set_Is_Constrained
7295 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7297 else
7298 -- Untagged type, No discriminants on either view
7300 if Nkind (Subtype_Indication (Type_Definition (N))) =
7301 N_Subtype_Indication
7302 then
7303 Error_Msg_N
7304 ("illegal constraint on type without discriminants", N);
7305 end if;
7307 if Present (Discriminant_Specifications (N))
7308 and then Present (Full_View (Parent_Type))
7309 and then not Is_Tagged_Type (Full_View (Parent_Type))
7310 then
7311 Error_Msg_N ("cannot add discriminants to untagged type", N);
7312 end if;
7314 Set_Stored_Constraint (Derived_Type, No_Elist);
7315 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7316 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7317 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7318 (Parent_Type));
7319 Set_Has_Controlled_Component
7320 (Derived_Type, Has_Controlled_Component
7321 (Parent_Type));
7323 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7325 if not Is_Controlled_Active (Parent_Type) then
7326 Set_Finalize_Storage_Only
7327 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7328 end if;
7330 -- If this is not a completion, construct the implicit full view by
7331 -- deriving from the full view of the parent type.
7333 -- ??? If the parent is untagged private and its completion is
7334 -- tagged, this mechanism will not work because we cannot derive from
7335 -- the tagged full view unless we have an extension.
7337 if Present (Full_View (Parent_Type))
7338 and then not Is_Tagged_Type (Full_View (Parent_Type))
7339 and then not Is_Completion
7340 then
7341 Build_Full_Derivation;
7342 Set_Full_View (Derived_Type, Full_Der);
7343 end if;
7344 end if;
7346 Set_Has_Unknown_Discriminants (Derived_Type,
7347 Has_Unknown_Discriminants (Parent_Type));
7349 if Is_Private_Type (Derived_Type) then
7350 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7351 end if;
7353 -- If the parent base type is in scope, add the derived type to its
7354 -- list of private dependents, because its full view may become
7355 -- visible subsequently (in a nested private part, a body, or in a
7356 -- further child unit).
7358 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7359 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7361 -- Check for unusual case where a type completed by a private
7362 -- derivation occurs within a package nested in a child unit, and
7363 -- the parent is declared in an ancestor.
7365 if Is_Child_Unit (Scope (Current_Scope))
7366 and then Is_Completion
7367 and then In_Private_Part (Current_Scope)
7368 and then Scope (Parent_Type) /= Current_Scope
7370 -- Note that if the parent has a completion in the private part,
7371 -- (which is itself a derivation from some other private type)
7372 -- it is that completion that is visible, there is no full view
7373 -- available, and no special processing is needed.
7375 and then Present (Full_View (Parent_Type))
7376 then
7377 -- In this case, the full view of the parent type will become
7378 -- visible in the body of the enclosing child, and only then will
7379 -- the current type be possibly non-private. Build an underlying
7380 -- full view that will be installed when the enclosing child body
7381 -- is compiled.
7383 if Present (Underlying_Full_View (Derived_Type)) then
7384 Full_Der := Underlying_Full_View (Derived_Type);
7385 else
7386 Build_Full_Derivation;
7387 Set_Underlying_Full_View (Derived_Type, Full_Der);
7388 end if;
7390 -- The full view will be used to swap entities on entry/exit to
7391 -- the body, and must appear in the entity list for the package.
7393 Append_Entity (Full_Der, Scope (Derived_Type));
7394 end if;
7395 end if;
7396 end Build_Derived_Private_Type;
7398 -------------------------------
7399 -- Build_Derived_Record_Type --
7400 -------------------------------
7402 -- 1. INTRODUCTION
7404 -- Ideally we would like to use the same model of type derivation for
7405 -- tagged and untagged record types. Unfortunately this is not quite
7406 -- possible because the semantics of representation clauses is different
7407 -- for tagged and untagged records under inheritance. Consider the
7408 -- following:
7410 -- type R (...) is [tagged] record ... end record;
7411 -- type T (...) is new R (...) [with ...];
7413 -- The representation clauses for T can specify a completely different
7414 -- record layout from R's. Hence the same component can be placed in two
7415 -- very different positions in objects of type T and R. If R and T are
7416 -- tagged types, representation clauses for T can only specify the layout
7417 -- of non inherited components, thus components that are common in R and T
7418 -- have the same position in objects of type R and T.
7420 -- This has two implications. The first is that the entire tree for R's
7421 -- declaration needs to be copied for T in the untagged case, so that T
7422 -- can be viewed as a record type of its own with its own representation
7423 -- clauses. The second implication is the way we handle discriminants.
7424 -- Specifically, in the untagged case we need a way to communicate to Gigi
7425 -- what are the real discriminants in the record, while for the semantics
7426 -- we need to consider those introduced by the user to rename the
7427 -- discriminants in the parent type. This is handled by introducing the
7428 -- notion of stored discriminants. See below for more.
7430 -- Fortunately the way regular components are inherited can be handled in
7431 -- the same way in tagged and untagged types.
7433 -- To complicate things a bit more the private view of a private extension
7434 -- cannot be handled in the same way as the full view (for one thing the
7435 -- semantic rules are somewhat different). We will explain what differs
7436 -- below.
7438 -- 2. DISCRIMINANTS UNDER INHERITANCE
7440 -- The semantic rules governing the discriminants of derived types are
7441 -- quite subtle.
7443 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7444 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7446 -- If parent type has discriminants, then the discriminants that are
7447 -- declared in the derived type are [3.4 (11)]:
7449 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7450 -- there is one;
7452 -- o Otherwise, each discriminant of the parent type (implicitly declared
7453 -- in the same order with the same specifications). In this case, the
7454 -- discriminants are said to be "inherited", or if unknown in the parent
7455 -- are also unknown in the derived type.
7457 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7459 -- o The parent subtype must be constrained;
7461 -- o If the parent type is not a tagged type, then each discriminant of
7462 -- the derived type must be used in the constraint defining a parent
7463 -- subtype. [Implementation note: This ensures that the new discriminant
7464 -- can share storage with an existing discriminant.]
7466 -- For the derived type each discriminant of the parent type is either
7467 -- inherited, constrained to equal some new discriminant of the derived
7468 -- type, or constrained to the value of an expression.
7470 -- When inherited or constrained to equal some new discriminant, the
7471 -- parent discriminant and the discriminant of the derived type are said
7472 -- to "correspond".
7474 -- If a discriminant of the parent type is constrained to a specific value
7475 -- in the derived type definition, then the discriminant is said to be
7476 -- "specified" by that derived type definition.
7478 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7480 -- We have spoken about stored discriminants in point 1 (introduction)
7481 -- above. There are two sort of stored discriminants: implicit and
7482 -- explicit. As long as the derived type inherits the same discriminants as
7483 -- the root record type, stored discriminants are the same as regular
7484 -- discriminants, and are said to be implicit. However, if any discriminant
7485 -- in the root type was renamed in the derived type, then the derived
7486 -- type will contain explicit stored discriminants. Explicit stored
7487 -- discriminants are discriminants in addition to the semantically visible
7488 -- discriminants defined for the derived type. Stored discriminants are
7489 -- used by Gigi to figure out what are the physical discriminants in
7490 -- objects of the derived type (see precise definition in einfo.ads).
7491 -- As an example, consider the following:
7493 -- type R (D1, D2, D3 : Int) is record ... end record;
7494 -- type T1 is new R;
7495 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7496 -- type T3 is new T2;
7497 -- type T4 (Y : Int) is new T3 (Y, 99);
7499 -- The following table summarizes the discriminants and stored
7500 -- discriminants in R and T1 through T4.
7502 -- Type Discrim Stored Discrim Comment
7503 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7504 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7505 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7506 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7507 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7509 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7510 -- find the corresponding discriminant in the parent type, while
7511 -- Original_Record_Component (abbreviated ORC below), the actual physical
7512 -- component that is renamed. Finally the field Is_Completely_Hidden
7513 -- (abbreviated ICH below) is set for all explicit stored discriminants
7514 -- (see einfo.ads for more info). For the above example this gives:
7516 -- Discrim CD ORC ICH
7517 -- ^^^^^^^ ^^ ^^^ ^^^
7518 -- D1 in R empty itself no
7519 -- D2 in R empty itself no
7520 -- D3 in R empty itself no
7522 -- D1 in T1 D1 in R itself no
7523 -- D2 in T1 D2 in R itself no
7524 -- D3 in T1 D3 in R itself no
7526 -- X1 in T2 D3 in T1 D3 in T2 no
7527 -- X2 in T2 D1 in T1 D1 in T2 no
7528 -- D1 in T2 empty itself yes
7529 -- D2 in T2 empty itself yes
7530 -- D3 in T2 empty itself yes
7532 -- X1 in T3 X1 in T2 D3 in T3 no
7533 -- X2 in T3 X2 in T2 D1 in T3 no
7534 -- D1 in T3 empty itself yes
7535 -- D2 in T3 empty itself yes
7536 -- D3 in T3 empty itself yes
7538 -- Y in T4 X1 in T3 D3 in T3 no
7539 -- D1 in T3 empty itself yes
7540 -- D2 in T3 empty itself yes
7541 -- D3 in T3 empty itself yes
7543 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7545 -- Type derivation for tagged types is fairly straightforward. If no
7546 -- discriminants are specified by the derived type, these are inherited
7547 -- from the parent. No explicit stored discriminants are ever necessary.
7548 -- The only manipulation that is done to the tree is that of adding a
7549 -- _parent field with parent type and constrained to the same constraint
7550 -- specified for the parent in the derived type definition. For instance:
7552 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7553 -- type T1 is new R with null record;
7554 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7556 -- are changed into:
7558 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7559 -- _parent : R (D1, D2, D3);
7560 -- end record;
7562 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7563 -- _parent : T1 (X2, 88, X1);
7564 -- end record;
7566 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7567 -- ORC and ICH fields are:
7569 -- Discrim CD ORC ICH
7570 -- ^^^^^^^ ^^ ^^^ ^^^
7571 -- D1 in R empty itself no
7572 -- D2 in R empty itself no
7573 -- D3 in R empty itself no
7575 -- D1 in T1 D1 in R D1 in R no
7576 -- D2 in T1 D2 in R D2 in R no
7577 -- D3 in T1 D3 in R D3 in R no
7579 -- X1 in T2 D3 in T1 D3 in R no
7580 -- X2 in T2 D1 in T1 D1 in R no
7582 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7584 -- Regardless of whether we dealing with a tagged or untagged type
7585 -- we will transform all derived type declarations of the form
7587 -- type T is new R (...) [with ...];
7588 -- or
7589 -- subtype S is R (...);
7590 -- type T is new S [with ...];
7591 -- into
7592 -- type BT is new R [with ...];
7593 -- subtype T is BT (...);
7595 -- That is, the base derived type is constrained only if it has no
7596 -- discriminants. The reason for doing this is that GNAT's semantic model
7597 -- assumes that a base type with discriminants is unconstrained.
7599 -- Note that, strictly speaking, the above transformation is not always
7600 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7602 -- procedure B34011A is
7603 -- type REC (D : integer := 0) is record
7604 -- I : Integer;
7605 -- end record;
7607 -- package P is
7608 -- type T6 is new Rec;
7609 -- function F return T6;
7610 -- end P;
7612 -- use P;
7613 -- package Q6 is
7614 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7615 -- end Q6;
7617 -- The definition of Q6.U is illegal. However transforming Q6.U into
7619 -- type BaseU is new T6;
7620 -- subtype U is BaseU (Q6.F.I)
7622 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7623 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7624 -- the transformation described above.
7626 -- There is another instance where the above transformation is incorrect.
7627 -- Consider:
7629 -- package Pack is
7630 -- type Base (D : Integer) is tagged null record;
7631 -- procedure P (X : Base);
7633 -- type Der is new Base (2) with null record;
7634 -- procedure P (X : Der);
7635 -- end Pack;
7637 -- Then the above transformation turns this into
7639 -- type Der_Base is new Base with null record;
7640 -- -- procedure P (X : Base) is implicitly inherited here
7641 -- -- as procedure P (X : Der_Base).
7643 -- subtype Der is Der_Base (2);
7644 -- procedure P (X : Der);
7645 -- -- The overriding of P (X : Der_Base) is illegal since we
7646 -- -- have a parameter conformance problem.
7648 -- To get around this problem, after having semantically processed Der_Base
7649 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7650 -- Discriminant_Constraint from Der so that when parameter conformance is
7651 -- checked when P is overridden, no semantic errors are flagged.
7653 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7655 -- Regardless of whether we are dealing with a tagged or untagged type
7656 -- we will transform all derived type declarations of the form
7658 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7659 -- type T is new R [with ...];
7660 -- into
7661 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7663 -- The reason for such transformation is that it allows us to implement a
7664 -- very clean form of component inheritance as explained below.
7666 -- Note that this transformation is not achieved by direct tree rewriting
7667 -- and manipulation, but rather by redoing the semantic actions that the
7668 -- above transformation will entail. This is done directly in routine
7669 -- Inherit_Components.
7671 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7673 -- In both tagged and untagged derived types, regular non discriminant
7674 -- components are inherited in the derived type from the parent type. In
7675 -- the absence of discriminants component, inheritance is straightforward
7676 -- as components can simply be copied from the parent.
7678 -- If the parent has discriminants, inheriting components constrained with
7679 -- these discriminants requires caution. Consider the following example:
7681 -- type R (D1, D2 : Positive) is [tagged] record
7682 -- S : String (D1 .. D2);
7683 -- end record;
7685 -- type T1 is new R [with null record];
7686 -- type T2 (X : positive) is new R (1, X) [with null record];
7688 -- As explained in 6. above, T1 is rewritten as
7689 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7690 -- which makes the treatment for T1 and T2 identical.
7692 -- What we want when inheriting S, is that references to D1 and D2 in R are
7693 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7694 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7695 -- with either discriminant references in the derived type or expressions.
7696 -- This replacement is achieved as follows: before inheriting R's
7697 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7698 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7699 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7700 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7701 -- by String (1 .. X).
7703 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7705 -- We explain here the rules governing private type extensions relevant to
7706 -- type derivation. These rules are explained on the following example:
7708 -- type D [(...)] is new A [(...)] with private; <-- partial view
7709 -- type D [(...)] is new P [(...)] with null record; <-- full view
7711 -- Type A is called the ancestor subtype of the private extension.
7712 -- Type P is the parent type of the full view of the private extension. It
7713 -- must be A or a type derived from A.
7715 -- The rules concerning the discriminants of private type extensions are
7716 -- [7.3(10-13)]:
7718 -- o If a private extension inherits known discriminants from the ancestor
7719 -- subtype, then the full view must also inherit its discriminants from
7720 -- the ancestor subtype and the parent subtype of the full view must be
7721 -- constrained if and only if the ancestor subtype is constrained.
7723 -- o If a partial view has unknown discriminants, then the full view may
7724 -- define a definite or an indefinite subtype, with or without
7725 -- discriminants.
7727 -- o If a partial view has neither known nor unknown discriminants, then
7728 -- the full view must define a definite subtype.
7730 -- o If the ancestor subtype of a private extension has constrained
7731 -- discriminants, then the parent subtype of the full view must impose a
7732 -- statically matching constraint on those discriminants.
7734 -- This means that only the following forms of private extensions are
7735 -- allowed:
7737 -- type D is new A with private; <-- partial view
7738 -- type D is new P with null record; <-- full view
7740 -- If A has no discriminants than P has no discriminants, otherwise P must
7741 -- inherit A's discriminants.
7743 -- type D is new A (...) with private; <-- partial view
7744 -- type D is new P (:::) with null record; <-- full view
7746 -- P must inherit A's discriminants and (...) and (:::) must statically
7747 -- match.
7749 -- subtype A is R (...);
7750 -- type D is new A with private; <-- partial view
7751 -- type D is new P with null record; <-- full view
7753 -- P must have inherited R's discriminants and must be derived from A or
7754 -- any of its subtypes.
7756 -- type D (..) is new A with private; <-- partial view
7757 -- type D (..) is new P [(:::)] with null record; <-- full view
7759 -- No specific constraints on P's discriminants or constraint (:::).
7760 -- Note that A can be unconstrained, but the parent subtype P must either
7761 -- be constrained or (:::) must be present.
7763 -- type D (..) is new A [(...)] with private; <-- partial view
7764 -- type D (..) is new P [(:::)] with null record; <-- full view
7766 -- P's constraints on A's discriminants must statically match those
7767 -- imposed by (...).
7769 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7771 -- The full view of a private extension is handled exactly as described
7772 -- above. The model chose for the private view of a private extension is
7773 -- the same for what concerns discriminants (i.e. they receive the same
7774 -- treatment as in the tagged case). However, the private view of the
7775 -- private extension always inherits the components of the parent base,
7776 -- without replacing any discriminant reference. Strictly speaking this is
7777 -- incorrect. However, Gigi never uses this view to generate code so this
7778 -- is a purely semantic issue. In theory, a set of transformations similar
7779 -- to those given in 5. and 6. above could be applied to private views of
7780 -- private extensions to have the same model of component inheritance as
7781 -- for non private extensions. However, this is not done because it would
7782 -- further complicate private type processing. Semantically speaking, this
7783 -- leaves us in an uncomfortable situation. As an example consider:
7785 -- package Pack is
7786 -- type R (D : integer) is tagged record
7787 -- S : String (1 .. D);
7788 -- end record;
7789 -- procedure P (X : R);
7790 -- type T is new R (1) with private;
7791 -- private
7792 -- type T is new R (1) with null record;
7793 -- end;
7795 -- This is transformed into:
7797 -- package Pack is
7798 -- type R (D : integer) is tagged record
7799 -- S : String (1 .. D);
7800 -- end record;
7801 -- procedure P (X : R);
7802 -- type T is new R (1) with private;
7803 -- private
7804 -- type BaseT is new R with null record;
7805 -- subtype T is BaseT (1);
7806 -- end;
7808 -- (strictly speaking the above is incorrect Ada)
7810 -- From the semantic standpoint the private view of private extension T
7811 -- should be flagged as constrained since one can clearly have
7813 -- Obj : T;
7815 -- in a unit withing Pack. However, when deriving subprograms for the
7816 -- private view of private extension T, T must be seen as unconstrained
7817 -- since T has discriminants (this is a constraint of the current
7818 -- subprogram derivation model). Thus, when processing the private view of
7819 -- a private extension such as T, we first mark T as unconstrained, we
7820 -- process it, we perform program derivation and just before returning from
7821 -- Build_Derived_Record_Type we mark T as constrained.
7823 -- ??? Are there are other uncomfortable cases that we will have to
7824 -- deal with.
7826 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7828 -- Types that are derived from a visible record type and have a private
7829 -- extension present other peculiarities. They behave mostly like private
7830 -- types, but if they have primitive operations defined, these will not
7831 -- have the proper signatures for further inheritance, because other
7832 -- primitive operations will use the implicit base that we define for
7833 -- private derivations below. This affect subprogram inheritance (see
7834 -- Derive_Subprograms for details). We also derive the implicit base from
7835 -- the base type of the full view, so that the implicit base is a record
7836 -- type and not another private type, This avoids infinite loops.
7838 procedure Build_Derived_Record_Type
7839 (N : Node_Id;
7840 Parent_Type : Entity_Id;
7841 Derived_Type : Entity_Id;
7842 Derive_Subps : Boolean := True)
7844 Discriminant_Specs : constant Boolean :=
7845 Present (Discriminant_Specifications (N));
7846 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7847 Loc : constant Source_Ptr := Sloc (N);
7848 Private_Extension : constant Boolean :=
7849 Nkind (N) = N_Private_Extension_Declaration;
7850 Assoc_List : Elist_Id;
7851 Constraint_Present : Boolean;
7852 Constrs : Elist_Id;
7853 Discrim : Entity_Id;
7854 Indic : Node_Id;
7855 Inherit_Discrims : Boolean := False;
7856 Last_Discrim : Entity_Id;
7857 New_Base : Entity_Id;
7858 New_Decl : Node_Id;
7859 New_Discrs : Elist_Id;
7860 New_Indic : Node_Id;
7861 Parent_Base : Entity_Id;
7862 Save_Etype : Entity_Id;
7863 Save_Discr_Constr : Elist_Id;
7864 Save_Next_Entity : Entity_Id;
7865 Type_Def : Node_Id;
7867 Discs : Elist_Id := New_Elmt_List;
7868 -- An empty Discs list means that there were no constraints in the
7869 -- subtype indication or that there was an error processing it.
7871 begin
7872 if Ekind (Parent_Type) = E_Record_Type_With_Private
7873 and then Present (Full_View (Parent_Type))
7874 and then Has_Discriminants (Parent_Type)
7875 then
7876 Parent_Base := Base_Type (Full_View (Parent_Type));
7877 else
7878 Parent_Base := Base_Type (Parent_Type);
7879 end if;
7881 -- AI05-0115 : if this is a derivation from a private type in some
7882 -- other scope that may lead to invisible components for the derived
7883 -- type, mark it accordingly.
7885 if Is_Private_Type (Parent_Type) then
7886 if Scope (Parent_Type) = Scope (Derived_Type) then
7887 null;
7889 elsif In_Open_Scopes (Scope (Parent_Type))
7890 and then In_Private_Part (Scope (Parent_Type))
7891 then
7892 null;
7894 else
7895 Set_Has_Private_Ancestor (Derived_Type);
7896 end if;
7898 else
7899 Set_Has_Private_Ancestor
7900 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7901 end if;
7903 -- Before we start the previously documented transformations, here is
7904 -- little fix for size and alignment of tagged types. Normally when we
7905 -- derive type D from type P, we copy the size and alignment of P as the
7906 -- default for D, and in the absence of explicit representation clauses
7907 -- for D, the size and alignment are indeed the same as the parent.
7909 -- But this is wrong for tagged types, since fields may be added, and
7910 -- the default size may need to be larger, and the default alignment may
7911 -- need to be larger.
7913 -- We therefore reset the size and alignment fields in the tagged case.
7914 -- Note that the size and alignment will in any case be at least as
7915 -- large as the parent type (since the derived type has a copy of the
7916 -- parent type in the _parent field)
7918 -- The type is also marked as being tagged here, which is needed when
7919 -- processing components with a self-referential anonymous access type
7920 -- in the call to Check_Anonymous_Access_Components below. Note that
7921 -- this flag is also set later on for completeness.
7923 if Is_Tagged then
7924 Set_Is_Tagged_Type (Derived_Type);
7925 Init_Size_Align (Derived_Type);
7926 end if;
7928 -- STEP 0a: figure out what kind of derived type declaration we have
7930 if Private_Extension then
7931 Type_Def := N;
7932 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7933 Set_Default_SSO (Derived_Type);
7935 else
7936 Type_Def := Type_Definition (N);
7938 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7939 -- Parent_Base can be a private type or private extension. However,
7940 -- for tagged types with an extension the newly added fields are
7941 -- visible and hence the Derived_Type is always an E_Record_Type.
7942 -- (except that the parent may have its own private fields).
7943 -- For untagged types we preserve the Ekind of the Parent_Base.
7945 if Present (Record_Extension_Part (Type_Def)) then
7946 Set_Ekind (Derived_Type, E_Record_Type);
7947 Set_Default_SSO (Derived_Type);
7949 -- Create internal access types for components with anonymous
7950 -- access types.
7952 if Ada_Version >= Ada_2005 then
7953 Check_Anonymous_Access_Components
7954 (N, Derived_Type, Derived_Type,
7955 Component_List (Record_Extension_Part (Type_Def)));
7956 end if;
7958 else
7959 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7960 end if;
7961 end if;
7963 -- Indic can either be an N_Identifier if the subtype indication
7964 -- contains no constraint or an N_Subtype_Indication if the subtype
7965 -- indication has a constraint.
7967 Indic := Subtype_Indication (Type_Def);
7968 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7970 -- Check that the type has visible discriminants. The type may be
7971 -- a private type with unknown discriminants whose full view has
7972 -- discriminants which are invisible.
7974 if Constraint_Present then
7975 if not Has_Discriminants (Parent_Base)
7976 or else
7977 (Has_Unknown_Discriminants (Parent_Base)
7978 and then Is_Private_Type (Parent_Base))
7979 then
7980 Error_Msg_N
7981 ("invalid constraint: type has no discriminant",
7982 Constraint (Indic));
7984 Constraint_Present := False;
7985 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7987 elsif Is_Constrained (Parent_Type) then
7988 Error_Msg_N
7989 ("invalid constraint: parent type is already constrained",
7990 Constraint (Indic));
7992 Constraint_Present := False;
7993 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7994 end if;
7995 end if;
7997 -- STEP 0b: If needed, apply transformation given in point 5. above
7999 if not Private_Extension
8000 and then Has_Discriminants (Parent_Type)
8001 and then not Discriminant_Specs
8002 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8003 then
8004 -- First, we must analyze the constraint (see comment in point 5.)
8005 -- The constraint may come from the subtype indication of the full
8006 -- declaration.
8008 if Constraint_Present then
8009 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8011 -- If there is no explicit constraint, there might be one that is
8012 -- inherited from a constrained parent type. In that case verify that
8013 -- it conforms to the constraint in the partial view. In perverse
8014 -- cases the parent subtypes of the partial and full view can have
8015 -- different constraints.
8017 elsif Present (Stored_Constraint (Parent_Type)) then
8018 New_Discrs := Stored_Constraint (Parent_Type);
8020 else
8021 New_Discrs := No_Elist;
8022 end if;
8024 if Has_Discriminants (Derived_Type)
8025 and then Has_Private_Declaration (Derived_Type)
8026 and then Present (Discriminant_Constraint (Derived_Type))
8027 and then Present (New_Discrs)
8028 then
8029 -- Verify that constraints of the full view statically match
8030 -- those given in the partial view.
8032 declare
8033 C1, C2 : Elmt_Id;
8035 begin
8036 C1 := First_Elmt (New_Discrs);
8037 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8038 while Present (C1) and then Present (C2) loop
8039 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8040 or else
8041 (Is_OK_Static_Expression (Node (C1))
8042 and then Is_OK_Static_Expression (Node (C2))
8043 and then
8044 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8045 then
8046 null;
8048 else
8049 if Constraint_Present then
8050 Error_Msg_N
8051 ("constraint not conformant to previous declaration",
8052 Node (C1));
8053 else
8054 Error_Msg_N
8055 ("constraint of full view is incompatible "
8056 & "with partial view", N);
8057 end if;
8058 end if;
8060 Next_Elmt (C1);
8061 Next_Elmt (C2);
8062 end loop;
8063 end;
8064 end if;
8066 -- Insert and analyze the declaration for the unconstrained base type
8068 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8070 New_Decl :=
8071 Make_Full_Type_Declaration (Loc,
8072 Defining_Identifier => New_Base,
8073 Type_Definition =>
8074 Make_Derived_Type_Definition (Loc,
8075 Abstract_Present => Abstract_Present (Type_Def),
8076 Limited_Present => Limited_Present (Type_Def),
8077 Subtype_Indication =>
8078 New_Occurrence_Of (Parent_Base, Loc),
8079 Record_Extension_Part =>
8080 Relocate_Node (Record_Extension_Part (Type_Def)),
8081 Interface_List => Interface_List (Type_Def)));
8083 Set_Parent (New_Decl, Parent (N));
8084 Mark_Rewrite_Insertion (New_Decl);
8085 Insert_Before (N, New_Decl);
8087 -- In the extension case, make sure ancestor is frozen appropriately
8088 -- (see also non-discriminated case below).
8090 if Present (Record_Extension_Part (Type_Def))
8091 or else Is_Interface (Parent_Base)
8092 then
8093 Freeze_Before (New_Decl, Parent_Type);
8094 end if;
8096 -- Note that this call passes False for the Derive_Subps parameter
8097 -- because subprogram derivation is deferred until after creating
8098 -- the subtype (see below).
8100 Build_Derived_Type
8101 (New_Decl, Parent_Base, New_Base,
8102 Is_Completion => False, Derive_Subps => False);
8104 -- ??? This needs re-examination to determine whether the
8105 -- above call can simply be replaced by a call to Analyze.
8107 Set_Analyzed (New_Decl);
8109 -- Insert and analyze the declaration for the constrained subtype
8111 if Constraint_Present then
8112 New_Indic :=
8113 Make_Subtype_Indication (Loc,
8114 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8115 Constraint => Relocate_Node (Constraint (Indic)));
8117 else
8118 declare
8119 Constr_List : constant List_Id := New_List;
8120 C : Elmt_Id;
8121 Expr : Node_Id;
8123 begin
8124 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8125 while Present (C) loop
8126 Expr := Node (C);
8128 -- It is safe here to call New_Copy_Tree since we called
8129 -- Force_Evaluation on each constraint previously
8130 -- in Build_Discriminant_Constraints.
8132 Append (New_Copy_Tree (Expr), To => Constr_List);
8134 Next_Elmt (C);
8135 end loop;
8137 New_Indic :=
8138 Make_Subtype_Indication (Loc,
8139 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8140 Constraint =>
8141 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8142 end;
8143 end if;
8145 Rewrite (N,
8146 Make_Subtype_Declaration (Loc,
8147 Defining_Identifier => Derived_Type,
8148 Subtype_Indication => New_Indic));
8150 Analyze (N);
8152 -- Derivation of subprograms must be delayed until the full subtype
8153 -- has been established, to ensure proper overriding of subprograms
8154 -- inherited by full types. If the derivations occurred as part of
8155 -- the call to Build_Derived_Type above, then the check for type
8156 -- conformance would fail because earlier primitive subprograms
8157 -- could still refer to the full type prior the change to the new
8158 -- subtype and hence would not match the new base type created here.
8159 -- Subprograms are not derived, however, when Derive_Subps is False
8160 -- (since otherwise there could be redundant derivations).
8162 if Derive_Subps then
8163 Derive_Subprograms (Parent_Type, Derived_Type);
8164 end if;
8166 -- For tagged types the Discriminant_Constraint of the new base itype
8167 -- is inherited from the first subtype so that no subtype conformance
8168 -- problem arise when the first subtype overrides primitive
8169 -- operations inherited by the implicit base type.
8171 if Is_Tagged then
8172 Set_Discriminant_Constraint
8173 (New_Base, Discriminant_Constraint (Derived_Type));
8174 end if;
8176 return;
8177 end if;
8179 -- If we get here Derived_Type will have no discriminants or it will be
8180 -- a discriminated unconstrained base type.
8182 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8184 if Is_Tagged then
8186 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8187 -- The declaration of a specific descendant of an interface type
8188 -- freezes the interface type (RM 13.14).
8190 if not Private_Extension or else Is_Interface (Parent_Base) then
8191 Freeze_Before (N, Parent_Type);
8192 end if;
8194 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8195 -- cannot be declared at a deeper level than its parent type is
8196 -- removed. The check on derivation within a generic body is also
8197 -- relaxed, but there's a restriction that a derived tagged type
8198 -- cannot be declared in a generic body if it's derived directly
8199 -- or indirectly from a formal type of that generic.
8201 if Ada_Version >= Ada_2005 then
8202 if Present (Enclosing_Generic_Body (Derived_Type)) then
8203 declare
8204 Ancestor_Type : Entity_Id;
8206 begin
8207 -- Check to see if any ancestor of the derived type is a
8208 -- formal type.
8210 Ancestor_Type := Parent_Type;
8211 while not Is_Generic_Type (Ancestor_Type)
8212 and then Etype (Ancestor_Type) /= Ancestor_Type
8213 loop
8214 Ancestor_Type := Etype (Ancestor_Type);
8215 end loop;
8217 -- If the derived type does have a formal type as an
8218 -- ancestor, then it's an error if the derived type is
8219 -- declared within the body of the generic unit that
8220 -- declares the formal type in its generic formal part. It's
8221 -- sufficient to check whether the ancestor type is declared
8222 -- inside the same generic body as the derived type (such as
8223 -- within a nested generic spec), in which case the
8224 -- derivation is legal. If the formal type is declared
8225 -- outside of that generic body, then it's guaranteed that
8226 -- the derived type is declared within the generic body of
8227 -- the generic unit declaring the formal type.
8229 if Is_Generic_Type (Ancestor_Type)
8230 and then Enclosing_Generic_Body (Ancestor_Type) /=
8231 Enclosing_Generic_Body (Derived_Type)
8232 then
8233 Error_Msg_NE
8234 ("parent type of& must not be descendant of formal type"
8235 & " of an enclosing generic body",
8236 Indic, Derived_Type);
8237 end if;
8238 end;
8239 end if;
8241 elsif Type_Access_Level (Derived_Type) /=
8242 Type_Access_Level (Parent_Type)
8243 and then not Is_Generic_Type (Derived_Type)
8244 then
8245 if Is_Controlled (Parent_Type) then
8246 Error_Msg_N
8247 ("controlled type must be declared at the library level",
8248 Indic);
8249 else
8250 Error_Msg_N
8251 ("type extension at deeper accessibility level than parent",
8252 Indic);
8253 end if;
8255 else
8256 declare
8257 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8258 begin
8259 if Present (GB)
8260 and then GB /= Enclosing_Generic_Body (Parent_Base)
8261 then
8262 Error_Msg_NE
8263 ("parent type of& must not be outside generic body"
8264 & " (RM 3.9.1(4))",
8265 Indic, Derived_Type);
8266 end if;
8267 end;
8268 end if;
8269 end if;
8271 -- Ada 2005 (AI-251)
8273 if Ada_Version >= Ada_2005 and then Is_Tagged then
8275 -- "The declaration of a specific descendant of an interface type
8276 -- freezes the interface type" (RM 13.14).
8278 declare
8279 Iface : Node_Id;
8280 begin
8281 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8282 Iface := First (Interface_List (Type_Def));
8283 while Present (Iface) loop
8284 Freeze_Before (N, Etype (Iface));
8285 Next (Iface);
8286 end loop;
8287 end if;
8288 end;
8289 end if;
8291 -- STEP 1b : preliminary cleanup of the full view of private types
8293 -- If the type is already marked as having discriminants, then it's the
8294 -- completion of a private type or private extension and we need to
8295 -- retain the discriminants from the partial view if the current
8296 -- declaration has Discriminant_Specifications so that we can verify
8297 -- conformance. However, we must remove any existing components that
8298 -- were inherited from the parent (and attached in Copy_And_Swap)
8299 -- because the full type inherits all appropriate components anyway, and
8300 -- we do not want the partial view's components interfering.
8302 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8303 Discrim := First_Discriminant (Derived_Type);
8304 loop
8305 Last_Discrim := Discrim;
8306 Next_Discriminant (Discrim);
8307 exit when No (Discrim);
8308 end loop;
8310 Set_Last_Entity (Derived_Type, Last_Discrim);
8312 -- In all other cases wipe out the list of inherited components (even
8313 -- inherited discriminants), it will be properly rebuilt here.
8315 else
8316 Set_First_Entity (Derived_Type, Empty);
8317 Set_Last_Entity (Derived_Type, Empty);
8318 end if;
8320 -- STEP 1c: Initialize some flags for the Derived_Type
8322 -- The following flags must be initialized here so that
8323 -- Process_Discriminants can check that discriminants of tagged types do
8324 -- not have a default initial value and that access discriminants are
8325 -- only specified for limited records. For completeness, these flags are
8326 -- also initialized along with all the other flags below.
8328 -- AI-419: Limitedness is not inherited from an interface parent, so to
8329 -- be limited in that case the type must be explicitly declared as
8330 -- limited. However, task and protected interfaces are always limited.
8332 if Limited_Present (Type_Def) then
8333 Set_Is_Limited_Record (Derived_Type);
8335 elsif Is_Limited_Record (Parent_Type)
8336 or else (Present (Full_View (Parent_Type))
8337 and then Is_Limited_Record (Full_View (Parent_Type)))
8338 then
8339 if not Is_Interface (Parent_Type)
8340 or else Is_Synchronized_Interface (Parent_Type)
8341 or else Is_Protected_Interface (Parent_Type)
8342 or else Is_Task_Interface (Parent_Type)
8343 then
8344 Set_Is_Limited_Record (Derived_Type);
8345 end if;
8346 end if;
8348 -- STEP 2a: process discriminants of derived type if any
8350 Push_Scope (Derived_Type);
8352 if Discriminant_Specs then
8353 Set_Has_Unknown_Discriminants (Derived_Type, False);
8355 -- The following call initializes fields Has_Discriminants and
8356 -- Discriminant_Constraint, unless we are processing the completion
8357 -- of a private type declaration.
8359 Check_Or_Process_Discriminants (N, Derived_Type);
8361 -- For untagged types, the constraint on the Parent_Type must be
8362 -- present and is used to rename the discriminants.
8364 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8365 Error_Msg_N ("untagged parent must have discriminants", Indic);
8367 elsif not Is_Tagged and then not Constraint_Present then
8368 Error_Msg_N
8369 ("discriminant constraint needed for derived untagged records",
8370 Indic);
8372 -- Otherwise the parent subtype must be constrained unless we have a
8373 -- private extension.
8375 elsif not Constraint_Present
8376 and then not Private_Extension
8377 and then not Is_Constrained (Parent_Type)
8378 then
8379 Error_Msg_N
8380 ("unconstrained type not allowed in this context", Indic);
8382 elsif Constraint_Present then
8383 -- The following call sets the field Corresponding_Discriminant
8384 -- for the discriminants in the Derived_Type.
8386 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8388 -- For untagged types all new discriminants must rename
8389 -- discriminants in the parent. For private extensions new
8390 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8392 Discrim := First_Discriminant (Derived_Type);
8393 while Present (Discrim) loop
8394 if not Is_Tagged
8395 and then No (Corresponding_Discriminant (Discrim))
8396 then
8397 Error_Msg_N
8398 ("new discriminants must constrain old ones", Discrim);
8400 elsif Private_Extension
8401 and then Present (Corresponding_Discriminant (Discrim))
8402 then
8403 Error_Msg_N
8404 ("only static constraints allowed for parent"
8405 & " discriminants in the partial view", Indic);
8406 exit;
8407 end if;
8409 -- If a new discriminant is used in the constraint, then its
8410 -- subtype must be statically compatible with the parent
8411 -- discriminant's subtype (3.7(15)).
8413 -- However, if the record contains an array constrained by
8414 -- the discriminant but with some different bound, the compiler
8415 -- attemps to create a smaller range for the discriminant type.
8416 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8417 -- the discriminant type is a scalar type, the check must use
8418 -- the original discriminant type in the parent declaration.
8420 declare
8421 Corr_Disc : constant Entity_Id :=
8422 Corresponding_Discriminant (Discrim);
8423 Disc_Type : constant Entity_Id := Etype (Discrim);
8424 Corr_Type : Entity_Id;
8426 begin
8427 if Present (Corr_Disc) then
8428 if Is_Scalar_Type (Disc_Type) then
8429 Corr_Type :=
8430 Entity (Discriminant_Type (Parent (Corr_Disc)));
8431 else
8432 Corr_Type := Etype (Corr_Disc);
8433 end if;
8435 if not
8436 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8437 then
8438 Error_Msg_N
8439 ("subtype must be compatible "
8440 & "with parent discriminant",
8441 Discrim);
8442 end if;
8443 end if;
8444 end;
8446 Next_Discriminant (Discrim);
8447 end loop;
8449 -- Check whether the constraints of the full view statically
8450 -- match those imposed by the parent subtype [7.3(13)].
8452 if Present (Stored_Constraint (Derived_Type)) then
8453 declare
8454 C1, C2 : Elmt_Id;
8456 begin
8457 C1 := First_Elmt (Discs);
8458 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8459 while Present (C1) and then Present (C2) loop
8460 if not
8461 Fully_Conformant_Expressions (Node (C1), Node (C2))
8462 then
8463 Error_Msg_N
8464 ("not conformant with previous declaration",
8465 Node (C1));
8466 end if;
8468 Next_Elmt (C1);
8469 Next_Elmt (C2);
8470 end loop;
8471 end;
8472 end if;
8473 end if;
8475 -- STEP 2b: No new discriminants, inherit discriminants if any
8477 else
8478 if Private_Extension then
8479 Set_Has_Unknown_Discriminants
8480 (Derived_Type,
8481 Has_Unknown_Discriminants (Parent_Type)
8482 or else Unknown_Discriminants_Present (N));
8484 -- The partial view of the parent may have unknown discriminants,
8485 -- but if the full view has discriminants and the parent type is
8486 -- in scope they must be inherited.
8488 elsif Has_Unknown_Discriminants (Parent_Type)
8489 and then
8490 (not Has_Discriminants (Parent_Type)
8491 or else not In_Open_Scopes (Scope (Parent_Type)))
8492 then
8493 Set_Has_Unknown_Discriminants (Derived_Type);
8494 end if;
8496 if not Has_Unknown_Discriminants (Derived_Type)
8497 and then not Has_Unknown_Discriminants (Parent_Base)
8498 and then Has_Discriminants (Parent_Type)
8499 then
8500 Inherit_Discrims := True;
8501 Set_Has_Discriminants
8502 (Derived_Type, True);
8503 Set_Discriminant_Constraint
8504 (Derived_Type, Discriminant_Constraint (Parent_Base));
8505 end if;
8507 -- The following test is true for private types (remember
8508 -- transformation 5. is not applied to those) and in an error
8509 -- situation.
8511 if Constraint_Present then
8512 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8513 end if;
8515 -- For now mark a new derived type as constrained only if it has no
8516 -- discriminants. At the end of Build_Derived_Record_Type we properly
8517 -- set this flag in the case of private extensions. See comments in
8518 -- point 9. just before body of Build_Derived_Record_Type.
8520 Set_Is_Constrained
8521 (Derived_Type,
8522 not (Inherit_Discrims
8523 or else Has_Unknown_Discriminants (Derived_Type)));
8524 end if;
8526 -- STEP 3: initialize fields of derived type
8528 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8529 Set_Stored_Constraint (Derived_Type, No_Elist);
8531 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8532 -- but cannot be interfaces
8534 if not Private_Extension
8535 and then Ekind (Derived_Type) /= E_Private_Type
8536 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8537 then
8538 if Interface_Present (Type_Def) then
8539 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8540 end if;
8542 Set_Interfaces (Derived_Type, No_Elist);
8543 end if;
8545 -- Fields inherited from the Parent_Type
8547 Set_Has_Specified_Layout
8548 (Derived_Type, Has_Specified_Layout (Parent_Type));
8549 Set_Is_Limited_Composite
8550 (Derived_Type, Is_Limited_Composite (Parent_Type));
8551 Set_Is_Private_Composite
8552 (Derived_Type, Is_Private_Composite (Parent_Type));
8554 if Is_Tagged_Type (Parent_Type) then
8555 Set_No_Tagged_Streams_Pragma
8556 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8557 end if;
8559 -- Fields inherited from the Parent_Base
8561 Set_Has_Controlled_Component
8562 (Derived_Type, Has_Controlled_Component (Parent_Base));
8563 Set_Has_Non_Standard_Rep
8564 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8565 Set_Has_Primitive_Operations
8566 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8568 -- Fields inherited from the Parent_Base in the non-private case
8570 if Ekind (Derived_Type) = E_Record_Type then
8571 Set_Has_Complex_Representation
8572 (Derived_Type, Has_Complex_Representation (Parent_Base));
8573 end if;
8575 -- Fields inherited from the Parent_Base for record types
8577 if Is_Record_Type (Derived_Type) then
8578 declare
8579 Parent_Full : Entity_Id;
8581 begin
8582 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8583 -- Parent_Base can be a private type or private extension. Go
8584 -- to the full view here to get the E_Record_Type specific flags.
8586 if Present (Full_View (Parent_Base)) then
8587 Parent_Full := Full_View (Parent_Base);
8588 else
8589 Parent_Full := Parent_Base;
8590 end if;
8592 Set_OK_To_Reorder_Components
8593 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8594 end;
8595 end if;
8597 -- Set fields for private derived types
8599 if Is_Private_Type (Derived_Type) then
8600 Set_Depends_On_Private (Derived_Type, True);
8601 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8603 -- Inherit fields from non private record types. If this is the
8604 -- completion of a derivation from a private type, the parent itself
8605 -- is private, and the attributes come from its full view, which must
8606 -- be present.
8608 else
8609 if Is_Private_Type (Parent_Base)
8610 and then not Is_Record_Type (Parent_Base)
8611 then
8612 Set_Component_Alignment
8613 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8614 Set_C_Pass_By_Copy
8615 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8616 else
8617 Set_Component_Alignment
8618 (Derived_Type, Component_Alignment (Parent_Base));
8619 Set_C_Pass_By_Copy
8620 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8621 end if;
8622 end if;
8624 -- Set fields for tagged types
8626 if Is_Tagged then
8627 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8629 -- All tagged types defined in Ada.Finalization are controlled
8631 if Chars (Scope (Derived_Type)) = Name_Finalization
8632 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8633 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8634 then
8635 Set_Is_Controlled (Derived_Type);
8636 else
8637 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8638 end if;
8640 -- Minor optimization: there is no need to generate the class-wide
8641 -- entity associated with an underlying record view.
8643 if not Is_Underlying_Record_View (Derived_Type) then
8644 Make_Class_Wide_Type (Derived_Type);
8645 end if;
8647 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8649 if Has_Discriminants (Derived_Type)
8650 and then Constraint_Present
8651 then
8652 Set_Stored_Constraint
8653 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8654 end if;
8656 if Ada_Version >= Ada_2005 then
8657 declare
8658 Ifaces_List : Elist_Id;
8660 begin
8661 -- Checks rules 3.9.4 (13/2 and 14/2)
8663 if Comes_From_Source (Derived_Type)
8664 and then not Is_Private_Type (Derived_Type)
8665 and then Is_Interface (Parent_Type)
8666 and then not Is_Interface (Derived_Type)
8667 then
8668 if Is_Task_Interface (Parent_Type) then
8669 Error_Msg_N
8670 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8671 Derived_Type);
8673 elsif Is_Protected_Interface (Parent_Type) then
8674 Error_Msg_N
8675 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8676 Derived_Type);
8677 end if;
8678 end if;
8680 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8682 Check_Interfaces (N, Type_Def);
8684 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8685 -- not already in the parents.
8687 Collect_Interfaces
8688 (T => Derived_Type,
8689 Ifaces_List => Ifaces_List,
8690 Exclude_Parents => True);
8692 Set_Interfaces (Derived_Type, Ifaces_List);
8694 -- If the derived type is the anonymous type created for
8695 -- a declaration whose parent has a constraint, propagate
8696 -- the interface list to the source type. This must be done
8697 -- prior to the completion of the analysis of the source type
8698 -- because the components in the extension may contain current
8699 -- instances whose legality depends on some ancestor.
8701 if Is_Itype (Derived_Type) then
8702 declare
8703 Def : constant Node_Id :=
8704 Associated_Node_For_Itype (Derived_Type);
8705 begin
8706 if Present (Def)
8707 and then Nkind (Def) = N_Full_Type_Declaration
8708 then
8709 Set_Interfaces
8710 (Defining_Identifier (Def), Ifaces_List);
8711 end if;
8712 end;
8713 end if;
8715 -- Propagate inherited invariant information of parents
8716 -- and progenitors
8718 if Ada_Version >= Ada_2012
8719 and then not Is_Interface (Derived_Type)
8720 then
8721 if Has_Inheritable_Invariants (Parent_Type) then
8722 Set_Has_Invariants (Derived_Type);
8723 Set_Has_Inheritable_Invariants (Derived_Type);
8725 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8726 declare
8727 AI : Elmt_Id;
8729 begin
8730 AI := First_Elmt (Ifaces_List);
8731 while Present (AI) loop
8732 if Has_Inheritable_Invariants (Node (AI)) then
8733 Set_Has_Invariants (Derived_Type);
8734 Set_Has_Inheritable_Invariants (Derived_Type);
8736 exit;
8737 end if;
8739 Next_Elmt (AI);
8740 end loop;
8741 end;
8742 end if;
8743 end if;
8745 -- A type extension is automatically Ghost when one of its
8746 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8747 -- also inherited when the parent type is Ghost, but this is
8748 -- done in Build_Derived_Type as the mechanism also handles
8749 -- untagged derivations.
8751 if Implements_Ghost_Interface (Derived_Type) then
8752 Set_Is_Ghost_Entity (Derived_Type);
8753 end if;
8754 end;
8755 end if;
8757 else
8758 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8759 Set_Has_Non_Standard_Rep
8760 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8761 end if;
8763 -- STEP 4: Inherit components from the parent base and constrain them.
8764 -- Apply the second transformation described in point 6. above.
8766 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8767 or else not Has_Discriminants (Parent_Type)
8768 or else not Is_Constrained (Parent_Type)
8769 then
8770 Constrs := Discs;
8771 else
8772 Constrs := Discriminant_Constraint (Parent_Type);
8773 end if;
8775 Assoc_List :=
8776 Inherit_Components
8777 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8779 -- STEP 5a: Copy the parent record declaration for untagged types
8781 if not Is_Tagged then
8783 -- Discriminant_Constraint (Derived_Type) has been properly
8784 -- constructed. Save it and temporarily set it to Empty because we
8785 -- do not want the call to New_Copy_Tree below to mess this list.
8787 if Has_Discriminants (Derived_Type) then
8788 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8789 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8790 else
8791 Save_Discr_Constr := No_Elist;
8792 end if;
8794 -- Save the Etype field of Derived_Type. It is correctly set now,
8795 -- but the call to New_Copy tree may remap it to point to itself,
8796 -- which is not what we want. Ditto for the Next_Entity field.
8798 Save_Etype := Etype (Derived_Type);
8799 Save_Next_Entity := Next_Entity (Derived_Type);
8801 -- Assoc_List maps all stored discriminants in the Parent_Base to
8802 -- stored discriminants in the Derived_Type. It is fundamental that
8803 -- no types or itypes with discriminants other than the stored
8804 -- discriminants appear in the entities declared inside
8805 -- Derived_Type, since the back end cannot deal with it.
8807 New_Decl :=
8808 New_Copy_Tree
8809 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8811 -- Restore the fields saved prior to the New_Copy_Tree call
8812 -- and compute the stored constraint.
8814 Set_Etype (Derived_Type, Save_Etype);
8815 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8817 if Has_Discriminants (Derived_Type) then
8818 Set_Discriminant_Constraint
8819 (Derived_Type, Save_Discr_Constr);
8820 Set_Stored_Constraint
8821 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8822 Replace_Components (Derived_Type, New_Decl);
8823 Set_Has_Implicit_Dereference
8824 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8825 end if;
8827 -- Insert the new derived type declaration
8829 Rewrite (N, New_Decl);
8831 -- STEP 5b: Complete the processing for record extensions in generics
8833 -- There is no completion for record extensions declared in the
8834 -- parameter part of a generic, so we need to complete processing for
8835 -- these generic record extensions here. The Record_Type_Definition call
8836 -- will change the Ekind of the components from E_Void to E_Component.
8838 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8839 Record_Type_Definition (Empty, Derived_Type);
8841 -- STEP 5c: Process the record extension for non private tagged types
8843 elsif not Private_Extension then
8844 Expand_Record_Extension (Derived_Type, Type_Def);
8846 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8847 -- derived type to propagate some semantic information. This led
8848 -- to other ASIS failures and has been removed.
8850 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8851 -- implemented interfaces if we are in expansion mode
8853 if Expander_Active
8854 and then Has_Interfaces (Derived_Type)
8855 then
8856 Add_Interface_Tag_Components (N, Derived_Type);
8857 end if;
8859 -- Analyze the record extension
8861 Record_Type_Definition
8862 (Record_Extension_Part (Type_Def), Derived_Type);
8863 end if;
8865 End_Scope;
8867 -- Nothing else to do if there is an error in the derivation.
8868 -- An unusual case: the full view may be derived from a type in an
8869 -- instance, when the partial view was used illegally as an actual
8870 -- in that instance, leading to a circular definition.
8872 if Etype (Derived_Type) = Any_Type
8873 or else Etype (Parent_Type) = Derived_Type
8874 then
8875 return;
8876 end if;
8878 -- Set delayed freeze and then derive subprograms, we need to do
8879 -- this in this order so that derived subprograms inherit the
8880 -- derived freeze if necessary.
8882 Set_Has_Delayed_Freeze (Derived_Type);
8884 if Derive_Subps then
8885 Derive_Subprograms (Parent_Type, Derived_Type);
8886 end if;
8888 -- If we have a private extension which defines a constrained derived
8889 -- type mark as constrained here after we have derived subprograms. See
8890 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8892 if Private_Extension and then Inherit_Discrims then
8893 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8894 Set_Is_Constrained (Derived_Type, True);
8895 Set_Discriminant_Constraint (Derived_Type, Discs);
8897 elsif Is_Constrained (Parent_Type) then
8898 Set_Is_Constrained
8899 (Derived_Type, True);
8900 Set_Discriminant_Constraint
8901 (Derived_Type, Discriminant_Constraint (Parent_Type));
8902 end if;
8903 end if;
8905 -- Update the class-wide type, which shares the now-completed entity
8906 -- list with its specific type. In case of underlying record views,
8907 -- we do not generate the corresponding class wide entity.
8909 if Is_Tagged
8910 and then not Is_Underlying_Record_View (Derived_Type)
8911 then
8912 Set_First_Entity
8913 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8914 Set_Last_Entity
8915 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8916 end if;
8918 Check_Function_Writable_Actuals (N);
8919 end Build_Derived_Record_Type;
8921 ------------------------
8922 -- Build_Derived_Type --
8923 ------------------------
8925 procedure Build_Derived_Type
8926 (N : Node_Id;
8927 Parent_Type : Entity_Id;
8928 Derived_Type : Entity_Id;
8929 Is_Completion : Boolean;
8930 Derive_Subps : Boolean := True)
8932 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8934 begin
8935 -- Set common attributes
8937 Set_Scope (Derived_Type, Current_Scope);
8939 Set_Etype (Derived_Type, Parent_Base);
8940 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8941 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8942 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8944 Set_Size_Info (Derived_Type, Parent_Type);
8945 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8946 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8947 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
8949 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8950 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8952 if Is_Tagged_Type (Derived_Type) then
8953 Set_No_Tagged_Streams_Pragma
8954 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8955 end if;
8957 -- If the parent has primitive routines, set the derived type link
8959 if Has_Primitive_Operations (Parent_Type) then
8960 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8961 end if;
8963 -- If the parent type is a private subtype, the convention on the base
8964 -- type may be set in the private part, and not propagated to the
8965 -- subtype until later, so we obtain the convention from the base type.
8967 Set_Convention (Derived_Type, Convention (Parent_Base));
8969 -- Set SSO default for record or array type
8971 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8972 and then Is_Base_Type (Derived_Type)
8973 then
8974 Set_Default_SSO (Derived_Type);
8975 end if;
8977 -- Propagate invariant information. The new type has invariants if
8978 -- they are inherited from the parent type, and these invariants can
8979 -- be further inherited, so both flags are set.
8981 -- We similarly inherit predicates
8983 if Has_Predicates (Parent_Type) then
8984 Set_Has_Predicates (Derived_Type);
8985 end if;
8987 -- The derived type inherits the representation clauses of the parent
8989 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8991 -- Propagate the attributes related to pragma Default_Initial_Condition
8992 -- from the parent type to the private extension. A derived type always
8993 -- inherits the default initial condition flag from the parent type. If
8994 -- the derived type carries its own Default_Initial_Condition pragma,
8995 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8996 -- mutually exclusive.
8998 Propagate_Default_Init_Cond_Attributes
8999 (From_Typ => Parent_Type,
9000 To_Typ => Derived_Type,
9001 Parent_To_Derivation => True);
9003 -- If the parent type has delayed rep aspects, then mark the derived
9004 -- type as possibly inheriting a delayed rep aspect.
9006 if Has_Delayed_Rep_Aspects (Parent_Type) then
9007 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9008 end if;
9010 -- Propagate the attributes related to pragma Ghost from the parent type
9011 -- to the derived type or type extension (SPARK RM 6.9(9)).
9013 if Is_Ghost_Entity (Parent_Type) then
9014 Set_Is_Ghost_Entity (Derived_Type);
9015 end if;
9017 -- Type dependent processing
9019 case Ekind (Parent_Type) is
9020 when Numeric_Kind =>
9021 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9023 when Array_Kind =>
9024 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9026 when E_Record_Type
9027 | E_Record_Subtype
9028 | Class_Wide_Kind =>
9029 Build_Derived_Record_Type
9030 (N, Parent_Type, Derived_Type, Derive_Subps);
9031 return;
9033 when Enumeration_Kind =>
9034 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9036 when Access_Kind =>
9037 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9039 when Incomplete_Or_Private_Kind =>
9040 Build_Derived_Private_Type
9041 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9043 -- For discriminated types, the derivation includes deriving
9044 -- primitive operations. For others it is done below.
9046 if Is_Tagged_Type (Parent_Type)
9047 or else Has_Discriminants (Parent_Type)
9048 or else (Present (Full_View (Parent_Type))
9049 and then Has_Discriminants (Full_View (Parent_Type)))
9050 then
9051 return;
9052 end if;
9054 when Concurrent_Kind =>
9055 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9057 when others =>
9058 raise Program_Error;
9059 end case;
9061 -- Nothing more to do if some error occurred
9063 if Etype (Derived_Type) = Any_Type then
9064 return;
9065 end if;
9067 -- Set delayed freeze and then derive subprograms, we need to do this
9068 -- in this order so that derived subprograms inherit the derived freeze
9069 -- if necessary.
9071 Set_Has_Delayed_Freeze (Derived_Type);
9073 if Derive_Subps then
9074 Derive_Subprograms (Parent_Type, Derived_Type);
9075 end if;
9077 Set_Has_Primitive_Operations
9078 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9079 end Build_Derived_Type;
9081 -----------------------
9082 -- Build_Discriminal --
9083 -----------------------
9085 procedure Build_Discriminal (Discrim : Entity_Id) is
9086 D_Minal : Entity_Id;
9087 CR_Disc : Entity_Id;
9089 begin
9090 -- A discriminal has the same name as the discriminant
9092 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9094 Set_Ekind (D_Minal, E_In_Parameter);
9095 Set_Mechanism (D_Minal, Default_Mechanism);
9096 Set_Etype (D_Minal, Etype (Discrim));
9097 Set_Scope (D_Minal, Current_Scope);
9099 Set_Discriminal (Discrim, D_Minal);
9100 Set_Discriminal_Link (D_Minal, Discrim);
9102 -- For task types, build at once the discriminants of the corresponding
9103 -- record, which are needed if discriminants are used in entry defaults
9104 -- and in family bounds.
9106 if Is_Concurrent_Type (Current_Scope)
9107 or else
9108 Is_Limited_Type (Current_Scope)
9109 then
9110 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9112 Set_Ekind (CR_Disc, E_In_Parameter);
9113 Set_Mechanism (CR_Disc, Default_Mechanism);
9114 Set_Etype (CR_Disc, Etype (Discrim));
9115 Set_Scope (CR_Disc, Current_Scope);
9116 Set_Discriminal_Link (CR_Disc, Discrim);
9117 Set_CR_Discriminant (Discrim, CR_Disc);
9118 end if;
9119 end Build_Discriminal;
9121 ------------------------------------
9122 -- Build_Discriminant_Constraints --
9123 ------------------------------------
9125 function Build_Discriminant_Constraints
9126 (T : Entity_Id;
9127 Def : Node_Id;
9128 Derived_Def : Boolean := False) return Elist_Id
9130 C : constant Node_Id := Constraint (Def);
9131 Nb_Discr : constant Nat := Number_Discriminants (T);
9133 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9134 -- Saves the expression corresponding to a given discriminant in T
9136 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9137 -- Return the Position number within array Discr_Expr of a discriminant
9138 -- D within the discriminant list of the discriminated type T.
9140 procedure Process_Discriminant_Expression
9141 (Expr : Node_Id;
9142 D : Entity_Id);
9143 -- If this is a discriminant constraint on a partial view, do not
9144 -- generate an overflow check on the discriminant expression. The check
9145 -- will be generated when constraining the full view. Otherwise the
9146 -- backend creates duplicate symbols for the temporaries corresponding
9147 -- to the expressions to be checked, causing spurious assembler errors.
9149 ------------------
9150 -- Pos_Of_Discr --
9151 ------------------
9153 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9154 Disc : Entity_Id;
9156 begin
9157 Disc := First_Discriminant (T);
9158 for J in Discr_Expr'Range loop
9159 if Disc = D then
9160 return J;
9161 end if;
9163 Next_Discriminant (Disc);
9164 end loop;
9166 -- Note: Since this function is called on discriminants that are
9167 -- known to belong to the discriminated type, falling through the
9168 -- loop with no match signals an internal compiler error.
9170 raise Program_Error;
9171 end Pos_Of_Discr;
9173 -------------------------------------
9174 -- Process_Discriminant_Expression --
9175 -------------------------------------
9177 procedure Process_Discriminant_Expression
9178 (Expr : Node_Id;
9179 D : Entity_Id)
9181 BDT : constant Entity_Id := Base_Type (Etype (D));
9183 begin
9184 -- If this is a discriminant constraint on a partial view, do
9185 -- not generate an overflow on the discriminant expression. The
9186 -- check will be generated when constraining the full view.
9188 if Is_Private_Type (T)
9189 and then Present (Full_View (T))
9190 then
9191 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9192 else
9193 Analyze_And_Resolve (Expr, BDT);
9194 end if;
9195 end Process_Discriminant_Expression;
9197 -- Declarations local to Build_Discriminant_Constraints
9199 Discr : Entity_Id;
9200 E : Entity_Id;
9201 Elist : constant Elist_Id := New_Elmt_List;
9203 Constr : Node_Id;
9204 Expr : Node_Id;
9205 Id : Node_Id;
9206 Position : Nat;
9207 Found : Boolean;
9209 Discrim_Present : Boolean := False;
9211 -- Start of processing for Build_Discriminant_Constraints
9213 begin
9214 -- The following loop will process positional associations only.
9215 -- For a positional association, the (single) discriminant is
9216 -- implicitly specified by position, in textual order (RM 3.7.2).
9218 Discr := First_Discriminant (T);
9219 Constr := First (Constraints (C));
9220 for D in Discr_Expr'Range loop
9221 exit when Nkind (Constr) = N_Discriminant_Association;
9223 if No (Constr) then
9224 Error_Msg_N ("too few discriminants given in constraint", C);
9225 return New_Elmt_List;
9227 elsif Nkind (Constr) = N_Range
9228 or else (Nkind (Constr) = N_Attribute_Reference
9229 and then Attribute_Name (Constr) = Name_Range)
9230 then
9231 Error_Msg_N
9232 ("a range is not a valid discriminant constraint", Constr);
9233 Discr_Expr (D) := Error;
9235 else
9236 Process_Discriminant_Expression (Constr, Discr);
9237 Discr_Expr (D) := Constr;
9238 end if;
9240 Next_Discriminant (Discr);
9241 Next (Constr);
9242 end loop;
9244 if No (Discr) and then Present (Constr) then
9245 Error_Msg_N ("too many discriminants given in constraint", Constr);
9246 return New_Elmt_List;
9247 end if;
9249 -- Named associations can be given in any order, but if both positional
9250 -- and named associations are used in the same discriminant constraint,
9251 -- then positional associations must occur first, at their normal
9252 -- position. Hence once a named association is used, the rest of the
9253 -- discriminant constraint must use only named associations.
9255 while Present (Constr) loop
9257 -- Positional association forbidden after a named association
9259 if Nkind (Constr) /= N_Discriminant_Association then
9260 Error_Msg_N ("positional association follows named one", Constr);
9261 return New_Elmt_List;
9263 -- Otherwise it is a named association
9265 else
9266 -- E records the type of the discriminants in the named
9267 -- association. All the discriminants specified in the same name
9268 -- association must have the same type.
9270 E := Empty;
9272 -- Search the list of discriminants in T to see if the simple name
9273 -- given in the constraint matches any of them.
9275 Id := First (Selector_Names (Constr));
9276 while Present (Id) loop
9277 Found := False;
9279 -- If Original_Discriminant is present, we are processing a
9280 -- generic instantiation and this is an instance node. We need
9281 -- to find the name of the corresponding discriminant in the
9282 -- actual record type T and not the name of the discriminant in
9283 -- the generic formal. Example:
9285 -- generic
9286 -- type G (D : int) is private;
9287 -- package P is
9288 -- subtype W is G (D => 1);
9289 -- end package;
9290 -- type Rec (X : int) is record ... end record;
9291 -- package Q is new P (G => Rec);
9293 -- At the point of the instantiation, formal type G is Rec
9294 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9295 -- which really looks like "subtype W is Rec (D => 1);" at
9296 -- the point of instantiation, we want to find the discriminant
9297 -- that corresponds to D in Rec, i.e. X.
9299 if Present (Original_Discriminant (Id))
9300 and then In_Instance
9301 then
9302 Discr := Find_Corresponding_Discriminant (Id, T);
9303 Found := True;
9305 else
9306 Discr := First_Discriminant (T);
9307 while Present (Discr) loop
9308 if Chars (Discr) = Chars (Id) then
9309 Found := True;
9310 exit;
9311 end if;
9313 Next_Discriminant (Discr);
9314 end loop;
9316 if not Found then
9317 Error_Msg_N ("& does not match any discriminant", Id);
9318 return New_Elmt_List;
9320 -- If the parent type is a generic formal, preserve the
9321 -- name of the discriminant for subsequent instances.
9322 -- see comment at the beginning of this if statement.
9324 elsif Is_Generic_Type (Root_Type (T)) then
9325 Set_Original_Discriminant (Id, Discr);
9326 end if;
9327 end if;
9329 Position := Pos_Of_Discr (T, Discr);
9331 if Present (Discr_Expr (Position)) then
9332 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9334 else
9335 -- Each discriminant specified in the same named association
9336 -- must be associated with a separate copy of the
9337 -- corresponding expression.
9339 if Present (Next (Id)) then
9340 Expr := New_Copy_Tree (Expression (Constr));
9341 Set_Parent (Expr, Parent (Expression (Constr)));
9342 else
9343 Expr := Expression (Constr);
9344 end if;
9346 Discr_Expr (Position) := Expr;
9347 Process_Discriminant_Expression (Expr, Discr);
9348 end if;
9350 -- A discriminant association with more than one discriminant
9351 -- name is only allowed if the named discriminants are all of
9352 -- the same type (RM 3.7.1(8)).
9354 if E = Empty then
9355 E := Base_Type (Etype (Discr));
9357 elsif Base_Type (Etype (Discr)) /= E then
9358 Error_Msg_N
9359 ("all discriminants in an association " &
9360 "must have the same type", Id);
9361 end if;
9363 Next (Id);
9364 end loop;
9365 end if;
9367 Next (Constr);
9368 end loop;
9370 -- A discriminant constraint must provide exactly one value for each
9371 -- discriminant of the type (RM 3.7.1(8)).
9373 for J in Discr_Expr'Range loop
9374 if No (Discr_Expr (J)) then
9375 Error_Msg_N ("too few discriminants given in constraint", C);
9376 return New_Elmt_List;
9377 end if;
9378 end loop;
9380 -- Determine if there are discriminant expressions in the constraint
9382 for J in Discr_Expr'Range loop
9383 if Denotes_Discriminant
9384 (Discr_Expr (J), Check_Concurrent => True)
9385 then
9386 Discrim_Present := True;
9387 end if;
9388 end loop;
9390 -- Build an element list consisting of the expressions given in the
9391 -- discriminant constraint and apply the appropriate checks. The list
9392 -- is constructed after resolving any named discriminant associations
9393 -- and therefore the expressions appear in the textual order of the
9394 -- discriminants.
9396 Discr := First_Discriminant (T);
9397 for J in Discr_Expr'Range loop
9398 if Discr_Expr (J) /= Error then
9399 Append_Elmt (Discr_Expr (J), Elist);
9401 -- If any of the discriminant constraints is given by a
9402 -- discriminant and we are in a derived type declaration we
9403 -- have a discriminant renaming. Establish link between new
9404 -- and old discriminant.
9406 if Denotes_Discriminant (Discr_Expr (J)) then
9407 if Derived_Def then
9408 Set_Corresponding_Discriminant
9409 (Entity (Discr_Expr (J)), Discr);
9410 end if;
9412 -- Force the evaluation of non-discriminant expressions.
9413 -- If we have found a discriminant in the constraint 3.4(26)
9414 -- and 3.8(18) demand that no range checks are performed are
9415 -- after evaluation. If the constraint is for a component
9416 -- definition that has a per-object constraint, expressions are
9417 -- evaluated but not checked either. In all other cases perform
9418 -- a range check.
9420 else
9421 if Discrim_Present then
9422 null;
9424 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9425 and then
9426 Has_Per_Object_Constraint
9427 (Defining_Identifier (Parent (Parent (Def))))
9428 then
9429 null;
9431 elsif Is_Access_Type (Etype (Discr)) then
9432 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9434 else
9435 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9436 end if;
9438 Force_Evaluation (Discr_Expr (J));
9439 end if;
9441 -- Check that the designated type of an access discriminant's
9442 -- expression is not a class-wide type unless the discriminant's
9443 -- designated type is also class-wide.
9445 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9446 and then not Is_Class_Wide_Type
9447 (Designated_Type (Etype (Discr)))
9448 and then Etype (Discr_Expr (J)) /= Any_Type
9449 and then Is_Class_Wide_Type
9450 (Designated_Type (Etype (Discr_Expr (J))))
9451 then
9452 Wrong_Type (Discr_Expr (J), Etype (Discr));
9454 elsif Is_Access_Type (Etype (Discr))
9455 and then not Is_Access_Constant (Etype (Discr))
9456 and then Is_Access_Type (Etype (Discr_Expr (J)))
9457 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9458 then
9459 Error_Msg_NE
9460 ("constraint for discriminant& must be access to variable",
9461 Def, Discr);
9462 end if;
9463 end if;
9465 Next_Discriminant (Discr);
9466 end loop;
9468 return Elist;
9469 end Build_Discriminant_Constraints;
9471 ---------------------------------
9472 -- Build_Discriminated_Subtype --
9473 ---------------------------------
9475 procedure Build_Discriminated_Subtype
9476 (T : Entity_Id;
9477 Def_Id : Entity_Id;
9478 Elist : Elist_Id;
9479 Related_Nod : Node_Id;
9480 For_Access : Boolean := False)
9482 Has_Discrs : constant Boolean := Has_Discriminants (T);
9483 Constrained : constant Boolean :=
9484 (Has_Discrs
9485 and then not Is_Empty_Elmt_List (Elist)
9486 and then not Is_Class_Wide_Type (T))
9487 or else Is_Constrained (T);
9489 begin
9490 if Ekind (T) = E_Record_Type then
9491 if For_Access then
9492 Set_Ekind (Def_Id, E_Private_Subtype);
9493 Set_Is_For_Access_Subtype (Def_Id, True);
9494 else
9495 Set_Ekind (Def_Id, E_Record_Subtype);
9496 end if;
9498 -- Inherit preelaboration flag from base, for types for which it
9499 -- may have been set: records, private types, protected types.
9501 Set_Known_To_Have_Preelab_Init
9502 (Def_Id, Known_To_Have_Preelab_Init (T));
9504 elsif Ekind (T) = E_Task_Type then
9505 Set_Ekind (Def_Id, E_Task_Subtype);
9507 elsif Ekind (T) = E_Protected_Type then
9508 Set_Ekind (Def_Id, E_Protected_Subtype);
9509 Set_Known_To_Have_Preelab_Init
9510 (Def_Id, Known_To_Have_Preelab_Init (T));
9512 elsif Is_Private_Type (T) then
9513 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9514 Set_Known_To_Have_Preelab_Init
9515 (Def_Id, Known_To_Have_Preelab_Init (T));
9517 -- Private subtypes may have private dependents
9519 Set_Private_Dependents (Def_Id, New_Elmt_List);
9521 elsif Is_Class_Wide_Type (T) then
9522 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9524 else
9525 -- Incomplete type. Attach subtype to list of dependents, to be
9526 -- completed with full view of parent type, unless is it the
9527 -- designated subtype of a record component within an init_proc.
9528 -- This last case arises for a component of an access type whose
9529 -- designated type is incomplete (e.g. a Taft Amendment type).
9530 -- The designated subtype is within an inner scope, and needs no
9531 -- elaboration, because only the access type is needed in the
9532 -- initialization procedure.
9534 Set_Ekind (Def_Id, Ekind (T));
9536 if For_Access and then Within_Init_Proc then
9537 null;
9538 else
9539 Append_Elmt (Def_Id, Private_Dependents (T));
9540 end if;
9541 end if;
9543 Set_Etype (Def_Id, T);
9544 Init_Size_Align (Def_Id);
9545 Set_Has_Discriminants (Def_Id, Has_Discrs);
9546 Set_Is_Constrained (Def_Id, Constrained);
9548 Set_First_Entity (Def_Id, First_Entity (T));
9549 Set_Last_Entity (Def_Id, Last_Entity (T));
9550 Set_Has_Implicit_Dereference
9551 (Def_Id, Has_Implicit_Dereference (T));
9553 -- If the subtype is the completion of a private declaration, there may
9554 -- have been representation clauses for the partial view, and they must
9555 -- be preserved. Build_Derived_Type chains the inherited clauses with
9556 -- the ones appearing on the extension. If this comes from a subtype
9557 -- declaration, all clauses are inherited.
9559 if No (First_Rep_Item (Def_Id)) then
9560 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9561 end if;
9563 if Is_Tagged_Type (T) then
9564 Set_Is_Tagged_Type (Def_Id);
9565 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9566 Make_Class_Wide_Type (Def_Id);
9567 end if;
9569 Set_Stored_Constraint (Def_Id, No_Elist);
9571 if Has_Discrs then
9572 Set_Discriminant_Constraint (Def_Id, Elist);
9573 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9574 end if;
9576 if Is_Tagged_Type (T) then
9578 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9579 -- concurrent record type (which has the list of primitive
9580 -- operations).
9582 if Ada_Version >= Ada_2005
9583 and then Is_Concurrent_Type (T)
9584 then
9585 Set_Corresponding_Record_Type (Def_Id,
9586 Corresponding_Record_Type (T));
9587 else
9588 Set_Direct_Primitive_Operations (Def_Id,
9589 Direct_Primitive_Operations (T));
9590 end if;
9592 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9593 end if;
9595 -- Subtypes introduced by component declarations do not need to be
9596 -- marked as delayed, and do not get freeze nodes, because the semantics
9597 -- verifies that the parents of the subtypes are frozen before the
9598 -- enclosing record is frozen.
9600 if not Is_Type (Scope (Def_Id)) then
9601 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9603 if Is_Private_Type (T)
9604 and then Present (Full_View (T))
9605 then
9606 Conditional_Delay (Def_Id, Full_View (T));
9607 else
9608 Conditional_Delay (Def_Id, T);
9609 end if;
9610 end if;
9612 if Is_Record_Type (T) then
9613 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9615 if Has_Discrs
9616 and then not Is_Empty_Elmt_List (Elist)
9617 and then not For_Access
9618 then
9619 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9620 elsif not For_Access then
9621 Set_Cloned_Subtype (Def_Id, T);
9622 end if;
9623 end if;
9624 end Build_Discriminated_Subtype;
9626 ---------------------------
9627 -- Build_Itype_Reference --
9628 ---------------------------
9630 procedure Build_Itype_Reference
9631 (Ityp : Entity_Id;
9632 Nod : Node_Id)
9634 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9635 begin
9637 -- Itype references are only created for use by the back-end
9639 if Inside_A_Generic then
9640 return;
9641 else
9642 Set_Itype (IR, Ityp);
9643 Insert_After (Nod, IR);
9644 end if;
9645 end Build_Itype_Reference;
9647 ------------------------
9648 -- Build_Scalar_Bound --
9649 ------------------------
9651 function Build_Scalar_Bound
9652 (Bound : Node_Id;
9653 Par_T : Entity_Id;
9654 Der_T : Entity_Id) return Node_Id
9656 New_Bound : Entity_Id;
9658 begin
9659 -- Note: not clear why this is needed, how can the original bound
9660 -- be unanalyzed at this point? and if it is, what business do we
9661 -- have messing around with it? and why is the base type of the
9662 -- parent type the right type for the resolution. It probably is
9663 -- not. It is OK for the new bound we are creating, but not for
9664 -- the old one??? Still if it never happens, no problem.
9666 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9668 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9669 New_Bound := New_Copy (Bound);
9670 Set_Etype (New_Bound, Der_T);
9671 Set_Analyzed (New_Bound);
9673 elsif Is_Entity_Name (Bound) then
9674 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9676 -- The following is almost certainly wrong. What business do we have
9677 -- relocating a node (Bound) that is presumably still attached to
9678 -- the tree elsewhere???
9680 else
9681 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9682 end if;
9684 Set_Etype (New_Bound, Der_T);
9685 return New_Bound;
9686 end Build_Scalar_Bound;
9688 --------------------------------
9689 -- Build_Underlying_Full_View --
9690 --------------------------------
9692 procedure Build_Underlying_Full_View
9693 (N : Node_Id;
9694 Typ : Entity_Id;
9695 Par : Entity_Id)
9697 Loc : constant Source_Ptr := Sloc (N);
9698 Subt : constant Entity_Id :=
9699 Make_Defining_Identifier
9700 (Loc, New_External_Name (Chars (Typ), 'S'));
9702 Constr : Node_Id;
9703 Indic : Node_Id;
9704 C : Node_Id;
9705 Id : Node_Id;
9707 procedure Set_Discriminant_Name (Id : Node_Id);
9708 -- If the derived type has discriminants, they may rename discriminants
9709 -- of the parent. When building the full view of the parent, we need to
9710 -- recover the names of the original discriminants if the constraint is
9711 -- given by named associations.
9713 ---------------------------
9714 -- Set_Discriminant_Name --
9715 ---------------------------
9717 procedure Set_Discriminant_Name (Id : Node_Id) is
9718 Disc : Entity_Id;
9720 begin
9721 Set_Original_Discriminant (Id, Empty);
9723 if Has_Discriminants (Typ) then
9724 Disc := First_Discriminant (Typ);
9725 while Present (Disc) loop
9726 if Chars (Disc) = Chars (Id)
9727 and then Present (Corresponding_Discriminant (Disc))
9728 then
9729 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9730 end if;
9731 Next_Discriminant (Disc);
9732 end loop;
9733 end if;
9734 end Set_Discriminant_Name;
9736 -- Start of processing for Build_Underlying_Full_View
9738 begin
9739 if Nkind (N) = N_Full_Type_Declaration then
9740 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9742 elsif Nkind (N) = N_Subtype_Declaration then
9743 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9745 elsif Nkind (N) = N_Component_Declaration then
9746 Constr :=
9747 New_Copy_Tree
9748 (Constraint (Subtype_Indication (Component_Definition (N))));
9750 else
9751 raise Program_Error;
9752 end if;
9754 C := First (Constraints (Constr));
9755 while Present (C) loop
9756 if Nkind (C) = N_Discriminant_Association then
9757 Id := First (Selector_Names (C));
9758 while Present (Id) loop
9759 Set_Discriminant_Name (Id);
9760 Next (Id);
9761 end loop;
9762 end if;
9764 Next (C);
9765 end loop;
9767 Indic :=
9768 Make_Subtype_Declaration (Loc,
9769 Defining_Identifier => Subt,
9770 Subtype_Indication =>
9771 Make_Subtype_Indication (Loc,
9772 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9773 Constraint => New_Copy_Tree (Constr)));
9775 -- If this is a component subtype for an outer itype, it is not
9776 -- a list member, so simply set the parent link for analysis: if
9777 -- the enclosing type does not need to be in a declarative list,
9778 -- neither do the components.
9780 if Is_List_Member (N)
9781 and then Nkind (N) /= N_Component_Declaration
9782 then
9783 Insert_Before (N, Indic);
9784 else
9785 Set_Parent (Indic, Parent (N));
9786 end if;
9788 Analyze (Indic);
9789 Set_Underlying_Full_View (Typ, Full_View (Subt));
9790 end Build_Underlying_Full_View;
9792 -------------------------------
9793 -- Check_Abstract_Overriding --
9794 -------------------------------
9796 procedure Check_Abstract_Overriding (T : Entity_Id) is
9797 Alias_Subp : Entity_Id;
9798 Elmt : Elmt_Id;
9799 Op_List : Elist_Id;
9800 Subp : Entity_Id;
9801 Type_Def : Node_Id;
9803 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9804 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9805 -- which has pragma Implemented already set. Check whether Subp's entity
9806 -- kind conforms to the implementation kind of the overridden routine.
9808 procedure Check_Pragma_Implemented
9809 (Subp : Entity_Id;
9810 Iface_Subp : Entity_Id);
9811 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9812 -- Iface_Subp and both entities have pragma Implemented already set on
9813 -- them. Check whether the two implementation kinds are conforming.
9815 procedure Inherit_Pragma_Implemented
9816 (Subp : Entity_Id;
9817 Iface_Subp : Entity_Id);
9818 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9819 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9820 -- Propagate the implementation kind of Iface_Subp to Subp.
9822 ------------------------------
9823 -- Check_Pragma_Implemented --
9824 ------------------------------
9826 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9827 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9828 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9829 Subp_Alias : constant Entity_Id := Alias (Subp);
9830 Contr_Typ : Entity_Id;
9831 Impl_Subp : Entity_Id;
9833 begin
9834 -- Subp must have an alias since it is a hidden entity used to link
9835 -- an interface subprogram to its overriding counterpart.
9837 pragma Assert (Present (Subp_Alias));
9839 -- Handle aliases to synchronized wrappers
9841 Impl_Subp := Subp_Alias;
9843 if Is_Primitive_Wrapper (Impl_Subp) then
9844 Impl_Subp := Wrapped_Entity (Impl_Subp);
9845 end if;
9847 -- Extract the type of the controlling formal
9849 Contr_Typ := Etype (First_Formal (Subp_Alias));
9851 if Is_Concurrent_Record_Type (Contr_Typ) then
9852 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9853 end if;
9855 -- An interface subprogram whose implementation kind is By_Entry must
9856 -- be implemented by an entry.
9858 if Impl_Kind = Name_By_Entry
9859 and then Ekind (Impl_Subp) /= E_Entry
9860 then
9861 Error_Msg_Node_2 := Iface_Alias;
9862 Error_Msg_NE
9863 ("type & must implement abstract subprogram & with an entry",
9864 Subp_Alias, Contr_Typ);
9866 elsif Impl_Kind = Name_By_Protected_Procedure then
9868 -- An interface subprogram whose implementation kind is By_
9869 -- Protected_Procedure cannot be implemented by a primitive
9870 -- procedure of a task type.
9872 if Ekind (Contr_Typ) /= E_Protected_Type then
9873 Error_Msg_Node_2 := Contr_Typ;
9874 Error_Msg_NE
9875 ("interface subprogram & cannot be implemented by a " &
9876 "primitive procedure of task type &", Subp_Alias,
9877 Iface_Alias);
9879 -- An interface subprogram whose implementation kind is By_
9880 -- Protected_Procedure must be implemented by a procedure.
9882 elsif Ekind (Impl_Subp) /= E_Procedure then
9883 Error_Msg_Node_2 := Iface_Alias;
9884 Error_Msg_NE
9885 ("type & must implement abstract subprogram & with a " &
9886 "procedure", Subp_Alias, Contr_Typ);
9888 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9889 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9890 then
9891 Error_Msg_Name_1 := Impl_Kind;
9892 Error_Msg_N
9893 ("overriding operation& must have synchronization%",
9894 Subp_Alias);
9895 end if;
9897 -- If primitive has Optional synchronization, overriding operation
9898 -- must match if it has an explicit synchronization..
9900 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9901 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9902 then
9903 Error_Msg_Name_1 := Impl_Kind;
9904 Error_Msg_N
9905 ("overriding operation& must have syncrhonization%",
9906 Subp_Alias);
9907 end if;
9908 end Check_Pragma_Implemented;
9910 ------------------------------
9911 -- Check_Pragma_Implemented --
9912 ------------------------------
9914 procedure Check_Pragma_Implemented
9915 (Subp : Entity_Id;
9916 Iface_Subp : Entity_Id)
9918 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9919 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9921 begin
9922 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9923 -- and overriding subprogram are different. In general this is an
9924 -- error except when the implementation kind of the overridden
9925 -- subprograms is By_Any or Optional.
9927 if Iface_Kind /= Subp_Kind
9928 and then Iface_Kind /= Name_By_Any
9929 and then Iface_Kind /= Name_Optional
9930 then
9931 if Iface_Kind = Name_By_Entry then
9932 Error_Msg_N
9933 ("incompatible implementation kind, overridden subprogram " &
9934 "is marked By_Entry", Subp);
9935 else
9936 Error_Msg_N
9937 ("incompatible implementation kind, overridden subprogram " &
9938 "is marked By_Protected_Procedure", Subp);
9939 end if;
9940 end if;
9941 end Check_Pragma_Implemented;
9943 --------------------------------
9944 -- Inherit_Pragma_Implemented --
9945 --------------------------------
9947 procedure Inherit_Pragma_Implemented
9948 (Subp : Entity_Id;
9949 Iface_Subp : Entity_Id)
9951 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9952 Loc : constant Source_Ptr := Sloc (Subp);
9953 Impl_Prag : Node_Id;
9955 begin
9956 -- Since the implementation kind is stored as a representation item
9957 -- rather than a flag, create a pragma node.
9959 Impl_Prag :=
9960 Make_Pragma (Loc,
9961 Chars => Name_Implemented,
9962 Pragma_Argument_Associations => New_List (
9963 Make_Pragma_Argument_Association (Loc,
9964 Expression => New_Occurrence_Of (Subp, Loc)),
9966 Make_Pragma_Argument_Association (Loc,
9967 Expression => Make_Identifier (Loc, Iface_Kind))));
9969 -- The pragma doesn't need to be analyzed because it is internally
9970 -- built. It is safe to directly register it as a rep item since we
9971 -- are only interested in the characters of the implementation kind.
9973 Record_Rep_Item (Subp, Impl_Prag);
9974 end Inherit_Pragma_Implemented;
9976 -- Start of processing for Check_Abstract_Overriding
9978 begin
9979 Op_List := Primitive_Operations (T);
9981 -- Loop to check primitive operations
9983 Elmt := First_Elmt (Op_List);
9984 while Present (Elmt) loop
9985 Subp := Node (Elmt);
9986 Alias_Subp := Alias (Subp);
9988 -- Inherited subprograms are identified by the fact that they do not
9989 -- come from source, and the associated source location is the
9990 -- location of the first subtype of the derived type.
9992 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9993 -- subprograms that "require overriding".
9995 -- Special exception, do not complain about failure to override the
9996 -- stream routines _Input and _Output, as well as the primitive
9997 -- operations used in dispatching selects since we always provide
9998 -- automatic overridings for these subprograms.
10000 -- The partial view of T may have been a private extension, for
10001 -- which inherited functions dispatching on result are abstract.
10002 -- If the full view is a null extension, there is no need for
10003 -- overriding in Ada 2005, but wrappers need to be built for them
10004 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10006 if Is_Null_Extension (T)
10007 and then Has_Controlling_Result (Subp)
10008 and then Ada_Version >= Ada_2005
10009 and then Present (Alias_Subp)
10010 and then not Comes_From_Source (Subp)
10011 and then not Is_Abstract_Subprogram (Alias_Subp)
10012 and then not Is_Access_Type (Etype (Subp))
10013 then
10014 null;
10016 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10017 -- processing because this check is done with the aliased
10018 -- entity
10020 elsif Present (Interface_Alias (Subp)) then
10021 null;
10023 elsif (Is_Abstract_Subprogram (Subp)
10024 or else Requires_Overriding (Subp)
10025 or else
10026 (Has_Controlling_Result (Subp)
10027 and then Present (Alias_Subp)
10028 and then not Comes_From_Source (Subp)
10029 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10030 and then not Is_TSS (Subp, TSS_Stream_Input)
10031 and then not Is_TSS (Subp, TSS_Stream_Output)
10032 and then not Is_Abstract_Type (T)
10033 and then not Is_Predefined_Interface_Primitive (Subp)
10035 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10036 -- with abstract interface types because the check will be done
10037 -- with the aliased entity (otherwise we generate a duplicated
10038 -- error message).
10040 and then not Present (Interface_Alias (Subp))
10041 then
10042 if Present (Alias_Subp) then
10044 -- Only perform the check for a derived subprogram when the
10045 -- type has an explicit record extension. This avoids incorrect
10046 -- flagging of abstract subprograms for the case of a type
10047 -- without an extension that is derived from a formal type
10048 -- with a tagged actual (can occur within a private part).
10050 -- Ada 2005 (AI-391): In the case of an inherited function with
10051 -- a controlling result of the type, the rule does not apply if
10052 -- the type is a null extension (unless the parent function
10053 -- itself is abstract, in which case the function must still be
10054 -- be overridden). The expander will generate an overriding
10055 -- wrapper function calling the parent subprogram (see
10056 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10058 Type_Def := Type_Definition (Parent (T));
10060 if Nkind (Type_Def) = N_Derived_Type_Definition
10061 and then Present (Record_Extension_Part (Type_Def))
10062 and then
10063 (Ada_Version < Ada_2005
10064 or else not Is_Null_Extension (T)
10065 or else Ekind (Subp) = E_Procedure
10066 or else not Has_Controlling_Result (Subp)
10067 or else Is_Abstract_Subprogram (Alias_Subp)
10068 or else Requires_Overriding (Subp)
10069 or else Is_Access_Type (Etype (Subp)))
10070 then
10071 -- Avoid reporting error in case of abstract predefined
10072 -- primitive inherited from interface type because the
10073 -- body of internally generated predefined primitives
10074 -- of tagged types are generated later by Freeze_Type
10076 if Is_Interface (Root_Type (T))
10077 and then Is_Abstract_Subprogram (Subp)
10078 and then Is_Predefined_Dispatching_Operation (Subp)
10079 and then not Comes_From_Source (Ultimate_Alias (Subp))
10080 then
10081 null;
10083 -- A null extension is not obliged to override an inherited
10084 -- procedure subject to pragma Extensions_Visible with value
10085 -- False and at least one controlling OUT parameter
10086 -- (SPARK RM 6.1.7(6)).
10088 elsif Is_Null_Extension (T)
10089 and then Is_EVF_Procedure (Subp)
10090 then
10091 null;
10093 else
10094 Error_Msg_NE
10095 ("type must be declared abstract or & overridden",
10096 T, Subp);
10098 -- Traverse the whole chain of aliased subprograms to
10099 -- complete the error notification. This is especially
10100 -- useful for traceability of the chain of entities when
10101 -- the subprogram corresponds with an interface
10102 -- subprogram (which may be defined in another package).
10104 if Present (Alias_Subp) then
10105 declare
10106 E : Entity_Id;
10108 begin
10109 E := Subp;
10110 while Present (Alias (E)) loop
10112 -- Avoid reporting redundant errors on entities
10113 -- inherited from interfaces
10115 if Sloc (E) /= Sloc (T) then
10116 Error_Msg_Sloc := Sloc (E);
10117 Error_Msg_NE
10118 ("\& has been inherited #", T, Subp);
10119 end if;
10121 E := Alias (E);
10122 end loop;
10124 Error_Msg_Sloc := Sloc (E);
10126 -- AI05-0068: report if there is an overriding
10127 -- non-abstract subprogram that is invisible.
10129 if Is_Hidden (E)
10130 and then not Is_Abstract_Subprogram (E)
10131 then
10132 Error_Msg_NE
10133 ("\& subprogram# is not visible",
10134 T, Subp);
10136 -- Clarify the case where a non-null extension must
10137 -- override inherited procedure subject to pragma
10138 -- Extensions_Visible with value False and at least
10139 -- one controlling OUT param.
10141 elsif Is_EVF_Procedure (E) then
10142 Error_Msg_NE
10143 ("\& # is subject to Extensions_Visible False",
10144 T, Subp);
10146 else
10147 Error_Msg_NE
10148 ("\& has been inherited from subprogram #",
10149 T, Subp);
10150 end if;
10151 end;
10152 end if;
10153 end if;
10155 -- Ada 2005 (AI-345): Protected or task type implementing
10156 -- abstract interfaces.
10158 elsif Is_Concurrent_Record_Type (T)
10159 and then Present (Interfaces (T))
10160 then
10161 -- There is no need to check here RM 9.4(11.9/3) since we
10162 -- are processing the corresponding record type and the
10163 -- mode of the overriding subprograms was verified by
10164 -- Check_Conformance when the corresponding concurrent
10165 -- type declaration was analyzed.
10167 Error_Msg_NE
10168 ("interface subprogram & must be overridden", T, Subp);
10170 -- Examine primitive operations of synchronized type to find
10171 -- homonyms that have the wrong profile.
10173 declare
10174 Prim : Entity_Id;
10176 begin
10177 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10178 while Present (Prim) loop
10179 if Chars (Prim) = Chars (Subp) then
10180 Error_Msg_NE
10181 ("profile is not type conformant with prefixed "
10182 & "view profile of inherited operation&",
10183 Prim, Subp);
10184 end if;
10186 Next_Entity (Prim);
10187 end loop;
10188 end;
10189 end if;
10191 else
10192 Error_Msg_Node_2 := T;
10193 Error_Msg_N
10194 ("abstract subprogram& not allowed for type&", Subp);
10196 -- Also post unconditional warning on the type (unconditional
10197 -- so that if there are more than one of these cases, we get
10198 -- them all, and not just the first one).
10200 Error_Msg_Node_2 := Subp;
10201 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10202 end if;
10204 -- A subprogram subject to pragma Extensions_Visible with value
10205 -- "True" cannot override a subprogram subject to the same pragma
10206 -- with value "False" (SPARK RM 6.1.7(5)).
10208 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10209 and then Present (Overridden_Operation (Subp))
10210 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10211 Extensions_Visible_False
10212 then
10213 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10214 Error_Msg_N
10215 ("subprogram & with Extensions_Visible True cannot override "
10216 & "subprogram # with Extensions_Visible False", Subp);
10217 end if;
10219 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10221 -- Subp is an expander-generated procedure which maps an interface
10222 -- alias to a protected wrapper. The interface alias is flagged by
10223 -- pragma Implemented. Ensure that Subp is a procedure when the
10224 -- implementation kind is By_Protected_Procedure or an entry when
10225 -- By_Entry.
10227 if Ada_Version >= Ada_2012
10228 and then Is_Hidden (Subp)
10229 and then Present (Interface_Alias (Subp))
10230 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10231 then
10232 Check_Pragma_Implemented (Subp);
10233 end if;
10235 -- Subp is an interface primitive which overrides another interface
10236 -- primitive marked with pragma Implemented.
10238 if Ada_Version >= Ada_2012
10239 and then Present (Overridden_Operation (Subp))
10240 and then Has_Rep_Pragma
10241 (Overridden_Operation (Subp), Name_Implemented)
10242 then
10243 -- If the overriding routine is also marked by Implemented, check
10244 -- that the two implementation kinds are conforming.
10246 if Has_Rep_Pragma (Subp, Name_Implemented) then
10247 Check_Pragma_Implemented
10248 (Subp => Subp,
10249 Iface_Subp => Overridden_Operation (Subp));
10251 -- Otherwise the overriding routine inherits the implementation
10252 -- kind from the overridden subprogram.
10254 else
10255 Inherit_Pragma_Implemented
10256 (Subp => Subp,
10257 Iface_Subp => Overridden_Operation (Subp));
10258 end if;
10259 end if;
10261 -- If the operation is a wrapper for a synchronized primitive, it
10262 -- may be called indirectly through a dispatching select. We assume
10263 -- that it will be referenced elsewhere indirectly, and suppress
10264 -- warnings about an unused entity.
10266 if Is_Primitive_Wrapper (Subp)
10267 and then Present (Wrapped_Entity (Subp))
10268 then
10269 Set_Referenced (Wrapped_Entity (Subp));
10270 end if;
10272 Next_Elmt (Elmt);
10273 end loop;
10274 end Check_Abstract_Overriding;
10276 ------------------------------------------------
10277 -- Check_Access_Discriminant_Requires_Limited --
10278 ------------------------------------------------
10280 procedure Check_Access_Discriminant_Requires_Limited
10281 (D : Node_Id;
10282 Loc : Node_Id)
10284 begin
10285 -- A discriminant_specification for an access discriminant shall appear
10286 -- only in the declaration for a task or protected type, or for a type
10287 -- with the reserved word 'limited' in its definition or in one of its
10288 -- ancestors (RM 3.7(10)).
10290 -- AI-0063: The proper condition is that type must be immutably limited,
10291 -- or else be a partial view.
10293 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10294 if Is_Limited_View (Current_Scope)
10295 or else
10296 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10297 and then Limited_Present (Parent (Current_Scope)))
10298 then
10299 null;
10301 else
10302 Error_Msg_N
10303 ("access discriminants allowed only for limited types", Loc);
10304 end if;
10305 end if;
10306 end Check_Access_Discriminant_Requires_Limited;
10308 -----------------------------------
10309 -- Check_Aliased_Component_Types --
10310 -----------------------------------
10312 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10313 C : Entity_Id;
10315 begin
10316 -- ??? Also need to check components of record extensions, but not
10317 -- components of protected types (which are always limited).
10319 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10320 -- types to be unconstrained. This is safe because it is illegal to
10321 -- create access subtypes to such types with explicit discriminant
10322 -- constraints.
10324 if not Is_Limited_Type (T) then
10325 if Ekind (T) = E_Record_Type then
10326 C := First_Component (T);
10327 while Present (C) loop
10328 if Is_Aliased (C)
10329 and then Has_Discriminants (Etype (C))
10330 and then not Is_Constrained (Etype (C))
10331 and then not In_Instance_Body
10332 and then Ada_Version < Ada_2005
10333 then
10334 Error_Msg_N
10335 ("aliased component must be constrained (RM 3.6(11))",
10337 end if;
10339 Next_Component (C);
10340 end loop;
10342 elsif Ekind (T) = E_Array_Type then
10343 if Has_Aliased_Components (T)
10344 and then Has_Discriminants (Component_Type (T))
10345 and then not Is_Constrained (Component_Type (T))
10346 and then not In_Instance_Body
10347 and then Ada_Version < Ada_2005
10348 then
10349 Error_Msg_N
10350 ("aliased component type must be constrained (RM 3.6(11))",
10352 end if;
10353 end if;
10354 end if;
10355 end Check_Aliased_Component_Types;
10357 ---------------------------------------
10358 -- Check_Anonymous_Access_Components --
10359 ---------------------------------------
10361 procedure Check_Anonymous_Access_Components
10362 (Typ_Decl : Node_Id;
10363 Typ : Entity_Id;
10364 Prev : Entity_Id;
10365 Comp_List : Node_Id)
10367 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10368 Anon_Access : Entity_Id;
10369 Acc_Def : Node_Id;
10370 Comp : Node_Id;
10371 Comp_Def : Node_Id;
10372 Decl : Node_Id;
10373 Type_Def : Node_Id;
10375 procedure Build_Incomplete_Type_Declaration;
10376 -- If the record type contains components that include an access to the
10377 -- current record, then create an incomplete type declaration for the
10378 -- record, to be used as the designated type of the anonymous access.
10379 -- This is done only once, and only if there is no previous partial
10380 -- view of the type.
10382 function Designates_T (Subt : Node_Id) return Boolean;
10383 -- Check whether a node designates the enclosing record type, or 'Class
10384 -- of that type
10386 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10387 -- Check whether an access definition includes a reference to
10388 -- the enclosing record type. The reference can be a subtype mark
10389 -- in the access definition itself, a 'Class attribute reference, or
10390 -- recursively a reference appearing in a parameter specification
10391 -- or result definition of an access_to_subprogram definition.
10393 --------------------------------------
10394 -- Build_Incomplete_Type_Declaration --
10395 --------------------------------------
10397 procedure Build_Incomplete_Type_Declaration is
10398 Decl : Node_Id;
10399 Inc_T : Entity_Id;
10400 H : Entity_Id;
10402 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10403 -- it's "is new ... with record" or else "is tagged record ...".
10405 Is_Tagged : constant Boolean :=
10406 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10407 and then
10408 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10409 or else
10410 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10411 and then Tagged_Present (Type_Definition (Typ_Decl)));
10413 begin
10414 -- If there is a previous partial view, no need to create a new one
10415 -- If the partial view, given by Prev, is incomplete, If Prev is
10416 -- a private declaration, full declaration is flagged accordingly.
10418 if Prev /= Typ then
10419 if Is_Tagged then
10420 Make_Class_Wide_Type (Prev);
10421 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10422 Set_Etype (Class_Wide_Type (Typ), Typ);
10423 end if;
10425 return;
10427 elsif Has_Private_Declaration (Typ) then
10429 -- If we refer to T'Class inside T, and T is the completion of a
10430 -- private type, then make sure the class-wide type exists.
10432 if Is_Tagged then
10433 Make_Class_Wide_Type (Typ);
10434 end if;
10436 return;
10438 -- If there was a previous anonymous access type, the incomplete
10439 -- type declaration will have been created already.
10441 elsif Present (Current_Entity (Typ))
10442 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10443 and then Full_View (Current_Entity (Typ)) = Typ
10444 then
10445 if Is_Tagged
10446 and then Comes_From_Source (Current_Entity (Typ))
10447 and then not Is_Tagged_Type (Current_Entity (Typ))
10448 then
10449 Make_Class_Wide_Type (Typ);
10450 Error_Msg_N
10451 ("incomplete view of tagged type should be declared tagged??",
10452 Parent (Current_Entity (Typ)));
10453 end if;
10454 return;
10456 else
10457 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10458 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10460 -- Type has already been inserted into the current scope. Remove
10461 -- it, and add incomplete declaration for type, so that subsequent
10462 -- anonymous access types can use it. The entity is unchained from
10463 -- the homonym list and from immediate visibility. After analysis,
10464 -- the entity in the incomplete declaration becomes immediately
10465 -- visible in the record declaration that follows.
10467 H := Current_Entity (Typ);
10469 if H = Typ then
10470 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10471 else
10472 while Present (H)
10473 and then Homonym (H) /= Typ
10474 loop
10475 H := Homonym (Typ);
10476 end loop;
10478 Set_Homonym (H, Homonym (Typ));
10479 end if;
10481 Insert_Before (Typ_Decl, Decl);
10482 Analyze (Decl);
10483 Set_Full_View (Inc_T, Typ);
10485 if Is_Tagged then
10487 -- Create a common class-wide type for both views, and set the
10488 -- Etype of the class-wide type to the full view.
10490 Make_Class_Wide_Type (Inc_T);
10491 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10492 Set_Etype (Class_Wide_Type (Typ), Typ);
10493 end if;
10494 end if;
10495 end Build_Incomplete_Type_Declaration;
10497 ------------------
10498 -- Designates_T --
10499 ------------------
10501 function Designates_T (Subt : Node_Id) return Boolean is
10502 Type_Id : constant Name_Id := Chars (Typ);
10504 function Names_T (Nam : Node_Id) return Boolean;
10505 -- The record type has not been introduced in the current scope
10506 -- yet, so we must examine the name of the type itself, either
10507 -- an identifier T, or an expanded name of the form P.T, where
10508 -- P denotes the current scope.
10510 -------------
10511 -- Names_T --
10512 -------------
10514 function Names_T (Nam : Node_Id) return Boolean is
10515 begin
10516 if Nkind (Nam) = N_Identifier then
10517 return Chars (Nam) = Type_Id;
10519 elsif Nkind (Nam) = N_Selected_Component then
10520 if Chars (Selector_Name (Nam)) = Type_Id then
10521 if Nkind (Prefix (Nam)) = N_Identifier then
10522 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10524 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10525 return Chars (Selector_Name (Prefix (Nam))) =
10526 Chars (Current_Scope);
10527 else
10528 return False;
10529 end if;
10531 else
10532 return False;
10533 end if;
10535 else
10536 return False;
10537 end if;
10538 end Names_T;
10540 -- Start of processing for Designates_T
10542 begin
10543 if Nkind (Subt) = N_Identifier then
10544 return Chars (Subt) = Type_Id;
10546 -- Reference can be through an expanded name which has not been
10547 -- analyzed yet, and which designates enclosing scopes.
10549 elsif Nkind (Subt) = N_Selected_Component then
10550 if Names_T (Subt) then
10551 return True;
10553 -- Otherwise it must denote an entity that is already visible.
10554 -- The access definition may name a subtype of the enclosing
10555 -- type, if there is a previous incomplete declaration for it.
10557 else
10558 Find_Selected_Component (Subt);
10559 return
10560 Is_Entity_Name (Subt)
10561 and then Scope (Entity (Subt)) = Current_Scope
10562 and then
10563 (Chars (Base_Type (Entity (Subt))) = Type_Id
10564 or else
10565 (Is_Class_Wide_Type (Entity (Subt))
10566 and then
10567 Chars (Etype (Base_Type (Entity (Subt)))) =
10568 Type_Id));
10569 end if;
10571 -- A reference to the current type may appear as the prefix of
10572 -- a 'Class attribute.
10574 elsif Nkind (Subt) = N_Attribute_Reference
10575 and then Attribute_Name (Subt) = Name_Class
10576 then
10577 return Names_T (Prefix (Subt));
10579 else
10580 return False;
10581 end if;
10582 end Designates_T;
10584 ----------------
10585 -- Mentions_T --
10586 ----------------
10588 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10589 Param_Spec : Node_Id;
10591 Acc_Subprg : constant Node_Id :=
10592 Access_To_Subprogram_Definition (Acc_Def);
10594 begin
10595 if No (Acc_Subprg) then
10596 return Designates_T (Subtype_Mark (Acc_Def));
10597 end if;
10599 -- Component is an access_to_subprogram: examine its formals,
10600 -- and result definition in the case of an access_to_function.
10602 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10603 while Present (Param_Spec) loop
10604 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10605 and then Mentions_T (Parameter_Type (Param_Spec))
10606 then
10607 return True;
10609 elsif Designates_T (Parameter_Type (Param_Spec)) then
10610 return True;
10611 end if;
10613 Next (Param_Spec);
10614 end loop;
10616 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10617 if Nkind (Result_Definition (Acc_Subprg)) =
10618 N_Access_Definition
10619 then
10620 return Mentions_T (Result_Definition (Acc_Subprg));
10621 else
10622 return Designates_T (Result_Definition (Acc_Subprg));
10623 end if;
10624 end if;
10626 return False;
10627 end Mentions_T;
10629 -- Start of processing for Check_Anonymous_Access_Components
10631 begin
10632 if No (Comp_List) then
10633 return;
10634 end if;
10636 Comp := First (Component_Items (Comp_List));
10637 while Present (Comp) loop
10638 if Nkind (Comp) = N_Component_Declaration
10639 and then Present
10640 (Access_Definition (Component_Definition (Comp)))
10641 and then
10642 Mentions_T (Access_Definition (Component_Definition (Comp)))
10643 then
10644 Comp_Def := Component_Definition (Comp);
10645 Acc_Def :=
10646 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10648 Build_Incomplete_Type_Declaration;
10649 Anon_Access := Make_Temporary (Loc, 'S');
10651 -- Create a declaration for the anonymous access type: either
10652 -- an access_to_object or an access_to_subprogram.
10654 if Present (Acc_Def) then
10655 if Nkind (Acc_Def) = N_Access_Function_Definition then
10656 Type_Def :=
10657 Make_Access_Function_Definition (Loc,
10658 Parameter_Specifications =>
10659 Parameter_Specifications (Acc_Def),
10660 Result_Definition => Result_Definition (Acc_Def));
10661 else
10662 Type_Def :=
10663 Make_Access_Procedure_Definition (Loc,
10664 Parameter_Specifications =>
10665 Parameter_Specifications (Acc_Def));
10666 end if;
10668 else
10669 Type_Def :=
10670 Make_Access_To_Object_Definition (Loc,
10671 Subtype_Indication =>
10672 Relocate_Node
10673 (Subtype_Mark (Access_Definition (Comp_Def))));
10675 Set_Constant_Present
10676 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10677 Set_All_Present
10678 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10679 end if;
10681 Set_Null_Exclusion_Present
10682 (Type_Def,
10683 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10685 Decl :=
10686 Make_Full_Type_Declaration (Loc,
10687 Defining_Identifier => Anon_Access,
10688 Type_Definition => Type_Def);
10690 Insert_Before (Typ_Decl, Decl);
10691 Analyze (Decl);
10693 -- If an access to subprogram, create the extra formals
10695 if Present (Acc_Def) then
10696 Create_Extra_Formals (Designated_Type (Anon_Access));
10698 -- If an access to object, preserve entity of designated type,
10699 -- for ASIS use, before rewriting the component definition.
10701 else
10702 declare
10703 Desig : Entity_Id;
10705 begin
10706 Desig := Entity (Subtype_Indication (Type_Def));
10708 -- If the access definition is to the current record,
10709 -- the visible entity at this point is an incomplete
10710 -- type. Retrieve the full view to simplify ASIS queries
10712 if Ekind (Desig) = E_Incomplete_Type then
10713 Desig := Full_View (Desig);
10714 end if;
10716 Set_Entity
10717 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10718 end;
10719 end if;
10721 Rewrite (Comp_Def,
10722 Make_Component_Definition (Loc,
10723 Subtype_Indication =>
10724 New_Occurrence_Of (Anon_Access, Loc)));
10726 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10727 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10728 else
10729 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10730 end if;
10732 Set_Is_Local_Anonymous_Access (Anon_Access);
10733 end if;
10735 Next (Comp);
10736 end loop;
10738 if Present (Variant_Part (Comp_List)) then
10739 declare
10740 V : Node_Id;
10741 begin
10742 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10743 while Present (V) loop
10744 Check_Anonymous_Access_Components
10745 (Typ_Decl, Typ, Prev, Component_List (V));
10746 Next_Non_Pragma (V);
10747 end loop;
10748 end;
10749 end if;
10750 end Check_Anonymous_Access_Components;
10752 ----------------------
10753 -- Check_Completion --
10754 ----------------------
10756 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10757 E : Entity_Id;
10759 procedure Post_Error;
10760 -- Post error message for lack of completion for entity E
10762 ----------------
10763 -- Post_Error --
10764 ----------------
10766 procedure Post_Error is
10767 procedure Missing_Body;
10768 -- Output missing body message
10770 ------------------
10771 -- Missing_Body --
10772 ------------------
10774 procedure Missing_Body is
10775 begin
10776 -- Spec is in same unit, so we can post on spec
10778 if In_Same_Source_Unit (Body_Id, E) then
10779 Error_Msg_N ("missing body for &", E);
10781 -- Spec is in a separate unit, so we have to post on the body
10783 else
10784 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10785 end if;
10786 end Missing_Body;
10788 -- Start of processing for Post_Error
10790 begin
10791 if not Comes_From_Source (E) then
10792 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10794 -- It may be an anonymous protected type created for a
10795 -- single variable. Post error on variable, if present.
10797 declare
10798 Var : Entity_Id;
10800 begin
10801 Var := First_Entity (Current_Scope);
10802 while Present (Var) loop
10803 exit when Etype (Var) = E
10804 and then Comes_From_Source (Var);
10806 Next_Entity (Var);
10807 end loop;
10809 if Present (Var) then
10810 E := Var;
10811 end if;
10812 end;
10813 end if;
10814 end if;
10816 -- If a generated entity has no completion, then either previous
10817 -- semantic errors have disabled the expansion phase, or else we had
10818 -- missing subunits, or else we are compiling without expansion,
10819 -- or else something is very wrong.
10821 if not Comes_From_Source (E) then
10822 pragma Assert
10823 (Serious_Errors_Detected > 0
10824 or else Configurable_Run_Time_Violations > 0
10825 or else Subunits_Missing
10826 or else not Expander_Active);
10827 return;
10829 -- Here for source entity
10831 else
10832 -- Here if no body to post the error message, so we post the error
10833 -- on the declaration that has no completion. This is not really
10834 -- the right place to post it, think about this later ???
10836 if No (Body_Id) then
10837 if Is_Type (E) then
10838 Error_Msg_NE
10839 ("missing full declaration for }", Parent (E), E);
10840 else
10841 Error_Msg_NE ("missing body for &", Parent (E), E);
10842 end if;
10844 -- Package body has no completion for a declaration that appears
10845 -- in the corresponding spec. Post error on the body, with a
10846 -- reference to the non-completed declaration.
10848 else
10849 Error_Msg_Sloc := Sloc (E);
10851 if Is_Type (E) then
10852 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10854 elsif Is_Overloadable (E)
10855 and then Current_Entity_In_Scope (E) /= E
10856 then
10857 -- It may be that the completion is mistyped and appears as
10858 -- a distinct overloading of the entity.
10860 declare
10861 Candidate : constant Entity_Id :=
10862 Current_Entity_In_Scope (E);
10863 Decl : constant Node_Id :=
10864 Unit_Declaration_Node (Candidate);
10866 begin
10867 if Is_Overloadable (Candidate)
10868 and then Ekind (Candidate) = Ekind (E)
10869 and then Nkind (Decl) = N_Subprogram_Body
10870 and then Acts_As_Spec (Decl)
10871 then
10872 Check_Type_Conformant (Candidate, E);
10874 else
10875 Missing_Body;
10876 end if;
10877 end;
10879 else
10880 Missing_Body;
10881 end if;
10882 end if;
10883 end if;
10884 end Post_Error;
10886 -- Local variables
10888 Pack_Id : constant Entity_Id := Current_Scope;
10890 -- Start of processing for Check_Completion
10892 begin
10893 E := First_Entity (Pack_Id);
10894 while Present (E) loop
10895 if Is_Intrinsic_Subprogram (E) then
10896 null;
10898 -- The following situation requires special handling: a child unit
10899 -- that appears in the context clause of the body of its parent:
10901 -- procedure Parent.Child (...);
10903 -- with Parent.Child;
10904 -- package body Parent is
10906 -- Here Parent.Child appears as a local entity, but should not be
10907 -- flagged as requiring completion, because it is a compilation
10908 -- unit.
10910 -- Ignore missing completion for a subprogram that does not come from
10911 -- source (including the _Call primitive operation of RAS types,
10912 -- which has to have the flag Comes_From_Source for other purposes):
10913 -- we assume that the expander will provide the missing completion.
10914 -- In case of previous errors, other expansion actions that provide
10915 -- bodies for null procedures with not be invoked, so inhibit message
10916 -- in those cases.
10918 -- Note that E_Operator is not in the list that follows, because
10919 -- this kind is reserved for predefined operators, that are
10920 -- intrinsic and do not need completion.
10922 elsif Ekind_In (E, E_Function,
10923 E_Procedure,
10924 E_Generic_Function,
10925 E_Generic_Procedure)
10926 then
10927 if Has_Completion (E) then
10928 null;
10930 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10931 null;
10933 elsif Is_Subprogram (E)
10934 and then (not Comes_From_Source (E)
10935 or else Chars (E) = Name_uCall)
10936 then
10937 null;
10939 elsif
10940 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10941 then
10942 null;
10944 elsif Nkind (Parent (E)) = N_Procedure_Specification
10945 and then Null_Present (Parent (E))
10946 and then Serious_Errors_Detected > 0
10947 then
10948 null;
10950 else
10951 Post_Error;
10952 end if;
10954 elsif Is_Entry (E) then
10955 if not Has_Completion (E) and then
10956 (Ekind (Scope (E)) = E_Protected_Object
10957 or else Ekind (Scope (E)) = E_Protected_Type)
10958 then
10959 Post_Error;
10960 end if;
10962 elsif Is_Package_Or_Generic_Package (E) then
10963 if Unit_Requires_Body (E) then
10964 if not Has_Completion (E)
10965 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10966 N_Compilation_Unit
10967 then
10968 Post_Error;
10969 end if;
10971 elsif not Is_Child_Unit (E) then
10972 May_Need_Implicit_Body (E);
10973 end if;
10975 -- A formal incomplete type (Ada 2012) does not require a completion;
10976 -- other incomplete type declarations do.
10978 elsif Ekind (E) = E_Incomplete_Type
10979 and then No (Underlying_Type (E))
10980 and then not Is_Generic_Type (E)
10981 then
10982 Post_Error;
10984 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10985 and then not Has_Completion (E)
10986 then
10987 Post_Error;
10989 -- A single task declared in the current scope is a constant, verify
10990 -- that the body of its anonymous type is in the same scope. If the
10991 -- task is defined elsewhere, this may be a renaming declaration for
10992 -- which no completion is needed.
10994 elsif Ekind (E) = E_Constant
10995 and then Ekind (Etype (E)) = E_Task_Type
10996 and then not Has_Completion (Etype (E))
10997 and then Scope (Etype (E)) = Current_Scope
10998 then
10999 Post_Error;
11001 elsif Ekind (E) = E_Protected_Object
11002 and then not Has_Completion (Etype (E))
11003 then
11004 Post_Error;
11006 elsif Ekind (E) = E_Record_Type then
11007 if Is_Tagged_Type (E) then
11008 Check_Abstract_Overriding (E);
11009 Check_Conventions (E);
11010 end if;
11012 Check_Aliased_Component_Types (E);
11014 elsif Ekind (E) = E_Array_Type then
11015 Check_Aliased_Component_Types (E);
11017 end if;
11019 Next_Entity (E);
11020 end loop;
11021 end Check_Completion;
11023 ------------------------------------
11024 -- Check_CPP_Type_Has_No_Defaults --
11025 ------------------------------------
11027 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11028 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11029 Clist : Node_Id;
11030 Comp : Node_Id;
11032 begin
11033 -- Obtain the component list
11035 if Nkind (Tdef) = N_Record_Definition then
11036 Clist := Component_List (Tdef);
11037 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11038 Clist := Component_List (Record_Extension_Part (Tdef));
11039 end if;
11041 -- Check all components to ensure no default expressions
11043 if Present (Clist) then
11044 Comp := First (Component_Items (Clist));
11045 while Present (Comp) loop
11046 if Present (Expression (Comp)) then
11047 Error_Msg_N
11048 ("component of imported 'C'P'P type cannot have "
11049 & "default expression", Expression (Comp));
11050 end if;
11052 Next (Comp);
11053 end loop;
11054 end if;
11055 end Check_CPP_Type_Has_No_Defaults;
11057 ----------------------------
11058 -- Check_Delta_Expression --
11059 ----------------------------
11061 procedure Check_Delta_Expression (E : Node_Id) is
11062 begin
11063 if not (Is_Real_Type (Etype (E))) then
11064 Wrong_Type (E, Any_Real);
11066 elsif not Is_OK_Static_Expression (E) then
11067 Flag_Non_Static_Expr
11068 ("non-static expression used for delta value!", E);
11070 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11071 Error_Msg_N ("delta expression must be positive", E);
11073 else
11074 return;
11075 end if;
11077 -- If any of above errors occurred, then replace the incorrect
11078 -- expression by the real 0.1, which should prevent further errors.
11080 Rewrite (E,
11081 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11082 Analyze_And_Resolve (E, Standard_Float);
11083 end Check_Delta_Expression;
11085 -----------------------------
11086 -- Check_Digits_Expression --
11087 -----------------------------
11089 procedure Check_Digits_Expression (E : Node_Id) is
11090 begin
11091 if not (Is_Integer_Type (Etype (E))) then
11092 Wrong_Type (E, Any_Integer);
11094 elsif not Is_OK_Static_Expression (E) then
11095 Flag_Non_Static_Expr
11096 ("non-static expression used for digits value!", E);
11098 elsif Expr_Value (E) <= 0 then
11099 Error_Msg_N ("digits value must be greater than zero", E);
11101 else
11102 return;
11103 end if;
11105 -- If any of above errors occurred, then replace the incorrect
11106 -- expression by the integer 1, which should prevent further errors.
11108 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11109 Analyze_And_Resolve (E, Standard_Integer);
11111 end Check_Digits_Expression;
11113 --------------------------
11114 -- Check_Initialization --
11115 --------------------------
11117 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11118 begin
11119 -- Special processing for limited types
11121 if Is_Limited_Type (T)
11122 and then not In_Instance
11123 and then not In_Inlined_Body
11124 then
11125 if not OK_For_Limited_Init (T, Exp) then
11127 -- In GNAT mode, this is just a warning, to allow it to be evilly
11128 -- turned off. Otherwise it is a real error.
11130 if GNAT_Mode then
11131 Error_Msg_N
11132 ("??cannot initialize entities of limited type!", Exp);
11134 elsif Ada_Version < Ada_2005 then
11136 -- The side effect removal machinery may generate illegal Ada
11137 -- code to avoid the usage of access types and 'reference in
11138 -- SPARK mode. Since this is legal code with respect to theorem
11139 -- proving, do not emit the error.
11141 if GNATprove_Mode
11142 and then Nkind (Exp) = N_Function_Call
11143 and then Nkind (Parent (Exp)) = N_Object_Declaration
11144 and then not Comes_From_Source
11145 (Defining_Identifier (Parent (Exp)))
11146 then
11147 null;
11149 else
11150 Error_Msg_N
11151 ("cannot initialize entities of limited type", Exp);
11152 Explain_Limited_Type (T, Exp);
11153 end if;
11155 else
11156 -- Specialize error message according to kind of illegal
11157 -- initial expression.
11159 if Nkind (Exp) = N_Type_Conversion
11160 and then Nkind (Expression (Exp)) = N_Function_Call
11161 then
11162 Error_Msg_N
11163 ("illegal context for call"
11164 & " to function with limited result", Exp);
11166 else
11167 Error_Msg_N
11168 ("initialization of limited object requires aggregate "
11169 & "or function call", Exp);
11170 end if;
11171 end if;
11172 end if;
11173 end if;
11175 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11176 -- set unless we can be sure that no range check is required.
11178 if (GNATprove_Mode or not Expander_Active)
11179 and then Is_Scalar_Type (T)
11180 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11181 then
11182 Set_Do_Range_Check (Exp);
11183 end if;
11184 end Check_Initialization;
11186 ----------------------
11187 -- Check_Interfaces --
11188 ----------------------
11190 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11191 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11193 Iface : Node_Id;
11194 Iface_Def : Node_Id;
11195 Iface_Typ : Entity_Id;
11196 Parent_Node : Node_Id;
11198 Is_Task : Boolean := False;
11199 -- Set True if parent type or any progenitor is a task interface
11201 Is_Protected : Boolean := False;
11202 -- Set True if parent type or any progenitor is a protected interface
11204 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11205 -- Check that a progenitor is compatible with declaration. If an error
11206 -- message is output, it is posted on Error_Node.
11208 ------------------
11209 -- Check_Ifaces --
11210 ------------------
11212 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11213 Iface_Id : constant Entity_Id :=
11214 Defining_Identifier (Parent (Iface_Def));
11215 Type_Def : Node_Id;
11217 begin
11218 if Nkind (N) = N_Private_Extension_Declaration then
11219 Type_Def := N;
11220 else
11221 Type_Def := Type_Definition (N);
11222 end if;
11224 if Is_Task_Interface (Iface_Id) then
11225 Is_Task := True;
11227 elsif Is_Protected_Interface (Iface_Id) then
11228 Is_Protected := True;
11229 end if;
11231 if Is_Synchronized_Interface (Iface_Id) then
11233 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11234 -- extension derived from a synchronized interface must explicitly
11235 -- be declared synchronized, because the full view will be a
11236 -- synchronized type.
11238 if Nkind (N) = N_Private_Extension_Declaration then
11239 if not Synchronized_Present (N) then
11240 Error_Msg_NE
11241 ("private extension of& must be explicitly synchronized",
11242 N, Iface_Id);
11243 end if;
11245 -- However, by 3.9.4(16/2), a full type that is a record extension
11246 -- is never allowed to derive from a synchronized interface (note
11247 -- that interfaces must be excluded from this check, because those
11248 -- are represented by derived type definitions in some cases).
11250 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11251 and then not Interface_Present (Type_Definition (N))
11252 then
11253 Error_Msg_N ("record extension cannot derive from synchronized "
11254 & "interface", Error_Node);
11255 end if;
11256 end if;
11258 -- Check that the characteristics of the progenitor are compatible
11259 -- with the explicit qualifier in the declaration.
11260 -- The check only applies to qualifiers that come from source.
11261 -- Limited_Present also appears in the declaration of corresponding
11262 -- records, and the check does not apply to them.
11264 if Limited_Present (Type_Def)
11265 and then not
11266 Is_Concurrent_Record_Type (Defining_Identifier (N))
11267 then
11268 if Is_Limited_Interface (Parent_Type)
11269 and then not Is_Limited_Interface (Iface_Id)
11270 then
11271 Error_Msg_NE
11272 ("progenitor & must be limited interface",
11273 Error_Node, Iface_Id);
11275 elsif
11276 (Task_Present (Iface_Def)
11277 or else Protected_Present (Iface_Def)
11278 or else Synchronized_Present (Iface_Def))
11279 and then Nkind (N) /= N_Private_Extension_Declaration
11280 and then not Error_Posted (N)
11281 then
11282 Error_Msg_NE
11283 ("progenitor & must be limited interface",
11284 Error_Node, Iface_Id);
11285 end if;
11287 -- Protected interfaces can only inherit from limited, synchronized
11288 -- or protected interfaces.
11290 elsif Nkind (N) = N_Full_Type_Declaration
11291 and then Protected_Present (Type_Def)
11292 then
11293 if Limited_Present (Iface_Def)
11294 or else Synchronized_Present (Iface_Def)
11295 or else Protected_Present (Iface_Def)
11296 then
11297 null;
11299 elsif Task_Present (Iface_Def) then
11300 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11301 & "from task interface", Error_Node);
11303 else
11304 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11305 & "from non-limited interface", Error_Node);
11306 end if;
11308 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11309 -- limited and synchronized.
11311 elsif Synchronized_Present (Type_Def) then
11312 if Limited_Present (Iface_Def)
11313 or else Synchronized_Present (Iface_Def)
11314 then
11315 null;
11317 elsif Protected_Present (Iface_Def)
11318 and then Nkind (N) /= N_Private_Extension_Declaration
11319 then
11320 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11321 & "from protected interface", Error_Node);
11323 elsif Task_Present (Iface_Def)
11324 and then Nkind (N) /= N_Private_Extension_Declaration
11325 then
11326 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11327 & "from task interface", Error_Node);
11329 elsif not Is_Limited_Interface (Iface_Id) then
11330 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11331 & "from non-limited interface", Error_Node);
11332 end if;
11334 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11335 -- synchronized or task interfaces.
11337 elsif Nkind (N) = N_Full_Type_Declaration
11338 and then Task_Present (Type_Def)
11339 then
11340 if Limited_Present (Iface_Def)
11341 or else Synchronized_Present (Iface_Def)
11342 or else Task_Present (Iface_Def)
11343 then
11344 null;
11346 elsif Protected_Present (Iface_Def) then
11347 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11348 & "protected interface", Error_Node);
11350 else
11351 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11352 & "non-limited interface", Error_Node);
11353 end if;
11354 end if;
11355 end Check_Ifaces;
11357 -- Start of processing for Check_Interfaces
11359 begin
11360 if Is_Interface (Parent_Type) then
11361 if Is_Task_Interface (Parent_Type) then
11362 Is_Task := True;
11364 elsif Is_Protected_Interface (Parent_Type) then
11365 Is_Protected := True;
11366 end if;
11367 end if;
11369 if Nkind (N) = N_Private_Extension_Declaration then
11371 -- Check that progenitors are compatible with declaration
11373 Iface := First (Interface_List (Def));
11374 while Present (Iface) loop
11375 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11377 Parent_Node := Parent (Base_Type (Iface_Typ));
11378 Iface_Def := Type_Definition (Parent_Node);
11380 if not Is_Interface (Iface_Typ) then
11381 Diagnose_Interface (Iface, Iface_Typ);
11382 else
11383 Check_Ifaces (Iface_Def, Iface);
11384 end if;
11386 Next (Iface);
11387 end loop;
11389 if Is_Task and Is_Protected then
11390 Error_Msg_N
11391 ("type cannot derive from task and protected interface", N);
11392 end if;
11394 return;
11395 end if;
11397 -- Full type declaration of derived type.
11398 -- Check compatibility with parent if it is interface type
11400 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11401 and then Is_Interface (Parent_Type)
11402 then
11403 Parent_Node := Parent (Parent_Type);
11405 -- More detailed checks for interface varieties
11407 Check_Ifaces
11408 (Iface_Def => Type_Definition (Parent_Node),
11409 Error_Node => Subtype_Indication (Type_Definition (N)));
11410 end if;
11412 Iface := First (Interface_List (Def));
11413 while Present (Iface) loop
11414 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11416 Parent_Node := Parent (Base_Type (Iface_Typ));
11417 Iface_Def := Type_Definition (Parent_Node);
11419 if not Is_Interface (Iface_Typ) then
11420 Diagnose_Interface (Iface, Iface_Typ);
11422 else
11423 -- "The declaration of a specific descendant of an interface
11424 -- type freezes the interface type" RM 13.14
11426 Freeze_Before (N, Iface_Typ);
11427 Check_Ifaces (Iface_Def, Error_Node => Iface);
11428 end if;
11430 Next (Iface);
11431 end loop;
11433 if Is_Task and Is_Protected then
11434 Error_Msg_N
11435 ("type cannot derive from task and protected interface", N);
11436 end if;
11437 end Check_Interfaces;
11439 ------------------------------------
11440 -- Check_Or_Process_Discriminants --
11441 ------------------------------------
11443 -- If an incomplete or private type declaration was already given for the
11444 -- type, the discriminants may have already been processed if they were
11445 -- present on the incomplete declaration. In this case a full conformance
11446 -- check has been performed in Find_Type_Name, and we then recheck here
11447 -- some properties that can't be checked on the partial view alone.
11448 -- Otherwise we call Process_Discriminants.
11450 procedure Check_Or_Process_Discriminants
11451 (N : Node_Id;
11452 T : Entity_Id;
11453 Prev : Entity_Id := Empty)
11455 begin
11456 if Has_Discriminants (T) then
11458 -- Discriminants are already set on T if they were already present
11459 -- on the partial view. Make them visible to component declarations.
11461 declare
11462 D : Entity_Id;
11463 -- Discriminant on T (full view) referencing expr on partial view
11465 Prev_D : Entity_Id;
11466 -- Entity of corresponding discriminant on partial view
11468 New_D : Node_Id;
11469 -- Discriminant specification for full view, expression is
11470 -- the syntactic copy on full view (which has been checked for
11471 -- conformance with partial view), only used here to post error
11472 -- message.
11474 begin
11475 D := First_Discriminant (T);
11476 New_D := First (Discriminant_Specifications (N));
11477 while Present (D) loop
11478 Prev_D := Current_Entity (D);
11479 Set_Current_Entity (D);
11480 Set_Is_Immediately_Visible (D);
11481 Set_Homonym (D, Prev_D);
11483 -- Handle the case where there is an untagged partial view and
11484 -- the full view is tagged: must disallow discriminants with
11485 -- defaults, unless compiling for Ada 2012, which allows a
11486 -- limited tagged type to have defaulted discriminants (see
11487 -- AI05-0214). However, suppress error here if it was already
11488 -- reported on the default expression of the partial view.
11490 if Is_Tagged_Type (T)
11491 and then Present (Expression (Parent (D)))
11492 and then (not Is_Limited_Type (Current_Scope)
11493 or else Ada_Version < Ada_2012)
11494 and then not Error_Posted (Expression (Parent (D)))
11495 then
11496 if Ada_Version >= Ada_2012 then
11497 Error_Msg_N
11498 ("discriminants of nonlimited tagged type cannot have "
11499 & "defaults",
11500 Expression (New_D));
11501 else
11502 Error_Msg_N
11503 ("discriminants of tagged type cannot have defaults",
11504 Expression (New_D));
11505 end if;
11506 end if;
11508 -- Ada 2005 (AI-230): Access discriminant allowed in
11509 -- non-limited record types.
11511 if Ada_Version < Ada_2005 then
11513 -- This restriction gets applied to the full type here. It
11514 -- has already been applied earlier to the partial view.
11516 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11517 end if;
11519 Next_Discriminant (D);
11520 Next (New_D);
11521 end loop;
11522 end;
11524 elsif Present (Discriminant_Specifications (N)) then
11525 Process_Discriminants (N, Prev);
11526 end if;
11527 end Check_Or_Process_Discriminants;
11529 ----------------------
11530 -- Check_Real_Bound --
11531 ----------------------
11533 procedure Check_Real_Bound (Bound : Node_Id) is
11534 begin
11535 if not Is_Real_Type (Etype (Bound)) then
11536 Error_Msg_N
11537 ("bound in real type definition must be of real type", Bound);
11539 elsif not Is_OK_Static_Expression (Bound) then
11540 Flag_Non_Static_Expr
11541 ("non-static expression used for real type bound!", Bound);
11543 else
11544 return;
11545 end if;
11547 Rewrite
11548 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11549 Analyze (Bound);
11550 Resolve (Bound, Standard_Float);
11551 end Check_Real_Bound;
11553 ------------------------------
11554 -- Complete_Private_Subtype --
11555 ------------------------------
11557 procedure Complete_Private_Subtype
11558 (Priv : Entity_Id;
11559 Full : Entity_Id;
11560 Full_Base : Entity_Id;
11561 Related_Nod : Node_Id)
11563 Save_Next_Entity : Entity_Id;
11564 Save_Homonym : Entity_Id;
11566 begin
11567 -- Set semantic attributes for (implicit) private subtype completion.
11568 -- If the full type has no discriminants, then it is a copy of the
11569 -- full view of the base. Otherwise, it is a subtype of the base with
11570 -- a possible discriminant constraint. Save and restore the original
11571 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11572 -- not corrupt the entity chain.
11574 -- Note that the type of the full view is the same entity as the type
11575 -- of the partial view. In this fashion, the subtype has access to the
11576 -- correct view of the parent.
11578 Save_Next_Entity := Next_Entity (Full);
11579 Save_Homonym := Homonym (Priv);
11581 case Ekind (Full_Base) is
11582 when E_Record_Type |
11583 E_Record_Subtype |
11584 Class_Wide_Kind |
11585 Private_Kind |
11586 Task_Kind |
11587 Protected_Kind =>
11588 Copy_Node (Priv, Full);
11590 Set_Has_Discriminants
11591 (Full, Has_Discriminants (Full_Base));
11592 Set_Has_Unknown_Discriminants
11593 (Full, Has_Unknown_Discriminants (Full_Base));
11594 Set_First_Entity (Full, First_Entity (Full_Base));
11595 Set_Last_Entity (Full, Last_Entity (Full_Base));
11597 -- If the underlying base type is constrained, we know that the
11598 -- full view of the subtype is constrained as well (the converse
11599 -- is not necessarily true).
11601 if Is_Constrained (Full_Base) then
11602 Set_Is_Constrained (Full);
11603 end if;
11605 when others =>
11606 Copy_Node (Full_Base, Full);
11608 Set_Chars (Full, Chars (Priv));
11609 Conditional_Delay (Full, Priv);
11610 Set_Sloc (Full, Sloc (Priv));
11611 end case;
11613 Set_Next_Entity (Full, Save_Next_Entity);
11614 Set_Homonym (Full, Save_Homonym);
11615 Set_Associated_Node_For_Itype (Full, Related_Nod);
11617 -- Set common attributes for all subtypes: kind, convention, etc.
11619 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11620 Set_Convention (Full, Convention (Full_Base));
11622 -- The Etype of the full view is inconsistent. Gigi needs to see the
11623 -- structural full view, which is what the current scheme gives: the
11624 -- Etype of the full view is the etype of the full base. However, if the
11625 -- full base is a derived type, the full view then looks like a subtype
11626 -- of the parent, not a subtype of the full base. If instead we write:
11628 -- Set_Etype (Full, Full_Base);
11630 -- then we get inconsistencies in the front-end (confusion between
11631 -- views). Several outstanding bugs are related to this ???
11633 Set_Is_First_Subtype (Full, False);
11634 Set_Scope (Full, Scope (Priv));
11635 Set_Size_Info (Full, Full_Base);
11636 Set_RM_Size (Full, RM_Size (Full_Base));
11637 Set_Is_Itype (Full);
11639 -- A subtype of a private-type-without-discriminants, whose full-view
11640 -- has discriminants with default expressions, is not constrained.
11642 if not Has_Discriminants (Priv) then
11643 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11645 if Has_Discriminants (Full_Base) then
11646 Set_Discriminant_Constraint
11647 (Full, Discriminant_Constraint (Full_Base));
11649 -- The partial view may have been indefinite, the full view
11650 -- might not be.
11652 Set_Has_Unknown_Discriminants
11653 (Full, Has_Unknown_Discriminants (Full_Base));
11654 end if;
11655 end if;
11657 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11658 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11660 -- Freeze the private subtype entity if its parent is delayed, and not
11661 -- already frozen. We skip this processing if the type is an anonymous
11662 -- subtype of a record component, or is the corresponding record of a
11663 -- protected type, since these are processed when the enclosing type
11664 -- is frozen.
11666 if not Is_Type (Scope (Full)) then
11667 Set_Has_Delayed_Freeze (Full,
11668 Has_Delayed_Freeze (Full_Base)
11669 and then (not Is_Frozen (Full_Base)));
11670 end if;
11672 Set_Freeze_Node (Full, Empty);
11673 Set_Is_Frozen (Full, False);
11674 Set_Full_View (Priv, Full);
11676 if Has_Discriminants (Full) then
11677 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11678 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11680 if Has_Unknown_Discriminants (Full) then
11681 Set_Discriminant_Constraint (Full, No_Elist);
11682 end if;
11683 end if;
11685 if Ekind (Full_Base) = E_Record_Type
11686 and then Has_Discriminants (Full_Base)
11687 and then Has_Discriminants (Priv) -- might not, if errors
11688 and then not Has_Unknown_Discriminants (Priv)
11689 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11690 then
11691 Create_Constrained_Components
11692 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11694 -- If the full base is itself derived from private, build a congruent
11695 -- subtype of its underlying type, for use by the back end. For a
11696 -- constrained record component, the declaration cannot be placed on
11697 -- the component list, but it must nevertheless be built an analyzed, to
11698 -- supply enough information for Gigi to compute the size of component.
11700 elsif Ekind (Full_Base) in Private_Kind
11701 and then Is_Derived_Type (Full_Base)
11702 and then Has_Discriminants (Full_Base)
11703 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11704 then
11705 if not Is_Itype (Priv)
11706 and then
11707 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11708 then
11709 Build_Underlying_Full_View
11710 (Parent (Priv), Full, Etype (Full_Base));
11712 elsif Nkind (Related_Nod) = N_Component_Declaration then
11713 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11714 end if;
11716 elsif Is_Record_Type (Full_Base) then
11718 -- Show Full is simply a renaming of Full_Base
11720 Set_Cloned_Subtype (Full, Full_Base);
11721 end if;
11723 -- It is unsafe to share the bounds of a scalar type, because the Itype
11724 -- is elaborated on demand, and if a bound is non-static then different
11725 -- orders of elaboration in different units will lead to different
11726 -- external symbols.
11728 if Is_Scalar_Type (Full_Base) then
11729 Set_Scalar_Range (Full,
11730 Make_Range (Sloc (Related_Nod),
11731 Low_Bound =>
11732 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11733 High_Bound =>
11734 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11736 -- This completion inherits the bounds of the full parent, but if
11737 -- the parent is an unconstrained floating point type, so is the
11738 -- completion.
11740 if Is_Floating_Point_Type (Full_Base) then
11741 Set_Includes_Infinities
11742 (Scalar_Range (Full), Has_Infinities (Full_Base));
11743 end if;
11744 end if;
11746 -- ??? It seems that a lot of fields are missing that should be copied
11747 -- from Full_Base to Full. Here are some that are introduced in a
11748 -- non-disruptive way but a cleanup is necessary.
11750 if Is_Tagged_Type (Full_Base) then
11751 Set_Is_Tagged_Type (Full);
11752 Set_Direct_Primitive_Operations
11753 (Full, Direct_Primitive_Operations (Full_Base));
11754 Set_No_Tagged_Streams_Pragma
11755 (Full, No_Tagged_Streams_Pragma (Full_Base));
11757 -- Inherit class_wide type of full_base in case the partial view was
11758 -- not tagged. Otherwise it has already been created when the private
11759 -- subtype was analyzed.
11761 if No (Class_Wide_Type (Full)) then
11762 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11763 end if;
11765 -- If this is a subtype of a protected or task type, constrain its
11766 -- corresponding record, unless this is a subtype without constraints,
11767 -- i.e. a simple renaming as with an actual subtype in an instance.
11769 elsif Is_Concurrent_Type (Full_Base) then
11770 if Has_Discriminants (Full)
11771 and then Present (Corresponding_Record_Type (Full_Base))
11772 and then
11773 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11774 then
11775 Set_Corresponding_Record_Type (Full,
11776 Constrain_Corresponding_Record
11777 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11779 else
11780 Set_Corresponding_Record_Type (Full,
11781 Corresponding_Record_Type (Full_Base));
11782 end if;
11783 end if;
11785 -- Link rep item chain, and also setting of Has_Predicates from private
11786 -- subtype to full subtype, since we will need these on the full subtype
11787 -- to create the predicate function. Note that the full subtype may
11788 -- already have rep items, inherited from the full view of the base
11789 -- type, so we must be sure not to overwrite these entries.
11791 declare
11792 Append : Boolean;
11793 Item : Node_Id;
11794 Next_Item : Node_Id;
11796 begin
11797 Item := First_Rep_Item (Full);
11799 -- If no existing rep items on full type, we can just link directly
11800 -- to the list of items on the private type, if any exist.. Same if
11801 -- the rep items are only those inherited from the base
11803 if (No (Item)
11804 or else Nkind (Item) /= N_Aspect_Specification
11805 or else Entity (Item) = Full_Base)
11806 and then Present (First_Rep_Item (Priv))
11807 then
11808 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11810 -- Otherwise, search to the end of items currently linked to the full
11811 -- subtype and append the private items to the end. However, if Priv
11812 -- and Full already have the same list of rep items, then the append
11813 -- is not done, as that would create a circularity.
11815 elsif Item /= First_Rep_Item (Priv) then
11816 Append := True;
11817 loop
11818 Next_Item := Next_Rep_Item (Item);
11819 exit when No (Next_Item);
11820 Item := Next_Item;
11822 -- If the private view has aspect specifications, the full view
11823 -- inherits them. Since these aspects may already have been
11824 -- attached to the full view during derivation, do not append
11825 -- them if already present.
11827 if Item = First_Rep_Item (Priv) then
11828 Append := False;
11829 exit;
11830 end if;
11831 end loop;
11833 -- And link the private type items at the end of the chain
11835 if Append then
11836 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11837 end if;
11838 end if;
11839 end;
11841 -- Make sure Has_Predicates is set on full type if it is set on the
11842 -- private type. Note that it may already be set on the full type and
11843 -- if so, we don't want to unset it. Similarly, propagate information
11844 -- about delayed aspects, because the corresponding pragmas must be
11845 -- analyzed when one of the views is frozen. This last step is needed
11846 -- in particular when the full type is a scalar type for which an
11847 -- anonymous base type is constructed.
11849 -- The predicate functions are generated either at the freeze point
11850 -- of the type or at the end of the visible part, and we must avoid
11851 -- generating them twice.
11853 if Has_Predicates (Priv) then
11854 Set_Has_Predicates (Full);
11856 if Present (Predicate_Function (Priv))
11857 and then No (Predicate_Function (Full))
11858 then
11859 Set_Predicate_Function (Full, Predicate_Function (Priv));
11860 end if;
11861 end if;
11863 if Has_Delayed_Aspects (Priv) then
11864 Set_Has_Delayed_Aspects (Full);
11865 end if;
11866 end Complete_Private_Subtype;
11868 ----------------------------
11869 -- Constant_Redeclaration --
11870 ----------------------------
11872 procedure Constant_Redeclaration
11873 (Id : Entity_Id;
11874 N : Node_Id;
11875 T : out Entity_Id)
11877 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11878 Obj_Def : constant Node_Id := Object_Definition (N);
11879 New_T : Entity_Id;
11881 procedure Check_Possible_Deferred_Completion
11882 (Prev_Id : Entity_Id;
11883 Prev_Obj_Def : Node_Id;
11884 Curr_Obj_Def : Node_Id);
11885 -- Determine whether the two object definitions describe the partial
11886 -- and the full view of a constrained deferred constant. Generate
11887 -- a subtype for the full view and verify that it statically matches
11888 -- the subtype of the partial view.
11890 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11891 -- If deferred constant is an access type initialized with an allocator,
11892 -- check whether there is an illegal recursion in the definition,
11893 -- through a default value of some record subcomponent. This is normally
11894 -- detected when generating init procs, but requires this additional
11895 -- mechanism when expansion is disabled.
11897 ----------------------------------------
11898 -- Check_Possible_Deferred_Completion --
11899 ----------------------------------------
11901 procedure Check_Possible_Deferred_Completion
11902 (Prev_Id : Entity_Id;
11903 Prev_Obj_Def : Node_Id;
11904 Curr_Obj_Def : Node_Id)
11906 begin
11907 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11908 and then Present (Constraint (Prev_Obj_Def))
11909 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11910 and then Present (Constraint (Curr_Obj_Def))
11911 then
11912 declare
11913 Loc : constant Source_Ptr := Sloc (N);
11914 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11915 Decl : constant Node_Id :=
11916 Make_Subtype_Declaration (Loc,
11917 Defining_Identifier => Def_Id,
11918 Subtype_Indication =>
11919 Relocate_Node (Curr_Obj_Def));
11921 begin
11922 Insert_Before_And_Analyze (N, Decl);
11923 Set_Etype (Id, Def_Id);
11925 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11926 Error_Msg_Sloc := Sloc (Prev_Id);
11927 Error_Msg_N ("subtype does not statically match deferred "
11928 & "declaration #", N);
11929 end if;
11930 end;
11931 end if;
11932 end Check_Possible_Deferred_Completion;
11934 ---------------------------------
11935 -- Check_Recursive_Declaration --
11936 ---------------------------------
11938 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11939 Comp : Entity_Id;
11941 begin
11942 if Is_Record_Type (Typ) then
11943 Comp := First_Component (Typ);
11944 while Present (Comp) loop
11945 if Comes_From_Source (Comp) then
11946 if Present (Expression (Parent (Comp)))
11947 and then Is_Entity_Name (Expression (Parent (Comp)))
11948 and then Entity (Expression (Parent (Comp))) = Prev
11949 then
11950 Error_Msg_Sloc := Sloc (Parent (Comp));
11951 Error_Msg_NE
11952 ("illegal circularity with declaration for & #",
11953 N, Comp);
11954 return;
11956 elsif Is_Record_Type (Etype (Comp)) then
11957 Check_Recursive_Declaration (Etype (Comp));
11958 end if;
11959 end if;
11961 Next_Component (Comp);
11962 end loop;
11963 end if;
11964 end Check_Recursive_Declaration;
11966 -- Start of processing for Constant_Redeclaration
11968 begin
11969 if Nkind (Parent (Prev)) = N_Object_Declaration then
11970 if Nkind (Object_Definition
11971 (Parent (Prev))) = N_Subtype_Indication
11972 then
11973 -- Find type of new declaration. The constraints of the two
11974 -- views must match statically, but there is no point in
11975 -- creating an itype for the full view.
11977 if Nkind (Obj_Def) = N_Subtype_Indication then
11978 Find_Type (Subtype_Mark (Obj_Def));
11979 New_T := Entity (Subtype_Mark (Obj_Def));
11981 else
11982 Find_Type (Obj_Def);
11983 New_T := Entity (Obj_Def);
11984 end if;
11986 T := Etype (Prev);
11988 else
11989 -- The full view may impose a constraint, even if the partial
11990 -- view does not, so construct the subtype.
11992 New_T := Find_Type_Of_Object (Obj_Def, N);
11993 T := New_T;
11994 end if;
11996 else
11997 -- Current declaration is illegal, diagnosed below in Enter_Name
11999 T := Empty;
12000 New_T := Any_Type;
12001 end if;
12003 -- If previous full declaration or a renaming declaration exists, or if
12004 -- a homograph is present, let Enter_Name handle it, either with an
12005 -- error or with the removal of an overridden implicit subprogram.
12006 -- The previous one is a full declaration if it has an expression
12007 -- (which in the case of an aggregate is indicated by the Init flag).
12009 if Ekind (Prev) /= E_Constant
12010 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12011 or else Present (Expression (Parent (Prev)))
12012 or else Has_Init_Expression (Parent (Prev))
12013 or else Present (Full_View (Prev))
12014 then
12015 Enter_Name (Id);
12017 -- Verify that types of both declarations match, or else that both types
12018 -- are anonymous access types whose designated subtypes statically match
12019 -- (as allowed in Ada 2005 by AI-385).
12021 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12022 and then
12023 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12024 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12025 or else Is_Access_Constant (Etype (New_T)) /=
12026 Is_Access_Constant (Etype (Prev))
12027 or else Can_Never_Be_Null (Etype (New_T)) /=
12028 Can_Never_Be_Null (Etype (Prev))
12029 or else Null_Exclusion_Present (Parent (Prev)) /=
12030 Null_Exclusion_Present (Parent (Id))
12031 or else not Subtypes_Statically_Match
12032 (Designated_Type (Etype (Prev)),
12033 Designated_Type (Etype (New_T))))
12034 then
12035 Error_Msg_Sloc := Sloc (Prev);
12036 Error_Msg_N ("type does not match declaration#", N);
12037 Set_Full_View (Prev, Id);
12038 Set_Etype (Id, Any_Type);
12040 -- A deferred constant whose type is an anonymous array is always
12041 -- illegal (unless imported). A detailed error message might be
12042 -- helpful for Ada beginners.
12044 if Nkind (Object_Definition (Parent (Prev)))
12045 = N_Constrained_Array_Definition
12046 and then Nkind (Object_Definition (N))
12047 = N_Constrained_Array_Definition
12048 then
12049 Error_Msg_N ("\each anonymous array is a distinct type", N);
12050 Error_Msg_N ("a deferred constant must have a named type",
12051 Object_Definition (Parent (Prev)));
12052 end if;
12054 elsif
12055 Null_Exclusion_Present (Parent (Prev))
12056 and then not Null_Exclusion_Present (N)
12057 then
12058 Error_Msg_Sloc := Sloc (Prev);
12059 Error_Msg_N ("null-exclusion does not match declaration#", N);
12060 Set_Full_View (Prev, Id);
12061 Set_Etype (Id, Any_Type);
12063 -- If so, process the full constant declaration
12065 else
12066 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12067 -- the deferred declaration is constrained, then the subtype defined
12068 -- by the subtype_indication in the full declaration shall match it
12069 -- statically.
12071 Check_Possible_Deferred_Completion
12072 (Prev_Id => Prev,
12073 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12074 Curr_Obj_Def => Obj_Def);
12076 Set_Full_View (Prev, Id);
12077 Set_Is_Public (Id, Is_Public (Prev));
12078 Set_Is_Internal (Id);
12079 Append_Entity (Id, Current_Scope);
12081 -- Check ALIASED present if present before (RM 7.4(7))
12083 if Is_Aliased (Prev)
12084 and then not Aliased_Present (N)
12085 then
12086 Error_Msg_Sloc := Sloc (Prev);
12087 Error_Msg_N ("ALIASED required (see declaration #)", N);
12088 end if;
12090 -- Check that placement is in private part and that the incomplete
12091 -- declaration appeared in the visible part.
12093 if Ekind (Current_Scope) = E_Package
12094 and then not In_Private_Part (Current_Scope)
12095 then
12096 Error_Msg_Sloc := Sloc (Prev);
12097 Error_Msg_N
12098 ("full constant for declaration # must be in private part", N);
12100 elsif Ekind (Current_Scope) = E_Package
12101 and then
12102 List_Containing (Parent (Prev)) /=
12103 Visible_Declarations (Package_Specification (Current_Scope))
12104 then
12105 Error_Msg_N
12106 ("deferred constant must be declared in visible part",
12107 Parent (Prev));
12108 end if;
12110 if Is_Access_Type (T)
12111 and then Nkind (Expression (N)) = N_Allocator
12112 then
12113 Check_Recursive_Declaration (Designated_Type (T));
12114 end if;
12116 -- A deferred constant is a visible entity. If type has invariants,
12117 -- verify that the initial value satisfies them.
12119 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12120 Insert_After (N,
12121 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12122 end if;
12123 end if;
12124 end Constant_Redeclaration;
12126 ----------------------
12127 -- Constrain_Access --
12128 ----------------------
12130 procedure Constrain_Access
12131 (Def_Id : in out Entity_Id;
12132 S : Node_Id;
12133 Related_Nod : Node_Id)
12135 T : constant Entity_Id := Entity (Subtype_Mark (S));
12136 Desig_Type : constant Entity_Id := Designated_Type (T);
12137 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12138 Constraint_OK : Boolean := True;
12140 begin
12141 if Is_Array_Type (Desig_Type) then
12142 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12144 elsif (Is_Record_Type (Desig_Type)
12145 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12146 and then not Is_Constrained (Desig_Type)
12147 then
12148 -- ??? The following code is a temporary bypass to ignore a
12149 -- discriminant constraint on access type if it is constraining
12150 -- the current record. Avoid creating the implicit subtype of the
12151 -- record we are currently compiling since right now, we cannot
12152 -- handle these. For now, just return the access type itself.
12154 if Desig_Type = Current_Scope
12155 and then No (Def_Id)
12156 then
12157 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12158 Def_Id := Entity (Subtype_Mark (S));
12160 -- This call added to ensure that the constraint is analyzed
12161 -- (needed for a B test). Note that we still return early from
12162 -- this procedure to avoid recursive processing. ???
12164 Constrain_Discriminated_Type
12165 (Desig_Subtype, S, Related_Nod, For_Access => True);
12166 return;
12167 end if;
12169 -- Enforce rule that the constraint is illegal if there is an
12170 -- unconstrained view of the designated type. This means that the
12171 -- partial view (either a private type declaration or a derivation
12172 -- from a private type) has no discriminants. (Defect Report
12173 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12175 -- Rule updated for Ada 2005: The private type is said to have
12176 -- a constrained partial view, given that objects of the type
12177 -- can be declared. Furthermore, the rule applies to all access
12178 -- types, unlike the rule concerning default discriminants (see
12179 -- RM 3.7.1(7/3))
12181 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12182 and then Has_Private_Declaration (Desig_Type)
12183 and then In_Open_Scopes (Scope (Desig_Type))
12184 and then Has_Discriminants (Desig_Type)
12185 then
12186 declare
12187 Pack : constant Node_Id :=
12188 Unit_Declaration_Node (Scope (Desig_Type));
12189 Decls : List_Id;
12190 Decl : Node_Id;
12192 begin
12193 if Nkind (Pack) = N_Package_Declaration then
12194 Decls := Visible_Declarations (Specification (Pack));
12195 Decl := First (Decls);
12196 while Present (Decl) loop
12197 if (Nkind (Decl) = N_Private_Type_Declaration
12198 and then Chars (Defining_Identifier (Decl)) =
12199 Chars (Desig_Type))
12201 or else
12202 (Nkind (Decl) = N_Full_Type_Declaration
12203 and then
12204 Chars (Defining_Identifier (Decl)) =
12205 Chars (Desig_Type)
12206 and then Is_Derived_Type (Desig_Type)
12207 and then
12208 Has_Private_Declaration (Etype (Desig_Type)))
12209 then
12210 if No (Discriminant_Specifications (Decl)) then
12211 Error_Msg_N
12212 ("cannot constrain access type if designated "
12213 & "type has constrained partial view", S);
12214 end if;
12216 exit;
12217 end if;
12219 Next (Decl);
12220 end loop;
12221 end if;
12222 end;
12223 end if;
12225 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12226 For_Access => True);
12228 elsif Is_Concurrent_Type (Desig_Type)
12229 and then not Is_Constrained (Desig_Type)
12230 then
12231 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12233 else
12234 Error_Msg_N ("invalid constraint on access type", S);
12236 -- We simply ignore an invalid constraint
12238 Desig_Subtype := Desig_Type;
12239 Constraint_OK := False;
12240 end if;
12242 if No (Def_Id) then
12243 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12244 else
12245 Set_Ekind (Def_Id, E_Access_Subtype);
12246 end if;
12248 if Constraint_OK then
12249 Set_Etype (Def_Id, Base_Type (T));
12251 if Is_Private_Type (Desig_Type) then
12252 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12253 end if;
12254 else
12255 Set_Etype (Def_Id, Any_Type);
12256 end if;
12258 Set_Size_Info (Def_Id, T);
12259 Set_Is_Constrained (Def_Id, Constraint_OK);
12260 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12261 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12262 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12264 Conditional_Delay (Def_Id, T);
12266 -- AI-363 : Subtypes of general access types whose designated types have
12267 -- default discriminants are disallowed. In instances, the rule has to
12268 -- be checked against the actual, of which T is the subtype. In a
12269 -- generic body, the rule is checked assuming that the actual type has
12270 -- defaulted discriminants.
12272 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12273 if Ekind (Base_Type (T)) = E_General_Access_Type
12274 and then Has_Defaulted_Discriminants (Desig_Type)
12275 then
12276 if Ada_Version < Ada_2005 then
12277 Error_Msg_N
12278 ("access subtype of general access type would not " &
12279 "be allowed in Ada 2005?y?", S);
12280 else
12281 Error_Msg_N
12282 ("access subtype of general access type not allowed", S);
12283 end if;
12285 Error_Msg_N ("\discriminants have defaults", S);
12287 elsif Is_Access_Type (T)
12288 and then Is_Generic_Type (Desig_Type)
12289 and then Has_Discriminants (Desig_Type)
12290 and then In_Package_Body (Current_Scope)
12291 then
12292 if Ada_Version < Ada_2005 then
12293 Error_Msg_N
12294 ("access subtype would not be allowed in generic body "
12295 & "in Ada 2005?y?", S);
12296 else
12297 Error_Msg_N
12298 ("access subtype not allowed in generic body", S);
12299 end if;
12301 Error_Msg_N
12302 ("\designated type is a discriminated formal", S);
12303 end if;
12304 end if;
12305 end Constrain_Access;
12307 ---------------------
12308 -- Constrain_Array --
12309 ---------------------
12311 procedure Constrain_Array
12312 (Def_Id : in out Entity_Id;
12313 SI : Node_Id;
12314 Related_Nod : Node_Id;
12315 Related_Id : Entity_Id;
12316 Suffix : Character)
12318 C : constant Node_Id := Constraint (SI);
12319 Number_Of_Constraints : Nat := 0;
12320 Index : Node_Id;
12321 S, T : Entity_Id;
12322 Constraint_OK : Boolean := True;
12324 begin
12325 T := Entity (Subtype_Mark (SI));
12327 if Is_Access_Type (T) then
12328 T := Designated_Type (T);
12329 end if;
12331 -- If an index constraint follows a subtype mark in a subtype indication
12332 -- then the type or subtype denoted by the subtype mark must not already
12333 -- impose an index constraint. The subtype mark must denote either an
12334 -- unconstrained array type or an access type whose designated type
12335 -- is such an array type... (RM 3.6.1)
12337 if Is_Constrained (T) then
12338 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12339 Constraint_OK := False;
12341 else
12342 S := First (Constraints (C));
12343 while Present (S) loop
12344 Number_Of_Constraints := Number_Of_Constraints + 1;
12345 Next (S);
12346 end loop;
12348 -- In either case, the index constraint must provide a discrete
12349 -- range for each index of the array type and the type of each
12350 -- discrete range must be the same as that of the corresponding
12351 -- index. (RM 3.6.1)
12353 if Number_Of_Constraints /= Number_Dimensions (T) then
12354 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12355 Constraint_OK := False;
12357 else
12358 S := First (Constraints (C));
12359 Index := First_Index (T);
12360 Analyze (Index);
12362 -- Apply constraints to each index type
12364 for J in 1 .. Number_Of_Constraints loop
12365 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12366 Next (Index);
12367 Next (S);
12368 end loop;
12370 end if;
12371 end if;
12373 if No (Def_Id) then
12374 Def_Id :=
12375 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12376 Set_Parent (Def_Id, Related_Nod);
12378 else
12379 Set_Ekind (Def_Id, E_Array_Subtype);
12380 end if;
12382 Set_Size_Info (Def_Id, (T));
12383 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12384 Set_Etype (Def_Id, Base_Type (T));
12386 if Constraint_OK then
12387 Set_First_Index (Def_Id, First (Constraints (C)));
12388 else
12389 Set_First_Index (Def_Id, First_Index (T));
12390 end if;
12392 Set_Is_Constrained (Def_Id, True);
12393 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12394 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12396 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12397 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12399 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12400 -- We need to initialize the attribute because if Def_Id is previously
12401 -- analyzed through a limited_with clause, it will have the attributes
12402 -- of an incomplete type, one of which is an Elist that overlaps the
12403 -- Packed_Array_Impl_Type field.
12405 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12407 -- Build a freeze node if parent still needs one. Also make sure that
12408 -- the Depends_On_Private status is set because the subtype will need
12409 -- reprocessing at the time the base type does, and also we must set a
12410 -- conditional delay.
12412 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12413 Conditional_Delay (Def_Id, T);
12414 end Constrain_Array;
12416 ------------------------------
12417 -- Constrain_Component_Type --
12418 ------------------------------
12420 function Constrain_Component_Type
12421 (Comp : Entity_Id;
12422 Constrained_Typ : Entity_Id;
12423 Related_Node : Node_Id;
12424 Typ : Entity_Id;
12425 Constraints : Elist_Id) return Entity_Id
12427 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12428 Compon_Type : constant Entity_Id := Etype (Comp);
12430 function Build_Constrained_Array_Type
12431 (Old_Type : Entity_Id) return Entity_Id;
12432 -- If Old_Type is an array type, one of whose indexes is constrained
12433 -- by a discriminant, build an Itype whose constraint replaces the
12434 -- discriminant with its value in the constraint.
12436 function Build_Constrained_Discriminated_Type
12437 (Old_Type : Entity_Id) return Entity_Id;
12438 -- Ditto for record components
12440 function Build_Constrained_Access_Type
12441 (Old_Type : Entity_Id) return Entity_Id;
12442 -- Ditto for access types. Makes use of previous two functions, to
12443 -- constrain designated type.
12445 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12446 -- T is an array or discriminated type, C is a list of constraints
12447 -- that apply to T. This routine builds the constrained subtype.
12449 function Is_Discriminant (Expr : Node_Id) return Boolean;
12450 -- Returns True if Expr is a discriminant
12452 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12453 -- Find the value of discriminant Discrim in Constraint
12455 -----------------------------------
12456 -- Build_Constrained_Access_Type --
12457 -----------------------------------
12459 function Build_Constrained_Access_Type
12460 (Old_Type : Entity_Id) return Entity_Id
12462 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12463 Itype : Entity_Id;
12464 Desig_Subtype : Entity_Id;
12465 Scop : Entity_Id;
12467 begin
12468 -- if the original access type was not embedded in the enclosing
12469 -- type definition, there is no need to produce a new access
12470 -- subtype. In fact every access type with an explicit constraint
12471 -- generates an itype whose scope is the enclosing record.
12473 if not Is_Type (Scope (Old_Type)) then
12474 return Old_Type;
12476 elsif Is_Array_Type (Desig_Type) then
12477 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12479 elsif Has_Discriminants (Desig_Type) then
12481 -- This may be an access type to an enclosing record type for
12482 -- which we are constructing the constrained components. Return
12483 -- the enclosing record subtype. This is not always correct,
12484 -- but avoids infinite recursion. ???
12486 Desig_Subtype := Any_Type;
12488 for J in reverse 0 .. Scope_Stack.Last loop
12489 Scop := Scope_Stack.Table (J).Entity;
12491 if Is_Type (Scop)
12492 and then Base_Type (Scop) = Base_Type (Desig_Type)
12493 then
12494 Desig_Subtype := Scop;
12495 end if;
12497 exit when not Is_Type (Scop);
12498 end loop;
12500 if Desig_Subtype = Any_Type then
12501 Desig_Subtype :=
12502 Build_Constrained_Discriminated_Type (Desig_Type);
12503 end if;
12505 else
12506 return Old_Type;
12507 end if;
12509 if Desig_Subtype /= Desig_Type then
12511 -- The Related_Node better be here or else we won't be able
12512 -- to attach new itypes to a node in the tree.
12514 pragma Assert (Present (Related_Node));
12516 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12518 Set_Etype (Itype, Base_Type (Old_Type));
12519 Set_Size_Info (Itype, (Old_Type));
12520 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12521 Set_Depends_On_Private (Itype, Has_Private_Component
12522 (Old_Type));
12523 Set_Is_Access_Constant (Itype, Is_Access_Constant
12524 (Old_Type));
12526 -- The new itype needs freezing when it depends on a not frozen
12527 -- type and the enclosing subtype needs freezing.
12529 if Has_Delayed_Freeze (Constrained_Typ)
12530 and then not Is_Frozen (Constrained_Typ)
12531 then
12532 Conditional_Delay (Itype, Base_Type (Old_Type));
12533 end if;
12535 return Itype;
12537 else
12538 return Old_Type;
12539 end if;
12540 end Build_Constrained_Access_Type;
12542 ----------------------------------
12543 -- Build_Constrained_Array_Type --
12544 ----------------------------------
12546 function Build_Constrained_Array_Type
12547 (Old_Type : Entity_Id) return Entity_Id
12549 Lo_Expr : Node_Id;
12550 Hi_Expr : Node_Id;
12551 Old_Index : Node_Id;
12552 Range_Node : Node_Id;
12553 Constr_List : List_Id;
12555 Need_To_Create_Itype : Boolean := False;
12557 begin
12558 Old_Index := First_Index (Old_Type);
12559 while Present (Old_Index) loop
12560 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12562 if Is_Discriminant (Lo_Expr)
12563 or else
12564 Is_Discriminant (Hi_Expr)
12565 then
12566 Need_To_Create_Itype := True;
12567 end if;
12569 Next_Index (Old_Index);
12570 end loop;
12572 if Need_To_Create_Itype then
12573 Constr_List := New_List;
12575 Old_Index := First_Index (Old_Type);
12576 while Present (Old_Index) loop
12577 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12579 if Is_Discriminant (Lo_Expr) then
12580 Lo_Expr := Get_Discr_Value (Lo_Expr);
12581 end if;
12583 if Is_Discriminant (Hi_Expr) then
12584 Hi_Expr := Get_Discr_Value (Hi_Expr);
12585 end if;
12587 Range_Node :=
12588 Make_Range
12589 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12591 Append (Range_Node, To => Constr_List);
12593 Next_Index (Old_Index);
12594 end loop;
12596 return Build_Subtype (Old_Type, Constr_List);
12598 else
12599 return Old_Type;
12600 end if;
12601 end Build_Constrained_Array_Type;
12603 ------------------------------------------
12604 -- Build_Constrained_Discriminated_Type --
12605 ------------------------------------------
12607 function Build_Constrained_Discriminated_Type
12608 (Old_Type : Entity_Id) return Entity_Id
12610 Expr : Node_Id;
12611 Constr_List : List_Id;
12612 Old_Constraint : Elmt_Id;
12614 Need_To_Create_Itype : Boolean := False;
12616 begin
12617 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12618 while Present (Old_Constraint) loop
12619 Expr := Node (Old_Constraint);
12621 if Is_Discriminant (Expr) then
12622 Need_To_Create_Itype := True;
12623 end if;
12625 Next_Elmt (Old_Constraint);
12626 end loop;
12628 if Need_To_Create_Itype then
12629 Constr_List := New_List;
12631 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12632 while Present (Old_Constraint) loop
12633 Expr := Node (Old_Constraint);
12635 if Is_Discriminant (Expr) then
12636 Expr := Get_Discr_Value (Expr);
12637 end if;
12639 Append (New_Copy_Tree (Expr), To => Constr_List);
12641 Next_Elmt (Old_Constraint);
12642 end loop;
12644 return Build_Subtype (Old_Type, Constr_List);
12646 else
12647 return Old_Type;
12648 end if;
12649 end Build_Constrained_Discriminated_Type;
12651 -------------------
12652 -- Build_Subtype --
12653 -------------------
12655 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12656 Indic : Node_Id;
12657 Subtyp_Decl : Node_Id;
12658 Def_Id : Entity_Id;
12659 Btyp : Entity_Id := Base_Type (T);
12661 begin
12662 -- The Related_Node better be here or else we won't be able to
12663 -- attach new itypes to a node in the tree.
12665 pragma Assert (Present (Related_Node));
12667 -- If the view of the component's type is incomplete or private
12668 -- with unknown discriminants, then the constraint must be applied
12669 -- to the full type.
12671 if Has_Unknown_Discriminants (Btyp)
12672 and then Present (Underlying_Type (Btyp))
12673 then
12674 Btyp := Underlying_Type (Btyp);
12675 end if;
12677 Indic :=
12678 Make_Subtype_Indication (Loc,
12679 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12680 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12682 Def_Id := Create_Itype (Ekind (T), Related_Node);
12684 Subtyp_Decl :=
12685 Make_Subtype_Declaration (Loc,
12686 Defining_Identifier => Def_Id,
12687 Subtype_Indication => Indic);
12689 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12691 -- Itypes must be analyzed with checks off (see package Itypes)
12693 Analyze (Subtyp_Decl, Suppress => All_Checks);
12695 return Def_Id;
12696 end Build_Subtype;
12698 ---------------------
12699 -- Get_Discr_Value --
12700 ---------------------
12702 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12703 D : Entity_Id;
12704 E : Elmt_Id;
12706 begin
12707 -- The discriminant may be declared for the type, in which case we
12708 -- find it by iterating over the list of discriminants. If the
12709 -- discriminant is inherited from a parent type, it appears as the
12710 -- corresponding discriminant of the current type. This will be the
12711 -- case when constraining an inherited component whose constraint is
12712 -- given by a discriminant of the parent.
12714 D := First_Discriminant (Typ);
12715 E := First_Elmt (Constraints);
12717 while Present (D) loop
12718 if D = Entity (Discrim)
12719 or else D = CR_Discriminant (Entity (Discrim))
12720 or else Corresponding_Discriminant (D) = Entity (Discrim)
12721 then
12722 return Node (E);
12723 end if;
12725 Next_Discriminant (D);
12726 Next_Elmt (E);
12727 end loop;
12729 -- The Corresponding_Discriminant mechanism is incomplete, because
12730 -- the correspondence between new and old discriminants is not one
12731 -- to one: one new discriminant can constrain several old ones. In
12732 -- that case, scan sequentially the stored_constraint, the list of
12733 -- discriminants of the parents, and the constraints.
12735 -- Previous code checked for the present of the Stored_Constraint
12736 -- list for the derived type, but did not use it at all. Should it
12737 -- be present when the component is a discriminated task type?
12739 if Is_Derived_Type (Typ)
12740 and then Scope (Entity (Discrim)) = Etype (Typ)
12741 then
12742 D := First_Discriminant (Etype (Typ));
12743 E := First_Elmt (Constraints);
12744 while Present (D) loop
12745 if D = Entity (Discrim) then
12746 return Node (E);
12747 end if;
12749 Next_Discriminant (D);
12750 Next_Elmt (E);
12751 end loop;
12752 end if;
12754 -- Something is wrong if we did not find the value
12756 raise Program_Error;
12757 end Get_Discr_Value;
12759 ---------------------
12760 -- Is_Discriminant --
12761 ---------------------
12763 function Is_Discriminant (Expr : Node_Id) return Boolean is
12764 Discrim_Scope : Entity_Id;
12766 begin
12767 if Denotes_Discriminant (Expr) then
12768 Discrim_Scope := Scope (Entity (Expr));
12770 -- Either we have a reference to one of Typ's discriminants,
12772 pragma Assert (Discrim_Scope = Typ
12774 -- or to the discriminants of the parent type, in the case
12775 -- of a derivation of a tagged type with variants.
12777 or else Discrim_Scope = Etype (Typ)
12778 or else Full_View (Discrim_Scope) = Etype (Typ)
12780 -- or same as above for the case where the discriminants
12781 -- were declared in Typ's private view.
12783 or else (Is_Private_Type (Discrim_Scope)
12784 and then Chars (Discrim_Scope) = Chars (Typ))
12786 -- or else we are deriving from the full view and the
12787 -- discriminant is declared in the private entity.
12789 or else (Is_Private_Type (Typ)
12790 and then Chars (Discrim_Scope) = Chars (Typ))
12792 -- Or we are constrained the corresponding record of a
12793 -- synchronized type that completes a private declaration.
12795 or else (Is_Concurrent_Record_Type (Typ)
12796 and then
12797 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12799 -- or we have a class-wide type, in which case make sure the
12800 -- discriminant found belongs to the root type.
12802 or else (Is_Class_Wide_Type (Typ)
12803 and then Etype (Typ) = Discrim_Scope));
12805 return True;
12806 end if;
12808 -- In all other cases we have something wrong
12810 return False;
12811 end Is_Discriminant;
12813 -- Start of processing for Constrain_Component_Type
12815 begin
12816 if Nkind (Parent (Comp)) = N_Component_Declaration
12817 and then Comes_From_Source (Parent (Comp))
12818 and then Comes_From_Source
12819 (Subtype_Indication (Component_Definition (Parent (Comp))))
12820 and then
12821 Is_Entity_Name
12822 (Subtype_Indication (Component_Definition (Parent (Comp))))
12823 then
12824 return Compon_Type;
12826 elsif Is_Array_Type (Compon_Type) then
12827 return Build_Constrained_Array_Type (Compon_Type);
12829 elsif Has_Discriminants (Compon_Type) then
12830 return Build_Constrained_Discriminated_Type (Compon_Type);
12832 elsif Is_Access_Type (Compon_Type) then
12833 return Build_Constrained_Access_Type (Compon_Type);
12835 else
12836 return Compon_Type;
12837 end if;
12838 end Constrain_Component_Type;
12840 --------------------------
12841 -- Constrain_Concurrent --
12842 --------------------------
12844 -- For concurrent types, the associated record value type carries the same
12845 -- discriminants, so when we constrain a concurrent type, we must constrain
12846 -- the corresponding record type as well.
12848 procedure Constrain_Concurrent
12849 (Def_Id : in out Entity_Id;
12850 SI : Node_Id;
12851 Related_Nod : Node_Id;
12852 Related_Id : Entity_Id;
12853 Suffix : Character)
12855 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12856 -- case of a private subtype (needed when only doing semantic analysis).
12858 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12859 T_Val : Entity_Id;
12861 begin
12862 if Is_Access_Type (T_Ent) then
12863 T_Ent := Designated_Type (T_Ent);
12864 end if;
12866 T_Val := Corresponding_Record_Type (T_Ent);
12868 if Present (T_Val) then
12870 if No (Def_Id) then
12871 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12873 -- Elaborate itype now, as it may be used in a subsequent
12874 -- synchronized operation in another scope.
12876 if Nkind (Related_Nod) = N_Full_Type_Declaration then
12877 Build_Itype_Reference (Def_Id, Related_Nod);
12878 end if;
12879 end if;
12881 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12883 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12884 Set_Corresponding_Record_Type (Def_Id,
12885 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12887 else
12888 -- If there is no associated record, expansion is disabled and this
12889 -- is a generic context. Create a subtype in any case, so that
12890 -- semantic analysis can proceed.
12892 if No (Def_Id) then
12893 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12894 end if;
12896 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12897 end if;
12898 end Constrain_Concurrent;
12900 ------------------------------------
12901 -- Constrain_Corresponding_Record --
12902 ------------------------------------
12904 function Constrain_Corresponding_Record
12905 (Prot_Subt : Entity_Id;
12906 Corr_Rec : Entity_Id;
12907 Related_Nod : Node_Id) return Entity_Id
12909 T_Sub : constant Entity_Id :=
12910 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12912 begin
12913 Set_Etype (T_Sub, Corr_Rec);
12914 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12915 Set_Is_Constrained (T_Sub, True);
12916 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12917 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12919 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12920 Set_Discriminant_Constraint
12921 (T_Sub, Discriminant_Constraint (Prot_Subt));
12922 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12923 Create_Constrained_Components
12924 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12925 end if;
12927 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12929 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12930 Conditional_Delay (T_Sub, Corr_Rec);
12932 else
12933 -- This is a component subtype: it will be frozen in the context of
12934 -- the enclosing record's init_proc, so that discriminant references
12935 -- are resolved to discriminals. (Note: we used to skip freezing
12936 -- altogether in that case, which caused errors downstream for
12937 -- components of a bit packed array type).
12939 Set_Has_Delayed_Freeze (T_Sub);
12940 end if;
12942 return T_Sub;
12943 end Constrain_Corresponding_Record;
12945 -----------------------
12946 -- Constrain_Decimal --
12947 -----------------------
12949 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12950 T : constant Entity_Id := Entity (Subtype_Mark (S));
12951 C : constant Node_Id := Constraint (S);
12952 Loc : constant Source_Ptr := Sloc (C);
12953 Range_Expr : Node_Id;
12954 Digits_Expr : Node_Id;
12955 Digits_Val : Uint;
12956 Bound_Val : Ureal;
12958 begin
12959 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12961 if Nkind (C) = N_Range_Constraint then
12962 Range_Expr := Range_Expression (C);
12963 Digits_Val := Digits_Value (T);
12965 else
12966 pragma Assert (Nkind (C) = N_Digits_Constraint);
12968 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12970 Digits_Expr := Digits_Expression (C);
12971 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12973 Check_Digits_Expression (Digits_Expr);
12974 Digits_Val := Expr_Value (Digits_Expr);
12976 if Digits_Val > Digits_Value (T) then
12977 Error_Msg_N
12978 ("digits expression is incompatible with subtype", C);
12979 Digits_Val := Digits_Value (T);
12980 end if;
12982 if Present (Range_Constraint (C)) then
12983 Range_Expr := Range_Expression (Range_Constraint (C));
12984 else
12985 Range_Expr := Empty;
12986 end if;
12987 end if;
12989 Set_Etype (Def_Id, Base_Type (T));
12990 Set_Size_Info (Def_Id, (T));
12991 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12992 Set_Delta_Value (Def_Id, Delta_Value (T));
12993 Set_Scale_Value (Def_Id, Scale_Value (T));
12994 Set_Small_Value (Def_Id, Small_Value (T));
12995 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12996 Set_Digits_Value (Def_Id, Digits_Val);
12998 -- Manufacture range from given digits value if no range present
13000 if No (Range_Expr) then
13001 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13002 Range_Expr :=
13003 Make_Range (Loc,
13004 Low_Bound =>
13005 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13006 High_Bound =>
13007 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13008 end if;
13010 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13011 Set_Discrete_RM_Size (Def_Id);
13013 -- Unconditionally delay the freeze, since we cannot set size
13014 -- information in all cases correctly until the freeze point.
13016 Set_Has_Delayed_Freeze (Def_Id);
13017 end Constrain_Decimal;
13019 ----------------------------------
13020 -- Constrain_Discriminated_Type --
13021 ----------------------------------
13023 procedure Constrain_Discriminated_Type
13024 (Def_Id : Entity_Id;
13025 S : Node_Id;
13026 Related_Nod : Node_Id;
13027 For_Access : Boolean := False)
13029 E : constant Entity_Id := Entity (Subtype_Mark (S));
13030 T : Entity_Id;
13031 C : Node_Id;
13032 Elist : Elist_Id := New_Elmt_List;
13034 procedure Fixup_Bad_Constraint;
13035 -- This is called after finding a bad constraint, and after having
13036 -- posted an appropriate error message. The mission is to leave the
13037 -- entity T in as reasonable state as possible.
13039 --------------------------
13040 -- Fixup_Bad_Constraint --
13041 --------------------------
13043 procedure Fixup_Bad_Constraint is
13044 begin
13045 -- Set a reasonable Ekind for the entity. For an incomplete type,
13046 -- we can't do much, but for other types, we can set the proper
13047 -- corresponding subtype kind.
13049 if Ekind (T) = E_Incomplete_Type then
13050 Set_Ekind (Def_Id, Ekind (T));
13051 else
13052 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13053 end if;
13055 -- Set Etype to the known type, to reduce chances of cascaded errors
13057 Set_Etype (Def_Id, E);
13058 Set_Error_Posted (Def_Id);
13059 end Fixup_Bad_Constraint;
13061 -- Start of processing for Constrain_Discriminated_Type
13063 begin
13064 C := Constraint (S);
13066 -- A discriminant constraint is only allowed in a subtype indication,
13067 -- after a subtype mark. This subtype mark must denote either a type
13068 -- with discriminants, or an access type whose designated type is a
13069 -- type with discriminants. A discriminant constraint specifies the
13070 -- values of these discriminants (RM 3.7.2(5)).
13072 T := Base_Type (Entity (Subtype_Mark (S)));
13074 if Is_Access_Type (T) then
13075 T := Designated_Type (T);
13076 end if;
13078 -- In an instance it may be necessary to retrieve the full view of a
13079 -- type with unknown discriminants. In other contexts the constraint
13080 -- is illegal.
13082 if In_Instance
13083 and then Is_Private_Type (T)
13084 and then Has_Unknown_Discriminants (T)
13085 and then Present (Full_View (T))
13086 then
13087 T := Full_View (T);
13088 end if;
13090 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13091 -- Avoid generating an error for access-to-incomplete subtypes.
13093 if Ada_Version >= Ada_2005
13094 and then Ekind (T) = E_Incomplete_Type
13095 and then Nkind (Parent (S)) = N_Subtype_Declaration
13096 and then not Is_Itype (Def_Id)
13097 then
13098 -- A little sanity check, emit an error message if the type
13099 -- has discriminants to begin with. Type T may be a regular
13100 -- incomplete type or imported via a limited with clause.
13102 if Has_Discriminants (T)
13103 or else (From_Limited_With (T)
13104 and then Present (Non_Limited_View (T))
13105 and then Nkind (Parent (Non_Limited_View (T))) =
13106 N_Full_Type_Declaration
13107 and then Present (Discriminant_Specifications
13108 (Parent (Non_Limited_View (T)))))
13109 then
13110 Error_Msg_N
13111 ("(Ada 2005) incomplete subtype may not be constrained", C);
13112 else
13113 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13114 end if;
13116 Fixup_Bad_Constraint;
13117 return;
13119 -- Check that the type has visible discriminants. The type may be
13120 -- a private type with unknown discriminants whose full view has
13121 -- discriminants which are invisible.
13123 elsif not Has_Discriminants (T)
13124 or else
13125 (Has_Unknown_Discriminants (T)
13126 and then Is_Private_Type (T))
13127 then
13128 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13129 Fixup_Bad_Constraint;
13130 return;
13132 elsif Is_Constrained (E)
13133 or else (Ekind (E) = E_Class_Wide_Subtype
13134 and then Present (Discriminant_Constraint (E)))
13135 then
13136 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13137 Fixup_Bad_Constraint;
13138 return;
13139 end if;
13141 -- T may be an unconstrained subtype (e.g. a generic actual).
13142 -- Constraint applies to the base type.
13144 T := Base_Type (T);
13146 Elist := Build_Discriminant_Constraints (T, S);
13148 -- If the list returned was empty we had an error in building the
13149 -- discriminant constraint. We have also already signalled an error
13150 -- in the incomplete type case
13152 if Is_Empty_Elmt_List (Elist) then
13153 Fixup_Bad_Constraint;
13154 return;
13155 end if;
13157 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13158 end Constrain_Discriminated_Type;
13160 ---------------------------
13161 -- Constrain_Enumeration --
13162 ---------------------------
13164 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13165 T : constant Entity_Id := Entity (Subtype_Mark (S));
13166 C : constant Node_Id := Constraint (S);
13168 begin
13169 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13171 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13173 Set_Etype (Def_Id, Base_Type (T));
13174 Set_Size_Info (Def_Id, (T));
13175 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13176 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13178 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13180 Set_Discrete_RM_Size (Def_Id);
13181 end Constrain_Enumeration;
13183 ----------------------
13184 -- Constrain_Float --
13185 ----------------------
13187 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13188 T : constant Entity_Id := Entity (Subtype_Mark (S));
13189 C : Node_Id;
13190 D : Node_Id;
13191 Rais : Node_Id;
13193 begin
13194 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13196 Set_Etype (Def_Id, Base_Type (T));
13197 Set_Size_Info (Def_Id, (T));
13198 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13200 -- Process the constraint
13202 C := Constraint (S);
13204 -- Digits constraint present
13206 if Nkind (C) = N_Digits_Constraint then
13208 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13209 Check_Restriction (No_Obsolescent_Features, C);
13211 if Warn_On_Obsolescent_Feature then
13212 Error_Msg_N
13213 ("subtype digits constraint is an " &
13214 "obsolescent feature (RM J.3(8))?j?", C);
13215 end if;
13217 D := Digits_Expression (C);
13218 Analyze_And_Resolve (D, Any_Integer);
13219 Check_Digits_Expression (D);
13220 Set_Digits_Value (Def_Id, Expr_Value (D));
13222 -- Check that digits value is in range. Obviously we can do this
13223 -- at compile time, but it is strictly a runtime check, and of
13224 -- course there is an ACVC test that checks this.
13226 if Digits_Value (Def_Id) > Digits_Value (T) then
13227 Error_Msg_Uint_1 := Digits_Value (T);
13228 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13229 Rais :=
13230 Make_Raise_Constraint_Error (Sloc (D),
13231 Reason => CE_Range_Check_Failed);
13232 Insert_Action (Declaration_Node (Def_Id), Rais);
13233 end if;
13235 C := Range_Constraint (C);
13237 -- No digits constraint present
13239 else
13240 Set_Digits_Value (Def_Id, Digits_Value (T));
13241 end if;
13243 -- Range constraint present
13245 if Nkind (C) = N_Range_Constraint then
13246 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13248 -- No range constraint present
13250 else
13251 pragma Assert (No (C));
13252 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13253 end if;
13255 Set_Is_Constrained (Def_Id);
13256 end Constrain_Float;
13258 ---------------------
13259 -- Constrain_Index --
13260 ---------------------
13262 procedure Constrain_Index
13263 (Index : Node_Id;
13264 S : Node_Id;
13265 Related_Nod : Node_Id;
13266 Related_Id : Entity_Id;
13267 Suffix : Character;
13268 Suffix_Index : Nat)
13270 Def_Id : Entity_Id;
13271 R : Node_Id := Empty;
13272 T : constant Entity_Id := Etype (Index);
13274 begin
13275 Def_Id :=
13276 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13277 Set_Etype (Def_Id, Base_Type (T));
13279 if Nkind (S) = N_Range
13280 or else
13281 (Nkind (S) = N_Attribute_Reference
13282 and then Attribute_Name (S) = Name_Range)
13283 then
13284 -- A Range attribute will be transformed into N_Range by Resolve
13286 Analyze (S);
13287 Set_Etype (S, T);
13288 R := S;
13290 Process_Range_Expr_In_Decl (R, T);
13292 if not Error_Posted (S)
13293 and then
13294 (Nkind (S) /= N_Range
13295 or else not Covers (T, (Etype (Low_Bound (S))))
13296 or else not Covers (T, (Etype (High_Bound (S)))))
13297 then
13298 if Base_Type (T) /= Any_Type
13299 and then Etype (Low_Bound (S)) /= Any_Type
13300 and then Etype (High_Bound (S)) /= Any_Type
13301 then
13302 Error_Msg_N ("range expected", S);
13303 end if;
13304 end if;
13306 elsif Nkind (S) = N_Subtype_Indication then
13308 -- The parser has verified that this is a discrete indication
13310 Resolve_Discrete_Subtype_Indication (S, T);
13311 Bad_Predicated_Subtype_Use
13312 ("subtype& has predicate, not allowed in index constraint",
13313 S, Entity (Subtype_Mark (S)));
13315 R := Range_Expression (Constraint (S));
13317 -- Capture values of bounds and generate temporaries for them if
13318 -- needed, since checks may cause duplication of the expressions
13319 -- which must not be reevaluated.
13321 -- The forced evaluation removes side effects from expressions, which
13322 -- should occur also in GNATprove mode. Otherwise, we end up with
13323 -- unexpected insertions of actions at places where this is not
13324 -- supposed to occur, e.g. on default parameters of a call.
13326 if Expander_Active or GNATprove_Mode then
13327 Force_Evaluation
13328 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13329 Force_Evaluation
13330 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13331 end if;
13333 elsif Nkind (S) = N_Discriminant_Association then
13335 -- Syntactically valid in subtype indication
13337 Error_Msg_N ("invalid index constraint", S);
13338 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13339 return;
13341 -- Subtype_Mark case, no anonymous subtypes to construct
13343 else
13344 Analyze (S);
13346 if Is_Entity_Name (S) then
13347 if not Is_Type (Entity (S)) then
13348 Error_Msg_N ("expect subtype mark for index constraint", S);
13350 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13351 Wrong_Type (S, Base_Type (T));
13353 -- Check error of subtype with predicate in index constraint
13355 else
13356 Bad_Predicated_Subtype_Use
13357 ("subtype& has predicate, not allowed in index constraint",
13358 S, Entity (S));
13359 end if;
13361 return;
13363 else
13364 Error_Msg_N ("invalid index constraint", S);
13365 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13366 return;
13367 end if;
13368 end if;
13370 -- Complete construction of the Itype
13372 if Is_Modular_Integer_Type (T) then
13373 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13375 elsif Is_Integer_Type (T) then
13376 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13378 else
13379 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13380 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13381 Set_First_Literal (Def_Id, First_Literal (T));
13382 end if;
13384 Set_Size_Info (Def_Id, (T));
13385 Set_RM_Size (Def_Id, RM_Size (T));
13386 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13388 Set_Scalar_Range (Def_Id, R);
13390 Set_Etype (S, Def_Id);
13391 Set_Discrete_RM_Size (Def_Id);
13392 end Constrain_Index;
13394 -----------------------
13395 -- Constrain_Integer --
13396 -----------------------
13398 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13399 T : constant Entity_Id := Entity (Subtype_Mark (S));
13400 C : constant Node_Id := Constraint (S);
13402 begin
13403 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13405 if Is_Modular_Integer_Type (T) then
13406 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13407 else
13408 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13409 end if;
13411 Set_Etype (Def_Id, Base_Type (T));
13412 Set_Size_Info (Def_Id, (T));
13413 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13414 Set_Discrete_RM_Size (Def_Id);
13415 end Constrain_Integer;
13417 ------------------------------
13418 -- Constrain_Ordinary_Fixed --
13419 ------------------------------
13421 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13422 T : constant Entity_Id := Entity (Subtype_Mark (S));
13423 C : Node_Id;
13424 D : Node_Id;
13425 Rais : Node_Id;
13427 begin
13428 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13429 Set_Etype (Def_Id, Base_Type (T));
13430 Set_Size_Info (Def_Id, (T));
13431 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13432 Set_Small_Value (Def_Id, Small_Value (T));
13434 -- Process the constraint
13436 C := Constraint (S);
13438 -- Delta constraint present
13440 if Nkind (C) = N_Delta_Constraint then
13442 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13443 Check_Restriction (No_Obsolescent_Features, C);
13445 if Warn_On_Obsolescent_Feature then
13446 Error_Msg_S
13447 ("subtype delta constraint is an " &
13448 "obsolescent feature (RM J.3(7))?j?");
13449 end if;
13451 D := Delta_Expression (C);
13452 Analyze_And_Resolve (D, Any_Real);
13453 Check_Delta_Expression (D);
13454 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13456 -- Check that delta value is in range. Obviously we can do this
13457 -- at compile time, but it is strictly a runtime check, and of
13458 -- course there is an ACVC test that checks this.
13460 if Delta_Value (Def_Id) < Delta_Value (T) then
13461 Error_Msg_N ("??delta value is too small", D);
13462 Rais :=
13463 Make_Raise_Constraint_Error (Sloc (D),
13464 Reason => CE_Range_Check_Failed);
13465 Insert_Action (Declaration_Node (Def_Id), Rais);
13466 end if;
13468 C := Range_Constraint (C);
13470 -- No delta constraint present
13472 else
13473 Set_Delta_Value (Def_Id, Delta_Value (T));
13474 end if;
13476 -- Range constraint present
13478 if Nkind (C) = N_Range_Constraint then
13479 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13481 -- No range constraint present
13483 else
13484 pragma Assert (No (C));
13485 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13486 end if;
13488 Set_Discrete_RM_Size (Def_Id);
13490 -- Unconditionally delay the freeze, since we cannot set size
13491 -- information in all cases correctly until the freeze point.
13493 Set_Has_Delayed_Freeze (Def_Id);
13494 end Constrain_Ordinary_Fixed;
13496 -----------------------
13497 -- Contain_Interface --
13498 -----------------------
13500 function Contain_Interface
13501 (Iface : Entity_Id;
13502 Ifaces : Elist_Id) return Boolean
13504 Iface_Elmt : Elmt_Id;
13506 begin
13507 if Present (Ifaces) then
13508 Iface_Elmt := First_Elmt (Ifaces);
13509 while Present (Iface_Elmt) loop
13510 if Node (Iface_Elmt) = Iface then
13511 return True;
13512 end if;
13514 Next_Elmt (Iface_Elmt);
13515 end loop;
13516 end if;
13518 return False;
13519 end Contain_Interface;
13521 ---------------------------
13522 -- Convert_Scalar_Bounds --
13523 ---------------------------
13525 procedure Convert_Scalar_Bounds
13526 (N : Node_Id;
13527 Parent_Type : Entity_Id;
13528 Derived_Type : Entity_Id;
13529 Loc : Source_Ptr)
13531 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13533 Lo : Node_Id;
13534 Hi : Node_Id;
13535 Rng : Node_Id;
13537 begin
13538 -- Defend against previous errors
13540 if No (Scalar_Range (Derived_Type)) then
13541 Check_Error_Detected;
13542 return;
13543 end if;
13545 Lo := Build_Scalar_Bound
13546 (Type_Low_Bound (Derived_Type),
13547 Parent_Type, Implicit_Base);
13549 Hi := Build_Scalar_Bound
13550 (Type_High_Bound (Derived_Type),
13551 Parent_Type, Implicit_Base);
13553 Rng :=
13554 Make_Range (Loc,
13555 Low_Bound => Lo,
13556 High_Bound => Hi);
13558 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13560 Set_Parent (Rng, N);
13561 Set_Scalar_Range (Derived_Type, Rng);
13563 -- Analyze the bounds
13565 Analyze_And_Resolve (Lo, Implicit_Base);
13566 Analyze_And_Resolve (Hi, Implicit_Base);
13568 -- Analyze the range itself, except that we do not analyze it if
13569 -- the bounds are real literals, and we have a fixed-point type.
13570 -- The reason for this is that we delay setting the bounds in this
13571 -- case till we know the final Small and Size values (see circuit
13572 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13574 if Is_Fixed_Point_Type (Parent_Type)
13575 and then Nkind (Lo) = N_Real_Literal
13576 and then Nkind (Hi) = N_Real_Literal
13577 then
13578 return;
13580 -- Here we do the analysis of the range
13582 -- Note: we do this manually, since if we do a normal Analyze and
13583 -- Resolve call, there are problems with the conversions used for
13584 -- the derived type range.
13586 else
13587 Set_Etype (Rng, Implicit_Base);
13588 Set_Analyzed (Rng, True);
13589 end if;
13590 end Convert_Scalar_Bounds;
13592 -------------------
13593 -- Copy_And_Swap --
13594 -------------------
13596 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13597 begin
13598 -- Initialize new full declaration entity by copying the pertinent
13599 -- fields of the corresponding private declaration entity.
13601 -- We temporarily set Ekind to a value appropriate for a type to
13602 -- avoid assert failures in Einfo from checking for setting type
13603 -- attributes on something that is not a type. Ekind (Priv) is an
13604 -- appropriate choice, since it allowed the attributes to be set
13605 -- in the first place. This Ekind value will be modified later.
13607 Set_Ekind (Full, Ekind (Priv));
13609 -- Also set Etype temporarily to Any_Type, again, in the absence
13610 -- of errors, it will be properly reset, and if there are errors,
13611 -- then we want a value of Any_Type to remain.
13613 Set_Etype (Full, Any_Type);
13615 -- Now start copying attributes
13617 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13619 if Has_Discriminants (Full) then
13620 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13621 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13622 end if;
13624 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13625 Set_Homonym (Full, Homonym (Priv));
13626 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13627 Set_Is_Public (Full, Is_Public (Priv));
13628 Set_Is_Pure (Full, Is_Pure (Priv));
13629 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13630 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13631 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13632 Set_Has_Pragma_Unreferenced_Objects
13633 (Full, Has_Pragma_Unreferenced_Objects
13634 (Priv));
13636 Conditional_Delay (Full, Priv);
13638 if Is_Tagged_Type (Full) then
13639 Set_Direct_Primitive_Operations
13640 (Full, Direct_Primitive_Operations (Priv));
13641 Set_No_Tagged_Streams_Pragma
13642 (Full, No_Tagged_Streams_Pragma (Priv));
13644 if Is_Base_Type (Priv) then
13645 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13646 end if;
13647 end if;
13649 Set_Is_Volatile (Full, Is_Volatile (Priv));
13650 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13651 Set_Scope (Full, Scope (Priv));
13652 Set_Next_Entity (Full, Next_Entity (Priv));
13653 Set_First_Entity (Full, First_Entity (Priv));
13654 Set_Last_Entity (Full, Last_Entity (Priv));
13656 -- If access types have been recorded for later handling, keep them in
13657 -- the full view so that they get handled when the full view freeze
13658 -- node is expanded.
13660 if Present (Freeze_Node (Priv))
13661 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13662 then
13663 Ensure_Freeze_Node (Full);
13664 Set_Access_Types_To_Process
13665 (Freeze_Node (Full),
13666 Access_Types_To_Process (Freeze_Node (Priv)));
13667 end if;
13669 -- Swap the two entities. Now Private is the full type entity and Full
13670 -- is the private one. They will be swapped back at the end of the
13671 -- private part. This swapping ensures that the entity that is visible
13672 -- in the private part is the full declaration.
13674 Exchange_Entities (Priv, Full);
13675 Append_Entity (Full, Scope (Full));
13676 end Copy_And_Swap;
13678 -------------------------------------
13679 -- Copy_Array_Base_Type_Attributes --
13680 -------------------------------------
13682 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13683 begin
13684 Set_Component_Alignment (T1, Component_Alignment (T2));
13685 Set_Component_Type (T1, Component_Type (T2));
13686 Set_Component_Size (T1, Component_Size (T2));
13687 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13688 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13689 Set_Has_Protected (T1, Has_Protected (T2));
13690 Set_Has_Task (T1, Has_Task (T2));
13691 Set_Is_Packed (T1, Is_Packed (T2));
13692 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13693 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13694 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13695 end Copy_Array_Base_Type_Attributes;
13697 -----------------------------------
13698 -- Copy_Array_Subtype_Attributes --
13699 -----------------------------------
13701 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13702 begin
13703 Set_Size_Info (T1, T2);
13705 Set_First_Index (T1, First_Index (T2));
13706 Set_Is_Aliased (T1, Is_Aliased (T2));
13707 Set_Is_Volatile (T1, Is_Volatile (T2));
13708 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13709 Set_Is_Constrained (T1, Is_Constrained (T2));
13710 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13711 Inherit_Rep_Item_Chain (T1, T2);
13712 Set_Convention (T1, Convention (T2));
13713 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13714 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13715 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13716 end Copy_Array_Subtype_Attributes;
13718 -----------------------------------
13719 -- Create_Constrained_Components --
13720 -----------------------------------
13722 procedure Create_Constrained_Components
13723 (Subt : Entity_Id;
13724 Decl_Node : Node_Id;
13725 Typ : Entity_Id;
13726 Constraints : Elist_Id)
13728 Loc : constant Source_Ptr := Sloc (Subt);
13729 Comp_List : constant Elist_Id := New_Elmt_List;
13730 Parent_Type : constant Entity_Id := Etype (Typ);
13731 Assoc_List : constant List_Id := New_List;
13732 Discr_Val : Elmt_Id;
13733 Errors : Boolean;
13734 New_C : Entity_Id;
13735 Old_C : Entity_Id;
13736 Is_Static : Boolean := True;
13738 procedure Collect_Fixed_Components (Typ : Entity_Id);
13739 -- Collect parent type components that do not appear in a variant part
13741 procedure Create_All_Components;
13742 -- Iterate over Comp_List to create the components of the subtype
13744 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13745 -- Creates a new component from Old_Compon, copying all the fields from
13746 -- it, including its Etype, inserts the new component in the Subt entity
13747 -- chain and returns the new component.
13749 function Is_Variant_Record (T : Entity_Id) return Boolean;
13750 -- If true, and discriminants are static, collect only components from
13751 -- variants selected by discriminant values.
13753 ------------------------------
13754 -- Collect_Fixed_Components --
13755 ------------------------------
13757 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13758 begin
13759 -- Build association list for discriminants, and find components of the
13760 -- variant part selected by the values of the discriminants.
13762 Old_C := First_Discriminant (Typ);
13763 Discr_Val := First_Elmt (Constraints);
13764 while Present (Old_C) loop
13765 Append_To (Assoc_List,
13766 Make_Component_Association (Loc,
13767 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13768 Expression => New_Copy (Node (Discr_Val))));
13770 Next_Elmt (Discr_Val);
13771 Next_Discriminant (Old_C);
13772 end loop;
13774 -- The tag and the possible parent component are unconditionally in
13775 -- the subtype.
13777 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13778 Old_C := First_Component (Typ);
13779 while Present (Old_C) loop
13780 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13781 Append_Elmt (Old_C, Comp_List);
13782 end if;
13784 Next_Component (Old_C);
13785 end loop;
13786 end if;
13787 end Collect_Fixed_Components;
13789 ---------------------------
13790 -- Create_All_Components --
13791 ---------------------------
13793 procedure Create_All_Components is
13794 Comp : Elmt_Id;
13796 begin
13797 Comp := First_Elmt (Comp_List);
13798 while Present (Comp) loop
13799 Old_C := Node (Comp);
13800 New_C := Create_Component (Old_C);
13802 Set_Etype
13803 (New_C,
13804 Constrain_Component_Type
13805 (Old_C, Subt, Decl_Node, Typ, Constraints));
13806 Set_Is_Public (New_C, Is_Public (Subt));
13808 Next_Elmt (Comp);
13809 end loop;
13810 end Create_All_Components;
13812 ----------------------
13813 -- Create_Component --
13814 ----------------------
13816 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13817 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13819 begin
13820 if Ekind (Old_Compon) = E_Discriminant
13821 and then Is_Completely_Hidden (Old_Compon)
13822 then
13823 -- This is a shadow discriminant created for a discriminant of
13824 -- the parent type, which needs to be present in the subtype.
13825 -- Give the shadow discriminant an internal name that cannot
13826 -- conflict with that of visible components.
13828 Set_Chars (New_Compon, New_Internal_Name ('C'));
13829 end if;
13831 -- Set the parent so we have a proper link for freezing etc. This is
13832 -- not a real parent pointer, since of course our parent does not own
13833 -- up to us and reference us, we are an illegitimate child of the
13834 -- original parent.
13836 Set_Parent (New_Compon, Parent (Old_Compon));
13838 -- If the old component's Esize was already determined and is a
13839 -- static value, then the new component simply inherits it. Otherwise
13840 -- the old component's size may require run-time determination, but
13841 -- the new component's size still might be statically determinable
13842 -- (if, for example it has a static constraint). In that case we want
13843 -- Layout_Type to recompute the component's size, so we reset its
13844 -- size and positional fields.
13846 if Frontend_Layout_On_Target
13847 and then not Known_Static_Esize (Old_Compon)
13848 then
13849 Set_Esize (New_Compon, Uint_0);
13850 Init_Normalized_First_Bit (New_Compon);
13851 Init_Normalized_Position (New_Compon);
13852 Init_Normalized_Position_Max (New_Compon);
13853 end if;
13855 -- We do not want this node marked as Comes_From_Source, since
13856 -- otherwise it would get first class status and a separate cross-
13857 -- reference line would be generated. Illegitimate children do not
13858 -- rate such recognition.
13860 Set_Comes_From_Source (New_Compon, False);
13862 -- But it is a real entity, and a birth certificate must be properly
13863 -- registered by entering it into the entity list.
13865 Enter_Name (New_Compon);
13867 return New_Compon;
13868 end Create_Component;
13870 -----------------------
13871 -- Is_Variant_Record --
13872 -----------------------
13874 function Is_Variant_Record (T : Entity_Id) return Boolean is
13875 begin
13876 return Nkind (Parent (T)) = N_Full_Type_Declaration
13877 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13878 and then Present (Component_List (Type_Definition (Parent (T))))
13879 and then
13880 Present
13881 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13882 end Is_Variant_Record;
13884 -- Start of processing for Create_Constrained_Components
13886 begin
13887 pragma Assert (Subt /= Base_Type (Subt));
13888 pragma Assert (Typ = Base_Type (Typ));
13890 Set_First_Entity (Subt, Empty);
13891 Set_Last_Entity (Subt, Empty);
13893 -- Check whether constraint is fully static, in which case we can
13894 -- optimize the list of components.
13896 Discr_Val := First_Elmt (Constraints);
13897 while Present (Discr_Val) loop
13898 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13899 Is_Static := False;
13900 exit;
13901 end if;
13903 Next_Elmt (Discr_Val);
13904 end loop;
13906 Set_Has_Static_Discriminants (Subt, Is_Static);
13908 Push_Scope (Subt);
13910 -- Inherit the discriminants of the parent type
13912 Add_Discriminants : declare
13913 Num_Disc : Nat;
13914 Num_Gird : Nat;
13916 begin
13917 Num_Disc := 0;
13918 Old_C := First_Discriminant (Typ);
13920 while Present (Old_C) loop
13921 Num_Disc := Num_Disc + 1;
13922 New_C := Create_Component (Old_C);
13923 Set_Is_Public (New_C, Is_Public (Subt));
13924 Next_Discriminant (Old_C);
13925 end loop;
13927 -- For an untagged derived subtype, the number of discriminants may
13928 -- be smaller than the number of inherited discriminants, because
13929 -- several of them may be renamed by a single new discriminant or
13930 -- constrained. In this case, add the hidden discriminants back into
13931 -- the subtype, because they need to be present if the optimizer of
13932 -- the GCC 4.x back-end decides to break apart assignments between
13933 -- objects using the parent view into member-wise assignments.
13935 Num_Gird := 0;
13937 if Is_Derived_Type (Typ)
13938 and then not Is_Tagged_Type (Typ)
13939 then
13940 Old_C := First_Stored_Discriminant (Typ);
13942 while Present (Old_C) loop
13943 Num_Gird := Num_Gird + 1;
13944 Next_Stored_Discriminant (Old_C);
13945 end loop;
13946 end if;
13948 if Num_Gird > Num_Disc then
13950 -- Find out multiple uses of new discriminants, and add hidden
13951 -- components for the extra renamed discriminants. We recognize
13952 -- multiple uses through the Corresponding_Discriminant of a
13953 -- new discriminant: if it constrains several old discriminants,
13954 -- this field points to the last one in the parent type. The
13955 -- stored discriminants of the derived type have the same name
13956 -- as those of the parent.
13958 declare
13959 Constr : Elmt_Id;
13960 New_Discr : Entity_Id;
13961 Old_Discr : Entity_Id;
13963 begin
13964 Constr := First_Elmt (Stored_Constraint (Typ));
13965 Old_Discr := First_Stored_Discriminant (Typ);
13966 while Present (Constr) loop
13967 if Is_Entity_Name (Node (Constr))
13968 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13969 then
13970 New_Discr := Entity (Node (Constr));
13972 if Chars (Corresponding_Discriminant (New_Discr)) /=
13973 Chars (Old_Discr)
13974 then
13975 -- The new discriminant has been used to rename a
13976 -- subsequent old discriminant. Introduce a shadow
13977 -- component for the current old discriminant.
13979 New_C := Create_Component (Old_Discr);
13980 Set_Original_Record_Component (New_C, Old_Discr);
13981 end if;
13983 else
13984 -- The constraint has eliminated the old discriminant.
13985 -- Introduce a shadow component.
13987 New_C := Create_Component (Old_Discr);
13988 Set_Original_Record_Component (New_C, Old_Discr);
13989 end if;
13991 Next_Elmt (Constr);
13992 Next_Stored_Discriminant (Old_Discr);
13993 end loop;
13994 end;
13995 end if;
13996 end Add_Discriminants;
13998 if Is_Static
13999 and then Is_Variant_Record (Typ)
14000 then
14001 Collect_Fixed_Components (Typ);
14003 Gather_Components (
14004 Typ,
14005 Component_List (Type_Definition (Parent (Typ))),
14006 Governed_By => Assoc_List,
14007 Into => Comp_List,
14008 Report_Errors => Errors);
14009 pragma Assert (not Errors);
14011 Create_All_Components;
14013 -- If the subtype declaration is created for a tagged type derivation
14014 -- with constraints, we retrieve the record definition of the parent
14015 -- type to select the components of the proper variant.
14017 elsif Is_Static
14018 and then Is_Tagged_Type (Typ)
14019 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14020 and then
14021 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14022 and then Is_Variant_Record (Parent_Type)
14023 then
14024 Collect_Fixed_Components (Typ);
14026 Gather_Components
14027 (Typ,
14028 Component_List (Type_Definition (Parent (Parent_Type))),
14029 Governed_By => Assoc_List,
14030 Into => Comp_List,
14031 Report_Errors => Errors);
14033 -- Note: previously there was a check at this point that no errors
14034 -- were detected. As a consequence of AI05-220 there may be an error
14035 -- if an inherited discriminant that controls a variant has a non-
14036 -- static constraint.
14038 -- If the tagged derivation has a type extension, collect all the
14039 -- new components therein.
14041 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14042 then
14043 Old_C := First_Component (Typ);
14044 while Present (Old_C) loop
14045 if Original_Record_Component (Old_C) = Old_C
14046 and then Chars (Old_C) /= Name_uTag
14047 and then Chars (Old_C) /= Name_uParent
14048 then
14049 Append_Elmt (Old_C, Comp_List);
14050 end if;
14052 Next_Component (Old_C);
14053 end loop;
14054 end if;
14056 Create_All_Components;
14058 else
14059 -- If discriminants are not static, or if this is a multi-level type
14060 -- extension, we have to include all components of the parent type.
14062 Old_C := First_Component (Typ);
14063 while Present (Old_C) loop
14064 New_C := Create_Component (Old_C);
14066 Set_Etype
14067 (New_C,
14068 Constrain_Component_Type
14069 (Old_C, Subt, Decl_Node, Typ, Constraints));
14070 Set_Is_Public (New_C, Is_Public (Subt));
14072 Next_Component (Old_C);
14073 end loop;
14074 end if;
14076 End_Scope;
14077 end Create_Constrained_Components;
14079 ------------------------------------------
14080 -- Decimal_Fixed_Point_Type_Declaration --
14081 ------------------------------------------
14083 procedure Decimal_Fixed_Point_Type_Declaration
14084 (T : Entity_Id;
14085 Def : Node_Id)
14087 Loc : constant Source_Ptr := Sloc (Def);
14088 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14089 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14090 Implicit_Base : Entity_Id;
14091 Digs_Val : Uint;
14092 Delta_Val : Ureal;
14093 Scale_Val : Uint;
14094 Bound_Val : Ureal;
14096 begin
14097 Check_SPARK_05_Restriction
14098 ("decimal fixed point type is not allowed", Def);
14099 Check_Restriction (No_Fixed_Point, Def);
14101 -- Create implicit base type
14103 Implicit_Base :=
14104 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14105 Set_Etype (Implicit_Base, Implicit_Base);
14107 -- Analyze and process delta expression
14109 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14111 Check_Delta_Expression (Delta_Expr);
14112 Delta_Val := Expr_Value_R (Delta_Expr);
14114 -- Check delta is power of 10, and determine scale value from it
14116 declare
14117 Val : Ureal;
14119 begin
14120 Scale_Val := Uint_0;
14121 Val := Delta_Val;
14123 if Val < Ureal_1 then
14124 while Val < Ureal_1 loop
14125 Val := Val * Ureal_10;
14126 Scale_Val := Scale_Val + 1;
14127 end loop;
14129 if Scale_Val > 18 then
14130 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14131 Scale_Val := UI_From_Int (+18);
14132 end if;
14134 else
14135 while Val > Ureal_1 loop
14136 Val := Val / Ureal_10;
14137 Scale_Val := Scale_Val - 1;
14138 end loop;
14140 if Scale_Val < -18 then
14141 Error_Msg_N ("scale is less than minimum value of -18", Def);
14142 Scale_Val := UI_From_Int (-18);
14143 end if;
14144 end if;
14146 if Val /= Ureal_1 then
14147 Error_Msg_N ("delta expression must be a power of 10", Def);
14148 Delta_Val := Ureal_10 ** (-Scale_Val);
14149 end if;
14150 end;
14152 -- Set delta, scale and small (small = delta for decimal type)
14154 Set_Delta_Value (Implicit_Base, Delta_Val);
14155 Set_Scale_Value (Implicit_Base, Scale_Val);
14156 Set_Small_Value (Implicit_Base, Delta_Val);
14158 -- Analyze and process digits expression
14160 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14161 Check_Digits_Expression (Digs_Expr);
14162 Digs_Val := Expr_Value (Digs_Expr);
14164 if Digs_Val > 18 then
14165 Digs_Val := UI_From_Int (+18);
14166 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14167 end if;
14169 Set_Digits_Value (Implicit_Base, Digs_Val);
14170 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14172 -- Set range of base type from digits value for now. This will be
14173 -- expanded to represent the true underlying base range by Freeze.
14175 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14177 -- Note: We leave size as zero for now, size will be set at freeze
14178 -- time. We have to do this for ordinary fixed-point, because the size
14179 -- depends on the specified small, and we might as well do the same for
14180 -- decimal fixed-point.
14182 pragma Assert (Esize (Implicit_Base) = Uint_0);
14184 -- If there are bounds given in the declaration use them as the
14185 -- bounds of the first named subtype.
14187 if Present (Real_Range_Specification (Def)) then
14188 declare
14189 RRS : constant Node_Id := Real_Range_Specification (Def);
14190 Low : constant Node_Id := Low_Bound (RRS);
14191 High : constant Node_Id := High_Bound (RRS);
14192 Low_Val : Ureal;
14193 High_Val : Ureal;
14195 begin
14196 Analyze_And_Resolve (Low, Any_Real);
14197 Analyze_And_Resolve (High, Any_Real);
14198 Check_Real_Bound (Low);
14199 Check_Real_Bound (High);
14200 Low_Val := Expr_Value_R (Low);
14201 High_Val := Expr_Value_R (High);
14203 if Low_Val < (-Bound_Val) then
14204 Error_Msg_N
14205 ("range low bound too small for digits value", Low);
14206 Low_Val := -Bound_Val;
14207 end if;
14209 if High_Val > Bound_Val then
14210 Error_Msg_N
14211 ("range high bound too large for digits value", High);
14212 High_Val := Bound_Val;
14213 end if;
14215 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14216 end;
14218 -- If no explicit range, use range that corresponds to given
14219 -- digits value. This will end up as the final range for the
14220 -- first subtype.
14222 else
14223 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14224 end if;
14226 -- Complete entity for first subtype. The inheritance of the rep item
14227 -- chain ensures that SPARK-related pragmas are not clobbered when the
14228 -- decimal fixed point type acts as a full view of a private type.
14230 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14231 Set_Etype (T, Implicit_Base);
14232 Set_Size_Info (T, Implicit_Base);
14233 Inherit_Rep_Item_Chain (T, Implicit_Base);
14234 Set_Digits_Value (T, Digs_Val);
14235 Set_Delta_Value (T, Delta_Val);
14236 Set_Small_Value (T, Delta_Val);
14237 Set_Scale_Value (T, Scale_Val);
14238 Set_Is_Constrained (T);
14239 end Decimal_Fixed_Point_Type_Declaration;
14241 -----------------------------------
14242 -- Derive_Progenitor_Subprograms --
14243 -----------------------------------
14245 procedure Derive_Progenitor_Subprograms
14246 (Parent_Type : Entity_Id;
14247 Tagged_Type : Entity_Id)
14249 E : Entity_Id;
14250 Elmt : Elmt_Id;
14251 Iface : Entity_Id;
14252 Iface_Elmt : Elmt_Id;
14253 Iface_Subp : Entity_Id;
14254 New_Subp : Entity_Id := Empty;
14255 Prim_Elmt : Elmt_Id;
14256 Subp : Entity_Id;
14257 Typ : Entity_Id;
14259 begin
14260 pragma Assert (Ada_Version >= Ada_2005
14261 and then Is_Record_Type (Tagged_Type)
14262 and then Is_Tagged_Type (Tagged_Type)
14263 and then Has_Interfaces (Tagged_Type));
14265 -- Step 1: Transfer to the full-view primitives associated with the
14266 -- partial-view that cover interface primitives. Conceptually this
14267 -- work should be done later by Process_Full_View; done here to
14268 -- simplify its implementation at later stages. It can be safely
14269 -- done here because interfaces must be visible in the partial and
14270 -- private view (RM 7.3(7.3/2)).
14272 -- Small optimization: This work is only required if the parent may
14273 -- have entities whose Alias attribute reference an interface primitive.
14274 -- Such a situation may occur if the parent is an abstract type and the
14275 -- primitive has not been yet overridden or if the parent is a generic
14276 -- formal type covering interfaces.
14278 -- If the tagged type is not abstract, it cannot have abstract
14279 -- primitives (the only entities in the list of primitives of
14280 -- non-abstract tagged types that can reference abstract primitives
14281 -- through its Alias attribute are the internal entities that have
14282 -- attribute Interface_Alias, and these entities are generated later
14283 -- by Add_Internal_Interface_Entities).
14285 if In_Private_Part (Current_Scope)
14286 and then (Is_Abstract_Type (Parent_Type)
14287 or else
14288 Is_Generic_Type (Parent_Type))
14289 then
14290 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14291 while Present (Elmt) loop
14292 Subp := Node (Elmt);
14294 -- At this stage it is not possible to have entities in the list
14295 -- of primitives that have attribute Interface_Alias.
14297 pragma Assert (No (Interface_Alias (Subp)));
14299 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14301 if Is_Interface (Typ) then
14302 E := Find_Primitive_Covering_Interface
14303 (Tagged_Type => Tagged_Type,
14304 Iface_Prim => Subp);
14306 if Present (E)
14307 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14308 then
14309 Replace_Elmt (Elmt, E);
14310 Remove_Homonym (Subp);
14311 end if;
14312 end if;
14314 Next_Elmt (Elmt);
14315 end loop;
14316 end if;
14318 -- Step 2: Add primitives of progenitors that are not implemented by
14319 -- parents of Tagged_Type.
14321 if Present (Interfaces (Base_Type (Tagged_Type))) then
14322 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14323 while Present (Iface_Elmt) loop
14324 Iface := Node (Iface_Elmt);
14326 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14327 while Present (Prim_Elmt) loop
14328 Iface_Subp := Node (Prim_Elmt);
14330 -- Exclude derivation of predefined primitives except those
14331 -- that come from source, or are inherited from one that comes
14332 -- from source. Required to catch declarations of equality
14333 -- operators of interfaces. For example:
14335 -- type Iface is interface;
14336 -- function "=" (Left, Right : Iface) return Boolean;
14338 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14339 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14340 then
14341 E := Find_Primitive_Covering_Interface
14342 (Tagged_Type => Tagged_Type,
14343 Iface_Prim => Iface_Subp);
14345 -- If not found we derive a new primitive leaving its alias
14346 -- attribute referencing the interface primitive.
14348 if No (E) then
14349 Derive_Subprogram
14350 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14352 -- Ada 2012 (AI05-0197): If the covering primitive's name
14353 -- differs from the name of the interface primitive then it
14354 -- is a private primitive inherited from a parent type. In
14355 -- such case, given that Tagged_Type covers the interface,
14356 -- the inherited private primitive becomes visible. For such
14357 -- purpose we add a new entity that renames the inherited
14358 -- private primitive.
14360 elsif Chars (E) /= Chars (Iface_Subp) then
14361 pragma Assert (Has_Suffix (E, 'P'));
14362 Derive_Subprogram
14363 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14364 Set_Alias (New_Subp, E);
14365 Set_Is_Abstract_Subprogram (New_Subp,
14366 Is_Abstract_Subprogram (E));
14368 -- Propagate to the full view interface entities associated
14369 -- with the partial view.
14371 elsif In_Private_Part (Current_Scope)
14372 and then Present (Alias (E))
14373 and then Alias (E) = Iface_Subp
14374 and then
14375 List_Containing (Parent (E)) /=
14376 Private_Declarations
14377 (Specification
14378 (Unit_Declaration_Node (Current_Scope)))
14379 then
14380 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14381 end if;
14382 end if;
14384 Next_Elmt (Prim_Elmt);
14385 end loop;
14387 Next_Elmt (Iface_Elmt);
14388 end loop;
14389 end if;
14390 end Derive_Progenitor_Subprograms;
14392 -----------------------
14393 -- Derive_Subprogram --
14394 -----------------------
14396 procedure Derive_Subprogram
14397 (New_Subp : in out Entity_Id;
14398 Parent_Subp : Entity_Id;
14399 Derived_Type : Entity_Id;
14400 Parent_Type : Entity_Id;
14401 Actual_Subp : Entity_Id := Empty)
14403 Formal : Entity_Id;
14404 -- Formal parameter of parent primitive operation
14406 Formal_Of_Actual : Entity_Id;
14407 -- Formal parameter of actual operation, when the derivation is to
14408 -- create a renaming for a primitive operation of an actual in an
14409 -- instantiation.
14411 New_Formal : Entity_Id;
14412 -- Formal of inherited operation
14414 Visible_Subp : Entity_Id := Parent_Subp;
14416 function Is_Private_Overriding return Boolean;
14417 -- If Subp is a private overriding of a visible operation, the inherited
14418 -- operation derives from the overridden op (even though its body is the
14419 -- overriding one) and the inherited operation is visible now. See
14420 -- sem_disp to see the full details of the handling of the overridden
14421 -- subprogram, which is removed from the list of primitive operations of
14422 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14423 -- and used to diagnose abstract operations that need overriding in the
14424 -- derived type.
14426 procedure Replace_Type (Id, New_Id : Entity_Id);
14427 -- When the type is an anonymous access type, create a new access type
14428 -- designating the derived type.
14430 procedure Set_Derived_Name;
14431 -- This procedure sets the appropriate Chars name for New_Subp. This
14432 -- is normally just a copy of the parent name. An exception arises for
14433 -- type support subprograms, where the name is changed to reflect the
14434 -- name of the derived type, e.g. if type foo is derived from type bar,
14435 -- then a procedure barDA is derived with a name fooDA.
14437 ---------------------------
14438 -- Is_Private_Overriding --
14439 ---------------------------
14441 function Is_Private_Overriding return Boolean is
14442 Prev : Entity_Id;
14444 begin
14445 -- If the parent is not a dispatching operation there is no
14446 -- need to investigate overridings
14448 if not Is_Dispatching_Operation (Parent_Subp) then
14449 return False;
14450 end if;
14452 -- The visible operation that is overridden is a homonym of the
14453 -- parent subprogram. We scan the homonym chain to find the one
14454 -- whose alias is the subprogram we are deriving.
14456 Prev := Current_Entity (Parent_Subp);
14457 while Present (Prev) loop
14458 if Ekind (Prev) = Ekind (Parent_Subp)
14459 and then Alias (Prev) = Parent_Subp
14460 and then Scope (Parent_Subp) = Scope (Prev)
14461 and then not Is_Hidden (Prev)
14462 then
14463 Visible_Subp := Prev;
14464 return True;
14465 end if;
14467 Prev := Homonym (Prev);
14468 end loop;
14470 return False;
14471 end Is_Private_Overriding;
14473 ------------------
14474 -- Replace_Type --
14475 ------------------
14477 procedure Replace_Type (Id, New_Id : Entity_Id) is
14478 Id_Type : constant Entity_Id := Etype (Id);
14479 Acc_Type : Entity_Id;
14480 Par : constant Node_Id := Parent (Derived_Type);
14482 begin
14483 -- When the type is an anonymous access type, create a new access
14484 -- type designating the derived type. This itype must be elaborated
14485 -- at the point of the derivation, not on subsequent calls that may
14486 -- be out of the proper scope for Gigi, so we insert a reference to
14487 -- it after the derivation.
14489 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14490 declare
14491 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14493 begin
14494 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14495 and then Present (Full_View (Desig_Typ))
14496 and then not Is_Private_Type (Parent_Type)
14497 then
14498 Desig_Typ := Full_View (Desig_Typ);
14499 end if;
14501 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14503 -- Ada 2005 (AI-251): Handle also derivations of abstract
14504 -- interface primitives.
14506 or else (Is_Interface (Desig_Typ)
14507 and then not Is_Class_Wide_Type (Desig_Typ))
14508 then
14509 Acc_Type := New_Copy (Id_Type);
14510 Set_Etype (Acc_Type, Acc_Type);
14511 Set_Scope (Acc_Type, New_Subp);
14513 -- Set size of anonymous access type. If we have an access
14514 -- to an unconstrained array, this is a fat pointer, so it
14515 -- is sizes at twice addtress size.
14517 if Is_Array_Type (Desig_Typ)
14518 and then not Is_Constrained (Desig_Typ)
14519 then
14520 Init_Size (Acc_Type, 2 * System_Address_Size);
14522 -- Other cases use a thin pointer
14524 else
14525 Init_Size (Acc_Type, System_Address_Size);
14526 end if;
14528 -- Set remaining characterstics of anonymous access type
14530 Init_Alignment (Acc_Type);
14531 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14533 Set_Etype (New_Id, Acc_Type);
14534 Set_Scope (New_Id, New_Subp);
14536 -- Create a reference to it
14538 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14540 else
14541 Set_Etype (New_Id, Id_Type);
14542 end if;
14543 end;
14545 -- In Ada2012, a formal may have an incomplete type but the type
14546 -- derivation that inherits the primitive follows the full view.
14548 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14549 or else
14550 (Ekind (Id_Type) = E_Record_Type_With_Private
14551 and then Present (Full_View (Id_Type))
14552 and then
14553 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14554 or else
14555 (Ada_Version >= Ada_2012
14556 and then Ekind (Id_Type) = E_Incomplete_Type
14557 and then Full_View (Id_Type) = Parent_Type)
14558 then
14559 -- Constraint checks on formals are generated during expansion,
14560 -- based on the signature of the original subprogram. The bounds
14561 -- of the derived type are not relevant, and thus we can use
14562 -- the base type for the formals. However, the return type may be
14563 -- used in a context that requires that the proper static bounds
14564 -- be used (a case statement, for example) and for those cases
14565 -- we must use the derived type (first subtype), not its base.
14567 -- If the derived_type_definition has no constraints, we know that
14568 -- the derived type has the same constraints as the first subtype
14569 -- of the parent, and we can also use it rather than its base,
14570 -- which can lead to more efficient code.
14572 if Etype (Id) = Parent_Type then
14573 if Is_Scalar_Type (Parent_Type)
14574 and then
14575 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14576 then
14577 Set_Etype (New_Id, Derived_Type);
14579 elsif Nkind (Par) = N_Full_Type_Declaration
14580 and then
14581 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14582 and then
14583 Is_Entity_Name
14584 (Subtype_Indication (Type_Definition (Par)))
14585 then
14586 Set_Etype (New_Id, Derived_Type);
14588 else
14589 Set_Etype (New_Id, Base_Type (Derived_Type));
14590 end if;
14592 else
14593 Set_Etype (New_Id, Base_Type (Derived_Type));
14594 end if;
14596 else
14597 Set_Etype (New_Id, Etype (Id));
14598 end if;
14599 end Replace_Type;
14601 ----------------------
14602 -- Set_Derived_Name --
14603 ----------------------
14605 procedure Set_Derived_Name is
14606 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14607 begin
14608 if Nm = TSS_Null then
14609 Set_Chars (New_Subp, Chars (Parent_Subp));
14610 else
14611 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14612 end if;
14613 end Set_Derived_Name;
14615 -- Start of processing for Derive_Subprogram
14617 begin
14618 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14619 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14621 -- Check whether the inherited subprogram is a private operation that
14622 -- should be inherited but not yet made visible. Such subprograms can
14623 -- become visible at a later point (e.g., the private part of a public
14624 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14625 -- following predicate is true, then this is not such a private
14626 -- operation and the subprogram simply inherits the name of the parent
14627 -- subprogram. Note the special check for the names of controlled
14628 -- operations, which are currently exempted from being inherited with
14629 -- a hidden name because they must be findable for generation of
14630 -- implicit run-time calls.
14632 if not Is_Hidden (Parent_Subp)
14633 or else Is_Internal (Parent_Subp)
14634 or else Is_Private_Overriding
14635 or else Is_Internal_Name (Chars (Parent_Subp))
14636 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14637 Name_Adjust,
14638 Name_Finalize)
14639 then
14640 Set_Derived_Name;
14642 -- An inherited dispatching equality will be overridden by an internally
14643 -- generated one, or by an explicit one, so preserve its name and thus
14644 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14645 -- private operation it may become invisible if the full view has
14646 -- progenitors, and the dispatch table will be malformed.
14647 -- We check that the type is limited to handle the anomalous declaration
14648 -- of Limited_Controlled, which is derived from a non-limited type, and
14649 -- which is handled specially elsewhere as well.
14651 elsif Chars (Parent_Subp) = Name_Op_Eq
14652 and then Is_Dispatching_Operation (Parent_Subp)
14653 and then Etype (Parent_Subp) = Standard_Boolean
14654 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14655 and then
14656 Etype (First_Formal (Parent_Subp)) =
14657 Etype (Next_Formal (First_Formal (Parent_Subp)))
14658 then
14659 Set_Derived_Name;
14661 -- If parent is hidden, this can be a regular derivation if the
14662 -- parent is immediately visible in a non-instantiating context,
14663 -- or if we are in the private part of an instance. This test
14664 -- should still be refined ???
14666 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14667 -- operation as a non-visible operation in cases where the parent
14668 -- subprogram might not be visible now, but was visible within the
14669 -- original generic, so it would be wrong to make the inherited
14670 -- subprogram non-visible now. (Not clear if this test is fully
14671 -- correct; are there any cases where we should declare the inherited
14672 -- operation as not visible to avoid it being overridden, e.g., when
14673 -- the parent type is a generic actual with private primitives ???)
14675 -- (they should be treated the same as other private inherited
14676 -- subprograms, but it's not clear how to do this cleanly). ???
14678 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14679 and then Is_Immediately_Visible (Parent_Subp)
14680 and then not In_Instance)
14681 or else In_Instance_Not_Visible
14682 then
14683 Set_Derived_Name;
14685 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14686 -- overrides an interface primitive because interface primitives
14687 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14689 elsif Ada_Version >= Ada_2005
14690 and then Is_Dispatching_Operation (Parent_Subp)
14691 and then Covers_Some_Interface (Parent_Subp)
14692 then
14693 Set_Derived_Name;
14695 -- Otherwise, the type is inheriting a private operation, so enter it
14696 -- with a special name so it can't be overridden.
14698 else
14699 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14700 end if;
14702 Set_Parent (New_Subp, Parent (Derived_Type));
14704 if Present (Actual_Subp) then
14705 Replace_Type (Actual_Subp, New_Subp);
14706 else
14707 Replace_Type (Parent_Subp, New_Subp);
14708 end if;
14710 Conditional_Delay (New_Subp, Parent_Subp);
14712 -- If we are creating a renaming for a primitive operation of an
14713 -- actual of a generic derived type, we must examine the signature
14714 -- of the actual primitive, not that of the generic formal, which for
14715 -- example may be an interface. However the name and initial value
14716 -- of the inherited operation are those of the formal primitive.
14718 Formal := First_Formal (Parent_Subp);
14720 if Present (Actual_Subp) then
14721 Formal_Of_Actual := First_Formal (Actual_Subp);
14722 else
14723 Formal_Of_Actual := Empty;
14724 end if;
14726 while Present (Formal) loop
14727 New_Formal := New_Copy (Formal);
14729 -- Normally we do not go copying parents, but in the case of
14730 -- formals, we need to link up to the declaration (which is the
14731 -- parameter specification), and it is fine to link up to the
14732 -- original formal's parameter specification in this case.
14734 Set_Parent (New_Formal, Parent (Formal));
14735 Append_Entity (New_Formal, New_Subp);
14737 if Present (Formal_Of_Actual) then
14738 Replace_Type (Formal_Of_Actual, New_Formal);
14739 Next_Formal (Formal_Of_Actual);
14740 else
14741 Replace_Type (Formal, New_Formal);
14742 end if;
14744 Next_Formal (Formal);
14745 end loop;
14747 -- If this derivation corresponds to a tagged generic actual, then
14748 -- primitive operations rename those of the actual. Otherwise the
14749 -- primitive operations rename those of the parent type, If the parent
14750 -- renames an intrinsic operator, so does the new subprogram. We except
14751 -- concatenation, which is always properly typed, and does not get
14752 -- expanded as other intrinsic operations.
14754 if No (Actual_Subp) then
14755 if Is_Intrinsic_Subprogram (Parent_Subp) then
14756 Set_Is_Intrinsic_Subprogram (New_Subp);
14758 if Present (Alias (Parent_Subp))
14759 and then Chars (Parent_Subp) /= Name_Op_Concat
14760 then
14761 Set_Alias (New_Subp, Alias (Parent_Subp));
14762 else
14763 Set_Alias (New_Subp, Parent_Subp);
14764 end if;
14766 else
14767 Set_Alias (New_Subp, Parent_Subp);
14768 end if;
14770 else
14771 Set_Alias (New_Subp, Actual_Subp);
14772 end if;
14774 -- Inherit the "ghostness" from the parent subprogram
14776 if Is_Ghost_Entity (Alias (New_Subp)) then
14777 Set_Is_Ghost_Entity (New_Subp);
14778 end if;
14780 -- Derived subprograms of a tagged type must inherit the convention
14781 -- of the parent subprogram (a requirement of AI-117). Derived
14782 -- subprograms of untagged types simply get convention Ada by default.
14784 -- If the derived type is a tagged generic formal type with unknown
14785 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14787 -- However, if the type is derived from a generic formal, the further
14788 -- inherited subprogram has the convention of the non-generic ancestor.
14789 -- Otherwise there would be no way to override the operation.
14790 -- (This is subject to forthcoming ARG discussions).
14792 if Is_Tagged_Type (Derived_Type) then
14793 if Is_Generic_Type (Derived_Type)
14794 and then Has_Unknown_Discriminants (Derived_Type)
14795 then
14796 Set_Convention (New_Subp, Convention_Intrinsic);
14798 else
14799 if Is_Generic_Type (Parent_Type)
14800 and then Has_Unknown_Discriminants (Parent_Type)
14801 then
14802 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14803 else
14804 Set_Convention (New_Subp, Convention (Parent_Subp));
14805 end if;
14806 end if;
14807 end if;
14809 -- Predefined controlled operations retain their name even if the parent
14810 -- is hidden (see above), but they are not primitive operations if the
14811 -- ancestor is not visible, for example if the parent is a private
14812 -- extension completed with a controlled extension. Note that a full
14813 -- type that is controlled can break privacy: the flag Is_Controlled is
14814 -- set on both views of the type.
14816 if Is_Controlled (Parent_Type)
14817 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14818 Name_Adjust,
14819 Name_Finalize)
14820 and then Is_Hidden (Parent_Subp)
14821 and then not Is_Visibly_Controlled (Parent_Type)
14822 then
14823 Set_Is_Hidden (New_Subp);
14824 end if;
14826 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14827 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14829 if Ekind (Parent_Subp) = E_Procedure then
14830 Set_Is_Valued_Procedure
14831 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14832 else
14833 Set_Has_Controlling_Result
14834 (New_Subp, Has_Controlling_Result (Parent_Subp));
14835 end if;
14837 -- No_Return must be inherited properly. If this is overridden in the
14838 -- case of a dispatching operation, then a check is made in Sem_Disp
14839 -- that the overriding operation is also No_Return (no such check is
14840 -- required for the case of non-dispatching operation.
14842 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14844 -- A derived function with a controlling result is abstract. If the
14845 -- Derived_Type is a nonabstract formal generic derived type, then
14846 -- inherited operations are not abstract: the required check is done at
14847 -- instantiation time. If the derivation is for a generic actual, the
14848 -- function is not abstract unless the actual is.
14850 if Is_Generic_Type (Derived_Type)
14851 and then not Is_Abstract_Type (Derived_Type)
14852 then
14853 null;
14855 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14856 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14858 -- A subprogram subject to pragma Extensions_Visible with value False
14859 -- requires overriding if the subprogram has at least one controlling
14860 -- OUT parameter (SPARK RM 6.1.7(6)).
14862 elsif Ada_Version >= Ada_2005
14863 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14864 or else (Is_Tagged_Type (Derived_Type)
14865 and then Etype (New_Subp) = Derived_Type
14866 and then not Is_Null_Extension (Derived_Type))
14867 or else (Is_Tagged_Type (Derived_Type)
14868 and then Ekind (Etype (New_Subp)) =
14869 E_Anonymous_Access_Type
14870 and then Designated_Type (Etype (New_Subp)) =
14871 Derived_Type
14872 and then not Is_Null_Extension (Derived_Type))
14873 or else (Comes_From_Source (Alias (New_Subp))
14874 and then Is_EVF_Procedure (Alias (New_Subp))))
14875 and then No (Actual_Subp)
14876 then
14877 if not Is_Tagged_Type (Derived_Type)
14878 or else Is_Abstract_Type (Derived_Type)
14879 or else Is_Abstract_Subprogram (Alias (New_Subp))
14880 then
14881 Set_Is_Abstract_Subprogram (New_Subp);
14882 else
14883 Set_Requires_Overriding (New_Subp);
14884 end if;
14886 elsif Ada_Version < Ada_2005
14887 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14888 or else (Is_Tagged_Type (Derived_Type)
14889 and then Etype (New_Subp) = Derived_Type
14890 and then No (Actual_Subp)))
14891 then
14892 Set_Is_Abstract_Subprogram (New_Subp);
14894 -- AI05-0097 : an inherited operation that dispatches on result is
14895 -- abstract if the derived type is abstract, even if the parent type
14896 -- is concrete and the derived type is a null extension.
14898 elsif Has_Controlling_Result (Alias (New_Subp))
14899 and then Is_Abstract_Type (Etype (New_Subp))
14900 then
14901 Set_Is_Abstract_Subprogram (New_Subp);
14903 -- Finally, if the parent type is abstract we must verify that all
14904 -- inherited operations are either non-abstract or overridden, or that
14905 -- the derived type itself is abstract (this check is performed at the
14906 -- end of a package declaration, in Check_Abstract_Overriding). A
14907 -- private overriding in the parent type will not be visible in the
14908 -- derivation if we are not in an inner package or in a child unit of
14909 -- the parent type, in which case the abstractness of the inherited
14910 -- operation is carried to the new subprogram.
14912 elsif Is_Abstract_Type (Parent_Type)
14913 and then not In_Open_Scopes (Scope (Parent_Type))
14914 and then Is_Private_Overriding
14915 and then Is_Abstract_Subprogram (Visible_Subp)
14916 then
14917 if No (Actual_Subp) then
14918 Set_Alias (New_Subp, Visible_Subp);
14919 Set_Is_Abstract_Subprogram (New_Subp, True);
14921 else
14922 -- If this is a derivation for an instance of a formal derived
14923 -- type, abstractness comes from the primitive operation of the
14924 -- actual, not from the operation inherited from the ancestor.
14926 Set_Is_Abstract_Subprogram
14927 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14928 end if;
14929 end if;
14931 New_Overloaded_Entity (New_Subp, Derived_Type);
14933 -- Check for case of a derived subprogram for the instantiation of a
14934 -- formal derived tagged type, if so mark the subprogram as dispatching
14935 -- and inherit the dispatching attributes of the actual subprogram. The
14936 -- derived subprogram is effectively renaming of the actual subprogram,
14937 -- so it needs to have the same attributes as the actual.
14939 if Present (Actual_Subp)
14940 and then Is_Dispatching_Operation (Actual_Subp)
14941 then
14942 Set_Is_Dispatching_Operation (New_Subp);
14944 if Present (DTC_Entity (Actual_Subp)) then
14945 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14946 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14947 end if;
14948 end if;
14950 -- Indicate that a derived subprogram does not require a body and that
14951 -- it does not require processing of default expressions.
14953 Set_Has_Completion (New_Subp);
14954 Set_Default_Expressions_Processed (New_Subp);
14956 if Ekind (New_Subp) = E_Function then
14957 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14958 end if;
14959 end Derive_Subprogram;
14961 ------------------------
14962 -- Derive_Subprograms --
14963 ------------------------
14965 procedure Derive_Subprograms
14966 (Parent_Type : Entity_Id;
14967 Derived_Type : Entity_Id;
14968 Generic_Actual : Entity_Id := Empty)
14970 Op_List : constant Elist_Id :=
14971 Collect_Primitive_Operations (Parent_Type);
14973 function Check_Derived_Type return Boolean;
14974 -- Check that all the entities derived from Parent_Type are found in
14975 -- the list of primitives of Derived_Type exactly in the same order.
14977 procedure Derive_Interface_Subprogram
14978 (New_Subp : in out Entity_Id;
14979 Subp : Entity_Id;
14980 Actual_Subp : Entity_Id);
14981 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14982 -- (which is an interface primitive). If Generic_Actual is present then
14983 -- Actual_Subp is the actual subprogram corresponding with the generic
14984 -- subprogram Subp.
14986 function Check_Derived_Type return Boolean is
14987 E : Entity_Id;
14988 Elmt : Elmt_Id;
14989 List : Elist_Id;
14990 New_Subp : Entity_Id;
14991 Op_Elmt : Elmt_Id;
14992 Subp : Entity_Id;
14994 begin
14995 -- Traverse list of entities in the current scope searching for
14996 -- an incomplete type whose full-view is derived type
14998 E := First_Entity (Scope (Derived_Type));
14999 while Present (E) and then E /= Derived_Type loop
15000 if Ekind (E) = E_Incomplete_Type
15001 and then Present (Full_View (E))
15002 and then Full_View (E) = Derived_Type
15003 then
15004 -- Disable this test if Derived_Type completes an incomplete
15005 -- type because in such case more primitives can be added
15006 -- later to the list of primitives of Derived_Type by routine
15007 -- Process_Incomplete_Dependents
15009 return True;
15010 end if;
15012 E := Next_Entity (E);
15013 end loop;
15015 List := Collect_Primitive_Operations (Derived_Type);
15016 Elmt := First_Elmt (List);
15018 Op_Elmt := First_Elmt (Op_List);
15019 while Present (Op_Elmt) loop
15020 Subp := Node (Op_Elmt);
15021 New_Subp := Node (Elmt);
15023 -- At this early stage Derived_Type has no entities with attribute
15024 -- Interface_Alias. In addition, such primitives are always
15025 -- located at the end of the list of primitives of Parent_Type.
15026 -- Therefore, if found we can safely stop processing pending
15027 -- entities.
15029 exit when Present (Interface_Alias (Subp));
15031 -- Handle hidden entities
15033 if not Is_Predefined_Dispatching_Operation (Subp)
15034 and then Is_Hidden (Subp)
15035 then
15036 if Present (New_Subp)
15037 and then Primitive_Names_Match (Subp, New_Subp)
15038 then
15039 Next_Elmt (Elmt);
15040 end if;
15042 else
15043 if not Present (New_Subp)
15044 or else Ekind (Subp) /= Ekind (New_Subp)
15045 or else not Primitive_Names_Match (Subp, New_Subp)
15046 then
15047 return False;
15048 end if;
15050 Next_Elmt (Elmt);
15051 end if;
15053 Next_Elmt (Op_Elmt);
15054 end loop;
15056 return True;
15057 end Check_Derived_Type;
15059 ---------------------------------
15060 -- Derive_Interface_Subprogram --
15061 ---------------------------------
15063 procedure Derive_Interface_Subprogram
15064 (New_Subp : in out Entity_Id;
15065 Subp : Entity_Id;
15066 Actual_Subp : Entity_Id)
15068 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15069 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15071 begin
15072 pragma Assert (Is_Interface (Iface_Type));
15074 Derive_Subprogram
15075 (New_Subp => New_Subp,
15076 Parent_Subp => Iface_Subp,
15077 Derived_Type => Derived_Type,
15078 Parent_Type => Iface_Type,
15079 Actual_Subp => Actual_Subp);
15081 -- Given that this new interface entity corresponds with a primitive
15082 -- of the parent that was not overridden we must leave it associated
15083 -- with its parent primitive to ensure that it will share the same
15084 -- dispatch table slot when overridden. We must set the Alias to Subp
15085 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15086 -- (in case we inherited Subp from Iface_Type via a nonabstract
15087 -- generic formal type).
15089 if No (Actual_Subp) then
15090 Set_Alias (New_Subp, Subp);
15092 declare
15093 T : Entity_Id := Find_Dispatching_Type (Subp);
15094 begin
15095 while Etype (T) /= T loop
15096 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15097 Set_Is_Abstract_Subprogram (New_Subp, False);
15098 exit;
15099 end if;
15101 T := Etype (T);
15102 end loop;
15103 end;
15105 -- For instantiations this is not needed since the previous call to
15106 -- Derive_Subprogram leaves the entity well decorated.
15108 else
15109 pragma Assert (Alias (New_Subp) = Actual_Subp);
15110 null;
15111 end if;
15112 end Derive_Interface_Subprogram;
15114 -- Local variables
15116 Alias_Subp : Entity_Id;
15117 Act_List : Elist_Id;
15118 Act_Elmt : Elmt_Id;
15119 Act_Subp : Entity_Id := Empty;
15120 Elmt : Elmt_Id;
15121 Need_Search : Boolean := False;
15122 New_Subp : Entity_Id := Empty;
15123 Parent_Base : Entity_Id;
15124 Subp : Entity_Id;
15126 -- Start of processing for Derive_Subprograms
15128 begin
15129 if Ekind (Parent_Type) = E_Record_Type_With_Private
15130 and then Has_Discriminants (Parent_Type)
15131 and then Present (Full_View (Parent_Type))
15132 then
15133 Parent_Base := Full_View (Parent_Type);
15134 else
15135 Parent_Base := Parent_Type;
15136 end if;
15138 if Present (Generic_Actual) then
15139 Act_List := Collect_Primitive_Operations (Generic_Actual);
15140 Act_Elmt := First_Elmt (Act_List);
15141 else
15142 Act_List := No_Elist;
15143 Act_Elmt := No_Elmt;
15144 end if;
15146 -- Derive primitives inherited from the parent. Note that if the generic
15147 -- actual is present, this is not really a type derivation, it is a
15148 -- completion within an instance.
15150 -- Case 1: Derived_Type does not implement interfaces
15152 if not Is_Tagged_Type (Derived_Type)
15153 or else (not Has_Interfaces (Derived_Type)
15154 and then not (Present (Generic_Actual)
15155 and then Has_Interfaces (Generic_Actual)))
15156 then
15157 Elmt := First_Elmt (Op_List);
15158 while Present (Elmt) loop
15159 Subp := Node (Elmt);
15161 -- Literals are derived earlier in the process of building the
15162 -- derived type, and are skipped here.
15164 if Ekind (Subp) = E_Enumeration_Literal then
15165 null;
15167 -- The actual is a direct descendant and the common primitive
15168 -- operations appear in the same order.
15170 -- If the generic parent type is present, the derived type is an
15171 -- instance of a formal derived type, and within the instance its
15172 -- operations are those of the actual. We derive from the formal
15173 -- type but make the inherited operations aliases of the
15174 -- corresponding operations of the actual.
15176 else
15177 pragma Assert (No (Node (Act_Elmt))
15178 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15179 and then
15180 Type_Conformant
15181 (Subp, Node (Act_Elmt),
15182 Skip_Controlling_Formals => True)));
15184 Derive_Subprogram
15185 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15187 if Present (Act_Elmt) then
15188 Next_Elmt (Act_Elmt);
15189 end if;
15190 end if;
15192 Next_Elmt (Elmt);
15193 end loop;
15195 -- Case 2: Derived_Type implements interfaces
15197 else
15198 -- If the parent type has no predefined primitives we remove
15199 -- predefined primitives from the list of primitives of generic
15200 -- actual to simplify the complexity of this algorithm.
15202 if Present (Generic_Actual) then
15203 declare
15204 Has_Predefined_Primitives : Boolean := False;
15206 begin
15207 -- Check if the parent type has predefined primitives
15209 Elmt := First_Elmt (Op_List);
15210 while Present (Elmt) loop
15211 Subp := Node (Elmt);
15213 if Is_Predefined_Dispatching_Operation (Subp)
15214 and then not Comes_From_Source (Ultimate_Alias (Subp))
15215 then
15216 Has_Predefined_Primitives := True;
15217 exit;
15218 end if;
15220 Next_Elmt (Elmt);
15221 end loop;
15223 -- Remove predefined primitives of Generic_Actual. We must use
15224 -- an auxiliary list because in case of tagged types the value
15225 -- returned by Collect_Primitive_Operations is the value stored
15226 -- in its Primitive_Operations attribute (and we don't want to
15227 -- modify its current contents).
15229 if not Has_Predefined_Primitives then
15230 declare
15231 Aux_List : constant Elist_Id := New_Elmt_List;
15233 begin
15234 Elmt := First_Elmt (Act_List);
15235 while Present (Elmt) loop
15236 Subp := Node (Elmt);
15238 if not Is_Predefined_Dispatching_Operation (Subp)
15239 or else Comes_From_Source (Subp)
15240 then
15241 Append_Elmt (Subp, Aux_List);
15242 end if;
15244 Next_Elmt (Elmt);
15245 end loop;
15247 Act_List := Aux_List;
15248 end;
15249 end if;
15251 Act_Elmt := First_Elmt (Act_List);
15252 Act_Subp := Node (Act_Elmt);
15253 end;
15254 end if;
15256 -- Stage 1: If the generic actual is not present we derive the
15257 -- primitives inherited from the parent type. If the generic parent
15258 -- type is present, the derived type is an instance of a formal
15259 -- derived type, and within the instance its operations are those of
15260 -- the actual. We derive from the formal type but make the inherited
15261 -- operations aliases of the corresponding operations of the actual.
15263 Elmt := First_Elmt (Op_List);
15264 while Present (Elmt) loop
15265 Subp := Node (Elmt);
15266 Alias_Subp := Ultimate_Alias (Subp);
15268 -- Do not derive internal entities of the parent that link
15269 -- interface primitives with their covering primitive. These
15270 -- entities will be added to this type when frozen.
15272 if Present (Interface_Alias (Subp)) then
15273 goto Continue;
15274 end if;
15276 -- If the generic actual is present find the corresponding
15277 -- operation in the generic actual. If the parent type is a
15278 -- direct ancestor of the derived type then, even if it is an
15279 -- interface, the operations are inherited from the primary
15280 -- dispatch table and are in the proper order. If we detect here
15281 -- that primitives are not in the same order we traverse the list
15282 -- of primitive operations of the actual to find the one that
15283 -- implements the interface primitive.
15285 if Need_Search
15286 or else
15287 (Present (Generic_Actual)
15288 and then Present (Act_Subp)
15289 and then not
15290 (Primitive_Names_Match (Subp, Act_Subp)
15291 and then
15292 Type_Conformant (Subp, Act_Subp,
15293 Skip_Controlling_Formals => True)))
15294 then
15295 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15296 Use_Full_View => True));
15298 -- Remember that we need searching for all pending primitives
15300 Need_Search := True;
15302 -- Handle entities associated with interface primitives
15304 if Present (Alias_Subp)
15305 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15306 and then not Is_Predefined_Dispatching_Operation (Subp)
15307 then
15308 -- Search for the primitive in the homonym chain
15310 Act_Subp :=
15311 Find_Primitive_Covering_Interface
15312 (Tagged_Type => Generic_Actual,
15313 Iface_Prim => Alias_Subp);
15315 -- Previous search may not locate primitives covering
15316 -- interfaces defined in generics units or instantiations.
15317 -- (it fails if the covering primitive has formals whose
15318 -- type is also defined in generics or instantiations).
15319 -- In such case we search in the list of primitives of the
15320 -- generic actual for the internal entity that links the
15321 -- interface primitive and the covering primitive.
15323 if No (Act_Subp)
15324 and then Is_Generic_Type (Parent_Type)
15325 then
15326 -- This code has been designed to handle only generic
15327 -- formals that implement interfaces that are defined
15328 -- in a generic unit or instantiation. If this code is
15329 -- needed for other cases we must review it because
15330 -- (given that it relies on Original_Location to locate
15331 -- the primitive of Generic_Actual that covers the
15332 -- interface) it could leave linked through attribute
15333 -- Alias entities of unrelated instantiations).
15335 pragma Assert
15336 (Is_Generic_Unit
15337 (Scope (Find_Dispatching_Type (Alias_Subp)))
15338 or else
15339 Instantiation_Depth
15340 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15342 declare
15343 Iface_Prim_Loc : constant Source_Ptr :=
15344 Original_Location (Sloc (Alias_Subp));
15346 Elmt : Elmt_Id;
15347 Prim : Entity_Id;
15349 begin
15350 Elmt :=
15351 First_Elmt (Primitive_Operations (Generic_Actual));
15353 Search : while Present (Elmt) loop
15354 Prim := Node (Elmt);
15356 if Present (Interface_Alias (Prim))
15357 and then Original_Location
15358 (Sloc (Interface_Alias (Prim))) =
15359 Iface_Prim_Loc
15360 then
15361 Act_Subp := Alias (Prim);
15362 exit Search;
15363 end if;
15365 Next_Elmt (Elmt);
15366 end loop Search;
15367 end;
15368 end if;
15370 pragma Assert (Present (Act_Subp)
15371 or else Is_Abstract_Type (Generic_Actual)
15372 or else Serious_Errors_Detected > 0);
15374 -- Handle predefined primitives plus the rest of user-defined
15375 -- primitives
15377 else
15378 Act_Elmt := First_Elmt (Act_List);
15379 while Present (Act_Elmt) loop
15380 Act_Subp := Node (Act_Elmt);
15382 exit when Primitive_Names_Match (Subp, Act_Subp)
15383 and then Type_Conformant
15384 (Subp, Act_Subp,
15385 Skip_Controlling_Formals => True)
15386 and then No (Interface_Alias (Act_Subp));
15388 Next_Elmt (Act_Elmt);
15389 end loop;
15391 if No (Act_Elmt) then
15392 Act_Subp := Empty;
15393 end if;
15394 end if;
15395 end if;
15397 -- Case 1: If the parent is a limited interface then it has the
15398 -- predefined primitives of synchronized interfaces. However, the
15399 -- actual type may be a non-limited type and hence it does not
15400 -- have such primitives.
15402 if Present (Generic_Actual)
15403 and then not Present (Act_Subp)
15404 and then Is_Limited_Interface (Parent_Base)
15405 and then Is_Predefined_Interface_Primitive (Subp)
15406 then
15407 null;
15409 -- Case 2: Inherit entities associated with interfaces that were
15410 -- not covered by the parent type. We exclude here null interface
15411 -- primitives because they do not need special management.
15413 -- We also exclude interface operations that are renamings. If the
15414 -- subprogram is an explicit renaming of an interface primitive,
15415 -- it is a regular primitive operation, and the presence of its
15416 -- alias is not relevant: it has to be derived like any other
15417 -- primitive.
15419 elsif Present (Alias (Subp))
15420 and then Nkind (Unit_Declaration_Node (Subp)) /=
15421 N_Subprogram_Renaming_Declaration
15422 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15423 and then not
15424 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15425 and then Null_Present (Parent (Alias_Subp)))
15426 then
15427 -- If this is an abstract private type then we transfer the
15428 -- derivation of the interface primitive from the partial view
15429 -- to the full view. This is safe because all the interfaces
15430 -- must be visible in the partial view. Done to avoid adding
15431 -- a new interface derivation to the private part of the
15432 -- enclosing package; otherwise this new derivation would be
15433 -- decorated as hidden when the analysis of the enclosing
15434 -- package completes.
15436 if Is_Abstract_Type (Derived_Type)
15437 and then In_Private_Part (Current_Scope)
15438 and then Has_Private_Declaration (Derived_Type)
15439 then
15440 declare
15441 Partial_View : Entity_Id;
15442 Elmt : Elmt_Id;
15443 Ent : Entity_Id;
15445 begin
15446 Partial_View := First_Entity (Current_Scope);
15447 loop
15448 exit when No (Partial_View)
15449 or else (Has_Private_Declaration (Partial_View)
15450 and then
15451 Full_View (Partial_View) = Derived_Type);
15453 Next_Entity (Partial_View);
15454 end loop;
15456 -- If the partial view was not found then the source code
15457 -- has errors and the derivation is not needed.
15459 if Present (Partial_View) then
15460 Elmt :=
15461 First_Elmt (Primitive_Operations (Partial_View));
15462 while Present (Elmt) loop
15463 Ent := Node (Elmt);
15465 if Present (Alias (Ent))
15466 and then Ultimate_Alias (Ent) = Alias (Subp)
15467 then
15468 Append_Elmt
15469 (Ent, Primitive_Operations (Derived_Type));
15470 exit;
15471 end if;
15473 Next_Elmt (Elmt);
15474 end loop;
15476 -- If the interface primitive was not found in the
15477 -- partial view then this interface primitive was
15478 -- overridden. We add a derivation to activate in
15479 -- Derive_Progenitor_Subprograms the machinery to
15480 -- search for it.
15482 if No (Elmt) then
15483 Derive_Interface_Subprogram
15484 (New_Subp => New_Subp,
15485 Subp => Subp,
15486 Actual_Subp => Act_Subp);
15487 end if;
15488 end if;
15489 end;
15490 else
15491 Derive_Interface_Subprogram
15492 (New_Subp => New_Subp,
15493 Subp => Subp,
15494 Actual_Subp => Act_Subp);
15495 end if;
15497 -- Case 3: Common derivation
15499 else
15500 Derive_Subprogram
15501 (New_Subp => New_Subp,
15502 Parent_Subp => Subp,
15503 Derived_Type => Derived_Type,
15504 Parent_Type => Parent_Base,
15505 Actual_Subp => Act_Subp);
15506 end if;
15508 -- No need to update Act_Elm if we must search for the
15509 -- corresponding operation in the generic actual
15511 if not Need_Search
15512 and then Present (Act_Elmt)
15513 then
15514 Next_Elmt (Act_Elmt);
15515 Act_Subp := Node (Act_Elmt);
15516 end if;
15518 <<Continue>>
15519 Next_Elmt (Elmt);
15520 end loop;
15522 -- Inherit additional operations from progenitors. If the derived
15523 -- type is a generic actual, there are not new primitive operations
15524 -- for the type because it has those of the actual, and therefore
15525 -- nothing needs to be done. The renamings generated above are not
15526 -- primitive operations, and their purpose is simply to make the
15527 -- proper operations visible within an instantiation.
15529 if No (Generic_Actual) then
15530 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15531 end if;
15532 end if;
15534 -- Final check: Direct descendants must have their primitives in the
15535 -- same order. We exclude from this test untagged types and instances
15536 -- of formal derived types. We skip this test if we have already
15537 -- reported serious errors in the sources.
15539 pragma Assert (not Is_Tagged_Type (Derived_Type)
15540 or else Present (Generic_Actual)
15541 or else Serious_Errors_Detected > 0
15542 or else Check_Derived_Type);
15543 end Derive_Subprograms;
15545 --------------------------------
15546 -- Derived_Standard_Character --
15547 --------------------------------
15549 procedure Derived_Standard_Character
15550 (N : Node_Id;
15551 Parent_Type : Entity_Id;
15552 Derived_Type : Entity_Id)
15554 Loc : constant Source_Ptr := Sloc (N);
15555 Def : constant Node_Id := Type_Definition (N);
15556 Indic : constant Node_Id := Subtype_Indication (Def);
15557 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15558 Implicit_Base : constant Entity_Id :=
15559 Create_Itype
15560 (E_Enumeration_Type, N, Derived_Type, 'B');
15562 Lo : Node_Id;
15563 Hi : Node_Id;
15565 begin
15566 Discard_Node (Process_Subtype (Indic, N));
15568 Set_Etype (Implicit_Base, Parent_Base);
15569 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15570 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15572 Set_Is_Character_Type (Implicit_Base, True);
15573 Set_Has_Delayed_Freeze (Implicit_Base);
15575 -- The bounds of the implicit base are the bounds of the parent base.
15576 -- Note that their type is the parent base.
15578 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15579 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15581 Set_Scalar_Range (Implicit_Base,
15582 Make_Range (Loc,
15583 Low_Bound => Lo,
15584 High_Bound => Hi));
15586 Conditional_Delay (Derived_Type, Parent_Type);
15588 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15589 Set_Etype (Derived_Type, Implicit_Base);
15590 Set_Size_Info (Derived_Type, Parent_Type);
15592 if Unknown_RM_Size (Derived_Type) then
15593 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15594 end if;
15596 Set_Is_Character_Type (Derived_Type, True);
15598 if Nkind (Indic) /= N_Subtype_Indication then
15600 -- If no explicit constraint, the bounds are those
15601 -- of the parent type.
15603 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15604 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15605 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15606 end if;
15608 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15610 -- Because the implicit base is used in the conversion of the bounds, we
15611 -- have to freeze it now. This is similar to what is done for numeric
15612 -- types, and it equally suspicious, but otherwise a non-static bound
15613 -- will have a reference to an unfrozen type, which is rejected by Gigi
15614 -- (???). This requires specific care for definition of stream
15615 -- attributes. For details, see comments at the end of
15616 -- Build_Derived_Numeric_Type.
15618 Freeze_Before (N, Implicit_Base);
15619 end Derived_Standard_Character;
15621 ------------------------------
15622 -- Derived_Type_Declaration --
15623 ------------------------------
15625 procedure Derived_Type_Declaration
15626 (T : Entity_Id;
15627 N : Node_Id;
15628 Is_Completion : Boolean)
15630 Parent_Type : Entity_Id;
15632 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15633 -- Check whether the parent type is a generic formal, or derives
15634 -- directly or indirectly from one.
15636 ------------------------
15637 -- Comes_From_Generic --
15638 ------------------------
15640 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15641 begin
15642 if Is_Generic_Type (Typ) then
15643 return True;
15645 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15646 return True;
15648 elsif Is_Private_Type (Typ)
15649 and then Present (Full_View (Typ))
15650 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15651 then
15652 return True;
15654 elsif Is_Generic_Actual_Type (Typ) then
15655 return True;
15657 else
15658 return False;
15659 end if;
15660 end Comes_From_Generic;
15662 -- Local variables
15664 Def : constant Node_Id := Type_Definition (N);
15665 Iface_Def : Node_Id;
15666 Indic : constant Node_Id := Subtype_Indication (Def);
15667 Extension : constant Node_Id := Record_Extension_Part (Def);
15668 Parent_Node : Node_Id;
15669 Taggd : Boolean;
15671 -- Start of processing for Derived_Type_Declaration
15673 begin
15674 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15676 -- Ada 2005 (AI-251): In case of interface derivation check that the
15677 -- parent is also an interface.
15679 if Interface_Present (Def) then
15680 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15682 if not Is_Interface (Parent_Type) then
15683 Diagnose_Interface (Indic, Parent_Type);
15685 else
15686 Parent_Node := Parent (Base_Type (Parent_Type));
15687 Iface_Def := Type_Definition (Parent_Node);
15689 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15690 -- other limited interfaces.
15692 if Limited_Present (Def) then
15693 if Limited_Present (Iface_Def) then
15694 null;
15696 elsif Protected_Present (Iface_Def) then
15697 Error_Msg_NE
15698 ("descendant of & must be declared as a protected "
15699 & "interface", N, Parent_Type);
15701 elsif Synchronized_Present (Iface_Def) then
15702 Error_Msg_NE
15703 ("descendant of & must be declared as a synchronized "
15704 & "interface", N, Parent_Type);
15706 elsif Task_Present (Iface_Def) then
15707 Error_Msg_NE
15708 ("descendant of & must be declared as a task interface",
15709 N, Parent_Type);
15711 else
15712 Error_Msg_N
15713 ("(Ada 2005) limited interface cannot inherit from "
15714 & "non-limited interface", Indic);
15715 end if;
15717 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15718 -- from non-limited or limited interfaces.
15720 elsif not Protected_Present (Def)
15721 and then not Synchronized_Present (Def)
15722 and then not Task_Present (Def)
15723 then
15724 if Limited_Present (Iface_Def) then
15725 null;
15727 elsif Protected_Present (Iface_Def) then
15728 Error_Msg_NE
15729 ("descendant of & must be declared as a protected "
15730 & "interface", N, Parent_Type);
15732 elsif Synchronized_Present (Iface_Def) then
15733 Error_Msg_NE
15734 ("descendant of & must be declared as a synchronized "
15735 & "interface", N, Parent_Type);
15737 elsif Task_Present (Iface_Def) then
15738 Error_Msg_NE
15739 ("descendant of & must be declared as a task interface",
15740 N, Parent_Type);
15741 else
15742 null;
15743 end if;
15744 end if;
15745 end if;
15746 end if;
15748 if Is_Tagged_Type (Parent_Type)
15749 and then Is_Concurrent_Type (Parent_Type)
15750 and then not Is_Interface (Parent_Type)
15751 then
15752 Error_Msg_N
15753 ("parent type of a record extension cannot be a synchronized "
15754 & "tagged type (RM 3.9.1 (3/1))", N);
15755 Set_Etype (T, Any_Type);
15756 return;
15757 end if;
15759 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15760 -- interfaces
15762 if Is_Tagged_Type (Parent_Type)
15763 and then Is_Non_Empty_List (Interface_List (Def))
15764 then
15765 declare
15766 Intf : Node_Id;
15767 T : Entity_Id;
15769 begin
15770 Intf := First (Interface_List (Def));
15771 while Present (Intf) loop
15772 T := Find_Type_Of_Subtype_Indic (Intf);
15774 if not Is_Interface (T) then
15775 Diagnose_Interface (Intf, T);
15777 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15778 -- a limited type from having a nonlimited progenitor.
15780 elsif (Limited_Present (Def)
15781 or else (not Is_Interface (Parent_Type)
15782 and then Is_Limited_Type (Parent_Type)))
15783 and then not Is_Limited_Interface (T)
15784 then
15785 Error_Msg_NE
15786 ("progenitor interface& of limited type must be limited",
15787 N, T);
15788 end if;
15790 Next (Intf);
15791 end loop;
15792 end;
15793 end if;
15795 if Parent_Type = Any_Type
15796 or else Etype (Parent_Type) = Any_Type
15797 or else (Is_Class_Wide_Type (Parent_Type)
15798 and then Etype (Parent_Type) = T)
15799 then
15800 -- If Parent_Type is undefined or illegal, make new type into a
15801 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15802 -- errors. If this is a self-definition, emit error now.
15804 if T = Parent_Type or else T = Etype (Parent_Type) then
15805 Error_Msg_N ("type cannot be used in its own definition", Indic);
15806 end if;
15808 Set_Ekind (T, Ekind (Parent_Type));
15809 Set_Etype (T, Any_Type);
15810 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15812 if Is_Tagged_Type (T)
15813 and then Is_Record_Type (T)
15814 then
15815 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15816 end if;
15818 return;
15819 end if;
15821 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15822 -- an interface is special because the list of interfaces in the full
15823 -- view can be given in any order. For example:
15825 -- type A is interface;
15826 -- type B is interface and A;
15827 -- type D is new B with private;
15828 -- private
15829 -- type D is new A and B with null record; -- 1 --
15831 -- In this case we perform the following transformation of -1-:
15833 -- type D is new B and A with null record;
15835 -- If the parent of the full-view covers the parent of the partial-view
15836 -- we have two possible cases:
15838 -- 1) They have the same parent
15839 -- 2) The parent of the full-view implements some further interfaces
15841 -- In both cases we do not need to perform the transformation. In the
15842 -- first case the source program is correct and the transformation is
15843 -- not needed; in the second case the source program does not fulfill
15844 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15845 -- later.
15847 -- This transformation not only simplifies the rest of the analysis of
15848 -- this type declaration but also simplifies the correct generation of
15849 -- the object layout to the expander.
15851 if In_Private_Part (Current_Scope)
15852 and then Is_Interface (Parent_Type)
15853 then
15854 declare
15855 Iface : Node_Id;
15856 Partial_View : Entity_Id;
15857 Partial_View_Parent : Entity_Id;
15858 New_Iface : Node_Id;
15860 begin
15861 -- Look for the associated private type declaration
15863 Partial_View := First_Entity (Current_Scope);
15864 loop
15865 exit when No (Partial_View)
15866 or else (Has_Private_Declaration (Partial_View)
15867 and then Full_View (Partial_View) = T);
15869 Next_Entity (Partial_View);
15870 end loop;
15872 -- If the partial view was not found then the source code has
15873 -- errors and the transformation is not needed.
15875 if Present (Partial_View) then
15876 Partial_View_Parent := Etype (Partial_View);
15878 -- If the parent of the full-view covers the parent of the
15879 -- partial-view we have nothing else to do.
15881 if Interface_Present_In_Ancestor
15882 (Parent_Type, Partial_View_Parent)
15883 then
15884 null;
15886 -- Traverse the list of interfaces of the full-view to look
15887 -- for the parent of the partial-view and perform the tree
15888 -- transformation.
15890 else
15891 Iface := First (Interface_List (Def));
15892 while Present (Iface) loop
15893 if Etype (Iface) = Etype (Partial_View) then
15894 Rewrite (Subtype_Indication (Def),
15895 New_Copy (Subtype_Indication
15896 (Parent (Partial_View))));
15898 New_Iface :=
15899 Make_Identifier (Sloc (N), Chars (Parent_Type));
15900 Append (New_Iface, Interface_List (Def));
15902 -- Analyze the transformed code
15904 Derived_Type_Declaration (T, N, Is_Completion);
15905 return;
15906 end if;
15908 Next (Iface);
15909 end loop;
15910 end if;
15911 end if;
15912 end;
15913 end if;
15915 -- Only composite types other than array types are allowed to have
15916 -- discriminants.
15918 if Present (Discriminant_Specifications (N)) then
15919 if (Is_Elementary_Type (Parent_Type)
15920 or else
15921 Is_Array_Type (Parent_Type))
15922 and then not Error_Posted (N)
15923 then
15924 Error_Msg_N
15925 ("elementary or array type cannot have discriminants",
15926 Defining_Identifier (First (Discriminant_Specifications (N))));
15927 Set_Has_Discriminants (T, False);
15929 -- The type is allowed to have discriminants
15931 else
15932 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15933 end if;
15934 end if;
15936 -- In Ada 83, a derived type defined in a package specification cannot
15937 -- be used for further derivation until the end of its visible part.
15938 -- Note that derivation in the private part of the package is allowed.
15940 if Ada_Version = Ada_83
15941 and then Is_Derived_Type (Parent_Type)
15942 and then In_Visible_Part (Scope (Parent_Type))
15943 then
15944 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15945 Error_Msg_N
15946 ("(Ada 83): premature use of type for derivation", Indic);
15947 end if;
15948 end if;
15950 -- Check for early use of incomplete or private type
15952 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15953 Error_Msg_N ("premature derivation of incomplete type", Indic);
15954 return;
15956 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15957 and then not Comes_From_Generic (Parent_Type))
15958 or else Has_Private_Component (Parent_Type)
15959 then
15960 -- The ancestor type of a formal type can be incomplete, in which
15961 -- case only the operations of the partial view are available in the
15962 -- generic. Subsequent checks may be required when the full view is
15963 -- analyzed to verify that a derivation from a tagged type has an
15964 -- extension.
15966 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15967 null;
15969 elsif No (Underlying_Type (Parent_Type))
15970 or else Has_Private_Component (Parent_Type)
15971 then
15972 Error_Msg_N
15973 ("premature derivation of derived or private type", Indic);
15975 -- Flag the type itself as being in error, this prevents some
15976 -- nasty problems with subsequent uses of the malformed type.
15978 Set_Error_Posted (T);
15980 -- Check that within the immediate scope of an untagged partial
15981 -- view it's illegal to derive from the partial view if the
15982 -- full view is tagged. (7.3(7))
15984 -- We verify that the Parent_Type is a partial view by checking
15985 -- that it is not a Full_Type_Declaration (i.e. a private type or
15986 -- private extension declaration), to distinguish a partial view
15987 -- from a derivation from a private type which also appears as
15988 -- E_Private_Type. If the parent base type is not declared in an
15989 -- enclosing scope there is no need to check.
15991 elsif Present (Full_View (Parent_Type))
15992 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15993 and then not Is_Tagged_Type (Parent_Type)
15994 and then Is_Tagged_Type (Full_View (Parent_Type))
15995 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15996 then
15997 Error_Msg_N
15998 ("premature derivation from type with tagged full view",
15999 Indic);
16000 end if;
16001 end if;
16003 -- Check that form of derivation is appropriate
16005 Taggd := Is_Tagged_Type (Parent_Type);
16007 -- Set the parent type to the class-wide type's specific type in this
16008 -- case to prevent cascading errors
16010 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16011 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16012 Set_Etype (T, Etype (Parent_Type));
16013 return;
16014 end if;
16016 if Present (Extension) and then not Taggd then
16017 Error_Msg_N
16018 ("type derived from untagged type cannot have extension", Indic);
16020 elsif No (Extension) and then Taggd then
16022 -- If this declaration is within a private part (or body) of a
16023 -- generic instantiation then the derivation is allowed (the parent
16024 -- type can only appear tagged in this case if it's a generic actual
16025 -- type, since it would otherwise have been rejected in the analysis
16026 -- of the generic template).
16028 if not Is_Generic_Actual_Type (Parent_Type)
16029 or else In_Visible_Part (Scope (Parent_Type))
16030 then
16031 if Is_Class_Wide_Type (Parent_Type) then
16032 Error_Msg_N
16033 ("parent type must not be a class-wide type", Indic);
16035 -- Use specific type to prevent cascaded errors.
16037 Parent_Type := Etype (Parent_Type);
16039 else
16040 Error_Msg_N
16041 ("type derived from tagged type must have extension", Indic);
16042 end if;
16043 end if;
16044 end if;
16046 -- AI-443: Synchronized formal derived types require a private
16047 -- extension. There is no point in checking the ancestor type or
16048 -- the progenitors since the construct is wrong to begin with.
16050 if Ada_Version >= Ada_2005
16051 and then Is_Generic_Type (T)
16052 and then Present (Original_Node (N))
16053 then
16054 declare
16055 Decl : constant Node_Id := Original_Node (N);
16057 begin
16058 if Nkind (Decl) = N_Formal_Type_Declaration
16059 and then Nkind (Formal_Type_Definition (Decl)) =
16060 N_Formal_Derived_Type_Definition
16061 and then Synchronized_Present (Formal_Type_Definition (Decl))
16062 and then No (Extension)
16064 -- Avoid emitting a duplicate error message
16066 and then not Error_Posted (Indic)
16067 then
16068 Error_Msg_N
16069 ("synchronized derived type must have extension", N);
16070 end if;
16071 end;
16072 end if;
16074 if Null_Exclusion_Present (Def)
16075 and then not Is_Access_Type (Parent_Type)
16076 then
16077 Error_Msg_N ("null exclusion can only apply to an access type", N);
16078 end if;
16080 -- Avoid deriving parent primitives of underlying record views
16082 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16083 Derive_Subps => not Is_Underlying_Record_View (T));
16085 -- AI-419: The parent type of an explicitly limited derived type must
16086 -- be a limited type or a limited interface.
16088 if Limited_Present (Def) then
16089 Set_Is_Limited_Record (T);
16091 if Is_Interface (T) then
16092 Set_Is_Limited_Interface (T);
16093 end if;
16095 if not Is_Limited_Type (Parent_Type)
16096 and then
16097 (not Is_Interface (Parent_Type)
16098 or else not Is_Limited_Interface (Parent_Type))
16099 then
16100 -- AI05-0096: a derivation in the private part of an instance is
16101 -- legal if the generic formal is untagged limited, and the actual
16102 -- is non-limited.
16104 if Is_Generic_Actual_Type (Parent_Type)
16105 and then In_Private_Part (Current_Scope)
16106 and then
16107 not Is_Tagged_Type
16108 (Generic_Parent_Type (Parent (Parent_Type)))
16109 then
16110 null;
16112 else
16113 Error_Msg_NE
16114 ("parent type& of limited type must be limited",
16115 N, Parent_Type);
16116 end if;
16117 end if;
16118 end if;
16120 -- In SPARK, there are no derived type definitions other than type
16121 -- extensions of tagged record types.
16123 if No (Extension) then
16124 Check_SPARK_05_Restriction
16125 ("derived type is not allowed", Original_Node (N));
16126 end if;
16127 end Derived_Type_Declaration;
16129 ------------------------
16130 -- Diagnose_Interface --
16131 ------------------------
16133 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16134 begin
16135 if not Is_Interface (E) and then E /= Any_Type then
16136 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16137 end if;
16138 end Diagnose_Interface;
16140 ----------------------------------
16141 -- Enumeration_Type_Declaration --
16142 ----------------------------------
16144 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16145 Ev : Uint;
16146 L : Node_Id;
16147 R_Node : Node_Id;
16148 B_Node : Node_Id;
16150 begin
16151 -- Create identifier node representing lower bound
16153 B_Node := New_Node (N_Identifier, Sloc (Def));
16154 L := First (Literals (Def));
16155 Set_Chars (B_Node, Chars (L));
16156 Set_Entity (B_Node, L);
16157 Set_Etype (B_Node, T);
16158 Set_Is_Static_Expression (B_Node, True);
16160 R_Node := New_Node (N_Range, Sloc (Def));
16161 Set_Low_Bound (R_Node, B_Node);
16163 Set_Ekind (T, E_Enumeration_Type);
16164 Set_First_Literal (T, L);
16165 Set_Etype (T, T);
16166 Set_Is_Constrained (T);
16168 Ev := Uint_0;
16170 -- Loop through literals of enumeration type setting pos and rep values
16171 -- except that if the Ekind is already set, then it means the literal
16172 -- was already constructed (case of a derived type declaration and we
16173 -- should not disturb the Pos and Rep values.
16175 while Present (L) loop
16176 if Ekind (L) /= E_Enumeration_Literal then
16177 Set_Ekind (L, E_Enumeration_Literal);
16178 Set_Enumeration_Pos (L, Ev);
16179 Set_Enumeration_Rep (L, Ev);
16180 Set_Is_Known_Valid (L, True);
16181 end if;
16183 Set_Etype (L, T);
16184 New_Overloaded_Entity (L);
16185 Generate_Definition (L);
16186 Set_Convention (L, Convention_Intrinsic);
16188 -- Case of character literal
16190 if Nkind (L) = N_Defining_Character_Literal then
16191 Set_Is_Character_Type (T, True);
16193 -- Check violation of No_Wide_Characters
16195 if Restriction_Check_Required (No_Wide_Characters) then
16196 Get_Name_String (Chars (L));
16198 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16199 Check_Restriction (No_Wide_Characters, L);
16200 end if;
16201 end if;
16202 end if;
16204 Ev := Ev + 1;
16205 Next (L);
16206 end loop;
16208 -- Now create a node representing upper bound
16210 B_Node := New_Node (N_Identifier, Sloc (Def));
16211 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16212 Set_Entity (B_Node, Last (Literals (Def)));
16213 Set_Etype (B_Node, T);
16214 Set_Is_Static_Expression (B_Node, True);
16216 Set_High_Bound (R_Node, B_Node);
16218 -- Initialize various fields of the type. Some of this information
16219 -- may be overwritten later through rep.clauses.
16221 Set_Scalar_Range (T, R_Node);
16222 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16223 Set_Enum_Esize (T);
16224 Set_Enum_Pos_To_Rep (T, Empty);
16226 -- Set Discard_Names if configuration pragma set, or if there is
16227 -- a parameterless pragma in the current declarative region
16229 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16230 Set_Discard_Names (T);
16231 end if;
16233 -- Process end label if there is one
16235 if Present (Def) then
16236 Process_End_Label (Def, 'e', T);
16237 end if;
16238 end Enumeration_Type_Declaration;
16240 ---------------------------------
16241 -- Expand_To_Stored_Constraint --
16242 ---------------------------------
16244 function Expand_To_Stored_Constraint
16245 (Typ : Entity_Id;
16246 Constraint : Elist_Id) return Elist_Id
16248 Explicitly_Discriminated_Type : Entity_Id;
16249 Expansion : Elist_Id;
16250 Discriminant : Entity_Id;
16252 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16253 -- Find the nearest type that actually specifies discriminants
16255 ---------------------------------
16256 -- Type_With_Explicit_Discrims --
16257 ---------------------------------
16259 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16260 Typ : constant E := Base_Type (Id);
16262 begin
16263 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16264 if Present (Full_View (Typ)) then
16265 return Type_With_Explicit_Discrims (Full_View (Typ));
16266 end if;
16268 else
16269 if Has_Discriminants (Typ) then
16270 return Typ;
16271 end if;
16272 end if;
16274 if Etype (Typ) = Typ then
16275 return Empty;
16276 elsif Has_Discriminants (Typ) then
16277 return Typ;
16278 else
16279 return Type_With_Explicit_Discrims (Etype (Typ));
16280 end if;
16282 end Type_With_Explicit_Discrims;
16284 -- Start of processing for Expand_To_Stored_Constraint
16286 begin
16287 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16288 return No_Elist;
16289 end if;
16291 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16293 if No (Explicitly_Discriminated_Type) then
16294 return No_Elist;
16295 end if;
16297 Expansion := New_Elmt_List;
16299 Discriminant :=
16300 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16301 while Present (Discriminant) loop
16302 Append_Elmt
16303 (Get_Discriminant_Value
16304 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16305 To => Expansion);
16306 Next_Stored_Discriminant (Discriminant);
16307 end loop;
16309 return Expansion;
16310 end Expand_To_Stored_Constraint;
16312 ---------------------------
16313 -- Find_Hidden_Interface --
16314 ---------------------------
16316 function Find_Hidden_Interface
16317 (Src : Elist_Id;
16318 Dest : Elist_Id) return Entity_Id
16320 Iface : Entity_Id;
16321 Iface_Elmt : Elmt_Id;
16323 begin
16324 if Present (Src) and then Present (Dest) then
16325 Iface_Elmt := First_Elmt (Src);
16326 while Present (Iface_Elmt) loop
16327 Iface := Node (Iface_Elmt);
16329 if Is_Interface (Iface)
16330 and then not Contain_Interface (Iface, Dest)
16331 then
16332 return Iface;
16333 end if;
16335 Next_Elmt (Iface_Elmt);
16336 end loop;
16337 end if;
16339 return Empty;
16340 end Find_Hidden_Interface;
16342 --------------------
16343 -- Find_Type_Name --
16344 --------------------
16346 function Find_Type_Name (N : Node_Id) return Entity_Id is
16347 Id : constant Entity_Id := Defining_Identifier (N);
16348 Prev : Entity_Id;
16349 New_Id : Entity_Id;
16350 Prev_Par : Node_Id;
16352 procedure Check_Duplicate_Aspects;
16353 -- Check that aspects specified in a completion have not been specified
16354 -- already in the partial view. Type_Invariant and others can be
16355 -- specified on either view but never on both.
16357 procedure Tag_Mismatch;
16358 -- Diagnose a tagged partial view whose full view is untagged.
16359 -- We post the message on the full view, with a reference to
16360 -- the previous partial view. The partial view can be private
16361 -- or incomplete, and these are handled in a different manner,
16362 -- so we determine the position of the error message from the
16363 -- respective slocs of both.
16365 -----------------------------
16366 -- Check_Duplicate_Aspects --
16367 -----------------------------
16369 procedure Check_Duplicate_Aspects is
16370 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16371 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16372 F_Spec, P_Spec : Node_Id;
16374 begin
16375 if Present (Full_Aspects) then
16376 F_Spec := First (Full_Aspects);
16377 while Present (F_Spec) loop
16378 if Present (Prev_Aspects) then
16379 P_Spec := First (Prev_Aspects);
16380 while Present (P_Spec) loop
16381 if Chars (Identifier (P_Spec)) =
16382 Chars (Identifier (F_Spec))
16383 then
16384 Error_Msg_N
16385 ("aspect already specified in private declaration",
16386 F_Spec);
16387 Remove (F_Spec);
16388 return;
16389 end if;
16391 Next (P_Spec);
16392 end loop;
16393 end if;
16395 if Has_Discriminants (Prev)
16396 and then not Has_Unknown_Discriminants (Prev)
16397 and then Chars (Identifier (F_Spec)) =
16398 Name_Implicit_Dereference
16399 then
16400 Error_Msg_N ("cannot specify aspect " &
16401 "if partial view has known discriminants", F_Spec);
16402 end if;
16404 Next (F_Spec);
16405 end loop;
16406 end if;
16407 end Check_Duplicate_Aspects;
16409 ------------------
16410 -- Tag_Mismatch --
16411 ------------------
16413 procedure Tag_Mismatch is
16414 begin
16415 if Sloc (Prev) < Sloc (Id) then
16416 if Ada_Version >= Ada_2012
16417 and then Nkind (N) = N_Private_Type_Declaration
16418 then
16419 Error_Msg_NE
16420 ("declaration of private } must be a tagged type ", Id, Prev);
16421 else
16422 Error_Msg_NE
16423 ("full declaration of } must be a tagged type ", Id, Prev);
16424 end if;
16426 else
16427 if Ada_Version >= Ada_2012
16428 and then Nkind (N) = N_Private_Type_Declaration
16429 then
16430 Error_Msg_NE
16431 ("declaration of private } must be a tagged type ", Prev, Id);
16432 else
16433 Error_Msg_NE
16434 ("full declaration of } must be a tagged type ", Prev, Id);
16435 end if;
16436 end if;
16437 end Tag_Mismatch;
16439 -- Start of processing for Find_Type_Name
16441 begin
16442 -- Find incomplete declaration, if one was given
16444 Prev := Current_Entity_In_Scope (Id);
16446 -- New type declaration
16448 if No (Prev) then
16449 Enter_Name (Id);
16450 return Id;
16452 -- Previous declaration exists
16454 else
16455 Prev_Par := Parent (Prev);
16457 -- Error if not incomplete/private case except if previous
16458 -- declaration is implicit, etc. Enter_Name will emit error if
16459 -- appropriate.
16461 if not Is_Incomplete_Or_Private_Type (Prev) then
16462 Enter_Name (Id);
16463 New_Id := Id;
16465 -- Check invalid completion of private or incomplete type
16467 elsif not Nkind_In (N, N_Full_Type_Declaration,
16468 N_Task_Type_Declaration,
16469 N_Protected_Type_Declaration)
16470 and then
16471 (Ada_Version < Ada_2012
16472 or else not Is_Incomplete_Type (Prev)
16473 or else not Nkind_In (N, N_Private_Type_Declaration,
16474 N_Private_Extension_Declaration))
16475 then
16476 -- Completion must be a full type declarations (RM 7.3(4))
16478 Error_Msg_Sloc := Sloc (Prev);
16479 Error_Msg_NE ("invalid completion of }", Id, Prev);
16481 -- Set scope of Id to avoid cascaded errors. Entity is never
16482 -- examined again, except when saving globals in generics.
16484 Set_Scope (Id, Current_Scope);
16485 New_Id := Id;
16487 -- If this is a repeated incomplete declaration, no further
16488 -- checks are possible.
16490 if Nkind (N) = N_Incomplete_Type_Declaration then
16491 return Prev;
16492 end if;
16494 -- Case of full declaration of incomplete type
16496 elsif Ekind (Prev) = E_Incomplete_Type
16497 and then (Ada_Version < Ada_2012
16498 or else No (Full_View (Prev))
16499 or else not Is_Private_Type (Full_View (Prev)))
16500 then
16501 -- Indicate that the incomplete declaration has a matching full
16502 -- declaration. The defining occurrence of the incomplete
16503 -- declaration remains the visible one, and the procedure
16504 -- Get_Full_View dereferences it whenever the type is used.
16506 if Present (Full_View (Prev)) then
16507 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16508 end if;
16510 Set_Full_View (Prev, Id);
16511 Append_Entity (Id, Current_Scope);
16512 Set_Is_Public (Id, Is_Public (Prev));
16513 Set_Is_Internal (Id);
16514 New_Id := Prev;
16516 -- If the incomplete view is tagged, a class_wide type has been
16517 -- created already. Use it for the private type as well, in order
16518 -- to prevent multiple incompatible class-wide types that may be
16519 -- created for self-referential anonymous access components.
16521 if Is_Tagged_Type (Prev)
16522 and then Present (Class_Wide_Type (Prev))
16523 then
16524 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16525 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16527 -- The type of the classwide type is the current Id. Previously
16528 -- this was not done for private declarations because of order-
16529 -- of elaboration issues in the back-end, but gigi now handles
16530 -- this properly.
16532 Set_Etype (Class_Wide_Type (Id), Id);
16533 end if;
16535 -- Case of full declaration of private type
16537 else
16538 -- If the private type was a completion of an incomplete type then
16539 -- update Prev to reference the private type
16541 if Ada_Version >= Ada_2012
16542 and then Ekind (Prev) = E_Incomplete_Type
16543 and then Present (Full_View (Prev))
16544 and then Is_Private_Type (Full_View (Prev))
16545 then
16546 Prev := Full_View (Prev);
16547 Prev_Par := Parent (Prev);
16548 end if;
16550 if Nkind (N) = N_Full_Type_Declaration
16551 and then Nkind_In
16552 (Type_Definition (N), N_Record_Definition,
16553 N_Derived_Type_Definition)
16554 and then Interface_Present (Type_Definition (N))
16555 then
16556 Error_Msg_N
16557 ("completion of private type cannot be an interface", N);
16558 end if;
16560 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16561 if Etype (Prev) /= Prev then
16563 -- Prev is a private subtype or a derived type, and needs
16564 -- no completion.
16566 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16567 New_Id := Id;
16569 elsif Ekind (Prev) = E_Private_Type
16570 and then Nkind_In (N, N_Task_Type_Declaration,
16571 N_Protected_Type_Declaration)
16572 then
16573 Error_Msg_N
16574 ("completion of nonlimited type cannot be limited", N);
16576 elsif Ekind (Prev) = E_Record_Type_With_Private
16577 and then Nkind_In (N, N_Task_Type_Declaration,
16578 N_Protected_Type_Declaration)
16579 then
16580 if not Is_Limited_Record (Prev) then
16581 Error_Msg_N
16582 ("completion of nonlimited type cannot be limited", N);
16584 elsif No (Interface_List (N)) then
16585 Error_Msg_N
16586 ("completion of tagged private type must be tagged",
16588 end if;
16589 end if;
16591 -- Ada 2005 (AI-251): Private extension declaration of a task
16592 -- type or a protected type. This case arises when covering
16593 -- interface types.
16595 elsif Nkind_In (N, N_Task_Type_Declaration,
16596 N_Protected_Type_Declaration)
16597 then
16598 null;
16600 elsif Nkind (N) /= N_Full_Type_Declaration
16601 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16602 then
16603 Error_Msg_N
16604 ("full view of private extension must be an extension", N);
16606 elsif not (Abstract_Present (Parent (Prev)))
16607 and then Abstract_Present (Type_Definition (N))
16608 then
16609 Error_Msg_N
16610 ("full view of non-abstract extension cannot be abstract", N);
16611 end if;
16613 if not In_Private_Part (Current_Scope) then
16614 Error_Msg_N
16615 ("declaration of full view must appear in private part", N);
16616 end if;
16618 if Ada_Version >= Ada_2012 then
16619 Check_Duplicate_Aspects;
16620 end if;
16622 Copy_And_Swap (Prev, Id);
16623 Set_Has_Private_Declaration (Prev);
16624 Set_Has_Private_Declaration (Id);
16626 -- AI12-0133: Indicate whether we have a partial view with
16627 -- unknown discriminants, in which case initialization of objects
16628 -- of the type do not receive an invariant check.
16630 Set_Partial_View_Has_Unknown_Discr
16631 (Prev, Has_Unknown_Discriminants (Id));
16633 -- Preserve aspect and iterator flags that may have been set on
16634 -- the partial view.
16636 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16637 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16639 -- If no error, propagate freeze_node from private to full view.
16640 -- It may have been generated for an early operational item.
16642 if Present (Freeze_Node (Id))
16643 and then Serious_Errors_Detected = 0
16644 and then No (Full_View (Id))
16645 then
16646 Set_Freeze_Node (Prev, Freeze_Node (Id));
16647 Set_Freeze_Node (Id, Empty);
16648 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16649 end if;
16651 Set_Full_View (Id, Prev);
16652 New_Id := Prev;
16653 end if;
16655 -- Verify that full declaration conforms to partial one
16657 if Is_Incomplete_Or_Private_Type (Prev)
16658 and then Present (Discriminant_Specifications (Prev_Par))
16659 then
16660 if Present (Discriminant_Specifications (N)) then
16661 if Ekind (Prev) = E_Incomplete_Type then
16662 Check_Discriminant_Conformance (N, Prev, Prev);
16663 else
16664 Check_Discriminant_Conformance (N, Prev, Id);
16665 end if;
16667 else
16668 Error_Msg_N
16669 ("missing discriminants in full type declaration", N);
16671 -- To avoid cascaded errors on subsequent use, share the
16672 -- discriminants of the partial view.
16674 Set_Discriminant_Specifications (N,
16675 Discriminant_Specifications (Prev_Par));
16676 end if;
16677 end if;
16679 -- A prior untagged partial view can have an associated class-wide
16680 -- type due to use of the class attribute, and in this case the full
16681 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16682 -- of incomplete tagged declarations, but we check for it.
16684 if Is_Type (Prev)
16685 and then (Is_Tagged_Type (Prev)
16686 or else Present (Class_Wide_Type (Prev)))
16687 then
16688 -- Ada 2012 (AI05-0162): A private type may be the completion of
16689 -- an incomplete type.
16691 if Ada_Version >= Ada_2012
16692 and then Is_Incomplete_Type (Prev)
16693 and then Nkind_In (N, N_Private_Type_Declaration,
16694 N_Private_Extension_Declaration)
16695 then
16696 -- No need to check private extensions since they are tagged
16698 if Nkind (N) = N_Private_Type_Declaration
16699 and then not Tagged_Present (N)
16700 then
16701 Tag_Mismatch;
16702 end if;
16704 -- The full declaration is either a tagged type (including
16705 -- a synchronized type that implements interfaces) or a
16706 -- type extension, otherwise this is an error.
16708 elsif Nkind_In (N, N_Task_Type_Declaration,
16709 N_Protected_Type_Declaration)
16710 then
16711 if No (Interface_List (N)) and then not Error_Posted (N) then
16712 Tag_Mismatch;
16713 end if;
16715 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16717 -- Indicate that the previous declaration (tagged incomplete
16718 -- or private declaration) requires the same on the full one.
16720 if not Tagged_Present (Type_Definition (N)) then
16721 Tag_Mismatch;
16722 Set_Is_Tagged_Type (Id);
16723 end if;
16725 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16726 if No (Record_Extension_Part (Type_Definition (N))) then
16727 Error_Msg_NE
16728 ("full declaration of } must be a record extension",
16729 Prev, Id);
16731 -- Set some attributes to produce a usable full view
16733 Set_Is_Tagged_Type (Id);
16734 end if;
16736 else
16737 Tag_Mismatch;
16738 end if;
16739 end if;
16741 if Present (Prev)
16742 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16743 and then Present (Premature_Use (Parent (Prev)))
16744 then
16745 Error_Msg_Sloc := Sloc (N);
16746 Error_Msg_N
16747 ("\full declaration #", Premature_Use (Parent (Prev)));
16748 end if;
16750 return New_Id;
16751 end if;
16752 end Find_Type_Name;
16754 -------------------------
16755 -- Find_Type_Of_Object --
16756 -------------------------
16758 function Find_Type_Of_Object
16759 (Obj_Def : Node_Id;
16760 Related_Nod : Node_Id) return Entity_Id
16762 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16763 P : Node_Id := Parent (Obj_Def);
16764 T : Entity_Id;
16765 Nam : Name_Id;
16767 begin
16768 -- If the parent is a component_definition node we climb to the
16769 -- component_declaration node
16771 if Nkind (P) = N_Component_Definition then
16772 P := Parent (P);
16773 end if;
16775 -- Case of an anonymous array subtype
16777 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16778 N_Unconstrained_Array_Definition)
16779 then
16780 T := Empty;
16781 Array_Type_Declaration (T, Obj_Def);
16783 -- Create an explicit subtype whenever possible
16785 elsif Nkind (P) /= N_Component_Declaration
16786 and then Def_Kind = N_Subtype_Indication
16787 then
16788 -- Base name of subtype on object name, which will be unique in
16789 -- the current scope.
16791 -- If this is a duplicate declaration, return base type, to avoid
16792 -- generating duplicate anonymous types.
16794 if Error_Posted (P) then
16795 Analyze (Subtype_Mark (Obj_Def));
16796 return Entity (Subtype_Mark (Obj_Def));
16797 end if;
16799 Nam :=
16800 New_External_Name
16801 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16803 T := Make_Defining_Identifier (Sloc (P), Nam);
16805 Insert_Action (Obj_Def,
16806 Make_Subtype_Declaration (Sloc (P),
16807 Defining_Identifier => T,
16808 Subtype_Indication => Relocate_Node (Obj_Def)));
16810 -- This subtype may need freezing, and this will not be done
16811 -- automatically if the object declaration is not in declarative
16812 -- part. Since this is an object declaration, the type cannot always
16813 -- be frozen here. Deferred constants do not freeze their type
16814 -- (which often enough will be private).
16816 if Nkind (P) = N_Object_Declaration
16817 and then Constant_Present (P)
16818 and then No (Expression (P))
16819 then
16820 null;
16822 -- Here we freeze the base type of object type to catch premature use
16823 -- of discriminated private type without a full view.
16825 else
16826 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16827 end if;
16829 -- Ada 2005 AI-406: the object definition in an object declaration
16830 -- can be an access definition.
16832 elsif Def_Kind = N_Access_Definition then
16833 T := Access_Definition (Related_Nod, Obj_Def);
16835 Set_Is_Local_Anonymous_Access
16837 V => (Ada_Version < Ada_2012)
16838 or else (Nkind (P) /= N_Object_Declaration)
16839 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16841 -- Otherwise, the object definition is just a subtype_mark
16843 else
16844 T := Process_Subtype (Obj_Def, Related_Nod);
16846 -- If expansion is disabled an object definition that is an aggregate
16847 -- will not get expanded and may lead to scoping problems in the back
16848 -- end, if the object is referenced in an inner scope. In that case
16849 -- create an itype reference for the object definition now. This
16850 -- may be redundant in some cases, but harmless.
16852 if Is_Itype (T)
16853 and then Nkind (Related_Nod) = N_Object_Declaration
16854 and then ASIS_Mode
16855 then
16856 Build_Itype_Reference (T, Related_Nod);
16857 end if;
16858 end if;
16860 return T;
16861 end Find_Type_Of_Object;
16863 --------------------------------
16864 -- Find_Type_Of_Subtype_Indic --
16865 --------------------------------
16867 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16868 Typ : Entity_Id;
16870 begin
16871 -- Case of subtype mark with a constraint
16873 if Nkind (S) = N_Subtype_Indication then
16874 Find_Type (Subtype_Mark (S));
16875 Typ := Entity (Subtype_Mark (S));
16877 if not
16878 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16879 then
16880 Error_Msg_N
16881 ("incorrect constraint for this kind of type", Constraint (S));
16882 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16883 end if;
16885 -- Otherwise we have a subtype mark without a constraint
16887 elsif Error_Posted (S) then
16888 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16889 return Any_Type;
16891 else
16892 Find_Type (S);
16893 Typ := Entity (S);
16894 end if;
16896 -- Check No_Wide_Characters restriction
16898 Check_Wide_Character_Restriction (Typ, S);
16900 return Typ;
16901 end Find_Type_Of_Subtype_Indic;
16903 -------------------------------------
16904 -- Floating_Point_Type_Declaration --
16905 -------------------------------------
16907 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16908 Digs : constant Node_Id := Digits_Expression (Def);
16909 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16910 Digs_Val : Uint;
16911 Base_Typ : Entity_Id;
16912 Implicit_Base : Entity_Id;
16913 Bound : Node_Id;
16915 function Can_Derive_From (E : Entity_Id) return Boolean;
16916 -- Find if given digits value, and possibly a specified range, allows
16917 -- derivation from specified type
16919 function Find_Base_Type return Entity_Id;
16920 -- Find a predefined base type that Def can derive from, or generate
16921 -- an error and substitute Long_Long_Float if none exists.
16923 ---------------------
16924 -- Can_Derive_From --
16925 ---------------------
16927 function Can_Derive_From (E : Entity_Id) return Boolean is
16928 Spec : constant Entity_Id := Real_Range_Specification (Def);
16930 begin
16931 -- Check specified "digits" constraint
16933 if Digs_Val > Digits_Value (E) then
16934 return False;
16935 end if;
16937 -- Check for matching range, if specified
16939 if Present (Spec) then
16940 if Expr_Value_R (Type_Low_Bound (E)) >
16941 Expr_Value_R (Low_Bound (Spec))
16942 then
16943 return False;
16944 end if;
16946 if Expr_Value_R (Type_High_Bound (E)) <
16947 Expr_Value_R (High_Bound (Spec))
16948 then
16949 return False;
16950 end if;
16951 end if;
16953 return True;
16954 end Can_Derive_From;
16956 --------------------
16957 -- Find_Base_Type --
16958 --------------------
16960 function Find_Base_Type return Entity_Id is
16961 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16963 begin
16964 -- Iterate over the predefined types in order, returning the first
16965 -- one that Def can derive from.
16967 while Present (Choice) loop
16968 if Can_Derive_From (Node (Choice)) then
16969 return Node (Choice);
16970 end if;
16972 Next_Elmt (Choice);
16973 end loop;
16975 -- If we can't derive from any existing type, use Long_Long_Float
16976 -- and give appropriate message explaining the problem.
16978 if Digs_Val > Max_Digs_Val then
16979 -- It might be the case that there is a type with the requested
16980 -- range, just not the combination of digits and range.
16982 Error_Msg_N
16983 ("no predefined type has requested range and precision",
16984 Real_Range_Specification (Def));
16986 else
16987 Error_Msg_N
16988 ("range too large for any predefined type",
16989 Real_Range_Specification (Def));
16990 end if;
16992 return Standard_Long_Long_Float;
16993 end Find_Base_Type;
16995 -- Start of processing for Floating_Point_Type_Declaration
16997 begin
16998 Check_Restriction (No_Floating_Point, Def);
17000 -- Create an implicit base type
17002 Implicit_Base :=
17003 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17005 -- Analyze and verify digits value
17007 Analyze_And_Resolve (Digs, Any_Integer);
17008 Check_Digits_Expression (Digs);
17009 Digs_Val := Expr_Value (Digs);
17011 -- Process possible range spec and find correct type to derive from
17013 Process_Real_Range_Specification (Def);
17015 -- Check that requested number of digits is not too high.
17017 if Digs_Val > Max_Digs_Val then
17019 -- The check for Max_Base_Digits may be somewhat expensive, as it
17020 -- requires reading System, so only do it when necessary.
17022 declare
17023 Max_Base_Digits : constant Uint :=
17024 Expr_Value
17025 (Expression
17026 (Parent (RTE (RE_Max_Base_Digits))));
17028 begin
17029 if Digs_Val > Max_Base_Digits then
17030 Error_Msg_Uint_1 := Max_Base_Digits;
17031 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17033 elsif No (Real_Range_Specification (Def)) then
17034 Error_Msg_Uint_1 := Max_Digs_Val;
17035 Error_Msg_N ("types with more than ^ digits need range spec "
17036 & "(RM 3.5.7(6))", Digs);
17037 end if;
17038 end;
17039 end if;
17041 -- Find a suitable type to derive from or complain and use a substitute
17043 Base_Typ := Find_Base_Type;
17045 -- If there are bounds given in the declaration use them as the bounds
17046 -- of the type, otherwise use the bounds of the predefined base type
17047 -- that was chosen based on the Digits value.
17049 if Present (Real_Range_Specification (Def)) then
17050 Set_Scalar_Range (T, Real_Range_Specification (Def));
17051 Set_Is_Constrained (T);
17053 -- The bounds of this range must be converted to machine numbers
17054 -- in accordance with RM 4.9(38).
17056 Bound := Type_Low_Bound (T);
17058 if Nkind (Bound) = N_Real_Literal then
17059 Set_Realval
17060 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17061 Set_Is_Machine_Number (Bound);
17062 end if;
17064 Bound := Type_High_Bound (T);
17066 if Nkind (Bound) = N_Real_Literal then
17067 Set_Realval
17068 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17069 Set_Is_Machine_Number (Bound);
17070 end if;
17072 else
17073 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17074 end if;
17076 -- Complete definition of implicit base and declared first subtype. The
17077 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17078 -- are not clobbered when the floating point type acts as a full view of
17079 -- a private type.
17081 Set_Etype (Implicit_Base, Base_Typ);
17082 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17083 Set_Size_Info (Implicit_Base, Base_Typ);
17084 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17085 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17086 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17087 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17089 Set_Ekind (T, E_Floating_Point_Subtype);
17090 Set_Etype (T, Implicit_Base);
17091 Set_Size_Info (T, Implicit_Base);
17092 Set_RM_Size (T, RM_Size (Implicit_Base));
17093 Inherit_Rep_Item_Chain (T, Implicit_Base);
17094 Set_Digits_Value (T, Digs_Val);
17095 end Floating_Point_Type_Declaration;
17097 ----------------------------
17098 -- Get_Discriminant_Value --
17099 ----------------------------
17101 -- This is the situation:
17103 -- There is a non-derived type
17105 -- type T0 (Dx, Dy, Dz...)
17107 -- There are zero or more levels of derivation, with each derivation
17108 -- either purely inheriting the discriminants, or defining its own.
17110 -- type Ti is new Ti-1
17111 -- or
17112 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17113 -- or
17114 -- subtype Ti is ...
17116 -- The subtype issue is avoided by the use of Original_Record_Component,
17117 -- and the fact that derived subtypes also derive the constraints.
17119 -- This chain leads back from
17121 -- Typ_For_Constraint
17123 -- Typ_For_Constraint has discriminants, and the value for each
17124 -- discriminant is given by its corresponding Elmt of Constraints.
17126 -- Discriminant is some discriminant in this hierarchy
17128 -- We need to return its value
17130 -- We do this by recursively searching each level, and looking for
17131 -- Discriminant. Once we get to the bottom, we start backing up
17132 -- returning the value for it which may in turn be a discriminant
17133 -- further up, so on the backup we continue the substitution.
17135 function Get_Discriminant_Value
17136 (Discriminant : Entity_Id;
17137 Typ_For_Constraint : Entity_Id;
17138 Constraint : Elist_Id) return Node_Id
17140 function Root_Corresponding_Discriminant
17141 (Discr : Entity_Id) return Entity_Id;
17142 -- Given a discriminant, traverse the chain of inherited discriminants
17143 -- and return the topmost discriminant.
17145 function Search_Derivation_Levels
17146 (Ti : Entity_Id;
17147 Discrim_Values : Elist_Id;
17148 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17149 -- This is the routine that performs the recursive search of levels
17150 -- as described above.
17152 -------------------------------------
17153 -- Root_Corresponding_Discriminant --
17154 -------------------------------------
17156 function Root_Corresponding_Discriminant
17157 (Discr : Entity_Id) return Entity_Id
17159 D : Entity_Id;
17161 begin
17162 D := Discr;
17163 while Present (Corresponding_Discriminant (D)) loop
17164 D := Corresponding_Discriminant (D);
17165 end loop;
17167 return D;
17168 end Root_Corresponding_Discriminant;
17170 ------------------------------
17171 -- Search_Derivation_Levels --
17172 ------------------------------
17174 function Search_Derivation_Levels
17175 (Ti : Entity_Id;
17176 Discrim_Values : Elist_Id;
17177 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17179 Assoc : Elmt_Id;
17180 Disc : Entity_Id;
17181 Result : Node_Or_Entity_Id;
17182 Result_Entity : Node_Id;
17184 begin
17185 -- If inappropriate type, return Error, this happens only in
17186 -- cascaded error situations, and we want to avoid a blow up.
17188 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17189 return Error;
17190 end if;
17192 -- Look deeper if possible. Use Stored_Constraints only for
17193 -- untagged types. For tagged types use the given constraint.
17194 -- This asymmetry needs explanation???
17196 if not Stored_Discrim_Values
17197 and then Present (Stored_Constraint (Ti))
17198 and then not Is_Tagged_Type (Ti)
17199 then
17200 Result :=
17201 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17202 else
17203 declare
17204 Td : constant Entity_Id := Etype (Ti);
17206 begin
17207 if Td = Ti then
17208 Result := Discriminant;
17210 else
17211 if Present (Stored_Constraint (Ti)) then
17212 Result :=
17213 Search_Derivation_Levels
17214 (Td, Stored_Constraint (Ti), True);
17215 else
17216 Result :=
17217 Search_Derivation_Levels
17218 (Td, Discrim_Values, Stored_Discrim_Values);
17219 end if;
17220 end if;
17221 end;
17222 end if;
17224 -- Extra underlying places to search, if not found above. For
17225 -- concurrent types, the relevant discriminant appears in the
17226 -- corresponding record. For a type derived from a private type
17227 -- without discriminant, the full view inherits the discriminants
17228 -- of the full view of the parent.
17230 if Result = Discriminant then
17231 if Is_Concurrent_Type (Ti)
17232 and then Present (Corresponding_Record_Type (Ti))
17233 then
17234 Result :=
17235 Search_Derivation_Levels (
17236 Corresponding_Record_Type (Ti),
17237 Discrim_Values,
17238 Stored_Discrim_Values);
17240 elsif Is_Private_Type (Ti)
17241 and then not Has_Discriminants (Ti)
17242 and then Present (Full_View (Ti))
17243 and then Etype (Full_View (Ti)) /= Ti
17244 then
17245 Result :=
17246 Search_Derivation_Levels (
17247 Full_View (Ti),
17248 Discrim_Values,
17249 Stored_Discrim_Values);
17250 end if;
17251 end if;
17253 -- If Result is not a (reference to a) discriminant, return it,
17254 -- otherwise set Result_Entity to the discriminant.
17256 if Nkind (Result) = N_Defining_Identifier then
17257 pragma Assert (Result = Discriminant);
17258 Result_Entity := Result;
17260 else
17261 if not Denotes_Discriminant (Result) then
17262 return Result;
17263 end if;
17265 Result_Entity := Entity (Result);
17266 end if;
17268 -- See if this level of derivation actually has discriminants because
17269 -- tagged derivations can add them, hence the lower levels need not
17270 -- have any.
17272 if not Has_Discriminants (Ti) then
17273 return Result;
17274 end if;
17276 -- Scan Ti's discriminants for Result_Entity, and return its
17277 -- corresponding value, if any.
17279 Result_Entity := Original_Record_Component (Result_Entity);
17281 Assoc := First_Elmt (Discrim_Values);
17283 if Stored_Discrim_Values then
17284 Disc := First_Stored_Discriminant (Ti);
17285 else
17286 Disc := First_Discriminant (Ti);
17287 end if;
17289 while Present (Disc) loop
17290 pragma Assert (Present (Assoc));
17292 if Original_Record_Component (Disc) = Result_Entity then
17293 return Node (Assoc);
17294 end if;
17296 Next_Elmt (Assoc);
17298 if Stored_Discrim_Values then
17299 Next_Stored_Discriminant (Disc);
17300 else
17301 Next_Discriminant (Disc);
17302 end if;
17303 end loop;
17305 -- Could not find it
17307 return Result;
17308 end Search_Derivation_Levels;
17310 -- Local Variables
17312 Result : Node_Or_Entity_Id;
17314 -- Start of processing for Get_Discriminant_Value
17316 begin
17317 -- ??? This routine is a gigantic mess and will be deleted. For the
17318 -- time being just test for the trivial case before calling recurse.
17320 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17321 declare
17322 D : Entity_Id;
17323 E : Elmt_Id;
17325 begin
17326 D := First_Discriminant (Typ_For_Constraint);
17327 E := First_Elmt (Constraint);
17328 while Present (D) loop
17329 if Chars (D) = Chars (Discriminant) then
17330 return Node (E);
17331 end if;
17333 Next_Discriminant (D);
17334 Next_Elmt (E);
17335 end loop;
17336 end;
17337 end if;
17339 Result := Search_Derivation_Levels
17340 (Typ_For_Constraint, Constraint, False);
17342 -- ??? hack to disappear when this routine is gone
17344 if Nkind (Result) = N_Defining_Identifier then
17345 declare
17346 D : Entity_Id;
17347 E : Elmt_Id;
17349 begin
17350 D := First_Discriminant (Typ_For_Constraint);
17351 E := First_Elmt (Constraint);
17352 while Present (D) loop
17353 if Root_Corresponding_Discriminant (D) = Discriminant then
17354 return Node (E);
17355 end if;
17357 Next_Discriminant (D);
17358 Next_Elmt (E);
17359 end loop;
17360 end;
17361 end if;
17363 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17364 return Result;
17365 end Get_Discriminant_Value;
17367 --------------------------
17368 -- Has_Range_Constraint --
17369 --------------------------
17371 function Has_Range_Constraint (N : Node_Id) return Boolean is
17372 C : constant Node_Id := Constraint (N);
17374 begin
17375 if Nkind (C) = N_Range_Constraint then
17376 return True;
17378 elsif Nkind (C) = N_Digits_Constraint then
17379 return
17380 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17381 or else Present (Range_Constraint (C));
17383 elsif Nkind (C) = N_Delta_Constraint then
17384 return Present (Range_Constraint (C));
17386 else
17387 return False;
17388 end if;
17389 end Has_Range_Constraint;
17391 ------------------------
17392 -- Inherit_Components --
17393 ------------------------
17395 function Inherit_Components
17396 (N : Node_Id;
17397 Parent_Base : Entity_Id;
17398 Derived_Base : Entity_Id;
17399 Is_Tagged : Boolean;
17400 Inherit_Discr : Boolean;
17401 Discs : Elist_Id) return Elist_Id
17403 Assoc_List : constant Elist_Id := New_Elmt_List;
17405 procedure Inherit_Component
17406 (Old_C : Entity_Id;
17407 Plain_Discrim : Boolean := False;
17408 Stored_Discrim : Boolean := False);
17409 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17410 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17411 -- True, Old_C is a stored discriminant. If they are both false then
17412 -- Old_C is a regular component.
17414 -----------------------
17415 -- Inherit_Component --
17416 -----------------------
17418 procedure Inherit_Component
17419 (Old_C : Entity_Id;
17420 Plain_Discrim : Boolean := False;
17421 Stored_Discrim : Boolean := False)
17423 procedure Set_Anonymous_Type (Id : Entity_Id);
17424 -- Id denotes the entity of an access discriminant or anonymous
17425 -- access component. Set the type of Id to either the same type of
17426 -- Old_C or create a new one depending on whether the parent and
17427 -- the child types are in the same scope.
17429 ------------------------
17430 -- Set_Anonymous_Type --
17431 ------------------------
17433 procedure Set_Anonymous_Type (Id : Entity_Id) is
17434 Old_Typ : constant Entity_Id := Etype (Old_C);
17436 begin
17437 if Scope (Parent_Base) = Scope (Derived_Base) then
17438 Set_Etype (Id, Old_Typ);
17440 -- The parent and the derived type are in two different scopes.
17441 -- Reuse the type of the original discriminant / component by
17442 -- copying it in order to preserve all attributes.
17444 else
17445 declare
17446 Typ : constant Entity_Id := New_Copy (Old_Typ);
17448 begin
17449 Set_Etype (Id, Typ);
17451 -- Since we do not generate component declarations for
17452 -- inherited components, associate the itype with the
17453 -- derived type.
17455 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17456 Set_Scope (Typ, Derived_Base);
17457 end;
17458 end if;
17459 end Set_Anonymous_Type;
17461 -- Local variables and constants
17463 New_C : constant Entity_Id := New_Copy (Old_C);
17465 Corr_Discrim : Entity_Id;
17466 Discrim : Entity_Id;
17468 -- Start of processing for Inherit_Component
17470 begin
17471 pragma Assert (not Is_Tagged or not Stored_Discrim);
17473 Set_Parent (New_C, Parent (Old_C));
17475 -- Regular discriminants and components must be inserted in the scope
17476 -- of the Derived_Base. Do it here.
17478 if not Stored_Discrim then
17479 Enter_Name (New_C);
17480 end if;
17482 -- For tagged types the Original_Record_Component must point to
17483 -- whatever this field was pointing to in the parent type. This has
17484 -- already been achieved by the call to New_Copy above.
17486 if not Is_Tagged then
17487 Set_Original_Record_Component (New_C, New_C);
17488 end if;
17490 -- Set the proper type of an access discriminant
17492 if Ekind (New_C) = E_Discriminant
17493 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17494 then
17495 Set_Anonymous_Type (New_C);
17496 end if;
17498 -- If we have inherited a component then see if its Etype contains
17499 -- references to Parent_Base discriminants. In this case, replace
17500 -- these references with the constraints given in Discs. We do not
17501 -- do this for the partial view of private types because this is
17502 -- not needed (only the components of the full view will be used
17503 -- for code generation) and cause problem. We also avoid this
17504 -- transformation in some error situations.
17506 if Ekind (New_C) = E_Component then
17508 -- Set the proper type of an anonymous access component
17510 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17511 Set_Anonymous_Type (New_C);
17513 elsif (Is_Private_Type (Derived_Base)
17514 and then not Is_Generic_Type (Derived_Base))
17515 or else (Is_Empty_Elmt_List (Discs)
17516 and then not Expander_Active)
17517 then
17518 Set_Etype (New_C, Etype (Old_C));
17520 else
17521 -- The current component introduces a circularity of the
17522 -- following kind:
17524 -- limited with Pack_2;
17525 -- package Pack_1 is
17526 -- type T_1 is tagged record
17527 -- Comp : access Pack_2.T_2;
17528 -- ...
17529 -- end record;
17530 -- end Pack_1;
17532 -- with Pack_1;
17533 -- package Pack_2 is
17534 -- type T_2 is new Pack_1.T_1 with ...;
17535 -- end Pack_2;
17537 Set_Etype
17538 (New_C,
17539 Constrain_Component_Type
17540 (Old_C, Derived_Base, N, Parent_Base, Discs));
17541 end if;
17542 end if;
17544 -- In derived tagged types it is illegal to reference a non
17545 -- discriminant component in the parent type. To catch this, mark
17546 -- these components with an Ekind of E_Void. This will be reset in
17547 -- Record_Type_Definition after processing the record extension of
17548 -- the derived type.
17550 -- If the declaration is a private extension, there is no further
17551 -- record extension to process, and the components retain their
17552 -- current kind, because they are visible at this point.
17554 if Is_Tagged and then Ekind (New_C) = E_Component
17555 and then Nkind (N) /= N_Private_Extension_Declaration
17556 then
17557 Set_Ekind (New_C, E_Void);
17558 end if;
17560 if Plain_Discrim then
17561 Set_Corresponding_Discriminant (New_C, Old_C);
17562 Build_Discriminal (New_C);
17564 -- If we are explicitly inheriting a stored discriminant it will be
17565 -- completely hidden.
17567 elsif Stored_Discrim then
17568 Set_Corresponding_Discriminant (New_C, Empty);
17569 Set_Discriminal (New_C, Empty);
17570 Set_Is_Completely_Hidden (New_C);
17572 -- Set the Original_Record_Component of each discriminant in the
17573 -- derived base to point to the corresponding stored that we just
17574 -- created.
17576 Discrim := First_Discriminant (Derived_Base);
17577 while Present (Discrim) loop
17578 Corr_Discrim := Corresponding_Discriminant (Discrim);
17580 -- Corr_Discrim could be missing in an error situation
17582 if Present (Corr_Discrim)
17583 and then Original_Record_Component (Corr_Discrim) = Old_C
17584 then
17585 Set_Original_Record_Component (Discrim, New_C);
17586 end if;
17588 Next_Discriminant (Discrim);
17589 end loop;
17591 Append_Entity (New_C, Derived_Base);
17592 end if;
17594 if not Is_Tagged then
17595 Append_Elmt (Old_C, Assoc_List);
17596 Append_Elmt (New_C, Assoc_List);
17597 end if;
17598 end Inherit_Component;
17600 -- Variables local to Inherit_Component
17602 Loc : constant Source_Ptr := Sloc (N);
17604 Parent_Discrim : Entity_Id;
17605 Stored_Discrim : Entity_Id;
17606 D : Entity_Id;
17607 Component : Entity_Id;
17609 -- Start of processing for Inherit_Components
17611 begin
17612 if not Is_Tagged then
17613 Append_Elmt (Parent_Base, Assoc_List);
17614 Append_Elmt (Derived_Base, Assoc_List);
17615 end if;
17617 -- Inherit parent discriminants if needed
17619 if Inherit_Discr then
17620 Parent_Discrim := First_Discriminant (Parent_Base);
17621 while Present (Parent_Discrim) loop
17622 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17623 Next_Discriminant (Parent_Discrim);
17624 end loop;
17625 end if;
17627 -- Create explicit stored discrims for untagged types when necessary
17629 if not Has_Unknown_Discriminants (Derived_Base)
17630 and then Has_Discriminants (Parent_Base)
17631 and then not Is_Tagged
17632 and then
17633 (not Inherit_Discr
17634 or else First_Discriminant (Parent_Base) /=
17635 First_Stored_Discriminant (Parent_Base))
17636 then
17637 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17638 while Present (Stored_Discrim) loop
17639 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17640 Next_Stored_Discriminant (Stored_Discrim);
17641 end loop;
17642 end if;
17644 -- See if we can apply the second transformation for derived types, as
17645 -- explained in point 6. in the comments above Build_Derived_Record_Type
17646 -- This is achieved by appending Derived_Base discriminants into Discs,
17647 -- which has the side effect of returning a non empty Discs list to the
17648 -- caller of Inherit_Components, which is what we want. This must be
17649 -- done for private derived types if there are explicit stored
17650 -- discriminants, to ensure that we can retrieve the values of the
17651 -- constraints provided in the ancestors.
17653 if Inherit_Discr
17654 and then Is_Empty_Elmt_List (Discs)
17655 and then Present (First_Discriminant (Derived_Base))
17656 and then
17657 (not Is_Private_Type (Derived_Base)
17658 or else Is_Completely_Hidden
17659 (First_Stored_Discriminant (Derived_Base))
17660 or else Is_Generic_Type (Derived_Base))
17661 then
17662 D := First_Discriminant (Derived_Base);
17663 while Present (D) loop
17664 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17665 Next_Discriminant (D);
17666 end loop;
17667 end if;
17669 -- Finally, inherit non-discriminant components unless they are not
17670 -- visible because defined or inherited from the full view of the
17671 -- parent. Don't inherit the _parent field of the parent type.
17673 Component := First_Entity (Parent_Base);
17674 while Present (Component) loop
17676 -- Ada 2005 (AI-251): Do not inherit components associated with
17677 -- secondary tags of the parent.
17679 if Ekind (Component) = E_Component
17680 and then Present (Related_Type (Component))
17681 then
17682 null;
17684 elsif Ekind (Component) /= E_Component
17685 or else Chars (Component) = Name_uParent
17686 then
17687 null;
17689 -- If the derived type is within the parent type's declarative
17690 -- region, then the components can still be inherited even though
17691 -- they aren't visible at this point. This can occur for cases
17692 -- such as within public child units where the components must
17693 -- become visible upon entering the child unit's private part.
17695 elsif not Is_Visible_Component (Component)
17696 and then not In_Open_Scopes (Scope (Parent_Base))
17697 then
17698 null;
17700 elsif Ekind_In (Derived_Base, E_Private_Type,
17701 E_Limited_Private_Type)
17702 then
17703 null;
17705 else
17706 Inherit_Component (Component);
17707 end if;
17709 Next_Entity (Component);
17710 end loop;
17712 -- For tagged derived types, inherited discriminants cannot be used in
17713 -- component declarations of the record extension part. To achieve this
17714 -- we mark the inherited discriminants as not visible.
17716 if Is_Tagged and then Inherit_Discr then
17717 D := First_Discriminant (Derived_Base);
17718 while Present (D) loop
17719 Set_Is_Immediately_Visible (D, False);
17720 Next_Discriminant (D);
17721 end loop;
17722 end if;
17724 return Assoc_List;
17725 end Inherit_Components;
17727 -----------------------------
17728 -- Inherit_Predicate_Flags --
17729 -----------------------------
17731 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17732 begin
17733 Set_Has_Predicates (Subt, Has_Predicates (Par));
17734 Set_Has_Static_Predicate_Aspect
17735 (Subt, Has_Static_Predicate_Aspect (Par));
17736 Set_Has_Dynamic_Predicate_Aspect
17737 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17738 end Inherit_Predicate_Flags;
17740 ----------------------
17741 -- Is_EVF_Procedure --
17742 ----------------------
17744 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17745 Formal : Entity_Id;
17747 begin
17748 -- Examine the formals of an Extensions_Visible False procedure looking
17749 -- for a controlling OUT parameter.
17751 if Ekind (Subp) = E_Procedure
17752 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17753 then
17754 Formal := First_Formal (Subp);
17755 while Present (Formal) loop
17756 if Ekind (Formal) = E_Out_Parameter
17757 and then Is_Controlling_Formal (Formal)
17758 then
17759 return True;
17760 end if;
17762 Next_Formal (Formal);
17763 end loop;
17764 end if;
17766 return False;
17767 end Is_EVF_Procedure;
17769 -----------------------
17770 -- Is_Null_Extension --
17771 -----------------------
17773 function Is_Null_Extension (T : Entity_Id) return Boolean is
17774 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17775 Comp_List : Node_Id;
17776 Comp : Node_Id;
17778 begin
17779 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17780 or else not Is_Tagged_Type (T)
17781 or else Nkind (Type_Definition (Type_Decl)) /=
17782 N_Derived_Type_Definition
17783 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17784 then
17785 return False;
17786 end if;
17788 Comp_List :=
17789 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17791 if Present (Discriminant_Specifications (Type_Decl)) then
17792 return False;
17794 elsif Present (Comp_List)
17795 and then Is_Non_Empty_List (Component_Items (Comp_List))
17796 then
17797 Comp := First (Component_Items (Comp_List));
17799 -- Only user-defined components are relevant. The component list
17800 -- may also contain a parent component and internal components
17801 -- corresponding to secondary tags, but these do not determine
17802 -- whether this is a null extension.
17804 while Present (Comp) loop
17805 if Comes_From_Source (Comp) then
17806 return False;
17807 end if;
17809 Next (Comp);
17810 end loop;
17812 return True;
17814 else
17815 return True;
17816 end if;
17817 end Is_Null_Extension;
17819 ------------------------------
17820 -- Is_Valid_Constraint_Kind --
17821 ------------------------------
17823 function Is_Valid_Constraint_Kind
17824 (T_Kind : Type_Kind;
17825 Constraint_Kind : Node_Kind) return Boolean
17827 begin
17828 case T_Kind is
17829 when Enumeration_Kind |
17830 Integer_Kind =>
17831 return Constraint_Kind = N_Range_Constraint;
17833 when Decimal_Fixed_Point_Kind =>
17834 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17835 N_Range_Constraint);
17837 when Ordinary_Fixed_Point_Kind =>
17838 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17839 N_Range_Constraint);
17841 when Float_Kind =>
17842 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17843 N_Range_Constraint);
17845 when Access_Kind |
17846 Array_Kind |
17847 E_Record_Type |
17848 E_Record_Subtype |
17849 Class_Wide_Kind |
17850 E_Incomplete_Type |
17851 Private_Kind |
17852 Concurrent_Kind =>
17853 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17855 when others =>
17856 return True; -- Error will be detected later
17857 end case;
17858 end Is_Valid_Constraint_Kind;
17860 --------------------------
17861 -- Is_Visible_Component --
17862 --------------------------
17864 function Is_Visible_Component
17865 (C : Entity_Id;
17866 N : Node_Id := Empty) return Boolean
17868 Original_Comp : Entity_Id := Empty;
17869 Original_Type : Entity_Id;
17870 Type_Scope : Entity_Id;
17872 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17873 -- Check whether parent type of inherited component is declared locally,
17874 -- possibly within a nested package or instance. The current scope is
17875 -- the derived record itself.
17877 -------------------
17878 -- Is_Local_Type --
17879 -------------------
17881 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17882 Scop : Entity_Id;
17884 begin
17885 Scop := Scope (Typ);
17886 while Present (Scop)
17887 and then Scop /= Standard_Standard
17888 loop
17889 if Scop = Scope (Current_Scope) then
17890 return True;
17891 end if;
17893 Scop := Scope (Scop);
17894 end loop;
17896 return False;
17897 end Is_Local_Type;
17899 -- Start of processing for Is_Visible_Component
17901 begin
17902 if Ekind_In (C, E_Component, E_Discriminant) then
17903 Original_Comp := Original_Record_Component (C);
17904 end if;
17906 if No (Original_Comp) then
17908 -- Premature usage, or previous error
17910 return False;
17912 else
17913 Original_Type := Scope (Original_Comp);
17914 Type_Scope := Scope (Base_Type (Scope (C)));
17915 end if;
17917 -- This test only concerns tagged types
17919 if not Is_Tagged_Type (Original_Type) then
17920 return True;
17922 -- If it is _Parent or _Tag, there is no visibility issue
17924 elsif not Comes_From_Source (Original_Comp) then
17925 return True;
17927 -- Discriminants are visible unless the (private) type has unknown
17928 -- discriminants. If the discriminant reference is inserted for a
17929 -- discriminant check on a full view it is also visible.
17931 elsif Ekind (Original_Comp) = E_Discriminant
17932 and then
17933 (not Has_Unknown_Discriminants (Original_Type)
17934 or else (Present (N)
17935 and then Nkind (N) = N_Selected_Component
17936 and then Nkind (Prefix (N)) = N_Type_Conversion
17937 and then not Comes_From_Source (Prefix (N))))
17938 then
17939 return True;
17941 -- In the body of an instantiation, no need to check for the visibility
17942 -- of a component.
17944 elsif In_Instance_Body then
17945 return True;
17947 -- If the component has been declared in an ancestor which is currently
17948 -- a private type, then it is not visible. The same applies if the
17949 -- component's containing type is not in an open scope and the original
17950 -- component's enclosing type is a visible full view of a private type
17951 -- (which can occur in cases where an attempt is being made to reference
17952 -- a component in a sibling package that is inherited from a visible
17953 -- component of a type in an ancestor package; the component in the
17954 -- sibling package should not be visible even though the component it
17955 -- inherited from is visible). This does not apply however in the case
17956 -- where the scope of the type is a private child unit, or when the
17957 -- parent comes from a local package in which the ancestor is currently
17958 -- visible. The latter suppression of visibility is needed for cases
17959 -- that are tested in B730006.
17961 elsif Is_Private_Type (Original_Type)
17962 or else
17963 (not Is_Private_Descendant (Type_Scope)
17964 and then not In_Open_Scopes (Type_Scope)
17965 and then Has_Private_Declaration (Original_Type))
17966 then
17967 -- If the type derives from an entity in a formal package, there
17968 -- are no additional visible components.
17970 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17971 N_Formal_Package_Declaration
17972 then
17973 return False;
17975 -- if we are not in the private part of the current package, there
17976 -- are no additional visible components.
17978 elsif Ekind (Scope (Current_Scope)) = E_Package
17979 and then not In_Private_Part (Scope (Current_Scope))
17980 then
17981 return False;
17982 else
17983 return
17984 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17985 and then In_Open_Scopes (Scope (Original_Type))
17986 and then Is_Local_Type (Type_Scope);
17987 end if;
17989 -- There is another weird way in which a component may be invisible when
17990 -- the private and the full view are not derived from the same ancestor.
17991 -- Here is an example :
17993 -- type A1 is tagged record F1 : integer; end record;
17994 -- type A2 is new A1 with record F2 : integer; end record;
17995 -- type T is new A1 with private;
17996 -- private
17997 -- type T is new A2 with null record;
17999 -- In this case, the full view of T inherits F1 and F2 but the private
18000 -- view inherits only F1
18002 else
18003 declare
18004 Ancestor : Entity_Id := Scope (C);
18006 begin
18007 loop
18008 if Ancestor = Original_Type then
18009 return True;
18011 -- The ancestor may have a partial view of the original type,
18012 -- but if the full view is in scope, as in a child body, the
18013 -- component is visible.
18015 elsif In_Private_Part (Scope (Original_Type))
18016 and then Full_View (Ancestor) = Original_Type
18017 then
18018 return True;
18020 elsif Ancestor = Etype (Ancestor) then
18022 -- No further ancestors to examine
18024 return False;
18025 end if;
18027 Ancestor := Etype (Ancestor);
18028 end loop;
18029 end;
18030 end if;
18031 end Is_Visible_Component;
18033 --------------------------
18034 -- Make_Class_Wide_Type --
18035 --------------------------
18037 procedure Make_Class_Wide_Type (T : Entity_Id) is
18038 CW_Type : Entity_Id;
18039 CW_Name : Name_Id;
18040 Next_E : Entity_Id;
18042 begin
18043 if Present (Class_Wide_Type (T)) then
18045 -- The class-wide type is a partially decorated entity created for a
18046 -- unanalyzed tagged type referenced through a limited with clause.
18047 -- When the tagged type is analyzed, its class-wide type needs to be
18048 -- redecorated. Note that we reuse the entity created by Decorate_
18049 -- Tagged_Type in order to preserve all links.
18051 if Materialize_Entity (Class_Wide_Type (T)) then
18052 CW_Type := Class_Wide_Type (T);
18053 Set_Materialize_Entity (CW_Type, False);
18055 -- The class wide type can have been defined by the partial view, in
18056 -- which case everything is already done.
18058 else
18059 return;
18060 end if;
18062 -- Default case, we need to create a new class-wide type
18064 else
18065 CW_Type :=
18066 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18067 end if;
18069 -- Inherit root type characteristics
18071 CW_Name := Chars (CW_Type);
18072 Next_E := Next_Entity (CW_Type);
18073 Copy_Node (T, CW_Type);
18074 Set_Comes_From_Source (CW_Type, False);
18075 Set_Chars (CW_Type, CW_Name);
18076 Set_Parent (CW_Type, Parent (T));
18077 Set_Next_Entity (CW_Type, Next_E);
18079 -- Ensure we have a new freeze node for the class-wide type. The partial
18080 -- view may have freeze action of its own, requiring a proper freeze
18081 -- node, and the same freeze node cannot be shared between the two
18082 -- types.
18084 Set_Has_Delayed_Freeze (CW_Type);
18085 Set_Freeze_Node (CW_Type, Empty);
18087 -- Customize the class-wide type: It has no prim. op., it cannot be
18088 -- abstract and its Etype points back to the specific root type.
18090 Set_Ekind (CW_Type, E_Class_Wide_Type);
18091 Set_Is_Tagged_Type (CW_Type, True);
18092 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18093 Set_Is_Abstract_Type (CW_Type, False);
18094 Set_Is_Constrained (CW_Type, False);
18095 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18096 Set_Default_SSO (CW_Type);
18098 if Ekind (T) = E_Class_Wide_Subtype then
18099 Set_Etype (CW_Type, Etype (Base_Type (T)));
18100 else
18101 Set_Etype (CW_Type, T);
18102 end if;
18104 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18106 -- If this is the class_wide type of a constrained subtype, it does
18107 -- not have discriminants.
18109 Set_Has_Discriminants (CW_Type,
18110 Has_Discriminants (T) and then not Is_Constrained (T));
18112 Set_Has_Unknown_Discriminants (CW_Type, True);
18113 Set_Class_Wide_Type (T, CW_Type);
18114 Set_Equivalent_Type (CW_Type, Empty);
18116 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18118 Set_Class_Wide_Type (CW_Type, CW_Type);
18120 -- Inherit the "ghostness" from the root tagged type
18122 if Ghost_Mode > None or else Is_Ghost_Entity (T) then
18123 Set_Is_Ghost_Entity (CW_Type);
18124 end if;
18125 end Make_Class_Wide_Type;
18127 ----------------
18128 -- Make_Index --
18129 ----------------
18131 procedure Make_Index
18132 (N : Node_Id;
18133 Related_Nod : Node_Id;
18134 Related_Id : Entity_Id := Empty;
18135 Suffix_Index : Nat := 1;
18136 In_Iter_Schm : Boolean := False)
18138 R : Node_Id;
18139 T : Entity_Id;
18140 Def_Id : Entity_Id := Empty;
18141 Found : Boolean := False;
18143 begin
18144 -- For a discrete range used in a constrained array definition and
18145 -- defined by a range, an implicit conversion to the predefined type
18146 -- INTEGER is assumed if each bound is either a numeric literal, a named
18147 -- number, or an attribute, and the type of both bounds (prior to the
18148 -- implicit conversion) is the type universal_integer. Otherwise, both
18149 -- bounds must be of the same discrete type, other than universal
18150 -- integer; this type must be determinable independently of the
18151 -- context, but using the fact that the type must be discrete and that
18152 -- both bounds must have the same type.
18154 -- Character literals also have a universal type in the absence of
18155 -- of additional context, and are resolved to Standard_Character.
18157 if Nkind (N) = N_Range then
18159 -- The index is given by a range constraint. The bounds are known
18160 -- to be of a consistent type.
18162 if not Is_Overloaded (N) then
18163 T := Etype (N);
18165 -- For universal bounds, choose the specific predefined type
18167 if T = Universal_Integer then
18168 T := Standard_Integer;
18170 elsif T = Any_Character then
18171 Ambiguous_Character (Low_Bound (N));
18173 T := Standard_Character;
18174 end if;
18176 -- The node may be overloaded because some user-defined operators
18177 -- are available, but if a universal interpretation exists it is
18178 -- also the selected one.
18180 elsif Universal_Interpretation (N) = Universal_Integer then
18181 T := Standard_Integer;
18183 else
18184 T := Any_Type;
18186 declare
18187 Ind : Interp_Index;
18188 It : Interp;
18190 begin
18191 Get_First_Interp (N, Ind, It);
18192 while Present (It.Typ) loop
18193 if Is_Discrete_Type (It.Typ) then
18195 if Found
18196 and then not Covers (It.Typ, T)
18197 and then not Covers (T, It.Typ)
18198 then
18199 Error_Msg_N ("ambiguous bounds in discrete range", N);
18200 exit;
18201 else
18202 T := It.Typ;
18203 Found := True;
18204 end if;
18205 end if;
18207 Get_Next_Interp (Ind, It);
18208 end loop;
18210 if T = Any_Type then
18211 Error_Msg_N ("discrete type required for range", N);
18212 Set_Etype (N, Any_Type);
18213 return;
18215 elsif T = Universal_Integer then
18216 T := Standard_Integer;
18217 end if;
18218 end;
18219 end if;
18221 if not Is_Discrete_Type (T) then
18222 Error_Msg_N ("discrete type required for range", N);
18223 Set_Etype (N, Any_Type);
18224 return;
18225 end if;
18227 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18228 and then Attribute_Name (Low_Bound (N)) = Name_First
18229 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18230 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18231 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18232 then
18233 -- The type of the index will be the type of the prefix, as long
18234 -- as the upper bound is 'Last of the same type.
18236 Def_Id := Entity (Prefix (Low_Bound (N)));
18238 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18239 or else Attribute_Name (High_Bound (N)) /= Name_Last
18240 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18241 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18242 then
18243 Def_Id := Empty;
18244 end if;
18245 end if;
18247 R := N;
18248 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18250 elsif Nkind (N) = N_Subtype_Indication then
18252 -- The index is given by a subtype with a range constraint
18254 T := Base_Type (Entity (Subtype_Mark (N)));
18256 if not Is_Discrete_Type (T) then
18257 Error_Msg_N ("discrete type required for range", N);
18258 Set_Etype (N, Any_Type);
18259 return;
18260 end if;
18262 R := Range_Expression (Constraint (N));
18264 Resolve (R, T);
18265 Process_Range_Expr_In_Decl
18266 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18268 elsif Nkind (N) = N_Attribute_Reference then
18270 -- Catch beginner's error (use of attribute other than 'Range)
18272 if Attribute_Name (N) /= Name_Range then
18273 Error_Msg_N ("expect attribute ''Range", N);
18274 Set_Etype (N, Any_Type);
18275 return;
18276 end if;
18278 -- If the node denotes the range of a type mark, that is also the
18279 -- resulting type, and we do not need to create an Itype for it.
18281 if Is_Entity_Name (Prefix (N))
18282 and then Comes_From_Source (N)
18283 and then Is_Type (Entity (Prefix (N)))
18284 and then Is_Discrete_Type (Entity (Prefix (N)))
18285 then
18286 Def_Id := Entity (Prefix (N));
18287 end if;
18289 Analyze_And_Resolve (N);
18290 T := Etype (N);
18291 R := N;
18293 -- If none of the above, must be a subtype. We convert this to a
18294 -- range attribute reference because in the case of declared first
18295 -- named subtypes, the types in the range reference can be different
18296 -- from the type of the entity. A range attribute normalizes the
18297 -- reference and obtains the correct types for the bounds.
18299 -- This transformation is in the nature of an expansion, is only
18300 -- done if expansion is active. In particular, it is not done on
18301 -- formal generic types, because we need to retain the name of the
18302 -- original index for instantiation purposes.
18304 else
18305 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18306 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18307 Set_Etype (N, Any_Integer);
18308 return;
18310 else
18311 -- The type mark may be that of an incomplete type. It is only
18312 -- now that we can get the full view, previous analysis does
18313 -- not look specifically for a type mark.
18315 Set_Entity (N, Get_Full_View (Entity (N)));
18316 Set_Etype (N, Entity (N));
18317 Def_Id := Entity (N);
18319 if not Is_Discrete_Type (Def_Id) then
18320 Error_Msg_N ("discrete type required for index", N);
18321 Set_Etype (N, Any_Type);
18322 return;
18323 end if;
18324 end if;
18326 if Expander_Active then
18327 Rewrite (N,
18328 Make_Attribute_Reference (Sloc (N),
18329 Attribute_Name => Name_Range,
18330 Prefix => Relocate_Node (N)));
18332 -- The original was a subtype mark that does not freeze. This
18333 -- means that the rewritten version must not freeze either.
18335 Set_Must_Not_Freeze (N);
18336 Set_Must_Not_Freeze (Prefix (N));
18337 Analyze_And_Resolve (N);
18338 T := Etype (N);
18339 R := N;
18341 -- If expander is inactive, type is legal, nothing else to construct
18343 else
18344 return;
18345 end if;
18346 end if;
18348 if not Is_Discrete_Type (T) then
18349 Error_Msg_N ("discrete type required for range", N);
18350 Set_Etype (N, Any_Type);
18351 return;
18353 elsif T = Any_Type then
18354 Set_Etype (N, Any_Type);
18355 return;
18356 end if;
18358 -- We will now create the appropriate Itype to describe the range, but
18359 -- first a check. If we originally had a subtype, then we just label
18360 -- the range with this subtype. Not only is there no need to construct
18361 -- a new subtype, but it is wrong to do so for two reasons:
18363 -- 1. A legality concern, if we have a subtype, it must not freeze,
18364 -- and the Itype would cause freezing incorrectly
18366 -- 2. An efficiency concern, if we created an Itype, it would not be
18367 -- recognized as the same type for the purposes of eliminating
18368 -- checks in some circumstances.
18370 -- We signal this case by setting the subtype entity in Def_Id
18372 if No (Def_Id) then
18373 Def_Id :=
18374 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18375 Set_Etype (Def_Id, Base_Type (T));
18377 if Is_Signed_Integer_Type (T) then
18378 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18380 elsif Is_Modular_Integer_Type (T) then
18381 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18383 else
18384 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18385 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18386 Set_First_Literal (Def_Id, First_Literal (T));
18387 end if;
18389 Set_Size_Info (Def_Id, (T));
18390 Set_RM_Size (Def_Id, RM_Size (T));
18391 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18393 Set_Scalar_Range (Def_Id, R);
18394 Conditional_Delay (Def_Id, T);
18396 if Nkind (N) = N_Subtype_Indication then
18397 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18398 end if;
18400 -- In the subtype indication case, if the immediate parent of the
18401 -- new subtype is non-static, then the subtype we create is non-
18402 -- static, even if its bounds are static.
18404 if Nkind (N) = N_Subtype_Indication
18405 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18406 then
18407 Set_Is_Non_Static_Subtype (Def_Id);
18408 end if;
18409 end if;
18411 -- Final step is to label the index with this constructed type
18413 Set_Etype (N, Def_Id);
18414 end Make_Index;
18416 ------------------------------
18417 -- Modular_Type_Declaration --
18418 ------------------------------
18420 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18421 Mod_Expr : constant Node_Id := Expression (Def);
18422 M_Val : Uint;
18424 procedure Set_Modular_Size (Bits : Int);
18425 -- Sets RM_Size to Bits, and Esize to normal word size above this
18427 ----------------------
18428 -- Set_Modular_Size --
18429 ----------------------
18431 procedure Set_Modular_Size (Bits : Int) is
18432 begin
18433 Set_RM_Size (T, UI_From_Int (Bits));
18435 if Bits <= 8 then
18436 Init_Esize (T, 8);
18438 elsif Bits <= 16 then
18439 Init_Esize (T, 16);
18441 elsif Bits <= 32 then
18442 Init_Esize (T, 32);
18444 else
18445 Init_Esize (T, System_Max_Binary_Modulus_Power);
18446 end if;
18448 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18449 Set_Is_Known_Valid (T);
18450 end if;
18451 end Set_Modular_Size;
18453 -- Start of processing for Modular_Type_Declaration
18455 begin
18456 -- If the mod expression is (exactly) 2 * literal, where literal is
18457 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18459 if Warn_On_Suspicious_Modulus_Value
18460 and then Nkind (Mod_Expr) = N_Op_Multiply
18461 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18462 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18463 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18464 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18465 then
18466 Error_Msg_N
18467 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18468 end if;
18470 -- Proceed with analysis of mod expression
18472 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18473 Set_Etype (T, T);
18474 Set_Ekind (T, E_Modular_Integer_Type);
18475 Init_Alignment (T);
18476 Set_Is_Constrained (T);
18478 if not Is_OK_Static_Expression (Mod_Expr) then
18479 Flag_Non_Static_Expr
18480 ("non-static expression used for modular type bound!", Mod_Expr);
18481 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18482 else
18483 M_Val := Expr_Value (Mod_Expr);
18484 end if;
18486 if M_Val < 1 then
18487 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18488 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18489 end if;
18491 if M_Val > 2 ** Standard_Long_Integer_Size then
18492 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18493 end if;
18495 Set_Modulus (T, M_Val);
18497 -- Create bounds for the modular type based on the modulus given in
18498 -- the type declaration and then analyze and resolve those bounds.
18500 Set_Scalar_Range (T,
18501 Make_Range (Sloc (Mod_Expr),
18502 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18503 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18505 -- Properly analyze the literals for the range. We do this manually
18506 -- because we can't go calling Resolve, since we are resolving these
18507 -- bounds with the type, and this type is certainly not complete yet.
18509 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18510 Set_Etype (High_Bound (Scalar_Range (T)), T);
18511 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18512 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18514 -- Loop through powers of two to find number of bits required
18516 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18518 -- Binary case
18520 if M_Val = 2 ** Bits then
18521 Set_Modular_Size (Bits);
18522 return;
18524 -- Nonbinary case
18526 elsif M_Val < 2 ** Bits then
18527 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18528 Set_Non_Binary_Modulus (T);
18530 if Bits > System_Max_Nonbinary_Modulus_Power then
18531 Error_Msg_Uint_1 :=
18532 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18533 Error_Msg_F
18534 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18535 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18536 return;
18538 else
18539 -- In the nonbinary case, set size as per RM 13.3(55)
18541 Set_Modular_Size (Bits);
18542 return;
18543 end if;
18544 end if;
18546 end loop;
18548 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18549 -- so we just signal an error and set the maximum size.
18551 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18552 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18554 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18555 Init_Alignment (T);
18557 end Modular_Type_Declaration;
18559 --------------------------
18560 -- New_Concatenation_Op --
18561 --------------------------
18563 procedure New_Concatenation_Op (Typ : Entity_Id) is
18564 Loc : constant Source_Ptr := Sloc (Typ);
18565 Op : Entity_Id;
18567 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18568 -- Create abbreviated declaration for the formal of a predefined
18569 -- Operator 'Op' of type 'Typ'
18571 --------------------
18572 -- Make_Op_Formal --
18573 --------------------
18575 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18576 Formal : Entity_Id;
18577 begin
18578 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18579 Set_Etype (Formal, Typ);
18580 Set_Mechanism (Formal, Default_Mechanism);
18581 return Formal;
18582 end Make_Op_Formal;
18584 -- Start of processing for New_Concatenation_Op
18586 begin
18587 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18589 Set_Ekind (Op, E_Operator);
18590 Set_Scope (Op, Current_Scope);
18591 Set_Etype (Op, Typ);
18592 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18593 Set_Is_Immediately_Visible (Op);
18594 Set_Is_Intrinsic_Subprogram (Op);
18595 Set_Has_Completion (Op);
18596 Append_Entity (Op, Current_Scope);
18598 Set_Name_Entity_Id (Name_Op_Concat, Op);
18600 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18601 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18602 end New_Concatenation_Op;
18604 -------------------------
18605 -- OK_For_Limited_Init --
18606 -------------------------
18608 -- ???Check all calls of this, and compare the conditions under which it's
18609 -- called.
18611 function OK_For_Limited_Init
18612 (Typ : Entity_Id;
18613 Exp : Node_Id) return Boolean
18615 begin
18616 return Is_CPP_Constructor_Call (Exp)
18617 or else (Ada_Version >= Ada_2005
18618 and then not Debug_Flag_Dot_L
18619 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18620 end OK_For_Limited_Init;
18622 -------------------------------
18623 -- OK_For_Limited_Init_In_05 --
18624 -------------------------------
18626 function OK_For_Limited_Init_In_05
18627 (Typ : Entity_Id;
18628 Exp : Node_Id) return Boolean
18630 begin
18631 -- An object of a limited interface type can be initialized with any
18632 -- expression of a nonlimited descendant type.
18634 if Is_Class_Wide_Type (Typ)
18635 and then Is_Limited_Interface (Typ)
18636 and then not Is_Limited_Type (Etype (Exp))
18637 then
18638 return True;
18639 end if;
18641 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18642 -- case of limited aggregates (including extension aggregates), and
18643 -- function calls. The function call may have been given in prefixed
18644 -- notation, in which case the original node is an indexed component.
18645 -- If the function is parameterless, the original node was an explicit
18646 -- dereference. The function may also be parameterless, in which case
18647 -- the source node is just an identifier.
18649 -- A branch of a conditional expression may have been removed if the
18650 -- condition is statically known. This happens during expansion, and
18651 -- thus will not happen if previous errors were encountered. The check
18652 -- will have been performed on the chosen branch, which replaces the
18653 -- original conditional expression.
18655 if No (Exp) then
18656 return True;
18657 end if;
18659 case Nkind (Original_Node (Exp)) is
18660 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18661 return True;
18663 when N_Identifier =>
18664 return Present (Entity (Original_Node (Exp)))
18665 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18667 when N_Qualified_Expression =>
18668 return
18669 OK_For_Limited_Init_In_05
18670 (Typ, Expression (Original_Node (Exp)));
18672 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18673 -- with a function call, the expander has rewritten the call into an
18674 -- N_Type_Conversion node to force displacement of the pointer to
18675 -- reference the component containing the secondary dispatch table.
18676 -- Otherwise a type conversion is not a legal context.
18677 -- A return statement for a build-in-place function returning a
18678 -- synchronized type also introduces an unchecked conversion.
18680 when N_Type_Conversion |
18681 N_Unchecked_Type_Conversion =>
18682 return not Comes_From_Source (Exp)
18683 and then
18684 OK_For_Limited_Init_In_05
18685 (Typ, Expression (Original_Node (Exp)));
18687 when N_Indexed_Component |
18688 N_Selected_Component |
18689 N_Explicit_Dereference =>
18690 return Nkind (Exp) = N_Function_Call;
18692 -- A use of 'Input is a function call, hence allowed. Normally the
18693 -- attribute will be changed to a call, but the attribute by itself
18694 -- can occur with -gnatc.
18696 when N_Attribute_Reference =>
18697 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18699 -- For a case expression, all dependent expressions must be legal
18701 when N_Case_Expression =>
18702 declare
18703 Alt : Node_Id;
18705 begin
18706 Alt := First (Alternatives (Original_Node (Exp)));
18707 while Present (Alt) loop
18708 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18709 return False;
18710 end if;
18712 Next (Alt);
18713 end loop;
18715 return True;
18716 end;
18718 -- For an if expression, all dependent expressions must be legal
18720 when N_If_Expression =>
18721 declare
18722 Then_Expr : constant Node_Id :=
18723 Next (First (Expressions (Original_Node (Exp))));
18724 Else_Expr : constant Node_Id := Next (Then_Expr);
18725 begin
18726 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18727 and then
18728 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18729 end;
18731 when others =>
18732 return False;
18733 end case;
18734 end OK_For_Limited_Init_In_05;
18736 -------------------------------------------
18737 -- Ordinary_Fixed_Point_Type_Declaration --
18738 -------------------------------------------
18740 procedure Ordinary_Fixed_Point_Type_Declaration
18741 (T : Entity_Id;
18742 Def : Node_Id)
18744 Loc : constant Source_Ptr := Sloc (Def);
18745 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18746 RRS : constant Node_Id := Real_Range_Specification (Def);
18747 Implicit_Base : Entity_Id;
18748 Delta_Val : Ureal;
18749 Small_Val : Ureal;
18750 Low_Val : Ureal;
18751 High_Val : Ureal;
18753 begin
18754 Check_Restriction (No_Fixed_Point, Def);
18756 -- Create implicit base type
18758 Implicit_Base :=
18759 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18760 Set_Etype (Implicit_Base, Implicit_Base);
18762 -- Analyze and process delta expression
18764 Analyze_And_Resolve (Delta_Expr, Any_Real);
18766 Check_Delta_Expression (Delta_Expr);
18767 Delta_Val := Expr_Value_R (Delta_Expr);
18769 Set_Delta_Value (Implicit_Base, Delta_Val);
18771 -- Compute default small from given delta, which is the largest power
18772 -- of two that does not exceed the given delta value.
18774 declare
18775 Tmp : Ureal;
18776 Scale : Int;
18778 begin
18779 Tmp := Ureal_1;
18780 Scale := 0;
18782 if Delta_Val < Ureal_1 then
18783 while Delta_Val < Tmp loop
18784 Tmp := Tmp / Ureal_2;
18785 Scale := Scale + 1;
18786 end loop;
18788 else
18789 loop
18790 Tmp := Tmp * Ureal_2;
18791 exit when Tmp > Delta_Val;
18792 Scale := Scale - 1;
18793 end loop;
18794 end if;
18796 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18797 end;
18799 Set_Small_Value (Implicit_Base, Small_Val);
18801 -- If no range was given, set a dummy range
18803 if RRS <= Empty_Or_Error then
18804 Low_Val := -Small_Val;
18805 High_Val := Small_Val;
18807 -- Otherwise analyze and process given range
18809 else
18810 declare
18811 Low : constant Node_Id := Low_Bound (RRS);
18812 High : constant Node_Id := High_Bound (RRS);
18814 begin
18815 Analyze_And_Resolve (Low, Any_Real);
18816 Analyze_And_Resolve (High, Any_Real);
18817 Check_Real_Bound (Low);
18818 Check_Real_Bound (High);
18820 -- Obtain and set the range
18822 Low_Val := Expr_Value_R (Low);
18823 High_Val := Expr_Value_R (High);
18825 if Low_Val > High_Val then
18826 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18827 end if;
18828 end;
18829 end if;
18831 -- The range for both the implicit base and the declared first subtype
18832 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18833 -- set a temporary range in place. Note that the bounds of the base
18834 -- type will be widened to be symmetrical and to fill the available
18835 -- bits when the type is frozen.
18837 -- We could do this with all discrete types, and probably should, but
18838 -- we absolutely have to do it for fixed-point, since the end-points
18839 -- of the range and the size are determined by the small value, which
18840 -- could be reset before the freeze point.
18842 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18843 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18845 -- Complete definition of first subtype. The inheritance of the rep item
18846 -- chain ensures that SPARK-related pragmas are not clobbered when the
18847 -- ordinary fixed point type acts as a full view of a private type.
18849 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18850 Set_Etype (T, Implicit_Base);
18851 Init_Size_Align (T);
18852 Inherit_Rep_Item_Chain (T, Implicit_Base);
18853 Set_Small_Value (T, Small_Val);
18854 Set_Delta_Value (T, Delta_Val);
18855 Set_Is_Constrained (T);
18856 end Ordinary_Fixed_Point_Type_Declaration;
18858 ----------------------------------
18859 -- Preanalyze_Assert_Expression --
18860 ----------------------------------
18862 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18863 begin
18864 In_Assertion_Expr := In_Assertion_Expr + 1;
18865 Preanalyze_Spec_Expression (N, T);
18866 In_Assertion_Expr := In_Assertion_Expr - 1;
18867 end Preanalyze_Assert_Expression;
18869 -----------------------------------
18870 -- Preanalyze_Default_Expression --
18871 -----------------------------------
18873 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18874 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18875 begin
18876 In_Default_Expr := True;
18877 Preanalyze_Spec_Expression (N, T);
18878 In_Default_Expr := Save_In_Default_Expr;
18879 end Preanalyze_Default_Expression;
18881 --------------------------------
18882 -- Preanalyze_Spec_Expression --
18883 --------------------------------
18885 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18886 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18887 begin
18888 In_Spec_Expression := True;
18889 Preanalyze_And_Resolve (N, T);
18890 In_Spec_Expression := Save_In_Spec_Expression;
18891 end Preanalyze_Spec_Expression;
18893 ----------------------------------------
18894 -- Prepare_Private_Subtype_Completion --
18895 ----------------------------------------
18897 procedure Prepare_Private_Subtype_Completion
18898 (Id : Entity_Id;
18899 Related_Nod : Node_Id)
18901 Id_B : constant Entity_Id := Base_Type (Id);
18902 Full_B : Entity_Id := Full_View (Id_B);
18903 Full : Entity_Id;
18905 begin
18906 if Present (Full_B) then
18908 -- Get to the underlying full view if necessary
18910 if Is_Private_Type (Full_B)
18911 and then Present (Underlying_Full_View (Full_B))
18912 then
18913 Full_B := Underlying_Full_View (Full_B);
18914 end if;
18916 -- The Base_Type is already completed, we can complete the subtype
18917 -- now. We have to create a new entity with the same name, Thus we
18918 -- can't use Create_Itype.
18920 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18921 Set_Is_Itype (Full);
18922 Set_Associated_Node_For_Itype (Full, Related_Nod);
18923 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18924 end if;
18926 -- The parent subtype may be private, but the base might not, in some
18927 -- nested instances. In that case, the subtype does not need to be
18928 -- exchanged. It would still be nice to make private subtypes and their
18929 -- bases consistent at all times ???
18931 if Is_Private_Type (Id_B) then
18932 Append_Elmt (Id, Private_Dependents (Id_B));
18933 end if;
18934 end Prepare_Private_Subtype_Completion;
18936 ---------------------------
18937 -- Process_Discriminants --
18938 ---------------------------
18940 procedure Process_Discriminants
18941 (N : Node_Id;
18942 Prev : Entity_Id := Empty)
18944 Elist : constant Elist_Id := New_Elmt_List;
18945 Id : Node_Id;
18946 Discr : Node_Id;
18947 Discr_Number : Uint;
18948 Discr_Type : Entity_Id;
18949 Default_Present : Boolean := False;
18950 Default_Not_Present : Boolean := False;
18952 begin
18953 -- A composite type other than an array type can have discriminants.
18954 -- On entry, the current scope is the composite type.
18956 -- The discriminants are initially entered into the scope of the type
18957 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18958 -- use, as explained at the end of this procedure.
18960 Discr := First (Discriminant_Specifications (N));
18961 while Present (Discr) loop
18962 Enter_Name (Defining_Identifier (Discr));
18964 -- For navigation purposes we add a reference to the discriminant
18965 -- in the entity for the type. If the current declaration is a
18966 -- completion, place references on the partial view. Otherwise the
18967 -- type is the current scope.
18969 if Present (Prev) then
18971 -- The references go on the partial view, if present. If the
18972 -- partial view has discriminants, the references have been
18973 -- generated already.
18975 if not Has_Discriminants (Prev) then
18976 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18977 end if;
18978 else
18979 Generate_Reference
18980 (Current_Scope, Defining_Identifier (Discr), 'd');
18981 end if;
18983 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18984 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18986 -- Ada 2005 (AI-254)
18988 if Present (Access_To_Subprogram_Definition
18989 (Discriminant_Type (Discr)))
18990 and then Protected_Present (Access_To_Subprogram_Definition
18991 (Discriminant_Type (Discr)))
18992 then
18993 Discr_Type :=
18994 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18995 end if;
18997 else
18998 Find_Type (Discriminant_Type (Discr));
18999 Discr_Type := Etype (Discriminant_Type (Discr));
19001 if Error_Posted (Discriminant_Type (Discr)) then
19002 Discr_Type := Any_Type;
19003 end if;
19004 end if;
19006 -- Handling of discriminants that are access types
19008 if Is_Access_Type (Discr_Type) then
19010 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19011 -- limited record types
19013 if Ada_Version < Ada_2005 then
19014 Check_Access_Discriminant_Requires_Limited
19015 (Discr, Discriminant_Type (Discr));
19016 end if;
19018 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19019 Error_Msg_N
19020 ("(Ada 83) access discriminant not allowed", Discr);
19021 end if;
19023 -- If not access type, must be a discrete type
19025 elsif not Is_Discrete_Type (Discr_Type) then
19026 Error_Msg_N
19027 ("discriminants must have a discrete or access type",
19028 Discriminant_Type (Discr));
19029 end if;
19031 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19033 -- If a discriminant specification includes the assignment compound
19034 -- delimiter followed by an expression, the expression is the default
19035 -- expression of the discriminant; the default expression must be of
19036 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19037 -- a default expression, we do the special preanalysis, since this
19038 -- expression does not freeze (see section "Handling of Default and
19039 -- Per-Object Expressions" in spec of package Sem).
19041 if Present (Expression (Discr)) then
19042 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19044 -- Legaity checks
19046 if Nkind (N) = N_Formal_Type_Declaration then
19047 Error_Msg_N
19048 ("discriminant defaults not allowed for formal type",
19049 Expression (Discr));
19051 -- Flag an error for a tagged type with defaulted discriminants,
19052 -- excluding limited tagged types when compiling for Ada 2012
19053 -- (see AI05-0214).
19055 elsif Is_Tagged_Type (Current_Scope)
19056 and then (not Is_Limited_Type (Current_Scope)
19057 or else Ada_Version < Ada_2012)
19058 and then Comes_From_Source (N)
19059 then
19060 -- Note: see similar test in Check_Or_Process_Discriminants, to
19061 -- handle the (illegal) case of the completion of an untagged
19062 -- view with discriminants with defaults by a tagged full view.
19063 -- We skip the check if Discr does not come from source, to
19064 -- account for the case of an untagged derived type providing
19065 -- defaults for a renamed discriminant from a private untagged
19066 -- ancestor with a tagged full view (ACATS B460006).
19068 if Ada_Version >= Ada_2012 then
19069 Error_Msg_N
19070 ("discriminants of nonlimited tagged type cannot have"
19071 & " defaults",
19072 Expression (Discr));
19073 else
19074 Error_Msg_N
19075 ("discriminants of tagged type cannot have defaults",
19076 Expression (Discr));
19077 end if;
19079 else
19080 Default_Present := True;
19081 Append_Elmt (Expression (Discr), Elist);
19083 -- Tag the defining identifiers for the discriminants with
19084 -- their corresponding default expressions from the tree.
19086 Set_Discriminant_Default_Value
19087 (Defining_Identifier (Discr), Expression (Discr));
19088 end if;
19090 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19091 -- gets set unless we can be sure that no range check is required.
19093 if (GNATprove_Mode or not Expander_Active)
19094 and then not
19095 Is_In_Range
19096 (Expression (Discr), Discr_Type, Assume_Valid => True)
19097 then
19098 Set_Do_Range_Check (Expression (Discr));
19099 end if;
19101 -- No default discriminant value given
19103 else
19104 Default_Not_Present := True;
19105 end if;
19107 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19108 -- Discr_Type but with the null-exclusion attribute
19110 if Ada_Version >= Ada_2005 then
19112 -- Ada 2005 (AI-231): Static checks
19114 if Can_Never_Be_Null (Discr_Type) then
19115 Null_Exclusion_Static_Checks (Discr);
19117 elsif Is_Access_Type (Discr_Type)
19118 and then Null_Exclusion_Present (Discr)
19120 -- No need to check itypes because in their case this check
19121 -- was done at their point of creation
19123 and then not Is_Itype (Discr_Type)
19124 then
19125 if Can_Never_Be_Null (Discr_Type) then
19126 Error_Msg_NE
19127 ("`NOT NULL` not allowed (& already excludes null)",
19128 Discr,
19129 Discr_Type);
19130 end if;
19132 Set_Etype (Defining_Identifier (Discr),
19133 Create_Null_Excluding_Itype
19134 (T => Discr_Type,
19135 Related_Nod => Discr));
19137 -- Check for improper null exclusion if the type is otherwise
19138 -- legal for a discriminant.
19140 elsif Null_Exclusion_Present (Discr)
19141 and then Is_Discrete_Type (Discr_Type)
19142 then
19143 Error_Msg_N
19144 ("null exclusion can only apply to an access type", Discr);
19145 end if;
19147 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19148 -- can't have defaults. Synchronized types, or types that are
19149 -- explicitly limited are fine, but special tests apply to derived
19150 -- types in generics: in a generic body we have to assume the
19151 -- worst, and therefore defaults are not allowed if the parent is
19152 -- a generic formal private type (see ACATS B370001).
19154 if Is_Access_Type (Discr_Type) and then Default_Present then
19155 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19156 or else Is_Limited_Record (Current_Scope)
19157 or else Is_Concurrent_Type (Current_Scope)
19158 or else Is_Concurrent_Record_Type (Current_Scope)
19159 or else Ekind (Current_Scope) = E_Limited_Private_Type
19160 then
19161 if not Is_Derived_Type (Current_Scope)
19162 or else not Is_Generic_Type (Etype (Current_Scope))
19163 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19164 or else Limited_Present
19165 (Type_Definition (Parent (Current_Scope)))
19166 then
19167 null;
19169 else
19170 Error_Msg_N
19171 ("access discriminants of nonlimited types cannot "
19172 & "have defaults", Expression (Discr));
19173 end if;
19175 elsif Present (Expression (Discr)) then
19176 Error_Msg_N
19177 ("(Ada 2005) access discriminants of nonlimited types "
19178 & "cannot have defaults", Expression (Discr));
19179 end if;
19180 end if;
19181 end if;
19183 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19184 -- This check is relevant only when SPARK_Mode is on as it is not a
19185 -- standard Ada legality rule.
19187 if SPARK_Mode = On
19188 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19189 then
19190 Error_Msg_N ("discriminant cannot be volatile", Discr);
19191 end if;
19193 Next (Discr);
19194 end loop;
19196 -- An element list consisting of the default expressions of the
19197 -- discriminants is constructed in the above loop and used to set
19198 -- the Discriminant_Constraint attribute for the type. If an object
19199 -- is declared of this (record or task) type without any explicit
19200 -- discriminant constraint given, this element list will form the
19201 -- actual parameters for the corresponding initialization procedure
19202 -- for the type.
19204 Set_Discriminant_Constraint (Current_Scope, Elist);
19205 Set_Stored_Constraint (Current_Scope, No_Elist);
19207 -- Default expressions must be provided either for all or for none
19208 -- of the discriminants of a discriminant part. (RM 3.7.1)
19210 if Default_Present and then Default_Not_Present then
19211 Error_Msg_N
19212 ("incomplete specification of defaults for discriminants", N);
19213 end if;
19215 -- The use of the name of a discriminant is not allowed in default
19216 -- expressions of a discriminant part if the specification of the
19217 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19219 -- To detect this, the discriminant names are entered initially with an
19220 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19221 -- attempt to use a void entity (for example in an expression that is
19222 -- type-checked) produces the error message: premature usage. Now after
19223 -- completing the semantic analysis of the discriminant part, we can set
19224 -- the Ekind of all the discriminants appropriately.
19226 Discr := First (Discriminant_Specifications (N));
19227 Discr_Number := Uint_1;
19228 while Present (Discr) loop
19229 Id := Defining_Identifier (Discr);
19230 Set_Ekind (Id, E_Discriminant);
19231 Init_Component_Location (Id);
19232 Init_Esize (Id);
19233 Set_Discriminant_Number (Id, Discr_Number);
19235 -- Make sure this is always set, even in illegal programs
19237 Set_Corresponding_Discriminant (Id, Empty);
19239 -- Initialize the Original_Record_Component to the entity itself.
19240 -- Inherit_Components will propagate the right value to
19241 -- discriminants in derived record types.
19243 Set_Original_Record_Component (Id, Id);
19245 -- Create the discriminal for the discriminant
19247 Build_Discriminal (Id);
19249 Next (Discr);
19250 Discr_Number := Discr_Number + 1;
19251 end loop;
19253 Set_Has_Discriminants (Current_Scope);
19254 end Process_Discriminants;
19256 -----------------------
19257 -- Process_Full_View --
19258 -----------------------
19260 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19261 procedure Collect_Implemented_Interfaces
19262 (Typ : Entity_Id;
19263 Ifaces : Elist_Id);
19264 -- Ada 2005: Gather all the interfaces that Typ directly or
19265 -- inherently implements. Duplicate entries are not added to
19266 -- the list Ifaces.
19268 ------------------------------------
19269 -- Collect_Implemented_Interfaces --
19270 ------------------------------------
19272 procedure Collect_Implemented_Interfaces
19273 (Typ : Entity_Id;
19274 Ifaces : Elist_Id)
19276 Iface : Entity_Id;
19277 Iface_Elmt : Elmt_Id;
19279 begin
19280 -- Abstract interfaces are only associated with tagged record types
19282 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19283 return;
19284 end if;
19286 -- Recursively climb to the ancestors
19288 if Etype (Typ) /= Typ
19290 -- Protect the frontend against wrong cyclic declarations like:
19292 -- type B is new A with private;
19293 -- type C is new A with private;
19294 -- private
19295 -- type B is new C with null record;
19296 -- type C is new B with null record;
19298 and then Etype (Typ) /= Priv_T
19299 and then Etype (Typ) /= Full_T
19300 then
19301 -- Keep separate the management of private type declarations
19303 if Ekind (Typ) = E_Record_Type_With_Private then
19305 -- Handle the following illegal usage:
19306 -- type Private_Type is tagged private;
19307 -- private
19308 -- type Private_Type is new Type_Implementing_Iface;
19310 if Present (Full_View (Typ))
19311 and then Etype (Typ) /= Full_View (Typ)
19312 then
19313 if Is_Interface (Etype (Typ)) then
19314 Append_Unique_Elmt (Etype (Typ), Ifaces);
19315 end if;
19317 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19318 end if;
19320 -- Non-private types
19322 else
19323 if Is_Interface (Etype (Typ)) then
19324 Append_Unique_Elmt (Etype (Typ), Ifaces);
19325 end if;
19327 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19328 end if;
19329 end if;
19331 -- Handle entities in the list of abstract interfaces
19333 if Present (Interfaces (Typ)) then
19334 Iface_Elmt := First_Elmt (Interfaces (Typ));
19335 while Present (Iface_Elmt) loop
19336 Iface := Node (Iface_Elmt);
19338 pragma Assert (Is_Interface (Iface));
19340 if not Contain_Interface (Iface, Ifaces) then
19341 Append_Elmt (Iface, Ifaces);
19342 Collect_Implemented_Interfaces (Iface, Ifaces);
19343 end if;
19345 Next_Elmt (Iface_Elmt);
19346 end loop;
19347 end if;
19348 end Collect_Implemented_Interfaces;
19350 -- Local variables
19352 Full_Indic : Node_Id;
19353 Full_Parent : Entity_Id;
19354 Priv_Parent : Entity_Id;
19356 -- Start of processing for Process_Full_View
19358 begin
19359 -- First some sanity checks that must be done after semantic
19360 -- decoration of the full view and thus cannot be placed with other
19361 -- similar checks in Find_Type_Name
19363 if not Is_Limited_Type (Priv_T)
19364 and then (Is_Limited_Type (Full_T)
19365 or else Is_Limited_Composite (Full_T))
19366 then
19367 if In_Instance then
19368 null;
19369 else
19370 Error_Msg_N
19371 ("completion of nonlimited type cannot be limited", Full_T);
19372 Explain_Limited_Type (Full_T, Full_T);
19373 end if;
19375 elsif Is_Abstract_Type (Full_T)
19376 and then not Is_Abstract_Type (Priv_T)
19377 then
19378 Error_Msg_N
19379 ("completion of nonabstract type cannot be abstract", Full_T);
19381 elsif Is_Tagged_Type (Priv_T)
19382 and then Is_Limited_Type (Priv_T)
19383 and then not Is_Limited_Type (Full_T)
19384 then
19385 -- If pragma CPP_Class was applied to the private declaration
19386 -- propagate the limitedness to the full-view
19388 if Is_CPP_Class (Priv_T) then
19389 Set_Is_Limited_Record (Full_T);
19391 -- GNAT allow its own definition of Limited_Controlled to disobey
19392 -- this rule in order in ease the implementation. This test is safe
19393 -- because Root_Controlled is defined in a child of System that
19394 -- normal programs are not supposed to use.
19396 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19397 Set_Is_Limited_Composite (Full_T);
19398 else
19399 Error_Msg_N
19400 ("completion of limited tagged type must be limited", Full_T);
19401 end if;
19403 elsif Is_Generic_Type (Priv_T) then
19404 Error_Msg_N ("generic type cannot have a completion", Full_T);
19405 end if;
19407 -- Check that ancestor interfaces of private and full views are
19408 -- consistent. We omit this check for synchronized types because
19409 -- they are performed on the corresponding record type when frozen.
19411 if Ada_Version >= Ada_2005
19412 and then Is_Tagged_Type (Priv_T)
19413 and then Is_Tagged_Type (Full_T)
19414 and then not Is_Concurrent_Type (Full_T)
19415 then
19416 declare
19417 Iface : Entity_Id;
19418 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19419 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19421 begin
19422 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19423 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19425 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19426 -- an interface type if and only if the full type is descendant
19427 -- of the interface type (AARM 7.3 (7.3/2)).
19429 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19431 if Present (Iface) then
19432 Error_Msg_NE
19433 ("interface in partial view& not implemented by full type "
19434 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19435 end if;
19437 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19439 if Present (Iface) then
19440 Error_Msg_NE
19441 ("interface & not implemented by partial view "
19442 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19443 end if;
19444 end;
19445 end if;
19447 if Is_Tagged_Type (Priv_T)
19448 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19449 and then Is_Derived_Type (Full_T)
19450 then
19451 Priv_Parent := Etype (Priv_T);
19453 -- The full view of a private extension may have been transformed
19454 -- into an unconstrained derived type declaration and a subtype
19455 -- declaration (see build_derived_record_type for details).
19457 if Nkind (N) = N_Subtype_Declaration then
19458 Full_Indic := Subtype_Indication (N);
19459 Full_Parent := Etype (Base_Type (Full_T));
19460 else
19461 Full_Indic := Subtype_Indication (Type_Definition (N));
19462 Full_Parent := Etype (Full_T);
19463 end if;
19465 -- Check that the parent type of the full type is a descendant of
19466 -- the ancestor subtype given in the private extension. If either
19467 -- entity has an Etype equal to Any_Type then we had some previous
19468 -- error situation [7.3(8)].
19470 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19471 return;
19473 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19474 -- any order. Therefore we don't have to check that its parent must
19475 -- be a descendant of the parent of the private type declaration.
19477 elsif Is_Interface (Priv_Parent)
19478 and then Is_Interface (Full_Parent)
19479 then
19480 null;
19482 -- Ada 2005 (AI-251): If the parent of the private type declaration
19483 -- is an interface there is no need to check that it is an ancestor
19484 -- of the associated full type declaration. The required tests for
19485 -- this case are performed by Build_Derived_Record_Type.
19487 elsif not Is_Interface (Base_Type (Priv_Parent))
19488 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19489 then
19490 Error_Msg_N
19491 ("parent of full type must descend from parent"
19492 & " of private extension", Full_Indic);
19494 -- First check a formal restriction, and then proceed with checking
19495 -- Ada rules. Since the formal restriction is not a serious error, we
19496 -- don't prevent further error detection for this check, hence the
19497 -- ELSE.
19499 else
19500 -- In formal mode, when completing a private extension the type
19501 -- named in the private part must be exactly the same as that
19502 -- named in the visible part.
19504 if Priv_Parent /= Full_Parent then
19505 Error_Msg_Name_1 := Chars (Priv_Parent);
19506 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19507 end if;
19509 -- Check the rules of 7.3(10): if the private extension inherits
19510 -- known discriminants, then the full type must also inherit those
19511 -- discriminants from the same (ancestor) type, and the parent
19512 -- subtype of the full type must be constrained if and only if
19513 -- the ancestor subtype of the private extension is constrained.
19515 if No (Discriminant_Specifications (Parent (Priv_T)))
19516 and then not Has_Unknown_Discriminants (Priv_T)
19517 and then Has_Discriminants (Base_Type (Priv_Parent))
19518 then
19519 declare
19520 Priv_Indic : constant Node_Id :=
19521 Subtype_Indication (Parent (Priv_T));
19523 Priv_Constr : constant Boolean :=
19524 Is_Constrained (Priv_Parent)
19525 or else
19526 Nkind (Priv_Indic) = N_Subtype_Indication
19527 or else
19528 Is_Constrained (Entity (Priv_Indic));
19530 Full_Constr : constant Boolean :=
19531 Is_Constrained (Full_Parent)
19532 or else
19533 Nkind (Full_Indic) = N_Subtype_Indication
19534 or else
19535 Is_Constrained (Entity (Full_Indic));
19537 Priv_Discr : Entity_Id;
19538 Full_Discr : Entity_Id;
19540 begin
19541 Priv_Discr := First_Discriminant (Priv_Parent);
19542 Full_Discr := First_Discriminant (Full_Parent);
19543 while Present (Priv_Discr) and then Present (Full_Discr) loop
19544 if Original_Record_Component (Priv_Discr) =
19545 Original_Record_Component (Full_Discr)
19546 or else
19547 Corresponding_Discriminant (Priv_Discr) =
19548 Corresponding_Discriminant (Full_Discr)
19549 then
19550 null;
19551 else
19552 exit;
19553 end if;
19555 Next_Discriminant (Priv_Discr);
19556 Next_Discriminant (Full_Discr);
19557 end loop;
19559 if Present (Priv_Discr) or else Present (Full_Discr) then
19560 Error_Msg_N
19561 ("full view must inherit discriminants of the parent"
19562 & " type used in the private extension", Full_Indic);
19564 elsif Priv_Constr and then not Full_Constr then
19565 Error_Msg_N
19566 ("parent subtype of full type must be constrained",
19567 Full_Indic);
19569 elsif Full_Constr and then not Priv_Constr then
19570 Error_Msg_N
19571 ("parent subtype of full type must be unconstrained",
19572 Full_Indic);
19573 end if;
19574 end;
19576 -- Check the rules of 7.3(12): if a partial view has neither
19577 -- known or unknown discriminants, then the full type
19578 -- declaration shall define a definite subtype.
19580 elsif not Has_Unknown_Discriminants (Priv_T)
19581 and then not Has_Discriminants (Priv_T)
19582 and then not Is_Constrained (Full_T)
19583 then
19584 Error_Msg_N
19585 ("full view must define a constrained type if partial view"
19586 & " has no discriminants", Full_T);
19587 end if;
19589 -- ??????? Do we implement the following properly ?????
19590 -- If the ancestor subtype of a private extension has constrained
19591 -- discriminants, then the parent subtype of the full view shall
19592 -- impose a statically matching constraint on those discriminants
19593 -- [7.3(13)].
19594 end if;
19596 else
19597 -- For untagged types, verify that a type without discriminants is
19598 -- not completed with an unconstrained type. A separate error message
19599 -- is produced if the full type has defaulted discriminants.
19601 if Is_Definite_Subtype (Priv_T)
19602 and then not Is_Definite_Subtype (Full_T)
19603 then
19604 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19605 Error_Msg_NE
19606 ("full view of& not compatible with declaration#",
19607 Full_T, Priv_T);
19609 if not Is_Tagged_Type (Full_T) then
19610 Error_Msg_N
19611 ("\one is constrained, the other unconstrained", Full_T);
19612 end if;
19613 end if;
19614 end if;
19616 -- AI-419: verify that the use of "limited" is consistent
19618 declare
19619 Orig_Decl : constant Node_Id := Original_Node (N);
19621 begin
19622 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19623 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19624 and then Nkind
19625 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19626 then
19627 if not Limited_Present (Parent (Priv_T))
19628 and then not Synchronized_Present (Parent (Priv_T))
19629 and then Limited_Present (Type_Definition (Orig_Decl))
19630 then
19631 Error_Msg_N
19632 ("full view of non-limited extension cannot be limited", N);
19634 -- Conversely, if the partial view carries the limited keyword,
19635 -- the full view must as well, even if it may be redundant.
19637 elsif Limited_Present (Parent (Priv_T))
19638 and then not Limited_Present (Type_Definition (Orig_Decl))
19639 then
19640 Error_Msg_N
19641 ("full view of limited extension must be explicitly limited",
19643 end if;
19644 end if;
19645 end;
19647 -- Ada 2005 (AI-443): A synchronized private extension must be
19648 -- completed by a task or protected type.
19650 if Ada_Version >= Ada_2005
19651 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19652 and then Synchronized_Present (Parent (Priv_T))
19653 and then not Is_Concurrent_Type (Full_T)
19654 then
19655 Error_Msg_N ("full view of synchronized extension must " &
19656 "be synchronized type", N);
19657 end if;
19659 -- Ada 2005 AI-363: if the full view has discriminants with
19660 -- defaults, it is illegal to declare constrained access subtypes
19661 -- whose designated type is the current type. This allows objects
19662 -- of the type that are declared in the heap to be unconstrained.
19664 if not Has_Unknown_Discriminants (Priv_T)
19665 and then not Has_Discriminants (Priv_T)
19666 and then Has_Discriminants (Full_T)
19667 and then
19668 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19669 then
19670 Set_Has_Constrained_Partial_View (Full_T);
19671 Set_Has_Constrained_Partial_View (Priv_T);
19672 end if;
19674 -- Create a full declaration for all its subtypes recorded in
19675 -- Private_Dependents and swap them similarly to the base type. These
19676 -- are subtypes that have been define before the full declaration of
19677 -- the private type. We also swap the entry in Private_Dependents list
19678 -- so we can properly restore the private view on exit from the scope.
19680 declare
19681 Priv_Elmt : Elmt_Id;
19682 Priv_Scop : Entity_Id;
19683 Priv : Entity_Id;
19684 Full : Entity_Id;
19686 begin
19687 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19688 while Present (Priv_Elmt) loop
19689 Priv := Node (Priv_Elmt);
19690 Priv_Scop := Scope (Priv);
19692 if Ekind_In (Priv, E_Private_Subtype,
19693 E_Limited_Private_Subtype,
19694 E_Record_Subtype_With_Private)
19695 then
19696 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19697 Set_Is_Itype (Full);
19698 Set_Parent (Full, Parent (Priv));
19699 Set_Associated_Node_For_Itype (Full, N);
19701 -- Now we need to complete the private subtype, but since the
19702 -- base type has already been swapped, we must also swap the
19703 -- subtypes (and thus, reverse the arguments in the call to
19704 -- Complete_Private_Subtype). Also note that we may need to
19705 -- re-establish the scope of the private subtype.
19707 Copy_And_Swap (Priv, Full);
19709 if not In_Open_Scopes (Priv_Scop) then
19710 Push_Scope (Priv_Scop);
19712 else
19713 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19715 Priv_Scop := Empty;
19716 end if;
19718 Complete_Private_Subtype (Full, Priv, Full_T, N);
19720 if Present (Priv_Scop) then
19721 Pop_Scope;
19722 end if;
19724 Replace_Elmt (Priv_Elmt, Full);
19725 end if;
19727 Next_Elmt (Priv_Elmt);
19728 end loop;
19729 end;
19731 -- If the private view was tagged, copy the new primitive operations
19732 -- from the private view to the full view.
19734 if Is_Tagged_Type (Full_T) then
19735 declare
19736 Disp_Typ : Entity_Id;
19737 Full_List : Elist_Id;
19738 Prim : Entity_Id;
19739 Prim_Elmt : Elmt_Id;
19740 Priv_List : Elist_Id;
19742 function Contains
19743 (E : Entity_Id;
19744 L : Elist_Id) return Boolean;
19745 -- Determine whether list L contains element E
19747 --------------
19748 -- Contains --
19749 --------------
19751 function Contains
19752 (E : Entity_Id;
19753 L : Elist_Id) return Boolean
19755 List_Elmt : Elmt_Id;
19757 begin
19758 List_Elmt := First_Elmt (L);
19759 while Present (List_Elmt) loop
19760 if Node (List_Elmt) = E then
19761 return True;
19762 end if;
19764 Next_Elmt (List_Elmt);
19765 end loop;
19767 return False;
19768 end Contains;
19770 -- Start of processing
19772 begin
19773 if Is_Tagged_Type (Priv_T) then
19774 Priv_List := Primitive_Operations (Priv_T);
19775 Prim_Elmt := First_Elmt (Priv_List);
19777 -- In the case of a concurrent type completing a private tagged
19778 -- type, primitives may have been declared in between the two
19779 -- views. These subprograms need to be wrapped the same way
19780 -- entries and protected procedures are handled because they
19781 -- cannot be directly shared by the two views.
19783 if Is_Concurrent_Type (Full_T) then
19784 declare
19785 Conc_Typ : constant Entity_Id :=
19786 Corresponding_Record_Type (Full_T);
19787 Curr_Nod : Node_Id := Parent (Conc_Typ);
19788 Wrap_Spec : Node_Id;
19790 begin
19791 while Present (Prim_Elmt) loop
19792 Prim := Node (Prim_Elmt);
19794 if Comes_From_Source (Prim)
19795 and then not Is_Abstract_Subprogram (Prim)
19796 then
19797 Wrap_Spec :=
19798 Make_Subprogram_Declaration (Sloc (Prim),
19799 Specification =>
19800 Build_Wrapper_Spec
19801 (Subp_Id => Prim,
19802 Obj_Typ => Conc_Typ,
19803 Formals =>
19804 Parameter_Specifications (
19805 Parent (Prim))));
19807 Insert_After (Curr_Nod, Wrap_Spec);
19808 Curr_Nod := Wrap_Spec;
19810 Analyze (Wrap_Spec);
19811 end if;
19813 Next_Elmt (Prim_Elmt);
19814 end loop;
19816 return;
19817 end;
19819 -- For non-concurrent types, transfer explicit primitives, but
19820 -- omit those inherited from the parent of the private view
19821 -- since they will be re-inherited later on.
19823 else
19824 Full_List := Primitive_Operations (Full_T);
19826 while Present (Prim_Elmt) loop
19827 Prim := Node (Prim_Elmt);
19829 if Comes_From_Source (Prim)
19830 and then not Contains (Prim, Full_List)
19831 then
19832 Append_Elmt (Prim, Full_List);
19833 end if;
19835 Next_Elmt (Prim_Elmt);
19836 end loop;
19837 end if;
19839 -- Untagged private view
19841 else
19842 Full_List := Primitive_Operations (Full_T);
19844 -- In this case the partial view is untagged, so here we locate
19845 -- all of the earlier primitives that need to be treated as
19846 -- dispatching (those that appear between the two views). Note
19847 -- that these additional operations must all be new operations
19848 -- (any earlier operations that override inherited operations
19849 -- of the full view will already have been inserted in the
19850 -- primitives list, marked by Check_Operation_From_Private_View
19851 -- as dispatching. Note that implicit "/=" operators are
19852 -- excluded from being added to the primitives list since they
19853 -- shouldn't be treated as dispatching (tagged "/=" is handled
19854 -- specially).
19856 Prim := Next_Entity (Full_T);
19857 while Present (Prim) and then Prim /= Priv_T loop
19858 if Ekind_In (Prim, E_Procedure, E_Function) then
19859 Disp_Typ := Find_Dispatching_Type (Prim);
19861 if Disp_Typ = Full_T
19862 and then (Chars (Prim) /= Name_Op_Ne
19863 or else Comes_From_Source (Prim))
19864 then
19865 Check_Controlling_Formals (Full_T, Prim);
19867 if not Is_Dispatching_Operation (Prim) then
19868 Append_Elmt (Prim, Full_List);
19869 Set_Is_Dispatching_Operation (Prim, True);
19870 Set_DT_Position_Value (Prim, No_Uint);
19871 end if;
19873 elsif Is_Dispatching_Operation (Prim)
19874 and then Disp_Typ /= Full_T
19875 then
19877 -- Verify that it is not otherwise controlled by a
19878 -- formal or a return value of type T.
19880 Check_Controlling_Formals (Disp_Typ, Prim);
19881 end if;
19882 end if;
19884 Next_Entity (Prim);
19885 end loop;
19886 end if;
19888 -- For the tagged case, the two views can share the same primitive
19889 -- operations list and the same class-wide type. Update attributes
19890 -- of the class-wide type which depend on the full declaration.
19892 if Is_Tagged_Type (Priv_T) then
19893 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19894 Set_Class_Wide_Type
19895 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19897 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19898 Set_Has_Protected
19899 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19900 end if;
19901 end;
19902 end if;
19904 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19906 if Known_To_Have_Preelab_Init (Priv_T) then
19908 -- Case where there is a pragma Preelaborable_Initialization. We
19909 -- always allow this in predefined units, which is cheating a bit,
19910 -- but it means we don't have to struggle to meet the requirements in
19911 -- the RM for having Preelaborable Initialization. Otherwise we
19912 -- require that the type meets the RM rules. But we can't check that
19913 -- yet, because of the rule about overriding Initialize, so we simply
19914 -- set a flag that will be checked at freeze time.
19916 if not In_Predefined_Unit (Full_T) then
19917 Set_Must_Have_Preelab_Init (Full_T);
19918 end if;
19919 end if;
19921 -- If pragma CPP_Class was applied to the private type declaration,
19922 -- propagate it now to the full type declaration.
19924 if Is_CPP_Class (Priv_T) then
19925 Set_Is_CPP_Class (Full_T);
19926 Set_Convention (Full_T, Convention_CPP);
19928 -- Check that components of imported CPP types do not have default
19929 -- expressions.
19931 Check_CPP_Type_Has_No_Defaults (Full_T);
19932 end if;
19934 -- If the private view has user specified stream attributes, then so has
19935 -- the full view.
19937 -- Why the test, how could these flags be already set in Full_T ???
19939 if Has_Specified_Stream_Read (Priv_T) then
19940 Set_Has_Specified_Stream_Read (Full_T);
19941 end if;
19943 if Has_Specified_Stream_Write (Priv_T) then
19944 Set_Has_Specified_Stream_Write (Full_T);
19945 end if;
19947 if Has_Specified_Stream_Input (Priv_T) then
19948 Set_Has_Specified_Stream_Input (Full_T);
19949 end if;
19951 if Has_Specified_Stream_Output (Priv_T) then
19952 Set_Has_Specified_Stream_Output (Full_T);
19953 end if;
19955 -- Propagate the attributes related to pragma Default_Initial_Condition
19956 -- from the private to the full view. Note that both flags are mutually
19957 -- exclusive.
19959 if Has_Default_Init_Cond (Priv_T)
19960 or else Has_Inherited_Default_Init_Cond (Priv_T)
19961 then
19962 Propagate_Default_Init_Cond_Attributes
19963 (From_Typ => Priv_T,
19964 To_Typ => Full_T,
19965 Private_To_Full_View => True);
19967 -- In the case where the full view is derived from another private type,
19968 -- the attributes related to pragma Default_Initial_Condition must be
19969 -- propagated from the full to the private view to maintain consistency
19970 -- of views.
19972 -- package Pack is
19973 -- type Parent_Typ is private
19974 -- with Default_Initial_Condition ...;
19975 -- private
19976 -- type Parent_Typ is ...;
19977 -- end Pack;
19979 -- with Pack; use Pack;
19980 -- package Pack_2 is
19981 -- type Deriv_Typ is private; -- must inherit
19982 -- private
19983 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19984 -- end Pack_2;
19986 elsif Has_Default_Init_Cond (Full_T)
19987 or else Has_Inherited_Default_Init_Cond (Full_T)
19988 then
19989 Propagate_Default_Init_Cond_Attributes
19990 (From_Typ => Full_T,
19991 To_Typ => Priv_T,
19992 Private_To_Full_View => True);
19993 end if;
19995 if Is_Ghost_Entity (Priv_T) then
19997 -- The Ghost policy in effect at the point of declaration and at the
19998 -- point of completion must match (SPARK RM 6.9(14)).
20000 Check_Ghost_Completion (Priv_T, Full_T);
20002 -- Propagate the attributes related to pragma Ghost from the private
20003 -- to the full view.
20005 Mark_Full_View_As_Ghost (Priv_T, Full_T);
20006 end if;
20008 -- Propagate invariants to full type
20010 if Has_Invariants (Priv_T) then
20011 Set_Has_Invariants (Full_T);
20012 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
20013 end if;
20015 if Has_Inheritable_Invariants (Priv_T) then
20016 Set_Has_Inheritable_Invariants (Full_T);
20017 end if;
20019 -- Check hidden inheritance of class-wide type invariants
20021 if Ada_Version >= Ada_2012
20022 and then not Has_Inheritable_Invariants (Full_T)
20023 and then In_Private_Part (Current_Scope)
20024 and then Has_Interfaces (Full_T)
20025 then
20026 declare
20027 Ifaces : Elist_Id;
20028 AI : Elmt_Id;
20030 begin
20031 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
20033 AI := First_Elmt (Ifaces);
20034 while Present (AI) loop
20035 if Has_Inheritable_Invariants (Node (AI)) then
20036 Error_Msg_N
20037 ("hidden inheritance of class-wide type invariants " &
20038 "not allowed", N);
20039 exit;
20040 end if;
20042 Next_Elmt (AI);
20043 end loop;
20044 end;
20045 end if;
20047 -- Propagate predicates to full type, and predicate function if already
20048 -- defined. It is not clear that this can actually happen? the partial
20049 -- view cannot be frozen yet, and the predicate function has not been
20050 -- built. Still it is a cheap check and seems safer to make it.
20052 if Has_Predicates (Priv_T) then
20053 if Present (Predicate_Function (Priv_T)) then
20054 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20055 end if;
20057 Set_Has_Predicates (Full_T);
20058 end if;
20059 end Process_Full_View;
20061 -----------------------------------
20062 -- Process_Incomplete_Dependents --
20063 -----------------------------------
20065 procedure Process_Incomplete_Dependents
20066 (N : Node_Id;
20067 Full_T : Entity_Id;
20068 Inc_T : Entity_Id)
20070 Inc_Elmt : Elmt_Id;
20071 Priv_Dep : Entity_Id;
20072 New_Subt : Entity_Id;
20074 Disc_Constraint : Elist_Id;
20076 begin
20077 if No (Private_Dependents (Inc_T)) then
20078 return;
20079 end if;
20081 -- Itypes that may be generated by the completion of an incomplete
20082 -- subtype are not used by the back-end and not attached to the tree.
20083 -- They are created only for constraint-checking purposes.
20085 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20086 while Present (Inc_Elmt) loop
20087 Priv_Dep := Node (Inc_Elmt);
20089 if Ekind (Priv_Dep) = E_Subprogram_Type then
20091 -- An Access_To_Subprogram type may have a return type or a
20092 -- parameter type that is incomplete. Replace with the full view.
20094 if Etype (Priv_Dep) = Inc_T then
20095 Set_Etype (Priv_Dep, Full_T);
20096 end if;
20098 declare
20099 Formal : Entity_Id;
20101 begin
20102 Formal := First_Formal (Priv_Dep);
20103 while Present (Formal) loop
20104 if Etype (Formal) = Inc_T then
20105 Set_Etype (Formal, Full_T);
20106 end if;
20108 Next_Formal (Formal);
20109 end loop;
20110 end;
20112 elsif Is_Overloadable (Priv_Dep) then
20114 -- If a subprogram in the incomplete dependents list is primitive
20115 -- for a tagged full type then mark it as a dispatching operation,
20116 -- check whether it overrides an inherited subprogram, and check
20117 -- restrictions on its controlling formals. Note that a protected
20118 -- operation is never dispatching: only its wrapper operation
20119 -- (which has convention Ada) is.
20121 if Is_Tagged_Type (Full_T)
20122 and then Is_Primitive (Priv_Dep)
20123 and then Convention (Priv_Dep) /= Convention_Protected
20124 then
20125 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20126 Set_Is_Dispatching_Operation (Priv_Dep);
20127 Check_Controlling_Formals (Full_T, Priv_Dep);
20128 end if;
20130 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20132 -- Can happen during processing of a body before the completion
20133 -- of a TA type. Ignore, because spec is also on dependent list.
20135 return;
20137 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20138 -- corresponding subtype of the full view.
20140 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20141 Set_Subtype_Indication
20142 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20143 Set_Etype (Priv_Dep, Full_T);
20144 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20145 Set_Analyzed (Parent (Priv_Dep), False);
20147 -- Reanalyze the declaration, suppressing the call to
20148 -- Enter_Name to avoid duplicate names.
20150 Analyze_Subtype_Declaration
20151 (N => Parent (Priv_Dep),
20152 Skip => True);
20154 -- Dependent is a subtype
20156 else
20157 -- We build a new subtype indication using the full view of the
20158 -- incomplete parent. The discriminant constraints have been
20159 -- elaborated already at the point of the subtype declaration.
20161 New_Subt := Create_Itype (E_Void, N);
20163 if Has_Discriminants (Full_T) then
20164 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20165 else
20166 Disc_Constraint := No_Elist;
20167 end if;
20169 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20170 Set_Full_View (Priv_Dep, New_Subt);
20171 end if;
20173 Next_Elmt (Inc_Elmt);
20174 end loop;
20175 end Process_Incomplete_Dependents;
20177 --------------------------------
20178 -- Process_Range_Expr_In_Decl --
20179 --------------------------------
20181 procedure Process_Range_Expr_In_Decl
20182 (R : Node_Id;
20183 T : Entity_Id;
20184 Subtyp : Entity_Id := Empty;
20185 Check_List : List_Id := Empty_List;
20186 R_Check_Off : Boolean := False;
20187 In_Iter_Schm : Boolean := False)
20189 Lo, Hi : Node_Id;
20190 R_Checks : Check_Result;
20191 Insert_Node : Node_Id;
20192 Def_Id : Entity_Id;
20194 begin
20195 Analyze_And_Resolve (R, Base_Type (T));
20197 if Nkind (R) = N_Range then
20199 -- In SPARK, all ranges should be static, with the exception of the
20200 -- discrete type definition of a loop parameter specification.
20202 if not In_Iter_Schm
20203 and then not Is_OK_Static_Range (R)
20204 then
20205 Check_SPARK_05_Restriction ("range should be static", R);
20206 end if;
20208 Lo := Low_Bound (R);
20209 Hi := High_Bound (R);
20211 -- Validity checks on the range of a quantified expression are
20212 -- delayed until the construct is transformed into a loop.
20214 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20215 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20216 then
20217 null;
20219 -- We need to ensure validity of the bounds here, because if we
20220 -- go ahead and do the expansion, then the expanded code will get
20221 -- analyzed with range checks suppressed and we miss the check.
20223 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20224 -- the temporaries generated by routine Remove_Side_Effects by means
20225 -- of validity checks must use the same names. When a range appears
20226 -- in the parent of a generic, the range is processed with checks
20227 -- disabled as part of the generic context and with checks enabled
20228 -- for code generation purposes. This leads to link issues as the
20229 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20230 -- template sees the temporaries generated by Remove_Side_Effects.
20232 else
20233 Validity_Check_Range (R, Subtyp);
20234 end if;
20236 -- If there were errors in the declaration, try and patch up some
20237 -- common mistakes in the bounds. The cases handled are literals
20238 -- which are Integer where the expected type is Real and vice versa.
20239 -- These corrections allow the compilation process to proceed further
20240 -- along since some basic assumptions of the format of the bounds
20241 -- are guaranteed.
20243 if Etype (R) = Any_Type then
20244 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20245 Rewrite (Lo,
20246 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20248 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20249 Rewrite (Hi,
20250 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20252 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20253 Rewrite (Lo,
20254 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20256 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20257 Rewrite (Hi,
20258 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20259 end if;
20261 Set_Etype (Lo, T);
20262 Set_Etype (Hi, T);
20263 end if;
20265 -- If the bounds of the range have been mistakenly given as string
20266 -- literals (perhaps in place of character literals), then an error
20267 -- has already been reported, but we rewrite the string literal as a
20268 -- bound of the range's type to avoid blowups in later processing
20269 -- that looks at static values.
20271 if Nkind (Lo) = N_String_Literal then
20272 Rewrite (Lo,
20273 Make_Attribute_Reference (Sloc (Lo),
20274 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20275 Attribute_Name => Name_First));
20276 Analyze_And_Resolve (Lo);
20277 end if;
20279 if Nkind (Hi) = N_String_Literal then
20280 Rewrite (Hi,
20281 Make_Attribute_Reference (Sloc (Hi),
20282 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20283 Attribute_Name => Name_First));
20284 Analyze_And_Resolve (Hi);
20285 end if;
20287 -- If bounds aren't scalar at this point then exit, avoiding
20288 -- problems with further processing of the range in this procedure.
20290 if not Is_Scalar_Type (Etype (Lo)) then
20291 return;
20292 end if;
20294 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20295 -- then range of the base type. Here we check whether the bounds
20296 -- are in the range of the subtype itself. Note that if the bounds
20297 -- represent the null range the Constraint_Error exception should
20298 -- not be raised.
20300 -- ??? The following code should be cleaned up as follows
20302 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20303 -- is done in the call to Range_Check (R, T); below
20305 -- 2. The use of R_Check_Off should be investigated and possibly
20306 -- removed, this would clean up things a bit.
20308 if Is_Null_Range (Lo, Hi) then
20309 null;
20311 else
20312 -- Capture values of bounds and generate temporaries for them
20313 -- if needed, before applying checks, since checks may cause
20314 -- duplication of the expression without forcing evaluation.
20316 -- The forced evaluation removes side effects from expressions,
20317 -- which should occur also in GNATprove mode. Otherwise, we end up
20318 -- with unexpected insertions of actions at places where this is
20319 -- not supposed to occur, e.g. on default parameters of a call.
20321 if Expander_Active or GNATprove_Mode then
20323 -- Call Force_Evaluation to create declarations as needed to
20324 -- deal with side effects, and also create typ_FIRST/LAST
20325 -- entities for bounds if we have a subtype name.
20327 -- Note: we do this transformation even if expansion is not
20328 -- active if we are in GNATprove_Mode since the transformation
20329 -- is in general required to ensure that the resulting tree has
20330 -- proper Ada semantics.
20332 Force_Evaluation
20333 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20334 Force_Evaluation
20335 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20336 end if;
20338 -- We use a flag here instead of suppressing checks on the type
20339 -- because the type we check against isn't necessarily the place
20340 -- where we put the check.
20342 if not R_Check_Off then
20343 R_Checks := Get_Range_Checks (R, T);
20345 -- Look up tree to find an appropriate insertion point. We
20346 -- can't just use insert_actions because later processing
20347 -- depends on the insertion node. Prior to Ada 2012 the
20348 -- insertion point could only be a declaration or a loop, but
20349 -- quantified expressions can appear within any context in an
20350 -- expression, and the insertion point can be any statement,
20351 -- pragma, or declaration.
20353 Insert_Node := Parent (R);
20354 while Present (Insert_Node) loop
20355 exit when
20356 Nkind (Insert_Node) in N_Declaration
20357 and then
20358 not Nkind_In
20359 (Insert_Node, N_Component_Declaration,
20360 N_Loop_Parameter_Specification,
20361 N_Function_Specification,
20362 N_Procedure_Specification);
20364 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20365 or else Nkind (Insert_Node) in
20366 N_Statement_Other_Than_Procedure_Call
20367 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20368 N_Pragma);
20370 Insert_Node := Parent (Insert_Node);
20371 end loop;
20373 -- Why would Type_Decl not be present??? Without this test,
20374 -- short regression tests fail.
20376 if Present (Insert_Node) then
20378 -- Case of loop statement. Verify that the range is part
20379 -- of the subtype indication of the iteration scheme.
20381 if Nkind (Insert_Node) = N_Loop_Statement then
20382 declare
20383 Indic : Node_Id;
20385 begin
20386 Indic := Parent (R);
20387 while Present (Indic)
20388 and then Nkind (Indic) /= N_Subtype_Indication
20389 loop
20390 Indic := Parent (Indic);
20391 end loop;
20393 if Present (Indic) then
20394 Def_Id := Etype (Subtype_Mark (Indic));
20396 Insert_Range_Checks
20397 (R_Checks,
20398 Insert_Node,
20399 Def_Id,
20400 Sloc (Insert_Node),
20402 Do_Before => True);
20403 end if;
20404 end;
20406 -- Insertion before a declaration. If the declaration
20407 -- includes discriminants, the list of applicable checks
20408 -- is given by the caller.
20410 elsif Nkind (Insert_Node) in N_Declaration then
20411 Def_Id := Defining_Identifier (Insert_Node);
20413 if (Ekind (Def_Id) = E_Record_Type
20414 and then Depends_On_Discriminant (R))
20415 or else
20416 (Ekind (Def_Id) = E_Protected_Type
20417 and then Has_Discriminants (Def_Id))
20418 then
20419 Append_Range_Checks
20420 (R_Checks,
20421 Check_List, Def_Id, Sloc (Insert_Node), R);
20423 else
20424 Insert_Range_Checks
20425 (R_Checks,
20426 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20428 end if;
20430 -- Insertion before a statement. Range appears in the
20431 -- context of a quantified expression. Insertion will
20432 -- take place when expression is expanded.
20434 else
20435 null;
20436 end if;
20437 end if;
20438 end if;
20439 end if;
20441 -- Case of other than an explicit N_Range node
20443 -- The forced evaluation removes side effects from expressions, which
20444 -- should occur also in GNATprove mode. Otherwise, we end up with
20445 -- unexpected insertions of actions at places where this is not
20446 -- supposed to occur, e.g. on default parameters of a call.
20448 elsif Expander_Active or GNATprove_Mode then
20449 Get_Index_Bounds (R, Lo, Hi);
20450 Force_Evaluation (Lo);
20451 Force_Evaluation (Hi);
20452 end if;
20453 end Process_Range_Expr_In_Decl;
20455 --------------------------------------
20456 -- Process_Real_Range_Specification --
20457 --------------------------------------
20459 procedure Process_Real_Range_Specification (Def : Node_Id) is
20460 Spec : constant Node_Id := Real_Range_Specification (Def);
20461 Lo : Node_Id;
20462 Hi : Node_Id;
20463 Err : Boolean := False;
20465 procedure Analyze_Bound (N : Node_Id);
20466 -- Analyze and check one bound
20468 -------------------
20469 -- Analyze_Bound --
20470 -------------------
20472 procedure Analyze_Bound (N : Node_Id) is
20473 begin
20474 Analyze_And_Resolve (N, Any_Real);
20476 if not Is_OK_Static_Expression (N) then
20477 Flag_Non_Static_Expr
20478 ("bound in real type definition is not static!", N);
20479 Err := True;
20480 end if;
20481 end Analyze_Bound;
20483 -- Start of processing for Process_Real_Range_Specification
20485 begin
20486 if Present (Spec) then
20487 Lo := Low_Bound (Spec);
20488 Hi := High_Bound (Spec);
20489 Analyze_Bound (Lo);
20490 Analyze_Bound (Hi);
20492 -- If error, clear away junk range specification
20494 if Err then
20495 Set_Real_Range_Specification (Def, Empty);
20496 end if;
20497 end if;
20498 end Process_Real_Range_Specification;
20500 ---------------------
20501 -- Process_Subtype --
20502 ---------------------
20504 function Process_Subtype
20505 (S : Node_Id;
20506 Related_Nod : Node_Id;
20507 Related_Id : Entity_Id := Empty;
20508 Suffix : Character := ' ') return Entity_Id
20510 P : Node_Id;
20511 Def_Id : Entity_Id;
20512 Error_Node : Node_Id;
20513 Full_View_Id : Entity_Id;
20514 Subtype_Mark_Id : Entity_Id;
20516 May_Have_Null_Exclusion : Boolean;
20518 procedure Check_Incomplete (T : Entity_Id);
20519 -- Called to verify that an incomplete type is not used prematurely
20521 ----------------------
20522 -- Check_Incomplete --
20523 ----------------------
20525 procedure Check_Incomplete (T : Entity_Id) is
20526 begin
20527 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20529 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20530 and then
20531 not (Ada_Version >= Ada_2005
20532 and then
20533 (Nkind (Parent (T)) = N_Subtype_Declaration
20534 or else (Nkind (Parent (T)) = N_Subtype_Indication
20535 and then Nkind (Parent (Parent (T))) =
20536 N_Subtype_Declaration)))
20537 then
20538 Error_Msg_N ("invalid use of type before its full declaration", T);
20539 end if;
20540 end Check_Incomplete;
20542 -- Start of processing for Process_Subtype
20544 begin
20545 -- Case of no constraints present
20547 if Nkind (S) /= N_Subtype_Indication then
20548 Find_Type (S);
20549 Check_Incomplete (S);
20550 P := Parent (S);
20552 -- Ada 2005 (AI-231): Static check
20554 if Ada_Version >= Ada_2005
20555 and then Present (P)
20556 and then Null_Exclusion_Present (P)
20557 and then Nkind (P) /= N_Access_To_Object_Definition
20558 and then not Is_Access_Type (Entity (S))
20559 then
20560 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20561 end if;
20563 -- The following is ugly, can't we have a range or even a flag???
20565 May_Have_Null_Exclusion :=
20566 Nkind_In (P, N_Access_Definition,
20567 N_Access_Function_Definition,
20568 N_Access_Procedure_Definition,
20569 N_Access_To_Object_Definition,
20570 N_Allocator,
20571 N_Component_Definition)
20572 or else
20573 Nkind_In (P, N_Derived_Type_Definition,
20574 N_Discriminant_Specification,
20575 N_Formal_Object_Declaration,
20576 N_Object_Declaration,
20577 N_Object_Renaming_Declaration,
20578 N_Parameter_Specification,
20579 N_Subtype_Declaration);
20581 -- Create an Itype that is a duplicate of Entity (S) but with the
20582 -- null-exclusion attribute.
20584 if May_Have_Null_Exclusion
20585 and then Is_Access_Type (Entity (S))
20586 and then Null_Exclusion_Present (P)
20588 -- No need to check the case of an access to object definition.
20589 -- It is correct to define double not-null pointers.
20591 -- Example:
20592 -- type Not_Null_Int_Ptr is not null access Integer;
20593 -- type Acc is not null access Not_Null_Int_Ptr;
20595 and then Nkind (P) /= N_Access_To_Object_Definition
20596 then
20597 if Can_Never_Be_Null (Entity (S)) then
20598 case Nkind (Related_Nod) is
20599 when N_Full_Type_Declaration =>
20600 if Nkind (Type_Definition (Related_Nod))
20601 in N_Array_Type_Definition
20602 then
20603 Error_Node :=
20604 Subtype_Indication
20605 (Component_Definition
20606 (Type_Definition (Related_Nod)));
20607 else
20608 Error_Node :=
20609 Subtype_Indication (Type_Definition (Related_Nod));
20610 end if;
20612 when N_Subtype_Declaration =>
20613 Error_Node := Subtype_Indication (Related_Nod);
20615 when N_Object_Declaration =>
20616 Error_Node := Object_Definition (Related_Nod);
20618 when N_Component_Declaration =>
20619 Error_Node :=
20620 Subtype_Indication (Component_Definition (Related_Nod));
20622 when N_Allocator =>
20623 Error_Node := Expression (Related_Nod);
20625 when others =>
20626 pragma Assert (False);
20627 Error_Node := Related_Nod;
20628 end case;
20630 Error_Msg_NE
20631 ("`NOT NULL` not allowed (& already excludes null)",
20632 Error_Node,
20633 Entity (S));
20634 end if;
20636 Set_Etype (S,
20637 Create_Null_Excluding_Itype
20638 (T => Entity (S),
20639 Related_Nod => P));
20640 Set_Entity (S, Etype (S));
20641 end if;
20643 return Entity (S);
20645 -- Case of constraint present, so that we have an N_Subtype_Indication
20646 -- node (this node is created only if constraints are present).
20648 else
20649 Find_Type (Subtype_Mark (S));
20651 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20652 and then not
20653 (Nkind (Parent (S)) = N_Subtype_Declaration
20654 and then Is_Itype (Defining_Identifier (Parent (S))))
20655 then
20656 Check_Incomplete (Subtype_Mark (S));
20657 end if;
20659 P := Parent (S);
20660 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20662 -- Explicit subtype declaration case
20664 if Nkind (P) = N_Subtype_Declaration then
20665 Def_Id := Defining_Identifier (P);
20667 -- Explicit derived type definition case
20669 elsif Nkind (P) = N_Derived_Type_Definition then
20670 Def_Id := Defining_Identifier (Parent (P));
20672 -- Implicit case, the Def_Id must be created as an implicit type.
20673 -- The one exception arises in the case of concurrent types, array
20674 -- and access types, where other subsidiary implicit types may be
20675 -- created and must appear before the main implicit type. In these
20676 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20677 -- has not yet been called to create Def_Id.
20679 else
20680 if Is_Array_Type (Subtype_Mark_Id)
20681 or else Is_Concurrent_Type (Subtype_Mark_Id)
20682 or else Is_Access_Type (Subtype_Mark_Id)
20683 then
20684 Def_Id := Empty;
20686 -- For the other cases, we create a new unattached Itype,
20687 -- and set the indication to ensure it gets attached later.
20689 else
20690 Def_Id :=
20691 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20692 end if;
20693 end if;
20695 -- If the kind of constraint is invalid for this kind of type,
20696 -- then give an error, and then pretend no constraint was given.
20698 if not Is_Valid_Constraint_Kind
20699 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20700 then
20701 Error_Msg_N
20702 ("incorrect constraint for this kind of type", Constraint (S));
20704 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20706 -- Set Ekind of orphan itype, to prevent cascaded errors
20708 if Present (Def_Id) then
20709 Set_Ekind (Def_Id, Ekind (Any_Type));
20710 end if;
20712 -- Make recursive call, having got rid of the bogus constraint
20714 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20715 end if;
20717 -- Remaining processing depends on type. Select on Base_Type kind to
20718 -- ensure getting to the concrete type kind in the case of a private
20719 -- subtype (needed when only doing semantic analysis).
20721 case Ekind (Base_Type (Subtype_Mark_Id)) is
20722 when Access_Kind =>
20724 -- If this is a constraint on a class-wide type, discard it.
20725 -- There is currently no way to express a partial discriminant
20726 -- constraint on a type with unknown discriminants. This is
20727 -- a pathology that the ACATS wisely decides not to test.
20729 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20730 if Comes_From_Source (S) then
20731 Error_Msg_N
20732 ("constraint on class-wide type ignored??",
20733 Constraint (S));
20734 end if;
20736 if Nkind (P) = N_Subtype_Declaration then
20737 Set_Subtype_Indication (P,
20738 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20739 end if;
20741 return Subtype_Mark_Id;
20742 end if;
20744 Constrain_Access (Def_Id, S, Related_Nod);
20746 if Expander_Active
20747 and then Is_Itype (Designated_Type (Def_Id))
20748 and then Nkind (Related_Nod) = N_Subtype_Declaration
20749 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20750 then
20751 Build_Itype_Reference
20752 (Designated_Type (Def_Id), Related_Nod);
20753 end if;
20755 when Array_Kind =>
20756 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20758 when Decimal_Fixed_Point_Kind =>
20759 Constrain_Decimal (Def_Id, S);
20761 when Enumeration_Kind =>
20762 Constrain_Enumeration (Def_Id, S);
20763 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20765 when Ordinary_Fixed_Point_Kind =>
20766 Constrain_Ordinary_Fixed (Def_Id, S);
20768 when Float_Kind =>
20769 Constrain_Float (Def_Id, S);
20771 when Integer_Kind =>
20772 Constrain_Integer (Def_Id, S);
20773 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20775 when E_Record_Type |
20776 E_Record_Subtype |
20777 Class_Wide_Kind |
20778 E_Incomplete_Type =>
20779 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20781 if Ekind (Def_Id) = E_Incomplete_Type then
20782 Set_Private_Dependents (Def_Id, New_Elmt_List);
20783 end if;
20785 when Private_Kind =>
20786 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20788 -- The base type may be private but Def_Id may be a full view
20789 -- in an instance.
20791 if Is_Private_Type (Def_Id) then
20792 Set_Private_Dependents (Def_Id, New_Elmt_List);
20793 end if;
20795 -- In case of an invalid constraint prevent further processing
20796 -- since the type constructed is missing expected fields.
20798 if Etype (Def_Id) = Any_Type then
20799 return Def_Id;
20800 end if;
20802 -- If the full view is that of a task with discriminants,
20803 -- we must constrain both the concurrent type and its
20804 -- corresponding record type. Otherwise we will just propagate
20805 -- the constraint to the full view, if available.
20807 if Present (Full_View (Subtype_Mark_Id))
20808 and then Has_Discriminants (Subtype_Mark_Id)
20809 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20810 then
20811 Full_View_Id :=
20812 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20814 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20815 Constrain_Concurrent (Full_View_Id, S,
20816 Related_Nod, Related_Id, Suffix);
20817 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20818 Set_Full_View (Def_Id, Full_View_Id);
20820 -- Introduce an explicit reference to the private subtype,
20821 -- to prevent scope anomalies in gigi if first use appears
20822 -- in a nested context, e.g. a later function body.
20823 -- Should this be generated in other contexts than a full
20824 -- type declaration?
20826 if Is_Itype (Def_Id)
20827 and then
20828 Nkind (Parent (P)) = N_Full_Type_Declaration
20829 then
20830 Build_Itype_Reference (Def_Id, Parent (P));
20831 end if;
20833 else
20834 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20835 end if;
20837 when Concurrent_Kind =>
20838 Constrain_Concurrent (Def_Id, S,
20839 Related_Nod, Related_Id, Suffix);
20841 when others =>
20842 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20843 end case;
20845 -- Size and Convention are always inherited from the base type
20847 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20848 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20850 return Def_Id;
20851 end if;
20852 end Process_Subtype;
20854 --------------------------------------------
20855 -- Propagate_Default_Init_Cond_Attributes --
20856 --------------------------------------------
20858 procedure Propagate_Default_Init_Cond_Attributes
20859 (From_Typ : Entity_Id;
20860 To_Typ : Entity_Id;
20861 Parent_To_Derivation : Boolean := False;
20862 Private_To_Full_View : Boolean := False)
20864 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20865 -- Remove the default initial procedure (if any) from the rep chain of
20866 -- type Typ.
20868 ----------------------------------------
20869 -- Remove_Default_Init_Cond_Procedure --
20870 ----------------------------------------
20872 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20873 Found : Boolean := False;
20874 Prev : Entity_Id;
20875 Subp : Entity_Id;
20877 begin
20878 Prev := Typ;
20879 Subp := Subprograms_For_Type (Typ);
20880 while Present (Subp) loop
20881 if Is_Default_Init_Cond_Procedure (Subp) then
20882 Found := True;
20883 exit;
20884 end if;
20886 Prev := Subp;
20887 Subp := Subprograms_For_Type (Subp);
20888 end loop;
20890 if Found then
20891 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20892 Set_Subprograms_For_Type (Subp, Empty);
20893 end if;
20894 end Remove_Default_Init_Cond_Procedure;
20896 -- Local variables
20898 Inherit_Procedure : Boolean := False;
20900 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20902 begin
20903 if Has_Default_Init_Cond (From_Typ) then
20905 -- A derived type inherits the attributes from its parent type
20907 if Parent_To_Derivation then
20908 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20910 -- A full view shares the attributes with its private view
20912 else
20913 Set_Has_Default_Init_Cond (To_Typ);
20914 end if;
20916 Inherit_Procedure := True;
20918 -- Due to the order of expansion, a derived private type is processed
20919 -- by two routines which both attempt to set the attributes related
20920 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20921 -- Process_Full_View.
20923 -- package Pack is
20924 -- type Parent_Typ is private
20925 -- with Default_Initial_Condition ...;
20926 -- private
20927 -- type Parent_Typ is ...;
20928 -- end Pack;
20930 -- with Pack; use Pack;
20931 -- package Pack_2 is
20932 -- type Deriv_Typ is private
20933 -- with Default_Initial_Condition ...;
20934 -- private
20935 -- type Deriv_Typ is new Parent_Typ;
20936 -- end Pack_2;
20938 -- When Build_Derived_Type operates, it sets the attributes on the
20939 -- full view without taking into account that the private view may
20940 -- define its own default initial condition procedure. This becomes
20941 -- apparent in Process_Full_View which must undo some of the work by
20942 -- Build_Derived_Type and propagate the attributes from the private
20943 -- to the full view.
20945 if Private_To_Full_View then
20946 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20947 Remove_Default_Init_Cond_Procedure (To_Typ);
20948 end if;
20950 -- A type must inherit the default initial condition procedure from a
20951 -- parent type when the parent itself is inheriting the procedure or
20952 -- when it is defining one. This circuitry is also used when dealing
20953 -- with the private / full view of a type.
20955 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20956 or (Parent_To_Derivation
20957 and Present (Get_Pragma
20958 (From_Typ, Pragma_Default_Initial_Condition)))
20959 then
20960 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20961 Inherit_Procedure := True;
20962 end if;
20964 if Inherit_Procedure
20965 and then No (Default_Init_Cond_Procedure (To_Typ))
20966 then
20967 Set_Default_Init_Cond_Procedure
20968 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20969 end if;
20970 end Propagate_Default_Init_Cond_Attributes;
20972 -----------------------------
20973 -- Record_Type_Declaration --
20974 -----------------------------
20976 procedure Record_Type_Declaration
20977 (T : Entity_Id;
20978 N : Node_Id;
20979 Prev : Entity_Id)
20981 Def : constant Node_Id := Type_Definition (N);
20982 Is_Tagged : Boolean;
20983 Tag_Comp : Entity_Id;
20985 begin
20986 -- These flags must be initialized before calling Process_Discriminants
20987 -- because this routine makes use of them.
20989 Set_Ekind (T, E_Record_Type);
20990 Set_Etype (T, T);
20991 Init_Size_Align (T);
20992 Set_Interfaces (T, No_Elist);
20993 Set_Stored_Constraint (T, No_Elist);
20994 Set_Default_SSO (T);
20996 -- Normal case
20998 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20999 if Limited_Present (Def) then
21000 Check_SPARK_05_Restriction ("limited is not allowed", N);
21001 end if;
21003 if Abstract_Present (Def) then
21004 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21005 end if;
21007 -- The flag Is_Tagged_Type might have already been set by
21008 -- Find_Type_Name if it detected an error for declaration T. This
21009 -- arises in the case of private tagged types where the full view
21010 -- omits the word tagged.
21012 Is_Tagged :=
21013 Tagged_Present (Def)
21014 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21016 Set_Is_Limited_Record (T, Limited_Present (Def));
21018 if Is_Tagged then
21019 Set_Is_Tagged_Type (T, True);
21020 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21021 end if;
21023 -- Type is abstract if full declaration carries keyword, or if
21024 -- previous partial view did.
21026 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21027 or else Abstract_Present (Def));
21029 else
21030 Check_SPARK_05_Restriction ("interface is not allowed", N);
21032 Is_Tagged := True;
21033 Analyze_Interface_Declaration (T, Def);
21035 if Present (Discriminant_Specifications (N)) then
21036 Error_Msg_N
21037 ("interface types cannot have discriminants",
21038 Defining_Identifier
21039 (First (Discriminant_Specifications (N))));
21040 end if;
21041 end if;
21043 -- First pass: if there are self-referential access components,
21044 -- create the required anonymous access type declarations, and if
21045 -- need be an incomplete type declaration for T itself.
21047 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21049 if Ada_Version >= Ada_2005
21050 and then Present (Interface_List (Def))
21051 then
21052 Check_Interfaces (N, Def);
21054 declare
21055 Ifaces_List : Elist_Id;
21057 begin
21058 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21059 -- already in the parents.
21061 Collect_Interfaces
21062 (T => T,
21063 Ifaces_List => Ifaces_List,
21064 Exclude_Parents => True);
21066 Set_Interfaces (T, Ifaces_List);
21067 end;
21068 end if;
21070 -- Records constitute a scope for the component declarations within.
21071 -- The scope is created prior to the processing of these declarations.
21072 -- Discriminants are processed first, so that they are visible when
21073 -- processing the other components. The Ekind of the record type itself
21074 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21076 -- Enter record scope
21078 Push_Scope (T);
21080 -- If an incomplete or private type declaration was already given for
21081 -- the type, then this scope already exists, and the discriminants have
21082 -- been declared within. We must verify that the full declaration
21083 -- matches the incomplete one.
21085 Check_Or_Process_Discriminants (N, T, Prev);
21087 Set_Is_Constrained (T, not Has_Discriminants (T));
21088 Set_Has_Delayed_Freeze (T, True);
21090 -- For tagged types add a manually analyzed component corresponding
21091 -- to the component _tag, the corresponding piece of tree will be
21092 -- expanded as part of the freezing actions if it is not a CPP_Class.
21094 if Is_Tagged then
21096 -- Do not add the tag unless we are in expansion mode
21098 if Expander_Active then
21099 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21100 Enter_Name (Tag_Comp);
21102 Set_Ekind (Tag_Comp, E_Component);
21103 Set_Is_Tag (Tag_Comp);
21104 Set_Is_Aliased (Tag_Comp);
21105 Set_Etype (Tag_Comp, RTE (RE_Tag));
21106 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21107 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21108 Init_Component_Location (Tag_Comp);
21110 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21111 -- implemented interfaces.
21113 if Has_Interfaces (T) then
21114 Add_Interface_Tag_Components (N, T);
21115 end if;
21116 end if;
21118 Make_Class_Wide_Type (T);
21119 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21120 end if;
21122 -- We must suppress range checks when processing record components in
21123 -- the presence of discriminants, since we don't want spurious checks to
21124 -- be generated during their analysis, but Suppress_Range_Checks flags
21125 -- must be reset the after processing the record definition.
21127 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21128 -- couldn't we just use the normal range check suppression method here.
21129 -- That would seem cleaner ???
21131 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21132 Set_Kill_Range_Checks (T, True);
21133 Record_Type_Definition (Def, Prev);
21134 Set_Kill_Range_Checks (T, False);
21135 else
21136 Record_Type_Definition (Def, Prev);
21137 end if;
21139 -- Exit from record scope
21141 End_Scope;
21143 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21144 -- the implemented interfaces and associate them an aliased entity.
21146 if Is_Tagged
21147 and then not Is_Empty_List (Interface_List (Def))
21148 then
21149 Derive_Progenitor_Subprograms (T, T);
21150 end if;
21152 Check_Function_Writable_Actuals (N);
21153 end Record_Type_Declaration;
21155 ----------------------------
21156 -- Record_Type_Definition --
21157 ----------------------------
21159 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21160 Component : Entity_Id;
21161 Ctrl_Components : Boolean := False;
21162 Final_Storage_Only : Boolean;
21163 T : Entity_Id;
21165 begin
21166 if Ekind (Prev_T) = E_Incomplete_Type then
21167 T := Full_View (Prev_T);
21168 else
21169 T := Prev_T;
21170 end if;
21172 -- In SPARK, tagged types and type extensions may only be declared in
21173 -- the specification of library unit packages.
21175 if Present (Def) and then Is_Tagged_Type (T) then
21176 declare
21177 Typ : Node_Id;
21178 Ctxt : Node_Id;
21180 begin
21181 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21182 Typ := Parent (Def);
21183 else
21184 pragma Assert
21185 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21186 Typ := Parent (Parent (Def));
21187 end if;
21189 Ctxt := Parent (Typ);
21191 if Nkind (Ctxt) = N_Package_Body
21192 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21193 then
21194 Check_SPARK_05_Restriction
21195 ("type should be defined in package specification", Typ);
21197 elsif Nkind (Ctxt) /= N_Package_Specification
21198 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21199 then
21200 Check_SPARK_05_Restriction
21201 ("type should be defined in library unit package", Typ);
21202 end if;
21203 end;
21204 end if;
21206 Final_Storage_Only := not Is_Controlled_Active (T);
21208 -- Ada 2005: Check whether an explicit Limited is present in a derived
21209 -- type declaration.
21211 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21212 and then Limited_Present (Parent (Def))
21213 then
21214 Set_Is_Limited_Record (T);
21215 end if;
21217 -- If the component list of a record type is defined by the reserved
21218 -- word null and there is no discriminant part, then the record type has
21219 -- no components and all records of the type are null records (RM 3.7)
21220 -- This procedure is also called to process the extension part of a
21221 -- record extension, in which case the current scope may have inherited
21222 -- components.
21224 if No (Def)
21225 or else No (Component_List (Def))
21226 or else Null_Present (Component_List (Def))
21227 then
21228 if not Is_Tagged_Type (T) then
21229 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21230 end if;
21232 else
21233 Analyze_Declarations (Component_Items (Component_List (Def)));
21235 if Present (Variant_Part (Component_List (Def))) then
21236 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21237 Analyze (Variant_Part (Component_List (Def)));
21238 end if;
21239 end if;
21241 -- After completing the semantic analysis of the record definition,
21242 -- record components, both new and inherited, are accessible. Set their
21243 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21244 -- whose Ekind may be void.
21246 Component := First_Entity (Current_Scope);
21247 while Present (Component) loop
21248 if Ekind (Component) = E_Void
21249 and then not Is_Itype (Component)
21250 then
21251 Set_Ekind (Component, E_Component);
21252 Init_Component_Location (Component);
21253 end if;
21255 if Has_Task (Etype (Component)) then
21256 Set_Has_Task (T);
21257 end if;
21259 if Has_Protected (Etype (Component)) then
21260 Set_Has_Protected (T);
21261 end if;
21263 if Ekind (Component) /= E_Component then
21264 null;
21266 -- Do not set Has_Controlled_Component on a class-wide equivalent
21267 -- type. See Make_CW_Equivalent_Type.
21269 elsif not Is_Class_Wide_Equivalent_Type (T)
21270 and then (Has_Controlled_Component (Etype (Component))
21271 or else (Chars (Component) /= Name_uParent
21272 and then Is_Controlled_Active
21273 (Etype (Component))))
21274 then
21275 Set_Has_Controlled_Component (T, True);
21276 Final_Storage_Only :=
21277 Final_Storage_Only
21278 and then Finalize_Storage_Only (Etype (Component));
21279 Ctrl_Components := True;
21280 end if;
21282 Next_Entity (Component);
21283 end loop;
21285 -- A Type is Finalize_Storage_Only only if all its controlled components
21286 -- are also.
21288 if Ctrl_Components then
21289 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21290 end if;
21292 -- Place reference to end record on the proper entity, which may
21293 -- be a partial view.
21295 if Present (Def) then
21296 Process_End_Label (Def, 'e', Prev_T);
21297 end if;
21298 end Record_Type_Definition;
21300 ------------------------
21301 -- Replace_Components --
21302 ------------------------
21304 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21305 function Process (N : Node_Id) return Traverse_Result;
21307 -------------
21308 -- Process --
21309 -------------
21311 function Process (N : Node_Id) return Traverse_Result is
21312 Comp : Entity_Id;
21314 begin
21315 if Nkind (N) = N_Discriminant_Specification then
21316 Comp := First_Discriminant (Typ);
21317 while Present (Comp) loop
21318 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21319 Set_Defining_Identifier (N, Comp);
21320 exit;
21321 end if;
21323 Next_Discriminant (Comp);
21324 end loop;
21326 elsif Nkind (N) = N_Component_Declaration then
21327 Comp := First_Component (Typ);
21328 while Present (Comp) loop
21329 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21330 Set_Defining_Identifier (N, Comp);
21331 exit;
21332 end if;
21334 Next_Component (Comp);
21335 end loop;
21336 end if;
21338 return OK;
21339 end Process;
21341 procedure Replace is new Traverse_Proc (Process);
21343 -- Start of processing for Replace_Components
21345 begin
21346 Replace (Decl);
21347 end Replace_Components;
21349 -------------------------------
21350 -- Set_Completion_Referenced --
21351 -------------------------------
21353 procedure Set_Completion_Referenced (E : Entity_Id) is
21354 begin
21355 -- If in main unit, mark entity that is a completion as referenced,
21356 -- warnings go on the partial view when needed.
21358 if In_Extended_Main_Source_Unit (E) then
21359 Set_Referenced (E);
21360 end if;
21361 end Set_Completion_Referenced;
21363 ---------------------
21364 -- Set_Default_SSO --
21365 ---------------------
21367 procedure Set_Default_SSO (T : Entity_Id) is
21368 begin
21369 case Opt.Default_SSO is
21370 when ' ' =>
21371 null;
21372 when 'L' =>
21373 Set_SSO_Set_Low_By_Default (T, True);
21374 when 'H' =>
21375 Set_SSO_Set_High_By_Default (T, True);
21376 when others =>
21377 raise Program_Error;
21378 end case;
21379 end Set_Default_SSO;
21381 ---------------------
21382 -- Set_Fixed_Range --
21383 ---------------------
21385 -- The range for fixed-point types is complicated by the fact that we
21386 -- do not know the exact end points at the time of the declaration. This
21387 -- is true for three reasons:
21389 -- A size clause may affect the fudging of the end-points.
21390 -- A small clause may affect the values of the end-points.
21391 -- We try to include the end-points if it does not affect the size.
21393 -- This means that the actual end-points must be established at the
21394 -- point when the type is frozen. Meanwhile, we first narrow the range
21395 -- as permitted (so that it will fit if necessary in a small specified
21396 -- size), and then build a range subtree with these narrowed bounds.
21397 -- Set_Fixed_Range constructs the range from real literal values, and
21398 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21400 -- The parent of this range is set to point to the entity so that it is
21401 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21402 -- other scalar types, which are just pointers to the range in the
21403 -- original tree, this would otherwise be an orphan).
21405 -- The tree is left unanalyzed. When the type is frozen, the processing
21406 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21407 -- analyzed, and uses this as an indication that it should complete
21408 -- work on the range (it will know the final small and size values).
21410 procedure Set_Fixed_Range
21411 (E : Entity_Id;
21412 Loc : Source_Ptr;
21413 Lo : Ureal;
21414 Hi : Ureal)
21416 S : constant Node_Id :=
21417 Make_Range (Loc,
21418 Low_Bound => Make_Real_Literal (Loc, Lo),
21419 High_Bound => Make_Real_Literal (Loc, Hi));
21420 begin
21421 Set_Scalar_Range (E, S);
21422 Set_Parent (S, E);
21424 -- Before the freeze point, the bounds of a fixed point are universal
21425 -- and carry the corresponding type.
21427 Set_Etype (Low_Bound (S), Universal_Real);
21428 Set_Etype (High_Bound (S), Universal_Real);
21429 end Set_Fixed_Range;
21431 ----------------------------------
21432 -- Set_Scalar_Range_For_Subtype --
21433 ----------------------------------
21435 procedure Set_Scalar_Range_For_Subtype
21436 (Def_Id : Entity_Id;
21437 R : Node_Id;
21438 Subt : Entity_Id)
21440 Kind : constant Entity_Kind := Ekind (Def_Id);
21442 begin
21443 -- Defend against previous error
21445 if Nkind (R) = N_Error then
21446 return;
21447 end if;
21449 Set_Scalar_Range (Def_Id, R);
21451 -- We need to link the range into the tree before resolving it so
21452 -- that types that are referenced, including importantly the subtype
21453 -- itself, are properly frozen (Freeze_Expression requires that the
21454 -- expression be properly linked into the tree). Of course if it is
21455 -- already linked in, then we do not disturb the current link.
21457 if No (Parent (R)) then
21458 Set_Parent (R, Def_Id);
21459 end if;
21461 -- Reset the kind of the subtype during analysis of the range, to
21462 -- catch possible premature use in the bounds themselves.
21464 Set_Ekind (Def_Id, E_Void);
21465 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21466 Set_Ekind (Def_Id, Kind);
21467 end Set_Scalar_Range_For_Subtype;
21469 --------------------------------------------------------
21470 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21471 --------------------------------------------------------
21473 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21474 (E : Entity_Id)
21476 begin
21477 -- Make sure set if encountered during Expand_To_Stored_Constraint
21479 Set_Stored_Constraint (E, No_Elist);
21481 -- Give it the right value
21483 if Is_Constrained (E) and then Has_Discriminants (E) then
21484 Set_Stored_Constraint (E,
21485 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21486 end if;
21487 end Set_Stored_Constraint_From_Discriminant_Constraint;
21489 -------------------------------------
21490 -- Signed_Integer_Type_Declaration --
21491 -------------------------------------
21493 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21494 Implicit_Base : Entity_Id;
21495 Base_Typ : Entity_Id;
21496 Lo_Val : Uint;
21497 Hi_Val : Uint;
21498 Errs : Boolean := False;
21499 Lo : Node_Id;
21500 Hi : Node_Id;
21502 function Can_Derive_From (E : Entity_Id) return Boolean;
21503 -- Determine whether given bounds allow derivation from specified type
21505 procedure Check_Bound (Expr : Node_Id);
21506 -- Check bound to make sure it is integral and static. If not, post
21507 -- appropriate error message and set Errs flag
21509 ---------------------
21510 -- Can_Derive_From --
21511 ---------------------
21513 -- Note we check both bounds against both end values, to deal with
21514 -- strange types like ones with a range of 0 .. -12341234.
21516 function Can_Derive_From (E : Entity_Id) return Boolean is
21517 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21518 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21519 begin
21520 return Lo <= Lo_Val and then Lo_Val <= Hi
21521 and then
21522 Lo <= Hi_Val and then Hi_Val <= Hi;
21523 end Can_Derive_From;
21525 -----------------
21526 -- Check_Bound --
21527 -----------------
21529 procedure Check_Bound (Expr : Node_Id) is
21530 begin
21531 -- If a range constraint is used as an integer type definition, each
21532 -- bound of the range must be defined by a static expression of some
21533 -- integer type, but the two bounds need not have the same integer
21534 -- type (Negative bounds are allowed.) (RM 3.5.4)
21536 if not Is_Integer_Type (Etype (Expr)) then
21537 Error_Msg_N
21538 ("integer type definition bounds must be of integer type", Expr);
21539 Errs := True;
21541 elsif not Is_OK_Static_Expression (Expr) then
21542 Flag_Non_Static_Expr
21543 ("non-static expression used for integer type bound!", Expr);
21544 Errs := True;
21546 -- The bounds are folded into literals, and we set their type to be
21547 -- universal, to avoid typing difficulties: we cannot set the type
21548 -- of the literal to the new type, because this would be a forward
21549 -- reference for the back end, and if the original type is user-
21550 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21552 else
21553 if Is_Entity_Name (Expr) then
21554 Fold_Uint (Expr, Expr_Value (Expr), True);
21555 end if;
21557 Set_Etype (Expr, Universal_Integer);
21558 end if;
21559 end Check_Bound;
21561 -- Start of processing for Signed_Integer_Type_Declaration
21563 begin
21564 -- Create an anonymous base type
21566 Implicit_Base :=
21567 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21569 -- Analyze and check the bounds, they can be of any integer type
21571 Lo := Low_Bound (Def);
21572 Hi := High_Bound (Def);
21574 -- Arbitrarily use Integer as the type if either bound had an error
21576 if Hi = Error or else Lo = Error then
21577 Base_Typ := Any_Integer;
21578 Set_Error_Posted (T, True);
21580 -- Here both bounds are OK expressions
21582 else
21583 Analyze_And_Resolve (Lo, Any_Integer);
21584 Analyze_And_Resolve (Hi, Any_Integer);
21586 Check_Bound (Lo);
21587 Check_Bound (Hi);
21589 if Errs then
21590 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21591 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21592 end if;
21594 -- Find type to derive from
21596 Lo_Val := Expr_Value (Lo);
21597 Hi_Val := Expr_Value (Hi);
21599 if Can_Derive_From (Standard_Short_Short_Integer) then
21600 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21602 elsif Can_Derive_From (Standard_Short_Integer) then
21603 Base_Typ := Base_Type (Standard_Short_Integer);
21605 elsif Can_Derive_From (Standard_Integer) then
21606 Base_Typ := Base_Type (Standard_Integer);
21608 elsif Can_Derive_From (Standard_Long_Integer) then
21609 Base_Typ := Base_Type (Standard_Long_Integer);
21611 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21612 Check_Restriction (No_Long_Long_Integers, Def);
21613 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21615 else
21616 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21617 Error_Msg_N ("integer type definition bounds out of range", Def);
21618 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21619 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21620 end if;
21621 end if;
21623 -- Complete both implicit base and declared first subtype entities. The
21624 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21625 -- are not clobbered when the signed integer type acts as a full view of
21626 -- a private type.
21628 Set_Etype (Implicit_Base, Base_Typ);
21629 Set_Size_Info (Implicit_Base, Base_Typ);
21630 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21631 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21632 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21634 Set_Ekind (T, E_Signed_Integer_Subtype);
21635 Set_Etype (T, Implicit_Base);
21636 Set_Size_Info (T, Implicit_Base);
21637 Inherit_Rep_Item_Chain (T, Implicit_Base);
21638 Set_Scalar_Range (T, Def);
21639 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21640 Set_Is_Constrained (T);
21641 end Signed_Integer_Type_Declaration;
21643 end Sem_Ch3;