1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
39 (define_operator_list tcc_comparison
40 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
41 (define_operator_list inverted_tcc_comparison
42 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
43 (define_operator_list inverted_tcc_comparison_with_nans
44 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
45 (define_operator_list swapped_tcc_comparison
46 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
47 (define_operator_list simple_comparison lt le eq ne ge gt)
48 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50 #include "cfn-operators.pd"
52 /* Define operand lists for math rounding functions {,i,l,ll}FN,
53 where the versions prefixed with "i" return an int, those prefixed with
54 "l" return a long and those prefixed with "ll" return a long long.
56 Also define operand lists:
58 X<FN>F for all float functions, in the order i, l, ll
59 X<FN> for all double functions, in the same order
60 X<FN>L for all long double functions, in the same order. */
61 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
62 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
65 (define_operator_list X##FN BUILT_IN_I##FN \
68 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
72 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
73 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77 /* Simplifications of operations with one constant operand and
78 simplifications to constants or single values. */
80 (for op (plus pointer_plus minus bit_ior bit_xor)
85 /* 0 +p index -> (type)index */
87 (pointer_plus integer_zerop @1)
88 (non_lvalue (convert @1)))
90 /* See if ARG1 is zero and X + ARG1 reduces to X.
91 Likewise if the operands are reversed. */
93 (plus:c @0 real_zerop@1)
94 (if (fold_real_zero_addition_p (type, @1, 0))
97 /* See if ARG1 is zero and X - ARG1 reduces to X. */
99 (minus @0 real_zerop@1)
100 (if (fold_real_zero_addition_p (type, @1, 1))
104 This is unsafe for certain floats even in non-IEEE formats.
105 In IEEE, it is unsafe because it does wrong for NaNs.
106 Also note that operand_equal_p is always false if an operand
110 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
111 { build_zero_cst (type); }))
114 (mult @0 integer_zerop@1)
117 /* Maybe fold x * 0 to 0. The expressions aren't the same
118 when x is NaN, since x * 0 is also NaN. Nor are they the
119 same in modes with signed zeros, since multiplying a
120 negative value by 0 gives -0, not +0. */
122 (mult @0 real_zerop@1)
123 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
126 /* In IEEE floating point, x*1 is not equivalent to x for snans.
127 Likewise for complex arithmetic with signed zeros. */
130 (if (!HONOR_SNANS (type)
131 && (!HONOR_SIGNED_ZEROS (type)
132 || !COMPLEX_FLOAT_TYPE_P (type)))
135 /* Transform x * -1.0 into -x. */
137 (mult @0 real_minus_onep)
138 (if (!HONOR_SNANS (type)
139 && (!HONOR_SIGNED_ZEROS (type)
140 || !COMPLEX_FLOAT_TYPE_P (type)))
143 /* Make sure to preserve divisions by zero. This is the reason why
144 we don't simplify x / x to 1 or 0 / x to 0. */
145 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
151 (for div (trunc_div ceil_div floor_div round_div exact_div)
153 (div @0 integer_minus_onep@1)
154 (if (!TYPE_UNSIGNED (type))
157 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
158 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
161 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
162 && TYPE_UNSIGNED (type))
165 /* Combine two successive divisions. Note that combining ceil_div
166 and floor_div is trickier and combining round_div even more so. */
167 (for div (trunc_div exact_div)
169 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
172 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
175 (div @0 { wide_int_to_tree (type, mul); })
176 (if (TYPE_UNSIGNED (type)
177 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
178 { build_zero_cst (type); })))))
180 /* Optimize A / A to 1.0 if we don't care about
181 NaNs or Infinities. */
184 (if (FLOAT_TYPE_P (type)
185 && ! HONOR_NANS (type)
186 && ! HONOR_INFINITIES (type))
187 { build_one_cst (type); }))
189 /* Optimize -A / A to -1.0 if we don't care about
190 NaNs or Infinities. */
192 (rdiv:c @0 (negate @0))
193 (if (FLOAT_TYPE_P (type)
194 && ! HONOR_NANS (type)
195 && ! HONOR_INFINITIES (type))
196 { build_minus_one_cst (type); }))
198 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
201 (if (!HONOR_SNANS (type))
204 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
206 (rdiv @0 real_minus_onep)
207 (if (!HONOR_SNANS (type))
210 (if (flag_reciprocal_math)
211 /* Convert (A/B)/C to A/(B*C) */
213 (rdiv (rdiv:s @0 @1) @2)
214 (rdiv @0 (mult @1 @2)))
216 /* Convert A/(B/C) to (A/B)*C */
218 (rdiv @0 (rdiv:s @1 @2))
219 (mult (rdiv @0 @1) @2)))
221 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
222 (for div (trunc_div ceil_div floor_div round_div exact_div)
224 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
225 (if (integer_pow2p (@2)
226 && tree_int_cst_sgn (@2) > 0
227 && wi::add (@2, @1) == 0
228 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
229 (rshift (convert @0) { build_int_cst (integer_type_node,
230 wi::exact_log2 (@2)); }))))
232 /* If ARG1 is a constant, we can convert this to a multiply by the
233 reciprocal. This does not have the same rounding properties,
234 so only do this if -freciprocal-math. We can actually
235 always safely do it if ARG1 is a power of two, but it's hard to
236 tell if it is or not in a portable manner. */
237 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
241 (if (flag_reciprocal_math
244 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
246 (mult @0 { tem; } )))
247 (if (cst != COMPLEX_CST)
248 (with { tree inverse = exact_inverse (type, @1); }
250 (mult @0 { inverse; } ))))))))
252 /* Same applies to modulo operations, but fold is inconsistent here
253 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
254 (for mod (ceil_mod floor_mod round_mod trunc_mod)
255 /* 0 % X is always zero. */
257 (mod integer_zerop@0 @1)
258 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
259 (if (!integer_zerop (@1))
261 /* X % 1 is always zero. */
263 (mod @0 integer_onep)
264 { build_zero_cst (type); })
265 /* X % -1 is zero. */
267 (mod @0 integer_minus_onep@1)
268 (if (!TYPE_UNSIGNED (type))
269 { build_zero_cst (type); }))
270 /* (X % Y) % Y is just X % Y. */
272 (mod (mod@2 @0 @1) @1)
274 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
276 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
277 (if (ANY_INTEGRAL_TYPE_P (type)
278 && TYPE_OVERFLOW_UNDEFINED (type)
279 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
280 { build_zero_cst (type); })))
282 /* X % -C is the same as X % C. */
284 (trunc_mod @0 INTEGER_CST@1)
285 (if (TYPE_SIGN (type) == SIGNED
286 && !TREE_OVERFLOW (@1)
288 && !TYPE_OVERFLOW_TRAPS (type)
289 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
290 && !sign_bit_p (@1, @1))
291 (trunc_mod @0 (negate @1))))
293 /* X % -Y is the same as X % Y. */
295 (trunc_mod @0 (convert? (negate @1)))
296 (if (!TYPE_UNSIGNED (type)
297 && !TYPE_OVERFLOW_TRAPS (type)
298 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
299 (trunc_mod @0 (convert @1))))
301 /* X - (X / Y) * Y is the same as X % Y. */
303 (minus (convert1? @2) (convert2? (mult:c (trunc_div @0 @1) @1)))
304 /* We cannot use matching captures here, since in the case of
305 constants we really want the type of @0, not @2. */
306 (if (operand_equal_p (@0, @2, 0)
307 && (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)))
308 (convert (trunc_mod @0 @1))))
310 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
311 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
312 Also optimize A % (C << N) where C is a power of 2,
313 to A & ((C << N) - 1). */
314 (match (power_of_two_cand @1)
316 (match (power_of_two_cand @1)
317 (lshift INTEGER_CST@1 @2))
318 (for mod (trunc_mod floor_mod)
320 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
321 (if ((TYPE_UNSIGNED (type)
322 || tree_expr_nonnegative_p (@0))
323 && tree_nop_conversion_p (type, TREE_TYPE (@3))
324 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
325 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
327 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
329 (trunc_div (mult @0 integer_pow2p@1) @1)
330 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
331 (bit_and @0 { wide_int_to_tree
332 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
333 false, TYPE_PRECISION (type))); })))
335 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
337 (mult (trunc_div @0 integer_pow2p@1) @1)
338 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
339 (bit_and @0 (negate @1))))
341 /* Simplify (t * 2) / 2) -> t. */
342 (for div (trunc_div ceil_div floor_div round_div exact_div)
344 (div (mult @0 @1) @1)
345 (if (ANY_INTEGRAL_TYPE_P (type)
346 && TYPE_OVERFLOW_UNDEFINED (type))
350 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
355 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
358 (pows (op @0) REAL_CST@1)
359 (with { HOST_WIDE_INT n; }
360 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
362 /* Strip negate and abs from both operands of hypot. */
370 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
371 (for copysigns (COPYSIGN)
373 (copysigns (op @0) @1)
376 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
381 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
385 (coss (copysigns @0 @1))
388 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
392 (pows (copysigns @0 @1) REAL_CST@1)
393 (with { HOST_WIDE_INT n; }
394 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
399 /* hypot(copysign(x, y), z) -> hypot(x, z). */
401 (hypots (copysigns @0 @1) @2)
403 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
405 (hypots @0 (copysigns @1 @2))
408 /* copysign(copysign(x, y), z) -> copysign(x, z). */
409 (for copysigns (COPYSIGN)
411 (copysigns (copysigns @0 @1) @2)
414 /* copysign(x,y)*copysign(x,y) -> x*x. */
415 (for copysigns (COPYSIGN)
417 (mult (copysigns@2 @0 @1) @2)
420 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
421 (for ccoss (CCOS CCOSH)
426 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
427 (for ops (conj negate)
433 /* Fold (a * (1 << b)) into (a << b) */
435 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
436 (if (! FLOAT_TYPE_P (type)
437 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
440 /* Fold (C1/X)*C2 into (C1*C2)/X. */
442 (mult (rdiv:s REAL_CST@0 @1) REAL_CST@2)
443 (if (flag_associative_math)
445 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
447 (rdiv { tem; } @1)))))
449 /* Convert C1/(X*C2) into (C1/C2)/X */
451 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
452 (if (flag_reciprocal_math)
454 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
456 (rdiv { tem; } @1)))))
458 /* Simplify ~X & X as zero. */
460 (bit_and:c (convert? @0) (convert? (bit_not @0)))
461 { build_zero_cst (type); })
463 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
465 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
466 (minus (bit_xor @0 @1) @1))
468 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
469 (if (wi::bit_not (@2) == @1)
470 (minus (bit_xor @0 @1) @1)))
472 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
474 (minus (bit_and:s @0 @1) (bit_and:cs @0 (bit_not @1)))
475 (minus @1 (bit_xor @0 @1)))
477 /* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
479 (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
482 (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
483 (if (wi::bit_not (@2) == @1)
486 /* X % Y is smaller than Y. */
489 (cmp (trunc_mod @0 @1) @1)
490 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
491 { constant_boolean_node (cmp == LT_EXPR, type); })))
494 (cmp @1 (trunc_mod @0 @1))
495 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
496 { constant_boolean_node (cmp == GT_EXPR, type); })))
500 (bit_ior @0 integer_all_onesp@1)
505 (bit_and @0 integer_zerop@1)
511 (for op (bit_ior bit_xor plus)
513 (op:c (convert? @0) (convert? (bit_not @0)))
514 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
519 { build_zero_cst (type); })
521 /* Canonicalize X ^ ~0 to ~X. */
523 (bit_xor @0 integer_all_onesp@1)
528 (bit_and @0 integer_all_onesp)
531 /* x & x -> x, x | x -> x */
532 (for bitop (bit_and bit_ior)
537 /* x + (x & 1) -> (x + 1) & ~1 */
539 (plus:c @0 (bit_and:s @0 integer_onep@1))
540 (bit_and (plus @0 @1) (bit_not @1)))
542 /* x & ~(x & y) -> x & ~y */
543 /* x | ~(x | y) -> x | ~y */
544 (for bitop (bit_and bit_ior)
546 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
547 (bitop @0 (bit_not @1))))
549 /* (x | y) & ~x -> y & ~x */
550 /* (x & y) | ~x -> y | ~x */
551 (for bitop (bit_and bit_ior)
552 rbitop (bit_ior bit_and)
554 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
557 /* (x & y) ^ (x | y) -> x ^ y */
559 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
562 /* (x ^ y) ^ (x | y) -> x & y */
564 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
567 /* (x & y) + (x ^ y) -> x | y */
568 /* (x & y) | (x ^ y) -> x | y */
569 /* (x & y) ^ (x ^ y) -> x | y */
570 (for op (plus bit_ior bit_xor)
572 (op:c (bit_and @0 @1) (bit_xor @0 @1))
575 /* (x & y) + (x | y) -> x + y */
577 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
580 /* (x + y) - (x | y) -> x & y */
582 (minus (plus @0 @1) (bit_ior @0 @1))
583 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
584 && !TYPE_SATURATING (type))
587 /* (x + y) - (x & y) -> x | y */
589 (minus (plus @0 @1) (bit_and @0 @1))
590 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
591 && !TYPE_SATURATING (type))
594 /* (x | y) - (x ^ y) -> x & y */
596 (minus (bit_ior @0 @1) (bit_xor @0 @1))
599 /* (x | y) - (x & y) -> x ^ y */
601 (minus (bit_ior @0 @1) (bit_and @0 @1))
604 /* (x | y) & ~(x & y) -> x ^ y */
606 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
609 /* (x | y) & (~x ^ y) -> x & y */
611 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
614 /* ~x & ~y -> ~(x | y)
615 ~x | ~y -> ~(x & y) */
616 (for op (bit_and bit_ior)
617 rop (bit_ior bit_and)
619 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
620 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
621 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
622 (bit_not (rop (convert @0) (convert @1))))))
624 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
625 with a constant, and the two constants have no bits in common,
626 we should treat this as a BIT_IOR_EXPR since this may produce more
628 (for op (bit_xor plus)
630 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
631 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
632 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
633 && tree_nop_conversion_p (type, TREE_TYPE (@2))
634 && wi::bit_and (@1, @3) == 0)
635 (bit_ior (convert @4) (convert @5)))))
637 /* (X | Y) ^ X -> Y & ~ X*/
639 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
640 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
641 (convert (bit_and @1 (bit_not @0)))))
643 /* Convert ~X ^ ~Y to X ^ Y. */
645 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
646 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
647 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
648 (bit_xor (convert @0) (convert @1))))
650 /* Convert ~X ^ C to X ^ ~C. */
652 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
653 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
654 (bit_xor (convert @0) (bit_not @1))))
656 /* Fold (X & Y) ^ Y as ~X & Y. */
658 (bit_xor:c (bit_and:c @0 @1) @1)
659 (bit_and (bit_not @0) @1))
661 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
662 operands are another bit-wise operation with a common input. If so,
663 distribute the bit operations to save an operation and possibly two if
664 constants are involved. For example, convert
665 (A | B) & (A | C) into A | (B & C)
666 Further simplification will occur if B and C are constants. */
667 (for op (bit_and bit_ior)
668 rop (bit_ior bit_and)
670 (op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
671 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
672 (rop (convert @0) (op (convert @1) (convert @2))))))
682 (abs tree_expr_nonnegative_p@0)
685 /* A few cases of fold-const.c negate_expr_p predicate. */
688 (if ((INTEGRAL_TYPE_P (type)
689 && TYPE_OVERFLOW_WRAPS (type))
690 || (!TYPE_OVERFLOW_SANITIZED (type)
691 && may_negate_without_overflow_p (t)))))
696 (if (!TYPE_OVERFLOW_SANITIZED (type))))
699 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
700 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
704 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
706 /* (-A) * (-B) -> A * B */
708 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
709 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
710 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
711 (mult (convert @0) (convert (negate @1)))))
713 /* -(A + B) -> (-B) - A. */
715 (negate (plus:c @0 negate_expr_p@1))
716 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
717 && !HONOR_SIGNED_ZEROS (element_mode (type)))
718 (minus (negate @1) @0)))
720 /* A - B -> A + (-B) if B is easily negatable. */
722 (minus @0 negate_expr_p@1)
723 (if (!FIXED_POINT_TYPE_P (type))
724 (plus @0 (negate @1))))
726 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
728 For bitwise binary operations apply operand conversions to the
729 binary operation result instead of to the operands. This allows
730 to combine successive conversions and bitwise binary operations.
731 We combine the above two cases by using a conditional convert. */
732 (for bitop (bit_and bit_ior bit_xor)
734 (bitop (convert @0) (convert? @1))
735 (if (((TREE_CODE (@1) == INTEGER_CST
736 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
737 && int_fits_type_p (@1, TREE_TYPE (@0)))
738 || types_match (@0, @1))
739 /* ??? This transform conflicts with fold-const.c doing
740 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
741 constants (if x has signed type, the sign bit cannot be set
742 in c). This folds extension into the BIT_AND_EXPR.
743 Restrict it to GIMPLE to avoid endless recursions. */
744 && (bitop != BIT_AND_EXPR || GIMPLE)
745 && (/* That's a good idea if the conversion widens the operand, thus
746 after hoisting the conversion the operation will be narrower. */
747 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
748 /* It's also a good idea if the conversion is to a non-integer
750 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
751 /* Or if the precision of TO is not the same as the precision
753 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
754 (convert (bitop @0 (convert @1))))))
756 (for bitop (bit_and bit_ior)
757 rbitop (bit_ior bit_and)
758 /* (x | y) & x -> x */
759 /* (x & y) | x -> x */
761 (bitop:c (rbitop:c @0 @1) @0)
763 /* (~x | y) & x -> x & y */
764 /* (~x & y) | x -> x | y */
766 (bitop:c (rbitop:c (bit_not @0) @1) @0)
769 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
770 (for bitop (bit_and bit_ior bit_xor)
772 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
773 (bit_and (bitop @0 @2) @1)))
775 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
777 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
778 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
780 /* Combine successive equal operations with constants. */
781 (for bitop (bit_and bit_ior bit_xor)
783 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
784 (bitop @0 (bitop @1 @2))))
786 /* Try simple folding for X op !X, and X op X with the help
787 of the truth_valued_p and logical_inverted_value predicates. */
788 (match truth_valued_p
790 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
791 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
792 (match truth_valued_p
794 (match truth_valued_p
797 (match (logical_inverted_value @0)
799 (match (logical_inverted_value @0)
800 (bit_not truth_valued_p@0))
801 (match (logical_inverted_value @0)
802 (eq @0 integer_zerop))
803 (match (logical_inverted_value @0)
804 (ne truth_valued_p@0 integer_truep))
805 (match (logical_inverted_value @0)
806 (bit_xor truth_valued_p@0 integer_truep))
810 (bit_and:c @0 (logical_inverted_value @0))
811 { build_zero_cst (type); })
812 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
813 (for op (bit_ior bit_xor)
815 (op:c truth_valued_p@0 (logical_inverted_value @0))
816 { constant_boolean_node (true, type); }))
817 /* X ==/!= !X is false/true. */
820 (op:c truth_valued_p@0 (logical_inverted_value @0))
821 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
823 /* If arg1 and arg2 are booleans (or any single bit type)
824 then try to simplify:
831 But only do this if our result feeds into a comparison as
832 this transformation is not always a win, particularly on
833 targets with and-not instructions.
834 -> simplify_bitwise_binary_boolean */
836 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
837 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
838 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
841 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
842 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
843 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
848 (bit_not (bit_not @0))
851 /* Convert ~ (-A) to A - 1. */
853 (bit_not (convert? (negate @0)))
854 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
855 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
857 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
859 (bit_not (convert? (minus @0 integer_each_onep)))
860 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
861 (convert (negate @0))))
863 (bit_not (convert? (plus @0 integer_all_onesp)))
864 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
865 (convert (negate @0))))
867 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
869 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
870 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
871 (convert (bit_xor @0 (bit_not @1)))))
873 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
874 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
875 (convert (bit_xor @0 @1))))
877 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
879 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
880 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
882 /* Fold A - (A & B) into ~B & A. */
884 (minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
885 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
886 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
887 (convert (bit_and (bit_not @1) @0))))
891 /* ((X inner_op C0) outer_op C1)
892 With X being a tree where value_range has reasoned certain bits to always be
893 zero throughout its computed value range,
894 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
895 where zero_mask has 1's for all bits that are sure to be 0 in
897 if (inner_op == '^') C0 &= ~C1;
898 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
899 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
901 (for inner_op (bit_ior bit_xor)
902 outer_op (bit_xor bit_ior)
905 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
909 wide_int zero_mask_not;
913 if (TREE_CODE (@2) == SSA_NAME)
914 zero_mask_not = get_nonzero_bits (@2);
918 if (inner_op == BIT_XOR_EXPR)
920 C0 = wi::bit_and_not (@0, @1);
921 cst_emit = wi::bit_or (C0, @1);
926 cst_emit = wi::bit_xor (@0, @1);
929 (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
930 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
931 (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
932 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
934 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
936 (pointer_plus (pointer_plus:s @0 @1) @3)
937 (pointer_plus @0 (plus @1 @3)))
943 tem4 = (unsigned long) tem3;
948 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
949 /* Conditionally look through a sign-changing conversion. */
950 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
951 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
952 || (GENERIC && type == TREE_TYPE (@1))))
956 tem = (sizetype) ptr;
960 and produce the simpler and easier to analyze with respect to alignment
961 ... = ptr & ~algn; */
963 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
964 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
965 (bit_and @0 { algn; })))
967 /* Try folding difference of addresses. */
969 (minus (convert ADDR_EXPR@0) (convert @1))
970 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
971 (with { HOST_WIDE_INT diff; }
972 (if (ptr_difference_const (@0, @1, &diff))
973 { build_int_cst_type (type, diff); }))))
975 (minus (convert @0) (convert ADDR_EXPR@1))
976 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
977 (with { HOST_WIDE_INT diff; }
978 (if (ptr_difference_const (@0, @1, &diff))
979 { build_int_cst_type (type, diff); }))))
981 /* If arg0 is derived from the address of an object or function, we may
982 be able to fold this expression using the object or function's
985 (bit_and (convert? @0) INTEGER_CST@1)
986 (if (POINTER_TYPE_P (TREE_TYPE (@0))
987 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
991 unsigned HOST_WIDE_INT bitpos;
992 get_pointer_alignment_1 (@0, &align, &bitpos);
994 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
995 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
998 /* We can't reassociate at all for saturating types. */
999 (if (!TYPE_SATURATING (type))
1001 /* Contract negates. */
1002 /* A + (-B) -> A - B */
1004 (plus:c (convert1? @0) (convert2? (negate @1)))
1005 /* Apply STRIP_NOPS on @0 and the negate. */
1006 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1007 && tree_nop_conversion_p (type, TREE_TYPE (@1))
1008 && !TYPE_OVERFLOW_SANITIZED (type))
1009 (minus (convert @0) (convert @1))))
1010 /* A - (-B) -> A + B */
1012 (minus (convert1? @0) (convert2? (negate @1)))
1013 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1014 && tree_nop_conversion_p (type, TREE_TYPE (@1))
1015 && !TYPE_OVERFLOW_SANITIZED (type))
1016 (plus (convert @0) (convert @1))))
1019 (negate (convert? (negate @1)))
1020 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1021 && !TYPE_OVERFLOW_SANITIZED (type))
1024 /* We can't reassociate floating-point unless -fassociative-math
1025 or fixed-point plus or minus because of saturation to +-Inf. */
1026 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1027 && !FIXED_POINT_TYPE_P (type))
1029 /* Match patterns that allow contracting a plus-minus pair
1030 irrespective of overflow issues. */
1031 /* (A +- B) - A -> +- B */
1032 /* (A +- B) -+ B -> A */
1033 /* A - (A +- B) -> -+ B */
1034 /* A +- (B -+ A) -> +- B */
1036 (minus (plus:c @0 @1) @0)
1039 (minus (minus @0 @1) @0)
1042 (plus:c (minus @0 @1) @1)
1045 (minus @0 (plus:c @0 @1))
1048 (minus @0 (minus @0 @1))
1051 /* (A +- CST) +- CST -> A + CST */
1052 (for outer_op (plus minus)
1053 (for inner_op (plus minus)
1055 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1056 /* If the constant operation overflows we cannot do the transform
1057 as we would introduce undefined overflow, for example
1058 with (a - 1) + INT_MIN. */
1059 (with { tree cst = fold_binary (outer_op == inner_op
1060 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
1061 (if (cst && !TREE_OVERFLOW (cst))
1062 (inner_op @0 { cst; } ))))))
1064 /* (CST - A) +- CST -> CST - A */
1065 (for outer_op (plus minus)
1067 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1068 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
1069 (if (cst && !TREE_OVERFLOW (cst))
1070 (minus { cst; } @0)))))
1074 (plus:c (bit_not @0) @0)
1075 (if (!TYPE_OVERFLOW_TRAPS (type))
1076 { build_all_ones_cst (type); }))
1080 (plus (convert? (bit_not @0)) integer_each_onep)
1081 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1082 (negate (convert @0))))
1086 (minus (convert? (negate @0)) integer_each_onep)
1087 (if (!TYPE_OVERFLOW_TRAPS (type)
1088 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1089 (bit_not (convert @0))))
1093 (minus integer_all_onesp @0)
1096 /* (T)(P + A) - (T)P -> (T) A */
1097 (for add (plus pointer_plus)
1099 (minus (convert (add @0 @1))
1101 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1102 /* For integer types, if A has a smaller type
1103 than T the result depends on the possible
1105 E.g. T=size_t, A=(unsigned)429497295, P>0.
1106 However, if an overflow in P + A would cause
1107 undefined behavior, we can assume that there
1109 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1110 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1111 /* For pointer types, if the conversion of A to the
1112 final type requires a sign- or zero-extension,
1113 then we have to punt - it is not defined which
1115 || (POINTER_TYPE_P (TREE_TYPE (@0))
1116 && TREE_CODE (@1) == INTEGER_CST
1117 && tree_int_cst_sign_bit (@1) == 0))
1120 /* (T)P - (T)(P + A) -> -(T) A */
1121 (for add (plus pointer_plus)
1124 (convert (add @0 @1)))
1125 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1126 /* For integer types, if A has a smaller type
1127 than T the result depends on the possible
1129 E.g. T=size_t, A=(unsigned)429497295, P>0.
1130 However, if an overflow in P + A would cause
1131 undefined behavior, we can assume that there
1133 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1134 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1135 /* For pointer types, if the conversion of A to the
1136 final type requires a sign- or zero-extension,
1137 then we have to punt - it is not defined which
1139 || (POINTER_TYPE_P (TREE_TYPE (@0))
1140 && TREE_CODE (@1) == INTEGER_CST
1141 && tree_int_cst_sign_bit (@1) == 0))
1142 (negate (convert @1)))))
1144 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1145 (for add (plus pointer_plus)
1147 (minus (convert (add @0 @1))
1148 (convert (add @0 @2)))
1149 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1150 /* For integer types, if A has a smaller type
1151 than T the result depends on the possible
1153 E.g. T=size_t, A=(unsigned)429497295, P>0.
1154 However, if an overflow in P + A would cause
1155 undefined behavior, we can assume that there
1157 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1158 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1159 /* For pointer types, if the conversion of A to the
1160 final type requires a sign- or zero-extension,
1161 then we have to punt - it is not defined which
1163 || (POINTER_TYPE_P (TREE_TYPE (@0))
1164 && TREE_CODE (@1) == INTEGER_CST
1165 && tree_int_cst_sign_bit (@1) == 0
1166 && TREE_CODE (@2) == INTEGER_CST
1167 && tree_int_cst_sign_bit (@2) == 0))
1168 (minus (convert @1) (convert @2)))))))
1171 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1173 (for minmax (min max FMIN FMAX)
1177 /* min(max(x,y),y) -> y. */
1179 (min:c (max:c @0 @1) @1)
1181 /* max(min(x,y),y) -> y. */
1183 (max:c (min:c @0 @1) @1)
1187 (if (INTEGRAL_TYPE_P (type)
1188 && TYPE_MIN_VALUE (type)
1189 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1193 (if (INTEGRAL_TYPE_P (type)
1194 && TYPE_MAX_VALUE (type)
1195 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1197 (for minmax (FMIN FMAX)
1198 /* If either argument is NaN, return the other one. Avoid the
1199 transformation if we get (and honor) a signalling NaN. */
1201 (minmax:c @0 REAL_CST@1)
1202 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1203 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1205 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1206 functions to return the numeric arg if the other one is NaN.
1207 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1208 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1209 worry about it either. */
1210 (if (flag_finite_math_only)
1218 /* Simplifications of shift and rotates. */
1220 (for rotate (lrotate rrotate)
1222 (rotate integer_all_onesp@0 @1)
1225 /* Optimize -1 >> x for arithmetic right shifts. */
1227 (rshift integer_all_onesp@0 @1)
1228 (if (!TYPE_UNSIGNED (type)
1229 && tree_expr_nonnegative_p (@1))
1232 /* Optimize (x >> c) << c into x & (-1<<c). */
1234 (lshift (rshift @0 INTEGER_CST@1) @1)
1235 (if (wi::ltu_p (@1, element_precision (type)))
1236 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1238 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1241 (rshift (lshift @0 INTEGER_CST@1) @1)
1242 (if (TYPE_UNSIGNED (type)
1243 && (wi::ltu_p (@1, element_precision (type))))
1244 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1246 (for shiftrotate (lrotate rrotate lshift rshift)
1248 (shiftrotate @0 integer_zerop)
1251 (shiftrotate integer_zerop@0 @1)
1253 /* Prefer vector1 << scalar to vector1 << vector2
1254 if vector2 is uniform. */
1255 (for vec (VECTOR_CST CONSTRUCTOR)
1257 (shiftrotate @0 vec@1)
1258 (with { tree tem = uniform_vector_p (@1); }
1260 (shiftrotate @0 { tem; }))))))
1262 /* Rewrite an LROTATE_EXPR by a constant into an
1263 RROTATE_EXPR by a new constant. */
1265 (lrotate @0 INTEGER_CST@1)
1266 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
1267 build_int_cst (TREE_TYPE (@1),
1268 element_precision (type)), @1); }))
1270 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1271 (for op (lrotate rrotate rshift lshift)
1273 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1274 (with { unsigned int prec = element_precision (type); }
1275 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1276 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1277 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1278 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1279 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1280 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1281 being well defined. */
1283 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
1284 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
1285 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
1286 { build_zero_cst (type); }
1287 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1288 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
1291 /* ((1 << A) & 1) != 0 -> A == 0
1292 ((1 << A) & 1) == 0 -> A != 0 */
1296 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1297 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
1299 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1300 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1304 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1305 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1307 || (!integer_zerop (@2)
1308 && wi::ne_p (wi::lshift (@0, cand), @2)))
1309 { constant_boolean_node (cmp == NE_EXPR, type); }
1310 (if (!integer_zerop (@2)
1311 && wi::eq_p (wi::lshift (@0, cand), @2))
1312 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
1314 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1315 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1316 if the new mask might be further optimized. */
1317 (for shift (lshift rshift)
1319 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1321 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1322 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1323 && tree_fits_uhwi_p (@1)
1324 && tree_to_uhwi (@1) > 0
1325 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1328 unsigned int shiftc = tree_to_uhwi (@1);
1329 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1330 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1331 tree shift_type = TREE_TYPE (@3);
1334 if (shift == LSHIFT_EXPR)
1335 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
1336 else if (shift == RSHIFT_EXPR
1337 && (TYPE_PRECISION (shift_type)
1338 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1340 prec = TYPE_PRECISION (TREE_TYPE (@3));
1342 /* See if more bits can be proven as zero because of
1345 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1347 tree inner_type = TREE_TYPE (@0);
1348 if ((TYPE_PRECISION (inner_type)
1349 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1350 && TYPE_PRECISION (inner_type) < prec)
1352 prec = TYPE_PRECISION (inner_type);
1353 /* See if we can shorten the right shift. */
1355 shift_type = inner_type;
1356 /* Otherwise X >> C1 is all zeros, so we'll optimize
1357 it into (X, 0) later on by making sure zerobits
1361 zerobits = ~(unsigned HOST_WIDE_INT) 0;
1364 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1365 zerobits <<= prec - shiftc;
1367 /* For arithmetic shift if sign bit could be set, zerobits
1368 can contain actually sign bits, so no transformation is
1369 possible, unless MASK masks them all away. In that
1370 case the shift needs to be converted into logical shift. */
1371 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1372 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1374 if ((mask & zerobits) == 0)
1375 shift_type = unsigned_type_for (TREE_TYPE (@3));
1381 /* ((X << 16) & 0xff00) is (X, 0). */
1382 (if ((mask & zerobits) == mask)
1383 { build_int_cst (type, 0); }
1384 (with { newmask = mask | zerobits; }
1385 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1388 /* Only do the transformation if NEWMASK is some integer
1390 for (prec = BITS_PER_UNIT;
1391 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1392 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
1395 (if (prec < HOST_BITS_PER_WIDE_INT
1396 || newmask == ~(unsigned HOST_WIDE_INT) 0)
1398 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1399 (if (!tree_int_cst_equal (newmaskt, @2))
1400 (if (shift_type != TREE_TYPE (@3))
1401 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1402 (bit_and @4 { newmaskt; })))))))))))))
1404 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1405 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
1406 (for shift (lshift rshift)
1407 (for bit_op (bit_and bit_xor bit_ior)
1409 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1410 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1411 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1412 (bit_op (shift (convert @0) @1) { mask; }))))))
1415 /* Simplifications of conversions. */
1417 /* Basic strip-useless-type-conversions / strip_nops. */
1418 (for cvt (convert view_convert float fix_trunc)
1421 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1422 || (GENERIC && type == TREE_TYPE (@0)))
1425 /* Contract view-conversions. */
1427 (view_convert (view_convert @0))
1430 /* For integral conversions with the same precision or pointer
1431 conversions use a NOP_EXPR instead. */
1434 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1435 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1436 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1439 /* Strip inner integral conversions that do not change precision or size. */
1441 (view_convert (convert@0 @1))
1442 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1443 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1444 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1445 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1448 /* Re-association barriers around constants and other re-association
1449 barriers can be removed. */
1451 (paren CONSTANT_CLASS_P@0)
1454 (paren (paren@1 @0))
1457 /* Handle cases of two conversions in a row. */
1458 (for ocvt (convert float fix_trunc)
1459 (for icvt (convert float)
1464 tree inside_type = TREE_TYPE (@0);
1465 tree inter_type = TREE_TYPE (@1);
1466 int inside_int = INTEGRAL_TYPE_P (inside_type);
1467 int inside_ptr = POINTER_TYPE_P (inside_type);
1468 int inside_float = FLOAT_TYPE_P (inside_type);
1469 int inside_vec = VECTOR_TYPE_P (inside_type);
1470 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1471 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1472 int inter_int = INTEGRAL_TYPE_P (inter_type);
1473 int inter_ptr = POINTER_TYPE_P (inter_type);
1474 int inter_float = FLOAT_TYPE_P (inter_type);
1475 int inter_vec = VECTOR_TYPE_P (inter_type);
1476 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1477 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1478 int final_int = INTEGRAL_TYPE_P (type);
1479 int final_ptr = POINTER_TYPE_P (type);
1480 int final_float = FLOAT_TYPE_P (type);
1481 int final_vec = VECTOR_TYPE_P (type);
1482 unsigned int final_prec = TYPE_PRECISION (type);
1483 int final_unsignedp = TYPE_UNSIGNED (type);
1486 /* In addition to the cases of two conversions in a row
1487 handled below, if we are converting something to its own
1488 type via an object of identical or wider precision, neither
1489 conversion is needed. */
1490 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1492 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1493 && (((inter_int || inter_ptr) && final_int)
1494 || (inter_float && final_float))
1495 && inter_prec >= final_prec)
1498 /* Likewise, if the intermediate and initial types are either both
1499 float or both integer, we don't need the middle conversion if the
1500 former is wider than the latter and doesn't change the signedness
1501 (for integers). Avoid this if the final type is a pointer since
1502 then we sometimes need the middle conversion. Likewise if the
1503 final type has a precision not equal to the size of its mode. */
1504 (if (((inter_int && inside_int) || (inter_float && inside_float))
1505 && (final_int || final_float)
1506 && inter_prec >= inside_prec
1507 && (inter_float || inter_unsignedp == inside_unsignedp)
1508 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1509 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1512 /* If we have a sign-extension of a zero-extended value, we can
1513 replace that by a single zero-extension. Likewise if the
1514 final conversion does not change precision we can drop the
1515 intermediate conversion. */
1516 (if (inside_int && inter_int && final_int
1517 && ((inside_prec < inter_prec && inter_prec < final_prec
1518 && inside_unsignedp && !inter_unsignedp)
1519 || final_prec == inter_prec))
1522 /* Two conversions in a row are not needed unless:
1523 - some conversion is floating-point (overstrict for now), or
1524 - some conversion is a vector (overstrict for now), or
1525 - the intermediate type is narrower than both initial and
1527 - the intermediate type and innermost type differ in signedness,
1528 and the outermost type is wider than the intermediate, or
1529 - the initial type is a pointer type and the precisions of the
1530 intermediate and final types differ, or
1531 - the final type is a pointer type and the precisions of the
1532 initial and intermediate types differ. */
1533 (if (! inside_float && ! inter_float && ! final_float
1534 && ! inside_vec && ! inter_vec && ! final_vec
1535 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1536 && ! (inside_int && inter_int
1537 && inter_unsignedp != inside_unsignedp
1538 && inter_prec < final_prec)
1539 && ((inter_unsignedp && inter_prec > inside_prec)
1540 == (final_unsignedp && final_prec > inter_prec))
1541 && ! (inside_ptr && inter_prec != final_prec)
1542 && ! (final_ptr && inside_prec != inter_prec)
1543 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1544 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1547 /* A truncation to an unsigned type (a zero-extension) should be
1548 canonicalized as bitwise and of a mask. */
1549 (if (final_int && inter_int && inside_int
1550 && final_prec == inside_prec
1551 && final_prec > inter_prec
1553 (convert (bit_and @0 { wide_int_to_tree
1555 wi::mask (inter_prec, false,
1556 TYPE_PRECISION (inside_type))); })))
1558 /* If we are converting an integer to a floating-point that can
1559 represent it exactly and back to an integer, we can skip the
1560 floating-point conversion. */
1561 (if (GIMPLE /* PR66211 */
1562 && inside_int && inter_float && final_int &&
1563 (unsigned) significand_size (TYPE_MODE (inter_type))
1564 >= inside_prec - !inside_unsignedp)
1567 /* If we have a narrowing conversion to an integral type that is fed by a
1568 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1569 masks off bits outside the final type (and nothing else). */
1571 (convert (bit_and @0 INTEGER_CST@1))
1572 (if (INTEGRAL_TYPE_P (type)
1573 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1574 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1575 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1576 TYPE_PRECISION (type)), 0))
1580 /* (X /[ex] A) * A -> X. */
1582 (mult (convert? (exact_div @0 @1)) @1)
1583 /* Look through a sign-changing conversion. */
1586 /* Canonicalization of binary operations. */
1588 /* Convert X + -C into X - C. */
1590 (plus @0 REAL_CST@1)
1591 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1592 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1593 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1594 (minus @0 { tem; })))))
1596 /* Convert x+x into x*2.0. */
1599 (if (SCALAR_FLOAT_TYPE_P (type))
1600 (mult @0 { build_real (type, dconst2); })))
1603 (minus integer_zerop @1)
1606 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1607 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1608 (-ARG1 + ARG0) reduces to -ARG1. */
1610 (minus real_zerop@0 @1)
1611 (if (fold_real_zero_addition_p (type, @0, 0))
1614 /* Transform x * -1 into -x. */
1616 (mult @0 integer_minus_onep)
1619 /* True if we can easily extract the real and imaginary parts of a complex
1621 (match compositional_complex
1622 (convert? (complex @0 @1)))
1624 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1626 (complex (realpart @0) (imagpart @0))
1629 (realpart (complex @0 @1))
1632 (imagpart (complex @0 @1))
1635 /* Sometimes we only care about half of a complex expression. */
1637 (realpart (convert?:s (conj:s @0)))
1638 (convert (realpart @0)))
1640 (imagpart (convert?:s (conj:s @0)))
1641 (convert (negate (imagpart @0))))
1642 (for part (realpart imagpart)
1643 (for op (plus minus)
1645 (part (convert?:s@2 (op:s @0 @1)))
1646 (convert (op (part @0) (part @1))))))
1648 (realpart (convert?:s (CEXPI:s @0)))
1651 (imagpart (convert?:s (CEXPI:s @0)))
1654 /* conj(conj(x)) -> x */
1656 (conj (convert? (conj @0)))
1657 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
1660 /* conj({x,y}) -> {x,-y} */
1662 (conj (convert?:s (complex:s @0 @1)))
1663 (with { tree itype = TREE_TYPE (type); }
1664 (complex (convert:itype @0) (negate (convert:itype @1)))))
1666 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1667 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1672 (bswap (bit_not (bswap @0)))
1674 (for bitop (bit_xor bit_ior bit_and)
1676 (bswap (bitop:c (bswap @0) @1))
1677 (bitop @0 (bswap @1)))))
1680 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1682 /* Simplify constant conditions.
1683 Only optimize constant conditions when the selected branch
1684 has the same type as the COND_EXPR. This avoids optimizing
1685 away "c ? x : throw", where the throw has a void type.
1686 Note that we cannot throw away the fold-const.c variant nor
1687 this one as we depend on doing this transform before possibly
1688 A ? B : B -> B triggers and the fold-const.c one can optimize
1689 0 ? A : B to B even if A has side-effects. Something
1690 genmatch cannot handle. */
1692 (cond INTEGER_CST@0 @1 @2)
1693 (if (integer_zerop (@0))
1694 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1696 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1699 (vec_cond VECTOR_CST@0 @1 @2)
1700 (if (integer_all_onesp (@0))
1702 (if (integer_zerop (@0))
1705 (for cnd (cond vec_cond)
1706 /* A ? B : (A ? X : C) -> A ? B : C. */
1708 (cnd @0 (cnd @0 @1 @2) @3)
1711 (cnd @0 @1 (cnd @0 @2 @3))
1714 /* A ? B : B -> B. */
1719 /* !A ? B : C -> A ? C : B. */
1721 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1724 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1725 return all-1 or all-0 results. */
1726 /* ??? We could instead convert all instances of the vec_cond to negate,
1727 but that isn't necessarily a win on its own. */
1729 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1730 (if (VECTOR_TYPE_P (type)
1731 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1732 && (TYPE_MODE (TREE_TYPE (type))
1733 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1734 (minus @3 (view_convert @0))))
1736 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1738 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1739 (if (VECTOR_TYPE_P (type)
1740 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1741 && (TYPE_MODE (TREE_TYPE (type))
1742 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1743 (plus @3 (view_convert @0))))
1746 /* Simplifications of comparisons. */
1748 /* See if we can reduce the magnitude of a constant involved in a
1749 comparison by changing the comparison code. This is a canonicalization
1750 formerly done by maybe_canonicalize_comparison_1. */
1754 (cmp @0 INTEGER_CST@1)
1755 (if (tree_int_cst_sgn (@1) == -1)
1756 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
1760 (cmp @0 INTEGER_CST@1)
1761 (if (tree_int_cst_sgn (@1) == 1)
1762 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
1765 /* We can simplify a logical negation of a comparison to the
1766 inverted comparison. As we cannot compute an expression
1767 operator using invert_tree_comparison we have to simulate
1768 that with expression code iteration. */
1769 (for cmp (tcc_comparison)
1770 icmp (inverted_tcc_comparison)
1771 ncmp (inverted_tcc_comparison_with_nans)
1772 /* Ideally we'd like to combine the following two patterns
1773 and handle some more cases by using
1774 (logical_inverted_value (cmp @0 @1))
1775 here but for that genmatch would need to "inline" that.
1776 For now implement what forward_propagate_comparison did. */
1778 (bit_not (cmp @0 @1))
1779 (if (VECTOR_TYPE_P (type)
1780 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1781 /* Comparison inversion may be impossible for trapping math,
1782 invert_tree_comparison will tell us. But we can't use
1783 a computed operator in the replacement tree thus we have
1784 to play the trick below. */
1785 (with { enum tree_code ic = invert_tree_comparison
1786 (cmp, HONOR_NANS (@0)); }
1792 (bit_xor (cmp @0 @1) integer_truep)
1793 (with { enum tree_code ic = invert_tree_comparison
1794 (cmp, HONOR_NANS (@0)); }
1800 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1801 ??? The transformation is valid for the other operators if overflow
1802 is undefined for the type, but performing it here badly interacts
1803 with the transformation in fold_cond_expr_with_comparison which
1804 attempts to synthetize ABS_EXPR. */
1807 (cmp (minus@2 @0 @1) integer_zerop)
1808 (if (single_use (@2))
1811 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1812 signed arithmetic case. That form is created by the compiler
1813 often enough for folding it to be of value. One example is in
1814 computing loop trip counts after Operator Strength Reduction. */
1815 (for cmp (simple_comparison)
1816 scmp (swapped_simple_comparison)
1818 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1819 /* Handle unfolded multiplication by zero. */
1820 (if (integer_zerop (@1))
1822 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1823 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1824 /* If @1 is negative we swap the sense of the comparison. */
1825 (if (tree_int_cst_sgn (@1) < 0)
1829 /* Simplify comparison of something with itself. For IEEE
1830 floating-point, we can only do some of these simplifications. */
1833 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1834 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1835 { constant_boolean_node (true, type); }))
1844 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1845 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1846 { constant_boolean_node (false, type); })))
1847 (for cmp (unle unge uneq)
1850 { constant_boolean_node (true, type); }))
1853 (if (!flag_trapping_math)
1854 { constant_boolean_node (false, type); }))
1856 /* Fold ~X op ~Y as Y op X. */
1857 (for cmp (simple_comparison)
1859 (cmp (bit_not @0) (bit_not @1))
1862 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1863 (for cmp (simple_comparison)
1864 scmp (swapped_simple_comparison)
1866 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1867 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1868 (scmp @0 (bit_not @1)))))
1870 (for cmp (simple_comparison)
1871 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1873 (cmp (convert@2 @0) (convert? @1))
1874 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1875 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1876 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1877 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1878 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1881 tree type1 = TREE_TYPE (@1);
1882 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1884 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1885 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1886 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1887 type1 = float_type_node;
1888 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1889 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1890 type1 = double_type_node;
1893 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1894 ? TREE_TYPE (@0) : type1);
1896 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1897 (cmp (convert:newtype @0) (convert:newtype @1))))))
1901 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1903 /* a CMP (-0) -> a CMP 0 */
1904 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1905 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1906 /* x != NaN is always true, other ops are always false. */
1907 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1908 && ! HONOR_SNANS (@1))
1909 { constant_boolean_node (cmp == NE_EXPR, type); })
1910 /* Fold comparisons against infinity. */
1911 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1912 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1915 REAL_VALUE_TYPE max;
1916 enum tree_code code = cmp;
1917 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1919 code = swap_tree_comparison (code);
1922 /* x > +Inf is always false, if with ignore sNANs. */
1923 (if (code == GT_EXPR
1924 && ! HONOR_SNANS (@0))
1925 { constant_boolean_node (false, type); })
1926 (if (code == LE_EXPR)
1927 /* x <= +Inf is always true, if we don't case about NaNs. */
1928 (if (! HONOR_NANS (@0))
1929 { constant_boolean_node (true, type); }
1930 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
1932 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1933 (if (code == EQ_EXPR || code == GE_EXPR)
1934 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1936 (lt @0 { build_real (TREE_TYPE (@0), max); })
1937 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
1938 /* x < +Inf is always equal to x <= DBL_MAX. */
1939 (if (code == LT_EXPR)
1940 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1942 (ge @0 { build_real (TREE_TYPE (@0), max); })
1943 (le @0 { build_real (TREE_TYPE (@0), max); }))))
1944 /* x != +Inf is always equal to !(x > DBL_MAX). */
1945 (if (code == NE_EXPR)
1946 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1947 (if (! HONOR_NANS (@0))
1949 (ge @0 { build_real (TREE_TYPE (@0), max); })
1950 (le @0 { build_real (TREE_TYPE (@0), max); }))
1952 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1953 { build_one_cst (type); })
1954 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1955 { build_one_cst (type); }))))))))))
1957 /* If this is a comparison of a real constant with a PLUS_EXPR
1958 or a MINUS_EXPR of a real constant, we can convert it into a
1959 comparison with a revised real constant as long as no overflow
1960 occurs when unsafe_math_optimizations are enabled. */
1961 (if (flag_unsafe_math_optimizations)
1962 (for op (plus minus)
1964 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1967 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1968 TREE_TYPE (@1), @2, @1);
1970 (if (tem && !TREE_OVERFLOW (tem))
1971 (cmp @0 { tem; }))))))
1973 /* Likewise, we can simplify a comparison of a real constant with
1974 a MINUS_EXPR whose first operand is also a real constant, i.e.
1975 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1976 floating-point types only if -fassociative-math is set. */
1977 (if (flag_associative_math)
1979 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
1980 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1981 (if (tem && !TREE_OVERFLOW (tem))
1982 (cmp { tem; } @1)))))
1984 /* Fold comparisons against built-in math functions. */
1985 (if (flag_unsafe_math_optimizations
1986 && ! flag_errno_math)
1989 (cmp (sq @0) REAL_CST@1)
1991 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1993 /* sqrt(x) < y is always false, if y is negative. */
1994 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1995 { constant_boolean_node (false, type); })
1996 /* sqrt(x) > y is always true, if y is negative and we
1997 don't care about NaNs, i.e. negative values of x. */
1998 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1999 { constant_boolean_node (true, type); })
2000 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2001 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
2002 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2004 /* sqrt(x) < 0 is always false. */
2005 (if (cmp == LT_EXPR)
2006 { constant_boolean_node (false, type); })
2007 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2008 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2009 { constant_boolean_node (true, type); })
2010 /* sqrt(x) <= 0 -> x == 0. */
2011 (if (cmp == LE_EXPR)
2013 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2014 == or !=. In the last case:
2016 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2018 if x is negative or NaN. Due to -funsafe-math-optimizations,
2019 the results for other x follow from natural arithmetic. */
2021 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2025 real_arithmetic (&c2, MULT_EXPR,
2026 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2027 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2029 (if (REAL_VALUE_ISINF (c2))
2030 /* sqrt(x) > y is x == +Inf, when y is very large. */
2031 (if (HONOR_INFINITIES (@0))
2032 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2033 { constant_boolean_node (false, type); })
2034 /* sqrt(x) > c is the same as x > c*c. */
2035 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2036 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2040 real_arithmetic (&c2, MULT_EXPR,
2041 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2042 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2044 (if (REAL_VALUE_ISINF (c2))
2046 /* sqrt(x) < y is always true, when y is a very large
2047 value and we don't care about NaNs or Infinities. */
2048 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2049 { constant_boolean_node (true, type); })
2050 /* sqrt(x) < y is x != +Inf when y is very large and we
2051 don't care about NaNs. */
2052 (if (! HONOR_NANS (@0))
2053 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2054 /* sqrt(x) < y is x >= 0 when y is very large and we
2055 don't care about Infinities. */
2056 (if (! HONOR_INFINITIES (@0))
2057 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2058 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2061 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2062 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2063 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2064 (if (! HONOR_NANS (@0))
2065 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2066 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2069 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2070 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
2072 /* Unordered tests if either argument is a NaN. */
2074 (bit_ior (unordered @0 @0) (unordered @1 @1))
2075 (if (types_match (@0, @1))
2078 (bit_and (ordered @0 @0) (ordered @1 @1))
2079 (if (types_match (@0, @1))
2082 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2085 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2088 /* -A CMP -B -> B CMP A. */
2089 (for cmp (tcc_comparison)
2090 scmp (swapped_tcc_comparison)
2092 (cmp (negate @0) (negate @1))
2093 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2094 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2095 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2098 (cmp (negate @0) CONSTANT_CLASS_P@1)
2099 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2100 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2101 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2102 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
2103 (if (tem && !TREE_OVERFLOW (tem))
2104 (scmp @0 { tem; }))))))
2106 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
2109 (op (abs @0) zerop@1)
2112 /* From fold_sign_changed_comparison and fold_widened_comparison. */
2113 (for cmp (simple_comparison)
2115 (cmp (convert@0 @00) (convert?@1 @10))
2116 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2117 /* Disable this optimization if we're casting a function pointer
2118 type on targets that require function pointer canonicalization. */
2119 && !(targetm.have_canonicalize_funcptr_for_compare ()
2120 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2121 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2123 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2124 && (TREE_CODE (@10) == INTEGER_CST
2125 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2126 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2129 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2130 /* ??? The special-casing of INTEGER_CST conversion was in the original
2131 code and here to avoid a spurious overflow flag on the resulting
2132 constant which fold_convert produces. */
2133 (if (TREE_CODE (@1) == INTEGER_CST)
2134 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2135 TREE_OVERFLOW (@1)); })
2136 (cmp @00 (convert @1)))
2138 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2139 /* If possible, express the comparison in the shorter mode. */
2140 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
2141 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
2142 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2143 || ((TYPE_PRECISION (TREE_TYPE (@00))
2144 >= TYPE_PRECISION (TREE_TYPE (@10)))
2145 && (TYPE_UNSIGNED (TREE_TYPE (@00))
2146 == TYPE_UNSIGNED (TREE_TYPE (@10))))
2147 || (TREE_CODE (@10) == INTEGER_CST
2148 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
2149 && int_fits_type_p (@10, TREE_TYPE (@00)))))
2150 (cmp @00 (convert @10))
2151 (if (TREE_CODE (@10) == INTEGER_CST
2152 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
2153 && !int_fits_type_p (@10, TREE_TYPE (@00)))
2156 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2157 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2158 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2159 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2161 (if (above || below)
2162 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2163 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2164 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2165 { constant_boolean_node (above ? true : false, type); }
2166 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2167 { constant_boolean_node (above ? false : true, type); }))))))))))))
2170 /* A local variable can never be pointed to by
2171 the default SSA name of an incoming parameter.
2172 SSA names are canonicalized to 2nd place. */
2174 (cmp addr@0 SSA_NAME@1)
2175 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2176 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2177 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2178 (if (TREE_CODE (base) == VAR_DECL
2179 && auto_var_in_fn_p (base, current_function_decl))
2180 (if (cmp == NE_EXPR)
2181 { constant_boolean_node (true, type); }
2182 { constant_boolean_node (false, type); }))))))
2184 /* Equality compare simplifications from fold_binary */
2187 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2188 Similarly for NE_EXPR. */
2190 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2191 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2192 && wi::bit_and_not (@1, @2) != 0)
2193 { constant_boolean_node (cmp == NE_EXPR, type); }))
2195 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
2197 (cmp (bit_xor @0 @1) integer_zerop)
2200 /* (X ^ Y) == Y becomes X == 0.
2201 Likewise (X ^ Y) == X becomes Y == 0. */
2203 (cmp:c (bit_xor:c @0 @1) @0)
2204 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2206 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
2208 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2209 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
2210 (cmp @0 (bit_xor @1 (convert @2)))))
2213 (cmp (convert? addr@0) integer_zerop)
2214 (if (tree_single_nonzero_warnv_p (@0, NULL))
2215 { constant_boolean_node (cmp == NE_EXPR, type); })))
2217 /* If we have (A & C) == C where C is a power of 2, convert this into
2218 (A & C) != 0. Similarly for NE_EXPR. */
2222 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2223 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2225 /* If we have (A & C) != 0 where C is the sign bit of A, convert
2226 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
2230 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2231 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2232 && (TYPE_PRECISION (TREE_TYPE (@0))
2233 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2234 && element_precision (@2) >= element_precision (@0)
2235 && wi::only_sign_bit_p (@1, element_precision (@0)))
2236 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2237 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2239 /* When the addresses are not directly of decls compare base and offset.
2240 This implements some remaining parts of fold_comparison address
2241 comparisons but still no complete part of it. Still it is good
2242 enough to make fold_stmt not regress when not dispatching to fold_binary. */
2243 (for cmp (simple_comparison)
2245 (cmp (convert1?@2 addr@0) (convert2? addr@1))
2248 HOST_WIDE_INT off0, off1;
2249 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
2250 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
2251 if (base0 && TREE_CODE (base0) == MEM_REF)
2253 off0 += mem_ref_offset (base0).to_short_addr ();
2254 base0 = TREE_OPERAND (base0, 0);
2256 if (base1 && TREE_CODE (base1) == MEM_REF)
2258 off1 += mem_ref_offset (base1).to_short_addr ();
2259 base1 = TREE_OPERAND (base1, 0);
2262 (if (base0 && base1)
2266 if (decl_in_symtab_p (base0)
2267 && decl_in_symtab_p (base1))
2268 equal = symtab_node::get_create (base0)
2269 ->equal_address_to (symtab_node::get_create (base1));
2270 else if ((DECL_P (base0)
2271 || TREE_CODE (base0) == SSA_NAME
2272 || TREE_CODE (base0) == STRING_CST)
2274 || TREE_CODE (base1) == SSA_NAME
2275 || TREE_CODE (base1) == STRING_CST))
2276 equal = (base0 == base1);
2279 && (cmp == EQ_EXPR || cmp == NE_EXPR
2280 /* If the offsets are equal we can ignore overflow. */
2282 || POINTER_TYPE_OVERFLOW_UNDEFINED
2283 /* Or if we compare using pointers to decls or strings. */
2284 || (POINTER_TYPE_P (TREE_TYPE (@2))
2285 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
2287 (if (cmp == EQ_EXPR)
2288 { constant_boolean_node (off0 == off1, type); })
2289 (if (cmp == NE_EXPR)
2290 { constant_boolean_node (off0 != off1, type); })
2291 (if (cmp == LT_EXPR)
2292 { constant_boolean_node (off0 < off1, type); })
2293 (if (cmp == LE_EXPR)
2294 { constant_boolean_node (off0 <= off1, type); })
2295 (if (cmp == GE_EXPR)
2296 { constant_boolean_node (off0 >= off1, type); })
2297 (if (cmp == GT_EXPR)
2298 { constant_boolean_node (off0 > off1, type); }))
2300 && DECL_P (base0) && DECL_P (base1)
2301 /* If we compare this as integers require equal offset. */
2302 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
2305 (if (cmp == EQ_EXPR)
2306 { constant_boolean_node (false, type); })
2307 (if (cmp == NE_EXPR)
2308 { constant_boolean_node (true, type); })))))))))
2310 /* Non-equality compare simplifications from fold_binary */
2311 (for cmp (lt gt le ge)
2312 /* Comparisons with the highest or lowest possible integer of
2313 the specified precision will have known values. */
2315 (cmp (convert?@2 @0) INTEGER_CST@1)
2316 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2317 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
2320 tree arg1_type = TREE_TYPE (@1);
2321 unsigned int prec = TYPE_PRECISION (arg1_type);
2322 wide_int max = wi::max_value (arg1_type);
2323 wide_int signed_max = wi::max_value (prec, SIGNED);
2324 wide_int min = wi::min_value (arg1_type);
2327 (if (wi::eq_p (@1, max))
2329 (if (cmp == GT_EXPR)
2330 { constant_boolean_node (false, type); })
2331 (if (cmp == GE_EXPR)
2333 (if (cmp == LE_EXPR)
2334 { constant_boolean_node (true, type); })
2335 (if (cmp == LT_EXPR)
2337 (if (wi::eq_p (@1, min))
2339 (if (cmp == LT_EXPR)
2340 { constant_boolean_node (false, type); })
2341 (if (cmp == LE_EXPR)
2343 (if (cmp == GE_EXPR)
2344 { constant_boolean_node (true, type); })
2345 (if (cmp == GT_EXPR)
2347 (if (wi::eq_p (@1, max - 1))
2349 (if (cmp == GT_EXPR)
2350 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
2351 (if (cmp == LE_EXPR)
2352 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2353 (if (wi::eq_p (@1, min + 1))
2355 (if (cmp == GE_EXPR)
2356 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
2357 (if (cmp == LT_EXPR)
2358 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2359 (if (wi::eq_p (@1, signed_max)
2360 && TYPE_UNSIGNED (arg1_type)
2361 /* We will flip the signedness of the comparison operator
2362 associated with the mode of @1, so the sign bit is
2363 specified by this mode. Check that @1 is the signed
2364 max associated with this sign bit. */
2365 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
2366 /* signed_type does not work on pointer types. */
2367 && INTEGRAL_TYPE_P (arg1_type))
2368 /* The following case also applies to X < signed_max+1
2369 and X >= signed_max+1 because previous transformations. */
2370 (if (cmp == LE_EXPR || cmp == GT_EXPR)
2371 (with { tree st = signed_type_for (arg1_type); }
2372 (if (cmp == LE_EXPR)
2373 (ge (convert:st @0) { build_zero_cst (st); })
2374 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
2376 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
2377 /* If the second operand is NaN, the result is constant. */
2380 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2381 && (cmp != LTGT_EXPR || ! flag_trapping_math))
2382 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
2383 ? false : true, type); })))
2385 /* bool_var != 0 becomes bool_var. */
2387 (ne @0 integer_zerop)
2388 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2389 && types_match (type, TREE_TYPE (@0)))
2391 /* bool_var == 1 becomes bool_var. */
2393 (eq @0 integer_onep)
2394 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2395 && types_match (type, TREE_TYPE (@0)))
2398 bool_var == 0 becomes !bool_var or
2399 bool_var != 1 becomes !bool_var
2400 here because that only is good in assignment context as long
2401 as we require a tcc_comparison in GIMPLE_CONDs where we'd
2402 replace if (x == 0) with tem = ~x; if (tem != 0) which is
2403 clearly less optimal and which we'll transform again in forwprop. */
2406 /* Simplification of math builtins. These rules must all be optimizations
2407 as well as IL simplifications. If there is a possibility that the new
2408 form could be a pessimization, the rule should go in the canonicalization
2409 section that follows this one.
2411 Rules can generally go in this section if they satisfy one of
2414 - the rule describes an identity
2416 - the rule replaces calls with something as simple as addition or
2419 - the rule contains unary calls only and simplifies the surrounding
2420 arithmetic. (The idea here is to exclude non-unary calls in which
2421 one operand is constant and in which the call is known to be cheap
2422 when the operand has that value.) */
2424 (if (flag_unsafe_math_optimizations)
2425 /* Simplify sqrt(x) * sqrt(x) -> x. */
2427 (mult (SQRT@1 @0) @1)
2428 (if (!HONOR_SNANS (type))
2431 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
2432 (for root (SQRT CBRT)
2434 (mult (root:s @0) (root:s @1))
2435 (root (mult @0 @1))))
2437 /* Simplify expN(x) * expN(y) -> expN(x+y). */
2438 (for exps (EXP EXP2 EXP10 POW10)
2440 (mult (exps:s @0) (exps:s @1))
2441 (exps (plus @0 @1))))
2443 /* Simplify a/root(b/c) into a*root(c/b). */
2444 (for root (SQRT CBRT)
2446 (rdiv @0 (root:s (rdiv:s @1 @2)))
2447 (mult @0 (root (rdiv @2 @1)))))
2449 /* Simplify x/expN(y) into x*expN(-y). */
2450 (for exps (EXP EXP2 EXP10 POW10)
2452 (rdiv @0 (exps:s @1))
2453 (mult @0 (exps (negate @1)))))
2455 (for logs (LOG LOG2 LOG10 LOG10)
2456 exps (EXP EXP2 EXP10 POW10)
2457 /* logN(expN(x)) -> x. */
2461 /* expN(logN(x)) -> x. */
2466 /* Optimize logN(func()) for various exponential functions. We
2467 want to determine the value "x" and the power "exponent" in
2468 order to transform logN(x**exponent) into exponent*logN(x). */
2469 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
2470 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
2473 (if (SCALAR_FLOAT_TYPE_P (type))
2479 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
2480 x = build_real_truncate (type, dconst_e ());
2483 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
2484 x = build_real (type, dconst2);
2488 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
2490 REAL_VALUE_TYPE dconst10;
2491 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
2492 x = build_real (type, dconst10);
2499 (mult (logs { x; }) @0)))))
2507 (if (SCALAR_FLOAT_TYPE_P (type))
2513 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
2514 x = build_real (type, dconsthalf);
2517 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
2518 x = build_real_truncate (type, dconst_third ());
2524 (mult { x; } (logs @0))))))
2526 /* logN(pow(x,exponent)) -> exponent*logN(x). */
2527 (for logs (LOG LOG2 LOG10)
2531 (mult @1 (logs @0))))
2536 exps (EXP EXP2 EXP10 POW10)
2537 /* sqrt(expN(x)) -> expN(x*0.5). */
2540 (exps (mult @0 { build_real (type, dconsthalf); })))
2541 /* cbrt(expN(x)) -> expN(x/3). */
2544 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
2545 /* pow(expN(x), y) -> expN(x*y). */
2548 (exps (mult @0 @1))))
2550 /* tan(atan(x)) -> x. */
2557 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
2559 (CABS (complex:c @0 real_zerop@1))
2562 /* trunc(trunc(x)) -> trunc(x), etc. */
2563 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
2567 /* f(x) -> x if x is integer valued and f does nothing for such values. */
2568 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT)
2570 (fns integer_valued_real_p@0)
2572 /* Same for rint. We have to check flag_errno_math because
2573 integer_valued_real_p accepts +Inf, -Inf and NaNs as integers. */
2574 (if (!flag_errno_math)
2576 (RINT integer_valued_real_p@0)
2579 /* hypot(x,0) and hypot(0,x) -> abs(x). */
2581 (HYPOT:c @0 real_zerop@1)
2584 /* pow(1,x) -> 1. */
2586 (POW real_onep@0 @1)
2590 /* copysign(x,x) -> x. */
2595 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
2596 (COPYSIGN @0 tree_expr_nonnegative_p@1)
2599 (for scale (LDEXP SCALBN SCALBLN)
2600 /* ldexp(0, x) -> 0. */
2602 (scale real_zerop@0 @1)
2604 /* ldexp(x, 0) -> x. */
2606 (scale @0 integer_zerop@1)
2608 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
2610 (scale REAL_CST@0 @1)
2611 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
2614 /* Canonicalization of sequences of math builtins. These rules represent
2615 IL simplifications but are not necessarily optimizations.
2617 The sincos pass is responsible for picking "optimal" implementations
2618 of math builtins, which may be more complicated and can sometimes go
2619 the other way, e.g. converting pow into a sequence of sqrts.
2620 We only want to do these canonicalizations before the pass has run. */
2622 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
2623 /* Simplify tan(x) * cos(x) -> sin(x). */
2625 (mult:c (TAN:s @0) (COS:s @0))
2628 /* Simplify x * pow(x,c) -> pow(x,c+1). */
2630 (mult @0 (POW:s @0 REAL_CST@1))
2631 (if (!TREE_OVERFLOW (@1))
2632 (POW @0 (plus @1 { build_one_cst (type); }))))
2634 /* Simplify sin(x) / cos(x) -> tan(x). */
2636 (rdiv (SIN:s @0) (COS:s @0))
2639 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
2641 (rdiv (COS:s @0) (SIN:s @0))
2642 (rdiv { build_one_cst (type); } (TAN @0)))
2644 /* Simplify sin(x) / tan(x) -> cos(x). */
2646 (rdiv (SIN:s @0) (TAN:s @0))
2647 (if (! HONOR_NANS (@0)
2648 && ! HONOR_INFINITIES (@0))
2651 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
2653 (rdiv (TAN:s @0) (SIN:s @0))
2654 (if (! HONOR_NANS (@0)
2655 && ! HONOR_INFINITIES (@0))
2656 (rdiv { build_one_cst (type); } (COS @0))))
2658 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
2660 (mult (POW:s @0 @1) (POW:s @0 @2))
2661 (POW @0 (plus @1 @2)))
2663 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
2665 (mult (POW:s @0 @1) (POW:s @2 @1))
2666 (POW (mult @0 @2) @1))
2668 /* Simplify pow(x,c) / x -> pow(x,c-1). */
2670 (rdiv (POW:s @0 REAL_CST@1) @0)
2671 (if (!TREE_OVERFLOW (@1))
2672 (POW @0 (minus @1 { build_one_cst (type); }))))
2674 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
2676 (rdiv @0 (POW:s @1 @2))
2677 (mult @0 (POW @1 (negate @2))))
2682 /* sqrt(sqrt(x)) -> pow(x,1/4). */
2685 (pows @0 { build_real (type, dconst_quarter ()); }))
2686 /* sqrt(cbrt(x)) -> pow(x,1/6). */
2689 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
2690 /* cbrt(sqrt(x)) -> pow(x,1/6). */
2693 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
2694 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
2696 (cbrts (cbrts tree_expr_nonnegative_p@0))
2697 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
2698 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
2700 (sqrts (pows @0 @1))
2701 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
2702 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
2704 (cbrts (pows tree_expr_nonnegative_p@0 @1))
2705 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
2706 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
2708 (pows (sqrts @0) @1)
2709 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
2710 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
2712 (pows (cbrts tree_expr_nonnegative_p@0) @1)
2713 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
2714 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
2716 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
2717 (pows @0 (mult @1 @2))))
2719 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
2721 (CABS (complex @0 @0))
2722 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
2724 /* hypot(x,x) -> fabs(x)*sqrt(2). */
2727 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
2729 /* cexp(x+yi) -> exp(x)*cexpi(y). */
2734 (cexps compositional_complex@0)
2735 (if (targetm.libc_has_function (function_c99_math_complex))
2737 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
2738 (mult @1 (imagpart @2)))))))
2740 (if (canonicalize_math_p ())
2741 /* floor(x) -> trunc(x) if x is nonnegative. */
2745 (floors tree_expr_nonnegative_p@0)
2748 (match double_value_p
2750 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
2751 (for froms (BUILT_IN_TRUNCL
2763 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
2764 (if (optimize && canonicalize_math_p ())
2766 (froms (convert double_value_p@0))
2767 (convert (tos @0)))))
2769 (match float_value_p
2771 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
2772 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
2773 BUILT_IN_FLOORL BUILT_IN_FLOOR
2774 BUILT_IN_CEILL BUILT_IN_CEIL
2775 BUILT_IN_ROUNDL BUILT_IN_ROUND
2776 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
2777 BUILT_IN_RINTL BUILT_IN_RINT)
2778 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
2779 BUILT_IN_FLOORF BUILT_IN_FLOORF
2780 BUILT_IN_CEILF BUILT_IN_CEILF
2781 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
2782 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
2783 BUILT_IN_RINTF BUILT_IN_RINTF)
2784 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
2786 (if (optimize && canonicalize_math_p ())
2788 (froms (convert float_value_p@0))
2789 (convert (tos @0)))))
2791 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
2792 tos (XFLOOR XCEIL XROUND XRINT)
2793 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
2794 (if (optimize && canonicalize_math_p ())
2796 (froms (convert double_value_p@0))
2799 (for froms (XFLOORL XCEILL XROUNDL XRINTL
2800 XFLOOR XCEIL XROUND XRINT)
2801 tos (XFLOORF XCEILF XROUNDF XRINTF)
2802 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
2804 (if (optimize && canonicalize_math_p ())
2806 (froms (convert float_value_p@0))
2809 (if (canonicalize_math_p ())
2810 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
2811 (for floors (IFLOOR LFLOOR LLFLOOR)
2813 (floors tree_expr_nonnegative_p@0)
2816 (if (canonicalize_math_p ())
2817 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
2818 (for fns (IFLOOR LFLOOR LLFLOOR
2820 IROUND LROUND LLROUND)
2822 (fns integer_valued_real_p@0)
2824 (if (!flag_errno_math)
2825 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
2826 (for rints (IRINT LRINT LLRINT)
2828 (rints integer_valued_real_p@0)
2831 (if (canonicalize_math_p ())
2832 (for ifn (IFLOOR ICEIL IROUND IRINT)
2833 lfn (LFLOOR LCEIL LROUND LRINT)
2834 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
2835 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
2836 sizeof (int) == sizeof (long). */
2837 (if (TYPE_PRECISION (integer_type_node)
2838 == TYPE_PRECISION (long_integer_type_node))
2841 (lfn:long_integer_type_node @0)))
2842 /* Canonicalize llround (x) to lround (x) on LP64 targets where
2843 sizeof (long long) == sizeof (long). */
2844 (if (TYPE_PRECISION (long_long_integer_type_node)
2845 == TYPE_PRECISION (long_integer_type_node))
2848 (lfn:long_integer_type_node @0)))))
2850 /* cproj(x) -> x if we're ignoring infinities. */
2853 (if (!HONOR_INFINITIES (type))
2856 /* If the real part is inf and the imag part is known to be
2857 nonnegative, return (inf + 0i). */
2859 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
2860 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
2861 { build_complex_inf (type, false); }))
2863 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
2865 (CPROJ (complex @0 REAL_CST@1))
2866 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
2867 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
2873 (pows @0 REAL_CST@1)
2875 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
2876 REAL_VALUE_TYPE tmp;
2879 /* pow(x,0) -> 1. */
2880 (if (real_equal (value, &dconst0))
2881 { build_real (type, dconst1); })
2882 /* pow(x,1) -> x. */
2883 (if (real_equal (value, &dconst1))
2885 /* pow(x,-1) -> 1/x. */
2886 (if (real_equal (value, &dconstm1))
2887 (rdiv { build_real (type, dconst1); } @0))
2888 /* pow(x,0.5) -> sqrt(x). */
2889 (if (flag_unsafe_math_optimizations
2890 && canonicalize_math_p ()
2891 && real_equal (value, &dconsthalf))
2893 /* pow(x,1/3) -> cbrt(x). */
2894 (if (flag_unsafe_math_optimizations
2895 && canonicalize_math_p ()
2896 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
2897 real_equal (value, &tmp)))
2900 /* powi(1,x) -> 1. */
2902 (POWI real_onep@0 @1)
2906 (POWI @0 INTEGER_CST@1)
2908 /* powi(x,0) -> 1. */
2909 (if (wi::eq_p (@1, 0))
2910 { build_real (type, dconst1); })
2911 /* powi(x,1) -> x. */
2912 (if (wi::eq_p (@1, 1))
2914 /* powi(x,-1) -> 1/x. */
2915 (if (wi::eq_p (@1, -1))
2916 (rdiv { build_real (type, dconst1); } @0))))
2918 /* Narrowing of arithmetic and logical operations.
2920 These are conceptually similar to the transformations performed for
2921 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
2922 term we want to move all that code out of the front-ends into here. */
2924 /* If we have a narrowing conversion of an arithmetic operation where
2925 both operands are widening conversions from the same type as the outer
2926 narrowing conversion. Then convert the innermost operands to a suitable
2927 unsigned type (to avoid introducing undefined behaviour), perform the
2928 operation and convert the result to the desired type. */
2929 (for op (plus minus)
2931 (convert (op:s (convert@2 @0) (convert@3 @1)))
2932 (if (INTEGRAL_TYPE_P (type)
2933 /* We check for type compatibility between @0 and @1 below,
2934 so there's no need to check that @1/@3 are integral types. */
2935 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2936 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2937 /* The precision of the type of each operand must match the
2938 precision of the mode of each operand, similarly for the
2940 && (TYPE_PRECISION (TREE_TYPE (@0))
2941 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2942 && (TYPE_PRECISION (TREE_TYPE (@1))
2943 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
2944 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
2945 /* The inner conversion must be a widening conversion. */
2946 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
2947 && types_match (@0, @1)
2948 && types_match (@0, type))
2949 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2950 (convert (op @0 @1))
2951 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
2952 (convert (op (convert:utype @0) (convert:utype @1))))))))
2954 /* This is another case of narrowing, specifically when there's an outer
2955 BIT_AND_EXPR which masks off bits outside the type of the innermost
2956 operands. Like the previous case we have to convert the operands
2957 to unsigned types to avoid introducing undefined behaviour for the
2958 arithmetic operation. */
2959 (for op (minus plus)
2961 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
2962 (if (INTEGRAL_TYPE_P (type)
2963 /* We check for type compatibility between @0 and @1 below,
2964 so there's no need to check that @1/@3 are integral types. */
2965 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2966 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2967 /* The precision of the type of each operand must match the
2968 precision of the mode of each operand, similarly for the
2970 && (TYPE_PRECISION (TREE_TYPE (@0))
2971 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2972 && (TYPE_PRECISION (TREE_TYPE (@1))
2973 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
2974 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
2975 /* The inner conversion must be a widening conversion. */
2976 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
2977 && types_match (@0, @1)
2978 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
2979 <= TYPE_PRECISION (TREE_TYPE (@0)))
2980 && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
2981 true, TYPE_PRECISION (type))) == 0))
2982 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2983 (with { tree ntype = TREE_TYPE (@0); }
2984 (convert (bit_and (op @0 @1) (convert:ntype @4))))
2985 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
2986 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
2987 (convert:utype @4))))))))
2989 /* Transform (@0 < @1 and @0 < @2) to use min,
2990 (@0 > @1 and @0 > @2) to use max */
2991 (for op (lt le gt ge)
2992 ext (min min max max)
2994 (bit_and (op:s @0 @1) (op:s @0 @2))
2995 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2996 (op @0 (ext @1 @2)))))
2999 /* signbit(x) -> 0 if x is nonnegative. */
3000 (SIGNBIT tree_expr_nonnegative_p@0)
3001 { integer_zero_node; })
3004 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
3006 (if (!HONOR_SIGNED_ZEROS (@0))
3007 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))