2018-10-23 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / shrink-wrap.c
blob1ad73798747b9a4d88ee6f8dc01663f9f3e54284
1 /* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles shrink-wrapping related optimizations. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "insn-config.h"
35 #include "emit-rtl.h"
36 #include "output.h"
37 #include "tree-pass.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "params.h"
41 #include "bb-reorder.h"
42 #include "shrink-wrap.h"
43 #include "regcprop.h"
44 #include "rtl-iter.h"
45 #include "valtrack.h"
48 /* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
52 bool
53 requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
54 HARD_REG_SET set_up_by_prologue)
56 df_ref def, use;
57 HARD_REG_SET hardregs;
58 unsigned regno;
60 if (CALL_P (insn))
61 return !SIBLING_CALL_P (insn);
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
65 return true;
67 CLEAR_HARD_REG_SET (hardregs);
68 FOR_EACH_INSN_DEF (def, insn)
70 rtx dreg = DF_REF_REG (def);
72 if (!REG_P (dreg))
73 continue;
75 add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
77 if (hard_reg_set_intersect_p (hardregs, prologue_used))
78 return true;
79 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
80 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
81 if (TEST_HARD_REG_BIT (hardregs, regno)
82 && df_regs_ever_live_p (regno))
83 return true;
85 FOR_EACH_INSN_USE (use, insn)
87 rtx reg = DF_REF_REG (use);
89 if (!REG_P (reg))
90 continue;
92 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
93 REGNO (reg));
95 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
96 return true;
98 return false;
101 /* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
105 static edge
106 live_edge_for_reg (basic_block bb, int regno, int end_regno)
108 edge e, live_edge;
109 edge_iterator ei;
110 bitmap live;
111 int i;
113 live_edge = NULL;
114 FOR_EACH_EDGE (e, ei, bb->succs)
116 live = df_get_live_in (e->dest);
117 for (i = regno; i < end_regno; i++)
118 if (REGNO_REG_SET_P (live, i))
120 if (live_edge && live_edge != e)
121 return NULL;
122 live_edge = e;
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
129 return NULL;
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge->flags & EDGE_ABNORMAL)
137 return NULL;
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge->dest->preds) > 2)
142 return NULL;
144 return live_edge;
147 /* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
152 static bool
153 move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
154 const HARD_REG_SET uses,
155 const HARD_REG_SET defs,
156 bool *split_p,
157 struct dead_debug_local *debug)
159 rtx set, src, dest;
160 bitmap live_out, live_in, bb_uses = NULL, bb_defs = NULL;
161 unsigned int i, dregno, end_dregno;
162 unsigned int sregno = FIRST_PSEUDO_REGISTER;
163 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
164 basic_block next_block;
165 edge live_edge;
166 rtx_insn *dinsn;
167 df_ref def;
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
171 destinations. */
172 if (!INSN_P (insn))
173 return false;
174 set = PATTERN (insn);
175 if (GET_CODE (set) != SET)
176 return false;
177 src = SET_SRC (set);
178 dest = SET_DEST (set);
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
183 if (!REG_P (dest)
184 || dest == stack_pointer_rtx
185 || dest == frame_pointer_rtx
186 || dest == hard_frame_pointer_rtx)
187 return false;
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
191 (2) A constant,
192 (3) An expression involving no more than one register.
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
199 if (CONSTANT_P (src))
201 else if (!REG_P (src))
203 rtx src_inner = NULL_RTX;
205 if (can_throw_internal (insn))
206 return false;
208 subrtx_var_iterator::array_type array;
209 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
211 rtx x = *iter;
212 switch (GET_RTX_CLASS (GET_CODE (x)))
214 case RTX_CONST_OBJ:
215 case RTX_COMPARE:
216 case RTX_COMM_COMPARE:
217 case RTX_BIN_ARITH:
218 case RTX_COMM_ARITH:
219 case RTX_UNARY:
220 case RTX_TERNARY:
221 /* Constant or expression. Continue. */
222 break;
224 case RTX_OBJ:
225 case RTX_EXTRA:
226 switch (GET_CODE (x))
228 case UNSPEC:
229 case SUBREG:
230 case STRICT_LOW_PART:
231 case PC:
232 case LO_SUM:
233 /* Ok. Continue. */
234 break;
236 case REG:
237 /* Fail if we see a second inner register. */
238 if (src_inner != NULL)
239 return false;
240 src_inner = x;
241 break;
243 default:
244 return false;
246 break;
248 default:
249 return false;
253 if (src_inner != NULL)
254 src = src_inner;
257 /* Make sure that the source register isn't defined later in BB. */
258 if (REG_P (src))
260 sregno = REGNO (src);
261 end_sregno = END_REGNO (src);
262 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
263 return false;
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno = REGNO (dest);
268 end_dregno = END_REGNO (dest);
269 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
270 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
271 return false;
273 /* See whether there is a successor block to which we could move INSN. */
274 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
275 if (!live_edge)
276 return false;
278 next_block = live_edge->dest;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block->preds) == 2)
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb->succs) == 1)
284 return false;
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
287 if (!df_live)
288 return false;
290 basic_block old_dest = live_edge->dest;
291 next_block = split_edge (live_edge);
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live);
297 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
298 df_get_live_in (old_dest));
299 df_set_bb_dirty (next_block);
301 /* We should not split more than once for a function. */
302 if (*split_p)
303 return false;
305 *split_p = true;
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
312 if (MAY_HAVE_DEBUG_BIND_INSNS)
314 FOR_BB_INSNS_REVERSE (bb, dinsn)
315 if (DEBUG_BIND_INSN_P (dinsn))
317 df_ref use;
318 FOR_EACH_INSN_USE (use, dinsn)
319 if (refers_to_regno_p (dregno, end_dregno,
320 DF_REF_REG (use), (rtx *) NULL))
321 dead_debug_add (debug, use, DF_REF_REGNO (use));
323 else if (dinsn == insn)
324 break;
326 live_out = df_get_live_out (bb);
327 live_in = df_get_live_in (next_block);
328 bb = next_block;
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 if (!*split_p)
335 bb_uses = &DF_LR_BB_INFO (bb)->use;
336 bb_defs = &DF_LR_BB_INFO (bb)->def;
338 if (df_live)
340 for (i = dregno; i < end_dregno; i++)
342 if (*split_p
343 || REGNO_REG_SET_P (bb_uses, i)
344 || REGNO_REG_SET_P (bb_defs, i)
345 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
346 next_block = NULL;
347 CLEAR_REGNO_REG_SET (live_out, i);
348 CLEAR_REGNO_REG_SET (live_in, i);
351 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
352 Either way, SRC is now live on entry. */
353 for (i = sregno; i < end_sregno; i++)
355 if (*split_p
356 || REGNO_REG_SET_P (bb_defs, i)
357 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
358 next_block = NULL;
359 SET_REGNO_REG_SET (live_out, i);
360 SET_REGNO_REG_SET (live_in, i);
363 else
365 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
366 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
367 at -O1, just give up searching NEXT_BLOCK. */
368 next_block = NULL;
369 for (i = dregno; i < end_dregno; i++)
371 CLEAR_REGNO_REG_SET (live_out, i);
372 CLEAR_REGNO_REG_SET (live_in, i);
375 for (i = sregno; i < end_sregno; i++)
377 SET_REGNO_REG_SET (live_out, i);
378 SET_REGNO_REG_SET (live_in, i);
382 /* If we don't need to add the move to BB, look for a single
383 successor block. */
384 if (next_block)
386 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
387 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
388 break;
389 next_block = live_edge->dest;
392 while (next_block);
394 /* For the new created basic block, there is no dataflow info at all.
395 So skip the following dataflow update and check. */
396 if (!(*split_p))
398 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
399 (next loop). */
400 for (i = dregno; i < end_dregno; i++)
402 CLEAR_REGNO_REG_SET (bb_uses, i);
403 SET_REGNO_REG_SET (bb_defs, i);
406 /* BB now uses SRC. */
407 for (i = sregno; i < end_sregno; i++)
408 SET_REGNO_REG_SET (bb_uses, i);
411 /* Insert debug temps for dead REGs used in subsequent debug insns. */
412 if (debug->used && !bitmap_empty_p (debug->used))
413 FOR_EACH_INSN_DEF (def, insn)
414 dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
415 DEBUG_TEMP_BEFORE_WITH_VALUE);
417 emit_insn_after (PATTERN (insn), bb_note (bb));
418 delete_insn (insn);
419 return true;
422 /* Look for register copies in the first block of the function, and move
423 them down into successor blocks if the register is used only on one
424 path. This exposes more opportunities for shrink-wrapping. These
425 kinds of sets often occur when incoming argument registers are moved
426 to call-saved registers because their values are live across one or
427 more calls during the function. */
429 static void
430 prepare_shrink_wrap (basic_block entry_block)
432 rtx_insn *insn, *curr;
433 rtx x;
434 HARD_REG_SET uses, defs;
435 df_ref def, use;
436 bool split_p = false;
437 unsigned int i;
438 struct dead_debug_local debug;
440 if (JUMP_P (BB_END (entry_block)))
442 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
443 to sink the copies from parameter to callee saved register out of
444 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
445 to release some dependences. */
446 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
449 dead_debug_local_init (&debug, NULL, NULL);
450 CLEAR_HARD_REG_SET (uses);
451 CLEAR_HARD_REG_SET (defs);
453 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
454 if (NONDEBUG_INSN_P (insn)
455 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
456 &split_p, &debug))
458 /* Add all defined registers to DEFs. */
459 FOR_EACH_INSN_DEF (def, insn)
461 x = DF_REF_REG (def);
462 if (REG_P (x) && HARD_REGISTER_P (x))
463 for (i = REGNO (x); i < END_REGNO (x); i++)
464 SET_HARD_REG_BIT (defs, i);
467 /* Add all used registers to USESs. */
468 FOR_EACH_INSN_USE (use, insn)
470 x = DF_REF_REG (use);
471 if (REG_P (x) && HARD_REGISTER_P (x))
472 for (i = REGNO (x); i < END_REGNO (x); i++)
473 SET_HARD_REG_BIT (uses, i);
477 dead_debug_local_finish (&debug, NULL);
480 /* Return whether basic block PRO can get the prologue. It can not if it
481 has incoming complex edges that need a prologue inserted (we make a new
482 block for the prologue, so those edges would need to be redirected, which
483 does not work). It also can not if there exist registers live on entry
484 to PRO that are clobbered by the prologue. */
486 static bool
487 can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
489 edge e;
490 edge_iterator ei;
491 FOR_EACH_EDGE (e, ei, pro->preds)
492 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
493 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
494 return false;
496 HARD_REG_SET live;
497 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
498 if (hard_reg_set_intersect_p (live, prologue_clobbered))
499 return false;
501 return true;
504 /* Return whether we can duplicate basic block BB for shrink wrapping. We
505 cannot if the block cannot be duplicated at all, or if any of its incoming
506 edges are complex and come from a block that does not require a prologue
507 (we cannot redirect such edges), or if the block is too big to copy.
508 PRO is the basic block before which we would put the prologue, MAX_SIZE is
509 the maximum size block we allow to be copied. */
511 static bool
512 can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
514 if (!can_duplicate_block_p (bb))
515 return false;
517 edge e;
518 edge_iterator ei;
519 FOR_EACH_EDGE (e, ei, bb->preds)
520 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
521 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
522 return false;
524 unsigned size = 0;
526 rtx_insn *insn;
527 FOR_BB_INSNS (bb, insn)
528 if (NONDEBUG_INSN_P (insn))
530 size += get_attr_min_length (insn);
531 if (size > max_size)
532 return false;
535 return true;
538 /* Do whatever needs to be done for exits that run without prologue.
539 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
541 static void
542 handle_simple_exit (edge e)
545 if (e->flags & EDGE_SIBCALL)
547 /* Tell function.c to take no further action on this edge. */
548 e->flags |= EDGE_IGNORE;
550 e->flags &= ~EDGE_FALLTHRU;
551 emit_barrier_after_bb (e->src);
552 return;
555 /* If the basic block the edge comes from has multiple successors,
556 split the edge. */
557 if (EDGE_COUNT (e->src->succs) > 1)
559 basic_block old_bb = e->src;
560 rtx_insn *end = BB_END (old_bb);
561 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
562 basic_block new_bb = create_basic_block (note, note, old_bb);
563 BB_COPY_PARTITION (new_bb, old_bb);
564 BB_END (old_bb) = end;
566 redirect_edge_succ (e, new_bb);
567 new_bb->count = e->count ();
568 e->flags |= EDGE_FALLTHRU;
570 e = make_single_succ_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
573 e->flags &= ~EDGE_FALLTHRU;
574 rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
575 BB_END (e->src));
576 JUMP_LABEL (ret) = simple_return_rtx;
577 emit_barrier_after_bb (e->src);
579 if (dump_file)
580 fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
581 INSN_UID (ret), e->src->index);
584 /* Try to perform a kind of shrink-wrapping, making sure the
585 prologue/epilogue is emitted only around those parts of the
586 function that require it.
588 There will be exactly one prologue, and it will be executed either
589 zero or one time, on any path. Depending on where the prologue is
590 placed, some of the basic blocks can be reached via both paths with
591 and without a prologue. Such blocks will be duplicated here, and the
592 edges changed to match.
594 Paths that go to the exit without going through the prologue will use
595 a simple_return instead of the epilogue. We maximize the number of
596 those, making sure to only duplicate blocks that can be duplicated.
597 If the prologue can then still be placed in multiple locations, we
598 place it as early as possible.
600 An example, where we duplicate blocks with control flow (legend:
601 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
602 be taken to point down or to the right, to simplify the diagram; here,
603 block 3 needs a prologue, the rest does not):
609 |\ |\
610 | 3 becomes | 3
611 |/ | \
612 4 7 4
613 |\ |\ |\
614 | 5 | 8 | 5
615 |/ |/ |/
616 6 9 6
617 | | |
618 R S R
621 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
622 edge 2->3).
624 Another example, where part of a loop is duplicated (again, bb 3 is
625 the only block that needs a prologue):
628 B 3<-- B ->3<--
629 | | | | | | |
630 | v | becomes | | v |
631 2---4--- 2---5-- 4---
632 | | |
633 R S R
636 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
638 ENTRY_EDGE is the edge where the prologue will be placed, possibly
639 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
641 void
642 try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
644 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
645 no sense to shrink-wrap: then do not shrink-wrap! */
647 if (!SHRINK_WRAPPING_ENABLED)
648 return;
650 if (crtl->profile && !targetm.profile_before_prologue ())
651 return;
653 if (crtl->calls_eh_return)
654 return;
656 bool empty_prologue = true;
657 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
658 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
660 empty_prologue = false;
661 break;
663 if (empty_prologue)
664 return;
666 /* Move some code down to expose more shrink-wrapping opportunities. */
668 basic_block entry = (*entry_edge)->dest;
669 prepare_shrink_wrap (entry);
671 if (dump_file)
672 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
674 /* Compute the registers set and used in the prologue. */
676 HARD_REG_SET prologue_clobbered, prologue_used;
677 CLEAR_HARD_REG_SET (prologue_clobbered);
678 CLEAR_HARD_REG_SET (prologue_used);
679 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
680 if (NONDEBUG_INSN_P (insn))
682 HARD_REG_SET this_used;
683 CLEAR_HARD_REG_SET (this_used);
684 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
685 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
686 IOR_HARD_REG_SET (prologue_used, this_used);
687 note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
689 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
690 if (frame_pointer_needed)
691 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
693 /* Find out what registers are set up by the prologue; any use of these
694 cannot happen before the prologue. */
696 struct hard_reg_set_container set_up_by_prologue;
697 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
698 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
699 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
700 if (frame_pointer_needed)
701 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
702 HARD_FRAME_POINTER_REGNUM);
703 if (pic_offset_table_rtx
704 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
705 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
706 PIC_OFFSET_TABLE_REGNUM);
707 if (crtl->drap_reg)
708 add_to_hard_reg_set (&set_up_by_prologue.set,
709 GET_MODE (crtl->drap_reg),
710 REGNO (crtl->drap_reg));
711 if (targetm.set_up_by_prologue)
712 targetm.set_up_by_prologue (&set_up_by_prologue);
714 /* We will insert the prologue before the basic block PRO. PRO should
715 dominate all basic blocks that need the prologue to be executed
716 before them. First, make PRO the "tightest wrap" possible. */
718 calculate_dominance_info (CDI_DOMINATORS);
720 basic_block pro = 0;
722 basic_block bb;
723 edge e;
724 edge_iterator ei;
725 FOR_EACH_BB_FN (bb, cfun)
727 rtx_insn *insn;
728 FOR_BB_INSNS (bb, insn)
729 if (NONDEBUG_INSN_P (insn)
730 && requires_stack_frame_p (insn, prologue_used,
731 set_up_by_prologue.set))
733 if (dump_file)
734 fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
735 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
736 break;
740 /* If nothing needs a prologue, just put it at the start. This really
741 shouldn't happen, but we cannot fix it here. */
743 if (pro == 0)
745 if (dump_file)
746 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
747 "putting it at the start.\n");
748 pro = entry;
751 if (dump_file)
752 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
753 pro->index);
755 /* Now see if we can put the prologue at the start of PRO. Putting it
756 there might require duplicating a block that cannot be duplicated,
757 or in some cases we cannot insert the prologue there at all. If PRO
758 wont't do, try again with the immediate dominator of PRO, and so on.
760 The blocks that need duplicating are those reachable from PRO but
761 not dominated by it. We keep in BB_WITH a bitmap of the blocks
762 reachable from PRO that we already found, and in VEC a stack of
763 those we still need to consider (to find successors). */
765 auto_bitmap bb_with;
766 bitmap_set_bit (bb_with, pro->index);
768 vec<basic_block> vec;
769 vec.create (n_basic_blocks_for_fn (cfun));
770 vec.quick_push (pro);
772 unsigned max_grow_size = get_uncond_jump_length ();
773 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
775 while (!vec.is_empty () && pro != entry)
777 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
779 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
781 if (bitmap_set_bit (bb_with, pro->index))
782 vec.quick_push (pro);
785 basic_block bb = vec.pop ();
786 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
787 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
789 gcc_assert (pro != entry);
791 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
793 if (bitmap_set_bit (bb_with, pro->index))
794 vec.quick_push (pro);
797 FOR_EACH_EDGE (e, ei, bb->succs)
798 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
799 && bitmap_set_bit (bb_with, e->dest->index))
800 vec.quick_push (e->dest);
803 if (dump_file)
804 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
805 pro->index);
807 /* If we can move PRO back without having to duplicate more blocks, do so.
808 We do this because putting the prologue earlier is better for scheduling.
810 We can move back to a block PRE if every path from PRE will eventually
811 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
812 to dominate every block reachable from itself. We keep in BB_TMP a
813 bitmap of the blocks reachable from PRE that we already found, and in
814 VEC a stack of those we still need to consider.
816 Any block reachable from PRE is also reachable from all predecessors
817 of PRE, so if we find we need to move PRE back further we can leave
818 everything not considered so far on the stack. Any block dominated
819 by PRE is also dominated by all other dominators of PRE, so anything
820 found good for some PRE does not need to be reconsidered later.
822 We don't need to update BB_WITH because none of the new blocks found
823 can jump to a block that does not need the prologue. */
825 if (pro != entry)
827 calculate_dominance_info (CDI_POST_DOMINATORS);
829 auto_bitmap bb_tmp;
830 bitmap_copy (bb_tmp, bb_with);
831 basic_block last_ok = pro;
832 vec.truncate (0);
834 while (pro != entry)
836 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
837 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
838 break;
840 if (bitmap_set_bit (bb_tmp, pre->index))
841 vec.quick_push (pre);
843 bool ok = true;
844 while (!vec.is_empty ())
846 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
848 ok = false;
849 break;
852 basic_block bb = vec.pop ();
853 FOR_EACH_EDGE (e, ei, bb->succs)
854 if (bitmap_set_bit (bb_tmp, e->dest->index))
855 vec.quick_push (e->dest);
858 if (ok && can_get_prologue (pre, prologue_clobbered))
859 last_ok = pre;
861 pro = pre;
864 pro = last_ok;
866 free_dominance_info (CDI_POST_DOMINATORS);
869 vec.release ();
871 if (dump_file)
872 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
873 pro->index);
875 if (pro == entry)
877 free_dominance_info (CDI_DOMINATORS);
878 return;
881 /* Compute what fraction of the frequency and count of the blocks that run
882 both with and without prologue are for running with prologue. This gives
883 the correct answer for reducible flow graphs; for irreducible flow graphs
884 our profile is messed up beyond repair anyway. */
886 profile_count num = profile_count::zero ();
887 profile_count den = profile_count::zero ();
889 FOR_EACH_EDGE (e, ei, pro->preds)
890 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
892 if (e->count ().initialized_p ())
893 num += e->count ();
894 if (e->src->count.initialized_p ())
895 den += e->src->count;
898 /* All is okay, so do it. */
900 crtl->shrink_wrapped = true;
901 if (dump_file)
902 fprintf (dump_file, "Performing shrink-wrapping.\n");
904 /* Copy the blocks that can run both with and without prologue. The
905 originals run with prologue, the copies without. Store a pointer to
906 the copy in the ->aux field of the original. */
908 FOR_EACH_BB_FN (bb, cfun)
909 if (bitmap_bit_p (bb_with, bb->index)
910 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
912 basic_block dup = duplicate_block (bb, 0, 0);
914 bb->aux = dup;
916 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
917 emit_barrier_after_bb (dup);
919 if (EDGE_COUNT (dup->succs) == 0)
920 emit_barrier_after_bb (dup);
922 if (dump_file)
923 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
925 if (num == profile_count::zero () || den.nonzero_p ())
926 bb->count = bb->count.apply_scale (num, den);
927 dup->count -= bb->count;
930 /* Now change the edges to point to the copies, where appropriate. */
932 FOR_EACH_BB_FN (bb, cfun)
933 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
935 basic_block src = bb;
936 if (bitmap_bit_p (bb_with, bb->index))
937 src = (basic_block) bb->aux;
939 FOR_EACH_EDGE (e, ei, src->succs)
941 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
942 continue;
944 if (bitmap_bit_p (bb_with, e->dest->index)
945 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
947 if (dump_file)
948 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
949 e->src->index, e->dest->index,
950 ((basic_block) e->dest->aux)->index);
951 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
953 else if (e->flags & EDGE_FALLTHRU
954 && bitmap_bit_p (bb_with, bb->index))
955 force_nonfallthru (e);
959 /* Also redirect the function entry edge if necessary. */
961 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
962 if (bitmap_bit_p (bb_with, e->dest->index)
963 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
965 basic_block split_bb = split_edge (e);
966 e = single_succ_edge (split_bb);
967 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
970 /* Make a simple_return for those exits that run without prologue. */
972 FOR_EACH_BB_REVERSE_FN (bb, cfun)
973 if (!bitmap_bit_p (bb_with, bb->index))
974 FOR_EACH_EDGE (e, ei, bb->succs)
975 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
976 handle_simple_exit (e);
978 /* Finally, we want a single edge to put the prologue on. Make a new
979 block before the PRO block; the edge beteen them is the edge we want.
980 Then redirect those edges into PRO that come from blocks without the
981 prologue, to point to the new block instead. The new prologue block
982 is put at the end of the insn chain. */
984 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
985 BB_COPY_PARTITION (new_bb, pro);
986 new_bb->count = profile_count::zero ();
987 if (dump_file)
988 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
990 for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
992 if (bitmap_bit_p (bb_with, e->src->index)
993 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
995 ei_next (&ei);
996 continue;
999 new_bb->count += e->count ();
1001 redirect_edge_and_branch_force (e, new_bb);
1002 if (dump_file)
1003 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
1006 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
1007 force_nonfallthru (*entry_edge);
1009 free_dominance_info (CDI_DOMINATORS);
1012 /* Separate shrink-wrapping
1014 Instead of putting all of the prologue and epilogue in one spot, we
1015 can put parts of it in places where those components are executed less
1016 frequently. The following code does this, for prologue and epilogue
1017 components that can be put in more than one location, and where those
1018 components can be executed more than once (the epilogue component will
1019 always be executed before the prologue component is executed a second
1020 time).
1022 What exactly is a component is target-dependent. The more usual
1023 components are simple saves/restores to/from the frame of callee-saved
1024 registers. This code treats components abstractly (as an sbitmap),
1025 letting the target handle all details.
1027 Prologue components are placed in such a way that for every component
1028 the prologue is executed as infrequently as possible. We do this by
1029 walking the dominator tree, comparing the cost of placing a prologue
1030 component before a block to the sum of costs determined for all subtrees
1031 of that block.
1033 From this placement, we then determine for each component all blocks
1034 where at least one of this block's dominators (including itself) will
1035 get a prologue inserted. That then is how the components are placed.
1036 We could place the epilogue components a bit smarter (we can save a
1037 bit of code size sometimes); this is a possible future improvement.
1039 Prologues and epilogues are preferably placed into a block, either at
1040 the beginning or end of it, if it is needed for all predecessor resp.
1041 successor edges; or placed on the edge otherwise.
1043 If the placement of any prologue/epilogue leads to a situation we cannot
1044 handle (for example, an abnormal edge would need to be split, or some
1045 targets want to use some specific registers that may not be available
1046 where we want to put them), separate shrink-wrapping for the components
1047 in that prologue/epilogue is aborted. */
1050 /* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1051 label LABEL. */
1052 static void
1053 dump_components (const char *label, sbitmap components)
1055 if (bitmap_empty_p (components))
1056 return;
1058 fprintf (dump_file, " [%s", label);
1060 for (unsigned int j = 0; j < components->n_bits; j++)
1061 if (bitmap_bit_p (components, j))
1062 fprintf (dump_file, " %u", j);
1064 fprintf (dump_file, "]");
1067 /* The data we collect for each bb. */
1068 struct sw {
1069 /* What components does this BB need? */
1070 sbitmap needs_components;
1072 /* What components does this BB have? This is the main decision this
1073 pass makes. */
1074 sbitmap has_components;
1076 /* The components for which we placed code at the start of the BB (instead
1077 of on all incoming edges). */
1078 sbitmap head_components;
1080 /* The components for which we placed code at the end of the BB (instead
1081 of on all outgoing edges). */
1082 sbitmap tail_components;
1084 /* The frequency of executing the prologue for this BB, if a prologue is
1085 placed on this BB. This is a pessimistic estimate (no prologue is
1086 needed for edges from blocks that have the component under consideration
1087 active already). */
1088 gcov_type own_cost;
1090 /* The frequency of executing the prologue for this BB and all BBs
1091 dominated by it. */
1092 gcov_type total_cost;
1095 /* A helper function for accessing the pass-specific info. */
1096 static inline struct sw *
1097 SW (basic_block bb)
1099 gcc_assert (bb->aux);
1100 return (struct sw *) bb->aux;
1103 /* Create the pass-specific data structures for separately shrink-wrapping
1104 with components COMPONENTS. */
1105 static void
1106 init_separate_shrink_wrap (sbitmap components)
1108 basic_block bb;
1109 FOR_ALL_BB_FN (bb, cfun)
1111 bb->aux = xcalloc (1, sizeof (struct sw));
1113 SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);
1115 /* Mark all basic blocks without successor as needing all components.
1116 This avoids problems in at least cfgcleanup, sel-sched, and
1117 regrename (largely to do with all paths to such a block still
1118 needing the same dwarf CFI info). */
1119 if (EDGE_COUNT (bb->succs) == 0)
1120 bitmap_copy (SW (bb)->needs_components, components);
1122 if (dump_file)
1124 fprintf (dump_file, "bb %d components:", bb->index);
1125 dump_components ("has", SW (bb)->needs_components);
1126 fprintf (dump_file, "\n");
1129 SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
1130 SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
1131 SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
1132 bitmap_clear (SW (bb)->has_components);
1136 /* Destroy the pass-specific data. */
1137 static void
1138 fini_separate_shrink_wrap (void)
1140 basic_block bb;
1141 FOR_ALL_BB_FN (bb, cfun)
1142 if (bb->aux)
1144 sbitmap_free (SW (bb)->needs_components);
1145 sbitmap_free (SW (bb)->has_components);
1146 sbitmap_free (SW (bb)->head_components);
1147 sbitmap_free (SW (bb)->tail_components);
1148 free (bb->aux);
1149 bb->aux = 0;
1153 /* Place the prologue for component WHICH, in the basic blocks dominated
1154 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1155 HAS_COMPONENTS of a block if either the block has that bit set in
1156 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1157 dominator subtrees separately. */
1158 static void
1159 place_prologue_for_one_component (unsigned int which, basic_block head)
1161 /* The block we are currently dealing with. */
1162 basic_block bb = head;
1163 /* Is this the first time we visit this block, i.e. have we just gone
1164 down the tree. */
1165 bool first_visit = true;
1167 /* Walk the dominator tree, visit one block per iteration of this loop.
1168 Each basic block is visited twice: once before visiting any children
1169 of the block, and once after visiting all of them (leaf nodes are
1170 visited only once). As an optimization, we do not visit subtrees
1171 that can no longer influence the prologue placement. */
1172 for (;;)
1174 /* First visit of a block: set the (children) cost accumulator to zero;
1175 if the block does not have the component itself, walk down. */
1176 if (first_visit)
1178 /* Initialize the cost. The cost is the block execution frequency
1179 that does not come from backedges. Calculating this by simply
1180 adding the cost of all edges that aren't backedges does not
1181 work: this does not always add up to the block frequency at
1182 all, and even if it does, rounding error makes for bad
1183 decisions. */
1184 SW (bb)->own_cost = bb->count.to_frequency (cfun);
1186 edge e;
1187 edge_iterator ei;
1188 FOR_EACH_EDGE (e, ei, bb->preds)
1189 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1191 if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
1192 SW (bb)->own_cost -= EDGE_FREQUENCY (e);
1193 else
1194 SW (bb)->own_cost = 0;
1197 SW (bb)->total_cost = 0;
1199 if (!bitmap_bit_p (SW (bb)->needs_components, which)
1200 && first_dom_son (CDI_DOMINATORS, bb))
1202 bb = first_dom_son (CDI_DOMINATORS, bb);
1203 continue;
1207 /* If this block does need the component itself, or it is cheaper to
1208 put the prologue here than in all the descendants that need it,
1209 mark it so. If this block's immediate post-dominator is dominated
1210 by this block, and that needs the prologue, we can put it on this
1211 block as well (earlier is better). */
1212 if (bitmap_bit_p (SW (bb)->needs_components, which)
1213 || SW (bb)->total_cost > SW (bb)->own_cost)
1215 SW (bb)->total_cost = SW (bb)->own_cost;
1216 bitmap_set_bit (SW (bb)->has_components, which);
1218 else
1220 basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1221 if (dominated_by_p (CDI_DOMINATORS, kid, bb)
1222 && bitmap_bit_p (SW (kid)->has_components, which))
1224 SW (bb)->total_cost = SW (bb)->own_cost;
1225 bitmap_set_bit (SW (bb)->has_components, which);
1229 /* We are back where we started, so we are done now. */
1230 if (bb == head)
1231 return;
1233 /* We now know the cost of the subtree rooted at the current block.
1234 Accumulate this cost in the parent. */
1235 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1236 SW (parent)->total_cost += SW (bb)->total_cost;
1238 /* Don't walk the tree down unless necessary. */
1239 if (next_dom_son (CDI_DOMINATORS, bb)
1240 && SW (parent)->total_cost <= SW (parent)->own_cost)
1242 bb = next_dom_son (CDI_DOMINATORS, bb);
1243 first_visit = true;
1245 else
1247 bb = parent;
1248 first_visit = false;
1253 /* Set HAS_COMPONENTS in every block to the maximum it can be set to without
1254 setting it on any path from entry to exit where it was not already set
1255 somewhere (or, for blocks that have no path to the exit, consider only
1256 paths from the entry to the block itself). Return whether any changes
1257 were made to some HAS_COMPONENTS. */
1258 static bool
1259 spread_components (sbitmap components)
1261 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1262 basic_block exit_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
1264 /* A stack of all blocks left to consider, and a bitmap of all blocks
1265 on that stack. */
1266 vec<basic_block> todo;
1267 todo.create (n_basic_blocks_for_fn (cfun));
1268 auto_bitmap seen;
1270 auto_sbitmap old (SBITMAP_SIZE (components));
1272 /* Find for every block the components that are *not* needed on some path
1273 from the entry to that block. Do this with a flood fill from the entry
1274 block. Every block can be visited at most as often as the number of
1275 components (plus one), and usually much less often. */
1277 if (dump_file)
1278 fprintf (dump_file, "Spreading down...\n");
1280 basic_block bb;
1281 FOR_ALL_BB_FN (bb, cfun)
1282 bitmap_clear (SW (bb)->head_components);
1284 bitmap_copy (SW (entry_block)->head_components, components);
1286 edge e;
1287 edge_iterator ei;
1289 todo.quick_push (single_succ (entry_block));
1290 bitmap_set_bit (seen, single_succ (entry_block)->index);
1291 while (!todo.is_empty ())
1293 bb = todo.pop ();
1295 bitmap_copy (old, SW (bb)->head_components);
1297 FOR_EACH_EDGE (e, ei, bb->preds)
1298 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components,
1299 SW (e->src)->head_components);
1301 bitmap_and_compl (SW (bb)->head_components, SW (bb)->head_components,
1302 SW (bb)->has_components);
1304 if (!bitmap_equal_p (old, SW (bb)->head_components))
1305 FOR_EACH_EDGE (e, ei, bb->succs)
1306 if (bitmap_set_bit (seen, e->dest->index))
1307 todo.quick_push (e->dest);
1309 bitmap_clear_bit (seen, bb->index);
1312 /* Find for every block the components that are *not* needed on some reverse
1313 path from the exit to that block. */
1315 if (dump_file)
1316 fprintf (dump_file, "Spreading up...\n");
1318 /* First, mark all blocks not reachable from the exit block as not needing
1319 any component on any path to the exit. Mark everything, and then clear
1320 again by a flood fill. */
1322 FOR_ALL_BB_FN (bb, cfun)
1323 bitmap_copy (SW (bb)->tail_components, components);
1325 FOR_EACH_EDGE (e, ei, exit_block->preds)
1327 todo.quick_push (e->src);
1328 bitmap_set_bit (seen, e->src->index);
1331 while (!todo.is_empty ())
1333 bb = todo.pop ();
1335 if (!bitmap_empty_p (SW (bb)->tail_components))
1336 FOR_EACH_EDGE (e, ei, bb->preds)
1337 if (bitmap_set_bit (seen, e->src->index))
1338 todo.quick_push (e->src);
1340 bitmap_clear (SW (bb)->tail_components);
1342 bitmap_clear_bit (seen, bb->index);
1345 /* And then, flood fill backwards to find for every block the components
1346 not needed on some path to the exit. */
1348 bitmap_copy (SW (exit_block)->tail_components, components);
1350 FOR_EACH_EDGE (e, ei, exit_block->preds)
1352 todo.quick_push (e->src);
1353 bitmap_set_bit (seen, e->src->index);
1356 while (!todo.is_empty ())
1358 bb = todo.pop ();
1360 bitmap_copy (old, SW (bb)->tail_components);
1362 FOR_EACH_EDGE (e, ei, bb->succs)
1363 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components,
1364 SW (e->dest)->tail_components);
1366 bitmap_and_compl (SW (bb)->tail_components, SW (bb)->tail_components,
1367 SW (bb)->has_components);
1369 if (!bitmap_equal_p (old, SW (bb)->tail_components))
1370 FOR_EACH_EDGE (e, ei, bb->preds)
1371 if (bitmap_set_bit (seen, e->src->index))
1372 todo.quick_push (e->src);
1374 bitmap_clear_bit (seen, bb->index);
1377 todo.release ();
1379 /* Finally, mark everything not not needed both forwards and backwards. */
1381 bool did_changes = false;
1383 FOR_EACH_BB_FN (bb, cfun)
1385 bitmap_copy (old, SW (bb)->has_components);
1387 bitmap_and (SW (bb)->head_components, SW (bb)->head_components,
1388 SW (bb)->tail_components);
1389 bitmap_and_compl (SW (bb)->has_components, components,
1390 SW (bb)->head_components);
1392 if (!did_changes && !bitmap_equal_p (old, SW (bb)->has_components))
1393 did_changes = true;
1396 FOR_ALL_BB_FN (bb, cfun)
1398 if (dump_file)
1400 fprintf (dump_file, "bb %d components:", bb->index);
1401 dump_components ("has", SW (bb)->has_components);
1402 fprintf (dump_file, "\n");
1406 return did_changes;
1409 /* If we cannot handle placing some component's prologues or epilogues where
1410 we decided we should place them, unmark that component in COMPONENTS so
1411 that it is not wrapped separately. */
1412 static void
1413 disqualify_problematic_components (sbitmap components)
1415 auto_sbitmap pro (SBITMAP_SIZE (components));
1416 auto_sbitmap epi (SBITMAP_SIZE (components));
1418 basic_block bb;
1419 FOR_EACH_BB_FN (bb, cfun)
1421 edge e;
1422 edge_iterator ei;
1423 FOR_EACH_EDGE (e, ei, bb->succs)
1425 /* Find which components we want pro/epilogues for here. */
1426 bitmap_and_compl (epi, SW (e->src)->has_components,
1427 SW (e->dest)->has_components);
1428 bitmap_and_compl (pro, SW (e->dest)->has_components,
1429 SW (e->src)->has_components);
1431 /* Ask the target what it thinks about things. */
1432 if (!bitmap_empty_p (epi))
1433 targetm.shrink_wrap.disqualify_components (components, e, epi,
1434 false);
1435 if (!bitmap_empty_p (pro))
1436 targetm.shrink_wrap.disqualify_components (components, e, pro,
1437 true);
1439 /* If this edge doesn't need splitting, we're fine. */
1440 if (single_pred_p (e->dest)
1441 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1442 continue;
1444 /* If the edge can be split, that is fine too. */
1445 if ((e->flags & EDGE_ABNORMAL) == 0)
1446 continue;
1448 /* We also can handle sibcalls. */
1449 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1451 gcc_assert (e->flags & EDGE_SIBCALL);
1452 continue;
1455 /* Remove from consideration those components we would need
1456 pro/epilogues for on edges where we cannot insert them. */
1457 bitmap_and_compl (components, components, epi);
1458 bitmap_and_compl (components, components, pro);
1460 if (dump_file && !bitmap_subset_p (epi, components))
1462 fprintf (dump_file, " BAD epi %d->%d", e->src->index,
1463 e->dest->index);
1464 if (e->flags & EDGE_EH)
1465 fprintf (dump_file, " for EH");
1466 dump_components ("epi", epi);
1467 fprintf (dump_file, "\n");
1470 if (dump_file && !bitmap_subset_p (pro, components))
1472 fprintf (dump_file, " BAD pro %d->%d", e->src->index,
1473 e->dest->index);
1474 if (e->flags & EDGE_EH)
1475 fprintf (dump_file, " for EH");
1476 dump_components ("pro", pro);
1477 fprintf (dump_file, "\n");
1483 /* Place code for prologues and epilogues for COMPONENTS where we can put
1484 that code at the start of basic blocks. */
1485 static void
1486 emit_common_heads_for_components (sbitmap components)
1488 auto_sbitmap pro (SBITMAP_SIZE (components));
1489 auto_sbitmap epi (SBITMAP_SIZE (components));
1490 auto_sbitmap tmp (SBITMAP_SIZE (components));
1492 basic_block bb;
1493 FOR_ALL_BB_FN (bb, cfun)
1494 bitmap_clear (SW (bb)->head_components);
1496 FOR_EACH_BB_FN (bb, cfun)
1498 /* Find which prologue resp. epilogue components are needed for all
1499 predecessor edges to this block. */
1501 /* First, select all possible components. */
1502 bitmap_copy (epi, components);
1503 bitmap_copy (pro, components);
1505 edge e;
1506 edge_iterator ei;
1507 FOR_EACH_EDGE (e, ei, bb->preds)
1509 if (e->flags & EDGE_ABNORMAL)
1511 bitmap_clear (epi);
1512 bitmap_clear (pro);
1513 break;
1516 /* Deselect those epilogue components that should not be inserted
1517 for this edge. */
1518 bitmap_and_compl (tmp, SW (e->src)->has_components,
1519 SW (e->dest)->has_components);
1520 bitmap_and (epi, epi, tmp);
1522 /* Similar, for the prologue. */
1523 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1524 SW (e->src)->has_components);
1525 bitmap_and (pro, pro, tmp);
1528 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1529 fprintf (dump_file, " bb %d", bb->index);
1531 if (dump_file && !bitmap_empty_p (epi))
1532 dump_components ("epi", epi);
1533 if (dump_file && !bitmap_empty_p (pro))
1534 dump_components ("pro", pro);
1536 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1537 fprintf (dump_file, "\n");
1539 /* Place code after the BB note. */
1540 if (!bitmap_empty_p (pro))
1542 start_sequence ();
1543 targetm.shrink_wrap.emit_prologue_components (pro);
1544 rtx_insn *seq = get_insns ();
1545 end_sequence ();
1546 record_prologue_seq (seq);
1548 emit_insn_after (seq, bb_note (bb));
1550 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
1553 if (!bitmap_empty_p (epi))
1555 start_sequence ();
1556 targetm.shrink_wrap.emit_epilogue_components (epi);
1557 rtx_insn *seq = get_insns ();
1558 end_sequence ();
1559 record_epilogue_seq (seq);
1561 emit_insn_after (seq, bb_note (bb));
1563 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
1568 /* Place code for prologues and epilogues for COMPONENTS where we can put
1569 that code at the end of basic blocks. */
1570 static void
1571 emit_common_tails_for_components (sbitmap components)
1573 auto_sbitmap pro (SBITMAP_SIZE (components));
1574 auto_sbitmap epi (SBITMAP_SIZE (components));
1575 auto_sbitmap tmp (SBITMAP_SIZE (components));
1577 basic_block bb;
1578 FOR_ALL_BB_FN (bb, cfun)
1579 bitmap_clear (SW (bb)->tail_components);
1581 FOR_EACH_BB_FN (bb, cfun)
1583 /* Find which prologue resp. epilogue components are needed for all
1584 successor edges from this block. */
1585 if (EDGE_COUNT (bb->succs) == 0)
1586 continue;
1588 /* First, select all possible components. */
1589 bitmap_copy (epi, components);
1590 bitmap_copy (pro, components);
1592 edge e;
1593 edge_iterator ei;
1594 FOR_EACH_EDGE (e, ei, bb->succs)
1596 if (e->flags & EDGE_ABNORMAL)
1598 bitmap_clear (epi);
1599 bitmap_clear (pro);
1600 break;
1603 /* Deselect those epilogue components that should not be inserted
1604 for this edge, and also those that are already put at the head
1605 of the successor block. */
1606 bitmap_and_compl (tmp, SW (e->src)->has_components,
1607 SW (e->dest)->has_components);
1608 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1609 bitmap_and (epi, epi, tmp);
1611 /* Similarly, for the prologue. */
1612 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1613 SW (e->src)->has_components);
1614 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1615 bitmap_and (pro, pro, tmp);
1618 /* If the last insn of this block is a control flow insn we cannot
1619 put anything after it. We can put our code before it instead,
1620 but only if that jump insn is a simple jump. */
1621 rtx_insn *last_insn = BB_END (bb);
1622 if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
1624 bitmap_clear (epi);
1625 bitmap_clear (pro);
1628 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1629 fprintf (dump_file, " bb %d", bb->index);
1631 if (dump_file && !bitmap_empty_p (epi))
1632 dump_components ("epi", epi);
1633 if (dump_file && !bitmap_empty_p (pro))
1634 dump_components ("pro", pro);
1636 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1637 fprintf (dump_file, "\n");
1639 /* Put the code at the end of the BB, but before any final jump. */
1640 if (!bitmap_empty_p (epi))
1642 start_sequence ();
1643 targetm.shrink_wrap.emit_epilogue_components (epi);
1644 rtx_insn *seq = get_insns ();
1645 end_sequence ();
1646 record_epilogue_seq (seq);
1648 if (control_flow_insn_p (last_insn))
1649 emit_insn_before (seq, last_insn);
1650 else
1651 emit_insn_after (seq, last_insn);
1653 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
1656 if (!bitmap_empty_p (pro))
1658 start_sequence ();
1659 targetm.shrink_wrap.emit_prologue_components (pro);
1660 rtx_insn *seq = get_insns ();
1661 end_sequence ();
1662 record_prologue_seq (seq);
1664 if (control_flow_insn_p (last_insn))
1665 emit_insn_before (seq, last_insn);
1666 else
1667 emit_insn_after (seq, last_insn);
1669 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
1674 /* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1675 placed them inside blocks directly. */
1676 static void
1677 insert_prologue_epilogue_for_components (sbitmap components)
1679 auto_sbitmap pro (SBITMAP_SIZE (components));
1680 auto_sbitmap epi (SBITMAP_SIZE (components));
1682 basic_block bb;
1683 FOR_EACH_BB_FN (bb, cfun)
1685 if (!bb->aux)
1686 continue;
1688 edge e;
1689 edge_iterator ei;
1690 FOR_EACH_EDGE (e, ei, bb->succs)
1692 /* Find which pro/epilogue components are needed on this edge. */
1693 bitmap_and_compl (epi, SW (e->src)->has_components,
1694 SW (e->dest)->has_components);
1695 bitmap_and_compl (pro, SW (e->dest)->has_components,
1696 SW (e->src)->has_components);
1697 bitmap_and (epi, epi, components);
1698 bitmap_and (pro, pro, components);
1700 /* Deselect those we already have put at the head or tail of the
1701 edge's dest resp. src. */
1702 bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
1703 bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
1704 bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
1705 bitmap_and_compl (pro, pro, SW (e->src)->tail_components);
1707 if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
1709 if (dump_file)
1711 fprintf (dump_file, " %d->%d", e->src->index,
1712 e->dest->index);
1713 dump_components ("epi", epi);
1714 dump_components ("pro", pro);
1715 if (e->flags & EDGE_SIBCALL)
1716 fprintf (dump_file, " (SIBCALL)");
1717 else if (e->flags & EDGE_ABNORMAL)
1718 fprintf (dump_file, " (ABNORMAL)");
1719 fprintf (dump_file, "\n");
1722 /* Put the epilogue components in place. */
1723 start_sequence ();
1724 targetm.shrink_wrap.emit_epilogue_components (epi);
1725 rtx_insn *seq = get_insns ();
1726 end_sequence ();
1727 record_epilogue_seq (seq);
1729 if (e->flags & EDGE_SIBCALL)
1731 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));
1733 rtx_insn *insn = BB_END (e->src);
1734 gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
1735 emit_insn_before (seq, insn);
1737 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1739 gcc_assert (e->flags & EDGE_FALLTHRU);
1740 basic_block new_bb = split_edge (e);
1741 emit_insn_after (seq, BB_END (new_bb));
1743 else
1744 insert_insn_on_edge (seq, e);
1746 /* Put the prologue components in place. */
1747 start_sequence ();
1748 targetm.shrink_wrap.emit_prologue_components (pro);
1749 seq = get_insns ();
1750 end_sequence ();
1751 record_prologue_seq (seq);
1753 insert_insn_on_edge (seq, e);
1758 commit_edge_insertions ();
1761 /* The main entry point to this subpass. FIRST_BB is where the prologue
1762 would be normally put. */
1763 void
1764 try_shrink_wrapping_separate (basic_block first_bb)
1766 if (HAVE_cc0)
1767 return;
1769 if (!(SHRINK_WRAPPING_ENABLED
1770 && flag_shrink_wrap_separate
1771 && optimize_function_for_speed_p (cfun)
1772 && targetm.shrink_wrap.get_separate_components))
1773 return;
1775 /* We don't handle "strange" functions. */
1776 if (cfun->calls_alloca
1777 || cfun->calls_setjmp
1778 || cfun->can_throw_non_call_exceptions
1779 || crtl->calls_eh_return
1780 || crtl->has_nonlocal_goto
1781 || crtl->saves_all_registers)
1782 return;
1784 /* Ask the target what components there are. If it returns NULL, don't
1785 do anything. */
1786 sbitmap components = targetm.shrink_wrap.get_separate_components ();
1787 if (!components)
1788 return;
1790 /* We need LIVE info, not defining anything in the entry block and not
1791 using anything in the exit block. A block then needs a component if
1792 the register for that component is in the IN or GEN or KILL set for
1793 that block. */
1794 df_scan->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
1795 df_update_entry_exit_and_calls ();
1796 df_live_add_problem ();
1797 df_live_set_all_dirty ();
1798 df_analyze ();
1800 calculate_dominance_info (CDI_DOMINATORS);
1801 calculate_dominance_info (CDI_POST_DOMINATORS);
1803 init_separate_shrink_wrap (components);
1805 sbitmap_iterator sbi;
1806 unsigned int j;
1807 EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
1808 place_prologue_for_one_component (j, first_bb);
1810 /* Try to minimize the number of saves and restores. Do this as long as
1811 it changes anything. This does not iterate more than a few times. */
1812 int spread_times = 0;
1813 while (spread_components (components))
1815 spread_times++;
1817 if (dump_file)
1818 fprintf (dump_file, "Now spread %d times.\n", spread_times);
1821 disqualify_problematic_components (components);
1823 /* Don't separately shrink-wrap anything where the "main" prologue will
1824 go; the target code can often optimize things if it is presented with
1825 all components together (say, if it generates store-multiple insns). */
1826 bitmap_and_compl (components, components, SW (first_bb)->has_components);
1828 if (bitmap_empty_p (components))
1830 if (dump_file)
1831 fprintf (dump_file, "Not wrapping anything separately.\n");
1833 else
1835 if (dump_file)
1837 fprintf (dump_file, "The components we wrap separately are");
1838 dump_components ("sep", components);
1839 fprintf (dump_file, "\n");
1841 fprintf (dump_file, "... Inserting common heads...\n");
1844 emit_common_heads_for_components (components);
1846 if (dump_file)
1847 fprintf (dump_file, "... Inserting common tails...\n");
1849 emit_common_tails_for_components (components);
1851 if (dump_file)
1852 fprintf (dump_file, "... Inserting the more difficult ones...\n");
1854 insert_prologue_epilogue_for_components (components);
1856 if (dump_file)
1857 fprintf (dump_file, "... Done.\n");
1859 targetm.shrink_wrap.set_handled_components (components);
1861 crtl->shrink_wrapped_separate = true;
1864 fini_separate_shrink_wrap ();
1866 sbitmap_free (components);
1867 free_dominance_info (CDI_DOMINATORS);
1868 free_dominance_info (CDI_POST_DOMINATORS);
1870 /* All done. */
1871 df_scan->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
1872 df_update_entry_exit_and_calls ();
1873 df_live_set_all_dirty ();
1874 df_analyze ();