1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
38 o some heuristics to choose insn alternative to improve the
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
47 There is special code for preventing all LRA and this pass cycling
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
90 ... r <- s (new insn -- restore)
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
111 #include "coretypes.h"
118 #include "memmodel.h"
126 #include "addresses.h"
129 #include "rtl-error.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
138 static int bb_reload_num
;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn
*curr_insn
;
144 static rtx curr_insn_set
;
145 static basic_block curr_bb
;
146 static lra_insn_recog_data_t curr_id
;
147 static struct lra_static_insn_data
*curr_static_id
;
148 static machine_mode curr_operand_mode
[MAX_RECOG_OPERANDS
];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode
[MAX_RECOG_OPERANDS
];
156 /* Start numbers for new registers and insns at the current constraints
158 static int new_regno_start
;
159 static int new_insn_uid_start
;
161 /* If LOC is nonnull, strip any outer subreg from it. */
163 strip_subreg (rtx
*loc
)
165 return loc
&& GET_CODE (*loc
) == SUBREG
? &SUBREG_REG (*loc
) : loc
;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
171 get_try_hard_regno (int regno
)
174 enum reg_class rclass
;
176 if ((hard_regno
= regno
) >= FIRST_PSEUDO_REGISTER
)
177 hard_regno
= lra_get_regno_hard_regno (regno
);
180 rclass
= lra_get_allocno_class (regno
);
181 if (rclass
== NO_REGS
)
183 return ira_class_hard_regs
[rclass
][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
191 get_hard_regno (rtx x
, bool final_p
)
198 reg
= SUBREG_REG (x
);
201 if (! HARD_REGISTER_NUM_P (hard_regno
= REGNO (reg
)))
202 hard_regno
= lra_get_regno_hard_regno (hard_regno
);
206 hard_regno
= lra_get_elimination_hard_regno (hard_regno
);
208 hard_regno
+= subreg_regno_offset (hard_regno
, GET_MODE (reg
),
209 SUBREG_BYTE (x
), GET_MODE (x
));
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno
)
222 if (! HARD_REGISTER_NUM_P (hard_regno
= regno
))
223 hard_regno
= lra_get_regno_hard_regno (regno
);
226 hard_regno
= lra_get_elimination_hard_regno (hard_regno
);
227 return REGNO_REG_CLASS (hard_regno
);
229 if (regno
>= new_regno_start
)
230 return lra_get_allocno_class (regno
);
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
243 in_class_p (rtx reg
, enum reg_class cl
, enum reg_class
*new_class
)
245 enum reg_class rclass
, common_class
;
246 machine_mode reg_mode
;
247 int class_size
, hard_regno
, nregs
, i
, j
;
248 int regno
= REGNO (reg
);
250 if (new_class
!= NULL
)
251 *new_class
= NO_REGS
;
252 if (regno
< FIRST_PSEUDO_REGISTER
)
255 rtx
*final_loc
= &final_reg
;
257 lra_eliminate_reg_if_possible (final_loc
);
258 return TEST_HARD_REG_BIT (reg_class_contents
[cl
], REGNO (*final_loc
));
260 reg_mode
= GET_MODE (reg
);
261 rclass
= get_reg_class (regno
);
262 if (regno
< new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn
) >= new_insn_uid_start
269 && curr_insn_set
!= NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set
))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set
)))
272 || (GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set
)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set
)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno
>= new_regno_start
&& rclass
== ALL_REGS
)
278 || (rclass
!= NO_REGS
&& ira_class_subset_p
[rclass
][cl
]
279 && ! hard_reg_set_subset_p (reg_class_contents
[cl
],
280 lra_no_alloc_regs
)));
283 common_class
= ira_reg_class_subset
[rclass
][cl
];
284 if (new_class
!= NULL
)
285 *new_class
= common_class
;
286 if (hard_reg_set_subset_p (reg_class_contents
[common_class
],
289 /* Check that there are enough allocatable regs. */
290 class_size
= ira_class_hard_regs_num
[common_class
];
291 for (i
= 0; i
< class_size
; i
++)
293 hard_regno
= ira_class_hard_regs
[common_class
][i
];
294 nregs
= hard_regno_nregs (hard_regno
, reg_mode
);
297 for (j
= 0; j
< nregs
; j
++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs
, hard_regno
+ j
)
299 || ! TEST_HARD_REG_BIT (reg_class_contents
[common_class
],
309 /* Return true if REGNO satisfies a memory constraint. */
313 return get_reg_class (regno
) == NO_REGS
;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED
,
321 rtx addr
, addr_space_t as
)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as
));
325 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
331 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
336 /* Temporarily eliminates registers in an address (for the lifetime of
338 class address_eliminator
{
340 address_eliminator (struct address_info
*ad
);
341 ~address_eliminator ();
344 struct address_info
*m_ad
;
352 address_eliminator::address_eliminator (struct address_info
*ad
)
354 m_base_loc (strip_subreg (ad
->base_term
)),
355 m_base_reg (NULL_RTX
),
356 m_index_loc (strip_subreg (ad
->index_term
)),
357 m_index_reg (NULL_RTX
)
359 if (m_base_loc
!= NULL
)
361 m_base_reg
= *m_base_loc
;
362 lra_eliminate_reg_if_possible (m_base_loc
);
363 if (m_ad
->base_term2
!= NULL
)
364 *m_ad
->base_term2
= *m_ad
->base_term
;
366 if (m_index_loc
!= NULL
)
368 m_index_reg
= *m_index_loc
;
369 lra_eliminate_reg_if_possible (m_index_loc
);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc
&& *m_base_loc
!= m_base_reg
)
377 *m_base_loc
= m_base_reg
;
378 if (m_ad
->base_term2
!= NULL
)
379 *m_ad
->base_term2
= *m_ad
->base_term
;
381 if (m_index_loc
&& *m_index_loc
!= m_index_reg
)
382 *m_index_loc
= m_index_reg
;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
387 valid_address_p (struct address_info
*ad
)
389 address_eliminator
eliminator (ad
);
390 return valid_address_p (ad
->mode
, *ad
->outer
, ad
->as
);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
396 satisfies_memory_constraint_p (rtx op
, enum constraint_num constraint
)
398 struct address_info ad
;
400 decompose_mem_address (&ad
, op
);
401 address_eliminator
eliminator (&ad
);
402 return constraint_satisfied_p (op
, constraint
);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
408 satisfies_address_constraint_p (struct address_info
*ad
,
409 enum constraint_num constraint
)
411 address_eliminator
eliminator (ad
);
412 return constraint_satisfied_p (*ad
->outer
, constraint
);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
418 satisfies_address_constraint_p (rtx op
, enum constraint_num constraint
)
420 struct address_info ad
;
422 decompose_lea_address (&ad
, &op
);
423 return satisfies_address_constraint_p (&ad
, constraint
);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i
= FIRST_PSEUDO_REGISTER
; i
< max_reg_num (); i
++)
437 if ((res
= ira_reg_equiv
[i
].memory
) != NULL_RTX
)
438 ira_reg_equiv
[i
].memory
= copy_rtx (res
);
439 if ((res
= ira_reg_equiv
[i
].invariant
) != NULL_RTX
)
440 ira_reg_equiv
[i
].invariant
= copy_rtx (res
);
444 static rtx
loc_equivalence_callback (rtx
, const_rtx
, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
450 update_equiv (int regno
)
454 if ((x
= ira_reg_equiv
[regno
].memory
) != NULL_RTX
)
455 ira_reg_equiv
[regno
].memory
456 = simplify_replace_fn_rtx (x
, NULL_RTX
, loc_equivalence_callback
,
458 if ((x
= ira_reg_equiv
[regno
].invariant
) != NULL_RTX
)
459 ira_reg_equiv
[regno
].invariant
460 = simplify_replace_fn_rtx (x
, NULL_RTX
, loc_equivalence_callback
,
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
472 if (! REG_P (x
) || (regno
= REGNO (x
)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv
[regno
].defined_p
474 || ! ira_reg_equiv
[regno
].profitable_p
475 || lra_get_regno_hard_regno (regno
) >= 0)
477 if ((res
= ira_reg_equiv
[regno
].memory
) != NULL_RTX
)
479 if (targetm
.cannot_substitute_mem_equiv_p (res
))
483 if ((res
= ira_reg_equiv
[regno
].constant
) != NULL_RTX
)
485 if ((res
= ira_reg_equiv
[regno
].invariant
) != NULL_RTX
)
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
494 get_equiv_with_elimination (rtx x
, rtx_insn
*insn
)
496 rtx res
= get_equiv (x
);
498 if (x
== res
|| CONSTANT_P (res
))
500 return lra_eliminate_regs_1 (insn
, res
, GET_MODE (res
),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
506 init_curr_operand_mode (void)
508 int nop
= curr_static_id
->n_operands
;
509 for (int i
= 0; i
< nop
; i
++)
511 machine_mode mode
= GET_MODE (*curr_id
->operand_loc
[i
]);
512 if (mode
== VOIDmode
)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id
->icode
>= 0 && curr_static_id
->operand
[i
].is_address
)
519 mode
= curr_static_id
->operand
[i
].mode
;
521 curr_operand_mode
[i
] = mode
;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
532 /* True for input reload of matched operands. */
534 /* Reloaded value. */
536 /* Reload pseudo used. */
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num
;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads
[LRA_MAX_INSN_RELOADS
];
546 /* Initiate data concerning reuse of input reloads for the current
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num
= 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
562 get_reload_reg (enum op_type type
, machine_mode mode
, rtx original
,
563 enum reg_class rclass
, bool in_subreg_p
,
564 const char *title
, rtx
*result_reg
)
567 enum reg_class new_class
;
568 bool unique_p
= false;
573 = lra_create_new_reg_with_unique_value (mode
, original
, rclass
, title
);
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original
))
579 for (i
= 0; i
< curr_insn_input_reloads_num
; i
++)
581 if (! curr_insn_input_reloads
[i
].match_p
582 && rtx_equal_p (curr_insn_input_reloads
[i
].input
, original
)
583 && in_class_p (curr_insn_input_reloads
[i
].reg
, rclass
, &new_class
))
585 rtx reg
= curr_insn_input_reloads
[i
].reg
;
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg
) != mode
)
594 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg
)),
595 GET_MODE_SIZE (mode
)))
597 reg
= lowpart_subreg (mode
, reg
, GET_MODE (reg
));
598 if (reg
== NULL_RTX
|| GET_CODE (reg
) != SUBREG
)
602 if (lra_dump_file
!= NULL
)
604 fprintf (lra_dump_file
, " Reuse r%d for reload ", regno
);
605 dump_value_slim (lra_dump_file
, original
, 1);
607 if (new_class
!= lra_get_allocno_class (regno
))
608 lra_change_class (regno
, new_class
, ", change to", false);
609 if (lra_dump_file
!= NULL
)
610 fprintf (lra_dump_file
, "\n");
613 /* If we have an input reload with a different mode, make sure it
614 will get a different hard reg. */
615 else if (REG_P (original
)
616 && REG_P (curr_insn_input_reloads
[i
].input
)
617 && REGNO (original
) == REGNO (curr_insn_input_reloads
[i
].input
)
618 && (GET_MODE (original
)
619 != GET_MODE (curr_insn_input_reloads
[i
].input
)))
622 *result_reg
= (unique_p
623 ? lra_create_new_reg_with_unique_value
624 : lra_create_new_reg
) (mode
, original
, rclass
, title
);
625 lra_assert (curr_insn_input_reloads_num
< LRA_MAX_INSN_RELOADS
);
626 curr_insn_input_reloads
[curr_insn_input_reloads_num
].input
= original
;
627 curr_insn_input_reloads
[curr_insn_input_reloads_num
].match_p
= false;
628 curr_insn_input_reloads
[curr_insn_input_reloads_num
++].reg
= *result_reg
;
633 /* The page contains major code to choose the current insn alternative
634 and generate reloads for it. */
636 /* Return the offset from REGNO of the least significant register
639 This function is used to tell whether two registers satisfy
640 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
642 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
643 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
645 lra_constraint_offset (int regno
, machine_mode mode
)
647 lra_assert (regno
< FIRST_PSEUDO_REGISTER
);
649 scalar_int_mode int_mode
;
651 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
652 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
)
653 return hard_regno_nregs (regno
, mode
) - 1;
657 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
658 if they are the same hard reg, and has special hacks for
659 auto-increment and auto-decrement. This is specifically intended for
660 process_alt_operands to use in determining whether two operands
661 match. X is the operand whose number is the lower of the two.
663 It is supposed that X is the output operand and Y is the input
664 operand. Y_HARD_REGNO is the final hard regno of register Y or
665 register in subreg Y as we know it now. Otherwise, it is a
668 operands_match_p (rtx x
, rtx y
, int y_hard_regno
)
671 RTX_CODE code
= GET_CODE (x
);
676 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
677 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
&& REG_P (SUBREG_REG (y
)))))
681 i
= get_hard_regno (x
, false);
685 if ((j
= y_hard_regno
) < 0)
688 i
+= lra_constraint_offset (i
, GET_MODE (x
));
689 j
+= lra_constraint_offset (j
, GET_MODE (y
));
694 /* If two operands must match, because they are really a single
695 operand of an assembler insn, then two post-increments are invalid
696 because the assembler insn would increment only once. On the
697 other hand, a post-increment matches ordinary indexing if the
698 post-increment is the output operand. */
699 if (code
== POST_DEC
|| code
== POST_INC
|| code
== POST_MODIFY
)
700 return operands_match_p (XEXP (x
, 0), y
, y_hard_regno
);
702 /* Two pre-increments are invalid because the assembler insn would
703 increment only once. On the other hand, a pre-increment matches
704 ordinary indexing if the pre-increment is the input operand. */
705 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
706 || GET_CODE (y
) == PRE_MODIFY
)
707 return operands_match_p (x
, XEXP (y
, 0), -1);
711 if (code
== REG
&& REG_P (y
))
712 return REGNO (x
) == REGNO (y
);
714 if (code
== REG
&& GET_CODE (y
) == SUBREG
&& REG_P (SUBREG_REG (y
))
715 && x
== SUBREG_REG (y
))
717 if (GET_CODE (y
) == REG
&& code
== SUBREG
&& REG_P (SUBREG_REG (x
))
718 && SUBREG_REG (x
) == y
)
721 /* Now we have disposed of all the cases in which different rtx
723 if (code
!= GET_CODE (y
))
726 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
727 if (GET_MODE (x
) != GET_MODE (y
))
736 return label_ref_label (x
) == label_ref_label (y
);
738 return XSTR (x
, 0) == XSTR (y
, 0);
744 /* Compare the elements. If any pair of corresponding elements fail
745 to match, return false for the whole things. */
747 fmt
= GET_RTX_FORMAT (code
);
748 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
754 if (XWINT (x
, i
) != XWINT (y
, i
))
759 if (XINT (x
, i
) != XINT (y
, i
))
764 if (maybe_ne (SUBREG_BYTE (x
), SUBREG_BYTE (y
)))
769 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
), -1);
778 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
780 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; --j
)
782 val
= operands_match_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
), -1);
788 /* It is believed that rtx's at this level will never
789 contain anything but integers and other rtx's, except for
790 within LABEL_REFs and SYMBOL_REFs. */
798 /* True if X is a constant that can be forced into the constant pool.
799 MODE is the mode of the operand, or VOIDmode if not known. */
800 #define CONST_POOL_OK_P(MODE, X) \
801 ((MODE) != VOIDmode \
803 && GET_CODE (X) != HIGH \
804 && GET_MODE_SIZE (MODE).is_constant () \
805 && !targetm.cannot_force_const_mem (MODE, X))
807 /* True if C is a non-empty register class that has too few registers
808 to be safely used as a reload target class. */
809 #define SMALL_REGISTER_CLASS_P(C) \
810 (ira_class_hard_regs_num [(C)] == 1 \
811 || (ira_class_hard_regs_num [(C)] >= 1 \
812 && targetm.class_likely_spilled_p (C)))
814 /* If REG is a reload pseudo, try to make its class satisfying CL. */
816 narrow_reload_pseudo_class (rtx reg
, enum reg_class cl
)
818 enum reg_class rclass
;
820 /* Do not make more accurate class from reloads generated. They are
821 mostly moves with a lot of constraints. Making more accurate
822 class may results in very narrow class and impossibility of find
823 registers for several reloads of one insn. */
824 if (INSN_UID (curr_insn
) >= new_insn_uid_start
)
826 if (GET_CODE (reg
) == SUBREG
)
827 reg
= SUBREG_REG (reg
);
828 if (! REG_P (reg
) || (int) REGNO (reg
) < new_regno_start
)
830 if (in_class_p (reg
, cl
, &rclass
) && rclass
!= cl
)
831 lra_change_class (REGNO (reg
), rclass
, " Change to", true);
834 /* Searches X for any reference to a reg with the same value as REGNO,
835 returning the rtx of the reference found if any. Otherwise,
838 regno_val_use_in (unsigned int regno
, rtx x
)
844 if (REG_P (x
) && lra_reg_info
[REGNO (x
)].val
== lra_reg_info
[regno
].val
)
847 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
848 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
852 if ((tem
= regno_val_use_in (regno
, XEXP (x
, i
))))
855 else if (fmt
[i
] == 'E')
856 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
857 if ((tem
= regno_val_use_in (regno
, XVECEXP (x
, i
, j
))))
864 /* Return true if all current insn non-output operands except INS (it
865 has a negaitve end marker) do not use pseudos with the same value
868 check_conflict_input_operands (int regno
, signed char *ins
)
871 int n_operands
= curr_static_id
->n_operands
;
873 for (int nop
= 0; nop
< n_operands
; nop
++)
874 if (! curr_static_id
->operand
[nop
].is_operator
875 && curr_static_id
->operand
[nop
].type
!= OP_OUT
)
877 for (int i
= 0; (in
= ins
[i
]) >= 0; i
++)
881 && regno_val_use_in (regno
, *curr_id
->operand_loc
[nop
]) != NULL_RTX
)
887 /* Generate reloads for matching OUT and INS (array of input operand
888 numbers with end marker -1) with reg class GOAL_CLASS, considering
889 output operands OUTS (similar array to INS) needing to be in different
890 registers. Add input and output reloads correspondingly to the lists
891 *BEFORE and *AFTER. OUT might be negative. In this case we generate
892 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
893 that the output operand is early clobbered for chosen alternative. */
895 match_reload (signed char out
, signed char *ins
, signed char *outs
,
896 enum reg_class goal_class
, rtx_insn
**before
,
897 rtx_insn
**after
, bool early_clobber_p
)
901 rtx new_in_reg
, new_out_reg
, reg
;
902 machine_mode inmode
, outmode
;
903 rtx in_rtx
= *curr_id
->operand_loc
[ins
[0]];
904 rtx out_rtx
= out
< 0 ? in_rtx
: *curr_id
->operand_loc
[out
];
906 inmode
= curr_operand_mode
[ins
[0]];
907 outmode
= out
< 0 ? inmode
: curr_operand_mode
[out
];
908 push_to_sequence (*before
);
909 if (inmode
!= outmode
)
911 /* process_alt_operands has already checked that the mode sizes
913 if (partial_subreg_p (outmode
, inmode
))
916 = lra_create_new_reg_with_unique_value (inmode
, in_rtx
,
918 new_out_reg
= gen_lowpart_SUBREG (outmode
, reg
);
919 LRA_SUBREG_P (new_out_reg
) = 1;
920 /* If the input reg is dying here, we can use the same hard
921 register for REG and IN_RTX. We do it only for original
922 pseudos as reload pseudos can die although original
923 pseudos still live where reload pseudos dies. */
924 if (REG_P (in_rtx
) && (int) REGNO (in_rtx
) < lra_new_regno_start
925 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (in_rtx
))
927 || check_conflict_input_operands(REGNO (in_rtx
), ins
)))
928 lra_assign_reg_val (REGNO (in_rtx
), REGNO (reg
));
933 = lra_create_new_reg_with_unique_value (outmode
, out_rtx
,
935 new_in_reg
= gen_lowpart_SUBREG (inmode
, reg
);
936 /* NEW_IN_REG is non-paradoxical subreg. We don't want
937 NEW_OUT_REG living above. We add clobber clause for
938 this. This is just a temporary clobber. We can remove
939 it at the end of LRA work. */
940 rtx_insn
*clobber
= emit_clobber (new_out_reg
);
941 LRA_TEMP_CLOBBER_P (PATTERN (clobber
)) = 1;
942 LRA_SUBREG_P (new_in_reg
) = 1;
943 if (GET_CODE (in_rtx
) == SUBREG
)
945 rtx subreg_reg
= SUBREG_REG (in_rtx
);
947 /* If SUBREG_REG is dying here and sub-registers IN_RTX
948 and NEW_IN_REG are similar, we can use the same hard
949 register for REG and SUBREG_REG. */
950 if (REG_P (subreg_reg
)
951 && (int) REGNO (subreg_reg
) < lra_new_regno_start
952 && GET_MODE (subreg_reg
) == outmode
953 && known_eq (SUBREG_BYTE (in_rtx
), SUBREG_BYTE (new_in_reg
))
954 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (subreg_reg
))
955 && (! early_clobber_p
956 || check_conflict_input_operands (REGNO (subreg_reg
),
958 lra_assign_reg_val (REGNO (subreg_reg
), REGNO (reg
));
964 /* Pseudos have values -- see comments for lra_reg_info.
965 Different pseudos with the same value do not conflict even if
966 they live in the same place. When we create a pseudo we
967 assign value of original pseudo (if any) from which we
968 created the new pseudo. If we create the pseudo from the
969 input pseudo, the new pseudo will have no conflict with the
970 input pseudo which is wrong when the input pseudo lives after
971 the insn and as the new pseudo value is changed by the insn
972 output. Therefore we create the new pseudo from the output
973 except the case when we have single matched dying input
976 We cannot reuse the current output register because we might
977 have a situation like "a <- a op b", where the constraints
978 force the second input operand ("b") to match the output
979 operand ("a"). "b" must then be copied into a new register
980 so that it doesn't clobber the current value of "a".
982 We can not use the same value if the output pseudo is
983 early clobbered or the input pseudo is mentioned in the
984 output, e.g. as an address part in memory, because
985 output reload will actually extend the pseudo liveness.
986 We don't care about eliminable hard regs here as we are
987 interesting only in pseudos. */
989 /* Matching input's register value is the same as one of the other
990 output operand. Output operands in a parallel insn must be in
991 different registers. */
992 out_conflict
= false;
995 for (i
= 0; outs
[i
] >= 0; i
++)
997 rtx other_out_rtx
= *curr_id
->operand_loc
[outs
[i
]];
998 if (REG_P (other_out_rtx
)
999 && (regno_val_use_in (REGNO (in_rtx
), other_out_rtx
)
1002 out_conflict
= true;
1008 new_in_reg
= new_out_reg
1009 = (! early_clobber_p
&& ins
[1] < 0 && REG_P (in_rtx
)
1010 && (int) REGNO (in_rtx
) < lra_new_regno_start
1011 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (in_rtx
))
1012 && (! early_clobber_p
1013 || check_conflict_input_operands (REGNO (in_rtx
), ins
))
1015 || regno_val_use_in (REGNO (in_rtx
), out_rtx
) == NULL_RTX
)
1017 ? lra_create_new_reg (inmode
, in_rtx
, goal_class
, "")
1018 : lra_create_new_reg_with_unique_value (outmode
, out_rtx
,
1021 /* In operand can be got from transformations before processing insn
1022 constraints. One example of such transformations is subreg
1023 reloading (see function simplify_operand_subreg). The new
1024 pseudos created by the transformations might have inaccurate
1025 class (ALL_REGS) and we should make their classes more
1027 narrow_reload_pseudo_class (in_rtx
, goal_class
);
1028 lra_emit_move (copy_rtx (new_in_reg
), in_rtx
);
1029 *before
= get_insns ();
1031 /* Add the new pseudo to consider values of subsequent input reload
1033 lra_assert (curr_insn_input_reloads_num
< LRA_MAX_INSN_RELOADS
);
1034 curr_insn_input_reloads
[curr_insn_input_reloads_num
].input
= in_rtx
;
1035 curr_insn_input_reloads
[curr_insn_input_reloads_num
].match_p
= true;
1036 curr_insn_input_reloads
[curr_insn_input_reloads_num
++].reg
= new_in_reg
;
1037 for (i
= 0; (in
= ins
[i
]) >= 0; i
++)
1040 (GET_MODE (*curr_id
->operand_loc
[in
]) == VOIDmode
1041 || GET_MODE (new_in_reg
) == GET_MODE (*curr_id
->operand_loc
[in
]));
1042 *curr_id
->operand_loc
[in
] = new_in_reg
;
1044 lra_update_dups (curr_id
, ins
);
1047 /* See a comment for the input operand above. */
1048 narrow_reload_pseudo_class (out_rtx
, goal_class
);
1049 if (find_reg_note (curr_insn
, REG_UNUSED
, out_rtx
) == NULL_RTX
)
1052 lra_emit_move (out_rtx
, copy_rtx (new_out_reg
));
1054 *after
= get_insns ();
1057 *curr_id
->operand_loc
[out
] = new_out_reg
;
1058 lra_update_dup (curr_id
, out
);
1061 /* Return register class which is union of all reg classes in insn
1062 constraint alternative string starting with P. */
1063 static enum reg_class
1064 reg_class_from_constraints (const char *p
)
1067 enum reg_class op_class
= NO_REGS
;
1070 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
1077 op_class
= reg_class_subunion
[op_class
][GENERAL_REGS
];
1081 enum constraint_num cn
= lookup_constraint (p
);
1082 enum reg_class cl
= reg_class_for_constraint (cn
);
1085 if (insn_extra_address_constraint (cn
))
1087 = (reg_class_subunion
1088 [op_class
][base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
1089 ADDRESS
, SCRATCH
)]);
1093 op_class
= reg_class_subunion
[op_class
][cl
];
1096 while ((p
+= len
), c
);
1100 /* If OP is a register, return the class of the register as per
1101 get_reg_class, otherwise return NO_REGS. */
1102 static inline enum reg_class
1103 get_op_class (rtx op
)
1105 return REG_P (op
) ? get_reg_class (REGNO (op
)) : NO_REGS
;
1108 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1109 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1110 SUBREG for VAL to make them equal. */
1112 emit_spill_move (bool to_p
, rtx mem_pseudo
, rtx val
)
1114 if (GET_MODE (mem_pseudo
) != GET_MODE (val
))
1116 /* Usually size of mem_pseudo is greater than val size but in
1117 rare cases it can be less as it can be defined by target
1118 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1121 val
= gen_lowpart_SUBREG (GET_MODE (mem_pseudo
),
1122 GET_CODE (val
) == SUBREG
1123 ? SUBREG_REG (val
) : val
);
1124 LRA_SUBREG_P (val
) = 1;
1128 mem_pseudo
= gen_lowpart_SUBREG (GET_MODE (val
), mem_pseudo
);
1129 LRA_SUBREG_P (mem_pseudo
) = 1;
1132 return to_p
? gen_move_insn (mem_pseudo
, val
)
1133 : gen_move_insn (val
, mem_pseudo
);
1136 /* Process a special case insn (register move), return true if we
1137 don't need to process it anymore. INSN should be a single set
1138 insn. Set up that RTL was changed through CHANGE_P and that hook
1139 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1142 check_and_process_move (bool *change_p
, bool *sec_mem_p ATTRIBUTE_UNUSED
)
1145 rtx dest
, src
, dreg
, sreg
, new_reg
, scratch_reg
;
1147 enum reg_class dclass
, sclass
, secondary_class
;
1148 secondary_reload_info sri
;
1150 lra_assert (curr_insn_set
!= NULL_RTX
);
1151 dreg
= dest
= SET_DEST (curr_insn_set
);
1152 sreg
= src
= SET_SRC (curr_insn_set
);
1153 if (GET_CODE (dest
) == SUBREG
)
1154 dreg
= SUBREG_REG (dest
);
1155 if (GET_CODE (src
) == SUBREG
)
1156 sreg
= SUBREG_REG (src
);
1157 if (! (REG_P (dreg
) || MEM_P (dreg
)) || ! (REG_P (sreg
) || MEM_P (sreg
)))
1159 sclass
= dclass
= NO_REGS
;
1161 dclass
= get_reg_class (REGNO (dreg
));
1162 gcc_assert (dclass
< LIM_REG_CLASSES
);
1163 if (dclass
== ALL_REGS
)
1164 /* ALL_REGS is used for new pseudos created by transformations
1165 like reload of SUBREG_REG (see function
1166 simplify_operand_subreg). We don't know their class yet. We
1167 should figure out the class from processing the insn
1168 constraints not in this fast path function. Even if ALL_REGS
1169 were a right class for the pseudo, secondary_... hooks usually
1170 are not define for ALL_REGS. */
1173 sclass
= get_reg_class (REGNO (sreg
));
1174 gcc_assert (sclass
< LIM_REG_CLASSES
);
1175 if (sclass
== ALL_REGS
)
1176 /* See comments above. */
1178 if (sclass
== NO_REGS
&& dclass
== NO_REGS
)
1180 if (targetm
.secondary_memory_needed (GET_MODE (src
), sclass
, dclass
)
1181 && ((sclass
!= NO_REGS
&& dclass
!= NO_REGS
)
1183 != targetm
.secondary_memory_needed_mode (GET_MODE (src
)))))
1188 if (! REG_P (dreg
) || ! REG_P (sreg
))
1190 sri
.prev_sri
= NULL
;
1191 sri
.icode
= CODE_FOR_nothing
;
1193 secondary_class
= NO_REGS
;
1194 /* Set up hard register for a reload pseudo for hook
1195 secondary_reload because some targets just ignore unassigned
1196 pseudos in the hook. */
1197 if (dclass
!= NO_REGS
&& lra_get_regno_hard_regno (REGNO (dreg
)) < 0)
1199 dregno
= REGNO (dreg
);
1200 reg_renumber
[dregno
] = ira_class_hard_regs
[dclass
][0];
1204 if (sclass
!= NO_REGS
&& lra_get_regno_hard_regno (REGNO (sreg
)) < 0)
1206 sregno
= REGNO (sreg
);
1207 reg_renumber
[sregno
] = ira_class_hard_regs
[sclass
][0];
1211 if (sclass
!= NO_REGS
)
1213 = (enum reg_class
) targetm
.secondary_reload (false, dest
,
1214 (reg_class_t
) sclass
,
1215 GET_MODE (src
), &sri
);
1216 if (sclass
== NO_REGS
1217 || ((secondary_class
!= NO_REGS
|| sri
.icode
!= CODE_FOR_nothing
)
1218 && dclass
!= NO_REGS
))
1220 enum reg_class old_sclass
= secondary_class
;
1221 secondary_reload_info old_sri
= sri
;
1223 sri
.prev_sri
= NULL
;
1224 sri
.icode
= CODE_FOR_nothing
;
1227 = (enum reg_class
) targetm
.secondary_reload (true, src
,
1228 (reg_class_t
) dclass
,
1229 GET_MODE (src
), &sri
);
1230 /* Check the target hook consistency. */
1232 ((secondary_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
1233 || (old_sclass
== NO_REGS
&& old_sri
.icode
== CODE_FOR_nothing
)
1234 || (secondary_class
== old_sclass
&& sri
.icode
== old_sri
.icode
));
1237 reg_renumber
[sregno
] = -1;
1239 reg_renumber
[dregno
] = -1;
1240 if (secondary_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
1244 if (secondary_class
!= NO_REGS
)
1245 new_reg
= lra_create_new_reg_with_unique_value (GET_MODE (src
), NULL_RTX
,
1249 if (sri
.icode
== CODE_FOR_nothing
)
1250 lra_emit_move (new_reg
, src
);
1253 enum reg_class scratch_class
;
1255 scratch_class
= (reg_class_from_constraints
1256 (insn_data
[sri
.icode
].operand
[2].constraint
));
1257 scratch_reg
= (lra_create_new_reg_with_unique_value
1258 (insn_data
[sri
.icode
].operand
[2].mode
, NULL_RTX
,
1259 scratch_class
, "scratch"));
1260 emit_insn (GEN_FCN (sri
.icode
) (new_reg
!= NULL_RTX
? new_reg
: dest
,
1263 before
= get_insns ();
1265 lra_process_new_insns (curr_insn
, before
, NULL
, "Inserting the move");
1266 if (new_reg
!= NULL_RTX
)
1267 SET_SRC (curr_insn_set
) = new_reg
;
1270 if (lra_dump_file
!= NULL
)
1272 fprintf (lra_dump_file
, "Deleting move %u\n", INSN_UID (curr_insn
));
1273 dump_insn_slim (lra_dump_file
, curr_insn
);
1275 lra_set_insn_deleted (curr_insn
);
1281 /* The following data describe the result of process_alt_operands.
1282 The data are used in curr_insn_transform to generate reloads. */
1284 /* The chosen reg classes which should be used for the corresponding
1286 static enum reg_class goal_alt
[MAX_RECOG_OPERANDS
];
1287 /* True if the operand should be the same as another operand and that
1288 other operand does not need a reload. */
1289 static bool goal_alt_match_win
[MAX_RECOG_OPERANDS
];
1290 /* True if the operand does not need a reload. */
1291 static bool goal_alt_win
[MAX_RECOG_OPERANDS
];
1292 /* True if the operand can be offsetable memory. */
1293 static bool goal_alt_offmemok
[MAX_RECOG_OPERANDS
];
1294 /* The number of an operand to which given operand can be matched to. */
1295 static int goal_alt_matches
[MAX_RECOG_OPERANDS
];
1296 /* The number of elements in the following array. */
1297 static int goal_alt_dont_inherit_ops_num
;
1298 /* Numbers of operands whose reload pseudos should not be inherited. */
1299 static int goal_alt_dont_inherit_ops
[MAX_RECOG_OPERANDS
];
1300 /* True if the insn commutative operands should be swapped. */
1301 static bool goal_alt_swapped
;
1302 /* The chosen insn alternative. */
1303 static int goal_alt_number
;
1305 /* True if the corresponding operand is the result of an equivalence
1307 static bool equiv_substition_p
[MAX_RECOG_OPERANDS
];
1309 /* The following five variables are used to choose the best insn
1310 alternative. They reflect final characteristics of the best
1313 /* Number of necessary reloads and overall cost reflecting the
1314 previous value and other unpleasantness of the best alternative. */
1315 static int best_losers
, best_overall
;
1316 /* Overall number hard registers used for reloads. For example, on
1317 some targets we need 2 general registers to reload DFmode and only
1318 one floating point register. */
1319 static int best_reload_nregs
;
1320 /* Overall number reflecting distances of previous reloading the same
1321 value. The distances are counted from the current BB start. It is
1322 used to improve inheritance chances. */
1323 static int best_reload_sum
;
1325 /* True if the current insn should have no correspondingly input or
1327 static bool no_input_reloads_p
, no_output_reloads_p
;
1329 /* True if we swapped the commutative operands in the current
1331 static int curr_swapped
;
1333 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1334 register of class CL. Add any input reloads to list BEFORE. AFTER
1335 is nonnull if *LOC is an automodified value; handle that case by
1336 adding the required output reloads to list AFTER. Return true if
1337 the RTL was changed.
1339 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1340 register. Return false if the address register is correct. */
1342 process_addr_reg (rtx
*loc
, bool check_only_p
, rtx_insn
**before
, rtx_insn
**after
,
1346 enum reg_class rclass
, new_class
;
1350 bool subreg_p
, before_p
= false;
1352 subreg_p
= GET_CODE (*loc
) == SUBREG
;
1355 reg
= SUBREG_REG (*loc
);
1356 mode
= GET_MODE (reg
);
1358 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1359 between two registers with different classes, but there normally will
1360 be "mov" which transfers element of vector register into the general
1361 register, and this normally will be a subreg which should be reloaded
1362 as a whole. This is particularly likely to be triggered when
1363 -fno-split-wide-types specified. */
1365 || in_class_p (reg
, cl
, &new_class
)
1366 || known_le (GET_MODE_SIZE (mode
), GET_MODE_SIZE (ptr_mode
)))
1367 loc
= &SUBREG_REG (*loc
);
1371 mode
= GET_MODE (reg
);
1376 /* Always reload memory in an address even if the target supports
1378 new_reg
= lra_create_new_reg_with_unique_value (mode
, reg
, cl
, "address");
1383 regno
= REGNO (reg
);
1384 rclass
= get_reg_class (regno
);
1386 && (*loc
= get_equiv_with_elimination (reg
, curr_insn
)) != reg
)
1388 if (lra_dump_file
!= NULL
)
1390 fprintf (lra_dump_file
,
1391 "Changing pseudo %d in address of insn %u on equiv ",
1392 REGNO (reg
), INSN_UID (curr_insn
));
1393 dump_value_slim (lra_dump_file
, *loc
, 1);
1394 fprintf (lra_dump_file
, "\n");
1396 *loc
= copy_rtx (*loc
);
1398 if (*loc
!= reg
|| ! in_class_p (reg
, cl
, &new_class
))
1403 if (get_reload_reg (after
== NULL
? OP_IN
: OP_INOUT
,
1404 mode
, reg
, cl
, subreg_p
, "address", &new_reg
))
1407 else if (new_class
!= NO_REGS
&& rclass
!= new_class
)
1411 lra_change_class (regno
, new_class
, " Change to", true);
1419 push_to_sequence (*before
);
1420 lra_emit_move (new_reg
, reg
);
1421 *before
= get_insns ();
1428 lra_emit_move (before_p
? copy_rtx (reg
) : reg
, new_reg
);
1430 *after
= get_insns ();
1436 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1437 the insn to be inserted before curr insn. AFTER returns the
1438 the insn to be inserted after curr insn. ORIGREG and NEWREG
1439 are the original reg and new reg for reload. */
1441 insert_move_for_subreg (rtx_insn
**before
, rtx_insn
**after
, rtx origreg
,
1446 push_to_sequence (*before
);
1447 lra_emit_move (newreg
, origreg
);
1448 *before
= get_insns ();
1454 lra_emit_move (origreg
, newreg
);
1456 *after
= get_insns ();
1461 static int valid_address_p (machine_mode mode
, rtx addr
, addr_space_t as
);
1462 static bool process_address (int, bool, rtx_insn
**, rtx_insn
**);
1464 /* Make reloads for subreg in operand NOP with internal subreg mode
1465 REG_MODE, add new reloads for further processing. Return true if
1466 any change was done. */
1468 simplify_operand_subreg (int nop
, machine_mode reg_mode
)
1471 rtx_insn
*before
, *after
;
1472 machine_mode mode
, innermode
;
1474 rtx operand
= *curr_id
->operand_loc
[nop
];
1475 enum reg_class regclass
;
1478 before
= after
= NULL
;
1480 if (GET_CODE (operand
) != SUBREG
)
1483 mode
= GET_MODE (operand
);
1484 reg
= SUBREG_REG (operand
);
1485 innermode
= GET_MODE (reg
);
1486 type
= curr_static_id
->operand
[nop
].type
;
1489 const bool addr_was_valid
1490 = valid_address_p (innermode
, XEXP (reg
, 0), MEM_ADDR_SPACE (reg
));
1491 alter_subreg (curr_id
->operand_loc
[nop
], false);
1492 rtx subst
= *curr_id
->operand_loc
[nop
];
1493 lra_assert (MEM_P (subst
));
1496 || valid_address_p (GET_MODE (subst
), XEXP (subst
, 0),
1497 MEM_ADDR_SPACE (subst
))
1498 || ((get_constraint_type (lookup_constraint
1499 (curr_static_id
->operand
[nop
].constraint
))
1500 != CT_SPECIAL_MEMORY
)
1501 /* We still can reload address and if the address is
1502 valid, we can remove subreg without reloading its
1504 && valid_address_p (GET_MODE (subst
),
1506 [ira_class_hard_regs
1507 [base_reg_class (GET_MODE (subst
),
1508 MEM_ADDR_SPACE (subst
),
1509 ADDRESS
, SCRATCH
)][0]],
1510 MEM_ADDR_SPACE (subst
))))
1512 /* If we change the address for a paradoxical subreg of memory, the
1513 new address might violate the necessary alignment or the access
1514 might be slow; take this into consideration. We need not worry
1515 about accesses beyond allocated memory for paradoxical memory
1516 subregs as we don't substitute such equiv memory (see processing
1517 equivalences in function lra_constraints) and because for spilled
1518 pseudos we allocate stack memory enough for the biggest
1519 corresponding paradoxical subreg.
1521 However, do not blindly simplify a (subreg (mem ...)) for
1522 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1523 data into a register when the inner is narrower than outer or
1524 missing important data from memory when the inner is wider than
1525 outer. This rule only applies to modes that are no wider than
1527 if (!(maybe_ne (GET_MODE_PRECISION (mode
),
1528 GET_MODE_PRECISION (innermode
))
1529 && known_le (GET_MODE_SIZE (mode
), UNITS_PER_WORD
)
1530 && known_le (GET_MODE_SIZE (innermode
), UNITS_PER_WORD
)
1531 && WORD_REGISTER_OPERATIONS
)
1532 && (!(MEM_ALIGN (subst
) < GET_MODE_ALIGNMENT (mode
)
1533 && targetm
.slow_unaligned_access (mode
, MEM_ALIGN (subst
)))
1534 || (MEM_ALIGN (reg
) < GET_MODE_ALIGNMENT (innermode
)
1535 && targetm
.slow_unaligned_access (innermode
,
1539 *curr_id
->operand_loc
[nop
] = operand
;
1541 /* But if the address was not valid, we cannot reload the MEM without
1542 reloading the address first. */
1543 if (!addr_was_valid
)
1544 process_address (nop
, false, &before
, &after
);
1546 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1547 enum reg_class rclass
1548 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1549 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, innermode
,
1550 reg
, rclass
, TRUE
, "slow mem", &new_reg
))
1552 bool insert_before
, insert_after
;
1553 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1555 insert_before
= (type
!= OP_OUT
1556 || partial_subreg_p (mode
, innermode
));
1557 insert_after
= type
!= OP_IN
;
1558 insert_move_for_subreg (insert_before
? &before
: NULL
,
1559 insert_after
? &after
: NULL
,
1562 SUBREG_REG (operand
) = new_reg
;
1564 /* Convert to MODE. */
1567 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1568 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, mode
, reg
,
1569 rclass
, TRUE
, "slow mem", &new_reg
))
1571 bool insert_before
, insert_after
;
1572 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1574 insert_before
= type
!= OP_OUT
;
1575 insert_after
= type
!= OP_IN
;
1576 insert_move_for_subreg (insert_before
? &before
: NULL
,
1577 insert_after
? &after
: NULL
,
1580 *curr_id
->operand_loc
[nop
] = new_reg
;
1581 lra_process_new_insns (curr_insn
, before
, after
,
1582 "Inserting slow mem reload");
1586 /* If the address was valid and became invalid, prefer to reload
1587 the memory. Typical case is when the index scale should
1588 correspond the memory. */
1589 *curr_id
->operand_loc
[nop
] = operand
;
1590 /* Do not return false here as the MEM_P (reg) will be processed
1591 later in this function. */
1593 else if (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1595 alter_subreg (curr_id
->operand_loc
[nop
], false);
1598 else if (CONSTANT_P (reg
))
1600 /* Try to simplify subreg of constant. It is usually result of
1601 equivalence substitution. */
1602 if (innermode
== VOIDmode
1603 && (innermode
= original_subreg_reg_mode
[nop
]) == VOIDmode
)
1604 innermode
= curr_static_id
->operand
[nop
].mode
;
1605 if ((new_reg
= simplify_subreg (mode
, reg
, innermode
,
1606 SUBREG_BYTE (operand
))) != NULL_RTX
)
1608 *curr_id
->operand_loc
[nop
] = new_reg
;
1612 /* Put constant into memory when we have mixed modes. It generates
1613 a better code in most cases as it does not need a secondary
1614 reload memory. It also prevents LRA looping when LRA is using
1615 secondary reload memory again and again. */
1616 if (CONSTANT_P (reg
) && CONST_POOL_OK_P (reg_mode
, reg
)
1617 && SCALAR_INT_MODE_P (reg_mode
) != SCALAR_INT_MODE_P (mode
))
1619 SUBREG_REG (operand
) = force_const_mem (reg_mode
, reg
);
1620 alter_subreg (curr_id
->operand_loc
[nop
], false);
1623 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1624 if there may be a problem accessing OPERAND in the outer
1627 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1628 && (hard_regno
= lra_get_regno_hard_regno (REGNO (reg
))) >= 0
1629 /* Don't reload paradoxical subregs because we could be looping
1630 having repeatedly final regno out of hard regs range. */
1631 && (hard_regno_nregs (hard_regno
, innermode
)
1632 >= hard_regno_nregs (hard_regno
, mode
))
1633 && simplify_subreg_regno (hard_regno
, innermode
,
1634 SUBREG_BYTE (operand
), mode
) < 0
1635 /* Don't reload subreg for matching reload. It is actually
1636 valid subreg in LRA. */
1637 && ! LRA_SUBREG_P (operand
))
1638 || CONSTANT_P (reg
) || GET_CODE (reg
) == PLUS
|| MEM_P (reg
))
1640 enum reg_class rclass
;
1643 /* There is a big probability that we will get the same class
1644 for the new pseudo and we will get the same insn which
1645 means infinite looping. So spill the new pseudo. */
1648 /* The class will be defined later in curr_insn_transform. */
1650 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1652 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, reg_mode
, reg
,
1653 rclass
, TRUE
, "subreg reg", &new_reg
))
1655 bool insert_before
, insert_after
;
1656 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1658 insert_before
= (type
!= OP_OUT
1659 || read_modify_subreg_p (operand
));
1660 insert_after
= (type
!= OP_IN
);
1661 insert_move_for_subreg (insert_before
? &before
: NULL
,
1662 insert_after
? &after
: NULL
,
1665 SUBREG_REG (operand
) = new_reg
;
1666 lra_process_new_insns (curr_insn
, before
, after
,
1667 "Inserting subreg reload");
1670 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1671 IRA allocates hardreg to the inner pseudo reg according to its mode
1672 instead of the outermode, so the size of the hardreg may not be enough
1673 to contain the outermode operand, in that case we may need to insert
1674 reload for the reg. For the following two types of paradoxical subreg,
1675 we need to insert reload:
1676 1. If the op_type is OP_IN, and the hardreg could not be paired with
1677 other hardreg to contain the outermode operand
1678 (checked by in_hard_reg_set_p), we need to insert the reload.
1679 2. If the op_type is OP_OUT or OP_INOUT.
1681 Here is a paradoxical subreg example showing how the reload is generated:
1683 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1684 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1686 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1687 here, if reg107 is assigned to hardreg R15, because R15 is the last
1688 hardreg, compiler cannot find another hardreg to pair with R15 to
1689 contain TImode data. So we insert a TImode reload reg180 for it.
1690 After reload is inserted:
1692 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1693 (reg:DI 107 [ __comp ])) -1
1694 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1695 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1697 Two reload hard registers will be allocated to reg180 to save TImode data
1700 For LRA pseudos this should normally be handled by the biggest_mode
1701 mechanism. However, it's possible for new uses of an LRA pseudo
1702 to be introduced after we've allocated it, such as when undoing
1703 inheritance, and the allocated register might not then be appropriate
1704 for the new uses. */
1705 else if (REG_P (reg
)
1706 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1707 && (hard_regno
= lra_get_regno_hard_regno (REGNO (reg
))) >= 0
1708 && (hard_regno_nregs (hard_regno
, innermode
)
1709 < hard_regno_nregs (hard_regno
, mode
))
1710 && (regclass
= lra_get_allocno_class (REGNO (reg
)))
1712 || !in_hard_reg_set_p (reg_class_contents
[regclass
],
1714 || overlaps_hard_reg_set_p (lra_no_alloc_regs
,
1717 /* The class will be defined later in curr_insn_transform. */
1718 enum reg_class rclass
1719 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1721 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, mode
, reg
,
1722 rclass
, TRUE
, "paradoxical subreg", &new_reg
))
1725 bool insert_before
, insert_after
;
1727 PUT_MODE (new_reg
, mode
);
1728 subreg
= gen_lowpart_SUBREG (innermode
, new_reg
);
1729 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1731 insert_before
= (type
!= OP_OUT
);
1732 insert_after
= (type
!= OP_IN
);
1733 insert_move_for_subreg (insert_before
? &before
: NULL
,
1734 insert_after
? &after
: NULL
,
1737 SUBREG_REG (operand
) = new_reg
;
1738 lra_process_new_insns (curr_insn
, before
, after
,
1739 "Inserting paradoxical subreg reload");
1745 /* Return TRUE if X refers for a hard register from SET. */
1747 uses_hard_regs_p (rtx x
, HARD_REG_SET set
)
1749 int i
, j
, x_hard_regno
;
1756 code
= GET_CODE (x
);
1757 mode
= GET_MODE (x
);
1760 mode
= wider_subreg_mode (x
);
1762 code
= GET_CODE (x
);
1767 x_hard_regno
= get_hard_regno (x
, true);
1768 return (x_hard_regno
>= 0
1769 && overlaps_hard_reg_set_p (set
, mode
, x_hard_regno
));
1773 struct address_info ad
;
1775 decompose_mem_address (&ad
, x
);
1776 if (ad
.base_term
!= NULL
&& uses_hard_regs_p (*ad
.base_term
, set
))
1778 if (ad
.index_term
!= NULL
&& uses_hard_regs_p (*ad
.index_term
, set
))
1781 fmt
= GET_RTX_FORMAT (code
);
1782 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1786 if (uses_hard_regs_p (XEXP (x
, i
), set
))
1789 else if (fmt
[i
] == 'E')
1791 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1792 if (uses_hard_regs_p (XVECEXP (x
, i
, j
), set
))
1799 /* Return true if OP is a spilled pseudo. */
1801 spilled_pseudo_p (rtx op
)
1804 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
&& in_mem_p (REGNO (op
)));
1807 /* Return true if X is a general constant. */
1809 general_constant_p (rtx x
)
1811 return CONSTANT_P (x
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (x
));
1815 reg_in_class_p (rtx reg
, enum reg_class cl
)
1818 return get_reg_class (REGNO (reg
)) == NO_REGS
;
1819 return in_class_p (reg
, cl
, NULL
);
1822 /* Return true if SET of RCLASS contains no hard regs which can be
1825 prohibited_class_reg_set_mode_p (enum reg_class rclass
,
1831 lra_assert (hard_reg_set_subset_p (reg_class_contents
[rclass
], set
));
1832 COPY_HARD_REG_SET (temp
, set
);
1833 AND_COMPL_HARD_REG_SET (temp
, lra_no_alloc_regs
);
1834 return (hard_reg_set_subset_p
1835 (temp
, ira_prohibited_class_mode_regs
[rclass
][mode
]));
1839 /* Used to check validity info about small class input operands. It
1840 should be incremented at start of processing an insn
1842 static unsigned int curr_small_class_check
= 0;
1844 /* Update number of used inputs of class OP_CLASS for operand NOP.
1845 Return true if we have more such class operands than the number of
1848 update_and_check_small_class_inputs (int nop
, enum reg_class op_class
)
1850 static unsigned int small_class_check
[LIM_REG_CLASSES
];
1851 static int small_class_input_nums
[LIM_REG_CLASSES
];
1853 if (SMALL_REGISTER_CLASS_P (op_class
)
1854 /* We are interesting in classes became small because of fixing
1855 some hard regs, e.g. by an user through GCC options. */
1856 && hard_reg_set_intersect_p (reg_class_contents
[op_class
],
1858 && (curr_static_id
->operand
[nop
].type
!= OP_OUT
1859 || curr_static_id
->operand
[nop
].early_clobber
))
1861 if (small_class_check
[op_class
] == curr_small_class_check
)
1862 small_class_input_nums
[op_class
]++;
1865 small_class_check
[op_class
] = curr_small_class_check
;
1866 small_class_input_nums
[op_class
] = 1;
1868 if (small_class_input_nums
[op_class
] > ira_class_hard_regs_num
[op_class
])
1874 /* Major function to choose the current insn alternative and what
1875 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1876 negative we should consider only this alternative. Return false if
1877 we can not choose the alternative or find how to reload the
1880 process_alt_operands (int only_alternative
)
1883 int nop
, overall
, nalt
;
1884 int n_alternatives
= curr_static_id
->n_alternatives
;
1885 int n_operands
= curr_static_id
->n_operands
;
1886 /* LOSERS counts the operands that don't fit this alternative and
1887 would require loading. */
1890 /* REJECT is a count of how undesirable this alternative says it is
1891 if any reloading is required. If the alternative matches exactly
1892 then REJECT is ignored, but otherwise it gets this much counted
1893 against it in addition to the reloading needed. */
1895 /* This is defined by '!' or '?' alternative constraint and added to
1896 reject. But in some cases it can be ignored. */
1899 /* The number of elements in the following array. */
1900 int early_clobbered_regs_num
;
1901 /* Numbers of operands which are early clobber registers. */
1902 int early_clobbered_nops
[MAX_RECOG_OPERANDS
];
1903 enum reg_class curr_alt
[MAX_RECOG_OPERANDS
];
1904 HARD_REG_SET curr_alt_set
[MAX_RECOG_OPERANDS
];
1905 bool curr_alt_match_win
[MAX_RECOG_OPERANDS
];
1906 bool curr_alt_win
[MAX_RECOG_OPERANDS
];
1907 bool curr_alt_offmemok
[MAX_RECOG_OPERANDS
];
1908 int curr_alt_matches
[MAX_RECOG_OPERANDS
];
1909 /* The number of elements in the following array. */
1910 int curr_alt_dont_inherit_ops_num
;
1911 /* Numbers of operands whose reload pseudos should not be inherited. */
1912 int curr_alt_dont_inherit_ops
[MAX_RECOG_OPERANDS
];
1914 /* The register when the operand is a subreg of register, otherwise the
1916 rtx no_subreg_reg_operand
[MAX_RECOG_OPERANDS
];
1917 /* The register if the operand is a register or subreg of register,
1919 rtx operand_reg
[MAX_RECOG_OPERANDS
];
1920 int hard_regno
[MAX_RECOG_OPERANDS
];
1921 machine_mode biggest_mode
[MAX_RECOG_OPERANDS
];
1922 int reload_nregs
, reload_sum
;
1926 /* Calculate some data common for all alternatives to speed up the
1928 for (nop
= 0; nop
< n_operands
; nop
++)
1932 op
= no_subreg_reg_operand
[nop
] = *curr_id
->operand_loc
[nop
];
1933 /* The real hard regno of the operand after the allocation. */
1934 hard_regno
[nop
] = get_hard_regno (op
, true);
1936 operand_reg
[nop
] = reg
= op
;
1937 biggest_mode
[nop
] = GET_MODE (op
);
1938 if (GET_CODE (op
) == SUBREG
)
1940 biggest_mode
[nop
] = wider_subreg_mode (op
);
1941 operand_reg
[nop
] = reg
= SUBREG_REG (op
);
1944 operand_reg
[nop
] = NULL_RTX
;
1945 else if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1946 || ((int) REGNO (reg
)
1947 == lra_get_elimination_hard_regno (REGNO (reg
))))
1948 no_subreg_reg_operand
[nop
] = reg
;
1950 operand_reg
[nop
] = no_subreg_reg_operand
[nop
]
1951 /* Just use natural mode for elimination result. It should
1952 be enough for extra constraints hooks. */
1953 = regno_reg_rtx
[hard_regno
[nop
]];
1956 /* The constraints are made of several alternatives. Each operand's
1957 constraint looks like foo,bar,... with commas separating the
1958 alternatives. The first alternatives for all operands go
1959 together, the second alternatives go together, etc.
1961 First loop over alternatives. */
1962 alternative_mask preferred
= curr_id
->preferred_alternatives
;
1963 if (only_alternative
>= 0)
1964 preferred
&= ALTERNATIVE_BIT (only_alternative
);
1966 for (nalt
= 0; nalt
< n_alternatives
; nalt
++)
1968 /* Loop over operands for one constraint alternative. */
1969 if (!TEST_BIT (preferred
, nalt
))
1972 bool matching_early_clobber
[MAX_RECOG_OPERANDS
];
1973 curr_small_class_check
++;
1974 overall
= losers
= addr_losers
= 0;
1975 static_reject
= reject
= reload_nregs
= reload_sum
= 0;
1976 for (nop
= 0; nop
< n_operands
; nop
++)
1978 int inc
= (curr_static_id
1979 ->operand_alternative
[nalt
* n_operands
+ nop
].reject
);
1980 if (lra_dump_file
!= NULL
&& inc
!= 0)
1981 fprintf (lra_dump_file
,
1982 " Staticly defined alt reject+=%d\n", inc
);
1983 static_reject
+= inc
;
1984 matching_early_clobber
[nop
] = 0;
1986 reject
+= static_reject
;
1987 early_clobbered_regs_num
= 0;
1989 for (nop
= 0; nop
< n_operands
; nop
++)
1993 int len
, c
, m
, i
, opalt_num
, this_alternative_matches
;
1994 bool win
, did_match
, offmemok
, early_clobber_p
;
1995 /* false => this operand can be reloaded somehow for this
1998 /* true => this operand can be reloaded if the alternative
2001 /* True if a constant forced into memory would be OK for
2004 enum reg_class this_alternative
, this_costly_alternative
;
2005 HARD_REG_SET this_alternative_set
, this_costly_alternative_set
;
2006 bool this_alternative_match_win
, this_alternative_win
;
2007 bool this_alternative_offmemok
;
2010 enum constraint_num cn
;
2012 opalt_num
= nalt
* n_operands
+ nop
;
2013 if (curr_static_id
->operand_alternative
[opalt_num
].anything_ok
)
2015 /* Fast track for no constraints at all. */
2016 curr_alt
[nop
] = NO_REGS
;
2017 CLEAR_HARD_REG_SET (curr_alt_set
[nop
]);
2018 curr_alt_win
[nop
] = true;
2019 curr_alt_match_win
[nop
] = false;
2020 curr_alt_offmemok
[nop
] = false;
2021 curr_alt_matches
[nop
] = -1;
2025 op
= no_subreg_reg_operand
[nop
];
2026 mode
= curr_operand_mode
[nop
];
2028 win
= did_match
= winreg
= offmemok
= constmemok
= false;
2031 early_clobber_p
= false;
2032 p
= curr_static_id
->operand_alternative
[opalt_num
].constraint
;
2034 this_costly_alternative
= this_alternative
= NO_REGS
;
2035 /* We update set of possible hard regs besides its class
2036 because reg class might be inaccurate. For example,
2037 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2038 is translated in HI_REGS because classes are merged by
2039 pairs and there is no accurate intermediate class. */
2040 CLEAR_HARD_REG_SET (this_alternative_set
);
2041 CLEAR_HARD_REG_SET (this_costly_alternative_set
);
2042 this_alternative_win
= false;
2043 this_alternative_match_win
= false;
2044 this_alternative_offmemok
= false;
2045 this_alternative_matches
= -1;
2047 /* An empty constraint should be excluded by the fast
2049 lra_assert (*p
!= 0 && *p
!= ',');
2052 /* Scan this alternative's specs for this operand; set WIN
2053 if the operand fits any letter in this alternative.
2054 Otherwise, clear BADOP if this operand could fit some
2055 letter after reloads, or set WINREG if this operand could
2056 fit after reloads provided the constraint allows some
2061 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
2071 early_clobber_p
= true;
2075 op_reject
+= LRA_MAX_REJECT
;
2078 op_reject
+= LRA_LOSER_COST_FACTOR
;
2082 /* Ignore rest of this alternative. */
2086 case '0': case '1': case '2': case '3': case '4':
2087 case '5': case '6': case '7': case '8': case '9':
2092 m
= strtoul (p
, &end
, 10);
2095 lra_assert (nop
> m
);
2097 /* Reject matches if we don't know which operand is
2098 bigger. This situation would arguably be a bug in
2099 an .md pattern, but could also occur in a user asm. */
2100 if (!ordered_p (GET_MODE_SIZE (biggest_mode
[m
]),
2101 GET_MODE_SIZE (biggest_mode
[nop
])))
2104 /* Don't match wrong asm insn operands for proper
2105 diagnostic later. */
2106 if (INSN_CODE (curr_insn
) < 0
2107 && (curr_operand_mode
[m
] == BLKmode
2108 || curr_operand_mode
[nop
] == BLKmode
)
2109 && curr_operand_mode
[m
] != curr_operand_mode
[nop
])
2112 m_hregno
= get_hard_regno (*curr_id
->operand_loc
[m
], false);
2113 /* We are supposed to match a previous operand.
2114 If we do, we win if that one did. If we do
2115 not, count both of the operands as losers.
2116 (This is too conservative, since most of the
2117 time only a single reload insn will be needed
2118 to make the two operands win. As a result,
2119 this alternative may be rejected when it is
2120 actually desirable.) */
2122 if (operands_match_p (*curr_id
->operand_loc
[nop
],
2123 *curr_id
->operand_loc
[m
], m_hregno
))
2125 /* We should reject matching of an early
2126 clobber operand if the matching operand is
2127 not dying in the insn. */
2128 if (! curr_static_id
->operand
[m
].early_clobber
2129 || operand_reg
[nop
] == NULL_RTX
2130 || (find_regno_note (curr_insn
, REG_DEAD
,
2132 || REGNO (op
) == REGNO (operand_reg
[m
])))
2137 /* If we are matching a non-offsettable
2138 address where an offsettable address was
2139 expected, then we must reject this
2140 combination, because we can't reload
2142 if (curr_alt_offmemok
[m
]
2143 && MEM_P (*curr_id
->operand_loc
[m
])
2144 && curr_alt
[m
] == NO_REGS
&& ! curr_alt_win
[m
])
2149 /* Operands don't match. Both operands must
2150 allow a reload register, otherwise we
2151 cannot make them match. */
2152 if (curr_alt
[m
] == NO_REGS
)
2154 /* Retroactively mark the operand we had to
2155 match as a loser, if it wasn't already and
2156 it wasn't matched to a register constraint
2157 (e.g it might be matched by memory). */
2159 && (operand_reg
[m
] == NULL_RTX
2160 || hard_regno
[m
] < 0))
2164 += (ira_reg_class_max_nregs
[curr_alt
[m
]]
2165 [GET_MODE (*curr_id
->operand_loc
[m
])]);
2168 /* Prefer matching earlyclobber alternative as
2169 it results in less hard regs required for
2170 the insn than a non-matching earlyclobber
2172 if (curr_static_id
->operand
[m
].early_clobber
)
2174 if (lra_dump_file
!= NULL
)
2177 " %d Matching earlyclobber alt:"
2180 if (!matching_early_clobber
[m
])
2183 matching_early_clobber
[m
] = 1;
2186 /* Otherwise we prefer no matching
2187 alternatives because it gives more freedom
2189 else if (operand_reg
[nop
] == NULL_RTX
2190 || (find_regno_note (curr_insn
, REG_DEAD
,
2191 REGNO (operand_reg
[nop
]))
2194 if (lra_dump_file
!= NULL
)
2197 " %d Matching alt: reject+=2\n",
2202 /* If we have to reload this operand and some
2203 previous operand also had to match the same
2204 thing as this operand, we don't know how to do
2206 if (!match_p
|| !curr_alt_win
[m
])
2208 for (i
= 0; i
< nop
; i
++)
2209 if (curr_alt_matches
[i
] == m
)
2217 this_alternative_matches
= m
;
2218 /* This can be fixed with reloads if the operand
2219 we are supposed to match can be fixed with
2222 this_alternative
= curr_alt
[m
];
2223 COPY_HARD_REG_SET (this_alternative_set
, curr_alt_set
[m
]);
2224 winreg
= this_alternative
!= NO_REGS
;
2230 || general_constant_p (op
)
2231 || spilled_pseudo_p (op
))
2237 cn
= lookup_constraint (p
);
2238 switch (get_constraint_type (cn
))
2241 cl
= reg_class_for_constraint (cn
);
2247 if (CONST_INT_P (op
)
2248 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
2254 && satisfies_memory_constraint_p (op
, cn
))
2256 else if (spilled_pseudo_p (op
))
2259 /* If we didn't already win, we can reload constants
2260 via force_const_mem or put the pseudo value into
2261 memory, or make other memory by reloading the
2262 address like for 'o'. */
2263 if (CONST_POOL_OK_P (mode
, op
)
2264 || MEM_P (op
) || REG_P (op
)
2265 /* We can restore the equiv insn by a
2267 || equiv_substition_p
[nop
])
2274 /* An asm operand with an address constraint
2275 that doesn't satisfy address_operand has
2276 is_address cleared, so that we don't try to
2277 make a non-address fit. */
2278 if (!curr_static_id
->operand
[nop
].is_address
)
2280 /* If we didn't already win, we can reload the address
2281 into a base register. */
2282 if (satisfies_address_constraint_p (op
, cn
))
2284 cl
= base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2290 if (constraint_satisfied_p (op
, cn
))
2294 case CT_SPECIAL_MEMORY
:
2296 && satisfies_memory_constraint_p (op
, cn
))
2298 else if (spilled_pseudo_p (op
))
2305 this_alternative
= reg_class_subunion
[this_alternative
][cl
];
2306 IOR_HARD_REG_SET (this_alternative_set
,
2307 reg_class_contents
[cl
]);
2310 this_costly_alternative
2311 = reg_class_subunion
[this_costly_alternative
][cl
];
2312 IOR_HARD_REG_SET (this_costly_alternative_set
,
2313 reg_class_contents
[cl
]);
2315 if (mode
== BLKmode
)
2320 if (hard_regno
[nop
] >= 0
2321 && in_hard_reg_set_p (this_alternative_set
,
2322 mode
, hard_regno
[nop
]))
2324 else if (hard_regno
[nop
] < 0
2325 && in_class_p (op
, this_alternative
, NULL
))
2330 if (c
!= ' ' && c
!= '\t')
2331 costly_p
= c
== '*';
2333 while ((p
+= len
), c
);
2335 scratch_p
= (operand_reg
[nop
] != NULL_RTX
2336 && lra_former_scratch_p (REGNO (operand_reg
[nop
])));
2337 /* Record which operands fit this alternative. */
2340 this_alternative_win
= true;
2341 if (operand_reg
[nop
] != NULL_RTX
)
2343 if (hard_regno
[nop
] >= 0)
2345 if (in_hard_reg_set_p (this_costly_alternative_set
,
2346 mode
, hard_regno
[nop
]))
2348 if (lra_dump_file
!= NULL
)
2349 fprintf (lra_dump_file
,
2350 " %d Costly set: reject++\n",
2357 /* Prefer won reg to spilled pseudo under other
2358 equal conditions for possibe inheritance. */
2361 if (lra_dump_file
!= NULL
)
2364 " %d Non pseudo reload: reject++\n",
2368 if (in_class_p (operand_reg
[nop
],
2369 this_costly_alternative
, NULL
))
2371 if (lra_dump_file
!= NULL
)
2374 " %d Non pseudo costly reload:"
2380 /* We simulate the behavior of old reload here.
2381 Although scratches need hard registers and it
2382 might result in spilling other pseudos, no reload
2383 insns are generated for the scratches. So it
2384 might cost something but probably less than old
2385 reload pass believes. */
2388 if (lra_dump_file
!= NULL
)
2389 fprintf (lra_dump_file
,
2390 " %d Scratch win: reject+=2\n",
2397 this_alternative_match_win
= true;
2400 int const_to_mem
= 0;
2403 reject
+= op_reject
;
2404 /* Never do output reload of stack pointer. It makes
2405 impossible to do elimination when SP is changed in
2407 if (op
== stack_pointer_rtx
&& ! frame_pointer_needed
2408 && curr_static_id
->operand
[nop
].type
!= OP_IN
)
2411 /* If this alternative asks for a specific reg class, see if there
2412 is at least one allocatable register in that class. */
2414 = (this_alternative
== NO_REGS
2415 || (hard_reg_set_subset_p
2416 (reg_class_contents
[this_alternative
],
2417 lra_no_alloc_regs
)));
2419 /* For asms, verify that the class for this alternative is possible
2420 for the mode that is specified. */
2421 if (!no_regs_p
&& INSN_CODE (curr_insn
) < 0)
2424 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2425 if (targetm
.hard_regno_mode_ok (i
, mode
)
2426 && in_hard_reg_set_p (reg_class_contents
[this_alternative
],
2429 if (i
== FIRST_PSEUDO_REGISTER
)
2433 /* If this operand accepts a register, and if the
2434 register class has at least one allocatable register,
2435 then this operand can be reloaded. */
2436 if (winreg
&& !no_regs_p
)
2441 if (lra_dump_file
!= NULL
)
2442 fprintf (lra_dump_file
,
2443 " alt=%d: Bad operand -- refuse\n",
2448 if (this_alternative
!= NO_REGS
)
2450 HARD_REG_SET available_regs
;
2452 COPY_HARD_REG_SET (available_regs
,
2453 reg_class_contents
[this_alternative
]);
2454 AND_COMPL_HARD_REG_SET
2456 ira_prohibited_class_mode_regs
[this_alternative
][mode
]);
2457 AND_COMPL_HARD_REG_SET (available_regs
, lra_no_alloc_regs
);
2458 if (hard_reg_set_empty_p (available_regs
))
2460 /* There are no hard regs holding a value of given
2464 this_alternative
= NO_REGS
;
2465 if (lra_dump_file
!= NULL
)
2466 fprintf (lra_dump_file
,
2467 " %d Using memory because of"
2468 " a bad mode: reject+=2\n",
2474 if (lra_dump_file
!= NULL
)
2475 fprintf (lra_dump_file
,
2476 " alt=%d: Wrong mode -- refuse\n",
2483 /* If not assigned pseudo has a class which a subset of
2484 required reg class, it is a less costly alternative
2485 as the pseudo still can get a hard reg of necessary
2487 if (! no_regs_p
&& REG_P (op
) && hard_regno
[nop
] < 0
2488 && (cl
= get_reg_class (REGNO (op
))) != NO_REGS
2489 && ira_class_subset_p
[this_alternative
][cl
])
2491 if (lra_dump_file
!= NULL
)
2494 " %d Super set class reg: reject-=3\n", nop
);
2498 this_alternative_offmemok
= offmemok
;
2499 if (this_costly_alternative
!= NO_REGS
)
2501 if (lra_dump_file
!= NULL
)
2502 fprintf (lra_dump_file
,
2503 " %d Costly loser: reject++\n", nop
);
2506 /* If the operand is dying, has a matching constraint,
2507 and satisfies constraints of the matched operand
2508 which failed to satisfy the own constraints, most probably
2509 the reload for this operand will be gone. */
2510 if (this_alternative_matches
>= 0
2511 && !curr_alt_win
[this_alternative_matches
]
2513 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (op
))
2514 && (hard_regno
[nop
] >= 0
2515 ? in_hard_reg_set_p (this_alternative_set
,
2516 mode
, hard_regno
[nop
])
2517 : in_class_p (op
, this_alternative
, NULL
)))
2519 if (lra_dump_file
!= NULL
)
2522 " %d Dying matched operand reload: reject++\n",
2528 /* Strict_low_part requires to reload the register
2529 not the sub-register. In this case we should
2530 check that a final reload hard reg can hold the
2532 if (curr_static_id
->operand
[nop
].strict_low
2534 && hard_regno
[nop
] < 0
2535 && GET_CODE (*curr_id
->operand_loc
[nop
]) == SUBREG
2536 && ira_class_hard_regs_num
[this_alternative
] > 0
2537 && (!targetm
.hard_regno_mode_ok
2538 (ira_class_hard_regs
[this_alternative
][0],
2539 GET_MODE (*curr_id
->operand_loc
[nop
]))))
2541 if (lra_dump_file
!= NULL
)
2544 " alt=%d: Strict low subreg reload -- refuse\n",
2550 if (operand_reg
[nop
] != NULL_RTX
2551 /* Output operands and matched input operands are
2552 not inherited. The following conditions do not
2553 exactly describe the previous statement but they
2554 are pretty close. */
2555 && curr_static_id
->operand
[nop
].type
!= OP_OUT
2556 && (this_alternative_matches
< 0
2557 || curr_static_id
->operand
[nop
].type
!= OP_IN
))
2559 int last_reload
= (lra_reg_info
[ORIGINAL_REGNO
2563 /* The value of reload_sum has sense only if we
2564 process insns in their order. It happens only on
2565 the first constraints sub-pass when we do most of
2567 if (lra_constraint_iter
== 1 && last_reload
> bb_reload_num
)
2568 reload_sum
+= last_reload
- bb_reload_num
;
2570 /* If this is a constant that is reloaded into the
2571 desired class by copying it to memory first, count
2572 that as another reload. This is consistent with
2573 other code and is required to avoid choosing another
2574 alternative when the constant is moved into memory.
2575 Note that the test here is precisely the same as in
2576 the code below that calls force_const_mem. */
2577 if (CONST_POOL_OK_P (mode
, op
)
2578 && ((targetm
.preferred_reload_class
2579 (op
, this_alternative
) == NO_REGS
)
2580 || no_input_reloads_p
))
2587 /* Alternative loses if it requires a type of reload not
2588 permitted for this insn. We can always reload
2589 objects with a REG_UNUSED note. */
2590 if ((curr_static_id
->operand
[nop
].type
!= OP_IN
2591 && no_output_reloads_p
2592 && ! find_reg_note (curr_insn
, REG_UNUSED
, op
))
2593 || (curr_static_id
->operand
[nop
].type
!= OP_OUT
2594 && no_input_reloads_p
&& ! const_to_mem
)
2595 || (this_alternative_matches
>= 0
2596 && (no_input_reloads_p
2597 || (no_output_reloads_p
2598 && (curr_static_id
->operand
2599 [this_alternative_matches
].type
!= OP_IN
)
2600 && ! find_reg_note (curr_insn
, REG_UNUSED
,
2601 no_subreg_reg_operand
2602 [this_alternative_matches
])))))
2604 if (lra_dump_file
!= NULL
)
2607 " alt=%d: No input/otput reload -- refuse\n",
2612 /* Alternative loses if it required class pseudo can not
2613 hold value of required mode. Such insns can be
2614 described by insn definitions with mode iterators. */
2615 if (GET_MODE (*curr_id
->operand_loc
[nop
]) != VOIDmode
2616 && ! hard_reg_set_empty_p (this_alternative_set
)
2617 /* It is common practice for constraints to use a
2618 class which does not have actually enough regs to
2619 hold the value (e.g. x86 AREG for mode requiring
2620 more one general reg). Therefore we have 2
2621 conditions to check that the reload pseudo can
2622 not hold the mode value. */
2623 && (!targetm
.hard_regno_mode_ok
2624 (ira_class_hard_regs
[this_alternative
][0],
2625 GET_MODE (*curr_id
->operand_loc
[nop
])))
2626 /* The above condition is not enough as the first
2627 reg in ira_class_hard_regs can be not aligned for
2628 multi-words mode values. */
2629 && (prohibited_class_reg_set_mode_p
2630 (this_alternative
, this_alternative_set
,
2631 GET_MODE (*curr_id
->operand_loc
[nop
]))))
2633 if (lra_dump_file
!= NULL
)
2634 fprintf (lra_dump_file
,
2635 " alt=%d: reload pseudo for op %d "
2636 " can not hold the mode value -- refuse\n",
2641 /* Check strong discouragement of reload of non-constant
2642 into class THIS_ALTERNATIVE. */
2643 if (! CONSTANT_P (op
) && ! no_regs_p
2644 && (targetm
.preferred_reload_class
2645 (op
, this_alternative
) == NO_REGS
2646 || (curr_static_id
->operand
[nop
].type
== OP_OUT
2647 && (targetm
.preferred_output_reload_class
2648 (op
, this_alternative
) == NO_REGS
))))
2650 if (lra_dump_file
!= NULL
)
2651 fprintf (lra_dump_file
,
2652 " %d Non-prefered reload: reject+=%d\n",
2653 nop
, LRA_MAX_REJECT
);
2654 reject
+= LRA_MAX_REJECT
;
2657 if (! (MEM_P (op
) && offmemok
)
2658 && ! (const_to_mem
&& constmemok
))
2660 /* We prefer to reload pseudos over reloading other
2661 things, since such reloads may be able to be
2662 eliminated later. So bump REJECT in other cases.
2663 Don't do this in the case where we are forcing a
2664 constant into memory and it will then win since
2665 we don't want to have a different alternative
2667 if (! (REG_P (op
) && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2669 if (lra_dump_file
!= NULL
)
2672 " %d Non-pseudo reload: reject+=2\n",
2679 += ira_reg_class_max_nregs
[this_alternative
][mode
];
2681 if (SMALL_REGISTER_CLASS_P (this_alternative
))
2683 if (lra_dump_file
!= NULL
)
2686 " %d Small class reload: reject+=%d\n",
2687 nop
, LRA_LOSER_COST_FACTOR
/ 2);
2688 reject
+= LRA_LOSER_COST_FACTOR
/ 2;
2692 /* We are trying to spill pseudo into memory. It is
2693 usually more costly than moving to a hard register
2694 although it might takes the same number of
2697 Non-pseudo spill may happen also. Suppose a target allows both
2698 register and memory in the operand constraint alternatives,
2699 then it's typical that an eliminable register has a substition
2700 of "base + offset" which can either be reloaded by a simple
2701 "new_reg <= base + offset" which will match the register
2702 constraint, or a similar reg addition followed by further spill
2703 to and reload from memory which will match the memory
2704 constraint, but this memory spill will be much more costly
2707 Code below increases the reject for both pseudo and non-pseudo
2710 && !(MEM_P (op
) && offmemok
)
2711 && !(REG_P (op
) && hard_regno
[nop
] < 0))
2713 if (lra_dump_file
!= NULL
)
2716 " %d Spill %spseudo into memory: reject+=3\n",
2717 nop
, REG_P (op
) ? "" : "Non-");
2719 if (VECTOR_MODE_P (mode
))
2721 /* Spilling vectors into memory is usually more
2722 costly as they contain big values. */
2723 if (lra_dump_file
!= NULL
)
2726 " %d Spill vector pseudo: reject+=2\n",
2732 /* When we use an operand requiring memory in given
2733 alternative, the insn should write *and* read the
2734 value to/from memory it is costly in comparison with
2735 an insn alternative which does not use memory
2736 (e.g. register or immediate operand). We exclude
2737 memory operand for such case as we can satisfy the
2738 memory constraints by reloading address. */
2739 if (no_regs_p
&& offmemok
&& !MEM_P (op
))
2741 if (lra_dump_file
!= NULL
)
2744 " Using memory insn operand %d: reject+=3\n",
2749 /* If reload requires moving value through secondary
2750 memory, it will need one more insn at least. */
2751 if (this_alternative
!= NO_REGS
2752 && REG_P (op
) && (cl
= get_reg_class (REGNO (op
))) != NO_REGS
2753 && ((curr_static_id
->operand
[nop
].type
!= OP_OUT
2754 && targetm
.secondary_memory_needed (GET_MODE (op
), cl
,
2756 || (curr_static_id
->operand
[nop
].type
!= OP_IN
2757 && (targetm
.secondary_memory_needed
2758 (GET_MODE (op
), this_alternative
, cl
)))))
2761 /* Input reloads can be inherited more often than output
2762 reloads can be removed, so penalize output
2764 if (!REG_P (op
) || curr_static_id
->operand
[nop
].type
!= OP_IN
)
2766 if (lra_dump_file
!= NULL
)
2769 " %d Non input pseudo reload: reject++\n",
2774 if (MEM_P (op
) && offmemok
)
2776 else if (curr_static_id
->operand
[nop
].type
== OP_INOUT
)
2778 if (lra_dump_file
!= NULL
)
2781 " %d Input/Output reload: reject+=%d\n",
2782 nop
, LRA_LOSER_COST_FACTOR
);
2783 reject
+= LRA_LOSER_COST_FACTOR
;
2787 if (early_clobber_p
&& ! scratch_p
)
2789 if (lra_dump_file
!= NULL
)
2790 fprintf (lra_dump_file
,
2791 " %d Early clobber: reject++\n", nop
);
2794 /* ??? We check early clobbers after processing all operands
2795 (see loop below) and there we update the costs more.
2796 Should we update the cost (may be approximately) here
2797 because of early clobber register reloads or it is a rare
2798 or non-important thing to be worth to do it. */
2799 overall
= (losers
* LRA_LOSER_COST_FACTOR
+ reject
2800 - (addr_losers
== losers
? static_reject
: 0));
2801 if ((best_losers
== 0 || losers
!= 0) && best_overall
< overall
)
2803 if (lra_dump_file
!= NULL
)
2804 fprintf (lra_dump_file
,
2805 " alt=%d,overall=%d,losers=%d -- refuse\n",
2806 nalt
, overall
, losers
);
2810 if (update_and_check_small_class_inputs (nop
, this_alternative
))
2812 if (lra_dump_file
!= NULL
)
2813 fprintf (lra_dump_file
,
2814 " alt=%d, not enough small class regs -- refuse\n",
2818 curr_alt
[nop
] = this_alternative
;
2819 COPY_HARD_REG_SET (curr_alt_set
[nop
], this_alternative_set
);
2820 curr_alt_win
[nop
] = this_alternative_win
;
2821 curr_alt_match_win
[nop
] = this_alternative_match_win
;
2822 curr_alt_offmemok
[nop
] = this_alternative_offmemok
;
2823 curr_alt_matches
[nop
] = this_alternative_matches
;
2825 if (this_alternative_matches
>= 0
2826 && !did_match
&& !this_alternative_win
)
2827 curr_alt_win
[this_alternative_matches
] = false;
2829 if (early_clobber_p
&& operand_reg
[nop
] != NULL_RTX
)
2830 early_clobbered_nops
[early_clobbered_regs_num
++] = nop
;
2833 if (curr_insn_set
!= NULL_RTX
&& n_operands
== 2
2834 /* Prevent processing non-move insns. */
2835 && (GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
2836 || SET_SRC (curr_insn_set
) == no_subreg_reg_operand
[1])
2837 && ((! curr_alt_win
[0] && ! curr_alt_win
[1]
2838 && REG_P (no_subreg_reg_operand
[0])
2839 && REG_P (no_subreg_reg_operand
[1])
2840 && (reg_in_class_p (no_subreg_reg_operand
[0], curr_alt
[1])
2841 || reg_in_class_p (no_subreg_reg_operand
[1], curr_alt
[0])))
2842 || (! curr_alt_win
[0] && curr_alt_win
[1]
2843 && REG_P (no_subreg_reg_operand
[1])
2844 /* Check that we reload memory not the memory
2846 && ! (curr_alt_offmemok
[0]
2847 && MEM_P (no_subreg_reg_operand
[0]))
2848 && reg_in_class_p (no_subreg_reg_operand
[1], curr_alt
[0]))
2849 || (curr_alt_win
[0] && ! curr_alt_win
[1]
2850 && REG_P (no_subreg_reg_operand
[0])
2851 /* Check that we reload memory not the memory
2853 && ! (curr_alt_offmemok
[1]
2854 && MEM_P (no_subreg_reg_operand
[1]))
2855 && reg_in_class_p (no_subreg_reg_operand
[0], curr_alt
[1])
2856 && (! CONST_POOL_OK_P (curr_operand_mode
[1],
2857 no_subreg_reg_operand
[1])
2858 || (targetm
.preferred_reload_class
2859 (no_subreg_reg_operand
[1],
2860 (enum reg_class
) curr_alt
[1]) != NO_REGS
))
2861 /* If it is a result of recent elimination in move
2862 insn we can transform it into an add still by
2863 using this alternative. */
2864 && GET_CODE (no_subreg_reg_operand
[1]) != PLUS
2865 /* Likewise if the source has been replaced with an
2866 equivalent value. This only happens once -- the reload
2867 will use the equivalent value instead of the register it
2868 replaces -- so there should be no danger of cycling. */
2869 && !equiv_substition_p
[1])))
2871 /* We have a move insn and a new reload insn will be similar
2872 to the current insn. We should avoid such situation as
2873 it results in LRA cycling. */
2874 if (lra_dump_file
!= NULL
)
2875 fprintf (lra_dump_file
,
2876 " Cycle danger: overall += LRA_MAX_REJECT\n");
2877 overall
+= LRA_MAX_REJECT
;
2880 curr_alt_dont_inherit_ops_num
= 0;
2881 for (nop
= 0; nop
< early_clobbered_regs_num
; nop
++)
2883 int i
, j
, clobbered_hard_regno
, first_conflict_j
, last_conflict_j
;
2884 HARD_REG_SET temp_set
;
2886 i
= early_clobbered_nops
[nop
];
2887 if ((! curr_alt_win
[i
] && ! curr_alt_match_win
[i
])
2888 || hard_regno
[i
] < 0)
2890 lra_assert (operand_reg
[i
] != NULL_RTX
);
2891 clobbered_hard_regno
= hard_regno
[i
];
2892 CLEAR_HARD_REG_SET (temp_set
);
2893 add_to_hard_reg_set (&temp_set
, biggest_mode
[i
], clobbered_hard_regno
);
2894 first_conflict_j
= last_conflict_j
= -1;
2895 for (j
= 0; j
< n_operands
; j
++)
2897 /* We don't want process insides of match_operator and
2898 match_parallel because otherwise we would process
2899 their operands once again generating a wrong
2901 || curr_static_id
->operand
[j
].is_operator
)
2903 else if ((curr_alt_matches
[j
] == i
&& curr_alt_match_win
[j
])
2904 || (curr_alt_matches
[i
] == j
&& curr_alt_match_win
[i
]))
2906 /* If we don't reload j-th operand, check conflicts. */
2907 else if ((curr_alt_win
[j
] || curr_alt_match_win
[j
])
2908 && uses_hard_regs_p (*curr_id
->operand_loc
[j
], temp_set
))
2910 if (first_conflict_j
< 0)
2911 first_conflict_j
= j
;
2912 last_conflict_j
= j
;
2914 if (last_conflict_j
< 0)
2916 /* If earlyclobber operand conflicts with another
2917 non-matching operand which is actually the same register
2918 as the earlyclobber operand, it is better to reload the
2919 another operand as an operand matching the earlyclobber
2920 operand can be also the same. */
2921 if (first_conflict_j
== last_conflict_j
2922 && operand_reg
[last_conflict_j
] != NULL_RTX
2923 && ! curr_alt_match_win
[last_conflict_j
]
2924 && REGNO (operand_reg
[i
]) == REGNO (operand_reg
[last_conflict_j
]))
2926 curr_alt_win
[last_conflict_j
] = false;
2927 curr_alt_dont_inherit_ops
[curr_alt_dont_inherit_ops_num
++]
2930 if (lra_dump_file
!= NULL
)
2933 " %d Conflict early clobber reload: reject--\n",
2938 /* We need to reload early clobbered register and the
2939 matched registers. */
2940 for (j
= 0; j
< n_operands
; j
++)
2941 if (curr_alt_matches
[j
] == i
)
2943 curr_alt_match_win
[j
] = false;
2945 overall
+= LRA_LOSER_COST_FACTOR
;
2947 if (! curr_alt_match_win
[i
])
2948 curr_alt_dont_inherit_ops
[curr_alt_dont_inherit_ops_num
++] = i
;
2951 /* Remember pseudos used for match reloads are never
2953 lra_assert (curr_alt_matches
[i
] >= 0);
2954 curr_alt_win
[curr_alt_matches
[i
]] = false;
2956 curr_alt_win
[i
] = curr_alt_match_win
[i
] = false;
2958 if (lra_dump_file
!= NULL
)
2961 " %d Matched conflict early clobber reloads: "
2965 /* Early clobber was already reflected in REJECT. */
2966 if (!matching_early_clobber
[i
])
2968 lra_assert (reject
> 0);
2970 matching_early_clobber
[i
] = 1;
2972 overall
+= LRA_LOSER_COST_FACTOR
- 1;
2974 if (lra_dump_file
!= NULL
)
2975 fprintf (lra_dump_file
, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2976 nalt
, overall
, losers
, reload_nregs
);
2978 /* If this alternative can be made to work by reloading, and it
2979 needs less reloading than the others checked so far, record
2980 it as the chosen goal for reloading. */
2981 if ((best_losers
!= 0 && losers
== 0)
2982 || (((best_losers
== 0 && losers
== 0)
2983 || (best_losers
!= 0 && losers
!= 0))
2984 && (best_overall
> overall
2985 || (best_overall
== overall
2986 /* If the cost of the reloads is the same,
2987 prefer alternative which requires minimal
2988 number of reload regs. */
2989 && (reload_nregs
< best_reload_nregs
2990 || (reload_nregs
== best_reload_nregs
2991 && (best_reload_sum
< reload_sum
2992 || (best_reload_sum
== reload_sum
2993 && nalt
< goal_alt_number
))))))))
2995 for (nop
= 0; nop
< n_operands
; nop
++)
2997 goal_alt_win
[nop
] = curr_alt_win
[nop
];
2998 goal_alt_match_win
[nop
] = curr_alt_match_win
[nop
];
2999 goal_alt_matches
[nop
] = curr_alt_matches
[nop
];
3000 goal_alt
[nop
] = curr_alt
[nop
];
3001 goal_alt_offmemok
[nop
] = curr_alt_offmemok
[nop
];
3003 goal_alt_dont_inherit_ops_num
= curr_alt_dont_inherit_ops_num
;
3004 for (nop
= 0; nop
< curr_alt_dont_inherit_ops_num
; nop
++)
3005 goal_alt_dont_inherit_ops
[nop
] = curr_alt_dont_inherit_ops
[nop
];
3006 goal_alt_swapped
= curr_swapped
;
3007 best_overall
= overall
;
3008 best_losers
= losers
;
3009 best_reload_nregs
= reload_nregs
;
3010 best_reload_sum
= reload_sum
;
3011 goal_alt_number
= nalt
;
3014 /* Everything is satisfied. Do not process alternatives
3023 /* Make reload base reg from address AD. */
3025 base_to_reg (struct address_info
*ad
)
3029 rtx new_inner
= NULL_RTX
;
3030 rtx new_reg
= NULL_RTX
;
3032 rtx_insn
*last_insn
= get_last_insn();
3034 lra_assert (ad
->disp
== ad
->disp_term
);
3035 cl
= base_reg_class (ad
->mode
, ad
->as
, ad
->base_outer_code
,
3036 get_index_code (ad
));
3037 new_reg
= lra_create_new_reg (GET_MODE (*ad
->base
), NULL_RTX
,
3039 new_inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
), new_reg
,
3040 ad
->disp_term
== NULL
3043 if (!valid_address_p (ad
->mode
, new_inner
, ad
->as
))
3045 insn
= emit_insn (gen_rtx_SET (new_reg
, *ad
->base
));
3046 code
= recog_memoized (insn
);
3049 delete_insns_since (last_insn
);
3056 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3058 base_plus_disp_to_reg (struct address_info
*ad
, rtx disp
)
3063 lra_assert (ad
->base
== ad
->base_term
);
3064 cl
= base_reg_class (ad
->mode
, ad
->as
, ad
->base_outer_code
,
3065 get_index_code (ad
));
3066 new_reg
= lra_create_new_reg (GET_MODE (*ad
->base_term
), NULL_RTX
,
3068 lra_emit_add (new_reg
, *ad
->base_term
, disp
);
3072 /* Make reload of index part of address AD. Return the new
3075 index_part_to_reg (struct address_info
*ad
)
3079 new_reg
= lra_create_new_reg (GET_MODE (*ad
->index
), NULL_RTX
,
3080 INDEX_REG_CLASS
, "index term");
3081 expand_mult (GET_MODE (*ad
->index
), *ad
->index_term
,
3082 GEN_INT (get_index_scale (ad
)), new_reg
, 1);
3086 /* Return true if we can add a displacement to address AD, even if that
3087 makes the address invalid. The fix-up code requires any new address
3088 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3090 can_add_disp_p (struct address_info
*ad
)
3092 return (!ad
->autoinc_p
3093 && ad
->segment
== NULL
3094 && ad
->base
== ad
->base_term
3095 && ad
->disp
== ad
->disp_term
);
3098 /* Make equiv substitution in address AD. Return true if a substitution
3101 equiv_address_substitution (struct address_info
*ad
)
3103 rtx base_reg
, new_base_reg
, index_reg
, new_index_reg
, *base_term
, *index_term
;
3105 HOST_WIDE_INT scale
;
3108 base_term
= strip_subreg (ad
->base_term
);
3109 if (base_term
== NULL
)
3110 base_reg
= new_base_reg
= NULL_RTX
;
3113 base_reg
= *base_term
;
3114 new_base_reg
= get_equiv_with_elimination (base_reg
, curr_insn
);
3116 index_term
= strip_subreg (ad
->index_term
);
3117 if (index_term
== NULL
)
3118 index_reg
= new_index_reg
= NULL_RTX
;
3121 index_reg
= *index_term
;
3122 new_index_reg
= get_equiv_with_elimination (index_reg
, curr_insn
);
3124 if (base_reg
== new_base_reg
&& index_reg
== new_index_reg
)
3128 if (lra_dump_file
!= NULL
)
3130 fprintf (lra_dump_file
, "Changing address in insn %d ",
3131 INSN_UID (curr_insn
));
3132 dump_value_slim (lra_dump_file
, *ad
->outer
, 1);
3134 if (base_reg
!= new_base_reg
)
3137 if (REG_P (new_base_reg
))
3139 *base_term
= new_base_reg
;
3142 else if (GET_CODE (new_base_reg
) == PLUS
3143 && REG_P (XEXP (new_base_reg
, 0))
3144 && poly_int_rtx_p (XEXP (new_base_reg
, 1), &offset
)
3145 && can_add_disp_p (ad
))
3148 *base_term
= XEXP (new_base_reg
, 0);
3151 if (ad
->base_term2
!= NULL
)
3152 *ad
->base_term2
= *ad
->base_term
;
3154 if (index_reg
!= new_index_reg
)
3157 if (REG_P (new_index_reg
))
3159 *index_term
= new_index_reg
;
3162 else if (GET_CODE (new_index_reg
) == PLUS
3163 && REG_P (XEXP (new_index_reg
, 0))
3164 && poly_int_rtx_p (XEXP (new_index_reg
, 1), &offset
)
3165 && can_add_disp_p (ad
)
3166 && (scale
= get_index_scale (ad
)))
3168 disp
+= offset
* scale
;
3169 *index_term
= XEXP (new_index_reg
, 0);
3173 if (maybe_ne (disp
, 0))
3175 if (ad
->disp
!= NULL
)
3176 *ad
->disp
= plus_constant (GET_MODE (*ad
->inner
), *ad
->disp
, disp
);
3179 *ad
->inner
= plus_constant (GET_MODE (*ad
->inner
), *ad
->inner
, disp
);
3180 update_address (ad
);
3184 if (lra_dump_file
!= NULL
)
3187 fprintf (lra_dump_file
, " -- no change\n");
3190 fprintf (lra_dump_file
, " on equiv ");
3191 dump_value_slim (lra_dump_file
, *ad
->outer
, 1);
3192 fprintf (lra_dump_file
, "\n");
3198 /* Major function to make reloads for an address in operand NOP or
3199 check its correctness (If CHECK_ONLY_P is true). The supported
3202 1) an address that existed before LRA started, at which point it
3203 must have been valid. These addresses are subject to elimination
3204 and may have become invalid due to the elimination offset being out
3207 2) an address created by forcing a constant to memory
3208 (force_const_to_mem). The initial form of these addresses might
3209 not be valid, and it is this function's job to make them valid.
3211 3) a frame address formed from a register and a (possibly zero)
3212 constant offset. As above, these addresses might not be valid and
3213 this function must make them so.
3215 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3216 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3217 address. Return true for any RTL change.
3219 The function is a helper function which does not produce all
3220 transformations (when CHECK_ONLY_P is false) which can be
3221 necessary. It does just basic steps. To do all necessary
3222 transformations use function process_address. */
3224 process_address_1 (int nop
, bool check_only_p
,
3225 rtx_insn
**before
, rtx_insn
**after
)
3227 struct address_info ad
;
3229 HOST_WIDE_INT scale
;
3230 rtx op
= *curr_id
->operand_loc
[nop
];
3231 const char *constraint
= curr_static_id
->operand
[nop
].constraint
;
3232 enum constraint_num cn
= lookup_constraint (constraint
);
3233 bool change_p
= false;
3236 && GET_MODE (op
) == BLKmode
3237 && GET_CODE (XEXP (op
, 0)) == SCRATCH
)
3240 if (insn_extra_address_constraint (cn
)
3241 /* When we find an asm operand with an address constraint that
3242 doesn't satisfy address_operand to begin with, we clear
3243 is_address, so that we don't try to make a non-address fit.
3244 If the asm statement got this far, it's because other
3245 constraints are available, and we'll use them, disregarding
3246 the unsatisfiable address ones. */
3247 && curr_static_id
->operand
[nop
].is_address
)
3248 decompose_lea_address (&ad
, curr_id
->operand_loc
[nop
]);
3249 /* Do not attempt to decompose arbitrary addresses generated by combine
3250 for asm operands with loose constraints, e.g 'X'. */
3252 && !(INSN_CODE (curr_insn
) < 0
3253 && get_constraint_type (cn
) == CT_FIXED_FORM
3254 && constraint_satisfied_p (op
, cn
)))
3255 decompose_mem_address (&ad
, op
);
3256 else if (GET_CODE (op
) == SUBREG
3257 && MEM_P (SUBREG_REG (op
)))
3258 decompose_mem_address (&ad
, SUBREG_REG (op
));
3261 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3262 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3263 when INDEX_REG_CLASS is a single register class. */
3264 if (ad
.base_term
!= NULL
3265 && ad
.index_term
!= NULL
3266 && ira_class_hard_regs_num
[INDEX_REG_CLASS
] == 1
3267 && REG_P (*ad
.base_term
)
3268 && REG_P (*ad
.index_term
)
3269 && in_class_p (*ad
.base_term
, INDEX_REG_CLASS
, NULL
)
3270 && ! in_class_p (*ad
.index_term
, INDEX_REG_CLASS
, NULL
))
3272 std::swap (ad
.base
, ad
.index
);
3273 std::swap (ad
.base_term
, ad
.index_term
);
3276 change_p
= equiv_address_substitution (&ad
);
3277 if (ad
.base_term
!= NULL
3278 && (process_addr_reg
3279 (ad
.base_term
, check_only_p
, before
,
3281 && !(REG_P (*ad
.base_term
)
3282 && find_regno_note (curr_insn
, REG_DEAD
,
3283 REGNO (*ad
.base_term
)) != NULL_RTX
)
3285 base_reg_class (ad
.mode
, ad
.as
, ad
.base_outer_code
,
3286 get_index_code (&ad
)))))
3289 if (ad
.base_term2
!= NULL
)
3290 *ad
.base_term2
= *ad
.base_term
;
3292 if (ad
.index_term
!= NULL
3293 && process_addr_reg (ad
.index_term
, check_only_p
,
3294 before
, NULL
, INDEX_REG_CLASS
))
3297 /* Target hooks sometimes don't treat extra-constraint addresses as
3298 legitimate address_operands, so handle them specially. */
3299 if (insn_extra_address_constraint (cn
)
3300 && satisfies_address_constraint_p (&ad
, cn
))
3306 /* There are three cases where the shape of *AD.INNER may now be invalid:
3308 1) the original address was valid, but either elimination or
3309 equiv_address_substitution was applied and that made
3310 the address invalid.
3312 2) the address is an invalid symbolic address created by
3315 3) the address is a frame address with an invalid offset.
3317 4) the address is a frame address with an invalid base.
3319 All these cases involve a non-autoinc address, so there is no
3320 point revalidating other types. */
3321 if (ad
.autoinc_p
|| valid_address_p (&ad
))
3324 /* Any index existed before LRA started, so we can assume that the
3325 presence and shape of the index is valid. */
3326 push_to_sequence (*before
);
3327 lra_assert (ad
.disp
== ad
.disp_term
);
3328 if (ad
.base
== NULL
)
3330 if (ad
.index
== NULL
)
3333 rtx_insn
*last
= get_last_insn ();
3335 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
,
3337 rtx addr
= *ad
.inner
;
3339 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "addr");
3342 /* addr => lo_sum (new_base, addr), case (2) above. */
3343 insn
= emit_insn (gen_rtx_SET
3345 gen_rtx_HIGH (Pmode
, copy_rtx (addr
))));
3346 code
= recog_memoized (insn
);
3349 *ad
.inner
= gen_rtx_LO_SUM (Pmode
, new_reg
, addr
);
3350 if (! valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3352 /* Try to put lo_sum into register. */
3353 insn
= emit_insn (gen_rtx_SET
3355 gen_rtx_LO_SUM (Pmode
, new_reg
, addr
)));
3356 code
= recog_memoized (insn
);
3359 *ad
.inner
= new_reg
;
3360 if (! valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3370 delete_insns_since (last
);
3375 /* addr => new_base, case (2) above. */
3376 lra_emit_move (new_reg
, addr
);
3378 for (insn
= last
== NULL_RTX
? get_insns () : NEXT_INSN (last
);
3380 insn
= NEXT_INSN (insn
))
3381 if (recog_memoized (insn
) < 0)
3383 if (insn
!= NULL_RTX
)
3385 /* Do nothing if we cannot generate right insns.
3386 This is analogous to reload pass behavior. */
3387 delete_insns_since (last
);
3391 *ad
.inner
= new_reg
;
3396 /* index * scale + disp => new base + index * scale,
3398 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
, PLUS
,
3399 GET_CODE (*ad
.index
));
3401 lra_assert (INDEX_REG_CLASS
!= NO_REGS
);
3402 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "disp");
3403 lra_emit_move (new_reg
, *ad
.disp
);
3404 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3405 new_reg
, *ad
.index
);
3408 else if (ad
.index
== NULL
)
3413 rtx_insn
*insns
, *last_insn
;
3414 /* Try to reload base into register only if the base is invalid
3415 for the address but with valid offset, case (4) above. */
3417 new_reg
= base_to_reg (&ad
);
3419 /* base + disp => new base, cases (1) and (3) above. */
3420 /* Another option would be to reload the displacement into an
3421 index register. However, postreload has code to optimize
3422 address reloads that have the same base and different
3423 displacements, so reloading into an index register would
3424 not necessarily be a win. */
3425 if (new_reg
== NULL_RTX
)
3427 /* See if the target can split the displacement into a
3428 legitimate new displacement from a local anchor. */
3429 gcc_assert (ad
.disp
== ad
.disp_term
);
3430 poly_int64 orig_offset
;
3431 rtx offset1
, offset2
;
3432 if (poly_int_rtx_p (*ad
.disp
, &orig_offset
)
3433 && targetm
.legitimize_address_displacement (&offset1
, &offset2
,
3437 new_reg
= base_plus_disp_to_reg (&ad
, offset1
);
3438 new_reg
= gen_rtx_PLUS (GET_MODE (new_reg
), new_reg
, offset2
);
3441 new_reg
= base_plus_disp_to_reg (&ad
, *ad
.disp
);
3443 insns
= get_insns ();
3444 last_insn
= get_last_insn ();
3445 /* If we generated at least two insns, try last insn source as
3446 an address. If we succeed, we generate one less insn. */
3448 && last_insn
!= insns
3449 && (set
= single_set (last_insn
)) != NULL_RTX
3450 && GET_CODE (SET_SRC (set
)) == PLUS
3451 && REG_P (XEXP (SET_SRC (set
), 0))
3452 && CONSTANT_P (XEXP (SET_SRC (set
), 1)))
3454 *ad
.inner
= SET_SRC (set
);
3455 if (valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3457 *ad
.base_term
= XEXP (SET_SRC (set
), 0);
3458 *ad
.disp_term
= XEXP (SET_SRC (set
), 1);
3459 cl
= base_reg_class (ad
.mode
, ad
.as
, ad
.base_outer_code
,
3460 get_index_code (&ad
));
3461 regno
= REGNO (*ad
.base_term
);
3462 if (regno
>= FIRST_PSEUDO_REGISTER
3463 && cl
!= lra_get_allocno_class (regno
))
3464 lra_change_class (regno
, cl
, " Change to", true);
3465 new_reg
= SET_SRC (set
);
3466 delete_insns_since (PREV_INSN (last_insn
));
3471 *ad
.inner
= new_reg
;
3473 else if (ad
.disp_term
!= NULL
)
3475 /* base + scale * index + disp => new base + scale * index,
3477 gcc_assert (ad
.disp
== ad
.disp_term
);
3478 new_reg
= base_plus_disp_to_reg (&ad
, *ad
.disp
);
3479 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3480 new_reg
, *ad
.index
);
3482 else if ((scale
= get_index_scale (&ad
)) == 1)
3484 /* The last transformation to one reg will be made in
3485 curr_insn_transform function. */
3489 else if (scale
!= 0)
3491 /* base + scale * index => base + new_reg,
3493 Index part of address may become invalid. For example, we
3494 changed pseudo on the equivalent memory and a subreg of the
3495 pseudo onto the memory of different mode for which the scale is
3497 new_reg
= index_part_to_reg (&ad
);
3498 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3499 *ad
.base_term
, new_reg
);
3503 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
,
3505 rtx addr
= *ad
.inner
;
3507 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "addr");
3508 /* addr => new_base. */
3509 lra_emit_move (new_reg
, addr
);
3510 *ad
.inner
= new_reg
;
3512 *before
= get_insns ();
3517 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3518 Use process_address_1 as a helper function. Return true for any
3521 If CHECK_ONLY_P is true, just check address correctness. Return
3522 false if the address correct. */
3524 process_address (int nop
, bool check_only_p
,
3525 rtx_insn
**before
, rtx_insn
**after
)
3529 while (process_address_1 (nop
, check_only_p
, before
, after
))
3538 /* Emit insns to reload VALUE into a new register. VALUE is an
3539 auto-increment or auto-decrement RTX whose operand is a register or
3540 memory location; so reloading involves incrementing that location.
3541 IN is either identical to VALUE, or some cheaper place to reload
3542 value being incremented/decremented from.
3544 INC_AMOUNT is the number to increment or decrement by (always
3545 positive and ignored for POST_MODIFY/PRE_MODIFY).
3547 Return pseudo containing the result. */
3549 emit_inc (enum reg_class new_rclass
, rtx in
, rtx value
, poly_int64 inc_amount
)
3551 /* REG or MEM to be copied and incremented. */
3552 rtx incloc
= XEXP (value
, 0);
3553 /* Nonzero if increment after copying. */
3554 int post
= (GET_CODE (value
) == POST_DEC
|| GET_CODE (value
) == POST_INC
3555 || GET_CODE (value
) == POST_MODIFY
);
3560 rtx real_in
= in
== value
? incloc
: in
;
3564 if (GET_CODE (value
) == PRE_MODIFY
|| GET_CODE (value
) == POST_MODIFY
)
3566 lra_assert (GET_CODE (XEXP (value
, 1)) == PLUS
3567 || GET_CODE (XEXP (value
, 1)) == MINUS
);
3568 lra_assert (rtx_equal_p (XEXP (XEXP (value
, 1), 0), XEXP (value
, 0)));
3569 plus_p
= GET_CODE (XEXP (value
, 1)) == PLUS
;
3570 inc
= XEXP (XEXP (value
, 1), 1);
3574 if (GET_CODE (value
) == PRE_DEC
|| GET_CODE (value
) == POST_DEC
)
3575 inc_amount
= -inc_amount
;
3577 inc
= gen_int_mode (inc_amount
, GET_MODE (value
));
3580 if (! post
&& REG_P (incloc
))
3583 result
= lra_create_new_reg (GET_MODE (value
), value
, new_rclass
,
3586 if (real_in
!= result
)
3588 /* First copy the location to the result register. */
3589 lra_assert (REG_P (result
));
3590 emit_insn (gen_move_insn (result
, real_in
));
3593 /* We suppose that there are insns to add/sub with the constant
3594 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3595 old reload worked with this assumption. If the assumption
3596 becomes wrong, we should use approach in function
3597 base_plus_disp_to_reg. */
3600 /* See if we can directly increment INCLOC. */
3601 last
= get_last_insn ();
3602 add_insn
= emit_insn (plus_p
3603 ? gen_add2_insn (incloc
, inc
)
3604 : gen_sub2_insn (incloc
, inc
));
3606 code
= recog_memoized (add_insn
);
3609 if (! post
&& result
!= incloc
)
3610 emit_insn (gen_move_insn (result
, incloc
));
3613 delete_insns_since (last
);
3616 /* If couldn't do the increment directly, must increment in RESULT.
3617 The way we do this depends on whether this is pre- or
3618 post-increment. For pre-increment, copy INCLOC to the reload
3619 register, increment it there, then save back. */
3622 if (real_in
!= result
)
3623 emit_insn (gen_move_insn (result
, real_in
));
3625 emit_insn (gen_add2_insn (result
, inc
));
3627 emit_insn (gen_sub2_insn (result
, inc
));
3628 if (result
!= incloc
)
3629 emit_insn (gen_move_insn (incloc
, result
));
3635 Because this might be a jump insn or a compare, and because
3636 RESULT may not be available after the insn in an input
3637 reload, we must do the incrementing before the insn being
3640 We have already copied IN to RESULT. Increment the copy in
3641 RESULT, save that back, then decrement RESULT so it has
3642 the original value. */
3644 emit_insn (gen_add2_insn (result
, inc
));
3646 emit_insn (gen_sub2_insn (result
, inc
));
3647 emit_insn (gen_move_insn (incloc
, result
));
3648 /* Restore non-modified value for the result. We prefer this
3649 way because it does not require an additional hard
3654 if (poly_int_rtx_p (inc
, &offset
))
3655 emit_insn (gen_add2_insn (result
,
3656 gen_int_mode (-offset
,
3657 GET_MODE (result
))));
3659 emit_insn (gen_sub2_insn (result
, inc
));
3662 emit_insn (gen_add2_insn (result
, inc
));
3667 /* Return true if the current move insn does not need processing as we
3668 already know that it satisfies its constraints. */
3670 simple_move_p (void)
3673 enum reg_class dclass
, sclass
;
3675 lra_assert (curr_insn_set
!= NULL_RTX
);
3676 dest
= SET_DEST (curr_insn_set
);
3677 src
= SET_SRC (curr_insn_set
);
3679 /* If the instruction has multiple sets we need to process it even if it
3680 is single_set. This can happen if one or more of the SETs are dead.
3682 if (multiple_sets (curr_insn
))
3685 return ((dclass
= get_op_class (dest
)) != NO_REGS
3686 && (sclass
= get_op_class (src
)) != NO_REGS
3687 /* The backend guarantees that register moves of cost 2
3688 never need reloads. */
3689 && targetm
.register_move_cost (GET_MODE (src
), sclass
, dclass
) == 2);
3692 /* Swap operands NOP and NOP + 1. */
3694 swap_operands (int nop
)
3696 std::swap (curr_operand_mode
[nop
], curr_operand_mode
[nop
+ 1]);
3697 std::swap (original_subreg_reg_mode
[nop
], original_subreg_reg_mode
[nop
+ 1]);
3698 std::swap (*curr_id
->operand_loc
[nop
], *curr_id
->operand_loc
[nop
+ 1]);
3699 std::swap (equiv_substition_p
[nop
], equiv_substition_p
[nop
+ 1]);
3700 /* Swap the duplicates too. */
3701 lra_update_dup (curr_id
, nop
);
3702 lra_update_dup (curr_id
, nop
+ 1);
3705 /* Main entry point of the constraint code: search the body of the
3706 current insn to choose the best alternative. It is mimicking insn
3707 alternative cost calculation model of former reload pass. That is
3708 because machine descriptions were written to use this model. This
3709 model can be changed in future. Make commutative operand exchange
3712 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3713 constraints. Return true if any change happened during function
3716 If CHECK_ONLY_P is true then don't do any transformation. Just
3717 check that the insn satisfies all constraints. If the insn does
3718 not satisfy any constraint, return true. */
3720 curr_insn_transform (bool check_only_p
)
3727 signed char goal_alt_matched
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
3728 signed char match_inputs
[MAX_RECOG_OPERANDS
+ 1];
3729 signed char outputs
[MAX_RECOG_OPERANDS
+ 1];
3730 rtx_insn
*before
, *after
;
3732 /* Flag that the insn has been changed through a transformation. */
3736 int max_regno_before
;
3737 int reused_alternative_num
;
3739 curr_insn_set
= single_set (curr_insn
);
3740 if (curr_insn_set
!= NULL_RTX
&& simple_move_p ())
3742 /* We assume that the corresponding insn alternative has no
3743 earlier clobbers. If it is not the case, don't define move
3744 cost equal to 2 for the corresponding register classes. */
3745 lra_set_used_insn_alternative (curr_insn
, LRA_NON_CLOBBERED_ALT
);
3749 no_input_reloads_p
= no_output_reloads_p
= false;
3750 goal_alt_number
= -1;
3751 change_p
= sec_mem_p
= false;
3752 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3753 reloads; neither are insns that SET cc0. Insns that use CC0 are
3754 not allowed to have any input reloads. */
3755 if (JUMP_P (curr_insn
) || CALL_P (curr_insn
))
3756 no_output_reloads_p
= true;
3758 if (HAVE_cc0
&& reg_referenced_p (cc0_rtx
, PATTERN (curr_insn
)))
3759 no_input_reloads_p
= true;
3760 if (HAVE_cc0
&& reg_set_p (cc0_rtx
, PATTERN (curr_insn
)))
3761 no_output_reloads_p
= true;
3763 n_operands
= curr_static_id
->n_operands
;
3764 n_alternatives
= curr_static_id
->n_alternatives
;
3766 /* Just return "no reloads" if insn has no operands with
3768 if (n_operands
== 0 || n_alternatives
== 0)
3771 max_regno_before
= max_reg_num ();
3773 for (i
= 0; i
< n_operands
; i
++)
3775 goal_alt_matched
[i
][0] = -1;
3776 goal_alt_matches
[i
] = -1;
3779 commutative
= curr_static_id
->commutative
;
3781 /* Now see what we need for pseudos that didn't get hard regs or got
3782 the wrong kind of hard reg. For this, we must consider all the
3783 operands together against the register constraints. */
3785 best_losers
= best_overall
= INT_MAX
;
3786 best_reload_sum
= 0;
3788 curr_swapped
= false;
3789 goal_alt_swapped
= false;
3792 /* Make equivalence substitution and memory subreg elimination
3793 before address processing because an address legitimacy can
3794 depend on memory mode. */
3795 for (i
= 0; i
< n_operands
; i
++)
3798 bool op_change_p
= false;
3800 if (curr_static_id
->operand
[i
].is_operator
)
3803 old
= op
= *curr_id
->operand_loc
[i
];
3804 if (GET_CODE (old
) == SUBREG
)
3805 old
= SUBREG_REG (old
);
3806 subst
= get_equiv_with_elimination (old
, curr_insn
);
3807 original_subreg_reg_mode
[i
] = VOIDmode
;
3808 equiv_substition_p
[i
] = false;
3811 equiv_substition_p
[i
] = true;
3812 subst
= copy_rtx (subst
);
3813 lra_assert (REG_P (old
));
3814 if (GET_CODE (op
) != SUBREG
)
3815 *curr_id
->operand_loc
[i
] = subst
;
3818 SUBREG_REG (op
) = subst
;
3819 if (GET_MODE (subst
) == VOIDmode
)
3820 original_subreg_reg_mode
[i
] = GET_MODE (old
);
3822 if (lra_dump_file
!= NULL
)
3824 fprintf (lra_dump_file
,
3825 "Changing pseudo %d in operand %i of insn %u on equiv ",
3826 REGNO (old
), i
, INSN_UID (curr_insn
));
3827 dump_value_slim (lra_dump_file
, subst
, 1);
3828 fprintf (lra_dump_file
, "\n");
3830 op_change_p
= change_p
= true;
3832 if (simplify_operand_subreg (i
, GET_MODE (old
)) || op_change_p
)
3835 lra_update_dup (curr_id
, i
);
3839 /* Reload address registers and displacements. We do it before
3840 finding an alternative because of memory constraints. */
3841 before
= after
= NULL
;
3842 for (i
= 0; i
< n_operands
; i
++)
3843 if (! curr_static_id
->operand
[i
].is_operator
3844 && process_address (i
, check_only_p
, &before
, &after
))
3849 lra_update_dup (curr_id
, i
);
3853 /* If we've changed the instruction then any alternative that
3854 we chose previously may no longer be valid. */
3855 lra_set_used_insn_alternative (curr_insn
, LRA_UNKNOWN_ALT
);
3857 if (! check_only_p
&& curr_insn_set
!= NULL_RTX
3858 && check_and_process_move (&change_p
, &sec_mem_p
))
3863 reused_alternative_num
= check_only_p
? LRA_UNKNOWN_ALT
: curr_id
->used_insn_alternative
;
3864 if (lra_dump_file
!= NULL
&& reused_alternative_num
>= 0)
3865 fprintf (lra_dump_file
, "Reusing alternative %d for insn #%u\n",
3866 reused_alternative_num
, INSN_UID (curr_insn
));
3868 if (process_alt_operands (reused_alternative_num
))
3872 return ! alt_p
|| best_losers
!= 0;
3874 /* If insn is commutative (it's safe to exchange a certain pair of
3875 operands) then we need to try each alternative twice, the second
3876 time matching those two operands as if we had exchanged them. To
3877 do this, really exchange them in operands.
3879 If we have just tried the alternatives the second time, return
3880 operands to normal and drop through. */
3882 if (reused_alternative_num
< 0 && commutative
>= 0)
3884 curr_swapped
= !curr_swapped
;
3887 swap_operands (commutative
);
3891 swap_operands (commutative
);
3894 if (! alt_p
&& ! sec_mem_p
)
3896 /* No alternative works with reloads?? */
3897 if (INSN_CODE (curr_insn
) >= 0)
3898 fatal_insn ("unable to generate reloads for:", curr_insn
);
3899 error_for_asm (curr_insn
,
3900 "inconsistent operand constraints in an %<asm%>");
3901 /* Avoid further trouble with this insn. Don't generate use
3902 pattern here as we could use the insn SP offset. */
3903 lra_set_insn_deleted (curr_insn
);
3907 /* If the best alternative is with operands 1 and 2 swapped, swap
3908 them. Update the operand numbers of any reloads already
3911 if (goal_alt_swapped
)
3913 if (lra_dump_file
!= NULL
)
3914 fprintf (lra_dump_file
, " Commutative operand exchange in insn %u\n",
3915 INSN_UID (curr_insn
));
3917 /* Swap the duplicates too. */
3918 swap_operands (commutative
);
3922 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3923 too conservatively. So we use the secondary memory only if there
3924 is no any alternative without reloads. */
3925 use_sec_mem_p
= false;
3927 use_sec_mem_p
= true;
3930 for (i
= 0; i
< n_operands
; i
++)
3931 if (! goal_alt_win
[i
] && ! goal_alt_match_win
[i
])
3933 use_sec_mem_p
= i
< n_operands
;
3938 int in
= -1, out
= -1;
3939 rtx new_reg
, src
, dest
, rld
;
3940 machine_mode sec_mode
, rld_mode
;
3942 lra_assert (curr_insn_set
!= NULL_RTX
&& sec_mem_p
);
3943 dest
= SET_DEST (curr_insn_set
);
3944 src
= SET_SRC (curr_insn_set
);
3945 for (i
= 0; i
< n_operands
; i
++)
3946 if (*curr_id
->operand_loc
[i
] == dest
)
3948 else if (*curr_id
->operand_loc
[i
] == src
)
3950 for (i
= 0; i
< curr_static_id
->n_dups
; i
++)
3951 if (out
< 0 && *curr_id
->dup_loc
[i
] == dest
)
3952 out
= curr_static_id
->dup_num
[i
];
3953 else if (in
< 0 && *curr_id
->dup_loc
[i
] == src
)
3954 in
= curr_static_id
->dup_num
[i
];
3955 lra_assert (out
>= 0 && in
>= 0
3956 && curr_static_id
->operand
[out
].type
== OP_OUT
3957 && curr_static_id
->operand
[in
].type
== OP_IN
);
3958 rld
= partial_subreg_p (GET_MODE (src
), GET_MODE (dest
)) ? src
: dest
;
3959 rld_mode
= GET_MODE (rld
);
3960 sec_mode
= targetm
.secondary_memory_needed_mode (rld_mode
);
3961 new_reg
= lra_create_new_reg (sec_mode
, NULL_RTX
,
3962 NO_REGS
, "secondary");
3963 /* If the mode is changed, it should be wider. */
3964 lra_assert (!partial_subreg_p (sec_mode
, rld_mode
));
3965 if (sec_mode
!= rld_mode
)
3967 /* If the target says specifically to use another mode for
3968 secondary memory moves we can not reuse the original
3970 after
= emit_spill_move (false, new_reg
, dest
);
3971 lra_process_new_insns (curr_insn
, NULL
, after
,
3972 "Inserting the sec. move");
3973 /* We may have non null BEFORE here (e.g. after address
3975 push_to_sequence (before
);
3976 before
= emit_spill_move (true, new_reg
, src
);
3978 before
= get_insns ();
3980 lra_process_new_insns (curr_insn
, before
, NULL
, "Changing on");
3981 lra_set_insn_deleted (curr_insn
);
3983 else if (dest
== rld
)
3985 *curr_id
->operand_loc
[out
] = new_reg
;
3986 lra_update_dup (curr_id
, out
);
3987 after
= emit_spill_move (false, new_reg
, dest
);
3988 lra_process_new_insns (curr_insn
, NULL
, after
,
3989 "Inserting the sec. move");
3993 *curr_id
->operand_loc
[in
] = new_reg
;
3994 lra_update_dup (curr_id
, in
);
3995 /* See comments above. */
3996 push_to_sequence (before
);
3997 before
= emit_spill_move (true, new_reg
, src
);
3999 before
= get_insns ();
4001 lra_process_new_insns (curr_insn
, before
, NULL
,
4002 "Inserting the sec. move");
4004 lra_update_insn_regno_info (curr_insn
);
4008 lra_assert (goal_alt_number
>= 0);
4009 lra_set_used_insn_alternative (curr_insn
, goal_alt_number
);
4011 if (lra_dump_file
!= NULL
)
4015 fprintf (lra_dump_file
, " Choosing alt %d in insn %u:",
4016 goal_alt_number
, INSN_UID (curr_insn
));
4017 for (i
= 0; i
< n_operands
; i
++)
4019 p
= (curr_static_id
->operand_alternative
4020 [goal_alt_number
* n_operands
+ i
].constraint
);
4023 fprintf (lra_dump_file
, " (%d) ", i
);
4024 for (; *p
!= '\0' && *p
!= ',' && *p
!= '#'; p
++)
4025 fputc (*p
, lra_dump_file
);
4027 if (INSN_CODE (curr_insn
) >= 0
4028 && (p
= get_insn_name (INSN_CODE (curr_insn
))) != NULL
)
4029 fprintf (lra_dump_file
, " {%s}", p
);
4030 if (maybe_ne (curr_id
->sp_offset
, 0))
4032 fprintf (lra_dump_file
, " (sp_off=");
4033 print_dec (curr_id
->sp_offset
, lra_dump_file
);
4034 fprintf (lra_dump_file
, ")");
4036 fprintf (lra_dump_file
, "\n");
4039 /* Right now, for any pair of operands I and J that are required to
4040 match, with J < I, goal_alt_matches[I] is J. Add I to
4041 goal_alt_matched[J]. */
4043 for (i
= 0; i
< n_operands
; i
++)
4044 if ((j
= goal_alt_matches
[i
]) >= 0)
4046 for (k
= 0; goal_alt_matched
[j
][k
] >= 0; k
++)
4048 /* We allow matching one output operand and several input
4051 || (curr_static_id
->operand
[j
].type
== OP_OUT
4052 && curr_static_id
->operand
[i
].type
== OP_IN
4053 && (curr_static_id
->operand
4054 [goal_alt_matched
[j
][0]].type
== OP_IN
)));
4055 goal_alt_matched
[j
][k
] = i
;
4056 goal_alt_matched
[j
][k
+ 1] = -1;
4059 for (i
= 0; i
< n_operands
; i
++)
4060 goal_alt_win
[i
] |= goal_alt_match_win
[i
];
4062 /* Any constants that aren't allowed and can't be reloaded into
4063 registers are here changed into memory references. */
4064 for (i
= 0; i
< n_operands
; i
++)
4065 if (goal_alt_win
[i
])
4068 enum reg_class new_class
;
4069 rtx reg
= *curr_id
->operand_loc
[i
];
4071 if (GET_CODE (reg
) == SUBREG
)
4072 reg
= SUBREG_REG (reg
);
4074 if (REG_P (reg
) && (regno
= REGNO (reg
)) >= FIRST_PSEUDO_REGISTER
)
4076 bool ok_p
= in_class_p (reg
, goal_alt
[i
], &new_class
);
4078 if (new_class
!= NO_REGS
&& get_reg_class (regno
) != new_class
)
4081 lra_change_class (regno
, new_class
, " Change to", true);
4087 const char *constraint
;
4089 rtx op
= *curr_id
->operand_loc
[i
];
4090 rtx subreg
= NULL_RTX
;
4091 machine_mode mode
= curr_operand_mode
[i
];
4093 if (GET_CODE (op
) == SUBREG
)
4096 op
= SUBREG_REG (op
);
4097 mode
= GET_MODE (op
);
4100 if (CONST_POOL_OK_P (mode
, op
)
4101 && ((targetm
.preferred_reload_class
4102 (op
, (enum reg_class
) goal_alt
[i
]) == NO_REGS
)
4103 || no_input_reloads_p
))
4105 rtx tem
= force_const_mem (mode
, op
);
4108 if (subreg
!= NULL_RTX
)
4109 tem
= gen_rtx_SUBREG (mode
, tem
, SUBREG_BYTE (subreg
));
4111 *curr_id
->operand_loc
[i
] = tem
;
4112 lra_update_dup (curr_id
, i
);
4113 process_address (i
, false, &before
, &after
);
4115 /* If the alternative accepts constant pool refs directly
4116 there will be no reload needed at all. */
4117 if (subreg
!= NULL_RTX
)
4119 /* Skip alternatives before the one requested. */
4120 constraint
= (curr_static_id
->operand_alternative
4121 [goal_alt_number
* n_operands
+ i
].constraint
);
4123 (c
= *constraint
) && c
!= ',' && c
!= '#';
4124 constraint
+= CONSTRAINT_LEN (c
, constraint
))
4126 enum constraint_num cn
= lookup_constraint (constraint
);
4127 if ((insn_extra_memory_constraint (cn
)
4128 || insn_extra_special_memory_constraint (cn
))
4129 && satisfies_memory_constraint_p (tem
, cn
))
4132 if (c
== '\0' || c
== ',' || c
== '#')
4135 goal_alt_win
[i
] = true;
4141 for (i
= 0; i
< n_operands
; i
++)
4144 bool optional_p
= false;
4146 rtx op
= *curr_id
->operand_loc
[i
];
4148 if (goal_alt_win
[i
])
4150 if (goal_alt
[i
] == NO_REGS
4152 /* When we assign NO_REGS it means that we will not
4153 assign a hard register to the scratch pseudo by
4154 assigment pass and the scratch pseudo will be
4155 spilled. Spilled scratch pseudos are transformed
4156 back to scratches at the LRA end. */
4157 && lra_former_scratch_operand_p (curr_insn
, i
)
4158 && lra_former_scratch_p (REGNO (op
)))
4160 int regno
= REGNO (op
);
4161 lra_change_class (regno
, NO_REGS
, " Change to", true);
4162 if (lra_get_regno_hard_regno (regno
) >= 0)
4163 /* We don't have to mark all insn affected by the
4164 spilled pseudo as there is only one such insn, the
4166 reg_renumber
[regno
] = -1;
4167 lra_assert (bitmap_single_bit_set_p
4168 (&lra_reg_info
[REGNO (op
)].insn_bitmap
));
4170 /* We can do an optional reload. If the pseudo got a hard
4171 reg, we might improve the code through inheritance. If
4172 it does not get a hard register we coalesce memory/memory
4173 moves later. Ignore move insns to avoid cycling. */
4175 && lra_undo_inheritance_iter
< LRA_MAX_INHERITANCE_PASSES
4176 && goal_alt
[i
] != NO_REGS
&& REG_P (op
)
4177 && (regno
= REGNO (op
)) >= FIRST_PSEUDO_REGISTER
4178 && regno
< new_regno_start
4179 && ! lra_former_scratch_p (regno
)
4180 && reg_renumber
[regno
] < 0
4181 /* Check that the optional reload pseudo will be able to
4182 hold given mode value. */
4183 && ! (prohibited_class_reg_set_mode_p
4184 (goal_alt
[i
], reg_class_contents
[goal_alt
[i
]],
4185 PSEUDO_REGNO_MODE (regno
)))
4186 && (curr_insn_set
== NULL_RTX
4187 || !((REG_P (SET_SRC (curr_insn_set
))
4188 || MEM_P (SET_SRC (curr_insn_set
))
4189 || GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
)
4190 && (REG_P (SET_DEST (curr_insn_set
))
4191 || MEM_P (SET_DEST (curr_insn_set
))
4192 || GET_CODE (SET_DEST (curr_insn_set
)) == SUBREG
))))
4198 /* Operands that match previous ones have already been handled. */
4199 if (goal_alt_matches
[i
] >= 0)
4202 /* We should not have an operand with a non-offsettable address
4203 appearing where an offsettable address will do. It also may
4204 be a case when the address should be special in other words
4205 not a general one (e.g. it needs no index reg). */
4206 if (goal_alt_matched
[i
][0] == -1 && goal_alt_offmemok
[i
] && MEM_P (op
))
4208 enum reg_class rclass
;
4209 rtx
*loc
= &XEXP (op
, 0);
4210 enum rtx_code code
= GET_CODE (*loc
);
4212 push_to_sequence (before
);
4213 rclass
= base_reg_class (GET_MODE (op
), MEM_ADDR_SPACE (op
),
4215 if (GET_RTX_CLASS (code
) == RTX_AUTOINC
)
4216 new_reg
= emit_inc (rclass
, *loc
, *loc
,
4217 /* This value does not matter for MODIFY. */
4218 GET_MODE_SIZE (GET_MODE (op
)));
4219 else if (get_reload_reg (OP_IN
, Pmode
, *loc
, rclass
, FALSE
,
4220 "offsetable address", &new_reg
))
4223 enum rtx_code code
= GET_CODE (addr
);
4225 if (code
== AND
&& CONST_INT_P (XEXP (addr
, 1)))
4226 /* (and ... (const_int -X)) is used to align to X bytes. */
4227 addr
= XEXP (*loc
, 0);
4228 lra_emit_move (new_reg
, addr
);
4230 emit_move_insn (new_reg
, gen_rtx_AND (GET_MODE (new_reg
), new_reg
, XEXP (*loc
, 1)));
4232 before
= get_insns ();
4235 lra_update_dup (curr_id
, i
);
4237 else if (goal_alt_matched
[i
][0] == -1)
4242 enum op_type type
= curr_static_id
->operand
[i
].type
;
4244 loc
= curr_id
->operand_loc
[i
];
4245 mode
= curr_operand_mode
[i
];
4246 if (GET_CODE (*loc
) == SUBREG
)
4248 reg
= SUBREG_REG (*loc
);
4249 poly_int64 byte
= SUBREG_BYTE (*loc
);
4251 /* Strict_low_part requires reloading the register and not
4252 just the subreg. Likewise for a strict subreg no wider
4253 than a word for WORD_REGISTER_OPERATIONS targets. */
4254 && (curr_static_id
->operand
[i
].strict_low
4255 || (!paradoxical_subreg_p (mode
, GET_MODE (reg
))
4257 = get_try_hard_regno (REGNO (reg
))) >= 0
4258 && (simplify_subreg_regno
4260 GET_MODE (reg
), byte
, mode
) < 0)
4261 && (goal_alt
[i
] == NO_REGS
4262 || (simplify_subreg_regno
4263 (ira_class_hard_regs
[goal_alt
[i
]][0],
4264 GET_MODE (reg
), byte
, mode
) >= 0)))
4265 || (partial_subreg_p (mode
, GET_MODE (reg
))
4266 && known_le (GET_MODE_SIZE (GET_MODE (reg
)),
4268 && WORD_REGISTER_OPERATIONS
)))
4270 /* An OP_INOUT is required when reloading a subreg of a
4271 mode wider than a word to ensure that data beyond the
4272 word being reloaded is preserved. Also automatically
4273 ensure that strict_low_part reloads are made into
4274 OP_INOUT which should already be true from the backend
4277 && (curr_static_id
->operand
[i
].strict_low
4278 || read_modify_subreg_p (*loc
)))
4280 loc
= &SUBREG_REG (*loc
);
4281 mode
= GET_MODE (*loc
);
4285 if (get_reload_reg (type
, mode
, old
, goal_alt
[i
],
4286 loc
!= curr_id
->operand_loc
[i
], "", &new_reg
)
4289 push_to_sequence (before
);
4290 lra_emit_move (new_reg
, old
);
4291 before
= get_insns ();
4296 && find_reg_note (curr_insn
, REG_UNUSED
, old
) == NULL_RTX
)
4299 lra_emit_move (type
== OP_INOUT
? copy_rtx (old
) : old
, new_reg
);
4301 after
= get_insns ();
4305 for (j
= 0; j
< goal_alt_dont_inherit_ops_num
; j
++)
4306 if (goal_alt_dont_inherit_ops
[j
] == i
)
4308 lra_set_regno_unique_value (REGNO (new_reg
));
4311 lra_update_dup (curr_id
, i
);
4313 else if (curr_static_id
->operand
[i
].type
== OP_IN
4314 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4316 || (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4318 && (operands_match_p
4319 (*curr_id
->operand_loc
[i
],
4320 *curr_id
->operand_loc
[goal_alt_matched
[i
][0]],
4323 /* generate reloads for input and matched outputs. */
4324 match_inputs
[0] = i
;
4325 match_inputs
[1] = -1;
4326 match_reload (goal_alt_matched
[i
][0], match_inputs
, outputs
,
4327 goal_alt
[i
], &before
, &after
,
4328 curr_static_id
->operand_alternative
4329 [goal_alt_number
* n_operands
+ goal_alt_matched
[i
][0]]
4332 else if ((curr_static_id
->operand
[i
].type
== OP_OUT
4333 || (curr_static_id
->operand
[i
].type
== OP_INOUT
4334 && (operands_match_p
4335 (*curr_id
->operand_loc
[i
],
4336 *curr_id
->operand_loc
[goal_alt_matched
[i
][0]],
4338 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4340 /* Generate reloads for output and matched inputs. */
4341 match_reload (i
, goal_alt_matched
[i
], outputs
, goal_alt
[i
], &before
,
4342 &after
, curr_static_id
->operand_alternative
4343 [goal_alt_number
* n_operands
+ i
].earlyclobber
);
4344 else if (curr_static_id
->operand
[i
].type
== OP_IN
4345 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4348 /* Generate reloads for matched inputs. */
4349 match_inputs
[0] = i
;
4350 for (j
= 0; (k
= goal_alt_matched
[i
][j
]) >= 0; j
++)
4351 match_inputs
[j
+ 1] = k
;
4352 match_inputs
[j
+ 1] = -1;
4353 match_reload (-1, match_inputs
, outputs
, goal_alt
[i
], &before
,
4357 /* We must generate code in any case when function
4358 process_alt_operands decides that it is possible. */
4361 /* Memorise processed outputs so that output remaining to be processed
4362 can avoid using the same register value (see match_reload). */
4363 if (curr_static_id
->operand
[i
].type
== OP_OUT
)
4365 outputs
[n_outputs
++] = i
;
4366 outputs
[n_outputs
] = -1;
4373 lra_assert (REG_P (reg
));
4374 regno
= REGNO (reg
);
4375 op
= *curr_id
->operand_loc
[i
]; /* Substitution. */
4376 if (GET_CODE (op
) == SUBREG
)
4377 op
= SUBREG_REG (op
);
4378 gcc_assert (REG_P (op
) && (int) REGNO (op
) >= new_regno_start
);
4379 bitmap_set_bit (&lra_optional_reload_pseudos
, REGNO (op
));
4380 lra_reg_info
[REGNO (op
)].restore_rtx
= reg
;
4381 if (lra_dump_file
!= NULL
)
4382 fprintf (lra_dump_file
,
4383 " Making reload reg %d for reg %d optional\n",
4387 if (before
!= NULL_RTX
|| after
!= NULL_RTX
4388 || max_regno_before
!= max_reg_num ())
4392 lra_update_operator_dups (curr_id
);
4393 /* Something changes -- process the insn. */
4394 lra_update_insn_regno_info (curr_insn
);
4396 lra_process_new_insns (curr_insn
, before
, after
, "Inserting insn reload");
4400 /* Return true if INSN satisfies all constraints. In other words, no
4401 reload insns are needed. */
4403 lra_constrain_insn (rtx_insn
*insn
)
4405 int saved_new_regno_start
= new_regno_start
;
4406 int saved_new_insn_uid_start
= new_insn_uid_start
;
4410 curr_id
= lra_get_insn_recog_data (curr_insn
);
4411 curr_static_id
= curr_id
->insn_static_data
;
4412 new_insn_uid_start
= get_max_uid ();
4413 new_regno_start
= max_reg_num ();
4414 change_p
= curr_insn_transform (true);
4415 new_regno_start
= saved_new_regno_start
;
4416 new_insn_uid_start
= saved_new_insn_uid_start
;
4420 /* Return true if X is in LIST. */
4422 in_list_p (rtx x
, rtx list
)
4424 for (; list
!= NULL_RTX
; list
= XEXP (list
, 1))
4425 if (XEXP (list
, 0) == x
)
4430 /* Return true if X contains an allocatable hard register (if
4431 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4433 contains_reg_p (rtx x
, bool hard_reg_p
, bool spilled_p
)
4439 code
= GET_CODE (x
);
4442 int regno
= REGNO (x
);
4443 HARD_REG_SET alloc_regs
;
4447 if (regno
>= FIRST_PSEUDO_REGISTER
)
4448 regno
= lra_get_regno_hard_regno (regno
);
4451 COMPL_HARD_REG_SET (alloc_regs
, lra_no_alloc_regs
);
4452 return overlaps_hard_reg_set_p (alloc_regs
, GET_MODE (x
), regno
);
4456 if (regno
< FIRST_PSEUDO_REGISTER
)
4460 return lra_get_regno_hard_regno (regno
) < 0;
4463 fmt
= GET_RTX_FORMAT (code
);
4464 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4468 if (contains_reg_p (XEXP (x
, i
), hard_reg_p
, spilled_p
))
4471 else if (fmt
[i
] == 'E')
4473 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4474 if (contains_reg_p (XVECEXP (x
, i
, j
), hard_reg_p
, spilled_p
))
4481 /* Process all regs in location *LOC and change them on equivalent
4482 substitution. Return true if any change was done. */
4484 loc_equivalence_change_p (rtx
*loc
)
4486 rtx subst
, reg
, x
= *loc
;
4487 bool result
= false;
4488 enum rtx_code code
= GET_CODE (x
);
4494 reg
= SUBREG_REG (x
);
4495 if ((subst
= get_equiv_with_elimination (reg
, curr_insn
)) != reg
4496 && GET_MODE (subst
) == VOIDmode
)
4498 /* We cannot reload debug location. Simplify subreg here
4499 while we know the inner mode. */
4500 *loc
= simplify_gen_subreg (GET_MODE (x
), subst
,
4501 GET_MODE (reg
), SUBREG_BYTE (x
));
4505 if (code
== REG
&& (subst
= get_equiv_with_elimination (x
, curr_insn
)) != x
)
4511 /* Scan all the operand sub-expressions. */
4512 fmt
= GET_RTX_FORMAT (code
);
4513 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4516 result
= loc_equivalence_change_p (&XEXP (x
, i
)) || result
;
4517 else if (fmt
[i
] == 'E')
4518 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4520 = loc_equivalence_change_p (&XVECEXP (x
, i
, j
)) || result
;
4525 /* Similar to loc_equivalence_change_p, but for use as
4526 simplify_replace_fn_rtx callback. DATA is insn for which the
4527 elimination is done. If it null we don't do the elimination. */
4529 loc_equivalence_callback (rtx loc
, const_rtx
, void *data
)
4534 rtx subst
= (data
== NULL
4535 ? get_equiv (loc
) : get_equiv_with_elimination (loc
, (rtx_insn
*) data
));
4542 /* Maximum number of generated reload insns per an insn. It is for
4543 preventing this pass cycling in a bug case. */
4544 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4546 /* The current iteration number of this LRA pass. */
4547 int lra_constraint_iter
;
4549 /* True if we substituted equiv which needs checking register
4550 allocation correctness because the equivalent value contains
4551 allocatable hard registers or when we restore multi-register
4553 bool lra_risky_transformations_p
;
4555 /* Return true if REGNO is referenced in more than one block. */
4557 multi_block_pseudo_p (int regno
)
4559 basic_block bb
= NULL
;
4563 if (regno
< FIRST_PSEUDO_REGISTER
)
4566 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi
)
4568 bb
= BLOCK_FOR_INSN (lra_insn_recog_data
[uid
]->insn
);
4569 else if (BLOCK_FOR_INSN (lra_insn_recog_data
[uid
]->insn
) != bb
)
4574 /* Return true if LIST contains a deleted insn. */
4576 contains_deleted_insn_p (rtx_insn_list
*list
)
4578 for (; list
!= NULL_RTX
; list
= list
->next ())
4579 if (NOTE_P (list
->insn ())
4580 && NOTE_KIND (list
->insn ()) == NOTE_INSN_DELETED
)
4585 /* Return true if X contains a pseudo dying in INSN. */
4587 dead_pseudo_p (rtx x
, rtx_insn
*insn
)
4594 return (insn
!= NULL_RTX
4595 && find_regno_note (insn
, REG_DEAD
, REGNO (x
)) != NULL_RTX
);
4596 code
= GET_CODE (x
);
4597 fmt
= GET_RTX_FORMAT (code
);
4598 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4602 if (dead_pseudo_p (XEXP (x
, i
), insn
))
4605 else if (fmt
[i
] == 'E')
4607 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4608 if (dead_pseudo_p (XVECEXP (x
, i
, j
), insn
))
4615 /* Return true if INSN contains a dying pseudo in INSN right hand
4618 insn_rhs_dead_pseudo_p (rtx_insn
*insn
)
4620 rtx set
= single_set (insn
);
4622 gcc_assert (set
!= NULL
);
4623 return dead_pseudo_p (SET_SRC (set
), insn
);
4626 /* Return true if any init insn of REGNO contains a dying pseudo in
4627 insn right hand side. */
4629 init_insn_rhs_dead_pseudo_p (int regno
)
4631 rtx_insn_list
*insns
= ira_reg_equiv
[regno
].init_insns
;
4635 for (; insns
!= NULL_RTX
; insns
= insns
->next ())
4636 if (insn_rhs_dead_pseudo_p (insns
->insn ()))
4641 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4642 reverse only if we have one init insn with given REGNO as a
4645 reverse_equiv_p (int regno
)
4647 rtx_insn_list
*insns
= ira_reg_equiv
[regno
].init_insns
;
4652 if (! INSN_P (insns
->insn ())
4653 || insns
->next () != NULL
)
4655 if ((set
= single_set (insns
->insn ())) == NULL_RTX
)
4657 return REG_P (SET_SRC (set
)) && (int) REGNO (SET_SRC (set
)) == regno
;
4660 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4661 call this function only for non-reverse equivalence. */
4663 contains_reloaded_insn_p (int regno
)
4666 rtx_insn_list
*list
= ira_reg_equiv
[regno
].init_insns
;
4668 for (; list
!= NULL
; list
= list
->next ())
4669 if ((set
= single_set (list
->insn ())) == NULL_RTX
4670 || ! REG_P (SET_DEST (set
))
4671 || (int) REGNO (SET_DEST (set
)) != regno
)
4676 /* Entry function of LRA constraint pass. Return true if the
4677 constraint pass did change the code. */
4679 lra_constraints (bool first_p
)
4682 int i
, hard_regno
, new_insns_num
;
4683 unsigned int min_len
, new_min_len
, uid
;
4684 rtx set
, x
, reg
, dest_reg
;
4685 basic_block last_bb
;
4688 lra_constraint_iter
++;
4689 if (lra_dump_file
!= NULL
)
4690 fprintf (lra_dump_file
, "\n********** Local #%d: **********\n\n",
4691 lra_constraint_iter
);
4693 if (pic_offset_table_rtx
4694 && REGNO (pic_offset_table_rtx
) >= FIRST_PSEUDO_REGISTER
)
4695 lra_risky_transformations_p
= true;
4697 /* On the first iteration we should check IRA assignment
4698 correctness. In rare cases, the assignments can be wrong as
4699 early clobbers operands are ignored in IRA. */
4700 lra_risky_transformations_p
= first_p
;
4701 new_insn_uid_start
= get_max_uid ();
4702 new_regno_start
= first_p
? lra_constraint_new_regno_start
: max_reg_num ();
4703 /* Mark used hard regs for target stack size calulations. */
4704 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4705 if (lra_reg_info
[i
].nrefs
!= 0
4706 && (hard_regno
= lra_get_regno_hard_regno (i
)) >= 0)
4710 nregs
= hard_regno_nregs (hard_regno
, lra_reg_info
[i
].biggest_mode
);
4711 for (j
= 0; j
< nregs
; j
++)
4712 df_set_regs_ever_live (hard_regno
+ j
, true);
4714 /* Do elimination before the equivalence processing as we can spill
4715 some pseudos during elimination. */
4716 lra_eliminate (false, first_p
);
4717 auto_bitmap
equiv_insn_bitmap (®_obstack
);
4718 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4719 if (lra_reg_info
[i
].nrefs
!= 0)
4721 ira_reg_equiv
[i
].profitable_p
= true;
4722 reg
= regno_reg_rtx
[i
];
4723 if (lra_get_regno_hard_regno (i
) < 0 && (x
= get_equiv (reg
)) != reg
)
4725 bool pseudo_p
= contains_reg_p (x
, false, false);
4727 /* After RTL transformation, we can not guarantee that
4728 pseudo in the substitution was not reloaded which might
4729 make equivalence invalid. For example, in reverse
4736 the memory address register was reloaded before the 2nd
4738 if ((! first_p
&& pseudo_p
)
4739 /* We don't use DF for compilation speed sake. So it
4740 is problematic to update live info when we use an
4741 equivalence containing pseudos in more than one
4743 || (pseudo_p
&& multi_block_pseudo_p (i
))
4744 /* If an init insn was deleted for some reason, cancel
4745 the equiv. We could update the equiv insns after
4746 transformations including an equiv insn deletion
4747 but it is not worthy as such cases are extremely
4749 || contains_deleted_insn_p (ira_reg_equiv
[i
].init_insns
)
4750 /* If it is not a reverse equivalence, we check that a
4751 pseudo in rhs of the init insn is not dying in the
4752 insn. Otherwise, the live info at the beginning of
4753 the corresponding BB might be wrong after we
4754 removed the insn. When the equiv can be a
4755 constant, the right hand side of the init insn can
4757 || (! reverse_equiv_p (i
)
4758 && (init_insn_rhs_dead_pseudo_p (i
)
4759 /* If we reloaded the pseudo in an equivalence
4760 init insn, we can not remove the equiv init
4761 insns and the init insns might write into
4762 const memory in this case. */
4763 || contains_reloaded_insn_p (i
)))
4764 /* Prevent access beyond equivalent memory for
4765 paradoxical subregs. */
4767 && maybe_gt (GET_MODE_SIZE (lra_reg_info
[i
].biggest_mode
),
4768 GET_MODE_SIZE (GET_MODE (x
))))
4769 || (pic_offset_table_rtx
4770 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i
), x
)
4771 && (targetm
.preferred_reload_class
4772 (x
, lra_get_allocno_class (i
)) == NO_REGS
))
4773 || contains_symbol_ref_p (x
))))
4774 ira_reg_equiv
[i
].defined_p
= false;
4775 if (contains_reg_p (x
, false, true))
4776 ira_reg_equiv
[i
].profitable_p
= false;
4777 if (get_equiv (reg
) != reg
)
4778 bitmap_ior_into (equiv_insn_bitmap
, &lra_reg_info
[i
].insn_bitmap
);
4781 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4783 /* We should add all insns containing pseudos which should be
4784 substituted by their equivalences. */
4785 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap
, 0, uid
, bi
)
4786 lra_push_insn_by_uid (uid
);
4787 min_len
= lra_insn_stack_length ();
4791 while ((new_min_len
= lra_insn_stack_length ()) != 0)
4793 curr_insn
= lra_pop_insn ();
4795 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
4796 if (curr_bb
!= last_bb
)
4799 bb_reload_num
= lra_curr_reload_num
;
4801 if (min_len
> new_min_len
)
4803 min_len
= new_min_len
;
4806 if (new_insns_num
> MAX_RELOAD_INSNS_NUMBER
)
4808 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4809 MAX_RELOAD_INSNS_NUMBER
);
4811 if (DEBUG_INSN_P (curr_insn
))
4813 /* We need to check equivalence in debug insn and change
4814 pseudo to the equivalent value if necessary. */
4815 curr_id
= lra_get_insn_recog_data (curr_insn
);
4816 if (bitmap_bit_p (equiv_insn_bitmap
, INSN_UID (curr_insn
)))
4818 rtx old
= *curr_id
->operand_loc
[0];
4819 *curr_id
->operand_loc
[0]
4820 = simplify_replace_fn_rtx (old
, NULL_RTX
,
4821 loc_equivalence_callback
, curr_insn
);
4822 if (old
!= *curr_id
->operand_loc
[0])
4824 lra_update_insn_regno_info (curr_insn
);
4829 else if (INSN_P (curr_insn
))
4831 if ((set
= single_set (curr_insn
)) != NULL_RTX
)
4833 dest_reg
= SET_DEST (set
);
4834 /* The equivalence pseudo could be set up as SUBREG in a
4835 case when it is a call restore insn in a mode
4836 different from the pseudo mode. */
4837 if (GET_CODE (dest_reg
) == SUBREG
)
4838 dest_reg
= SUBREG_REG (dest_reg
);
4839 if ((REG_P (dest_reg
)
4840 && (x
= get_equiv (dest_reg
)) != dest_reg
4841 /* Remove insns which set up a pseudo whose value
4842 can not be changed. Such insns might be not in
4843 init_insns because we don't update equiv data
4844 during insn transformations.
4846 As an example, let suppose that a pseudo got
4847 hard register and on the 1st pass was not
4848 changed to equivalent constant. We generate an
4849 additional insn setting up the pseudo because of
4850 secondary memory movement. Then the pseudo is
4851 spilled and we use the equiv constant. In this
4852 case we should remove the additional insn and
4853 this insn is not init_insns list. */
4854 && (! MEM_P (x
) || MEM_READONLY_P (x
)
4855 /* Check that this is actually an insn setting
4856 up the equivalence. */
4857 || in_list_p (curr_insn
,
4859 [REGNO (dest_reg
)].init_insns
)))
4860 || (((x
= get_equiv (SET_SRC (set
))) != SET_SRC (set
))
4861 && in_list_p (curr_insn
,
4863 [REGNO (SET_SRC (set
))].init_insns
)))
4865 /* This is equiv init insn of pseudo which did not get a
4866 hard register -- remove the insn. */
4867 if (lra_dump_file
!= NULL
)
4869 fprintf (lra_dump_file
,
4870 " Removing equiv init insn %i (freq=%d)\n",
4871 INSN_UID (curr_insn
),
4872 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn
)));
4873 dump_insn_slim (lra_dump_file
, curr_insn
);
4875 if (contains_reg_p (x
, true, false))
4876 lra_risky_transformations_p
= true;
4877 lra_set_insn_deleted (curr_insn
);
4881 curr_id
= lra_get_insn_recog_data (curr_insn
);
4882 curr_static_id
= curr_id
->insn_static_data
;
4883 init_curr_insn_input_reloads ();
4884 init_curr_operand_mode ();
4885 if (curr_insn_transform (false))
4887 /* Check non-transformed insns too for equiv change as USE
4888 or CLOBBER don't need reloads but can contain pseudos
4889 being changed on their equivalences. */
4890 else if (bitmap_bit_p (equiv_insn_bitmap
, INSN_UID (curr_insn
))
4891 && loc_equivalence_change_p (&PATTERN (curr_insn
)))
4893 lra_update_insn_regno_info (curr_insn
);
4899 /* If we used a new hard regno, changed_p should be true because the
4900 hard reg is assigned to a new pseudo. */
4901 if (flag_checking
&& !changed_p
)
4903 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4904 if (lra_reg_info
[i
].nrefs
!= 0
4905 && (hard_regno
= lra_get_regno_hard_regno (i
)) >= 0)
4907 int j
, nregs
= hard_regno_nregs (hard_regno
,
4908 PSEUDO_REGNO_MODE (i
));
4910 for (j
= 0; j
< nregs
; j
++)
4911 lra_assert (df_regs_ever_live_p (hard_regno
+ j
));
4917 static void initiate_invariants (void);
4918 static void finish_invariants (void);
4920 /* Initiate the LRA constraint pass. It is done once per
4923 lra_constraints_init (void)
4925 initiate_invariants ();
4928 /* Finalize the LRA constraint pass. It is done once per
4931 lra_constraints_finish (void)
4933 finish_invariants ();
4938 /* Structure describes invariants for ineheritance. */
4939 struct lra_invariant
4941 /* The order number of the invariant. */
4943 /* The invariant RTX. */
4945 /* The origin insn of the invariant. */
4949 typedef lra_invariant invariant_t
;
4950 typedef invariant_t
*invariant_ptr_t
;
4951 typedef const invariant_t
*const_invariant_ptr_t
;
4953 /* Pointer to the inheritance invariants. */
4954 static vec
<invariant_ptr_t
> invariants
;
4956 /* Allocation pool for the invariants. */
4957 static object_allocator
<lra_invariant
> *invariants_pool
;
4959 /* Hash table for the invariants. */
4960 static htab_t invariant_table
;
4962 /* Hash function for INVARIANT. */
4964 invariant_hash (const void *invariant
)
4966 rtx inv
= ((const_invariant_ptr_t
) invariant
)->invariant_rtx
;
4967 return lra_rtx_hash (inv
);
4970 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4972 invariant_eq_p (const void *invariant1
, const void *invariant2
)
4974 rtx inv1
= ((const_invariant_ptr_t
) invariant1
)->invariant_rtx
;
4975 rtx inv2
= ((const_invariant_ptr_t
) invariant2
)->invariant_rtx
;
4977 return rtx_equal_p (inv1
, inv2
);
4980 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4981 invariant which is in the table. */
4982 static invariant_ptr_t
4983 insert_invariant (rtx invariant_rtx
)
4986 invariant_t invariant
;
4987 invariant_ptr_t invariant_ptr
;
4989 invariant
.invariant_rtx
= invariant_rtx
;
4990 entry_ptr
= htab_find_slot (invariant_table
, &invariant
, INSERT
);
4991 if (*entry_ptr
== NULL
)
4993 invariant_ptr
= invariants_pool
->allocate ();
4994 invariant_ptr
->invariant_rtx
= invariant_rtx
;
4995 invariant_ptr
->insn
= NULL
;
4996 invariants
.safe_push (invariant_ptr
);
4997 *entry_ptr
= (void *) invariant_ptr
;
4999 return (invariant_ptr_t
) *entry_ptr
;
5002 /* Initiate the invariant table. */
5004 initiate_invariants (void)
5006 invariants
.create (100);
5008 = new object_allocator
<lra_invariant
> ("Inheritance invariants");
5009 invariant_table
= htab_create (100, invariant_hash
, invariant_eq_p
, NULL
);
5012 /* Finish the invariant table. */
5014 finish_invariants (void)
5016 htab_delete (invariant_table
);
5017 delete invariants_pool
;
5018 invariants
.release ();
5021 /* Make the invariant table empty. */
5023 clear_invariants (void)
5025 htab_empty (invariant_table
);
5026 invariants_pool
->release ();
5027 invariants
.truncate (0);
5032 /* This page contains code to do inheritance/split
5035 /* Number of reloads passed so far in current EBB. */
5036 static int reloads_num
;
5038 /* Number of calls passed so far in current EBB. */
5039 static int calls_num
;
5041 /* Current reload pseudo check for validity of elements in
5043 static int curr_usage_insns_check
;
5045 /* Info about last usage of registers in EBB to do inheritance/split
5046 transformation. Inheritance transformation is done from a spilled
5047 pseudo and split transformations from a hard register or a pseudo
5048 assigned to a hard register. */
5051 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5052 value INSNS is valid. The insns is chain of optional debug insns
5053 and a finishing non-debug insn using the corresponding reg. The
5054 value is also used to mark the registers which are set up in the
5055 current insn. The negated insn uid is used for this. */
5057 /* Value of global reloads_num at the last insn in INSNS. */
5059 /* Value of global reloads_nums at the last insn in INSNS. */
5061 /* It can be true only for splitting. And it means that the restore
5062 insn should be put after insn given by the following member. */
5064 /* Next insns in the current EBB which use the original reg and the
5065 original reg value is not changed between the current insn and
5066 the next insns. In order words, e.g. for inheritance, if we need
5067 to use the original reg value again in the next insns we can try
5068 to use the value in a hard register from a reload insn of the
5073 /* Map: regno -> corresponding pseudo usage insns. */
5074 static struct usage_insns
*usage_insns
;
5077 setup_next_usage_insn (int regno
, rtx insn
, int reloads_num
, bool after_p
)
5079 usage_insns
[regno
].check
= curr_usage_insns_check
;
5080 usage_insns
[regno
].insns
= insn
;
5081 usage_insns
[regno
].reloads_num
= reloads_num
;
5082 usage_insns
[regno
].calls_num
= calls_num
;
5083 usage_insns
[regno
].after_p
= after_p
;
5086 /* The function is used to form list REGNO usages which consists of
5087 optional debug insns finished by a non-debug insn using REGNO.
5088 RELOADS_NUM is current number of reload insns processed so far. */
5090 add_next_usage_insn (int regno
, rtx_insn
*insn
, int reloads_num
)
5092 rtx next_usage_insns
;
5094 if (usage_insns
[regno
].check
== curr_usage_insns_check
5095 && (next_usage_insns
= usage_insns
[regno
].insns
) != NULL_RTX
5096 && DEBUG_INSN_P (insn
))
5098 /* Check that we did not add the debug insn yet. */
5099 if (next_usage_insns
!= insn
5100 && (GET_CODE (next_usage_insns
) != INSN_LIST
5101 || XEXP (next_usage_insns
, 0) != insn
))
5102 usage_insns
[regno
].insns
= gen_rtx_INSN_LIST (VOIDmode
, insn
,
5105 else if (NONDEBUG_INSN_P (insn
))
5106 setup_next_usage_insn (regno
, insn
, reloads_num
, false);
5108 usage_insns
[regno
].check
= 0;
5111 /* Return first non-debug insn in list USAGE_INSNS. */
5113 skip_usage_debug_insns (rtx usage_insns
)
5117 /* Skip debug insns. */
5118 for (insn
= usage_insns
;
5119 insn
!= NULL_RTX
&& GET_CODE (insn
) == INSN_LIST
;
5120 insn
= XEXP (insn
, 1))
5122 return safe_as_a
<rtx_insn
*> (insn
);
5125 /* Return true if we need secondary memory moves for insn in
5126 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5129 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED
,
5130 rtx usage_insns ATTRIBUTE_UNUSED
)
5136 if (inher_cl
== ALL_REGS
5137 || (insn
= skip_usage_debug_insns (usage_insns
)) == NULL_RTX
)
5139 lra_assert (INSN_P (insn
));
5140 if ((set
= single_set (insn
)) == NULL_RTX
|| ! REG_P (SET_DEST (set
)))
5142 dest
= SET_DEST (set
);
5145 lra_assert (inher_cl
!= NO_REGS
);
5146 cl
= get_reg_class (REGNO (dest
));
5147 return (cl
!= NO_REGS
&& cl
!= ALL_REGS
5148 && targetm
.secondary_memory_needed (GET_MODE (dest
), inher_cl
, cl
));
5151 /* Registers involved in inheritance/split in the current EBB
5152 (inheritance/split pseudos and original registers). */
5153 static bitmap_head check_only_regs
;
5155 /* Reload pseudos can not be involded in invariant inheritance in the
5157 static bitmap_head invalid_invariant_regs
;
5159 /* Do inheritance transformations for insn INSN, which defines (if
5160 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5161 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5162 form as the "insns" field of usage_insns. Return true if we
5163 succeed in such transformation.
5165 The transformations look like:
5168 ... p <- i (new insn)
5170 <- ... p ... <- ... i ...
5172 ... i <- p (new insn)
5173 <- ... p ... <- ... i ...
5175 <- ... p ... <- ... i ...
5176 where p is a spilled original pseudo and i is a new inheritance pseudo.
5179 The inheritance pseudo has the smallest class of two classes CL and
5180 class of ORIGINAL REGNO. */
5182 inherit_reload_reg (bool def_p
, int original_regno
,
5183 enum reg_class cl
, rtx_insn
*insn
, rtx next_usage_insns
)
5185 if (optimize_function_for_size_p (cfun
))
5188 enum reg_class rclass
= lra_get_allocno_class (original_regno
);
5189 rtx original_reg
= regno_reg_rtx
[original_regno
];
5190 rtx new_reg
, usage_insn
;
5191 rtx_insn
*new_insns
;
5193 lra_assert (! usage_insns
[original_regno
].after_p
);
5194 if (lra_dump_file
!= NULL
)
5195 fprintf (lra_dump_file
,
5196 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5197 if (! ira_reg_classes_intersect_p
[cl
][rclass
])
5199 if (lra_dump_file
!= NULL
)
5201 fprintf (lra_dump_file
,
5202 " Rejecting inheritance for %d "
5203 "because of disjoint classes %s and %s\n",
5204 original_regno
, reg_class_names
[cl
],
5205 reg_class_names
[rclass
]);
5206 fprintf (lra_dump_file
,
5207 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5211 if ((ira_class_subset_p
[cl
][rclass
] && cl
!= rclass
)
5212 /* We don't use a subset of two classes because it can be
5213 NO_REGS. This transformation is still profitable in most
5214 cases even if the classes are not intersected as register
5215 move is probably cheaper than a memory load. */
5216 || ira_class_hard_regs_num
[cl
] < ira_class_hard_regs_num
[rclass
])
5218 if (lra_dump_file
!= NULL
)
5219 fprintf (lra_dump_file
, " Use smallest class of %s and %s\n",
5220 reg_class_names
[cl
], reg_class_names
[rclass
]);
5224 if (check_secondary_memory_needed_p (rclass
, next_usage_insns
))
5226 /* Reject inheritance resulting in secondary memory moves.
5227 Otherwise, there is a danger in LRA cycling. Also such
5228 transformation will be unprofitable. */
5229 if (lra_dump_file
!= NULL
)
5231 rtx_insn
*insn
= skip_usage_debug_insns (next_usage_insns
);
5232 rtx set
= single_set (insn
);
5234 lra_assert (set
!= NULL_RTX
);
5236 rtx dest
= SET_DEST (set
);
5238 lra_assert (REG_P (dest
));
5239 fprintf (lra_dump_file
,
5240 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5241 "as secondary mem is needed\n",
5242 REGNO (dest
), reg_class_names
[get_reg_class (REGNO (dest
))],
5243 original_regno
, reg_class_names
[rclass
]);
5244 fprintf (lra_dump_file
,
5245 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5249 new_reg
= lra_create_new_reg (GET_MODE (original_reg
), original_reg
,
5250 rclass
, "inheritance");
5253 lra_emit_move (original_reg
, new_reg
);
5255 lra_emit_move (new_reg
, original_reg
);
5256 new_insns
= get_insns ();
5258 if (NEXT_INSN (new_insns
) != NULL_RTX
)
5260 if (lra_dump_file
!= NULL
)
5262 fprintf (lra_dump_file
,
5263 " Rejecting inheritance %d->%d "
5264 "as it results in 2 or more insns:\n",
5265 original_regno
, REGNO (new_reg
));
5266 dump_rtl_slim (lra_dump_file
, new_insns
, NULL
, -1, 0);
5267 fprintf (lra_dump_file
,
5268 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5272 lra_substitute_pseudo_within_insn (insn
, original_regno
, new_reg
, false);
5273 lra_update_insn_regno_info (insn
);
5275 /* We now have a new usage insn for original regno. */
5276 setup_next_usage_insn (original_regno
, new_insns
, reloads_num
, false);
5277 if (lra_dump_file
!= NULL
)
5278 fprintf (lra_dump_file
, " Original reg change %d->%d (bb%d):\n",
5279 original_regno
, REGNO (new_reg
), BLOCK_FOR_INSN (insn
)->index
);
5280 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= regno_reg_rtx
[original_regno
];
5281 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5282 bitmap_set_bit (&check_only_regs
, original_regno
);
5283 bitmap_set_bit (&lra_inheritance_pseudos
, REGNO (new_reg
));
5285 lra_process_new_insns (insn
, NULL
, new_insns
,
5286 "Add original<-inheritance");
5288 lra_process_new_insns (insn
, new_insns
, NULL
,
5289 "Add inheritance<-original");
5290 while (next_usage_insns
!= NULL_RTX
)
5292 if (GET_CODE (next_usage_insns
) != INSN_LIST
)
5294 usage_insn
= next_usage_insns
;
5295 lra_assert (NONDEBUG_INSN_P (usage_insn
));
5296 next_usage_insns
= NULL
;
5300 usage_insn
= XEXP (next_usage_insns
, 0);
5301 lra_assert (DEBUG_INSN_P (usage_insn
));
5302 next_usage_insns
= XEXP (next_usage_insns
, 1);
5304 lra_substitute_pseudo (&usage_insn
, original_regno
, new_reg
, false,
5305 DEBUG_INSN_P (usage_insn
));
5306 lra_update_insn_regno_info (as_a
<rtx_insn
*> (usage_insn
));
5307 if (lra_dump_file
!= NULL
)
5309 basic_block bb
= BLOCK_FOR_INSN (usage_insn
);
5310 fprintf (lra_dump_file
,
5311 " Inheritance reuse change %d->%d (bb%d):\n",
5312 original_regno
, REGNO (new_reg
),
5313 bb
? bb
->index
: -1);
5314 dump_insn_slim (lra_dump_file
, as_a
<rtx_insn
*> (usage_insn
));
5317 if (lra_dump_file
!= NULL
)
5318 fprintf (lra_dump_file
,
5319 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5323 /* Return true if we need a caller save/restore for pseudo REGNO which
5324 was assigned to a hard register. */
5326 need_for_call_save_p (int regno
)
5328 lra_assert (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] >= 0);
5329 return (usage_insns
[regno
].calls_num
< calls_num
5330 && (overlaps_hard_reg_set_p
5332 ! hard_reg_set_empty_p (lra_reg_info
[regno
].actual_call_used_reg_set
))
5333 ? lra_reg_info
[regno
].actual_call_used_reg_set
5334 : call_used_reg_set
,
5335 PSEUDO_REGNO_MODE (regno
), reg_renumber
[regno
])
5336 || (targetm
.hard_regno_call_part_clobbered
5337 (reg_renumber
[regno
], PSEUDO_REGNO_MODE (regno
)))));
5340 /* Global registers occurring in the current EBB. */
5341 static bitmap_head ebb_global_regs
;
5343 /* Return true if we need a split for hard register REGNO or pseudo
5344 REGNO which was assigned to a hard register.
5345 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5346 used for reloads since the EBB end. It is an approximation of the
5347 used hard registers in the split range. The exact value would
5348 require expensive calculations. If we were aggressive with
5349 splitting because of the approximation, the split pseudo will save
5350 the same hard register assignment and will be removed in the undo
5351 pass. We still need the approximation because too aggressive
5352 splitting would result in too inaccurate cost calculation in the
5353 assignment pass because of too many generated moves which will be
5354 probably removed in the undo pass. */
5356 need_for_split_p (HARD_REG_SET potential_reload_hard_regs
, int regno
)
5358 int hard_regno
= regno
< FIRST_PSEUDO_REGISTER
? regno
: reg_renumber
[regno
];
5360 lra_assert (hard_regno
>= 0);
5361 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs
, hard_regno
)
5362 /* Don't split eliminable hard registers, otherwise we can
5363 split hard registers like hard frame pointer, which
5364 lives on BB start/end according to DF-infrastructure,
5365 when there is a pseudo assigned to the register and
5366 living in the same BB. */
5367 && (regno
>= FIRST_PSEUDO_REGISTER
5368 || ! TEST_HARD_REG_BIT (eliminable_regset
, hard_regno
))
5369 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs
, hard_regno
)
5370 /* Don't split call clobbered hard regs living through
5371 calls, otherwise we might have a check problem in the
5372 assign sub-pass as in the most cases (exception is a
5373 situation when lra_risky_transformations_p value is
5374 true) the assign pass assumes that all pseudos living
5375 through calls are assigned to call saved hard regs. */
5376 && (regno
>= FIRST_PSEUDO_REGISTER
5377 || ! TEST_HARD_REG_BIT (call_used_reg_set
, regno
)
5378 || usage_insns
[regno
].calls_num
== calls_num
)
5379 /* We need at least 2 reloads to make pseudo splitting
5380 profitable. We should provide hard regno splitting in
5381 any case to solve 1st insn scheduling problem when
5382 moving hard register definition up might result in
5383 impossibility to find hard register for reload pseudo of
5384 small register class. */
5385 && (usage_insns
[regno
].reloads_num
5386 + (regno
< FIRST_PSEUDO_REGISTER
? 0 : 3) < reloads_num
)
5387 && (regno
< FIRST_PSEUDO_REGISTER
5388 /* For short living pseudos, spilling + inheritance can
5389 be considered a substitution for splitting.
5390 Therefore we do not splitting for local pseudos. It
5391 decreases also aggressiveness of splitting. The
5392 minimal number of references is chosen taking into
5393 account that for 2 references splitting has no sense
5394 as we can just spill the pseudo. */
5395 || (regno
>= FIRST_PSEUDO_REGISTER
5396 && lra_reg_info
[regno
].nrefs
> 3
5397 && bitmap_bit_p (&ebb_global_regs
, regno
))))
5398 || (regno
>= FIRST_PSEUDO_REGISTER
&& need_for_call_save_p (regno
)));
5401 /* Return class for the split pseudo created from original pseudo with
5402 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5403 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5404 results in no secondary memory movements. */
5405 static enum reg_class
5406 choose_split_class (enum reg_class allocno_class
,
5407 int hard_regno ATTRIBUTE_UNUSED
,
5408 machine_mode mode ATTRIBUTE_UNUSED
)
5411 enum reg_class cl
, best_cl
= NO_REGS
;
5412 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5413 = REGNO_REG_CLASS (hard_regno
);
5415 if (! targetm
.secondary_memory_needed (mode
, allocno_class
, allocno_class
)
5416 && TEST_HARD_REG_BIT (reg_class_contents
[allocno_class
], hard_regno
))
5417 return allocno_class
;
5419 (cl
= reg_class_subclasses
[allocno_class
][i
]) != LIM_REG_CLASSES
;
5421 if (! targetm
.secondary_memory_needed (mode
, cl
, hard_reg_class
)
5422 && ! targetm
.secondary_memory_needed (mode
, hard_reg_class
, cl
)
5423 && TEST_HARD_REG_BIT (reg_class_contents
[cl
], hard_regno
)
5424 && (best_cl
== NO_REGS
5425 || ira_class_hard_regs_num
[best_cl
] < ira_class_hard_regs_num
[cl
]))
5430 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5431 It only makes sense to call this function if NEW_REGNO is always
5432 equal to ORIGINAL_REGNO. */
5435 lra_copy_reg_equiv (unsigned int new_regno
, unsigned int original_regno
)
5437 if (!ira_reg_equiv
[original_regno
].defined_p
)
5440 ira_expand_reg_equiv ();
5441 ira_reg_equiv
[new_regno
].defined_p
= true;
5442 if (ira_reg_equiv
[original_regno
].memory
)
5443 ira_reg_equiv
[new_regno
].memory
5444 = copy_rtx (ira_reg_equiv
[original_regno
].memory
);
5445 if (ira_reg_equiv
[original_regno
].constant
)
5446 ira_reg_equiv
[new_regno
].constant
5447 = copy_rtx (ira_reg_equiv
[original_regno
].constant
);
5448 if (ira_reg_equiv
[original_regno
].invariant
)
5449 ira_reg_equiv
[new_regno
].invariant
5450 = copy_rtx (ira_reg_equiv
[original_regno
].invariant
);
5453 /* Do split transformations for insn INSN, which defines or uses
5454 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5455 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5456 "insns" field of usage_insns. If TO is not NULL, we don't use
5457 usage_insns, we put restore insns after TO insn.
5459 The transformations look like:
5462 ... s <- p (new insn -- save)
5464 ... p <- s (new insn -- restore)
5465 <- ... p ... <- ... p ...
5467 <- ... p ... <- ... p ...
5468 ... s <- p (new insn -- save)
5470 ... p <- s (new insn -- restore)
5471 <- ... p ... <- ... p ...
5473 where p is an original pseudo got a hard register or a hard
5474 register and s is a new split pseudo. The save is put before INSN
5475 if BEFORE_P is true. Return true if we succeed in such
5478 split_reg (bool before_p
, int original_regno
, rtx_insn
*insn
,
5479 rtx next_usage_insns
, rtx_insn
*to
)
5481 enum reg_class rclass
;
5483 int hard_regno
, nregs
;
5484 rtx new_reg
, usage_insn
;
5485 rtx_insn
*restore
, *save
;
5490 if (original_regno
< FIRST_PSEUDO_REGISTER
)
5492 rclass
= ira_allocno_class_translate
[REGNO_REG_CLASS (original_regno
)];
5493 hard_regno
= original_regno
;
5494 call_save_p
= false;
5496 mode
= lra_reg_info
[hard_regno
].biggest_mode
;
5497 machine_mode reg_rtx_mode
= GET_MODE (regno_reg_rtx
[hard_regno
]);
5498 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5499 as part of a multi-word register. In that case, or if the biggest
5500 mode was larger than a register, just use the reg_rtx. Otherwise,
5501 limit the size to that of the biggest access in the function. */
5502 if (mode
== VOIDmode
5503 || paradoxical_subreg_p (mode
, reg_rtx_mode
))
5505 original_reg
= regno_reg_rtx
[hard_regno
];
5506 mode
= reg_rtx_mode
;
5509 original_reg
= gen_rtx_REG (mode
, hard_regno
);
5513 mode
= PSEUDO_REGNO_MODE (original_regno
);
5514 hard_regno
= reg_renumber
[original_regno
];
5515 nregs
= hard_regno_nregs (hard_regno
, mode
);
5516 rclass
= lra_get_allocno_class (original_regno
);
5517 original_reg
= regno_reg_rtx
[original_regno
];
5518 call_save_p
= need_for_call_save_p (original_regno
);
5520 lra_assert (hard_regno
>= 0);
5521 if (lra_dump_file
!= NULL
)
5522 fprintf (lra_dump_file
,
5523 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5527 mode
= HARD_REGNO_CALLER_SAVE_MODE (hard_regno
,
5528 hard_regno_nregs (hard_regno
, mode
),
5530 new_reg
= lra_create_new_reg (mode
, NULL_RTX
, NO_REGS
, "save");
5534 rclass
= choose_split_class (rclass
, hard_regno
, mode
);
5535 if (rclass
== NO_REGS
)
5537 if (lra_dump_file
!= NULL
)
5539 fprintf (lra_dump_file
,
5540 " Rejecting split of %d(%s): "
5541 "no good reg class for %d(%s)\n",
5543 reg_class_names
[lra_get_allocno_class (original_regno
)],
5545 reg_class_names
[REGNO_REG_CLASS (hard_regno
)]);
5548 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5552 /* Split_if_necessary can split hard registers used as part of a
5553 multi-register mode but splits each register individually. The
5554 mode used for each independent register may not be supported
5555 so reject the split. Splitting the wider mode should theoretically
5556 be possible but is not implemented. */
5557 if (!targetm
.hard_regno_mode_ok (hard_regno
, mode
))
5559 if (lra_dump_file
!= NULL
)
5561 fprintf (lra_dump_file
,
5562 " Rejecting split of %d(%s): unsuitable mode %s\n",
5564 reg_class_names
[lra_get_allocno_class (original_regno
)],
5565 GET_MODE_NAME (mode
));
5568 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5572 new_reg
= lra_create_new_reg (mode
, original_reg
, rclass
, "split");
5573 reg_renumber
[REGNO (new_reg
)] = hard_regno
;
5575 int new_regno
= REGNO (new_reg
);
5576 save
= emit_spill_move (true, new_reg
, original_reg
);
5577 if (NEXT_INSN (save
) != NULL_RTX
&& !call_save_p
)
5579 if (lra_dump_file
!= NULL
)
5583 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5584 original_regno
, new_regno
);
5585 dump_rtl_slim (lra_dump_file
, save
, NULL
, -1, 0);
5586 fprintf (lra_dump_file
,
5587 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5591 restore
= emit_spill_move (false, new_reg
, original_reg
);
5592 if (NEXT_INSN (restore
) != NULL_RTX
&& !call_save_p
)
5594 if (lra_dump_file
!= NULL
)
5596 fprintf (lra_dump_file
,
5597 " Rejecting split %d->%d "
5598 "resulting in > 2 restore insns:\n",
5599 original_regno
, new_regno
);
5600 dump_rtl_slim (lra_dump_file
, restore
, NULL
, -1, 0);
5601 fprintf (lra_dump_file
,
5602 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5606 /* Transfer equivalence information to the spill register, so that
5607 if we fail to allocate the spill register, we have the option of
5608 rematerializing the original value instead of spilling to the stack. */
5609 if (!HARD_REGISTER_NUM_P (original_regno
)
5610 && mode
== PSEUDO_REGNO_MODE (original_regno
))
5611 lra_copy_reg_equiv (new_regno
, original_regno
);
5612 lra_reg_info
[new_regno
].restore_rtx
= regno_reg_rtx
[original_regno
];
5613 bitmap_set_bit (&check_only_regs
, new_regno
);
5614 bitmap_set_bit (&check_only_regs
, original_regno
);
5615 bitmap_set_bit (&lra_split_regs
, new_regno
);
5623 after_p
= usage_insns
[original_regno
].after_p
;
5626 if (GET_CODE (next_usage_insns
) != INSN_LIST
)
5628 usage_insn
= next_usage_insns
;
5631 usage_insn
= XEXP (next_usage_insns
, 0);
5632 lra_assert (DEBUG_INSN_P (usage_insn
));
5633 next_usage_insns
= XEXP (next_usage_insns
, 1);
5634 lra_substitute_pseudo (&usage_insn
, original_regno
, new_reg
, false,
5636 lra_update_insn_regno_info (as_a
<rtx_insn
*> (usage_insn
));
5637 if (lra_dump_file
!= NULL
)
5639 fprintf (lra_dump_file
, " Split reuse change %d->%d:\n",
5640 original_regno
, new_regno
);
5641 dump_insn_slim (lra_dump_file
, as_a
<rtx_insn
*> (usage_insn
));
5645 lra_assert (NOTE_P (usage_insn
) || NONDEBUG_INSN_P (usage_insn
));
5646 lra_assert (usage_insn
!= insn
|| (after_p
&& before_p
));
5647 lra_process_new_insns (as_a
<rtx_insn
*> (usage_insn
),
5648 after_p
? NULL
: restore
,
5649 after_p
? restore
: NULL
,
5651 ? "Add reg<-save" : "Add reg<-split");
5652 lra_process_new_insns (insn
, before_p
? save
: NULL
,
5653 before_p
? NULL
: save
,
5655 ? "Add save<-reg" : "Add split<-reg");
5657 /* If we are trying to split multi-register. We should check
5658 conflicts on the next assignment sub-pass. IRA can allocate on
5659 sub-register levels, LRA do this on pseudos level right now and
5660 this discrepancy may create allocation conflicts after
5662 lra_risky_transformations_p
= true;
5663 if (lra_dump_file
!= NULL
)
5664 fprintf (lra_dump_file
,
5665 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5669 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
5670 in the range [FROM, TO]. Return true if did a split. Otherwise,
5673 spill_hard_reg_in_range (int regno
, enum reg_class rclass
, rtx_insn
*from
, rtx_insn
*to
)
5680 HARD_REG_SET ignore
;
5682 lra_assert (from
!= NULL
&& to
!= NULL
);
5683 CLEAR_HARD_REG_SET (ignore
);
5684 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi
)
5686 lra_insn_recog_data_t id
= lra_insn_recog_data
[uid
];
5687 struct lra_static_insn_data
*static_id
= id
->insn_static_data
;
5688 struct lra_insn_reg
*reg
;
5690 for (reg
= id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5691 if (reg
->regno
< FIRST_PSEUDO_REGISTER
)
5692 SET_HARD_REG_BIT (ignore
, reg
->regno
);
5693 for (reg
= static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5694 SET_HARD_REG_BIT (ignore
, reg
->regno
);
5696 rclass_size
= ira_class_hard_regs_num
[rclass
];
5697 for (i
= 0; i
< rclass_size
; i
++)
5699 hard_regno
= ira_class_hard_regs
[rclass
][i
];
5700 if (! TEST_HARD_REG_BIT (lra_reg_info
[regno
].conflict_hard_regs
, hard_regno
)
5701 || TEST_HARD_REG_BIT (ignore
, hard_regno
))
5703 for (insn
= from
; insn
!= NEXT_INSN (to
); insn
= NEXT_INSN (insn
))
5705 struct lra_static_insn_data
*static_id
;
5706 struct lra_insn_reg
*reg
;
5710 if (bitmap_bit_p (&lra_reg_info
[hard_regno
].insn_bitmap
,
5713 static_id
= lra_get_insn_recog_data (insn
)->insn_static_data
;
5714 for (reg
= static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5715 if (reg
->regno
== hard_regno
)
5720 if (insn
!= NEXT_INSN (to
))
5722 if (split_reg (TRUE
, hard_regno
, from
, NULL
, to
))
5728 /* Recognize that we need a split transformation for insn INSN, which
5729 defines or uses REGNO in its insn biggest MODE (we use it only if
5730 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5731 hard registers which might be used for reloads since the EBB end.
5732 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5733 uid before starting INSN processing. Return true if we succeed in
5734 such transformation. */
5736 split_if_necessary (int regno
, machine_mode mode
,
5737 HARD_REG_SET potential_reload_hard_regs
,
5738 bool before_p
, rtx_insn
*insn
, int max_uid
)
5742 rtx next_usage_insns
;
5744 if (regno
< FIRST_PSEUDO_REGISTER
)
5745 nregs
= hard_regno_nregs (regno
, mode
);
5746 for (i
= 0; i
< nregs
; i
++)
5747 if (usage_insns
[regno
+ i
].check
== curr_usage_insns_check
5748 && (next_usage_insns
= usage_insns
[regno
+ i
].insns
) != NULL_RTX
5749 /* To avoid processing the register twice or more. */
5750 && ((GET_CODE (next_usage_insns
) != INSN_LIST
5751 && INSN_UID (next_usage_insns
) < max_uid
)
5752 || (GET_CODE (next_usage_insns
) == INSN_LIST
5753 && (INSN_UID (XEXP (next_usage_insns
, 0)) < max_uid
)))
5754 && need_for_split_p (potential_reload_hard_regs
, regno
+ i
)
5755 && split_reg (before_p
, regno
+ i
, insn
, next_usage_insns
, NULL
))
5760 /* Return TRUE if rtx X is considered as an invariant for
5763 invariant_p (const_rtx x
)
5770 code
= GET_CODE (x
);
5771 mode
= GET_MODE (x
);
5775 code
= GET_CODE (x
);
5776 mode
= wider_subreg_mode (mode
, GET_MODE (x
));
5784 int i
, nregs
, regno
= REGNO (x
);
5786 if (regno
>= FIRST_PSEUDO_REGISTER
|| regno
== STACK_POINTER_REGNUM
5787 || TEST_HARD_REG_BIT (eliminable_regset
, regno
)
5788 || GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
)
5790 nregs
= hard_regno_nregs (regno
, mode
);
5791 for (i
= 0; i
< nregs
; i
++)
5792 if (! fixed_regs
[regno
+ i
]
5793 /* A hard register may be clobbered in the current insn
5794 but we can ignore this case because if the hard
5795 register is used it should be set somewhere after the
5797 || bitmap_bit_p (&invalid_invariant_regs
, regno
+ i
))
5800 fmt
= GET_RTX_FORMAT (code
);
5801 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5805 if (! invariant_p (XEXP (x
, i
)))
5808 else if (fmt
[i
] == 'E')
5810 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5811 if (! invariant_p (XVECEXP (x
, i
, j
)))
5818 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5819 inheritance transformation (using dest_reg instead invariant in a
5820 subsequent insn). */
5822 process_invariant_for_inheritance (rtx dst_reg
, rtx invariant_rtx
)
5824 invariant_ptr_t invariant_ptr
;
5825 rtx_insn
*insn
, *new_insns
;
5826 rtx insn_set
, insn_reg
, new_reg
;
5828 bool succ_p
= false;
5829 int dst_regno
= REGNO (dst_reg
);
5830 machine_mode dst_mode
= GET_MODE (dst_reg
);
5831 enum reg_class cl
= lra_get_allocno_class (dst_regno
), insn_reg_cl
;
5833 invariant_ptr
= insert_invariant (invariant_rtx
);
5834 if ((insn
= invariant_ptr
->insn
) != NULL_RTX
)
5836 /* We have a subsequent insn using the invariant. */
5837 insn_set
= single_set (insn
);
5838 lra_assert (insn_set
!= NULL
);
5839 insn_reg
= SET_DEST (insn_set
);
5840 lra_assert (REG_P (insn_reg
));
5841 insn_regno
= REGNO (insn_reg
);
5842 insn_reg_cl
= lra_get_allocno_class (insn_regno
);
5844 if (dst_mode
== GET_MODE (insn_reg
)
5845 /* We should consider only result move reg insns which are
5847 && targetm
.register_move_cost (dst_mode
, cl
, insn_reg_cl
) == 2
5848 && targetm
.register_move_cost (dst_mode
, cl
, cl
) == 2)
5850 if (lra_dump_file
!= NULL
)
5851 fprintf (lra_dump_file
,
5852 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5853 new_reg
= lra_create_new_reg (dst_mode
, dst_reg
,
5854 cl
, "invariant inheritance");
5855 bitmap_set_bit (&lra_inheritance_pseudos
, REGNO (new_reg
));
5856 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5857 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= PATTERN (insn
);
5859 lra_emit_move (new_reg
, dst_reg
);
5860 new_insns
= get_insns ();
5862 lra_process_new_insns (curr_insn
, NULL
, new_insns
,
5863 "Add invariant inheritance<-original");
5865 lra_emit_move (SET_DEST (insn_set
), new_reg
);
5866 new_insns
= get_insns ();
5868 lra_process_new_insns (insn
, NULL
, new_insns
,
5869 "Changing reload<-inheritance");
5870 lra_set_insn_deleted (insn
);
5872 if (lra_dump_file
!= NULL
)
5874 fprintf (lra_dump_file
,
5875 " Invariant inheritance reuse change %d (bb%d):\n",
5876 REGNO (new_reg
), BLOCK_FOR_INSN (insn
)->index
);
5877 dump_insn_slim (lra_dump_file
, insn
);
5878 fprintf (lra_dump_file
,
5879 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5883 invariant_ptr
->insn
= curr_insn
;
5887 /* Check only registers living at the current program point in the
5889 static bitmap_head live_regs
;
5891 /* Update live info in EBB given by its HEAD and TAIL insns after
5892 inheritance/split transformation. The function removes dead moves
5895 update_ebb_live_info (rtx_insn
*head
, rtx_insn
*tail
)
5900 rtx_insn
*prev_insn
;
5903 basic_block last_bb
, prev_bb
, curr_bb
;
5905 struct lra_insn_reg
*reg
;
5909 last_bb
= BLOCK_FOR_INSN (tail
);
5911 for (curr_insn
= tail
;
5912 curr_insn
!= PREV_INSN (head
);
5913 curr_insn
= prev_insn
)
5915 prev_insn
= PREV_INSN (curr_insn
);
5916 /* We need to process empty blocks too. They contain
5917 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5918 if (NOTE_P (curr_insn
) && NOTE_KIND (curr_insn
) != NOTE_INSN_BASIC_BLOCK
)
5920 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
5921 if (curr_bb
!= prev_bb
)
5923 if (prev_bb
!= NULL
)
5925 /* Update df_get_live_in (prev_bb): */
5926 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs
, 0, j
, bi
)
5927 if (bitmap_bit_p (&live_regs
, j
))
5928 bitmap_set_bit (df_get_live_in (prev_bb
), j
);
5930 bitmap_clear_bit (df_get_live_in (prev_bb
), j
);
5932 if (curr_bb
!= last_bb
)
5934 /* Update df_get_live_out (curr_bb): */
5935 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs
, 0, j
, bi
)
5937 live_p
= bitmap_bit_p (&live_regs
, j
);
5939 FOR_EACH_EDGE (e
, ei
, curr_bb
->succs
)
5940 if (bitmap_bit_p (df_get_live_in (e
->dest
), j
))
5946 bitmap_set_bit (df_get_live_out (curr_bb
), j
);
5948 bitmap_clear_bit (df_get_live_out (curr_bb
), j
);
5952 bitmap_and (&live_regs
, &check_only_regs
, df_get_live_out (curr_bb
));
5954 if (! NONDEBUG_INSN_P (curr_insn
))
5956 curr_id
= lra_get_insn_recog_data (curr_insn
);
5957 curr_static_id
= curr_id
->insn_static_data
;
5959 if ((set
= single_set (curr_insn
)) != NULL_RTX
5960 && REG_P (SET_DEST (set
))
5961 && (regno
= REGNO (SET_DEST (set
))) >= FIRST_PSEUDO_REGISTER
5962 && SET_DEST (set
) != pic_offset_table_rtx
5963 && bitmap_bit_p (&check_only_regs
, regno
)
5964 && ! bitmap_bit_p (&live_regs
, regno
))
5966 /* See which defined values die here. */
5967 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5968 if (reg
->type
== OP_OUT
&& ! reg
->subreg_p
)
5969 bitmap_clear_bit (&live_regs
, reg
->regno
);
5970 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5971 if (reg
->type
== OP_OUT
&& ! reg
->subreg_p
)
5972 bitmap_clear_bit (&live_regs
, reg
->regno
);
5973 if (curr_id
->arg_hard_regs
!= NULL
)
5974 /* Make clobbered argument hard registers die. */
5975 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
5976 if (regno
>= FIRST_PSEUDO_REGISTER
)
5977 bitmap_clear_bit (&live_regs
, regno
- FIRST_PSEUDO_REGISTER
);
5978 /* Mark each used value as live. */
5979 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5980 if (reg
->type
!= OP_OUT
5981 && bitmap_bit_p (&check_only_regs
, reg
->regno
))
5982 bitmap_set_bit (&live_regs
, reg
->regno
);
5983 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5984 if (reg
->type
!= OP_OUT
5985 && bitmap_bit_p (&check_only_regs
, reg
->regno
))
5986 bitmap_set_bit (&live_regs
, reg
->regno
);
5987 if (curr_id
->arg_hard_regs
!= NULL
)
5988 /* Make used argument hard registers live. */
5989 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
5990 if (regno
< FIRST_PSEUDO_REGISTER
5991 && bitmap_bit_p (&check_only_regs
, regno
))
5992 bitmap_set_bit (&live_regs
, regno
);
5993 /* It is quite important to remove dead move insns because it
5994 means removing dead store. We don't need to process them for
5998 if (lra_dump_file
!= NULL
)
6000 fprintf (lra_dump_file
, " Removing dead insn:\n ");
6001 dump_insn_slim (lra_dump_file
, curr_insn
);
6003 lra_set_insn_deleted (curr_insn
);
6008 /* The structure describes info to do an inheritance for the current
6009 insn. We need to collect such info first before doing the
6010 transformations because the transformations change the insn
6011 internal representation. */
6014 /* Original regno. */
6016 /* Subsequent insns which can inherit original reg value. */
6020 /* Array containing all info for doing inheritance from the current
6022 static struct to_inherit to_inherit
[LRA_MAX_INSN_RELOADS
];
6024 /* Number elements in the previous array. */
6025 static int to_inherit_num
;
6027 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6028 structure to_inherit. */
6030 add_to_inherit (int regno
, rtx insns
)
6034 for (i
= 0; i
< to_inherit_num
; i
++)
6035 if (to_inherit
[i
].regno
== regno
)
6037 lra_assert (to_inherit_num
< LRA_MAX_INSN_RELOADS
);
6038 to_inherit
[to_inherit_num
].regno
= regno
;
6039 to_inherit
[to_inherit_num
++].insns
= insns
;
6042 /* Return the last non-debug insn in basic block BB, or the block begin
6045 get_last_insertion_point (basic_block bb
)
6049 FOR_BB_INSNS_REVERSE (bb
, insn
)
6050 if (NONDEBUG_INSN_P (insn
) || NOTE_INSN_BASIC_BLOCK_P (insn
))
6055 /* Set up RES by registers living on edges FROM except the edge (FROM,
6056 TO) or by registers set up in a jump insn in BB FROM. */
6058 get_live_on_other_edges (basic_block from
, basic_block to
, bitmap res
)
6061 struct lra_insn_reg
*reg
;
6065 lra_assert (to
!= NULL
);
6067 FOR_EACH_EDGE (e
, ei
, from
->succs
)
6069 bitmap_ior_into (res
, df_get_live_in (e
->dest
));
6070 last
= get_last_insertion_point (from
);
6071 if (! JUMP_P (last
))
6073 curr_id
= lra_get_insn_recog_data (last
);
6074 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6075 if (reg
->type
!= OP_IN
)
6076 bitmap_set_bit (res
, reg
->regno
);
6079 /* Used as a temporary results of some bitmap calculations. */
6080 static bitmap_head temp_bitmap
;
6082 /* We split for reloads of small class of hard regs. The following
6083 defines how many hard regs the class should have to be qualified as
6084 small. The code is mostly oriented to x86/x86-64 architecture
6085 where some insns need to use only specific register or pair of
6086 registers and these register can live in RTL explicitly, e.g. for
6087 parameter passing. */
6088 static const int max_small_class_regs_num
= 2;
6090 /* Do inheritance/split transformations in EBB starting with HEAD and
6091 finishing on TAIL. We process EBB insns in the reverse order.
6092 Return true if we did any inheritance/split transformation in the
6095 We should avoid excessive splitting which results in worse code
6096 because of inaccurate cost calculations for spilling new split
6097 pseudos in such case. To achieve this we do splitting only if
6098 register pressure is high in given basic block and there are reload
6099 pseudos requiring hard registers. We could do more register
6100 pressure calculations at any given program point to avoid necessary
6101 splitting even more but it is to expensive and the current approach
6102 works well enough. */
6104 inherit_in_ebb (rtx_insn
*head
, rtx_insn
*tail
)
6106 int i
, src_regno
, dst_regno
, nregs
;
6107 bool change_p
, succ_p
, update_reloads_num_p
;
6108 rtx_insn
*prev_insn
, *last_insn
;
6109 rtx next_usage_insns
, curr_set
;
6111 struct lra_insn_reg
*reg
;
6112 basic_block last_processed_bb
, curr_bb
= NULL
;
6113 HARD_REG_SET potential_reload_hard_regs
, live_hard_regs
;
6117 bool head_p
, after_p
;
6120 curr_usage_insns_check
++;
6121 clear_invariants ();
6122 reloads_num
= calls_num
= 0;
6123 bitmap_clear (&check_only_regs
);
6124 bitmap_clear (&invalid_invariant_regs
);
6125 last_processed_bb
= NULL
;
6126 CLEAR_HARD_REG_SET (potential_reload_hard_regs
);
6127 COPY_HARD_REG_SET (live_hard_regs
, eliminable_regset
);
6128 IOR_HARD_REG_SET (live_hard_regs
, lra_no_alloc_regs
);
6129 /* We don't process new insns generated in the loop. */
6130 for (curr_insn
= tail
; curr_insn
!= PREV_INSN (head
); curr_insn
= prev_insn
)
6132 prev_insn
= PREV_INSN (curr_insn
);
6133 if (BLOCK_FOR_INSN (curr_insn
) != NULL
)
6134 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
6135 if (last_processed_bb
!= curr_bb
)
6137 /* We are at the end of BB. Add qualified living
6138 pseudos for potential splitting. */
6139 to_process
= df_get_live_out (curr_bb
);
6140 if (last_processed_bb
!= NULL
)
6142 /* We are somewhere in the middle of EBB. */
6143 get_live_on_other_edges (curr_bb
, last_processed_bb
,
6145 to_process
= &temp_bitmap
;
6147 last_processed_bb
= curr_bb
;
6148 last_insn
= get_last_insertion_point (curr_bb
);
6149 after_p
= (! JUMP_P (last_insn
)
6150 && (! CALL_P (last_insn
)
6151 || (find_reg_note (last_insn
,
6152 REG_NORETURN
, NULL_RTX
) == NULL_RTX
6153 && ! SIBLING_CALL_P (last_insn
))));
6154 CLEAR_HARD_REG_SET (potential_reload_hard_regs
);
6155 EXECUTE_IF_SET_IN_BITMAP (to_process
, 0, j
, bi
)
6157 if ((int) j
>= lra_constraint_new_regno_start
)
6159 if (j
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[j
] >= 0)
6161 if (j
< FIRST_PSEUDO_REGISTER
)
6162 SET_HARD_REG_BIT (live_hard_regs
, j
);
6164 add_to_hard_reg_set (&live_hard_regs
,
6165 PSEUDO_REGNO_MODE (j
),
6167 setup_next_usage_insn (j
, last_insn
, reloads_num
, after_p
);
6171 src_regno
= dst_regno
= -1;
6172 curr_set
= single_set (curr_insn
);
6173 if (curr_set
!= NULL_RTX
&& REG_P (SET_DEST (curr_set
)))
6174 dst_regno
= REGNO (SET_DEST (curr_set
));
6175 if (curr_set
!= NULL_RTX
&& REG_P (SET_SRC (curr_set
)))
6176 src_regno
= REGNO (SET_SRC (curr_set
));
6177 update_reloads_num_p
= true;
6178 if (src_regno
< lra_constraint_new_regno_start
6179 && src_regno
>= FIRST_PSEUDO_REGISTER
6180 && reg_renumber
[src_regno
] < 0
6181 && dst_regno
>= lra_constraint_new_regno_start
6182 && (cl
= lra_get_allocno_class (dst_regno
)) != NO_REGS
)
6184 /* 'reload_pseudo <- original_pseudo'. */
6185 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6187 update_reloads_num_p
= false;
6189 if (usage_insns
[src_regno
].check
== curr_usage_insns_check
6190 && (next_usage_insns
= usage_insns
[src_regno
].insns
) != NULL_RTX
)
6191 succ_p
= inherit_reload_reg (false, src_regno
, cl
,
6192 curr_insn
, next_usage_insns
);
6196 setup_next_usage_insn (src_regno
, curr_insn
, reloads_num
, false);
6197 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6198 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6199 reg_class_contents
[cl
]);
6201 else if (src_regno
< 0
6202 && dst_regno
>= lra_constraint_new_regno_start
6203 && invariant_p (SET_SRC (curr_set
))
6204 && (cl
= lra_get_allocno_class (dst_regno
)) != NO_REGS
6205 && ! bitmap_bit_p (&invalid_invariant_regs
, dst_regno
)
6206 && ! bitmap_bit_p (&invalid_invariant_regs
,
6207 ORIGINAL_REGNO(regno_reg_rtx
[dst_regno
])))
6209 /* 'reload_pseudo <- invariant'. */
6210 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6212 update_reloads_num_p
= false;
6213 if (process_invariant_for_inheritance (SET_DEST (curr_set
), SET_SRC (curr_set
)))
6215 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6216 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6217 reg_class_contents
[cl
]);
6219 else if (src_regno
>= lra_constraint_new_regno_start
6220 && dst_regno
< lra_constraint_new_regno_start
6221 && dst_regno
>= FIRST_PSEUDO_REGISTER
6222 && reg_renumber
[dst_regno
] < 0
6223 && (cl
= lra_get_allocno_class (src_regno
)) != NO_REGS
6224 && usage_insns
[dst_regno
].check
== curr_usage_insns_check
6225 && (next_usage_insns
6226 = usage_insns
[dst_regno
].insns
) != NULL_RTX
)
6228 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6230 update_reloads_num_p
= false;
6231 /* 'original_pseudo <- reload_pseudo'. */
6232 if (! JUMP_P (curr_insn
)
6233 && inherit_reload_reg (true, dst_regno
, cl
,
6234 curr_insn
, next_usage_insns
))
6237 usage_insns
[dst_regno
].check
= 0;
6238 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6239 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6240 reg_class_contents
[cl
]);
6242 else if (INSN_P (curr_insn
))
6245 int max_uid
= get_max_uid ();
6247 curr_id
= lra_get_insn_recog_data (curr_insn
);
6248 curr_static_id
= curr_id
->insn_static_data
;
6250 /* Process insn definitions. */
6251 for (iter
= 0; iter
< 2; iter
++)
6252 for (reg
= iter
== 0 ? curr_id
->regs
: curr_static_id
->hard_regs
;
6255 if (reg
->type
!= OP_IN
6256 && (dst_regno
= reg
->regno
) < lra_constraint_new_regno_start
)
6258 if (dst_regno
>= FIRST_PSEUDO_REGISTER
&& reg
->type
== OP_OUT
6259 && reg_renumber
[dst_regno
] < 0 && ! reg
->subreg_p
6260 && usage_insns
[dst_regno
].check
== curr_usage_insns_check
6261 && (next_usage_insns
6262 = usage_insns
[dst_regno
].insns
) != NULL_RTX
)
6264 struct lra_insn_reg
*r
;
6266 for (r
= curr_id
->regs
; r
!= NULL
; r
= r
->next
)
6267 if (r
->type
!= OP_OUT
&& r
->regno
== dst_regno
)
6269 /* Don't do inheritance if the pseudo is also
6270 used in the insn. */
6272 /* We can not do inheritance right now
6273 because the current insn reg info (chain
6274 regs) can change after that. */
6275 add_to_inherit (dst_regno
, next_usage_insns
);
6277 /* We can not process one reg twice here because of
6278 usage_insns invalidation. */
6279 if ((dst_regno
< FIRST_PSEUDO_REGISTER
6280 || reg_renumber
[dst_regno
] >= 0)
6281 && ! reg
->subreg_p
&& reg
->type
!= OP_IN
)
6285 if (split_if_necessary (dst_regno
, reg
->biggest_mode
,
6286 potential_reload_hard_regs
,
6287 false, curr_insn
, max_uid
))
6289 CLEAR_HARD_REG_SET (s
);
6290 if (dst_regno
< FIRST_PSEUDO_REGISTER
)
6291 add_to_hard_reg_set (&s
, reg
->biggest_mode
, dst_regno
);
6293 add_to_hard_reg_set (&s
, PSEUDO_REGNO_MODE (dst_regno
),
6294 reg_renumber
[dst_regno
]);
6295 AND_COMPL_HARD_REG_SET (live_hard_regs
, s
);
6297 /* We should invalidate potential inheritance or
6298 splitting for the current insn usages to the next
6299 usage insns (see code below) as the output pseudo
6301 if ((dst_regno
>= FIRST_PSEUDO_REGISTER
6302 && reg_renumber
[dst_regno
] < 0)
6303 || (reg
->type
== OP_OUT
&& ! reg
->subreg_p
6304 && (dst_regno
< FIRST_PSEUDO_REGISTER
6305 || reg_renumber
[dst_regno
] >= 0)))
6307 /* Invalidate and mark definitions. */
6308 if (dst_regno
>= FIRST_PSEUDO_REGISTER
)
6309 usage_insns
[dst_regno
].check
= -(int) INSN_UID (curr_insn
);
6312 nregs
= hard_regno_nregs (dst_regno
,
6314 for (i
= 0; i
< nregs
; i
++)
6315 usage_insns
[dst_regno
+ i
].check
6316 = -(int) INSN_UID (curr_insn
);
6320 /* Process clobbered call regs. */
6321 if (curr_id
->arg_hard_regs
!= NULL
)
6322 for (i
= 0; (dst_regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6323 if (dst_regno
>= FIRST_PSEUDO_REGISTER
)
6324 usage_insns
[dst_regno
- FIRST_PSEUDO_REGISTER
].check
6325 = -(int) INSN_UID (curr_insn
);
6326 if (! JUMP_P (curr_insn
))
6327 for (i
= 0; i
< to_inherit_num
; i
++)
6328 if (inherit_reload_reg (true, to_inherit
[i
].regno
,
6329 ALL_REGS
, curr_insn
,
6330 to_inherit
[i
].insns
))
6332 if (CALL_P (curr_insn
))
6334 rtx cheap
, pat
, dest
;
6336 int regno
, hard_regno
;
6339 if ((cheap
= find_reg_note (curr_insn
,
6340 REG_RETURNED
, NULL_RTX
)) != NULL_RTX
6341 && ((cheap
= XEXP (cheap
, 0)), true)
6342 && (regno
= REGNO (cheap
)) >= FIRST_PSEUDO_REGISTER
6343 && (hard_regno
= reg_renumber
[regno
]) >= 0
6344 && usage_insns
[regno
].check
== curr_usage_insns_check
6345 /* If there are pending saves/restores, the
6346 optimization is not worth. */
6347 && usage_insns
[regno
].calls_num
== calls_num
- 1
6348 && TEST_HARD_REG_BIT (call_used_reg_set
, hard_regno
))
6350 /* Restore the pseudo from the call result as
6351 REG_RETURNED note says that the pseudo value is
6352 in the call result and the pseudo is an argument
6354 pat
= PATTERN (curr_insn
);
6355 if (GET_CODE (pat
) == PARALLEL
)
6356 pat
= XVECEXP (pat
, 0, 0);
6357 dest
= SET_DEST (pat
);
6358 /* For multiple return values dest is PARALLEL.
6359 Currently we handle only single return value case. */
6363 emit_move_insn (cheap
, copy_rtx (dest
));
6364 restore
= get_insns ();
6366 lra_process_new_insns (curr_insn
, NULL
, restore
,
6367 "Inserting call parameter restore");
6368 /* We don't need to save/restore of the pseudo from
6370 usage_insns
[regno
].calls_num
= calls_num
;
6371 bitmap_set_bit (&check_only_regs
, regno
);
6376 /* Process insn usages. */
6377 for (iter
= 0; iter
< 2; iter
++)
6378 for (reg
= iter
== 0 ? curr_id
->regs
: curr_static_id
->hard_regs
;
6381 if ((reg
->type
!= OP_OUT
6382 || (reg
->type
== OP_OUT
&& reg
->subreg_p
))
6383 && (src_regno
= reg
->regno
) < lra_constraint_new_regno_start
)
6385 if (src_regno
>= FIRST_PSEUDO_REGISTER
6386 && reg_renumber
[src_regno
] < 0 && reg
->type
== OP_IN
)
6388 if (usage_insns
[src_regno
].check
== curr_usage_insns_check
6389 && (next_usage_insns
6390 = usage_insns
[src_regno
].insns
) != NULL_RTX
6391 && NONDEBUG_INSN_P (curr_insn
))
6392 add_to_inherit (src_regno
, next_usage_insns
);
6393 else if (usage_insns
[src_regno
].check
6394 != -(int) INSN_UID (curr_insn
))
6395 /* Add usages but only if the reg is not set up
6396 in the same insn. */
6397 add_next_usage_insn (src_regno
, curr_insn
, reloads_num
);
6399 else if (src_regno
< FIRST_PSEUDO_REGISTER
6400 || reg_renumber
[src_regno
] >= 0)
6403 rtx_insn
*use_insn
= curr_insn
;
6405 before_p
= (JUMP_P (curr_insn
)
6406 || (CALL_P (curr_insn
) && reg
->type
== OP_IN
));
6407 if (NONDEBUG_INSN_P (curr_insn
)
6408 && (! JUMP_P (curr_insn
) || reg
->type
== OP_IN
)
6409 && split_if_necessary (src_regno
, reg
->biggest_mode
,
6410 potential_reload_hard_regs
,
6411 before_p
, curr_insn
, max_uid
))
6414 lra_risky_transformations_p
= true;
6417 usage_insns
[src_regno
].check
= 0;
6419 use_insn
= PREV_INSN (curr_insn
);
6421 if (NONDEBUG_INSN_P (curr_insn
))
6423 if (src_regno
< FIRST_PSEUDO_REGISTER
)
6424 add_to_hard_reg_set (&live_hard_regs
,
6425 reg
->biggest_mode
, src_regno
);
6427 add_to_hard_reg_set (&live_hard_regs
,
6428 PSEUDO_REGNO_MODE (src_regno
),
6429 reg_renumber
[src_regno
]);
6431 if (src_regno
>= FIRST_PSEUDO_REGISTER
)
6432 add_next_usage_insn (src_regno
, use_insn
, reloads_num
);
6435 for (i
= 0; i
< hard_regno_nregs (src_regno
, reg
->biggest_mode
); i
++)
6436 add_next_usage_insn (src_regno
+ i
, use_insn
, reloads_num
);
6440 /* Process used call regs. */
6441 if (curr_id
->arg_hard_regs
!= NULL
)
6442 for (i
= 0; (src_regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6443 if (src_regno
< FIRST_PSEUDO_REGISTER
)
6445 SET_HARD_REG_BIT (live_hard_regs
, src_regno
);
6446 add_next_usage_insn (src_regno
, curr_insn
, reloads_num
);
6448 for (i
= 0; i
< to_inherit_num
; i
++)
6450 src_regno
= to_inherit
[i
].regno
;
6451 if (inherit_reload_reg (false, src_regno
, ALL_REGS
,
6452 curr_insn
, to_inherit
[i
].insns
))
6455 setup_next_usage_insn (src_regno
, curr_insn
, reloads_num
, false);
6458 if (update_reloads_num_p
6459 && NONDEBUG_INSN_P (curr_insn
) && curr_set
!= NULL_RTX
)
6462 if ((REG_P (SET_DEST (curr_set
))
6463 && (regno
= REGNO (SET_DEST (curr_set
))) >= lra_constraint_new_regno_start
6464 && reg_renumber
[regno
] < 0
6465 && (cl
= lra_get_allocno_class (regno
)) != NO_REGS
)
6466 || (REG_P (SET_SRC (curr_set
))
6467 && (regno
= REGNO (SET_SRC (curr_set
))) >= lra_constraint_new_regno_start
6468 && reg_renumber
[regno
] < 0
6469 && (cl
= lra_get_allocno_class (regno
)) != NO_REGS
))
6471 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6473 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6474 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6475 reg_class_contents
[cl
]);
6478 if (NONDEBUG_INSN_P (curr_insn
))
6482 /* Invalidate invariants with changed regs. */
6483 curr_id
= lra_get_insn_recog_data (curr_insn
);
6484 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6485 if (reg
->type
!= OP_IN
)
6487 bitmap_set_bit (&invalid_invariant_regs
, reg
->regno
);
6488 bitmap_set_bit (&invalid_invariant_regs
,
6489 ORIGINAL_REGNO (regno_reg_rtx
[reg
->regno
]));
6491 curr_static_id
= curr_id
->insn_static_data
;
6492 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
6493 if (reg
->type
!= OP_IN
)
6494 bitmap_set_bit (&invalid_invariant_regs
, reg
->regno
);
6495 if (curr_id
->arg_hard_regs
!= NULL
)
6496 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6497 if (regno
>= FIRST_PSEUDO_REGISTER
)
6498 bitmap_set_bit (&invalid_invariant_regs
,
6499 regno
- FIRST_PSEUDO_REGISTER
);
6501 /* We reached the start of the current basic block. */
6502 if (prev_insn
== NULL_RTX
|| prev_insn
== PREV_INSN (head
)
6503 || BLOCK_FOR_INSN (prev_insn
) != curr_bb
)
6505 /* We reached the beginning of the current block -- do
6506 rest of spliting in the current BB. */
6507 to_process
= df_get_live_in (curr_bb
);
6508 if (BLOCK_FOR_INSN (head
) != curr_bb
)
6510 /* We are somewhere in the middle of EBB. */
6511 get_live_on_other_edges (EDGE_PRED (curr_bb
, 0)->src
,
6512 curr_bb
, &temp_bitmap
);
6513 to_process
= &temp_bitmap
;
6516 EXECUTE_IF_SET_IN_BITMAP (to_process
, 0, j
, bi
)
6518 if ((int) j
>= lra_constraint_new_regno_start
)
6520 if (((int) j
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[j
] >= 0)
6521 && usage_insns
[j
].check
== curr_usage_insns_check
6522 && (next_usage_insns
= usage_insns
[j
].insns
) != NULL_RTX
)
6524 if (need_for_split_p (potential_reload_hard_regs
, j
))
6526 if (lra_dump_file
!= NULL
&& head_p
)
6528 fprintf (lra_dump_file
,
6529 " ----------------------------------\n");
6532 if (split_reg (false, j
, bb_note (curr_bb
),
6533 next_usage_insns
, NULL
))
6536 usage_insns
[j
].check
= 0;
6544 /* This value affects EBB forming. If probability of edge from EBB to
6545 a BB is not greater than the following value, we don't add the BB
6547 #define EBB_PROBABILITY_CUTOFF \
6548 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6550 /* Current number of inheritance/split iteration. */
6551 int lra_inheritance_iter
;
6553 /* Entry function for inheritance/split pass. */
6555 lra_inheritance (void)
6558 basic_block bb
, start_bb
;
6561 lra_inheritance_iter
++;
6562 if (lra_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
)
6564 timevar_push (TV_LRA_INHERITANCE
);
6565 if (lra_dump_file
!= NULL
)
6566 fprintf (lra_dump_file
, "\n********** Inheritance #%d: **********\n\n",
6567 lra_inheritance_iter
);
6568 curr_usage_insns_check
= 0;
6569 usage_insns
= XNEWVEC (struct usage_insns
, lra_constraint_new_regno_start
);
6570 for (i
= 0; i
< lra_constraint_new_regno_start
; i
++)
6571 usage_insns
[i
].check
= 0;
6572 bitmap_initialize (&check_only_regs
, ®_obstack
);
6573 bitmap_initialize (&invalid_invariant_regs
, ®_obstack
);
6574 bitmap_initialize (&live_regs
, ®_obstack
);
6575 bitmap_initialize (&temp_bitmap
, ®_obstack
);
6576 bitmap_initialize (&ebb_global_regs
, ®_obstack
);
6577 FOR_EACH_BB_FN (bb
, cfun
)
6580 if (lra_dump_file
!= NULL
)
6581 fprintf (lra_dump_file
, "EBB");
6582 /* Form a EBB starting with BB. */
6583 bitmap_clear (&ebb_global_regs
);
6584 bitmap_ior_into (&ebb_global_regs
, df_get_live_in (bb
));
6587 if (lra_dump_file
!= NULL
)
6588 fprintf (lra_dump_file
, " %d", bb
->index
);
6589 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
6590 || LABEL_P (BB_HEAD (bb
->next_bb
)))
6592 e
= find_fallthru_edge (bb
->succs
);
6595 if (e
->probability
.initialized_p ()
6596 && e
->probability
.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF
)
6600 bitmap_ior_into (&ebb_global_regs
, df_get_live_out (bb
));
6601 if (lra_dump_file
!= NULL
)
6602 fprintf (lra_dump_file
, "\n");
6603 if (inherit_in_ebb (BB_HEAD (start_bb
), BB_END (bb
)))
6604 /* Remember that the EBB head and tail can change in
6606 update_ebb_live_info (BB_HEAD (start_bb
), BB_END (bb
));
6608 bitmap_clear (&ebb_global_regs
);
6609 bitmap_clear (&temp_bitmap
);
6610 bitmap_clear (&live_regs
);
6611 bitmap_clear (&invalid_invariant_regs
);
6612 bitmap_clear (&check_only_regs
);
6615 timevar_pop (TV_LRA_INHERITANCE
);
6620 /* This page contains code to undo failed inheritance/split
6623 /* Current number of iteration undoing inheritance/split. */
6624 int lra_undo_inheritance_iter
;
6626 /* Fix BB live info LIVE after removing pseudos created on pass doing
6627 inheritance/split which are REMOVED_PSEUDOS. */
6629 fix_bb_live_info (bitmap live
, bitmap removed_pseudos
)
6634 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos
, 0, regno
, bi
)
6635 if (bitmap_clear_bit (live
, regno
)
6636 && REG_P (lra_reg_info
[regno
].restore_rtx
))
6637 bitmap_set_bit (live
, REGNO (lra_reg_info
[regno
].restore_rtx
));
6640 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6645 if (GET_CODE (reg
) == SUBREG
)
6646 reg
= SUBREG_REG (reg
);
6652 /* Delete a move INSN with destination reg DREGNO and a previous
6653 clobber insn with the same regno. The inheritance/split code can
6654 generate moves with preceding clobber and when we delete such moves
6655 we should delete the clobber insn too to keep the correct life
6658 delete_move_and_clobber (rtx_insn
*insn
, int dregno
)
6660 rtx_insn
*prev_insn
= PREV_INSN (insn
);
6662 lra_set_insn_deleted (insn
);
6663 lra_assert (dregno
>= 0);
6664 if (prev_insn
!= NULL
&& NONDEBUG_INSN_P (prev_insn
)
6665 && GET_CODE (PATTERN (prev_insn
)) == CLOBBER
6666 && dregno
== get_regno (XEXP (PATTERN (prev_insn
), 0)))
6667 lra_set_insn_deleted (prev_insn
);
6670 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6671 return true if we did any change. The undo transformations for
6672 inheritance looks like
6676 p <- i, i <- p, and i <- i3
6677 where p is original pseudo from which inheritance pseudo i was
6678 created, i and i3 are removed inheritance pseudos, i2 is another
6679 not removed inheritance pseudo. All split pseudos or other
6680 occurrences of removed inheritance pseudos are changed on the
6681 corresponding original pseudos.
6683 The function also schedules insns changed and created during
6684 inheritance/split pass for processing by the subsequent constraint
6687 remove_inheritance_pseudos (bitmap remove_pseudos
)
6690 int regno
, sregno
, prev_sregno
, dregno
;
6693 rtx_insn
*prev_insn
;
6694 bool change_p
, done_p
;
6696 change_p
= ! bitmap_empty_p (remove_pseudos
);
6697 /* We can not finish the function right away if CHANGE_P is true
6698 because we need to marks insns affected by previous
6699 inheritance/split pass for processing by the subsequent
6701 FOR_EACH_BB_FN (bb
, cfun
)
6703 fix_bb_live_info (df_get_live_in (bb
), remove_pseudos
);
6704 fix_bb_live_info (df_get_live_out (bb
), remove_pseudos
);
6705 FOR_BB_INSNS_REVERSE (bb
, curr_insn
)
6707 if (! INSN_P (curr_insn
))
6710 sregno
= dregno
= -1;
6711 if (change_p
&& NONDEBUG_INSN_P (curr_insn
)
6712 && (set
= single_set (curr_insn
)) != NULL_RTX
)
6714 dregno
= get_regno (SET_DEST (set
));
6715 sregno
= get_regno (SET_SRC (set
));
6718 if (sregno
>= 0 && dregno
>= 0)
6720 if (bitmap_bit_p (remove_pseudos
, dregno
)
6721 && ! REG_P (lra_reg_info
[dregno
].restore_rtx
))
6723 /* invariant inheritance pseudo <- original pseudo */
6724 if (lra_dump_file
!= NULL
)
6726 fprintf (lra_dump_file
, " Removing invariant inheritance:\n");
6727 dump_insn_slim (lra_dump_file
, curr_insn
);
6728 fprintf (lra_dump_file
, "\n");
6730 delete_move_and_clobber (curr_insn
, dregno
);
6733 else if (bitmap_bit_p (remove_pseudos
, sregno
)
6734 && ! REG_P (lra_reg_info
[sregno
].restore_rtx
))
6736 /* reload pseudo <- invariant inheritance pseudo */
6738 /* We can not just change the source. It might be
6739 an insn different from the move. */
6740 emit_insn (lra_reg_info
[sregno
].restore_rtx
);
6741 rtx_insn
*new_insns
= get_insns ();
6743 lra_assert (single_set (new_insns
) != NULL
6744 && SET_DEST (set
) == SET_DEST (single_set (new_insns
)));
6745 lra_process_new_insns (curr_insn
, NULL
, new_insns
,
6746 "Changing reload<-invariant inheritance");
6747 delete_move_and_clobber (curr_insn
, dregno
);
6750 else if ((bitmap_bit_p (remove_pseudos
, sregno
)
6751 && (get_regno (lra_reg_info
[sregno
].restore_rtx
) == dregno
6752 || (bitmap_bit_p (remove_pseudos
, dregno
)
6753 && get_regno (lra_reg_info
[sregno
].restore_rtx
) >= 0
6754 && (get_regno (lra_reg_info
[sregno
].restore_rtx
)
6755 == get_regno (lra_reg_info
[dregno
].restore_rtx
)))))
6756 || (bitmap_bit_p (remove_pseudos
, dregno
)
6757 && get_regno (lra_reg_info
[dregno
].restore_rtx
) == sregno
))
6758 /* One of the following cases:
6759 original <- removed inheritance pseudo
6760 removed inherit pseudo <- another removed inherit pseudo
6761 removed inherit pseudo <- original pseudo
6763 removed_split_pseudo <- original_reg
6764 original_reg <- removed_split_pseudo */
6766 if (lra_dump_file
!= NULL
)
6768 fprintf (lra_dump_file
, " Removing %s:\n",
6769 bitmap_bit_p (&lra_split_regs
, sregno
)
6770 || bitmap_bit_p (&lra_split_regs
, dregno
)
6771 ? "split" : "inheritance");
6772 dump_insn_slim (lra_dump_file
, curr_insn
);
6774 delete_move_and_clobber (curr_insn
, dregno
);
6777 else if (bitmap_bit_p (remove_pseudos
, sregno
)
6778 && bitmap_bit_p (&lra_inheritance_pseudos
, sregno
))
6780 /* Search the following pattern:
6781 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6782 original_pseudo <- inherit_or_split_pseudo1
6783 where the 2nd insn is the current insn and
6784 inherit_or_split_pseudo2 is not removed. If it is found,
6785 change the current insn onto:
6786 original_pseudo <- inherit_or_split_pseudo2. */
6787 for (prev_insn
= PREV_INSN (curr_insn
);
6788 prev_insn
!= NULL_RTX
&& ! NONDEBUG_INSN_P (prev_insn
);
6789 prev_insn
= PREV_INSN (prev_insn
))
6791 if (prev_insn
!= NULL_RTX
&& BLOCK_FOR_INSN (prev_insn
) == bb
6792 && (prev_set
= single_set (prev_insn
)) != NULL_RTX
6793 /* There should be no subregs in insn we are
6794 searching because only the original reg might
6795 be in subreg when we changed the mode of
6796 load/store for splitting. */
6797 && REG_P (SET_DEST (prev_set
))
6798 && REG_P (SET_SRC (prev_set
))
6799 && (int) REGNO (SET_DEST (prev_set
)) == sregno
6800 && ((prev_sregno
= REGNO (SET_SRC (prev_set
)))
6801 >= FIRST_PSEUDO_REGISTER
)
6802 && (lra_reg_info
[prev_sregno
].restore_rtx
== NULL_RTX
6804 /* As we consider chain of inheritance or
6805 splitting described in above comment we should
6806 check that sregno and prev_sregno were
6807 inheritance/split pseudos created from the
6808 same original regno. */
6809 (get_regno (lra_reg_info
[sregno
].restore_rtx
) >= 0
6810 && (get_regno (lra_reg_info
[sregno
].restore_rtx
)
6811 == get_regno (lra_reg_info
[prev_sregno
].restore_rtx
))))
6812 && ! bitmap_bit_p (remove_pseudos
, prev_sregno
))
6814 lra_assert (GET_MODE (SET_SRC (prev_set
))
6815 == GET_MODE (regno_reg_rtx
[sregno
]));
6816 /* Although we have a single set, the insn can
6817 contain more one sregno register occurrence
6818 as a source. Change all occurrences. */
6819 lra_substitute_pseudo_within_insn (curr_insn
, sregno
,
6822 /* As we are finishing with processing the insn
6823 here, check the destination too as it might
6824 inheritance pseudo for another pseudo. */
6825 if (bitmap_bit_p (remove_pseudos
, dregno
)
6826 && bitmap_bit_p (&lra_inheritance_pseudos
, dregno
)
6828 = lra_reg_info
[dregno
].restore_rtx
) != NULL_RTX
)
6830 if (GET_CODE (SET_DEST (set
)) == SUBREG
)
6831 SUBREG_REG (SET_DEST (set
)) = restore_rtx
;
6833 SET_DEST (set
) = restore_rtx
;
6835 lra_push_insn_and_update_insn_regno_info (curr_insn
);
6836 lra_set_used_insn_alternative_by_uid
6837 (INSN_UID (curr_insn
), LRA_UNKNOWN_ALT
);
6839 if (lra_dump_file
!= NULL
)
6841 fprintf (lra_dump_file
, " Change reload insn:\n");
6842 dump_insn_slim (lra_dump_file
, curr_insn
);
6849 struct lra_insn_reg
*reg
;
6850 bool restored_regs_p
= false;
6851 bool kept_regs_p
= false;
6853 curr_id
= lra_get_insn_recog_data (curr_insn
);
6854 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6857 restore_rtx
= lra_reg_info
[regno
].restore_rtx
;
6858 if (restore_rtx
!= NULL_RTX
)
6860 if (change_p
&& bitmap_bit_p (remove_pseudos
, regno
))
6862 lra_substitute_pseudo_within_insn
6863 (curr_insn
, regno
, restore_rtx
, false);
6864 restored_regs_p
= true;
6870 if (NONDEBUG_INSN_P (curr_insn
) && kept_regs_p
)
6872 /* The instruction has changed since the previous
6873 constraints pass. */
6874 lra_push_insn_and_update_insn_regno_info (curr_insn
);
6875 lra_set_used_insn_alternative_by_uid
6876 (INSN_UID (curr_insn
), LRA_UNKNOWN_ALT
);
6878 else if (restored_regs_p
)
6879 /* The instruction has been restored to the form that
6880 it had during the previous constraints pass. */
6881 lra_update_insn_regno_info (curr_insn
);
6882 if (restored_regs_p
&& lra_dump_file
!= NULL
)
6884 fprintf (lra_dump_file
, " Insn after restoring regs:\n");
6885 dump_insn_slim (lra_dump_file
, curr_insn
);
6893 /* If optional reload pseudos failed to get a hard register or was not
6894 inherited, it is better to remove optional reloads. We do this
6895 transformation after undoing inheritance to figure out necessity to
6896 remove optional reloads easier. Return true if we do any
6899 undo_optional_reloads (void)
6901 bool change_p
, keep_p
;
6902 unsigned int regno
, uid
;
6903 bitmap_iterator bi
, bi2
;
6906 auto_bitmap
removed_optional_reload_pseudos (®_obstack
);
6908 bitmap_copy (removed_optional_reload_pseudos
, &lra_optional_reload_pseudos
);
6909 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos
, 0, regno
, bi
)
6912 /* Keep optional reloads from previous subpasses. */
6913 if (lra_reg_info
[regno
].restore_rtx
== NULL_RTX
6914 /* If the original pseudo changed its allocation, just
6915 removing the optional pseudo is dangerous as the original
6916 pseudo will have longer live range. */
6917 || reg_renumber
[REGNO (lra_reg_info
[regno
].restore_rtx
)] >= 0)
6919 else if (reg_renumber
[regno
] >= 0)
6920 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi2
)
6922 insn
= lra_insn_recog_data
[uid
]->insn
;
6923 if ((set
= single_set (insn
)) == NULL_RTX
)
6925 src
= SET_SRC (set
);
6926 dest
= SET_DEST (set
);
6927 if (! REG_P (src
) || ! REG_P (dest
))
6929 if (REGNO (dest
) == regno
6930 /* Ignore insn for optional reloads itself. */
6931 && REGNO (lra_reg_info
[regno
].restore_rtx
) != REGNO (src
)
6932 /* Check only inheritance on last inheritance pass. */
6933 && (int) REGNO (src
) >= new_regno_start
6934 /* Check that the optional reload was inherited. */
6935 && bitmap_bit_p (&lra_inheritance_pseudos
, REGNO (src
)))
6943 bitmap_clear_bit (removed_optional_reload_pseudos
, regno
);
6944 if (lra_dump_file
!= NULL
)
6945 fprintf (lra_dump_file
, "Keep optional reload reg %d\n", regno
);
6948 change_p
= ! bitmap_empty_p (removed_optional_reload_pseudos
);
6949 auto_bitmap
insn_bitmap (®_obstack
);
6950 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos
, 0, regno
, bi
)
6952 if (lra_dump_file
!= NULL
)
6953 fprintf (lra_dump_file
, "Remove optional reload reg %d\n", regno
);
6954 bitmap_copy (insn_bitmap
, &lra_reg_info
[regno
].insn_bitmap
);
6955 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap
, 0, uid
, bi2
)
6957 insn
= lra_insn_recog_data
[uid
]->insn
;
6958 if ((set
= single_set (insn
)) != NULL_RTX
)
6960 src
= SET_SRC (set
);
6961 dest
= SET_DEST (set
);
6962 if (REG_P (src
) && REG_P (dest
)
6963 && ((REGNO (src
) == regno
6964 && (REGNO (lra_reg_info
[regno
].restore_rtx
)
6966 || (REGNO (dest
) == regno
6967 && (REGNO (lra_reg_info
[regno
].restore_rtx
)
6970 if (lra_dump_file
!= NULL
)
6972 fprintf (lra_dump_file
, " Deleting move %u\n",
6974 dump_insn_slim (lra_dump_file
, insn
);
6976 delete_move_and_clobber (insn
, REGNO (dest
));
6979 /* We should not worry about generation memory-memory
6980 moves here as if the corresponding inheritance did
6981 not work (inheritance pseudo did not get a hard reg),
6982 we remove the inheritance pseudo and the optional
6985 lra_substitute_pseudo_within_insn
6986 (insn
, regno
, lra_reg_info
[regno
].restore_rtx
, false);
6987 lra_update_insn_regno_info (insn
);
6988 if (lra_dump_file
!= NULL
)
6990 fprintf (lra_dump_file
,
6991 " Restoring original insn:\n");
6992 dump_insn_slim (lra_dump_file
, insn
);
6996 /* Clear restore_regnos. */
6997 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos
, 0, regno
, bi
)
6998 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
7002 /* Entry function for undoing inheritance/split transformation. Return true
7003 if we did any RTL change in this pass. */
7005 lra_undo_inheritance (void)
7009 int n_all_inherit
, n_inherit
, n_all_split
, n_split
;
7014 lra_undo_inheritance_iter
++;
7015 if (lra_undo_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
)
7017 if (lra_dump_file
!= NULL
)
7018 fprintf (lra_dump_file
,
7019 "\n********** Undoing inheritance #%d: **********\n\n",
7020 lra_undo_inheritance_iter
);
7021 auto_bitmap
remove_pseudos (®_obstack
);
7022 n_inherit
= n_all_inherit
= 0;
7023 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos
, 0, regno
, bi
)
7024 if (lra_reg_info
[regno
].restore_rtx
!= NULL_RTX
)
7027 if (reg_renumber
[regno
] < 0
7028 /* If the original pseudo changed its allocation, just
7029 removing inheritance is dangerous as for changing
7030 allocation we used shorter live-ranges. */
7031 && (! REG_P (lra_reg_info
[regno
].restore_rtx
)
7032 || reg_renumber
[REGNO (lra_reg_info
[regno
].restore_rtx
)] < 0))
7033 bitmap_set_bit (remove_pseudos
, regno
);
7037 if (lra_dump_file
!= NULL
&& n_all_inherit
!= 0)
7038 fprintf (lra_dump_file
, "Inherit %d out of %d (%.2f%%)\n",
7039 n_inherit
, n_all_inherit
,
7040 (double) n_inherit
/ n_all_inherit
* 100);
7041 n_split
= n_all_split
= 0;
7042 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs
, 0, regno
, bi
)
7043 if ((restore_rtx
= lra_reg_info
[regno
].restore_rtx
) != NULL_RTX
)
7045 int restore_regno
= REGNO (restore_rtx
);
7048 hard_regno
= (restore_regno
>= FIRST_PSEUDO_REGISTER
7049 ? reg_renumber
[restore_regno
] : restore_regno
);
7050 if (hard_regno
< 0 || reg_renumber
[regno
] == hard_regno
)
7051 bitmap_set_bit (remove_pseudos
, regno
);
7055 if (lra_dump_file
!= NULL
)
7056 fprintf (lra_dump_file
, " Keep split r%d (orig=r%d)\n",
7057 regno
, restore_regno
);
7060 if (lra_dump_file
!= NULL
&& n_all_split
!= 0)
7061 fprintf (lra_dump_file
, "Split %d out of %d (%.2f%%)\n",
7062 n_split
, n_all_split
,
7063 (double) n_split
/ n_all_split
* 100);
7064 change_p
= remove_inheritance_pseudos (remove_pseudos
);
7065 /* Clear restore_regnos. */
7066 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos
, 0, regno
, bi
)
7067 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
7068 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs
, 0, regno
, bi
)
7069 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
7070 change_p
= undo_optional_reloads () || change_p
;