1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 with Output
; use Output
;
33 with Tree_IO
; use Tree_IO
;
35 with GNAT
.HTable
; use GNAT
.HTable
;
39 ------------------------
40 -- Local Declarations --
41 ------------------------
43 Uint_Int_First
: Uint
:= Uint_0
;
44 -- Uint value containing Int'First value, set by Initialize. The initial
45 -- value of Uint_0 is used for an assertion check that ensures that this
46 -- value is not used before it is initialized. This value is used in the
47 -- UI_Is_In_Int_Range predicate, and it is right that this is a host value,
48 -- since the issue is host representation of integer values.
51 -- Uint value containing Int'Last value set by Initialize
53 UI_Power_2
: array (Int
range 0 .. 64) of Uint
;
54 -- This table is used to memoize exponentiations by powers of 2. The Nth
55 -- entry, if set, contains the Uint value 2**N. Initially UI_Power_2_Set
56 -- is zero and only the 0'th entry is set, the invariant being that all
57 -- entries in the range 0 .. UI_Power_2_Set are initialized.
60 -- Number of entries set in UI_Power_2;
62 UI_Power_10
: array (Int
range 0 .. 64) of Uint
;
63 -- This table is used to memoize exponentiations by powers of 10 in the
64 -- same manner as described above for UI_Power_2.
66 UI_Power_10_Set
: Nat
;
67 -- Number of entries set in UI_Power_10;
71 -- These values are used to make sure that the mark/release mechanism does
72 -- not destroy values saved in the U_Power tables or in the hash table used
73 -- by UI_From_Int. Whenever an entry is made in either of these tables,
74 -- Uints_Min and Udigits_Min are updated to protect the entry, and Release
75 -- never cuts back beyond these minimum values.
77 Int_0
: constant Int
:= 0;
78 Int_1
: constant Int
:= 1;
79 Int_2
: constant Int
:= 2;
80 -- These values are used in some cases where the use of numeric literals
81 -- would cause ambiguities (integer vs Uint).
83 ----------------------------
84 -- UI_From_Int Hash Table --
85 ----------------------------
87 -- UI_From_Int uses a hash table to avoid duplicating entries and wasting
88 -- storage. This is particularly important for complex cases of back
91 subtype Hnum
is Nat
range 0 .. 1022;
93 function Hash_Num
(F
: Int
) return Hnum
;
96 package UI_Ints
is new Simple_HTable
(
99 No_Element
=> No_Uint
,
104 -----------------------
105 -- Local Subprograms --
106 -----------------------
108 function Direct
(U
: Uint
) return Boolean;
109 pragma Inline
(Direct
);
110 -- Returns True if U is represented directly
112 function Direct_Val
(U
: Uint
) return Int
;
113 -- U is a Uint for is represented directly. The returned result is the
114 -- value represented.
116 function GCD
(Jin
, Kin
: Int
) return Int
;
117 -- Compute GCD of two integers. Assumes that Jin >= Kin >= 0
123 -- Common processing for UI_Image and UI_Write, To_Buffer is set True for
124 -- UI_Image, and false for UI_Write, and Format is copied from the Format
125 -- parameter to UI_Image or UI_Write.
127 procedure Init_Operand
(UI
: Uint
; Vec
: out UI_Vector
);
128 pragma Inline
(Init_Operand
);
129 -- This procedure puts the value of UI into the vector in canonical
130 -- multiple precision format. The parameter should be of the correct size
131 -- as determined by a previous call to N_Digits (UI). The first digit of
132 -- Vec contains the sign, all other digits are always non-negative. Note
133 -- that the input may be directly represented, and in this case Vec will
134 -- contain the corresponding one or two digit value. The low bound of Vec
137 function Least_Sig_Digit
(Arg
: Uint
) return Int
;
138 pragma Inline
(Least_Sig_Digit
);
139 -- Returns the Least Significant Digit of Arg quickly. When the given Uint
140 -- is less than 2**15, the value returned is the input value, in this case
141 -- the result may be negative. It is expected that any use will mask off
142 -- unnecessary bits. This is used for finding Arg mod B where B is a power
143 -- of two. Hence the actual base is irrelevant as long as it is a power of
146 procedure Most_Sig_2_Digits
150 Right_Hat
: out Int
);
151 -- Returns leading two significant digits from the given pair of Uint's.
152 -- Mathematically: returns Left / (Base**K) and Right / (Base**K) where
153 -- K is as small as possible S.T. Right_Hat < Base * Base. It is required
154 -- that Left >= Right for the algorithm to work.
156 function N_Digits
(Input
: Uint
) return Int
;
157 pragma Inline
(N_Digits
);
158 -- Returns number of "digits" in a Uint
163 Remainder
: out Uint
;
164 Discard_Quotient
: Boolean := False;
165 Discard_Remainder
: Boolean := False);
166 -- Compute Euclidean division of Left by Right. If Discard_Quotient is
167 -- False then the quotient is returned in Quotient (otherwise Quotient is
168 -- set to No_Uint). If Discard_Remainder is False, then the remainder is
169 -- returned in Remainder (otherwise Remainder is set to No_Uint).
171 -- If Discard_Quotient is True, Quotient is set to No_Uint
172 -- If Discard_Remainder is True, Remainder is set to No_Uint
178 function Direct
(U
: Uint
) return Boolean is
180 return Int
(U
) <= Int
(Uint_Direct_Last
);
187 function Direct_Val
(U
: Uint
) return Int
is
189 pragma Assert
(Direct
(U
));
190 return Int
(U
) - Int
(Uint_Direct_Bias
);
197 function GCD
(Jin
, Kin
: Int
) return Int
is
201 pragma Assert
(Jin
>= Kin
);
202 pragma Assert
(Kin
>= Int_0
);
206 while K
/= Uint_0
loop
219 function Hash_Num
(F
: Int
) return Hnum
is
221 return Types
."mod" (F
, Hnum
'Range_Length);
233 Marks
: constant Uintp
.Save_Mark
:= Uintp
.Mark
;
237 Digs_Output
: Natural := 0;
238 -- Counts digits output. In hex mode, but not in decimal mode, we
239 -- put an underline after every four hex digits that are output.
241 Exponent
: Natural := 0;
242 -- If the number is too long to fit in the buffer, we switch to an
243 -- approximate output format with an exponent. This variable records
244 -- the exponent value.
246 function Better_In_Hex
return Boolean;
247 -- Determines if it is better to generate digits in base 16 (result
248 -- is true) or base 10 (result is false). The choice is purely a
249 -- matter of convenience and aesthetics, so it does not matter which
250 -- value is returned from a correctness point of view.
252 procedure Image_Char
(C
: Character);
253 -- Internal procedure to output one character
255 procedure Image_Exponent
(N
: Natural);
256 -- Output non-zero exponent. Note that we only use the exponent form in
257 -- the buffer case, so we know that To_Buffer is true.
259 procedure Image_Uint
(U
: Uint
);
260 -- Internal procedure to output characters of non-negative Uint
266 function Better_In_Hex
return Boolean is
267 T16
: constant Uint
:= Uint_2
**Int
'(16);
273 -- Small values up to 2**16 can always be in decimal
279 -- Otherwise, see if we are a power of 2 or one less than a power
280 -- of 2. For the moment these are the only cases printed in hex.
282 if A mod Uint_2 = Uint_1 then
287 if A mod T16 /= Uint_0 then
297 while A > Uint_2 loop
298 if A mod Uint_2 /= Uint_0 then
313 procedure Image_Char (C : Character) is
316 if UI_Image_Length + 6 > UI_Image_Max then
317 Exponent := Exponent + 1;
319 UI_Image_Length := UI_Image_Length + 1;
320 UI_Image_Buffer (UI_Image_Length) := C;
331 procedure Image_Exponent (N : Natural) is
334 Image_Exponent (N / 10);
337 UI_Image_Length := UI_Image_Length + 1;
338 UI_Image_Buffer (UI_Image_Length) :=
339 Character'Val (Character'Pos ('0') + N mod 10);
346 procedure Image_Uint (U : Uint) is
347 H : constant array (Int range 0 .. 15) of Character :=
352 UI_Div_Rem (U, Base, Q, R);
358 if Digs_Output = 4 and then Base = Uint_16 then
363 Image_Char (H (UI_To_Int (R)));
365 Digs_Output := Digs_Output + 1;
368 -- Start of processing for Image_Out
371 if Input = No_Uint then
376 UI_Image_Length := 0;
378 if Input < Uint_0 then
386 or else (Format = Auto and then Better_In_Hex)
400 if Exponent /= 0 then
401 UI_Image_Length := UI_Image_Length + 1;
402 UI_Image_Buffer (UI_Image_Length) := 'E
';
403 Image_Exponent (Exponent);
406 Uintp.Release (Marks);
413 procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
416 pragma Assert (Vec'First = Int'(1));
420 Vec
(1) := Direct_Val
(UI
);
422 if Vec
(1) >= Base
then
423 Vec
(2) := Vec
(1) rem Base
;
424 Vec
(1) := Vec
(1) / Base
;
428 Loc
:= Uints
.Table
(UI
).Loc
;
430 for J
in 1 .. Uints
.Table
(UI
).Length
loop
431 Vec
(J
) := Udigits
.Table
(Loc
+ J
- 1);
440 procedure Initialize
is
445 Uint_Int_First
:= UI_From_Int
(Int
'First);
446 Uint_Int_Last
:= UI_From_Int
(Int
'Last);
448 UI_Power_2
(0) := Uint_1
;
451 UI_Power_10
(0) := Uint_1
;
452 UI_Power_10_Set
:= 0;
454 Uints_Min
:= Uints
.Last
;
455 Udigits_Min
:= Udigits
.Last
;
460 ---------------------
461 -- Least_Sig_Digit --
462 ---------------------
464 function Least_Sig_Digit
(Arg
: Uint
) return Int
is
469 V
:= Direct_Val
(Arg
);
475 -- Note that this result may be negative
482 (Uints
.Table
(Arg
).Loc
+ Uints
.Table
(Arg
).Length
- 1);
490 function Mark
return Save_Mark
is
492 return (Save_Uint
=> Uints
.Last
, Save_Udigit
=> Udigits
.Last
);
495 -----------------------
496 -- Most_Sig_2_Digits --
497 -----------------------
499 procedure Most_Sig_2_Digits
506 pragma Assert
(Left
>= Right
);
508 if Direct
(Left
) then
509 pragma Assert
(Direct
(Right
));
510 Left_Hat
:= Direct_Val
(Left
);
511 Right_Hat
:= Direct_Val
(Right
);
517 Udigits
.Table
(Uints
.Table
(Left
).Loc
);
519 Udigits
.Table
(Uints
.Table
(Left
).Loc
+ 1);
522 -- It is not so clear what to return when Arg is negative???
524 Left_Hat
:= abs (L1
) * Base
+ L2
;
529 Length_L
: constant Int
:= Uints
.Table
(Left
).Length
;
536 if Direct
(Right
) then
537 T
:= Direct_Val
(Right
);
538 R1
:= abs (T
/ Base
);
543 R1
:= abs (Udigits
.Table
(Uints
.Table
(Right
).Loc
));
544 R2
:= Udigits
.Table
(Uints
.Table
(Right
).Loc
+ 1);
545 Length_R
:= Uints
.Table
(Right
).Length
;
548 if Length_L
= Length_R
then
549 Right_Hat
:= R1
* Base
+ R2
;
550 elsif Length_L
= Length_R
+ Int_1
then
556 end Most_Sig_2_Digits
;
562 -- Note: N_Digits returns 1 for No_Uint
564 function N_Digits
(Input
: Uint
) return Int
is
566 if Direct
(Input
) then
567 if Direct_Val
(Input
) >= Base
then
574 return Uints
.Table
(Input
).Length
;
582 function Num_Bits
(Input
: Uint
) return Nat
is
587 -- Largest negative number has to be handled specially, since it is in
588 -- Int_Range, but we cannot take the absolute value.
590 if Input
= Uint_Int_First
then
593 -- For any other number in Int_Range, get absolute value of number
595 elsif UI_Is_In_Int_Range
(Input
) then
596 Num
:= abs (UI_To_Int
(Input
));
599 -- If not in Int_Range then initialize bit count for all low order
600 -- words, and set number to high order digit.
603 Bits
:= Base_Bits
* (Uints
.Table
(Input
).Length
- 1);
604 Num
:= abs (Udigits
.Table
(Uints
.Table
(Input
).Loc
));
607 -- Increase bit count for remaining value in Num
609 while Types
.">" (Num
, 0) loop
621 procedure pid
(Input
: Uint
) is
623 UI_Write
(Input
, Decimal
);
631 procedure pih
(Input
: Uint
) is
633 UI_Write
(Input
, Hex
);
641 procedure Release
(M
: Save_Mark
) is
643 Uints
.Set_Last
(Uint
'Max (M
.Save_Uint
, Uints_Min
));
644 Udigits
.Set_Last
(Int
'Max (M
.Save_Udigit
, Udigits_Min
));
647 ----------------------
648 -- Release_And_Save --
649 ----------------------
651 procedure Release_And_Save
(M
: Save_Mark
; UI
: in out Uint
) is
658 UE_Len
: constant Pos
:= Uints
.Table
(UI
).Length
;
659 UE_Loc
: constant Int
:= Uints
.Table
(UI
).Loc
;
661 UD
: constant Udigits
.Table_Type
(1 .. UE_Len
) :=
662 Udigits
.Table
(UE_Loc
.. UE_Loc
+ UE_Len
- 1);
667 Uints
.Append
((Length
=> UE_Len
, Loc
=> Udigits
.Last
+ 1));
670 for J
in 1 .. UE_Len
loop
671 Udigits
.Append
(UD
(J
));
675 end Release_And_Save
;
677 procedure Release_And_Save
(M
: Save_Mark
; UI1
, UI2
: in out Uint
) is
680 Release_And_Save
(M
, UI2
);
682 elsif Direct
(UI2
) then
683 Release_And_Save
(M
, UI1
);
687 UE1_Len
: constant Pos
:= Uints
.Table
(UI1
).Length
;
688 UE1_Loc
: constant Int
:= Uints
.Table
(UI1
).Loc
;
690 UD1
: constant Udigits
.Table_Type
(1 .. UE1_Len
) :=
691 Udigits
.Table
(UE1_Loc
.. UE1_Loc
+ UE1_Len
- 1);
693 UE2_Len
: constant Pos
:= Uints
.Table
(UI2
).Length
;
694 UE2_Loc
: constant Int
:= Uints
.Table
(UI2
).Loc
;
696 UD2
: constant Udigits
.Table_Type
(1 .. UE2_Len
) :=
697 Udigits
.Table
(UE2_Loc
.. UE2_Loc
+ UE2_Len
- 1);
702 Uints
.Append
((Length
=> UE1_Len
, Loc
=> Udigits
.Last
+ 1));
705 for J
in 1 .. UE1_Len
loop
706 Udigits
.Append
(UD1
(J
));
709 Uints
.Append
((Length
=> UE2_Len
, Loc
=> Udigits
.Last
+ 1));
712 for J
in 1 .. UE2_Len
loop
713 Udigits
.Append
(UD2
(J
));
717 end Release_And_Save
;
723 procedure Tree_Read
is
728 Tree_Read_Int
(Int
(Uint_Int_First
));
729 Tree_Read_Int
(Int
(Uint_Int_Last
));
730 Tree_Read_Int
(UI_Power_2_Set
);
731 Tree_Read_Int
(UI_Power_10_Set
);
732 Tree_Read_Int
(Int
(Uints_Min
));
733 Tree_Read_Int
(Udigits_Min
);
735 for J
in 0 .. UI_Power_2_Set
loop
736 Tree_Read_Int
(Int
(UI_Power_2
(J
)));
739 for J
in 0 .. UI_Power_10_Set
loop
740 Tree_Read_Int
(Int
(UI_Power_10
(J
)));
749 procedure Tree_Write
is
754 Tree_Write_Int
(Int
(Uint_Int_First
));
755 Tree_Write_Int
(Int
(Uint_Int_Last
));
756 Tree_Write_Int
(UI_Power_2_Set
);
757 Tree_Write_Int
(UI_Power_10_Set
);
758 Tree_Write_Int
(Int
(Uints_Min
));
759 Tree_Write_Int
(Udigits_Min
);
761 for J
in 0 .. UI_Power_2_Set
loop
762 Tree_Write_Int
(Int
(UI_Power_2
(J
)));
765 for J
in 0 .. UI_Power_10_Set
loop
766 Tree_Write_Int
(Int
(UI_Power_10
(J
)));
775 function UI_Abs
(Right
: Uint
) return Uint
is
777 if Right
< Uint_0
then
788 function UI_Add
(Left
: Int
; Right
: Uint
) return Uint
is
790 return UI_Add
(UI_From_Int
(Left
), Right
);
793 function UI_Add
(Left
: Uint
; Right
: Int
) return Uint
is
795 return UI_Add
(Left
, UI_From_Int
(Right
));
798 function UI_Add
(Left
: Uint
; Right
: Uint
) return Uint
is
800 -- Simple cases of direct operands and addition of zero
802 if Direct
(Left
) then
803 if Direct
(Right
) then
804 return UI_From_Int
(Direct_Val
(Left
) + Direct_Val
(Right
));
806 elsif Int
(Left
) = Int
(Uint_0
) then
810 elsif Direct
(Right
) and then Int
(Right
) = Int
(Uint_0
) then
814 -- Otherwise full circuit is needed
817 L_Length
: constant Int
:= N_Digits
(Left
);
818 R_Length
: constant Int
:= N_Digits
(Right
);
819 L_Vec
: UI_Vector
(1 .. L_Length
);
820 R_Vec
: UI_Vector
(1 .. R_Length
);
825 X_Bigger
: Boolean := False;
826 Y_Bigger
: Boolean := False;
827 Result_Neg
: Boolean := False;
830 Init_Operand
(Left
, L_Vec
);
831 Init_Operand
(Right
, R_Vec
);
833 -- At least one of the two operands is in multi-digit form.
834 -- Calculate the number of digits sufficient to hold result.
836 if L_Length
> R_Length
then
837 Sum_Length
:= L_Length
+ 1;
840 Sum_Length
:= R_Length
+ 1;
842 if R_Length
> L_Length
then
847 -- Make copies of the absolute values of L_Vec and R_Vec into X and Y
848 -- both with lengths equal to the maximum possibly needed. This makes
849 -- looping over the digits much simpler.
852 X
: UI_Vector
(1 .. Sum_Length
);
853 Y
: UI_Vector
(1 .. Sum_Length
);
854 Tmp_UI
: UI_Vector
(1 .. Sum_Length
);
857 for J
in 1 .. Sum_Length
- L_Length
loop
861 X
(Sum_Length
- L_Length
+ 1) := abs L_Vec
(1);
863 for J
in 2 .. L_Length
loop
864 X
(J
+ (Sum_Length
- L_Length
)) := L_Vec
(J
);
867 for J
in 1 .. Sum_Length
- R_Length
loop
871 Y
(Sum_Length
- R_Length
+ 1) := abs R_Vec
(1);
873 for J
in 2 .. R_Length
loop
874 Y
(J
+ (Sum_Length
- R_Length
)) := R_Vec
(J
);
877 if (L_Vec
(1) < Int_0
) = (R_Vec
(1) < Int_0
) then
879 -- Same sign so just add
882 for J
in reverse 1 .. Sum_Length
loop
883 Tmp_Int
:= X
(J
) + Y
(J
) + Carry
;
885 if Tmp_Int
>= Base
then
886 Tmp_Int
:= Tmp_Int
- Base
;
895 return Vector_To_Uint
(X
, L_Vec
(1) < Int_0
);
898 -- Find which one has bigger magnitude
900 if not (X_Bigger
or Y_Bigger
) then
901 for J
in L_Vec
'Range loop
902 if abs L_Vec
(J
) > abs R_Vec
(J
) then
905 elsif abs R_Vec
(J
) > abs L_Vec
(J
) then
912 -- If they have identical magnitude, just return 0, else swap
913 -- if necessary so that X had the bigger magnitude. Determine
914 -- if result is negative at this time.
918 if not (X_Bigger
or Y_Bigger
) then
922 if R_Vec
(1) < Int_0
then
931 if L_Vec
(1) < Int_0
then
936 -- Subtract Y from the bigger X
940 for J
in reverse 1 .. Sum_Length
loop
941 Tmp_Int
:= X
(J
) - Y
(J
) + Borrow
;
943 if Tmp_Int
< Int_0
then
944 Tmp_Int
:= Tmp_Int
+ Base
;
953 return Vector_To_Uint
(X
, Result_Neg
);
960 --------------------------
961 -- UI_Decimal_Digits_Hi --
962 --------------------------
964 function UI_Decimal_Digits_Hi
(U
: Uint
) return Nat
is
966 -- The maximum value of a "digit" is 32767, which is 5 decimal digits,
967 -- so an N_Digit number could take up to 5 times this number of digits.
968 -- This is certainly too high for large numbers but it is not worth
971 return 5 * N_Digits
(U
);
972 end UI_Decimal_Digits_Hi
;
974 --------------------------
975 -- UI_Decimal_Digits_Lo --
976 --------------------------
978 function UI_Decimal_Digits_Lo
(U
: Uint
) return Nat
is
980 -- The maximum value of a "digit" is 32767, which is more than four
981 -- decimal digits, but not a full five digits. The easily computed
982 -- minimum number of decimal digits is thus 1 + 4 * the number of
983 -- digits. This is certainly too low for large numbers but it is not
984 -- worth worrying about.
986 return 1 + 4 * (N_Digits
(U
) - 1);
987 end UI_Decimal_Digits_Lo
;
993 function UI_Div
(Left
: Int
; Right
: Uint
) return Uint
is
995 return UI_Div
(UI_From_Int
(Left
), Right
);
998 function UI_Div
(Left
: Uint
; Right
: Int
) return Uint
is
1000 return UI_Div
(Left
, UI_From_Int
(Right
));
1003 function UI_Div
(Left
, Right
: Uint
) return Uint
is
1006 pragma Warnings
(Off
, Remainder
);
1010 Quotient
, Remainder
,
1011 Discard_Remainder
=> True);
1019 procedure UI_Div_Rem
1020 (Left
, Right
: Uint
;
1021 Quotient
: out Uint
;
1022 Remainder
: out Uint
;
1023 Discard_Quotient
: Boolean := False;
1024 Discard_Remainder
: Boolean := False)
1027 pragma Assert
(Right
/= Uint_0
);
1029 Quotient
:= No_Uint
;
1030 Remainder
:= No_Uint
;
1032 -- Cases where both operands are represented directly
1034 if Direct
(Left
) and then Direct
(Right
) then
1036 DV_Left
: constant Int
:= Direct_Val
(Left
);
1037 DV_Right
: constant Int
:= Direct_Val
(Right
);
1040 if not Discard_Quotient
then
1041 Quotient
:= UI_From_Int
(DV_Left
/ DV_Right
);
1044 if not Discard_Remainder
then
1045 Remainder
:= UI_From_Int
(DV_Left
rem DV_Right
);
1053 L_Length
: constant Int
:= N_Digits
(Left
);
1054 R_Length
: constant Int
:= N_Digits
(Right
);
1055 Q_Length
: constant Int
:= L_Length
- R_Length
+ 1;
1056 L_Vec
: UI_Vector
(1 .. L_Length
);
1057 R_Vec
: UI_Vector
(1 .. R_Length
);
1065 procedure UI_Div_Vector
1068 Quotient
: out UI_Vector
;
1069 Remainder
: out Int
);
1070 pragma Inline
(UI_Div_Vector
);
1071 -- Specialised variant for case where the divisor is a single digit
1073 procedure UI_Div_Vector
1076 Quotient
: out UI_Vector
;
1077 Remainder
: out Int
)
1083 for J
in L_Vec
'Range loop
1084 Tmp_Int
:= Remainder
* Base
+ abs L_Vec
(J
);
1085 Quotient
(Quotient
'First + J
- L_Vec
'First) := Tmp_Int
/ R_Int
;
1086 Remainder
:= Tmp_Int
rem R_Int
;
1089 if L_Vec
(L_Vec
'First) < Int_0
then
1090 Remainder
:= -Remainder
;
1094 -- Start of processing for UI_Div_Rem
1097 -- Result is zero if left operand is shorter than right
1099 if L_Length
< R_Length
then
1100 if not Discard_Quotient
then
1104 if not Discard_Remainder
then
1111 Init_Operand
(Left
, L_Vec
);
1112 Init_Operand
(Right
, R_Vec
);
1114 -- Case of right operand is single digit. Here we can simply divide
1115 -- each digit of the left operand by the divisor, from most to least
1116 -- significant, carrying the remainder to the next digit (just like
1117 -- ordinary long division by hand).
1119 if R_Length
= Int_1
then
1120 Tmp_Divisor
:= abs R_Vec
(1);
1123 Quotient_V
: UI_Vector
(1 .. L_Length
);
1126 UI_Div_Vector
(L_Vec
, Tmp_Divisor
, Quotient_V
, Remainder_I
);
1128 if not Discard_Quotient
then
1131 (Quotient_V
, (L_Vec
(1) < Int_0
xor R_Vec
(1) < Int_0
));
1134 if not Discard_Remainder
then
1135 Remainder
:= UI_From_Int
(Remainder_I
);
1142 -- The possible simple cases have been exhausted. Now turn to the
1143 -- algorithm D from the section of Knuth mentioned at the top of
1146 Algorithm_D
: declare
1147 Dividend
: UI_Vector
(1 .. L_Length
+ 1);
1148 Divisor
: UI_Vector
(1 .. R_Length
);
1149 Quotient_V
: UI_Vector
(1 .. Q_Length
);
1156 -- [ NORMALIZE ] (step D1 in the algorithm). First calculate the
1157 -- scale d, and then multiply Left and Right (u and v in the book)
1158 -- by d to get the dividend and divisor to work with.
1160 D
:= Base
/ (abs R_Vec
(1) + 1);
1163 Dividend
(2) := abs L_Vec
(1);
1165 for J
in 3 .. L_Length
+ Int_1
loop
1166 Dividend
(J
) := L_Vec
(J
- 1);
1169 Divisor
(1) := abs R_Vec
(1);
1171 for J
in Int_2
.. R_Length
loop
1172 Divisor
(J
) := R_Vec
(J
);
1177 -- Multiply Dividend by d
1180 for J
in reverse Dividend
'Range loop
1181 Tmp_Int
:= Dividend
(J
) * D
+ Carry
;
1182 Dividend
(J
) := Tmp_Int
rem Base
;
1183 Carry
:= Tmp_Int
/ Base
;
1186 -- Multiply Divisor by d
1189 for J
in reverse Divisor
'Range loop
1190 Tmp_Int
:= Divisor
(J
) * D
+ Carry
;
1191 Divisor
(J
) := Tmp_Int
rem Base
;
1192 Carry
:= Tmp_Int
/ Base
;
1196 -- Main loop of long division algorithm
1198 Divisor_Dig1
:= Divisor
(1);
1199 Divisor_Dig2
:= Divisor
(2);
1201 for J
in Quotient_V
'Range loop
1203 -- [ CALCULATE Q (hat) ] (step D3 in the algorithm)
1205 -- Note: this version of step D3 is from the original published
1206 -- algorithm, which is known to have a bug causing overflows.
1207 -- See: http://www-cs-faculty.stanford.edu/~uno/err2-2e.ps.gz
1208 -- and http://www-cs-faculty.stanford.edu/~uno/all2-pre.ps.gz.
1209 -- The code below is the fixed version of this step.
1211 Tmp_Int
:= Dividend
(J
) * Base
+ Dividend
(J
+ 1);
1215 Q_Guess
:= Tmp_Int
/ Divisor_Dig1
;
1216 R_Guess
:= Tmp_Int
rem Divisor_Dig1
;
1220 while Q_Guess
>= Base
1221 or else Divisor_Dig2
* Q_Guess
>
1222 R_Guess
* Base
+ Dividend
(J
+ 2)
1224 Q_Guess
:= Q_Guess
- 1;
1225 R_Guess
:= R_Guess
+ Divisor_Dig1
;
1226 exit when R_Guess
>= Base
;
1229 -- [ MULTIPLY & SUBTRACT ] (step D4). Q_Guess * Divisor is
1230 -- subtracted from the remaining dividend.
1233 for K
in reverse Divisor
'Range loop
1234 Tmp_Int
:= Dividend
(J
+ K
) - Q_Guess
* Divisor
(K
) + Carry
;
1235 Tmp_Dig
:= Tmp_Int
rem Base
;
1236 Carry
:= Tmp_Int
/ Base
;
1238 if Tmp_Dig
< Int_0
then
1239 Tmp_Dig
:= Tmp_Dig
+ Base
;
1243 Dividend
(J
+ K
) := Tmp_Dig
;
1246 Dividend
(J
) := Dividend
(J
) + Carry
;
1248 -- [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
1250 -- Here there is a slight difference from the book: the last
1251 -- carry is always added in above and below (cancelling each
1252 -- other). In fact the dividend going negative is used as
1255 -- If the Dividend went negative, then Q_Guess was off by
1256 -- one, so it is decremented, and the divisor is added back
1257 -- into the relevant portion of the dividend.
1259 if Dividend
(J
) < Int_0
then
1260 Q_Guess
:= Q_Guess
- 1;
1263 for K
in reverse Divisor
'Range loop
1264 Tmp_Int
:= Dividend
(J
+ K
) + Divisor
(K
) + Carry
;
1266 if Tmp_Int
>= Base
then
1267 Tmp_Int
:= Tmp_Int
- Base
;
1273 Dividend
(J
+ K
) := Tmp_Int
;
1276 Dividend
(J
) := Dividend
(J
) + Carry
;
1279 -- Finally we can get the next quotient digit
1281 Quotient_V
(J
) := Q_Guess
;
1284 -- [ UNNORMALIZE ] (step D8)
1286 if not Discard_Quotient
then
1287 Quotient
:= Vector_To_Uint
1288 (Quotient_V
, (L_Vec
(1) < Int_0
xor R_Vec
(1) < Int_0
));
1291 if not Discard_Remainder
then
1293 Remainder_V
: UI_Vector
(1 .. R_Length
);
1295 pragma Warnings
(Off
, Discard_Int
);
1298 (Dividend
(Dividend
'Last - R_Length
+ 1 .. Dividend
'Last),
1300 Remainder_V
, Discard_Int
);
1301 Remainder
:= Vector_To_Uint
(Remainder_V
, L_Vec
(1) < Int_0
);
1312 function UI_Eq
(Left
: Int
; Right
: Uint
) return Boolean is
1314 return not UI_Ne
(UI_From_Int
(Left
), Right
);
1317 function UI_Eq
(Left
: Uint
; Right
: Int
) return Boolean is
1319 return not UI_Ne
(Left
, UI_From_Int
(Right
));
1322 function UI_Eq
(Left
: Uint
; Right
: Uint
) return Boolean is
1324 return not UI_Ne
(Left
, Right
);
1331 function UI_Expon
(Left
: Int
; Right
: Uint
) return Uint
is
1333 return UI_Expon
(UI_From_Int
(Left
), Right
);
1336 function UI_Expon
(Left
: Uint
; Right
: Int
) return Uint
is
1338 return UI_Expon
(Left
, UI_From_Int
(Right
));
1341 function UI_Expon
(Left
: Int
; Right
: Int
) return Uint
is
1343 return UI_Expon
(UI_From_Int
(Left
), UI_From_Int
(Right
));
1346 function UI_Expon
(Left
: Uint
; Right
: Uint
) return Uint
is
1348 pragma Assert
(Right
>= Uint_0
);
1350 -- Any value raised to power of 0 is 1
1352 if Right
= Uint_0
then
1355 -- 0 to any positive power is 0
1357 elsif Left
= Uint_0
then
1360 -- 1 to any power is 1
1362 elsif Left
= Uint_1
then
1365 -- Any value raised to power of 1 is that value
1367 elsif Right
= Uint_1
then
1370 -- Cases which can be done by table lookup
1372 elsif Right
<= Uint_64
then
1374 -- 2**N for N in 2 .. 64
1376 if Left
= Uint_2
then
1378 Right_Int
: constant Int
:= Direct_Val
(Right
);
1381 if Right_Int
> UI_Power_2_Set
then
1382 for J
in UI_Power_2_Set
+ Int_1
.. Right_Int
loop
1383 UI_Power_2
(J
) := UI_Power_2
(J
- Int_1
) * Int_2
;
1384 Uints_Min
:= Uints
.Last
;
1385 Udigits_Min
:= Udigits
.Last
;
1388 UI_Power_2_Set
:= Right_Int
;
1391 return UI_Power_2
(Right_Int
);
1394 -- 10**N for N in 2 .. 64
1396 elsif Left
= Uint_10
then
1398 Right_Int
: constant Int
:= Direct_Val
(Right
);
1401 if Right_Int
> UI_Power_10_Set
then
1402 for J
in UI_Power_10_Set
+ Int_1
.. Right_Int
loop
1403 UI_Power_10
(J
) := UI_Power_10
(J
- Int_1
) * Int
(10);
1404 Uints_Min
:= Uints
.Last
;
1405 Udigits_Min
:= Udigits
.Last
;
1408 UI_Power_10_Set
:= Right_Int
;
1411 return UI_Power_10
(Right_Int
);
1416 -- If we fall through, then we have the general case (see Knuth 4.6.3)
1420 Squares
: Uint
:= Left
;
1421 Result
: Uint
:= Uint_1
;
1422 M
: constant Uintp
.Save_Mark
:= Uintp
.Mark
;
1426 if (Least_Sig_Digit
(N
) mod Int_2
) = Int_1
then
1427 Result
:= Result
* Squares
;
1431 exit when N
= Uint_0
;
1432 Squares
:= Squares
* Squares
;
1435 Uintp
.Release_And_Save
(M
, Result
);
1444 function UI_From_CC
(Input
: Char_Code
) return Uint
is
1446 return UI_From_Int
(Int
(Input
));
1453 function UI_From_Int
(Input
: Int
) return Uint
is
1457 if Min_Direct
<= Input
and then Input
<= Max_Direct
then
1458 return Uint
(Int
(Uint_Direct_Bias
) + Input
);
1461 -- If already in the hash table, return entry
1463 U
:= UI_Ints
.Get
(Input
);
1465 if U
/= No_Uint
then
1469 -- For values of larger magnitude, compute digits into a vector and call
1473 Max_For_Int
: constant := 3;
1474 -- Base is defined so that 3 Uint digits is sufficient to hold the
1475 -- largest possible Int value.
1477 V
: UI_Vector
(1 .. Max_For_Int
);
1479 Temp_Integer
: Int
:= Input
;
1482 for J
in reverse V
'Range loop
1483 V
(J
) := abs (Temp_Integer
rem Base
);
1484 Temp_Integer
:= Temp_Integer
/ Base
;
1487 U
:= Vector_To_Uint
(V
, Input
< Int_0
);
1488 UI_Ints
.Set
(Input
, U
);
1489 Uints_Min
:= Uints
.Last
;
1490 Udigits_Min
:= Udigits
.Last
;
1499 -- Lehmer's algorithm for GCD
1501 -- The idea is to avoid using multiple precision arithmetic wherever
1502 -- possible, substituting Int arithmetic instead. See Knuth volume II,
1503 -- Algorithm L (page 329).
1505 -- We use the same notation as Knuth (U_Hat standing for the obvious)
1507 function UI_GCD
(Uin
, Vin
: Uint
) return Uint
is
1509 -- Copies of Uin and Vin
1512 -- The most Significant digits of U,V
1514 A
, B
, C
, D
, T
, Q
, Den1
, Den2
: Int
;
1517 Marks
: constant Uintp
.Save_Mark
:= Uintp
.Mark
;
1518 Iterations
: Integer := 0;
1521 pragma Assert
(Uin
>= Vin
);
1522 pragma Assert
(Vin
>= Uint_0
);
1528 Iterations
:= Iterations
+ 1;
1535 UI_From_Int
(GCD
(Direct_Val
(V
), UI_To_Int
(U
rem V
)));
1539 Most_Sig_2_Digits
(U
, V
, U_Hat
, V_Hat
);
1546 -- We might overflow and get division by zero here. This just
1547 -- means we cannot take the single precision step
1551 exit when Den1
= Int_0
or else Den2
= Int_0
;
1553 -- Compute Q, the trial quotient
1555 Q
:= (U_Hat
+ A
) / Den1
;
1557 exit when Q
/= ((U_Hat
+ B
) / Den2
);
1559 -- A single precision step Euclid step will give same answer as a
1560 -- multiprecision one.
1570 T
:= U_Hat
- (Q
* V_Hat
);
1576 -- Take a multiprecision Euclid step
1580 -- No single precision steps take a regular Euclid step
1587 -- Use prior single precision steps to compute this Euclid step
1589 Tmp_UI
:= (UI_From_Int
(A
) * U
) + (UI_From_Int
(B
) * V
);
1590 V
:= (UI_From_Int
(C
) * U
) + (UI_From_Int
(D
) * V
);
1594 -- If the operands are very different in magnitude, the loop will
1595 -- generate large amounts of short-lived data, which it is worth
1596 -- removing periodically.
1598 if Iterations
> 100 then
1599 Release_And_Save
(Marks
, U
, V
);
1609 function UI_Ge
(Left
: Int
; Right
: Uint
) return Boolean is
1611 return not UI_Lt
(UI_From_Int
(Left
), Right
);
1614 function UI_Ge
(Left
: Uint
; Right
: Int
) return Boolean is
1616 return not UI_Lt
(Left
, UI_From_Int
(Right
));
1619 function UI_Ge
(Left
: Uint
; Right
: Uint
) return Boolean is
1621 return not UI_Lt
(Left
, Right
);
1628 function UI_Gt
(Left
: Int
; Right
: Uint
) return Boolean is
1630 return UI_Lt
(Right
, UI_From_Int
(Left
));
1633 function UI_Gt
(Left
: Uint
; Right
: Int
) return Boolean is
1635 return UI_Lt
(UI_From_Int
(Right
), Left
);
1638 function UI_Gt
(Left
: Uint
; Right
: Uint
) return Boolean is
1640 return UI_Lt
(Left
=> Right
, Right
=> Left
);
1647 procedure UI_Image
(Input
: Uint
; Format
: UI_Format
:= Auto
) is
1649 Image_Out
(Input
, True, Format
);
1654 Format
: UI_Format
:= Auto
) return String
1657 Image_Out
(Input
, True, Format
);
1658 return UI_Image_Buffer
(1 .. UI_Image_Length
);
1661 -------------------------
1662 -- UI_Is_In_Int_Range --
1663 -------------------------
1665 function UI_Is_In_Int_Range
(Input
: Uint
) return Boolean is
1667 -- Make sure we don't get called before Initialize
1669 pragma Assert
(Uint_Int_First
/= Uint_0
);
1671 if Direct
(Input
) then
1674 return Input
>= Uint_Int_First
1675 and then Input
<= Uint_Int_Last
;
1677 end UI_Is_In_Int_Range
;
1683 function UI_Le
(Left
: Int
; Right
: Uint
) return Boolean is
1685 return not UI_Lt
(Right
, UI_From_Int
(Left
));
1688 function UI_Le
(Left
: Uint
; Right
: Int
) return Boolean is
1690 return not UI_Lt
(UI_From_Int
(Right
), Left
);
1693 function UI_Le
(Left
: Uint
; Right
: Uint
) return Boolean is
1695 return not UI_Lt
(Left
=> Right
, Right
=> Left
);
1702 function UI_Lt
(Left
: Int
; Right
: Uint
) return Boolean is
1704 return UI_Lt
(UI_From_Int
(Left
), Right
);
1707 function UI_Lt
(Left
: Uint
; Right
: Int
) return Boolean is
1709 return UI_Lt
(Left
, UI_From_Int
(Right
));
1712 function UI_Lt
(Left
: Uint
; Right
: Uint
) return Boolean is
1714 -- Quick processing for identical arguments
1716 if Int
(Left
) = Int
(Right
) then
1719 -- Quick processing for both arguments directly represented
1721 elsif Direct
(Left
) and then Direct
(Right
) then
1722 return Int
(Left
) < Int
(Right
);
1724 -- At least one argument is more than one digit long
1728 L_Length
: constant Int
:= N_Digits
(Left
);
1729 R_Length
: constant Int
:= N_Digits
(Right
);
1731 L_Vec
: UI_Vector
(1 .. L_Length
);
1732 R_Vec
: UI_Vector
(1 .. R_Length
);
1735 Init_Operand
(Left
, L_Vec
);
1736 Init_Operand
(Right
, R_Vec
);
1738 if L_Vec
(1) < Int_0
then
1740 -- First argument negative, second argument non-negative
1742 if R_Vec
(1) >= Int_0
then
1745 -- Both arguments negative
1748 if L_Length
/= R_Length
then
1749 return L_Length
> R_Length
;
1751 elsif L_Vec
(1) /= R_Vec
(1) then
1752 return L_Vec
(1) < R_Vec
(1);
1755 for J
in 2 .. L_Vec
'Last loop
1756 if L_Vec
(J
) /= R_Vec
(J
) then
1757 return L_Vec
(J
) > R_Vec
(J
);
1766 -- First argument non-negative, second argument negative
1768 if R_Vec
(1) < Int_0
then
1771 -- Both arguments non-negative
1774 if L_Length
/= R_Length
then
1775 return L_Length
< R_Length
;
1777 for J
in L_Vec
'Range loop
1778 if L_Vec
(J
) /= R_Vec
(J
) then
1779 return L_Vec
(J
) < R_Vec
(J
);
1795 function UI_Max
(Left
: Int
; Right
: Uint
) return Uint
is
1797 return UI_Max
(UI_From_Int
(Left
), Right
);
1800 function UI_Max
(Left
: Uint
; Right
: Int
) return Uint
is
1802 return UI_Max
(Left
, UI_From_Int
(Right
));
1805 function UI_Max
(Left
: Uint
; Right
: Uint
) return Uint
is
1807 if Left
>= Right
then
1818 function UI_Min
(Left
: Int
; Right
: Uint
) return Uint
is
1820 return UI_Min
(UI_From_Int
(Left
), Right
);
1823 function UI_Min
(Left
: Uint
; Right
: Int
) return Uint
is
1825 return UI_Min
(Left
, UI_From_Int
(Right
));
1828 function UI_Min
(Left
: Uint
; Right
: Uint
) return Uint
is
1830 if Left
<= Right
then
1841 function UI_Mod
(Left
: Int
; Right
: Uint
) return Uint
is
1843 return UI_Mod
(UI_From_Int
(Left
), Right
);
1846 function UI_Mod
(Left
: Uint
; Right
: Int
) return Uint
is
1848 return UI_Mod
(Left
, UI_From_Int
(Right
));
1851 function UI_Mod
(Left
: Uint
; Right
: Uint
) return Uint
is
1852 Urem
: constant Uint
:= Left
rem Right
;
1855 if (Left
< Uint_0
) = (Right
< Uint_0
)
1856 or else Urem
= Uint_0
1860 return Right
+ Urem
;
1864 -------------------------------
1865 -- UI_Modular_Exponentiation --
1866 -------------------------------
1868 function UI_Modular_Exponentiation
1871 Modulo
: Uint
) return Uint
1873 M
: constant Save_Mark
:= Mark
;
1875 Result
: Uint
:= Uint_1
;
1877 Exponent
: Uint
:= E
;
1880 while Exponent
/= Uint_0
loop
1881 if Least_Sig_Digit
(Exponent
) rem Int
'(2) = Int'(1) then
1882 Result
:= (Result
* Base
) rem Modulo
;
1885 Exponent
:= Exponent
/ Uint_2
;
1886 Base
:= (Base
* Base
) rem Modulo
;
1889 Release_And_Save
(M
, Result
);
1891 end UI_Modular_Exponentiation
;
1893 ------------------------
1894 -- UI_Modular_Inverse --
1895 ------------------------
1897 function UI_Modular_Inverse
(N
: Uint
; Modulo
: Uint
) return Uint
is
1898 M
: constant Save_Mark
:= Mark
;
1916 UI_Div_Rem
(U
, V
, Quotient
=> Q
, Remainder
=> R
);
1926 exit when R
= Uint_1
;
1929 if S
= Int
'(-1) then
1933 Release_And_Save (M, X);
1935 end UI_Modular_Inverse;
1941 function UI_Mul (Left : Int; Right : Uint) return Uint is
1943 return UI_Mul (UI_From_Int (Left), Right);
1946 function UI_Mul (Left : Uint; Right : Int) return Uint is
1948 return UI_Mul (Left, UI_From_Int (Right));
1951 function UI_Mul (Left : Uint; Right : Uint) return Uint is
1953 -- Case where product fits in the range of a 32-bit integer
1955 if Int (Left) <= Int (Uint_Max_Simple_Mul)
1957 Int (Right) <= Int (Uint_Max_Simple_Mul)
1959 return UI_From_Int (Direct_Val (Left) * Direct_Val (Right));
1962 -- Otherwise we have the general case (Algorithm M in Knuth)
1965 L_Length : constant Int := N_Digits (Left);
1966 R_Length : constant Int := N_Digits (Right);
1967 L_Vec : UI_Vector (1 .. L_Length);
1968 R_Vec : UI_Vector (1 .. R_Length);
1972 Init_Operand (Left, L_Vec);
1973 Init_Operand (Right, R_Vec);
1974 Neg := (L_Vec (1) < Int_0) xor (R_Vec (1) < Int_0);
1975 L_Vec (1) := abs (L_Vec (1));
1976 R_Vec (1) := abs (R_Vec (1));
1978 Algorithm_M : declare
1979 Product : UI_Vector (1 .. L_Length + R_Length);
1984 for J in Product'Range loop
1988 for J in reverse R_Vec'Range loop
1990 for K in reverse L_Vec'Range loop
1992 L_Vec (K) * R_Vec (J) + Product (J + K) + Carry;
1993 Product (J + K) := Tmp_Sum rem Base;
1994 Carry := Tmp_Sum / Base;
1997 Product (J) := Carry;
2000 return Vector_To_Uint (Product, Neg);
2009 function UI_Ne (Left : Int; Right : Uint) return Boolean is
2011 return UI_Ne (UI_From_Int (Left), Right);
2014 function UI_Ne (Left : Uint; Right : Int) return Boolean is
2016 return UI_Ne (Left, UI_From_Int (Right));
2019 function UI_Ne (Left : Uint; Right : Uint) return Boolean is
2021 -- Quick processing for identical arguments. Note that this takes
2022 -- care of the case of two No_Uint arguments.
2024 if Int (Left) = Int (Right) then
2028 -- See if left operand directly represented
2030 if Direct (Left) then
2032 -- If right operand directly represented then compare
2034 if Direct (Right) then
2035 return Int (Left) /= Int (Right);
2037 -- Left operand directly represented, right not, must be unequal
2043 -- Right operand directly represented, left not, must be unequal
2045 elsif Direct (Right) then
2049 -- Otherwise both multi-word, do comparison
2052 Size : constant Int := N_Digits (Left);
2057 if Size /= N_Digits (Right) then
2061 Left_Loc := Uints.Table (Left).Loc;
2062 Right_Loc := Uints.Table (Right).Loc;
2064 for J in Int_0 .. Size - Int_1 loop
2065 if Udigits.Table (Left_Loc + J) /=
2066 Udigits.Table (Right_Loc + J)
2080 function UI_Negate (Right : Uint) return Uint is
2082 -- Case where input is directly represented. Note that since the range
2083 -- of Direct values is non-symmetrical, the result may not be directly
2084 -- represented, this is taken care of in UI_From_Int.
2086 if Direct (Right) then
2087 return UI_From_Int (-Direct_Val (Right));
2089 -- Full processing for multi-digit case. Note that we cannot just copy
2090 -- the value to the end of the table negating the first digit, since the
2091 -- range of Direct values is non-symmetrical, so we can have a negative
2092 -- value that is not Direct whose negation can be represented directly.
2096 R_Length : constant Int := N_Digits (Right);
2097 R_Vec : UI_Vector (1 .. R_Length);
2101 Init_Operand (Right, R_Vec);
2102 Neg := R_Vec (1) > Int_0;
2103 R_Vec (1) := abs R_Vec (1);
2104 return Vector_To_Uint (R_Vec, Neg);
2113 function UI_Rem (Left : Int; Right : Uint) return Uint is
2115 return UI_Rem (UI_From_Int (Left), Right);
2118 function UI_Rem (Left : Uint; Right : Int) return Uint is
2120 return UI_Rem (Left, UI_From_Int (Right));
2123 function UI_Rem (Left, Right : Uint) return Uint is
2126 pragma Warnings (Off, Quotient);
2129 pragma Assert (Right /= Uint_0);
2131 if Direct (Right) and then Direct (Left) then
2132 return UI_From_Int (Direct_Val (Left) rem Direct_Val (Right));
2136 (Left, Right, Quotient, Remainder, Discard_Quotient => True);
2145 function UI_Sub (Left : Int; Right : Uint) return Uint is
2147 return UI_Add (Left, -Right);
2150 function UI_Sub (Left : Uint; Right : Int) return Uint is
2152 return UI_Add (Left, -Right);
2155 function UI_Sub (Left : Uint; Right : Uint) return Uint is
2157 if Direct (Left) and then Direct (Right) then
2158 return UI_From_Int (Direct_Val (Left) - Direct_Val (Right));
2160 return UI_Add (Left, -Right);
2168 function UI_To_CC (Input : Uint) return Char_Code is
2170 if Direct (Input) then
2171 return Char_Code (Direct_Val (Input));
2173 -- Case of input is more than one digit
2177 In_Length : constant Int := N_Digits (Input);
2178 In_Vec : UI_Vector (1 .. In_Length);
2182 Init_Operand (Input, In_Vec);
2184 -- We assume value is positive
2187 for Idx in In_Vec'Range loop
2188 Ret_CC := Ret_CC * Char_Code (Base) +
2189 Char_Code (abs In_Vec (Idx));
2201 function UI_To_Int (Input : Uint) return Int is
2202 pragma Assert (Input /= No_Uint);
2205 if Direct (Input) then
2206 return Direct_Val (Input);
2208 -- Case of input is more than one digit
2212 In_Length : constant Int := N_Digits (Input);
2213 In_Vec : UI_Vector (1 .. In_Length);
2217 -- Uints of more than one digit could be outside the range for
2218 -- Ints. Caller should have checked for this if not certain.
2219 -- Constraint_Error to attempt to convert from value outside
2222 if not UI_Is_In_Int_Range (Input) then
2223 raise Constraint_Error;
2226 -- Otherwise, proceed ahead, we are OK
2228 Init_Operand (Input, In_Vec);
2231 -- Calculate -|Input| and then negates if value is positive. This
2232 -- handles our current definition of Int (based on 2s complement).
2233 -- Is it secure enough???
2235 for Idx in In_Vec'Range loop
2236 Ret_Int := Ret_Int * Base - abs In_Vec (Idx);
2239 if In_Vec (1) < Int_0 then
2252 procedure UI_Write (Input : Uint; Format : UI_Format := Auto) is
2254 Image_Out (Input, False, Format);
2257 ---------------------
2258 -- Vector_To_Uint --
2259 ---------------------
2261 function Vector_To_Uint
2262 (In_Vec : UI_Vector;
2270 -- The vector can contain leading zeros. These are not stored in the
2271 -- table, so loop through the vector looking for first non-zero digit
2273 for J in In_Vec'Range loop
2274 if In_Vec (J) /= Int_0 then
2276 -- The length of the value is the length of the rest of the vector
2278 Size := In_Vec'Last - J + 1;
2280 -- One digit value can always be represented directly
2282 if Size = Int_1 then
2284 return Uint (Int (Uint_Direct_Bias) - In_Vec (J));
2286 return Uint (Int (Uint_Direct_Bias) + In_Vec (J));
2289 -- Positive two digit values may be in direct representation range
2291 elsif Size = Int_2 and then not Negative then
2292 Val := In_Vec (J) * Base + In_Vec (J + 1);
2294 if Val <= Max_Direct then
2295 return Uint (Int (Uint_Direct_Bias) + Val);
2299 -- The value is outside the direct representation range and must
2300 -- therefore be stored in the table. Expand the table to contain
2301 -- the count and digits. The index of the new table entry will be
2302 -- returned as the result.
2304 Uints.Append ((Length => Size, Loc => Udigits.Last + 1));
2312 Udigits.Append (Val);
2314 for K in 2 .. Size loop
2315 Udigits.Append (In_Vec (J + K - 1));
2322 -- Dropped through loop only if vector contained all zeros