* cpplib.c (_cpp_check_directive): Issue -Wtraditional
[official-gcc.git] / gcc / reload1.c
blob4949b89362faea1598ddb287a8f0347e1bb3b0e6
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
26 #include "machmode.h"
27 #include "hard-reg-set.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "obstack.h"
31 #include "insn-config.h"
32 #include "insn-flags.h"
33 #include "insn-codes.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
46 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
47 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
48 #endif
50 /* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
85 #ifndef REGISTER_MOVE_COST
86 #define REGISTER_MOVE_COST(x, y) 2
87 #endif
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90 into which reg N has been reloaded (perhaps for a previous insn). */
91 static rtx *reg_last_reload_reg;
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95 static char *reg_has_output_reload;
97 /* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99 static HARD_REG_SET reg_is_output_reload;
101 /* Element N is the constant value to which pseudo reg N is equivalent,
102 or zero if pseudo reg N is not equivalent to a constant.
103 find_reloads looks at this in order to replace pseudo reg N
104 with the constant it stands for. */
105 rtx *reg_equiv_constant;
107 /* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
111 rtx *reg_equiv_memory_loc;
113 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
114 This is used when the address is not valid as a memory address
115 (because its displacement is too big for the machine.) */
116 rtx *reg_equiv_address;
118 /* Element N is the memory slot to which pseudo reg N is equivalent,
119 or zero if pseudo reg N is not equivalent to a memory slot. */
120 rtx *reg_equiv_mem;
122 /* Widest width in which each pseudo reg is referred to (via subreg). */
123 static unsigned int *reg_max_ref_width;
125 /* Element N is the list of insns that initialized reg N from its equivalent
126 constant or memory slot. */
127 static rtx *reg_equiv_init;
129 /* Vector to remember old contents of reg_renumber before spilling. */
130 static short *reg_old_renumber;
132 /* During reload_as_needed, element N contains the last pseudo regno reloaded
133 into hard register N. If that pseudo reg occupied more than one register,
134 reg_reloaded_contents points to that pseudo for each spill register in
135 use; all of these must remain set for an inheritance to occur. */
136 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
138 /* During reload_as_needed, element N contains the insn for which
139 hard register N was last used. Its contents are significant only
140 when reg_reloaded_valid is set for this register. */
141 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
143 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
144 static HARD_REG_SET reg_reloaded_valid;
145 /* Indicate if the register was dead at the end of the reload.
146 This is only valid if reg_reloaded_contents is set and valid. */
147 static HARD_REG_SET reg_reloaded_dead;
149 /* Number of spill-regs so far; number of valid elements of spill_regs. */
150 static int n_spills;
152 /* In parallel with spill_regs, contains REG rtx's for those regs.
153 Holds the last rtx used for any given reg, or 0 if it has never
154 been used for spilling yet. This rtx is reused, provided it has
155 the proper mode. */
156 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
158 /* In parallel with spill_regs, contains nonzero for a spill reg
159 that was stored after the last time it was used.
160 The precise value is the insn generated to do the store. */
161 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
163 /* This is the register that was stored with spill_reg_store. This is a
164 copy of reload_out / reload_out_reg when the value was stored; if
165 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
166 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
168 /* This table is the inverse mapping of spill_regs:
169 indexed by hard reg number,
170 it contains the position of that reg in spill_regs,
171 or -1 for something that is not in spill_regs.
173 ?!? This is no longer accurate. */
174 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
176 /* This reg set indicates registers that can't be used as spill registers for
177 the currently processed insn. These are the hard registers which are live
178 during the insn, but not allocated to pseudos, as well as fixed
179 registers. */
180 static HARD_REG_SET bad_spill_regs;
182 /* These are the hard registers that can't be used as spill register for any
183 insn. This includes registers used for user variables and registers that
184 we can't eliminate. A register that appears in this set also can't be used
185 to retry register allocation. */
186 static HARD_REG_SET bad_spill_regs_global;
188 /* Describes order of use of registers for reloading
189 of spilled pseudo-registers. `n_spills' is the number of
190 elements that are actually valid; new ones are added at the end.
192 Both spill_regs and spill_reg_order are used on two occasions:
193 once during find_reload_regs, where they keep track of the spill registers
194 for a single insn, but also during reload_as_needed where they show all
195 the registers ever used by reload. For the latter case, the information
196 is calculated during finish_spills. */
197 static short spill_regs[FIRST_PSEUDO_REGISTER];
199 /* This vector of reg sets indicates, for each pseudo, which hard registers
200 may not be used for retrying global allocation because the register was
201 formerly spilled from one of them. If we allowed reallocating a pseudo to
202 a register that it was already allocated to, reload might not
203 terminate. */
204 static HARD_REG_SET *pseudo_previous_regs;
206 /* This vector of reg sets indicates, for each pseudo, which hard
207 registers may not be used for retrying global allocation because they
208 are used as spill registers during one of the insns in which the
209 pseudo is live. */
210 static HARD_REG_SET *pseudo_forbidden_regs;
212 /* All hard regs that have been used as spill registers for any insn are
213 marked in this set. */
214 static HARD_REG_SET used_spill_regs;
216 /* Index of last register assigned as a spill register. We allocate in
217 a round-robin fashion. */
218 static int last_spill_reg;
220 /* Nonzero if indirect addressing is supported on the machine; this means
221 that spilling (REG n) does not require reloading it into a register in
222 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
223 value indicates the level of indirect addressing supported, e.g., two
224 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
225 a hard register. */
226 static char spill_indirect_levels;
228 /* Nonzero if indirect addressing is supported when the innermost MEM is
229 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
230 which these are valid is the same as spill_indirect_levels, above. */
231 char indirect_symref_ok;
233 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
234 char double_reg_address_ok;
236 /* Record the stack slot for each spilled hard register. */
237 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
239 /* Width allocated so far for that stack slot. */
240 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
242 /* Record which pseudos needed to be spilled. */
243 static regset_head spilled_pseudos;
245 /* Used for communication between order_regs_for_reload and count_pseudo.
246 Used to avoid counting one pseudo twice. */
247 static regset_head pseudos_counted;
249 /* First uid used by insns created by reload in this function.
250 Used in find_equiv_reg. */
251 int reload_first_uid;
253 /* Flag set by local-alloc or global-alloc if anything is live in
254 a call-clobbered reg across calls. */
255 int caller_save_needed;
257 /* Set to 1 while reload_as_needed is operating.
258 Required by some machines to handle any generated moves differently. */
259 int reload_in_progress = 0;
261 /* These arrays record the insn_code of insns that may be needed to
262 perform input and output reloads of special objects. They provide a
263 place to pass a scratch register. */
264 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
265 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
267 /* This obstack is used for allocation of rtl during register elimination.
268 The allocated storage can be freed once find_reloads has processed the
269 insn. */
270 struct obstack reload_obstack;
272 /* Points to the beginning of the reload_obstack. All insn_chain structures
273 are allocated first. */
274 char *reload_startobj;
276 /* The point after all insn_chain structures. Used to quickly deallocate
277 memory allocated in copy_reloads during calculate_needs_all_insns. */
278 char *reload_firstobj;
280 /* This points before all local rtl generated by register elimination.
281 Used to quickly free all memory after processing one insn. */
282 static char *reload_insn_firstobj;
284 #define obstack_chunk_alloc xmalloc
285 #define obstack_chunk_free free
287 /* List of insn_chain instructions, one for every insn that reload needs to
288 examine. */
289 struct insn_chain *reload_insn_chain;
291 #ifdef TREE_CODE
292 extern tree current_function_decl;
293 #else
294 extern union tree_node *current_function_decl;
295 #endif
297 /* List of all insns needing reloads. */
298 static struct insn_chain *insns_need_reload;
300 /* This structure is used to record information about register eliminations.
301 Each array entry describes one possible way of eliminating a register
302 in favor of another. If there is more than one way of eliminating a
303 particular register, the most preferred should be specified first. */
305 struct elim_table
307 int from; /* Register number to be eliminated. */
308 int to; /* Register number used as replacement. */
309 int initial_offset; /* Initial difference between values. */
310 int can_eliminate; /* Non-zero if this elimination can be done. */
311 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
312 insns made by reload. */
313 int offset; /* Current offset between the two regs. */
314 int previous_offset; /* Offset at end of previous insn. */
315 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
316 rtx from_rtx; /* REG rtx for the register to be eliminated.
317 We cannot simply compare the number since
318 we might then spuriously replace a hard
319 register corresponding to a pseudo
320 assigned to the reg to be eliminated. */
321 rtx to_rtx; /* REG rtx for the replacement. */
324 static struct elim_table * reg_eliminate = 0;
326 /* This is an intermediate structure to initialize the table. It has
327 exactly the members provided by ELIMINABLE_REGS. */
328 static struct elim_table_1
330 int from;
331 int to;
332 } reg_eliminate_1[] =
334 /* If a set of eliminable registers was specified, define the table from it.
335 Otherwise, default to the normal case of the frame pointer being
336 replaced by the stack pointer. */
338 #ifdef ELIMINABLE_REGS
339 ELIMINABLE_REGS;
340 #else
341 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
342 #endif
344 #define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0])
346 /* Record the number of pending eliminations that have an offset not equal
347 to their initial offset. If non-zero, we use a new copy of each
348 replacement result in any insns encountered. */
349 int num_not_at_initial_offset;
351 /* Count the number of registers that we may be able to eliminate. */
352 static int num_eliminable;
353 /* And the number of registers that are equivalent to a constant that
354 can be eliminated to frame_pointer / arg_pointer + constant. */
355 static int num_eliminable_invariants;
357 /* For each label, we record the offset of each elimination. If we reach
358 a label by more than one path and an offset differs, we cannot do the
359 elimination. This information is indexed by the number of the label.
360 The first table is an array of flags that records whether we have yet
361 encountered a label and the second table is an array of arrays, one
362 entry in the latter array for each elimination. */
364 static char *offsets_known_at;
365 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
367 /* Number of labels in the current function. */
369 static int num_labels;
371 static void maybe_fix_stack_asms PARAMS ((void));
372 static void copy_reloads PARAMS ((struct insn_chain *));
373 static void calculate_needs_all_insns PARAMS ((int));
374 static int find_reg PARAMS ((struct insn_chain *, int,
375 FILE *));
376 static void find_reload_regs PARAMS ((struct insn_chain *, FILE *));
377 static void select_reload_regs PARAMS ((FILE *));
378 static void delete_caller_save_insns PARAMS ((void));
380 static void spill_failure PARAMS ((rtx, enum reg_class));
381 static void count_spilled_pseudo PARAMS ((int, int, int));
382 static void delete_dead_insn PARAMS ((rtx));
383 static void alter_reg PARAMS ((int, int));
384 static void set_label_offsets PARAMS ((rtx, rtx, int));
385 static void check_eliminable_occurrences PARAMS ((rtx));
386 static void elimination_effects PARAMS ((rtx, enum machine_mode));
387 static int eliminate_regs_in_insn PARAMS ((rtx, int));
388 static void update_eliminable_offsets PARAMS ((void));
389 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390 static void set_initial_elim_offsets PARAMS ((void));
391 static void verify_initial_elim_offsets PARAMS ((void));
392 static void set_initial_label_offsets PARAMS ((void));
393 static void set_offsets_for_label PARAMS ((rtx));
394 static void init_elim_table PARAMS ((void));
395 static void update_eliminables PARAMS ((HARD_REG_SET *));
396 static void spill_hard_reg PARAMS ((unsigned int, FILE *, int));
397 static int finish_spills PARAMS ((int, FILE *));
398 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399 static void scan_paradoxical_subregs PARAMS ((rtx));
400 static void count_pseudo PARAMS ((int));
401 static void order_regs_for_reload PARAMS ((struct insn_chain *));
402 static void reload_as_needed PARAMS ((int));
403 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
405 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411 static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
413 static int reload_reg_free_for_value_p PARAMS ((int, int, enum reload_type,
414 rtx, rtx, int, int));
415 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
416 enum reload_type));
417 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
418 int));
419 static void failed_reload PARAMS ((rtx, int));
420 static int set_reload_reg PARAMS ((int, int));
421 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
422 static void choose_reload_regs PARAMS ((struct insn_chain *));
423 static void merge_assigned_reloads PARAMS ((rtx));
424 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
425 struct reload *, rtx, int));
426 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
427 struct reload *, int));
428 static void do_input_reload PARAMS ((struct insn_chain *,
429 struct reload *, int));
430 static void do_output_reload PARAMS ((struct insn_chain *,
431 struct reload *, int));
432 static void emit_reload_insns PARAMS ((struct insn_chain *));
433 static void delete_output_reload PARAMS ((rtx, int, int));
434 static void delete_address_reloads PARAMS ((rtx, rtx));
435 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
436 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
437 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
438 static void reload_cse_regs_1 PARAMS ((rtx));
439 static int reload_cse_noop_set_p PARAMS ((rtx));
440 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
441 static int reload_cse_simplify_operands PARAMS ((rtx));
442 static void reload_combine PARAMS ((void));
443 static void reload_combine_note_use PARAMS ((rtx *, rtx));
444 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
445 static void reload_cse_move2add PARAMS ((rtx));
446 static void move2add_note_store PARAMS ((rtx, rtx, void *));
447 #ifdef AUTO_INC_DEC
448 static void add_auto_inc_notes PARAMS ((rtx, rtx));
449 #endif
450 static rtx gen_mode_int PARAMS ((enum machine_mode,
451 HOST_WIDE_INT));
452 static void failed_reload PARAMS ((rtx, int));
453 static int set_reload_reg PARAMS ((int, int));
454 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
455 static void reload_cse_simplify PARAMS ((rtx));
456 extern void dump_needs PARAMS ((struct insn_chain *, FILE *));
458 /* Initialize the reload pass once per compilation. */
460 void
461 init_reload ()
463 register int i;
465 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
466 Set spill_indirect_levels to the number of levels such addressing is
467 permitted, zero if it is not permitted at all. */
469 register rtx tem
470 = gen_rtx_MEM (Pmode,
471 gen_rtx_PLUS (Pmode,
472 gen_rtx_REG (Pmode,
473 LAST_VIRTUAL_REGISTER + 1),
474 GEN_INT (4)));
475 spill_indirect_levels = 0;
477 while (memory_address_p (QImode, tem))
479 spill_indirect_levels++;
480 tem = gen_rtx_MEM (Pmode, tem);
483 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
485 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
486 indirect_symref_ok = memory_address_p (QImode, tem);
488 /* See if reg+reg is a valid (and offsettable) address. */
490 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
492 tem = gen_rtx_PLUS (Pmode,
493 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
494 gen_rtx_REG (Pmode, i));
496 /* This way, we make sure that reg+reg is an offsettable address. */
497 tem = plus_constant (tem, 4);
499 if (memory_address_p (QImode, tem))
501 double_reg_address_ok = 1;
502 break;
506 /* Initialize obstack for our rtl allocation. */
507 gcc_obstack_init (&reload_obstack);
508 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
510 INIT_REG_SET (&spilled_pseudos);
511 INIT_REG_SET (&pseudos_counted);
514 /* List of insn chains that are currently unused. */
515 static struct insn_chain *unused_insn_chains = 0;
517 /* Allocate an empty insn_chain structure. */
518 struct insn_chain *
519 new_insn_chain ()
521 struct insn_chain *c;
523 if (unused_insn_chains == 0)
525 c = (struct insn_chain *)
526 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
527 INIT_REG_SET (&c->live_throughout);
528 INIT_REG_SET (&c->dead_or_set);
530 else
532 c = unused_insn_chains;
533 unused_insn_chains = c->next;
535 c->is_caller_save_insn = 0;
536 c->need_operand_change = 0;
537 c->need_reload = 0;
538 c->need_elim = 0;
539 return c;
542 /* Small utility function to set all regs in hard reg set TO which are
543 allocated to pseudos in regset FROM. */
545 void
546 compute_use_by_pseudos (to, from)
547 HARD_REG_SET *to;
548 regset from;
550 unsigned int regno;
552 EXECUTE_IF_SET_IN_REG_SET
553 (from, FIRST_PSEUDO_REGISTER, regno,
555 int r = reg_renumber[regno];
556 int nregs;
558 if (r < 0)
560 /* reload_combine uses the information from
561 BASIC_BLOCK->global_live_at_start, which might still
562 contain registers that have not actually been allocated
563 since they have an equivalence. */
564 if (! reload_completed)
565 abort ();
567 else
569 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
570 while (nregs-- > 0)
571 SET_HARD_REG_BIT (*to, r + nregs);
576 /* Global variables used by reload and its subroutines. */
578 /* Set during calculate_needs if an insn needs register elimination. */
579 static int something_needs_elimination;
580 /* Set during calculate_needs if an insn needs an operand changed. */
581 int something_needs_operands_changed;
583 /* Nonzero means we couldn't get enough spill regs. */
584 static int failure;
586 /* Main entry point for the reload pass.
588 FIRST is the first insn of the function being compiled.
590 GLOBAL nonzero means we were called from global_alloc
591 and should attempt to reallocate any pseudoregs that we
592 displace from hard regs we will use for reloads.
593 If GLOBAL is zero, we do not have enough information to do that,
594 so any pseudo reg that is spilled must go to the stack.
596 DUMPFILE is the global-reg debugging dump file stream, or 0.
597 If it is nonzero, messages are written to it to describe
598 which registers are seized as reload regs, which pseudo regs
599 are spilled from them, and where the pseudo regs are reallocated to.
601 Return value is nonzero if reload failed
602 and we must not do any more for this function. */
605 reload (first, global, dumpfile)
606 rtx first;
607 int global;
608 FILE *dumpfile;
610 register int i;
611 register rtx insn;
612 register struct elim_table *ep;
614 /* The two pointers used to track the true location of the memory used
615 for label offsets. */
616 char *real_known_ptr = NULL_PTR;
617 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
619 /* Make sure even insns with volatile mem refs are recognizable. */
620 init_recog ();
622 failure = 0;
624 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
626 /* Make sure that the last insn in the chain
627 is not something that needs reloading. */
628 emit_note (NULL_PTR, NOTE_INSN_DELETED);
630 /* Enable find_equiv_reg to distinguish insns made by reload. */
631 reload_first_uid = get_max_uid ();
633 #ifdef SECONDARY_MEMORY_NEEDED
634 /* Initialize the secondary memory table. */
635 clear_secondary_mem ();
636 #endif
638 /* We don't have a stack slot for any spill reg yet. */
639 bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
640 bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
642 /* Initialize the save area information for caller-save, in case some
643 are needed. */
644 init_save_areas ();
646 /* Compute which hard registers are now in use
647 as homes for pseudo registers.
648 This is done here rather than (eg) in global_alloc
649 because this point is reached even if not optimizing. */
650 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
651 mark_home_live (i);
653 /* A function that receives a nonlocal goto must save all call-saved
654 registers. */
655 if (current_function_has_nonlocal_label)
656 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
658 if (! call_used_regs[i] && ! fixed_regs[i])
659 regs_ever_live[i] = 1;
662 /* Find all the pseudo registers that didn't get hard regs
663 but do have known equivalent constants or memory slots.
664 These include parameters (known equivalent to parameter slots)
665 and cse'd or loop-moved constant memory addresses.
667 Record constant equivalents in reg_equiv_constant
668 so they will be substituted by find_reloads.
669 Record memory equivalents in reg_mem_equiv so they can
670 be substituted eventually by altering the REG-rtx's. */
672 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
673 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
674 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
675 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
676 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
677 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
678 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
679 bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
680 pseudo_forbidden_regs
681 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
682 pseudo_previous_regs
683 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
685 CLEAR_HARD_REG_SET (bad_spill_regs_global);
687 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
688 Also find all paradoxical subregs and find largest such for each pseudo.
689 On machines with small register classes, record hard registers that
690 are used for user variables. These can never be used for spills.
691 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
692 caller-saved registers must be marked live. */
694 num_eliminable_invariants = 0;
695 for (insn = first; insn; insn = NEXT_INSN (insn))
697 rtx set = single_set (insn);
699 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
700 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
701 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
702 if (! call_used_regs[i])
703 regs_ever_live[i] = 1;
705 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
707 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
708 if (note
709 #ifdef LEGITIMATE_PIC_OPERAND_P
710 && (! function_invariant_p (XEXP (note, 0))
711 || ! flag_pic
712 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
713 #endif
716 rtx x = XEXP (note, 0);
717 i = REGNO (SET_DEST (set));
718 if (i > LAST_VIRTUAL_REGISTER)
720 if (GET_CODE (x) == MEM)
722 /* If the operand is a PLUS, the MEM may be shared,
723 so make sure we have an unshared copy here. */
724 if (GET_CODE (XEXP (x, 0)) == PLUS)
725 x = copy_rtx (x);
727 reg_equiv_memory_loc[i] = x;
729 else if (function_invariant_p (x))
731 if (GET_CODE (x) == PLUS)
733 /* This is PLUS of frame pointer and a constant,
734 and might be shared. Unshare it. */
735 reg_equiv_constant[i] = copy_rtx (x);
736 num_eliminable_invariants++;
738 else if (x == frame_pointer_rtx
739 || x == arg_pointer_rtx)
741 reg_equiv_constant[i] = x;
742 num_eliminable_invariants++;
744 else if (LEGITIMATE_CONSTANT_P (x))
745 reg_equiv_constant[i] = x;
746 else
747 reg_equiv_memory_loc[i]
748 = force_const_mem (GET_MODE (SET_DEST (set)), x);
750 else
751 continue;
753 /* If this register is being made equivalent to a MEM
754 and the MEM is not SET_SRC, the equivalencing insn
755 is one with the MEM as a SET_DEST and it occurs later.
756 So don't mark this insn now. */
757 if (GET_CODE (x) != MEM
758 || rtx_equal_p (SET_SRC (set), x))
759 reg_equiv_init[i]
760 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
765 /* If this insn is setting a MEM from a register equivalent to it,
766 this is the equivalencing insn. */
767 else if (set && GET_CODE (SET_DEST (set)) == MEM
768 && GET_CODE (SET_SRC (set)) == REG
769 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
770 && rtx_equal_p (SET_DEST (set),
771 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
772 reg_equiv_init[REGNO (SET_SRC (set))]
773 = gen_rtx_INSN_LIST (VOIDmode, insn,
774 reg_equiv_init[REGNO (SET_SRC (set))]);
776 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
777 scan_paradoxical_subregs (PATTERN (insn));
780 init_elim_table ();
782 num_labels = max_label_num () - get_first_label_num ();
784 /* Allocate the tables used to store offset information at labels. */
785 /* We used to use alloca here, but the size of what it would try to
786 allocate would occasionally cause it to exceed the stack limit and
787 cause a core dump. */
788 real_known_ptr = xmalloc (num_labels);
789 real_at_ptr
790 = (int (*)[NUM_ELIMINABLE_REGS])
791 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
793 offsets_known_at = real_known_ptr - get_first_label_num ();
794 offsets_at
795 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
797 /* Alter each pseudo-reg rtx to contain its hard reg number.
798 Assign stack slots to the pseudos that lack hard regs or equivalents.
799 Do not touch virtual registers. */
801 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
802 alter_reg (i, -1);
804 /* If we have some registers we think can be eliminated, scan all insns to
805 see if there is an insn that sets one of these registers to something
806 other than itself plus a constant. If so, the register cannot be
807 eliminated. Doing this scan here eliminates an extra pass through the
808 main reload loop in the most common case where register elimination
809 cannot be done. */
810 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
811 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
812 || GET_CODE (insn) == CALL_INSN)
813 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
815 maybe_fix_stack_asms ();
817 insns_need_reload = 0;
818 something_needs_elimination = 0;
820 /* Initialize to -1, which means take the first spill register. */
821 last_spill_reg = -1;
823 /* Spill any hard regs that we know we can't eliminate. */
824 CLEAR_HARD_REG_SET (used_spill_regs);
825 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
826 if (! ep->can_eliminate)
827 spill_hard_reg (ep->from, dumpfile, 1);
829 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
830 if (frame_pointer_needed)
831 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1);
832 #endif
833 finish_spills (global, dumpfile);
835 /* From now on, we may need to generate moves differently. We may also
836 allow modifications of insns which cause them to not be recognized.
837 Any such modifications will be cleaned up during reload itself. */
838 reload_in_progress = 1;
840 /* This loop scans the entire function each go-round
841 and repeats until one repetition spills no additional hard regs. */
842 for (;;)
844 int something_changed;
845 int did_spill;
847 HOST_WIDE_INT starting_frame_size;
849 /* Round size of stack frame to stack_alignment_needed. This must be done
850 here because the stack size may be a part of the offset computation
851 for register elimination, and there might have been new stack slots
852 created in the last iteration of this loop. */
853 if (cfun->stack_alignment_needed)
854 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
856 starting_frame_size = get_frame_size ();
858 set_initial_elim_offsets ();
859 set_initial_label_offsets ();
861 /* For each pseudo register that has an equivalent location defined,
862 try to eliminate any eliminable registers (such as the frame pointer)
863 assuming initial offsets for the replacement register, which
864 is the normal case.
866 If the resulting location is directly addressable, substitute
867 the MEM we just got directly for the old REG.
869 If it is not addressable but is a constant or the sum of a hard reg
870 and constant, it is probably not addressable because the constant is
871 out of range, in that case record the address; we will generate
872 hairy code to compute the address in a register each time it is
873 needed. Similarly if it is a hard register, but one that is not
874 valid as an address register.
876 If the location is not addressable, but does not have one of the
877 above forms, assign a stack slot. We have to do this to avoid the
878 potential of producing lots of reloads if, e.g., a location involves
879 a pseudo that didn't get a hard register and has an equivalent memory
880 location that also involves a pseudo that didn't get a hard register.
882 Perhaps at some point we will improve reload_when_needed handling
883 so this problem goes away. But that's very hairy. */
885 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
886 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
888 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
890 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
891 XEXP (x, 0)))
892 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
893 else if (CONSTANT_P (XEXP (x, 0))
894 || (GET_CODE (XEXP (x, 0)) == REG
895 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
896 || (GET_CODE (XEXP (x, 0)) == PLUS
897 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
898 && (REGNO (XEXP (XEXP (x, 0), 0))
899 < FIRST_PSEUDO_REGISTER)
900 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
901 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
902 else
904 /* Make a new stack slot. Then indicate that something
905 changed so we go back and recompute offsets for
906 eliminable registers because the allocation of memory
907 below might change some offset. reg_equiv_{mem,address}
908 will be set up for this pseudo on the next pass around
909 the loop. */
910 reg_equiv_memory_loc[i] = 0;
911 reg_equiv_init[i] = 0;
912 alter_reg (i, -1);
916 if (caller_save_needed)
917 setup_save_areas ();
919 /* If we allocated another stack slot, redo elimination bookkeeping. */
920 if (starting_frame_size != get_frame_size ())
921 continue;
923 if (caller_save_needed)
925 save_call_clobbered_regs ();
926 /* That might have allocated new insn_chain structures. */
927 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
930 calculate_needs_all_insns (global);
932 CLEAR_REG_SET (&spilled_pseudos);
933 did_spill = 0;
935 something_changed = 0;
937 /* If we allocated any new memory locations, make another pass
938 since it might have changed elimination offsets. */
939 if (starting_frame_size != get_frame_size ())
940 something_changed = 1;
943 HARD_REG_SET to_spill;
944 CLEAR_HARD_REG_SET (to_spill);
945 update_eliminables (&to_spill);
946 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
947 if (TEST_HARD_REG_BIT (to_spill, i))
949 spill_hard_reg (i, dumpfile, 1);
950 did_spill = 1;
952 /* Regardless of the state of spills, if we previously had
953 a register that we thought we could eliminate, but no can
954 not eliminate, we must run another pass.
956 Consider pseudos which have an entry in reg_equiv_* which
957 reference an eliminable register. We must make another pass
958 to update reg_equiv_* so that we do not substitute in the
959 old value from when we thought the elimination could be
960 performed. */
961 something_changed = 1;
965 select_reload_regs (dumpfile);
966 if (failure)
967 goto failed;
969 if (insns_need_reload != 0 || did_spill)
970 something_changed |= finish_spills (global, dumpfile);
972 if (! something_changed)
973 break;
975 if (caller_save_needed)
976 delete_caller_save_insns ();
978 obstack_free (&reload_obstack, reload_firstobj);
981 /* If global-alloc was run, notify it of any register eliminations we have
982 done. */
983 if (global)
984 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
985 if (ep->can_eliminate)
986 mark_elimination (ep->from, ep->to);
988 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
989 If that insn didn't set the register (i.e., it copied the register to
990 memory), just delete that insn instead of the equivalencing insn plus
991 anything now dead. If we call delete_dead_insn on that insn, we may
992 delete the insn that actually sets the register if the register dies
993 there and that is incorrect. */
995 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
997 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
999 rtx list;
1000 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1002 rtx equiv_insn = XEXP (list, 0);
1003 if (GET_CODE (equiv_insn) == NOTE)
1004 continue;
1005 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1006 delete_dead_insn (equiv_insn);
1007 else
1009 PUT_CODE (equiv_insn, NOTE);
1010 NOTE_SOURCE_FILE (equiv_insn) = 0;
1011 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1017 /* Use the reload registers where necessary
1018 by generating move instructions to move the must-be-register
1019 values into or out of the reload registers. */
1021 if (insns_need_reload != 0 || something_needs_elimination
1022 || something_needs_operands_changed)
1024 int old_frame_size = get_frame_size ();
1026 reload_as_needed (global);
1028 if (old_frame_size != get_frame_size ())
1029 abort ();
1031 if (num_eliminable)
1032 verify_initial_elim_offsets ();
1035 /* If we were able to eliminate the frame pointer, show that it is no
1036 longer live at the start of any basic block. If it ls live by
1037 virtue of being in a pseudo, that pseudo will be marked live
1038 and hence the frame pointer will be known to be live via that
1039 pseudo. */
1041 if (! frame_pointer_needed)
1042 for (i = 0; i < n_basic_blocks; i++)
1043 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1044 HARD_FRAME_POINTER_REGNUM);
1046 /* Come here (with failure set nonzero) if we can't get enough spill regs
1047 and we decide not to abort about it. */
1048 failed:
1050 CLEAR_REG_SET (&spilled_pseudos);
1051 reload_in_progress = 0;
1053 /* Now eliminate all pseudo regs by modifying them into
1054 their equivalent memory references.
1055 The REG-rtx's for the pseudos are modified in place,
1056 so all insns that used to refer to them now refer to memory.
1058 For a reg that has a reg_equiv_address, all those insns
1059 were changed by reloading so that no insns refer to it any longer;
1060 but the DECL_RTL of a variable decl may refer to it,
1061 and if so this causes the debugging info to mention the variable. */
1063 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1065 rtx addr = 0;
1066 int in_struct = 0;
1067 int is_scalar = 0;
1068 int is_readonly = 0;
1070 if (reg_equiv_memory_loc[i])
1072 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
1073 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
1074 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
1077 if (reg_equiv_mem[i])
1078 addr = XEXP (reg_equiv_mem[i], 0);
1080 if (reg_equiv_address[i])
1081 addr = reg_equiv_address[i];
1083 if (addr)
1085 if (reg_renumber[i] < 0)
1087 rtx reg = regno_reg_rtx[i];
1088 PUT_CODE (reg, MEM);
1089 XEXP (reg, 0) = addr;
1090 REG_USERVAR_P (reg) = 0;
1091 RTX_UNCHANGING_P (reg) = is_readonly;
1092 MEM_IN_STRUCT_P (reg) = in_struct;
1093 MEM_SCALAR_P (reg) = is_scalar;
1094 /* We have no alias information about this newly created
1095 MEM. */
1096 MEM_ALIAS_SET (reg) = 0;
1098 else if (reg_equiv_mem[i])
1099 XEXP (reg_equiv_mem[i], 0) = addr;
1103 /* We must set reload_completed now since the cleanup_subreg_operands call
1104 below will re-recognize each insn and reload may have generated insns
1105 which are only valid during and after reload. */
1106 reload_completed = 1;
1108 /* Make a pass over all the insns and delete all USEs which we inserted
1109 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1110 notes. Delete all CLOBBER insns that don't refer to the return value
1111 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1112 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1113 and regenerate REG_INC notes that may have been moved around. */
1115 for (insn = first; insn; insn = NEXT_INSN (insn))
1116 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1118 rtx *pnote;
1120 if ((GET_CODE (PATTERN (insn)) == USE
1121 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1122 || (GET_CODE (PATTERN (insn)) == CLOBBER
1123 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1124 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1126 PUT_CODE (insn, NOTE);
1127 NOTE_SOURCE_FILE (insn) = 0;
1128 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1129 continue;
1132 pnote = &REG_NOTES (insn);
1133 while (*pnote != 0)
1135 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1136 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1137 || REG_NOTE_KIND (*pnote) == REG_INC
1138 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1139 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1140 *pnote = XEXP (*pnote, 1);
1141 else
1142 pnote = &XEXP (*pnote, 1);
1145 #ifdef AUTO_INC_DEC
1146 add_auto_inc_notes (insn, PATTERN (insn));
1147 #endif
1149 /* And simplify (subreg (reg)) if it appears as an operand. */
1150 cleanup_subreg_operands (insn);
1153 /* If we are doing stack checking, give a warning if this function's
1154 frame size is larger than we expect. */
1155 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1157 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1158 static int verbose_warned = 0;
1160 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1161 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1162 size += UNITS_PER_WORD;
1164 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1166 warning ("frame size too large for reliable stack checking");
1167 if (! verbose_warned)
1169 warning ("try reducing the number of local variables");
1170 verbose_warned = 1;
1175 /* Indicate that we no longer have known memory locations or constants. */
1176 if (reg_equiv_constant)
1177 free (reg_equiv_constant);
1178 reg_equiv_constant = 0;
1179 if (reg_equiv_memory_loc)
1180 free (reg_equiv_memory_loc);
1181 reg_equiv_memory_loc = 0;
1183 if (real_known_ptr)
1184 free (real_known_ptr);
1185 if (real_at_ptr)
1186 free (real_at_ptr);
1188 free (reg_equiv_mem);
1189 free (reg_equiv_init);
1190 free (reg_equiv_address);
1191 free (reg_max_ref_width);
1192 free (reg_old_renumber);
1193 free (pseudo_previous_regs);
1194 free (pseudo_forbidden_regs);
1196 CLEAR_HARD_REG_SET (used_spill_regs);
1197 for (i = 0; i < n_spills; i++)
1198 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1200 /* Free all the insn_chain structures at once. */
1201 obstack_free (&reload_obstack, reload_startobj);
1202 unused_insn_chains = 0;
1204 return failure;
1207 /* Yet another special case. Unfortunately, reg-stack forces people to
1208 write incorrect clobbers in asm statements. These clobbers must not
1209 cause the register to appear in bad_spill_regs, otherwise we'll call
1210 fatal_insn later. We clear the corresponding regnos in the live
1211 register sets to avoid this.
1212 The whole thing is rather sick, I'm afraid. */
1214 static void
1215 maybe_fix_stack_asms ()
1217 #ifdef STACK_REGS
1218 const char *constraints[MAX_RECOG_OPERANDS];
1219 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1220 struct insn_chain *chain;
1222 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1224 int i, noperands;
1225 HARD_REG_SET clobbered, allowed;
1226 rtx pat;
1228 if (GET_RTX_CLASS (GET_CODE (chain->insn)) != 'i'
1229 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1230 continue;
1231 pat = PATTERN (chain->insn);
1232 if (GET_CODE (pat) != PARALLEL)
1233 continue;
1235 CLEAR_HARD_REG_SET (clobbered);
1236 CLEAR_HARD_REG_SET (allowed);
1238 /* First, make a mask of all stack regs that are clobbered. */
1239 for (i = 0; i < XVECLEN (pat, 0); i++)
1241 rtx t = XVECEXP (pat, 0, i);
1242 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1243 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1246 /* Get the operand values and constraints out of the insn. */
1247 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1248 constraints, operand_mode);
1250 /* For every operand, see what registers are allowed. */
1251 for (i = 0; i < noperands; i++)
1253 const char *p = constraints[i];
1254 /* For every alternative, we compute the class of registers allowed
1255 for reloading in CLS, and merge its contents into the reg set
1256 ALLOWED. */
1257 int cls = (int) NO_REGS;
1259 for (;;)
1261 char c = *p++;
1263 if (c == '\0' || c == ',' || c == '#')
1265 /* End of one alternative - mark the regs in the current
1266 class, and reset the class. */
1267 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1268 cls = NO_REGS;
1269 if (c == '#')
1270 do {
1271 c = *p++;
1272 } while (c != '\0' && c != ',');
1273 if (c == '\0')
1274 break;
1275 continue;
1278 switch (c)
1280 case '=': case '+': case '*': case '%': case '?': case '!':
1281 case '0': case '1': case '2': case '3': case '4': case 'm':
1282 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1283 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1284 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1285 case 'P':
1286 #ifdef EXTRA_CONSTRAINT
1287 case 'Q': case 'R': case 'S': case 'T': case 'U':
1288 #endif
1289 break;
1291 case 'p':
1292 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1293 break;
1295 case 'g':
1296 case 'r':
1297 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1298 break;
1300 default:
1301 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1306 /* Those of the registers which are clobbered, but allowed by the
1307 constraints, must be usable as reload registers. So clear them
1308 out of the life information. */
1309 AND_HARD_REG_SET (allowed, clobbered);
1310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1311 if (TEST_HARD_REG_BIT (allowed, i))
1313 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1314 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1318 #endif
1321 /* Copy the global variables n_reloads and rld into the corresponding elts
1322 of CHAIN. */
1323 static void
1324 copy_reloads (chain)
1325 struct insn_chain *chain;
1327 chain->n_reloads = n_reloads;
1328 chain->rld
1329 = (struct reload *) obstack_alloc (&reload_obstack,
1330 n_reloads * sizeof (struct reload));
1331 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1332 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1335 /* Walk the chain of insns, and determine for each whether it needs reloads
1336 and/or eliminations. Build the corresponding insns_need_reload list, and
1337 set something_needs_elimination as appropriate. */
1338 static void
1339 calculate_needs_all_insns (global)
1340 int global;
1342 struct insn_chain **pprev_reload = &insns_need_reload;
1343 struct insn_chain *chain;
1345 something_needs_elimination = 0;
1347 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1348 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1350 rtx insn = chain->insn;
1352 /* Clear out the shortcuts. */
1353 chain->n_reloads = 0;
1354 chain->need_elim = 0;
1355 chain->need_reload = 0;
1356 chain->need_operand_change = 0;
1358 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1359 include REG_LABEL), we need to see what effects this has on the
1360 known offsets at labels. */
1362 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1363 || (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1364 && REG_NOTES (insn) != 0))
1365 set_label_offsets (insn, insn, 0);
1367 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1369 rtx old_body = PATTERN (insn);
1370 int old_code = INSN_CODE (insn);
1371 rtx old_notes = REG_NOTES (insn);
1372 int did_elimination = 0;
1373 int operands_changed = 0;
1374 rtx set = single_set (insn);
1376 /* Skip insns that only set an equivalence. */
1377 if (set && GET_CODE (SET_DEST (set)) == REG
1378 && reg_renumber[REGNO (SET_DEST (set))] < 0
1379 && reg_equiv_constant[REGNO (SET_DEST (set))])
1380 continue;
1382 /* If needed, eliminate any eliminable registers. */
1383 if (num_eliminable || num_eliminable_invariants)
1384 did_elimination = eliminate_regs_in_insn (insn, 0);
1386 /* Analyze the instruction. */
1387 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1388 global, spill_reg_order);
1390 /* If a no-op set needs more than one reload, this is likely
1391 to be something that needs input address reloads. We
1392 can't get rid of this cleanly later, and it is of no use
1393 anyway, so discard it now.
1394 We only do this when expensive_optimizations is enabled,
1395 since this complements reload inheritance / output
1396 reload deletion, and it can make debugging harder. */
1397 if (flag_expensive_optimizations && n_reloads > 1)
1399 rtx set = single_set (insn);
1400 if (set
1401 && SET_SRC (set) == SET_DEST (set)
1402 && GET_CODE (SET_SRC (set)) == REG
1403 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1405 PUT_CODE (insn, NOTE);
1406 NOTE_SOURCE_FILE (insn) = 0;
1407 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1408 continue;
1411 if (num_eliminable)
1412 update_eliminable_offsets ();
1414 /* Remember for later shortcuts which insns had any reloads or
1415 register eliminations. */
1416 chain->need_elim = did_elimination;
1417 chain->need_reload = n_reloads > 0;
1418 chain->need_operand_change = operands_changed;
1420 /* Discard any register replacements done. */
1421 if (did_elimination)
1423 obstack_free (&reload_obstack, reload_insn_firstobj);
1424 PATTERN (insn) = old_body;
1425 INSN_CODE (insn) = old_code;
1426 REG_NOTES (insn) = old_notes;
1427 something_needs_elimination = 1;
1430 something_needs_operands_changed |= operands_changed;
1432 if (n_reloads != 0)
1434 copy_reloads (chain);
1435 *pprev_reload = chain;
1436 pprev_reload = &chain->next_need_reload;
1440 *pprev_reload = 0;
1443 /* Comparison function for qsort to decide which of two reloads
1444 should be handled first. *P1 and *P2 are the reload numbers. */
1446 static int
1447 reload_reg_class_lower (r1p, r2p)
1448 const PTR r1p;
1449 const PTR r2p;
1451 register int r1 = *(const short *)r1p, r2 = *(const short *)r2p;
1452 register int t;
1454 /* Consider required reloads before optional ones. */
1455 t = rld[r1].optional - rld[r2].optional;
1456 if (t != 0)
1457 return t;
1459 /* Count all solitary classes before non-solitary ones. */
1460 t = ((reg_class_size[(int) rld[r2].class] == 1)
1461 - (reg_class_size[(int) rld[r1].class] == 1));
1462 if (t != 0)
1463 return t;
1465 /* Aside from solitaires, consider all multi-reg groups first. */
1466 t = rld[r2].nregs - rld[r1].nregs;
1467 if (t != 0)
1468 return t;
1470 /* Consider reloads in order of increasing reg-class number. */
1471 t = (int) rld[r1].class - (int) rld[r2].class;
1472 if (t != 0)
1473 return t;
1475 /* If reloads are equally urgent, sort by reload number,
1476 so that the results of qsort leave nothing to chance. */
1477 return r1 - r2;
1480 /* The cost of spilling each hard reg. */
1481 static int spill_cost[FIRST_PSEUDO_REGISTER];
1483 /* When spilling multiple hard registers, we use SPILL_COST for the first
1484 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1485 only the first hard reg for a multi-reg pseudo. */
1486 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1488 /* Update the spill cost arrays, considering that pseudo REG is live. */
1490 static void
1491 count_pseudo (reg)
1492 int reg;
1494 int n_refs = REG_N_REFS (reg);
1495 int r = reg_renumber[reg];
1496 int nregs;
1498 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1499 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1500 return;
1502 SET_REGNO_REG_SET (&pseudos_counted, reg);
1504 if (r < 0)
1505 abort ();
1507 spill_add_cost[r] += n_refs;
1509 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1510 while (nregs-- > 0)
1511 spill_cost[r + nregs] += n_refs;
1514 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1515 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1517 static void
1518 order_regs_for_reload (chain)
1519 struct insn_chain *chain;
1521 int i;
1522 HARD_REG_SET used_by_pseudos;
1523 HARD_REG_SET used_by_pseudos2;
1525 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1527 memset (spill_cost, 0, sizeof spill_cost);
1528 memset (spill_add_cost, 0, sizeof spill_add_cost);
1530 /* Count number of uses of each hard reg by pseudo regs allocated to it
1531 and then order them by decreasing use. First exclude hard registers
1532 that are live in or across this insn. */
1534 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1535 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1536 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1537 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1539 /* Now find out which pseudos are allocated to it, and update
1540 hard_reg_n_uses. */
1541 CLEAR_REG_SET (&pseudos_counted);
1543 EXECUTE_IF_SET_IN_REG_SET
1544 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1546 count_pseudo (i);
1548 EXECUTE_IF_SET_IN_REG_SET
1549 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1551 count_pseudo (i);
1553 CLEAR_REG_SET (&pseudos_counted);
1556 /* Vector of reload-numbers showing the order in which the reloads should
1557 be processed. */
1558 static short reload_order[MAX_RELOADS];
1560 /* This is used to keep track of the spill regs used in one insn. */
1561 static HARD_REG_SET used_spill_regs_local;
1563 /* We decided to spill hard register SPILLED, which has a size of
1564 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1565 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1566 update SPILL_COST/SPILL_ADD_COST. */
1568 static void
1569 count_spilled_pseudo (spilled, spilled_nregs, reg)
1570 int spilled, spilled_nregs, reg;
1572 int r = reg_renumber[reg];
1573 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1575 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1576 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1577 return;
1579 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1581 spill_add_cost[r] -= REG_N_REFS (reg);
1582 while (nregs-- > 0)
1583 spill_cost[r + nregs] -= REG_N_REFS (reg);
1586 /* Find reload register to use for reload number ORDER. */
1588 static int
1589 find_reg (chain, order, dumpfile)
1590 struct insn_chain *chain;
1591 int order;
1592 FILE *dumpfile;
1594 int rnum = reload_order[order];
1595 struct reload *rl = rld + rnum;
1596 int best_cost = INT_MAX;
1597 int best_reg = -1;
1598 unsigned int i, j;
1599 int k;
1600 HARD_REG_SET not_usable;
1601 HARD_REG_SET used_by_other_reload;
1603 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1604 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1605 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1607 CLEAR_HARD_REG_SET (used_by_other_reload);
1608 for (k = 0; k < order; k++)
1610 int other = reload_order[k];
1612 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1613 for (j = 0; j < rld[other].nregs; j++)
1614 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1617 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1619 unsigned int regno = i;
1621 if (! TEST_HARD_REG_BIT (not_usable, regno)
1622 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1623 && HARD_REGNO_MODE_OK (regno, rl->mode))
1625 int this_cost = spill_cost[regno];
1626 int ok = 1;
1627 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1629 for (j = 1; j < this_nregs; j++)
1631 this_cost += spill_add_cost[regno + j];
1632 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1633 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1634 ok = 0;
1636 if (! ok)
1637 continue;
1638 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1639 this_cost--;
1640 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1641 this_cost--;
1642 if (this_cost < best_cost
1643 /* Among registers with equal cost, prefer caller-saved ones, or
1644 use REG_ALLOC_ORDER if it is defined. */
1645 || (this_cost == best_cost
1646 #ifdef REG_ALLOC_ORDER
1647 && (inv_reg_alloc_order[regno]
1648 < inv_reg_alloc_order[best_reg])
1649 #else
1650 && call_used_regs[regno]
1651 && ! call_used_regs[best_reg]
1652 #endif
1655 best_reg = regno;
1656 best_cost = this_cost;
1660 if (best_reg == -1)
1661 return 0;
1663 if (dumpfile)
1664 fprintf (dumpfile, "Using reg %d for reload %d\n", best_reg, rnum);
1666 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1667 rl->regno = best_reg;
1669 EXECUTE_IF_SET_IN_REG_SET
1670 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1672 count_spilled_pseudo (best_reg, rl->nregs, j);
1675 EXECUTE_IF_SET_IN_REG_SET
1676 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1678 count_spilled_pseudo (best_reg, rl->nregs, j);
1681 for (i = 0; i < rl->nregs; i++)
1683 if (spill_cost[best_reg + i] != 0
1684 || spill_add_cost[best_reg + i] != 0)
1685 abort ();
1686 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1688 return 1;
1691 /* Find more reload regs to satisfy the remaining need of an insn, which
1692 is given by CHAIN.
1693 Do it by ascending class number, since otherwise a reg
1694 might be spilled for a big class and might fail to count
1695 for a smaller class even though it belongs to that class. */
1697 static void
1698 find_reload_regs (chain, dumpfile)
1699 struct insn_chain *chain;
1700 FILE *dumpfile;
1702 int i;
1704 /* In order to be certain of getting the registers we need,
1705 we must sort the reloads into order of increasing register class.
1706 Then our grabbing of reload registers will parallel the process
1707 that provided the reload registers. */
1708 for (i = 0; i < chain->n_reloads; i++)
1710 /* Show whether this reload already has a hard reg. */
1711 if (chain->rld[i].reg_rtx)
1713 int regno = REGNO (chain->rld[i].reg_rtx);
1714 chain->rld[i].regno = regno;
1715 chain->rld[i].nregs
1716 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1718 else
1719 chain->rld[i].regno = -1;
1720 reload_order[i] = i;
1723 n_reloads = chain->n_reloads;
1724 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1726 CLEAR_HARD_REG_SET (used_spill_regs_local);
1728 if (dumpfile)
1729 fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1731 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1733 /* Compute the order of preference for hard registers to spill. */
1735 order_regs_for_reload (chain);
1737 for (i = 0; i < n_reloads; i++)
1739 int r = reload_order[i];
1741 /* Ignore reloads that got marked inoperative. */
1742 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1743 && ! rld[r].optional
1744 && rld[r].regno == -1)
1745 if (! find_reg (chain, i, dumpfile))
1747 spill_failure (chain->insn, rld[r].class);
1748 failure = 1;
1749 return;
1753 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1754 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1756 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1759 static void
1760 select_reload_regs (dumpfile)
1761 FILE *dumpfile;
1763 struct insn_chain *chain;
1765 /* Try to satisfy the needs for each insn. */
1766 for (chain = insns_need_reload; chain != 0;
1767 chain = chain->next_need_reload)
1768 find_reload_regs (chain, dumpfile);
1771 /* Delete all insns that were inserted by emit_caller_save_insns during
1772 this iteration. */
1773 static void
1774 delete_caller_save_insns ()
1776 struct insn_chain *c = reload_insn_chain;
1778 while (c != 0)
1780 while (c != 0 && c->is_caller_save_insn)
1782 struct insn_chain *next = c->next;
1783 rtx insn = c->insn;
1785 if (insn == BLOCK_HEAD (c->block))
1786 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1787 if (insn == BLOCK_END (c->block))
1788 BLOCK_END (c->block) = PREV_INSN (insn);
1789 if (c == reload_insn_chain)
1790 reload_insn_chain = next;
1792 if (NEXT_INSN (insn) != 0)
1793 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1794 if (PREV_INSN (insn) != 0)
1795 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1797 if (next)
1798 next->prev = c->prev;
1799 if (c->prev)
1800 c->prev->next = next;
1801 c->next = unused_insn_chains;
1802 unused_insn_chains = c;
1803 c = next;
1805 if (c != 0)
1806 c = c->next;
1810 /* Handle the failure to find a register to spill.
1811 INSN should be one of the insns which needed this particular spill reg. */
1813 static void
1814 spill_failure (insn, class)
1815 rtx insn;
1816 enum reg_class class;
1818 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1819 if (asm_noperands (PATTERN (insn)) >= 0)
1820 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1821 reg_class_names[class]);
1822 else
1824 error ("Unable to find a register to spill in class `%s'.",
1825 reg_class_names[class]);
1826 fatal_insn ("This is the insn:", insn);
1830 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1831 data that is dead in INSN. */
1833 static void
1834 delete_dead_insn (insn)
1835 rtx insn;
1837 rtx prev = prev_real_insn (insn);
1838 rtx prev_dest;
1840 /* If the previous insn sets a register that dies in our insn, delete it
1841 too. */
1842 if (prev && GET_CODE (PATTERN (prev)) == SET
1843 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1844 && reg_mentioned_p (prev_dest, PATTERN (insn))
1845 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1846 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1847 delete_dead_insn (prev);
1849 PUT_CODE (insn, NOTE);
1850 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1851 NOTE_SOURCE_FILE (insn) = 0;
1854 /* Modify the home of pseudo-reg I.
1855 The new home is present in reg_renumber[I].
1857 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1858 or it may be -1, meaning there is none or it is not relevant.
1859 This is used so that all pseudos spilled from a given hard reg
1860 can share one stack slot. */
1862 static void
1863 alter_reg (i, from_reg)
1864 register int i;
1865 int from_reg;
1867 /* When outputting an inline function, this can happen
1868 for a reg that isn't actually used. */
1869 if (regno_reg_rtx[i] == 0)
1870 return;
1872 /* If the reg got changed to a MEM at rtl-generation time,
1873 ignore it. */
1874 if (GET_CODE (regno_reg_rtx[i]) != REG)
1875 return;
1877 /* Modify the reg-rtx to contain the new hard reg
1878 number or else to contain its pseudo reg number. */
1879 REGNO (regno_reg_rtx[i])
1880 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1882 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1883 allocate a stack slot for it. */
1885 if (reg_renumber[i] < 0
1886 && REG_N_REFS (i) > 0
1887 && reg_equiv_constant[i] == 0
1888 && reg_equiv_memory_loc[i] == 0)
1890 register rtx x;
1891 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1892 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1893 int adjust = 0;
1895 /* Each pseudo reg has an inherent size which comes from its own mode,
1896 and a total size which provides room for paradoxical subregs
1897 which refer to the pseudo reg in wider modes.
1899 We can use a slot already allocated if it provides both
1900 enough inherent space and enough total space.
1901 Otherwise, we allocate a new slot, making sure that it has no less
1902 inherent space, and no less total space, then the previous slot. */
1903 if (from_reg == -1)
1905 /* No known place to spill from => no slot to reuse. */
1906 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1907 inherent_size == total_size ? 0 : -1);
1908 if (BYTES_BIG_ENDIAN)
1909 /* Cancel the big-endian correction done in assign_stack_local.
1910 Get the address of the beginning of the slot.
1911 This is so we can do a big-endian correction unconditionally
1912 below. */
1913 adjust = inherent_size - total_size;
1915 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1917 /* Nothing can alias this slot except this pseudo. */
1918 MEM_ALIAS_SET (x) = new_alias_set ();
1921 /* Reuse a stack slot if possible. */
1922 else if (spill_stack_slot[from_reg] != 0
1923 && spill_stack_slot_width[from_reg] >= total_size
1924 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1925 >= inherent_size))
1926 x = spill_stack_slot[from_reg];
1928 /* Allocate a bigger slot. */
1929 else
1931 /* Compute maximum size needed, both for inherent size
1932 and for total size. */
1933 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1934 rtx stack_slot;
1936 if (spill_stack_slot[from_reg])
1938 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1939 > inherent_size)
1940 mode = GET_MODE (spill_stack_slot[from_reg]);
1941 if (spill_stack_slot_width[from_reg] > total_size)
1942 total_size = spill_stack_slot_width[from_reg];
1945 /* Make a slot with that size. */
1946 x = assign_stack_local (mode, total_size,
1947 inherent_size == total_size ? 0 : -1);
1948 stack_slot = x;
1950 /* All pseudos mapped to this slot can alias each other. */
1951 if (spill_stack_slot[from_reg])
1952 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
1953 else
1954 MEM_ALIAS_SET (x) = new_alias_set ();
1956 if (BYTES_BIG_ENDIAN)
1958 /* Cancel the big-endian correction done in assign_stack_local.
1959 Get the address of the beginning of the slot.
1960 This is so we can do a big-endian correction unconditionally
1961 below. */
1962 adjust = GET_MODE_SIZE (mode) - total_size;
1963 if (adjust)
1964 stack_slot = gen_rtx_MEM (mode_for_size (total_size
1965 * BITS_PER_UNIT,
1966 MODE_INT, 1),
1967 plus_constant (XEXP (x, 0), adjust));
1970 spill_stack_slot[from_reg] = stack_slot;
1971 spill_stack_slot_width[from_reg] = total_size;
1974 /* On a big endian machine, the "address" of the slot
1975 is the address of the low part that fits its inherent mode. */
1976 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
1977 adjust += (total_size - inherent_size);
1979 /* If we have any adjustment to make, or if the stack slot is the
1980 wrong mode, make a new stack slot. */
1981 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
1983 rtx new = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
1984 plus_constant (XEXP (x, 0), adjust));
1986 MEM_COPY_ATTRIBUTES (new, x);
1987 x = new;
1990 /* Save the stack slot for later. */
1991 reg_equiv_memory_loc[i] = x;
1995 /* Mark the slots in regs_ever_live for the hard regs
1996 used by pseudo-reg number REGNO. */
1998 void
1999 mark_home_live (regno)
2000 int regno;
2002 register int i, lim;
2004 i = reg_renumber[regno];
2005 if (i < 0)
2006 return;
2007 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2008 while (i < lim)
2009 regs_ever_live[i++] = 1;
2012 /* This function handles the tracking of elimination offsets around branches.
2014 X is a piece of RTL being scanned.
2016 INSN is the insn that it came from, if any.
2018 INITIAL_P is non-zero if we are to set the offset to be the initial
2019 offset and zero if we are setting the offset of the label to be the
2020 current offset. */
2022 static void
2023 set_label_offsets (x, insn, initial_p)
2024 rtx x;
2025 rtx insn;
2026 int initial_p;
2028 enum rtx_code code = GET_CODE (x);
2029 rtx tem;
2030 unsigned int i;
2031 struct elim_table *p;
2033 switch (code)
2035 case LABEL_REF:
2036 if (LABEL_REF_NONLOCAL_P (x))
2037 return;
2039 x = XEXP (x, 0);
2041 /* ... fall through ... */
2043 case CODE_LABEL:
2044 /* If we know nothing about this label, set the desired offsets. Note
2045 that this sets the offset at a label to be the offset before a label
2046 if we don't know anything about the label. This is not correct for
2047 the label after a BARRIER, but is the best guess we can make. If
2048 we guessed wrong, we will suppress an elimination that might have
2049 been possible had we been able to guess correctly. */
2051 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2053 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2054 offsets_at[CODE_LABEL_NUMBER (x)][i]
2055 = (initial_p ? reg_eliminate[i].initial_offset
2056 : reg_eliminate[i].offset);
2057 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2060 /* Otherwise, if this is the definition of a label and it is
2061 preceded by a BARRIER, set our offsets to the known offset of
2062 that label. */
2064 else if (x == insn
2065 && (tem = prev_nonnote_insn (insn)) != 0
2066 && GET_CODE (tem) == BARRIER)
2067 set_offsets_for_label (insn);
2068 else
2069 /* If neither of the above cases is true, compare each offset
2070 with those previously recorded and suppress any eliminations
2071 where the offsets disagree. */
2073 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2074 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2075 != (initial_p ? reg_eliminate[i].initial_offset
2076 : reg_eliminate[i].offset))
2077 reg_eliminate[i].can_eliminate = 0;
2079 return;
2081 case JUMP_INSN:
2082 set_label_offsets (PATTERN (insn), insn, initial_p);
2084 /* ... fall through ... */
2086 case INSN:
2087 case CALL_INSN:
2088 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2089 and hence must have all eliminations at their initial offsets. */
2090 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2091 if (REG_NOTE_KIND (tem) == REG_LABEL)
2092 set_label_offsets (XEXP (tem, 0), insn, 1);
2093 return;
2095 case ADDR_VEC:
2096 case ADDR_DIFF_VEC:
2097 /* Each of the labels in the address vector must be at their initial
2098 offsets. We want the first field for ADDR_VEC and the second
2099 field for ADDR_DIFF_VEC. */
2101 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2102 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2103 insn, initial_p);
2104 return;
2106 case SET:
2107 /* We only care about setting PC. If the source is not RETURN,
2108 IF_THEN_ELSE, or a label, disable any eliminations not at
2109 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2110 isn't one of those possibilities. For branches to a label,
2111 call ourselves recursively.
2113 Note that this can disable elimination unnecessarily when we have
2114 a non-local goto since it will look like a non-constant jump to
2115 someplace in the current function. This isn't a significant
2116 problem since such jumps will normally be when all elimination
2117 pairs are back to their initial offsets. */
2119 if (SET_DEST (x) != pc_rtx)
2120 return;
2122 switch (GET_CODE (SET_SRC (x)))
2124 case PC:
2125 case RETURN:
2126 return;
2128 case LABEL_REF:
2129 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2130 return;
2132 case IF_THEN_ELSE:
2133 tem = XEXP (SET_SRC (x), 1);
2134 if (GET_CODE (tem) == LABEL_REF)
2135 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2136 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2137 break;
2139 tem = XEXP (SET_SRC (x), 2);
2140 if (GET_CODE (tem) == LABEL_REF)
2141 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2142 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2143 break;
2144 return;
2146 default:
2147 break;
2150 /* If we reach here, all eliminations must be at their initial
2151 offset because we are doing a jump to a variable address. */
2152 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2153 if (p->offset != p->initial_offset)
2154 p->can_eliminate = 0;
2155 break;
2157 default:
2158 break;
2162 /* Scan X and replace any eliminable registers (such as fp) with a
2163 replacement (such as sp), plus an offset.
2165 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2166 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2167 MEM, we are allowed to replace a sum of a register and the constant zero
2168 with the register, which we cannot do outside a MEM. In addition, we need
2169 to record the fact that a register is referenced outside a MEM.
2171 If INSN is an insn, it is the insn containing X. If we replace a REG
2172 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2173 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2174 the REG is being modified.
2176 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2177 That's used when we eliminate in expressions stored in notes.
2178 This means, do not set ref_outside_mem even if the reference
2179 is outside of MEMs.
2181 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2182 replacements done assuming all offsets are at their initial values. If
2183 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2184 encounter, return the actual location so that find_reloads will do
2185 the proper thing. */
2188 eliminate_regs (x, mem_mode, insn)
2189 rtx x;
2190 enum machine_mode mem_mode;
2191 rtx insn;
2193 enum rtx_code code = GET_CODE (x);
2194 struct elim_table *ep;
2195 int regno;
2196 rtx new;
2197 int i, j;
2198 const char *fmt;
2199 int copied = 0;
2201 if (! current_function_decl)
2202 return x;
2204 switch (code)
2206 case CONST_INT:
2207 case CONST_DOUBLE:
2208 case CONST:
2209 case SYMBOL_REF:
2210 case CODE_LABEL:
2211 case PC:
2212 case CC0:
2213 case ASM_INPUT:
2214 case ADDR_VEC:
2215 case ADDR_DIFF_VEC:
2216 case RETURN:
2217 return x;
2219 case ADDRESSOF:
2220 /* This is only for the benefit of the debugging backends, which call
2221 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2222 removed after CSE. */
2223 new = eliminate_regs (XEXP (x, 0), 0, insn);
2224 if (GET_CODE (new) == MEM)
2225 return XEXP (new, 0);
2226 return x;
2228 case REG:
2229 regno = REGNO (x);
2231 /* First handle the case where we encounter a bare register that
2232 is eliminable. Replace it with a PLUS. */
2233 if (regno < FIRST_PSEUDO_REGISTER)
2235 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2236 ep++)
2237 if (ep->from_rtx == x && ep->can_eliminate)
2238 return plus_constant (ep->to_rtx, ep->previous_offset);
2241 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2242 && reg_equiv_constant[regno]
2243 && ! CONSTANT_P (reg_equiv_constant[regno]))
2244 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2245 mem_mode, insn);
2246 return x;
2248 /* You might think handling MINUS in a manner similar to PLUS is a
2249 good idea. It is not. It has been tried multiple times and every
2250 time the change has had to have been reverted.
2252 Other parts of reload know a PLUS is special (gen_reload for example)
2253 and require special code to handle code a reloaded PLUS operand.
2255 Also consider backends where the flags register is clobbered by a
2256 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2257 lea instruction comes to mind). If we try to reload a MINUS, we
2258 may kill the flags register that was holding a useful value.
2260 So, please before trying to handle MINUS, consider reload as a
2261 whole instead of this little section as well as the backend issues. */
2262 case PLUS:
2263 /* If this is the sum of an eliminable register and a constant, rework
2264 the sum. */
2265 if (GET_CODE (XEXP (x, 0)) == REG
2266 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2267 && CONSTANT_P (XEXP (x, 1)))
2269 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2270 ep++)
2271 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2273 /* The only time we want to replace a PLUS with a REG (this
2274 occurs when the constant operand of the PLUS is the negative
2275 of the offset) is when we are inside a MEM. We won't want
2276 to do so at other times because that would change the
2277 structure of the insn in a way that reload can't handle.
2278 We special-case the commonest situation in
2279 eliminate_regs_in_insn, so just replace a PLUS with a
2280 PLUS here, unless inside a MEM. */
2281 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2282 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2283 return ep->to_rtx;
2284 else
2285 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2286 plus_constant (XEXP (x, 1),
2287 ep->previous_offset));
2290 /* If the register is not eliminable, we are done since the other
2291 operand is a constant. */
2292 return x;
2295 /* If this is part of an address, we want to bring any constant to the
2296 outermost PLUS. We will do this by doing register replacement in
2297 our operands and seeing if a constant shows up in one of them.
2299 Note that there is no risk of modifying the structure of the insn,
2300 since we only get called for its operands, thus we are either
2301 modifying the address inside a MEM, or something like an address
2302 operand of a load-address insn. */
2305 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2306 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2308 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2310 /* If one side is a PLUS and the other side is a pseudo that
2311 didn't get a hard register but has a reg_equiv_constant,
2312 we must replace the constant here since it may no longer
2313 be in the position of any operand. */
2314 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2315 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2316 && reg_renumber[REGNO (new1)] < 0
2317 && reg_equiv_constant != 0
2318 && reg_equiv_constant[REGNO (new1)] != 0)
2319 new1 = reg_equiv_constant[REGNO (new1)];
2320 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2321 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2322 && reg_renumber[REGNO (new0)] < 0
2323 && reg_equiv_constant[REGNO (new0)] != 0)
2324 new0 = reg_equiv_constant[REGNO (new0)];
2326 new = form_sum (new0, new1);
2328 /* As above, if we are not inside a MEM we do not want to
2329 turn a PLUS into something else. We might try to do so here
2330 for an addition of 0 if we aren't optimizing. */
2331 if (! mem_mode && GET_CODE (new) != PLUS)
2332 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2333 else
2334 return new;
2337 return x;
2339 case MULT:
2340 /* If this is the product of an eliminable register and a
2341 constant, apply the distribute law and move the constant out
2342 so that we have (plus (mult ..) ..). This is needed in order
2343 to keep load-address insns valid. This case is pathological.
2344 We ignore the possibility of overflow here. */
2345 if (GET_CODE (XEXP (x, 0)) == REG
2346 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2347 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2348 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2349 ep++)
2350 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2352 if (! mem_mode
2353 /* Refs inside notes don't count for this purpose. */
2354 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2355 || GET_CODE (insn) == INSN_LIST)))
2356 ep->ref_outside_mem = 1;
2358 return
2359 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2360 ep->previous_offset * INTVAL (XEXP (x, 1)));
2363 /* ... fall through ... */
2365 case CALL:
2366 case COMPARE:
2367 /* See comments before PLUS about handling MINUS. */
2368 case MINUS:
2369 case DIV: case UDIV:
2370 case MOD: case UMOD:
2371 case AND: case IOR: case XOR:
2372 case ROTATERT: case ROTATE:
2373 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2374 case NE: case EQ:
2375 case GE: case GT: case GEU: case GTU:
2376 case LE: case LT: case LEU: case LTU:
2378 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2379 rtx new1
2380 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2382 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2383 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2385 return x;
2387 case EXPR_LIST:
2388 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2389 if (XEXP (x, 0))
2391 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2392 if (new != XEXP (x, 0))
2394 /* If this is a REG_DEAD note, it is not valid anymore.
2395 Using the eliminated version could result in creating a
2396 REG_DEAD note for the stack or frame pointer. */
2397 if (GET_MODE (x) == REG_DEAD)
2398 return (XEXP (x, 1)
2399 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2400 : NULL_RTX);
2402 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2406 /* ... fall through ... */
2408 case INSN_LIST:
2409 /* Now do eliminations in the rest of the chain. If this was
2410 an EXPR_LIST, this might result in allocating more memory than is
2411 strictly needed, but it simplifies the code. */
2412 if (XEXP (x, 1))
2414 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2415 if (new != XEXP (x, 1))
2416 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2418 return x;
2420 case PRE_INC:
2421 case POST_INC:
2422 case PRE_DEC:
2423 case POST_DEC:
2424 case STRICT_LOW_PART:
2425 case NEG: case NOT:
2426 case SIGN_EXTEND: case ZERO_EXTEND:
2427 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2428 case FLOAT: case FIX:
2429 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2430 case ABS:
2431 case SQRT:
2432 case FFS:
2433 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2434 if (new != XEXP (x, 0))
2435 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2436 return x;
2438 case SUBREG:
2439 /* Similar to above processing, but preserve SUBREG_WORD.
2440 Convert (subreg (mem)) to (mem) if not paradoxical.
2441 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2442 pseudo didn't get a hard reg, we must replace this with the
2443 eliminated version of the memory location because push_reloads
2444 may do the replacement in certain circumstances. */
2445 if (GET_CODE (SUBREG_REG (x)) == REG
2446 && (GET_MODE_SIZE (GET_MODE (x))
2447 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2448 && reg_equiv_memory_loc != 0
2449 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2451 new = SUBREG_REG (x);
2453 else
2454 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2456 if (new != XEXP (x, 0))
2458 int x_size = GET_MODE_SIZE (GET_MODE (x));
2459 int new_size = GET_MODE_SIZE (GET_MODE (new));
2461 if (GET_CODE (new) == MEM
2462 && ((x_size < new_size
2463 #ifdef WORD_REGISTER_OPERATIONS
2464 /* On these machines, combine can create rtl of the form
2465 (set (subreg:m1 (reg:m2 R) 0) ...)
2466 where m1 < m2, and expects something interesting to
2467 happen to the entire word. Moreover, it will use the
2468 (reg:m2 R) later, expecting all bits to be preserved.
2469 So if the number of words is the same, preserve the
2470 subreg so that push_reloads can see it. */
2471 && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
2472 #endif
2474 || (x_size == new_size))
2477 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2478 enum machine_mode mode = GET_MODE (x);
2480 if (BYTES_BIG_ENDIAN)
2481 offset += (MIN (UNITS_PER_WORD,
2482 GET_MODE_SIZE (GET_MODE (new)))
2483 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2485 PUT_MODE (new, mode);
2486 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2487 return new;
2489 else
2490 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
2493 return x;
2495 case MEM:
2496 /* This is only for the benefit of the debugging backends, which call
2497 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2498 removed after CSE. */
2499 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2500 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2502 /* Our only special processing is to pass the mode of the MEM to our
2503 recursive call and copy the flags. While we are here, handle this
2504 case more efficiently. */
2505 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
2506 if (new != XEXP (x, 0))
2508 new = gen_rtx_MEM (GET_MODE (x), new);
2509 MEM_COPY_ATTRIBUTES (new, x);
2510 return new;
2512 else
2513 return x;
2515 case USE:
2516 case CLOBBER:
2517 case ASM_OPERANDS:
2518 case SET:
2519 abort ();
2521 default:
2522 break;
2525 /* Process each of our operands recursively. If any have changed, make a
2526 copy of the rtx. */
2527 fmt = GET_RTX_FORMAT (code);
2528 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2530 if (*fmt == 'e')
2532 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2533 if (new != XEXP (x, i) && ! copied)
2535 rtx new_x = rtx_alloc (code);
2536 bcopy ((char *) x, (char *) new_x,
2537 (sizeof (*new_x) - sizeof (new_x->fld)
2538 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2539 x = new_x;
2540 copied = 1;
2542 XEXP (x, i) = new;
2544 else if (*fmt == 'E')
2546 int copied_vec = 0;
2547 for (j = 0; j < XVECLEN (x, i); j++)
2549 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2550 if (new != XVECEXP (x, i, j) && ! copied_vec)
2552 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2553 XVEC (x, i)->elem);
2554 if (! copied)
2556 rtx new_x = rtx_alloc (code);
2557 bcopy ((char *) x, (char *) new_x,
2558 (sizeof (*new_x) - sizeof (new_x->fld)
2559 + (sizeof (new_x->fld[0])
2560 * GET_RTX_LENGTH (code))));
2561 x = new_x;
2562 copied = 1;
2564 XVEC (x, i) = new_v;
2565 copied_vec = 1;
2567 XVECEXP (x, i, j) = new;
2572 return x;
2575 /* Scan rtx X for modifications of elimination target registers. Update
2576 the table of eliminables to reflect the changed state. MEM_MODE is
2577 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2579 static void
2580 elimination_effects (x, mem_mode)
2581 rtx x;
2582 enum machine_mode mem_mode;
2585 enum rtx_code code = GET_CODE (x);
2586 struct elim_table *ep;
2587 int regno;
2588 int i, j;
2589 const char *fmt;
2591 switch (code)
2593 case CONST_INT:
2594 case CONST_DOUBLE:
2595 case CONST:
2596 case SYMBOL_REF:
2597 case CODE_LABEL:
2598 case PC:
2599 case CC0:
2600 case ASM_INPUT:
2601 case ADDR_VEC:
2602 case ADDR_DIFF_VEC:
2603 case RETURN:
2604 return;
2606 case ADDRESSOF:
2607 abort ();
2609 case REG:
2610 regno = REGNO (x);
2612 /* First handle the case where we encounter a bare register that
2613 is eliminable. Replace it with a PLUS. */
2614 if (regno < FIRST_PSEUDO_REGISTER)
2616 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2617 ep++)
2618 if (ep->from_rtx == x && ep->can_eliminate)
2620 if (! mem_mode)
2621 ep->ref_outside_mem = 1;
2622 return;
2626 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2627 && reg_equiv_constant[regno]
2628 && ! CONSTANT_P (reg_equiv_constant[regno]))
2629 elimination_effects (reg_equiv_constant[regno], mem_mode);
2630 return;
2632 case PRE_INC:
2633 case POST_INC:
2634 case PRE_DEC:
2635 case POST_DEC:
2636 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2637 if (ep->to_rtx == XEXP (x, 0))
2639 int size = GET_MODE_SIZE (mem_mode);
2641 /* If more bytes than MEM_MODE are pushed, account for them. */
2642 #ifdef PUSH_ROUNDING
2643 if (ep->to_rtx == stack_pointer_rtx)
2644 size = PUSH_ROUNDING (size);
2645 #endif
2646 if (code == PRE_DEC || code == POST_DEC)
2647 ep->offset += size;
2648 else
2649 ep->offset -= size;
2652 /* Fall through to generic unary operation case. */
2653 case STRICT_LOW_PART:
2654 case NEG: case NOT:
2655 case SIGN_EXTEND: case ZERO_EXTEND:
2656 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2657 case FLOAT: case FIX:
2658 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2659 case ABS:
2660 case SQRT:
2661 case FFS:
2662 elimination_effects (XEXP (x, 0), mem_mode);
2663 return;
2665 case SUBREG:
2666 if (GET_CODE (SUBREG_REG (x)) == REG
2667 && (GET_MODE_SIZE (GET_MODE (x))
2668 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2669 && reg_equiv_memory_loc != 0
2670 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2671 return;
2673 elimination_effects (SUBREG_REG (x), mem_mode);
2674 return;
2676 case USE:
2677 /* If using a register that is the source of an eliminate we still
2678 think can be performed, note it cannot be performed since we don't
2679 know how this register is used. */
2680 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2681 if (ep->from_rtx == XEXP (x, 0))
2682 ep->can_eliminate = 0;
2684 elimination_effects (XEXP (x, 0), mem_mode);
2685 return;
2687 case CLOBBER:
2688 /* If clobbering a register that is the replacement register for an
2689 elimination we still think can be performed, note that it cannot
2690 be performed. Otherwise, we need not be concerned about it. */
2691 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2692 if (ep->to_rtx == XEXP (x, 0))
2693 ep->can_eliminate = 0;
2695 elimination_effects (XEXP (x, 0), mem_mode);
2696 return;
2698 case SET:
2699 /* Check for setting a register that we know about. */
2700 if (GET_CODE (SET_DEST (x)) == REG)
2702 /* See if this is setting the replacement register for an
2703 elimination.
2705 If DEST is the hard frame pointer, we do nothing because we
2706 assume that all assignments to the frame pointer are for
2707 non-local gotos and are being done at a time when they are valid
2708 and do not disturb anything else. Some machines want to
2709 eliminate a fake argument pointer (or even a fake frame pointer)
2710 with either the real frame or the stack pointer. Assignments to
2711 the hard frame pointer must not prevent this elimination. */
2713 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2714 ep++)
2715 if (ep->to_rtx == SET_DEST (x)
2716 && SET_DEST (x) != hard_frame_pointer_rtx)
2718 /* If it is being incremented, adjust the offset. Otherwise,
2719 this elimination can't be done. */
2720 rtx src = SET_SRC (x);
2722 if (GET_CODE (src) == PLUS
2723 && XEXP (src, 0) == SET_DEST (x)
2724 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2725 ep->offset -= INTVAL (XEXP (src, 1));
2726 else
2727 ep->can_eliminate = 0;
2731 elimination_effects (SET_DEST (x), 0);
2732 elimination_effects (SET_SRC (x), 0);
2733 return;
2735 case MEM:
2736 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2737 abort ();
2739 /* Our only special processing is to pass the mode of the MEM to our
2740 recursive call. */
2741 elimination_effects (XEXP (x, 0), GET_MODE (x));
2742 return;
2744 default:
2745 break;
2748 fmt = GET_RTX_FORMAT (code);
2749 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2751 if (*fmt == 'e')
2752 elimination_effects (XEXP (x, i), mem_mode);
2753 else if (*fmt == 'E')
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 elimination_effects (XVECEXP (x, i, j), mem_mode);
2759 /* Descend through rtx X and verify that no references to eliminable registers
2760 remain. If any do remain, mark the involved register as not
2761 eliminable. */
2763 static void
2764 check_eliminable_occurrences (x)
2765 rtx x;
2767 const char *fmt;
2768 int i;
2769 enum rtx_code code;
2771 if (x == 0)
2772 return;
2774 code = GET_CODE (x);
2776 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2778 struct elim_table *ep;
2780 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2781 if (ep->from_rtx == x && ep->can_eliminate)
2782 ep->can_eliminate = 0;
2783 return;
2786 fmt = GET_RTX_FORMAT (code);
2787 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2789 if (*fmt == 'e')
2790 check_eliminable_occurrences (XEXP (x, i));
2791 else if (*fmt == 'E')
2793 int j;
2794 for (j = 0; j < XVECLEN (x, i); j++)
2795 check_eliminable_occurrences (XVECEXP (x, i, j));
2800 /* Scan INSN and eliminate all eliminable registers in it.
2802 If REPLACE is nonzero, do the replacement destructively. Also
2803 delete the insn as dead it if it is setting an eliminable register.
2805 If REPLACE is zero, do all our allocations in reload_obstack.
2807 If no eliminations were done and this insn doesn't require any elimination
2808 processing (these are not identical conditions: it might be updating sp,
2809 but not referencing fp; this needs to be seen during reload_as_needed so
2810 that the offset between fp and sp can be taken into consideration), zero
2811 is returned. Otherwise, 1 is returned. */
2813 static int
2814 eliminate_regs_in_insn (insn, replace)
2815 rtx insn;
2816 int replace;
2818 int icode = recog_memoized (insn);
2819 rtx old_body = PATTERN (insn);
2820 int insn_is_asm = asm_noperands (old_body) >= 0;
2821 rtx old_set = single_set (insn);
2822 rtx new_body;
2823 int val = 0;
2824 int i, any_changes;
2825 rtx substed_operand[MAX_RECOG_OPERANDS];
2826 rtx orig_operand[MAX_RECOG_OPERANDS];
2827 struct elim_table *ep;
2829 if (! insn_is_asm && icode < 0)
2831 if (GET_CODE (PATTERN (insn)) == USE
2832 || GET_CODE (PATTERN (insn)) == CLOBBER
2833 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2834 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2835 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2836 return 0;
2837 abort ();
2840 if (! replace)
2841 push_obstacks (&reload_obstack, &reload_obstack);
2843 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2844 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2846 /* Check for setting an eliminable register. */
2847 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2848 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2850 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2851 /* If this is setting the frame pointer register to the
2852 hardware frame pointer register and this is an elimination
2853 that will be done (tested above), this insn is really
2854 adjusting the frame pointer downward to compensate for
2855 the adjustment done before a nonlocal goto. */
2856 if (ep->from == FRAME_POINTER_REGNUM
2857 && ep->to == HARD_FRAME_POINTER_REGNUM)
2859 rtx src = SET_SRC (old_set);
2860 int offset = 0, ok = 0;
2861 rtx prev_insn, prev_set;
2863 if (src == ep->to_rtx)
2864 offset = 0, ok = 1;
2865 else if (GET_CODE (src) == PLUS
2866 && GET_CODE (XEXP (src, 0)) == CONST_INT
2867 && XEXP (src, 1) == ep->to_rtx)
2868 offset = INTVAL (XEXP (src, 0)), ok = 1;
2869 else if (GET_CODE (src) == PLUS
2870 && GET_CODE (XEXP (src, 1)) == CONST_INT
2871 && XEXP (src, 0) == ep->to_rtx)
2872 offset = INTVAL (XEXP (src, 1)), ok = 1;
2873 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2874 && (prev_set = single_set (prev_insn)) != 0
2875 && rtx_equal_p (SET_DEST (prev_set), src))
2877 src = SET_SRC (prev_set);
2878 if (src == ep->to_rtx)
2879 offset = 0, ok = 1;
2880 else if (GET_CODE (src) == PLUS
2881 && GET_CODE (XEXP (src, 0)) == CONST_INT
2882 && XEXP (src, 1) == ep->to_rtx)
2883 offset = INTVAL (XEXP (src, 0)), ok = 1;
2884 else if (GET_CODE (src) == PLUS
2885 && GET_CODE (XEXP (src, 1)) == CONST_INT
2886 && XEXP (src, 0) == ep->to_rtx)
2887 offset = INTVAL (XEXP (src, 1)), ok = 1;
2890 if (ok)
2892 if (replace)
2894 rtx src
2895 = plus_constant (ep->to_rtx, offset - ep->offset);
2897 /* First see if this insn remains valid when we
2898 make the change. If not, keep the INSN_CODE
2899 the same and let reload fit it up. */
2900 validate_change (insn, &SET_SRC (old_set), src, 1);
2901 validate_change (insn, &SET_DEST (old_set),
2902 ep->to_rtx, 1);
2903 if (! apply_change_group ())
2905 SET_SRC (old_set) = src;
2906 SET_DEST (old_set) = ep->to_rtx;
2910 val = 1;
2911 goto done;
2914 #endif
2916 /* In this case this insn isn't serving a useful purpose. We
2917 will delete it in reload_as_needed once we know that this
2918 elimination is, in fact, being done.
2920 If REPLACE isn't set, we can't delete this insn, but needn't
2921 process it since it won't be used unless something changes. */
2922 if (replace)
2924 delete_dead_insn (insn);
2925 return 1;
2927 val = 1;
2928 goto done;
2932 /* We allow one special case which happens to work on all machines we
2933 currently support: a single set with the source being a PLUS of an
2934 eliminable register and a constant. */
2935 if (old_set
2936 && GET_CODE (SET_SRC (old_set)) == PLUS
2937 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
2938 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2939 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2941 rtx reg = XEXP (SET_SRC (old_set), 0);
2942 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
2944 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2945 if (ep->from_rtx == reg && ep->can_eliminate)
2947 offset += ep->offset;
2949 if (offset == 0)
2951 /* We assume here that we don't need a PARALLEL of
2952 any CLOBBERs for this assignment. There's not
2953 much we can do if we do need it. */
2954 PATTERN (insn) = gen_rtx_SET (VOIDmode,
2955 SET_DEST (old_set),
2956 ep->to_rtx);
2957 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
2958 if (INSN_CODE (insn) < 0)
2959 abort ();
2961 else
2963 new_body = old_body;
2964 if (! replace)
2966 new_body = copy_insn (old_body);
2967 if (REG_NOTES (insn))
2968 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2970 PATTERN (insn) = new_body;
2971 old_set = single_set (insn);
2973 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
2974 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
2976 val = 1;
2977 /* This can't have an effect on elimination offsets, so skip right
2978 to the end. */
2979 goto done;
2983 /* Determine the effects of this insn on elimination offsets. */
2984 elimination_effects (old_body, 0);
2986 /* Eliminate all eliminable registers occurring in operands that
2987 can be handled by reload. */
2988 extract_insn (insn);
2989 any_changes = 0;
2990 for (i = 0; i < recog_data.n_operands; i++)
2992 orig_operand[i] = recog_data.operand[i];
2993 substed_operand[i] = recog_data.operand[i];
2995 /* For an asm statement, every operand is eliminable. */
2996 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
2998 /* Check for setting a register that we know about. */
2999 if (recog_data.operand_type[i] != OP_IN
3000 && GET_CODE (orig_operand[i]) == REG)
3002 /* If we are assigning to a register that can be eliminated, it
3003 must be as part of a PARALLEL, since the code above handles
3004 single SETs. We must indicate that we can no longer
3005 eliminate this reg. */
3006 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3007 ep++)
3008 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3009 ep->can_eliminate = 0;
3012 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3013 replace ? insn : NULL_RTX);
3014 if (substed_operand[i] != orig_operand[i])
3015 val = any_changes = 1;
3016 /* Terminate the search in check_eliminable_occurrences at
3017 this point. */
3018 *recog_data.operand_loc[i] = 0;
3020 /* If an output operand changed from a REG to a MEM and INSN is an
3021 insn, write a CLOBBER insn. */
3022 if (recog_data.operand_type[i] != OP_IN
3023 && GET_CODE (orig_operand[i]) == REG
3024 && GET_CODE (substed_operand[i]) == MEM
3025 && replace)
3026 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3027 insn);
3031 for (i = 0; i < recog_data.n_dups; i++)
3032 *recog_data.dup_loc[i]
3033 = *recog_data.operand_loc[(int)recog_data.dup_num[i]];
3035 /* If any eliminable remain, they aren't eliminable anymore. */
3036 check_eliminable_occurrences (old_body);
3038 /* Substitute the operands; the new values are in the substed_operand
3039 array. */
3040 for (i = 0; i < recog_data.n_operands; i++)
3041 *recog_data.operand_loc[i] = substed_operand[i];
3042 for (i = 0; i < recog_data.n_dups; i++)
3043 *recog_data.dup_loc[i] = substed_operand[(int)recog_data.dup_num[i]];
3045 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3046 re-recognize the insn. We do this in case we had a simple addition
3047 but now can do this as a load-address. This saves an insn in this
3048 common case.
3049 If re-recognition fails, the old insn code number will still be used,
3050 and some register operands may have changed into PLUS expressions.
3051 These will be handled by find_reloads by loading them into a register
3052 again.*/
3054 if (val)
3056 /* If we aren't replacing things permanently and we changed something,
3057 make another copy to ensure that all the RTL is new. Otherwise
3058 things can go wrong if find_reload swaps commutative operands
3059 and one is inside RTL that has been copied while the other is not. */
3060 new_body = old_body;
3061 if (! replace)
3063 new_body = copy_insn (old_body);
3064 if (REG_NOTES (insn))
3065 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3067 PATTERN (insn) = new_body;
3069 /* If we had a move insn but now we don't, rerecognize it. This will
3070 cause spurious re-recognition if the old move had a PARALLEL since
3071 the new one still will, but we can't call single_set without
3072 having put NEW_BODY into the insn and the re-recognition won't
3073 hurt in this rare case. */
3074 /* ??? Why this huge if statement - why don't we just rerecognize the
3075 thing always? */
3076 if (! insn_is_asm
3077 && old_set != 0
3078 && ((GET_CODE (SET_SRC (old_set)) == REG
3079 && (GET_CODE (new_body) != SET
3080 || GET_CODE (SET_SRC (new_body)) != REG))
3081 /* If this was a load from or store to memory, compare
3082 the MEM in recog_data.operand to the one in the insn.
3083 If they are not equal, then rerecognize the insn. */
3084 || (old_set != 0
3085 && ((GET_CODE (SET_SRC (old_set)) == MEM
3086 && SET_SRC (old_set) != recog_data.operand[1])
3087 || (GET_CODE (SET_DEST (old_set)) == MEM
3088 && SET_DEST (old_set) != recog_data.operand[0])))
3089 /* If this was an add insn before, rerecognize. */
3090 || GET_CODE (SET_SRC (old_set)) == PLUS))
3092 int new_icode = recog (PATTERN (insn), insn, 0);
3093 if (new_icode < 0)
3094 INSN_CODE (insn) = icode;
3098 /* Restore the old body. If there were any changes to it, we made a copy
3099 of it while the changes were still in place, so we'll correctly return
3100 a modified insn below. */
3101 if (! replace)
3103 /* Restore the old body. */
3104 for (i = 0; i < recog_data.n_operands; i++)
3105 *recog_data.operand_loc[i] = orig_operand[i];
3106 for (i = 0; i < recog_data.n_dups; i++)
3107 *recog_data.dup_loc[i] = orig_operand[(int)recog_data.dup_num[i]];
3110 /* Update all elimination pairs to reflect the status after the current
3111 insn. The changes we make were determined by the earlier call to
3112 elimination_effects.
3114 We also detect a cases where register elimination cannot be done,
3115 namely, if a register would be both changed and referenced outside a MEM
3116 in the resulting insn since such an insn is often undefined and, even if
3117 not, we cannot know what meaning will be given to it. Note that it is
3118 valid to have a register used in an address in an insn that changes it
3119 (presumably with a pre- or post-increment or decrement).
3121 If anything changes, return nonzero. */
3123 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3125 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3126 ep->can_eliminate = 0;
3128 ep->ref_outside_mem = 0;
3130 if (ep->previous_offset != ep->offset)
3131 val = 1;
3134 done:
3135 /* If we changed something, perform elimination in REG_NOTES. This is
3136 needed even when REPLACE is zero because a REG_DEAD note might refer
3137 to a register that we eliminate and could cause a different number
3138 of spill registers to be needed in the final reload pass than in
3139 the pre-passes. */
3140 if (val && REG_NOTES (insn) != 0)
3141 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3143 if (! replace)
3144 pop_obstacks ();
3146 return val;
3149 /* Loop through all elimination pairs.
3150 Recalculate the number not at initial offset.
3152 Compute the maximum offset (minimum offset if the stack does not
3153 grow downward) for each elimination pair. */
3155 static void
3156 update_eliminable_offsets ()
3158 struct elim_table *ep;
3160 num_not_at_initial_offset = 0;
3161 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3163 ep->previous_offset = ep->offset;
3164 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3165 num_not_at_initial_offset++;
3169 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3170 replacement we currently believe is valid, mark it as not eliminable if X
3171 modifies DEST in any way other than by adding a constant integer to it.
3173 If DEST is the frame pointer, we do nothing because we assume that
3174 all assignments to the hard frame pointer are nonlocal gotos and are being
3175 done at a time when they are valid and do not disturb anything else.
3176 Some machines want to eliminate a fake argument pointer with either the
3177 frame or stack pointer. Assignments to the hard frame pointer must not
3178 prevent this elimination.
3180 Called via note_stores from reload before starting its passes to scan
3181 the insns of the function. */
3183 static void
3184 mark_not_eliminable (dest, x, data)
3185 rtx dest;
3186 rtx x;
3187 void *data ATTRIBUTE_UNUSED;
3189 register unsigned int i;
3191 /* A SUBREG of a hard register here is just changing its mode. We should
3192 not see a SUBREG of an eliminable hard register, but check just in
3193 case. */
3194 if (GET_CODE (dest) == SUBREG)
3195 dest = SUBREG_REG (dest);
3197 if (dest == hard_frame_pointer_rtx)
3198 return;
3200 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3201 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3202 && (GET_CODE (x) != SET
3203 || GET_CODE (SET_SRC (x)) != PLUS
3204 || XEXP (SET_SRC (x), 0) != dest
3205 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3207 reg_eliminate[i].can_eliminate_previous
3208 = reg_eliminate[i].can_eliminate = 0;
3209 num_eliminable--;
3213 /* Verify that the initial elimination offsets did not change since the
3214 last call to set_initial_elim_offsets. This is used to catch cases
3215 where something illegal happened during reload_as_needed that could
3216 cause incorrect code to be generated if we did not check for it. */
3218 static void
3219 verify_initial_elim_offsets ()
3221 int t;
3223 #ifdef ELIMINABLE_REGS
3224 struct elim_table *ep;
3226 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3228 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3229 if (t != ep->initial_offset)
3230 abort ();
3232 #else
3233 INITIAL_FRAME_POINTER_OFFSET (t);
3234 if (t != reg_eliminate[0].initial_offset)
3235 abort ();
3236 #endif
3239 /* Reset all offsets on eliminable registers to their initial values. */
3241 static void
3242 set_initial_elim_offsets ()
3244 struct elim_table *ep = reg_eliminate;
3246 #ifdef ELIMINABLE_REGS
3247 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3249 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3250 ep->previous_offset = ep->offset = ep->initial_offset;
3252 #else
3253 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3254 ep->previous_offset = ep->offset = ep->initial_offset;
3255 #endif
3257 num_not_at_initial_offset = 0;
3260 /* Initialize the known label offsets.
3261 Set a known offset for each forced label to be at the initial offset
3262 of each elimination. We do this because we assume that all
3263 computed jumps occur from a location where each elimination is
3264 at its initial offset.
3265 For all other labels, show that we don't know the offsets. */
3267 static void
3268 set_initial_label_offsets ()
3270 rtx x;
3271 bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
3273 for (x = forced_labels; x; x = XEXP (x, 1))
3274 if (XEXP (x, 0))
3275 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3278 /* Set all elimination offsets to the known values for the code label given
3279 by INSN. */
3281 static void
3282 set_offsets_for_label (insn)
3283 rtx insn;
3285 unsigned int i;
3286 int label_nr = CODE_LABEL_NUMBER (insn);
3287 struct elim_table *ep;
3289 num_not_at_initial_offset = 0;
3290 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3292 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3293 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3294 num_not_at_initial_offset++;
3298 /* See if anything that happened changes which eliminations are valid.
3299 For example, on the Sparc, whether or not the frame pointer can
3300 be eliminated can depend on what registers have been used. We need
3301 not check some conditions again (such as flag_omit_frame_pointer)
3302 since they can't have changed. */
3304 static void
3305 update_eliminables (pset)
3306 HARD_REG_SET *pset;
3308 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3309 int previous_frame_pointer_needed = frame_pointer_needed;
3310 #endif
3311 struct elim_table *ep;
3313 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3314 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3315 #ifdef ELIMINABLE_REGS
3316 || ! CAN_ELIMINATE (ep->from, ep->to)
3317 #endif
3319 ep->can_eliminate = 0;
3321 /* Look for the case where we have discovered that we can't replace
3322 register A with register B and that means that we will now be
3323 trying to replace register A with register C. This means we can
3324 no longer replace register C with register B and we need to disable
3325 such an elimination, if it exists. This occurs often with A == ap,
3326 B == sp, and C == fp. */
3328 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3330 struct elim_table *op;
3331 register int new_to = -1;
3333 if (! ep->can_eliminate && ep->can_eliminate_previous)
3335 /* Find the current elimination for ep->from, if there is a
3336 new one. */
3337 for (op = reg_eliminate;
3338 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3339 if (op->from == ep->from && op->can_eliminate)
3341 new_to = op->to;
3342 break;
3345 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3346 disable it. */
3347 for (op = reg_eliminate;
3348 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3349 if (op->from == new_to && op->to == ep->to)
3350 op->can_eliminate = 0;
3354 /* See if any registers that we thought we could eliminate the previous
3355 time are no longer eliminable. If so, something has changed and we
3356 must spill the register. Also, recompute the number of eliminable
3357 registers and see if the frame pointer is needed; it is if there is
3358 no elimination of the frame pointer that we can perform. */
3360 frame_pointer_needed = 1;
3361 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3363 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3364 && ep->to != HARD_FRAME_POINTER_REGNUM)
3365 frame_pointer_needed = 0;
3367 if (! ep->can_eliminate && ep->can_eliminate_previous)
3369 ep->can_eliminate_previous = 0;
3370 SET_HARD_REG_BIT (*pset, ep->from);
3371 num_eliminable--;
3375 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3376 /* If we didn't need a frame pointer last time, but we do now, spill
3377 the hard frame pointer. */
3378 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3379 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3380 #endif
3383 /* Initialize the table of registers to eliminate. */
3385 static void
3386 init_elim_table ()
3388 struct elim_table *ep;
3389 #ifdef ELIMINABLE_REGS
3390 struct elim_table_1 *ep1;
3391 #endif
3393 if (!reg_eliminate)
3394 reg_eliminate = (struct elim_table *)
3395 xcalloc(sizeof(struct elim_table), NUM_ELIMINABLE_REGS);
3397 /* Does this function require a frame pointer? */
3399 frame_pointer_needed = (! flag_omit_frame_pointer
3400 #ifdef EXIT_IGNORE_STACK
3401 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3402 and restore sp for alloca. So we can't eliminate
3403 the frame pointer in that case. At some point,
3404 we should improve this by emitting the
3405 sp-adjusting insns for this case. */
3406 || (current_function_calls_alloca
3407 && EXIT_IGNORE_STACK)
3408 #endif
3409 || FRAME_POINTER_REQUIRED);
3411 num_eliminable = 0;
3413 #ifdef ELIMINABLE_REGS
3414 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3415 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3417 ep->from = ep1->from;
3418 ep->to = ep1->to;
3419 ep->can_eliminate = ep->can_eliminate_previous
3420 = (CAN_ELIMINATE (ep->from, ep->to)
3421 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3423 #else
3424 reg_eliminate[0].from = reg_eliminate_1[0].from;
3425 reg_eliminate[0].to = reg_eliminate_1[0].to;
3426 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3427 = ! frame_pointer_needed;
3428 #endif
3430 /* Count the number of eliminable registers and build the FROM and TO
3431 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3432 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3433 We depend on this. */
3434 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3436 num_eliminable += ep->can_eliminate;
3437 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3438 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3442 /* Kick all pseudos out of hard register REGNO.
3443 If DUMPFILE is nonzero, log actions taken on that file.
3445 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3446 because we found we can't eliminate some register. In the case, no pseudos
3447 are allowed to be in the register, even if they are only in a block that
3448 doesn't require spill registers, unlike the case when we are spilling this
3449 hard reg to produce another spill register.
3451 Return nonzero if any pseudos needed to be kicked out. */
3453 static void
3454 spill_hard_reg (regno, dumpfile, cant_eliminate)
3455 unsigned int regno;
3456 FILE *dumpfile ATTRIBUTE_UNUSED;
3457 int cant_eliminate;
3459 register int i;
3461 if (cant_eliminate)
3463 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3464 regs_ever_live[regno] = 1;
3467 /* Spill every pseudo reg that was allocated to this reg
3468 or to something that overlaps this reg. */
3470 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3471 if (reg_renumber[i] >= 0
3472 && (unsigned int) reg_renumber[i] <= regno
3473 && ((unsigned int) reg_renumber[i]
3474 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3475 PSEUDO_REGNO_MODE (i))
3476 > regno))
3477 SET_REGNO_REG_SET (&spilled_pseudos, i);
3480 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3481 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3483 static void
3484 ior_hard_reg_set (set1, set2)
3485 HARD_REG_SET *set1, *set2;
3487 IOR_HARD_REG_SET (*set1, *set2);
3490 /* After find_reload_regs has been run for all insn that need reloads,
3491 and/or spill_hard_regs was called, this function is used to actually
3492 spill pseudo registers and try to reallocate them. It also sets up the
3493 spill_regs array for use by choose_reload_regs. */
3495 static int
3496 finish_spills (global, dumpfile)
3497 int global;
3498 FILE *dumpfile;
3500 struct insn_chain *chain;
3501 int something_changed = 0;
3502 int i;
3504 /* Build the spill_regs array for the function. */
3505 /* If there are some registers still to eliminate and one of the spill regs
3506 wasn't ever used before, additional stack space may have to be
3507 allocated to store this register. Thus, we may have changed the offset
3508 between the stack and frame pointers, so mark that something has changed.
3510 One might think that we need only set VAL to 1 if this is a call-used
3511 register. However, the set of registers that must be saved by the
3512 prologue is not identical to the call-used set. For example, the
3513 register used by the call insn for the return PC is a call-used register,
3514 but must be saved by the prologue. */
3516 n_spills = 0;
3517 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3518 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3520 spill_reg_order[i] = n_spills;
3521 spill_regs[n_spills++] = i;
3522 if (num_eliminable && ! regs_ever_live[i])
3523 something_changed = 1;
3524 regs_ever_live[i] = 1;
3526 else
3527 spill_reg_order[i] = -1;
3529 EXECUTE_IF_SET_IN_REG_SET
3530 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3532 /* Record the current hard register the pseudo is allocated to in
3533 pseudo_previous_regs so we avoid reallocating it to the same
3534 hard reg in a later pass. */
3535 if (reg_renumber[i] < 0)
3536 abort ();
3538 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3539 /* Mark it as no longer having a hard register home. */
3540 reg_renumber[i] = -1;
3541 /* We will need to scan everything again. */
3542 something_changed = 1;
3545 /* Retry global register allocation if possible. */
3546 if (global)
3548 bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
3549 /* For every insn that needs reloads, set the registers used as spill
3550 regs in pseudo_forbidden_regs for every pseudo live across the
3551 insn. */
3552 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3554 EXECUTE_IF_SET_IN_REG_SET
3555 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3557 ior_hard_reg_set (pseudo_forbidden_regs + i,
3558 &chain->used_spill_regs);
3560 EXECUTE_IF_SET_IN_REG_SET
3561 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3563 ior_hard_reg_set (pseudo_forbidden_regs + i,
3564 &chain->used_spill_regs);
3568 /* Retry allocating the spilled pseudos. For each reg, merge the
3569 various reg sets that indicate which hard regs can't be used,
3570 and call retry_global_alloc.
3571 We change spill_pseudos here to only contain pseudos that did not
3572 get a new hard register. */
3573 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3574 if (reg_old_renumber[i] != reg_renumber[i])
3576 HARD_REG_SET forbidden;
3577 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3578 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3579 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3580 retry_global_alloc (i, forbidden);
3581 if (reg_renumber[i] >= 0)
3582 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3586 /* Fix up the register information in the insn chain.
3587 This involves deleting those of the spilled pseudos which did not get
3588 a new hard register home from the live_{before,after} sets. */
3589 for (chain = reload_insn_chain; chain; chain = chain->next)
3591 HARD_REG_SET used_by_pseudos;
3592 HARD_REG_SET used_by_pseudos2;
3594 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3595 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3597 /* Mark any unallocated hard regs as available for spills. That
3598 makes inheritance work somewhat better. */
3599 if (chain->need_reload)
3601 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3602 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3603 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3605 /* Save the old value for the sanity test below. */
3606 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3608 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3609 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3610 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3611 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3613 /* Make sure we only enlarge the set. */
3614 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3615 abort ();
3616 ok:;
3620 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3621 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3623 int regno = reg_renumber[i];
3624 if (reg_old_renumber[i] == regno)
3625 continue;
3627 alter_reg (i, reg_old_renumber[i]);
3628 reg_old_renumber[i] = regno;
3629 if (dumpfile)
3631 if (regno == -1)
3632 fprintf (dumpfile, " Register %d now on stack.\n\n", i);
3633 else
3634 fprintf (dumpfile, " Register %d now in %d.\n\n",
3635 i, reg_renumber[i]);
3639 return something_changed;
3642 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3643 Also mark any hard registers used to store user variables as
3644 forbidden from being used for spill registers. */
3646 static void
3647 scan_paradoxical_subregs (x)
3648 register rtx x;
3650 register int i;
3651 register const char *fmt;
3652 register enum rtx_code code = GET_CODE (x);
3654 switch (code)
3656 case REG:
3657 #if 0
3658 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3659 && REG_USERVAR_P (x))
3660 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3661 #endif
3662 return;
3664 case CONST_INT:
3665 case CONST:
3666 case SYMBOL_REF:
3667 case LABEL_REF:
3668 case CONST_DOUBLE:
3669 case CC0:
3670 case PC:
3671 case USE:
3672 case CLOBBER:
3673 return;
3675 case SUBREG:
3676 if (GET_CODE (SUBREG_REG (x)) == REG
3677 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3678 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3679 = GET_MODE_SIZE (GET_MODE (x));
3680 return;
3682 default:
3683 break;
3686 fmt = GET_RTX_FORMAT (code);
3687 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3689 if (fmt[i] == 'e')
3690 scan_paradoxical_subregs (XEXP (x, i));
3691 else if (fmt[i] == 'E')
3693 register int j;
3694 for (j = XVECLEN (x, i) - 1; j >=0; j--)
3695 scan_paradoxical_subregs (XVECEXP (x, i, j));
3700 /* Reload pseudo-registers into hard regs around each insn as needed.
3701 Additional register load insns are output before the insn that needs it
3702 and perhaps store insns after insns that modify the reloaded pseudo reg.
3704 reg_last_reload_reg and reg_reloaded_contents keep track of
3705 which registers are already available in reload registers.
3706 We update these for the reloads that we perform,
3707 as the insns are scanned. */
3709 static void
3710 reload_as_needed (live_known)
3711 int live_known;
3713 struct insn_chain *chain;
3714 #if defined (AUTO_INC_DEC)
3715 register int i;
3716 #endif
3717 rtx x;
3719 bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
3720 bzero ((char *) spill_reg_store, sizeof spill_reg_store);
3721 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3722 reg_has_output_reload = (char *) xmalloc (max_regno);
3723 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3725 set_initial_elim_offsets ();
3727 for (chain = reload_insn_chain; chain; chain = chain->next)
3729 rtx prev;
3730 rtx insn = chain->insn;
3731 rtx old_next = NEXT_INSN (insn);
3733 /* If we pass a label, copy the offsets from the label information
3734 into the current offsets of each elimination. */
3735 if (GET_CODE (insn) == CODE_LABEL)
3736 set_offsets_for_label (insn);
3738 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3740 rtx oldpat = PATTERN (insn);
3742 /* If this is a USE and CLOBBER of a MEM, ensure that any
3743 references to eliminable registers have been removed. */
3745 if ((GET_CODE (PATTERN (insn)) == USE
3746 || GET_CODE (PATTERN (insn)) == CLOBBER)
3747 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3748 XEXP (XEXP (PATTERN (insn), 0), 0)
3749 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3750 GET_MODE (XEXP (PATTERN (insn), 0)),
3751 NULL_RTX);
3753 /* If we need to do register elimination processing, do so.
3754 This might delete the insn, in which case we are done. */
3755 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3757 eliminate_regs_in_insn (insn, 1);
3758 if (GET_CODE (insn) == NOTE)
3760 update_eliminable_offsets ();
3761 continue;
3765 /* If need_elim is nonzero but need_reload is zero, one might think
3766 that we could simply set n_reloads to 0. However, find_reloads
3767 could have done some manipulation of the insn (such as swapping
3768 commutative operands), and these manipulations are lost during
3769 the first pass for every insn that needs register elimination.
3770 So the actions of find_reloads must be redone here. */
3772 if (! chain->need_elim && ! chain->need_reload
3773 && ! chain->need_operand_change)
3774 n_reloads = 0;
3775 /* First find the pseudo regs that must be reloaded for this insn.
3776 This info is returned in the tables reload_... (see reload.h).
3777 Also modify the body of INSN by substituting RELOAD
3778 rtx's for those pseudo regs. */
3779 else
3781 bzero (reg_has_output_reload, max_regno);
3782 CLEAR_HARD_REG_SET (reg_is_output_reload);
3784 find_reloads (insn, 1, spill_indirect_levels, live_known,
3785 spill_reg_order);
3788 if (num_eliminable && chain->need_elim)
3789 update_eliminable_offsets ();
3791 if (n_reloads > 0)
3793 rtx next = NEXT_INSN (insn);
3794 rtx p;
3796 prev = PREV_INSN (insn);
3798 /* Now compute which reload regs to reload them into. Perhaps
3799 reusing reload regs from previous insns, or else output
3800 load insns to reload them. Maybe output store insns too.
3801 Record the choices of reload reg in reload_reg_rtx. */
3802 choose_reload_regs (chain);
3804 /* Merge any reloads that we didn't combine for fear of
3805 increasing the number of spill registers needed but now
3806 discover can be safely merged. */
3807 if (SMALL_REGISTER_CLASSES)
3808 merge_assigned_reloads (insn);
3810 /* Generate the insns to reload operands into or out of
3811 their reload regs. */
3812 emit_reload_insns (chain);
3814 /* Substitute the chosen reload regs from reload_reg_rtx
3815 into the insn's body (or perhaps into the bodies of other
3816 load and store insn that we just made for reloading
3817 and that we moved the structure into). */
3818 subst_reloads ();
3820 /* If this was an ASM, make sure that all the reload insns
3821 we have generated are valid. If not, give an error
3822 and delete them. */
3824 if (asm_noperands (PATTERN (insn)) >= 0)
3825 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3826 if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
3827 && (recog_memoized (p) < 0
3828 || (extract_insn (p), ! constrain_operands (1))))
3830 error_for_asm (insn,
3831 "`asm' operand requires impossible reload");
3832 PUT_CODE (p, NOTE);
3833 NOTE_SOURCE_FILE (p) = 0;
3834 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3837 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3838 is no longer validly lying around to save a future reload.
3839 Note that this does not detect pseudos that were reloaded
3840 for this insn in order to be stored in
3841 (obeying register constraints). That is correct; such reload
3842 registers ARE still valid. */
3843 note_stores (oldpat, forget_old_reloads_1, NULL);
3845 /* There may have been CLOBBER insns placed after INSN. So scan
3846 between INSN and NEXT and use them to forget old reloads. */
3847 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3848 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3849 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3851 #ifdef AUTO_INC_DEC
3852 /* Likewise for regs altered by auto-increment in this insn.
3853 REG_INC notes have been changed by reloading:
3854 find_reloads_address_1 records substitutions for them,
3855 which have been performed by subst_reloads above. */
3856 for (i = n_reloads - 1; i >= 0; i--)
3858 rtx in_reg = rld[i].in_reg;
3859 if (in_reg)
3861 enum rtx_code code = GET_CODE (in_reg);
3862 /* PRE_INC / PRE_DEC will have the reload register ending up
3863 with the same value as the stack slot, but that doesn't
3864 hold true for POST_INC / POST_DEC. Either we have to
3865 convert the memory access to a true POST_INC / POST_DEC,
3866 or we can't use the reload register for inheritance. */
3867 if ((code == POST_INC || code == POST_DEC)
3868 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3869 REGNO (rld[i].reg_rtx))
3870 /* Make sure it is the inc/dec pseudo, and not
3871 some other (e.g. output operand) pseudo. */
3872 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3873 == REGNO (XEXP (in_reg, 0))))
3876 rtx reload_reg = rld[i].reg_rtx;
3877 enum machine_mode mode = GET_MODE (reload_reg);
3878 int n = 0;
3879 rtx p;
3881 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3883 /* We really want to ignore REG_INC notes here, so
3884 use PATTERN (p) as argument to reg_set_p . */
3885 if (reg_set_p (reload_reg, PATTERN (p)))
3886 break;
3887 n = count_occurrences (PATTERN (p), reload_reg);
3888 if (! n)
3889 continue;
3890 if (n == 1)
3892 n = validate_replace_rtx (reload_reg,
3893 gen_rtx (code, mode,
3894 reload_reg),
3897 /* We must also verify that the constraints
3898 are met after the replacement. */
3899 extract_insn (p);
3900 if (n)
3901 n = constrain_operands (1);
3902 else
3903 break;
3905 /* If the constraints were not met, then
3906 undo the replacement. */
3907 if (!n)
3909 validate_replace_rtx (gen_rtx (code, mode,
3910 reload_reg),
3911 reload_reg, p);
3912 break;
3916 break;
3918 if (n == 1)
3920 REG_NOTES (p)
3921 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3922 REG_NOTES (p));
3923 /* Mark this as having an output reload so that the
3924 REG_INC processing code below won't invalidate
3925 the reload for inheritance. */
3926 SET_HARD_REG_BIT (reg_is_output_reload,
3927 REGNO (reload_reg));
3928 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3930 else
3931 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3932 NULL);
3934 else if ((code == PRE_INC || code == PRE_DEC)
3935 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3936 REGNO (rld[i].reg_rtx))
3937 /* Make sure it is the inc/dec pseudo, and not
3938 some other (e.g. output operand) pseudo. */
3939 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3940 == REGNO (XEXP (in_reg, 0))))
3942 SET_HARD_REG_BIT (reg_is_output_reload,
3943 REGNO (rld[i].reg_rtx));
3944 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3948 /* If a pseudo that got a hard register is auto-incremented,
3949 we must purge records of copying it into pseudos without
3950 hard registers. */
3951 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3952 if (REG_NOTE_KIND (x) == REG_INC)
3954 /* See if this pseudo reg was reloaded in this insn.
3955 If so, its last-reload info is still valid
3956 because it is based on this insn's reload. */
3957 for (i = 0; i < n_reloads; i++)
3958 if (rld[i].out == XEXP (x, 0))
3959 break;
3961 if (i == n_reloads)
3962 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
3964 #endif
3966 /* A reload reg's contents are unknown after a label. */
3967 if (GET_CODE (insn) == CODE_LABEL)
3968 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3970 /* Don't assume a reload reg is still good after a call insn
3971 if it is a call-used reg. */
3972 else if (GET_CODE (insn) == CALL_INSN)
3973 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
3976 /* Clean up. */
3977 free (reg_last_reload_reg);
3978 free (reg_has_output_reload);
3981 /* Discard all record of any value reloaded from X,
3982 or reloaded in X from someplace else;
3983 unless X is an output reload reg of the current insn.
3985 X may be a hard reg (the reload reg)
3986 or it may be a pseudo reg that was reloaded from. */
3988 static void
3989 forget_old_reloads_1 (x, ignored, data)
3990 rtx x;
3991 rtx ignored ATTRIBUTE_UNUSED;
3992 void *data ATTRIBUTE_UNUSED;
3994 unsigned int regno;
3995 unsigned int nr;
3996 int offset = 0;
3998 /* note_stores does give us subregs of hard regs. */
3999 while (GET_CODE (x) == SUBREG)
4001 offset += SUBREG_WORD (x);
4002 x = SUBREG_REG (x);
4005 if (GET_CODE (x) != REG)
4006 return;
4008 regno = REGNO (x) + offset;
4010 if (regno >= FIRST_PSEUDO_REGISTER)
4011 nr = 1;
4012 else
4014 unsigned int i;
4016 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4017 /* Storing into a spilled-reg invalidates its contents.
4018 This can happen if a block-local pseudo is allocated to that reg
4019 and it wasn't spilled because this block's total need is 0.
4020 Then some insn might have an optional reload and use this reg. */
4021 for (i = 0; i < nr; i++)
4022 /* But don't do this if the reg actually serves as an output
4023 reload reg in the current instruction. */
4024 if (n_reloads == 0
4025 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4026 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4029 /* Since value of X has changed,
4030 forget any value previously copied from it. */
4032 while (nr-- > 0)
4033 /* But don't forget a copy if this is the output reload
4034 that establishes the copy's validity. */
4035 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4036 reg_last_reload_reg[regno + nr] = 0;
4039 /* The following HARD_REG_SETs indicate when each hard register is
4040 used for a reload of various parts of the current insn. */
4042 /* If reg is unavailable for all reloads. */
4043 static HARD_REG_SET reload_reg_unavailable;
4044 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4045 static HARD_REG_SET reload_reg_used;
4046 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4047 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4048 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4049 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4050 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4051 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4052 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4053 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4054 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4055 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4056 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4057 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4058 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4059 static HARD_REG_SET reload_reg_used_in_op_addr;
4060 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4061 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4062 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4063 static HARD_REG_SET reload_reg_used_in_insn;
4064 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4065 static HARD_REG_SET reload_reg_used_in_other_addr;
4067 /* If reg is in use as a reload reg for any sort of reload. */
4068 static HARD_REG_SET reload_reg_used_at_all;
4070 /* If reg is use as an inherited reload. We just mark the first register
4071 in the group. */
4072 static HARD_REG_SET reload_reg_used_for_inherit;
4074 /* Records which hard regs are used in any way, either as explicit use or
4075 by being allocated to a pseudo during any point of the current insn. */
4076 static HARD_REG_SET reg_used_in_insn;
4078 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4079 TYPE. MODE is used to indicate how many consecutive regs are
4080 actually used. */
4082 static void
4083 mark_reload_reg_in_use (regno, opnum, type, mode)
4084 unsigned int regno;
4085 int opnum;
4086 enum reload_type type;
4087 enum machine_mode mode;
4089 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4090 unsigned int i;
4092 for (i = regno; i < nregs + regno; i++)
4094 switch (type)
4096 case RELOAD_OTHER:
4097 SET_HARD_REG_BIT (reload_reg_used, i);
4098 break;
4100 case RELOAD_FOR_INPUT_ADDRESS:
4101 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4102 break;
4104 case RELOAD_FOR_INPADDR_ADDRESS:
4105 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4106 break;
4108 case RELOAD_FOR_OUTPUT_ADDRESS:
4109 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4110 break;
4112 case RELOAD_FOR_OUTADDR_ADDRESS:
4113 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4114 break;
4116 case RELOAD_FOR_OPERAND_ADDRESS:
4117 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4118 break;
4120 case RELOAD_FOR_OPADDR_ADDR:
4121 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4122 break;
4124 case RELOAD_FOR_OTHER_ADDRESS:
4125 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4126 break;
4128 case RELOAD_FOR_INPUT:
4129 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4130 break;
4132 case RELOAD_FOR_OUTPUT:
4133 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4134 break;
4136 case RELOAD_FOR_INSN:
4137 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4138 break;
4141 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4145 /* Similarly, but show REGNO is no longer in use for a reload. */
4147 static void
4148 clear_reload_reg_in_use (regno, opnum, type, mode)
4149 unsigned int regno;
4150 int opnum;
4151 enum reload_type type;
4152 enum machine_mode mode;
4154 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4155 unsigned int start_regno, end_regno, r;
4156 int i;
4157 /* A complication is that for some reload types, inheritance might
4158 allow multiple reloads of the same types to share a reload register.
4159 We set check_opnum if we have to check only reloads with the same
4160 operand number, and check_any if we have to check all reloads. */
4161 int check_opnum = 0;
4162 int check_any = 0;
4163 HARD_REG_SET *used_in_set;
4165 switch (type)
4167 case RELOAD_OTHER:
4168 used_in_set = &reload_reg_used;
4169 break;
4171 case RELOAD_FOR_INPUT_ADDRESS:
4172 used_in_set = &reload_reg_used_in_input_addr[opnum];
4173 break;
4175 case RELOAD_FOR_INPADDR_ADDRESS:
4176 check_opnum = 1;
4177 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4178 break;
4180 case RELOAD_FOR_OUTPUT_ADDRESS:
4181 used_in_set = &reload_reg_used_in_output_addr[opnum];
4182 break;
4184 case RELOAD_FOR_OUTADDR_ADDRESS:
4185 check_opnum = 1;
4186 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4187 break;
4189 case RELOAD_FOR_OPERAND_ADDRESS:
4190 used_in_set = &reload_reg_used_in_op_addr;
4191 break;
4193 case RELOAD_FOR_OPADDR_ADDR:
4194 check_any = 1;
4195 used_in_set = &reload_reg_used_in_op_addr_reload;
4196 break;
4198 case RELOAD_FOR_OTHER_ADDRESS:
4199 used_in_set = &reload_reg_used_in_other_addr;
4200 check_any = 1;
4201 break;
4203 case RELOAD_FOR_INPUT:
4204 used_in_set = &reload_reg_used_in_input[opnum];
4205 break;
4207 case RELOAD_FOR_OUTPUT:
4208 used_in_set = &reload_reg_used_in_output[opnum];
4209 break;
4211 case RELOAD_FOR_INSN:
4212 used_in_set = &reload_reg_used_in_insn;
4213 break;
4214 default:
4215 abort ();
4217 /* We resolve conflicts with remaining reloads of the same type by
4218 excluding the intervals of of reload registers by them from the
4219 interval of freed reload registers. Since we only keep track of
4220 one set of interval bounds, we might have to exclude somewhat
4221 more then what would be necessary if we used a HARD_REG_SET here.
4222 But this should only happen very infrequently, so there should
4223 be no reason to worry about it. */
4225 start_regno = regno;
4226 end_regno = regno + nregs;
4227 if (check_opnum || check_any)
4229 for (i = n_reloads - 1; i >= 0; i--)
4231 if (rld[i].when_needed == type
4232 && (check_any || rld[i].opnum == opnum)
4233 && rld[i].reg_rtx)
4235 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4236 unsigned int conflict_end
4237 = (conflict_start
4238 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4240 /* If there is an overlap with the first to-be-freed register,
4241 adjust the interval start. */
4242 if (conflict_start <= start_regno && conflict_end > start_regno)
4243 start_regno = conflict_end;
4244 /* Otherwise, if there is a conflict with one of the other
4245 to-be-freed registers, adjust the interval end. */
4246 if (conflict_start > start_regno && conflict_start < end_regno)
4247 end_regno = conflict_start;
4252 for (r = start_regno; r < end_regno; r++)
4253 CLEAR_HARD_REG_BIT (*used_in_set, r);
4256 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4257 specified by OPNUM and TYPE. */
4259 static int
4260 reload_reg_free_p (regno, opnum, type)
4261 unsigned int regno;
4262 int opnum;
4263 enum reload_type type;
4265 int i;
4267 /* In use for a RELOAD_OTHER means it's not available for anything. */
4268 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4269 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4270 return 0;
4272 switch (type)
4274 case RELOAD_OTHER:
4275 /* In use for anything means we can't use it for RELOAD_OTHER. */
4276 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4277 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4278 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4279 return 0;
4281 for (i = 0; i < reload_n_operands; i++)
4282 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4283 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4284 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4285 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4286 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4287 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4288 return 0;
4290 return 1;
4292 case RELOAD_FOR_INPUT:
4293 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4294 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4295 return 0;
4297 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4298 return 0;
4300 /* If it is used for some other input, can't use it. */
4301 for (i = 0; i < reload_n_operands; i++)
4302 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4303 return 0;
4305 /* If it is used in a later operand's address, can't use it. */
4306 for (i = opnum + 1; i < reload_n_operands; i++)
4307 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4308 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4309 return 0;
4311 return 1;
4313 case RELOAD_FOR_INPUT_ADDRESS:
4314 /* Can't use a register if it is used for an input address for this
4315 operand or used as an input in an earlier one. */
4316 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4317 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4318 return 0;
4320 for (i = 0; i < opnum; i++)
4321 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4322 return 0;
4324 return 1;
4326 case RELOAD_FOR_INPADDR_ADDRESS:
4327 /* Can't use a register if it is used for an input address
4328 for this operand or used as an input in an earlier
4329 one. */
4330 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4331 return 0;
4333 for (i = 0; i < opnum; i++)
4334 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4335 return 0;
4337 return 1;
4339 case RELOAD_FOR_OUTPUT_ADDRESS:
4340 /* Can't use a register if it is used for an output address for this
4341 operand or used as an output in this or a later operand. */
4342 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4343 return 0;
4345 for (i = opnum; i < reload_n_operands; i++)
4346 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4347 return 0;
4349 return 1;
4351 case RELOAD_FOR_OUTADDR_ADDRESS:
4352 /* Can't use a register if it is used for an output address
4353 for this operand or used as an output in this or a
4354 later operand. */
4355 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4356 return 0;
4358 for (i = opnum; i < reload_n_operands; i++)
4359 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4360 return 0;
4362 return 1;
4364 case RELOAD_FOR_OPERAND_ADDRESS:
4365 for (i = 0; i < reload_n_operands; i++)
4366 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4367 return 0;
4369 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4370 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4372 case RELOAD_FOR_OPADDR_ADDR:
4373 for (i = 0; i < reload_n_operands; i++)
4374 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4375 return 0;
4377 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4379 case RELOAD_FOR_OUTPUT:
4380 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4381 outputs, or an operand address for this or an earlier output. */
4382 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4383 return 0;
4385 for (i = 0; i < reload_n_operands; i++)
4386 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4387 return 0;
4389 for (i = 0; i <= opnum; i++)
4390 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4391 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4392 return 0;
4394 return 1;
4396 case RELOAD_FOR_INSN:
4397 for (i = 0; i < reload_n_operands; i++)
4398 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4399 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4400 return 0;
4402 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4403 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4405 case RELOAD_FOR_OTHER_ADDRESS:
4406 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4408 abort ();
4411 /* Return 1 if the value in reload reg REGNO, as used by a reload
4412 needed for the part of the insn specified by OPNUM and TYPE,
4413 is still available in REGNO at the end of the insn.
4415 We can assume that the reload reg was already tested for availability
4416 at the time it is needed, and we should not check this again,
4417 in case the reg has already been marked in use. */
4419 static int
4420 reload_reg_reaches_end_p (regno, opnum, type)
4421 unsigned int regno;
4422 int opnum;
4423 enum reload_type type;
4425 int i;
4427 switch (type)
4429 case RELOAD_OTHER:
4430 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4431 its value must reach the end. */
4432 return 1;
4434 /* If this use is for part of the insn,
4435 its value reaches if no subsequent part uses the same register.
4436 Just like the above function, don't try to do this with lots
4437 of fallthroughs. */
4439 case RELOAD_FOR_OTHER_ADDRESS:
4440 /* Here we check for everything else, since these don't conflict
4441 with anything else and everything comes later. */
4443 for (i = 0; i < reload_n_operands; i++)
4444 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4445 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4446 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4447 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4448 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4449 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4450 return 0;
4452 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4453 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4454 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4456 case RELOAD_FOR_INPUT_ADDRESS:
4457 case RELOAD_FOR_INPADDR_ADDRESS:
4458 /* Similar, except that we check only for this and subsequent inputs
4459 and the address of only subsequent inputs and we do not need
4460 to check for RELOAD_OTHER objects since they are known not to
4461 conflict. */
4463 for (i = opnum; i < reload_n_operands; i++)
4464 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4465 return 0;
4467 for (i = opnum + 1; i < reload_n_operands; i++)
4468 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4469 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4470 return 0;
4472 for (i = 0; i < reload_n_operands; i++)
4473 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4474 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4475 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4476 return 0;
4478 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4479 return 0;
4481 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4482 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4484 case RELOAD_FOR_INPUT:
4485 /* Similar to input address, except we start at the next operand for
4486 both input and input address and we do not check for
4487 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4488 would conflict. */
4490 for (i = opnum + 1; i < reload_n_operands; i++)
4491 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4492 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4493 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4494 return 0;
4496 /* ... fall through ... */
4498 case RELOAD_FOR_OPERAND_ADDRESS:
4499 /* Check outputs and their addresses. */
4501 for (i = 0; i < reload_n_operands; i++)
4502 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4503 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4504 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4505 return 0;
4507 return 1;
4509 case RELOAD_FOR_OPADDR_ADDR:
4510 for (i = 0; i < reload_n_operands; i++)
4511 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4512 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4513 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4514 return 0;
4516 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4517 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4519 case RELOAD_FOR_INSN:
4520 /* These conflict with other outputs with RELOAD_OTHER. So
4521 we need only check for output addresses. */
4523 opnum = -1;
4525 /* ... fall through ... */
4527 case RELOAD_FOR_OUTPUT:
4528 case RELOAD_FOR_OUTPUT_ADDRESS:
4529 case RELOAD_FOR_OUTADDR_ADDRESS:
4530 /* We already know these can't conflict with a later output. So the
4531 only thing to check are later output addresses. */
4532 for (i = opnum + 1; i < reload_n_operands; i++)
4533 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4534 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4535 return 0;
4537 return 1;
4540 abort ();
4543 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4544 Return 0 otherwise.
4546 This function uses the same algorithm as reload_reg_free_p above. */
4549 reloads_conflict (r1, r2)
4550 int r1, r2;
4552 enum reload_type r1_type = rld[r1].when_needed;
4553 enum reload_type r2_type = rld[r2].when_needed;
4554 int r1_opnum = rld[r1].opnum;
4555 int r2_opnum = rld[r2].opnum;
4557 /* RELOAD_OTHER conflicts with everything. */
4558 if (r2_type == RELOAD_OTHER)
4559 return 1;
4561 /* Otherwise, check conflicts differently for each type. */
4563 switch (r1_type)
4565 case RELOAD_FOR_INPUT:
4566 return (r2_type == RELOAD_FOR_INSN
4567 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4568 || r2_type == RELOAD_FOR_OPADDR_ADDR
4569 || r2_type == RELOAD_FOR_INPUT
4570 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4571 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4572 && r2_opnum > r1_opnum));
4574 case RELOAD_FOR_INPUT_ADDRESS:
4575 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4576 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4578 case RELOAD_FOR_INPADDR_ADDRESS:
4579 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4580 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4582 case RELOAD_FOR_OUTPUT_ADDRESS:
4583 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4584 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4586 case RELOAD_FOR_OUTADDR_ADDRESS:
4587 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4588 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4590 case RELOAD_FOR_OPERAND_ADDRESS:
4591 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4592 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4594 case RELOAD_FOR_OPADDR_ADDR:
4595 return (r2_type == RELOAD_FOR_INPUT
4596 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4598 case RELOAD_FOR_OUTPUT:
4599 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4600 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4601 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4602 && r2_opnum <= r1_opnum));
4604 case RELOAD_FOR_INSN:
4605 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4606 || r2_type == RELOAD_FOR_INSN
4607 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4609 case RELOAD_FOR_OTHER_ADDRESS:
4610 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4612 case RELOAD_OTHER:
4613 return 1;
4615 default:
4616 abort ();
4620 /* Indexed by reload number, 1 if incoming value
4621 inherited from previous insns. */
4622 char reload_inherited[MAX_RELOADS];
4624 /* For an inherited reload, this is the insn the reload was inherited from,
4625 if we know it. Otherwise, this is 0. */
4626 rtx reload_inheritance_insn[MAX_RELOADS];
4628 /* If non-zero, this is a place to get the value of the reload,
4629 rather than using reload_in. */
4630 rtx reload_override_in[MAX_RELOADS];
4632 /* For each reload, the hard register number of the register used,
4633 or -1 if we did not need a register for this reload. */
4634 int reload_spill_index[MAX_RELOADS];
4636 /* Return 1 if the value in reload reg REGNO, as used by a reload
4637 needed for the part of the insn specified by OPNUM and TYPE,
4638 may be used to load VALUE into it.
4640 Other read-only reloads with the same value do not conflict
4641 unless OUT is non-zero and these other reloads have to live while
4642 output reloads live.
4643 If OUT is CONST0_RTX, this is a special case: it means that the
4644 test should not be for using register REGNO as reload register, but
4645 for copying from register REGNO into the reload register.
4647 RELOADNUM is the number of the reload we want to load this value for;
4648 a reload does not conflict with itself.
4650 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4651 reloads that load an address for the very reload we are considering.
4653 The caller has to make sure that there is no conflict with the return
4654 register. */
4655 static int
4656 reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
4657 ignore_address_reloads)
4658 int regno;
4659 int opnum;
4660 enum reload_type type;
4661 rtx value, out;
4662 int reloadnum;
4663 int ignore_address_reloads;
4665 int time1;
4666 /* Set if we see an input reload that must not share its reload register
4667 with any new earlyclobber, but might otherwise share the reload
4668 register with an output or input-output reload. */
4669 int check_earlyclobber = 0;
4670 int i;
4671 int copy = 0;
4673 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4674 return 0;
4676 if (out == const0_rtx)
4678 copy = 1;
4679 out = NULL_RTX;
4682 /* We use some pseudo 'time' value to check if the lifetimes of the
4683 new register use would overlap with the one of a previous reload
4684 that is not read-only or uses a different value.
4685 The 'time' used doesn't have to be linear in any shape or form, just
4686 monotonic.
4687 Some reload types use different 'buckets' for each operand.
4688 So there are MAX_RECOG_OPERANDS different time values for each
4689 such reload type.
4690 We compute TIME1 as the time when the register for the prospective
4691 new reload ceases to be live, and TIME2 for each existing
4692 reload as the time when that the reload register of that reload
4693 becomes live.
4694 Where there is little to be gained by exact lifetime calculations,
4695 we just make conservative assumptions, i.e. a longer lifetime;
4696 this is done in the 'default:' cases. */
4697 switch (type)
4699 case RELOAD_FOR_OTHER_ADDRESS:
4700 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4701 time1 = copy ? 0 : 1;
4702 break;
4703 case RELOAD_OTHER:
4704 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4705 break;
4706 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4707 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4708 respectively, to the time values for these, we get distinct time
4709 values. To get distinct time values for each operand, we have to
4710 multiply opnum by at least three. We round that up to four because
4711 multiply by four is often cheaper. */
4712 case RELOAD_FOR_INPADDR_ADDRESS:
4713 time1 = opnum * 4 + 2;
4714 break;
4715 case RELOAD_FOR_INPUT_ADDRESS:
4716 time1 = opnum * 4 + 3;
4717 break;
4718 case RELOAD_FOR_INPUT:
4719 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4720 executes (inclusive). */
4721 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4722 break;
4723 case RELOAD_FOR_OPADDR_ADDR:
4724 /* opnum * 4 + 4
4725 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4726 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4727 break;
4728 case RELOAD_FOR_OPERAND_ADDRESS:
4729 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4730 is executed. */
4731 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4732 break;
4733 case RELOAD_FOR_OUTADDR_ADDRESS:
4734 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4735 break;
4736 case RELOAD_FOR_OUTPUT_ADDRESS:
4737 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4738 break;
4739 default:
4740 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4743 for (i = 0; i < n_reloads; i++)
4745 rtx reg = rld[i].reg_rtx;
4746 if (reg && GET_CODE (reg) == REG
4747 && ((unsigned) regno - true_regnum (reg)
4748 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
4749 && i != reloadnum)
4751 if (! rld[i].in || ! rtx_equal_p (rld[i].in, value)
4752 || rld[i].out || out)
4754 int time2;
4755 switch (rld[i].when_needed)
4757 case RELOAD_FOR_OTHER_ADDRESS:
4758 time2 = 0;
4759 break;
4760 case RELOAD_FOR_INPADDR_ADDRESS:
4761 /* find_reloads makes sure that a
4762 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4763 by at most one - the first -
4764 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4765 address reload is inherited, the address address reload
4766 goes away, so we can ignore this conflict. */
4767 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4768 && ignore_address_reloads
4769 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4770 Then the address address is still needed to store
4771 back the new address. */
4772 && ! rld[reloadnum].out)
4773 continue;
4774 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4775 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4776 reloads go away. */
4777 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4778 && ignore_address_reloads
4779 /* Unless we are reloading an auto_inc expression. */
4780 && ! rld[reloadnum].out)
4781 continue;
4782 time2 = rld[i].opnum * 4 + 2;
4783 break;
4784 case RELOAD_FOR_INPUT_ADDRESS:
4785 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4786 && ignore_address_reloads
4787 && ! rld[reloadnum].out)
4788 continue;
4789 time2 = rld[i].opnum * 4 + 3;
4790 break;
4791 case RELOAD_FOR_INPUT:
4792 time2 = rld[i].opnum * 4 + 4;
4793 check_earlyclobber = 1;
4794 break;
4795 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4796 == MAX_RECOG_OPERAND * 4 */
4797 case RELOAD_FOR_OPADDR_ADDR:
4798 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4799 && ignore_address_reloads
4800 && ! rld[reloadnum].out)
4801 continue;
4802 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4803 break;
4804 case RELOAD_FOR_OPERAND_ADDRESS:
4805 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4806 check_earlyclobber = 1;
4807 break;
4808 case RELOAD_FOR_INSN:
4809 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4810 break;
4811 case RELOAD_FOR_OUTPUT:
4812 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4813 instruction is executed. */
4814 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4815 break;
4816 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4817 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4818 value. */
4819 case RELOAD_FOR_OUTADDR_ADDRESS:
4820 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4821 && ignore_address_reloads
4822 && ! rld[reloadnum].out)
4823 continue;
4824 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4825 break;
4826 case RELOAD_FOR_OUTPUT_ADDRESS:
4827 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4828 break;
4829 case RELOAD_OTHER:
4830 /* If there is no conflict in the input part, handle this
4831 like an output reload. */
4832 if (! rld[i].in || rtx_equal_p (rld[i].in, value))
4834 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4835 /* Earlyclobbered outputs must conflict with inputs. */
4836 if (earlyclobber_operand_p (rld[i].out))
4837 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4839 break;
4841 time2 = 1;
4842 /* RELOAD_OTHER might be live beyond instruction execution,
4843 but this is not obvious when we set time2 = 1. So check
4844 here if there might be a problem with the new reload
4845 clobbering the register used by the RELOAD_OTHER. */
4846 if (out)
4847 return 0;
4848 break;
4849 default:
4850 return 0;
4852 if ((time1 >= time2
4853 && (! rld[i].in || rld[i].out
4854 || ! rtx_equal_p (rld[i].in, value)))
4855 || (out && rld[reloadnum].out_reg
4856 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4857 return 0;
4862 /* Earlyclobbered outputs must conflict with inputs. */
4863 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4864 return 0;
4866 return 1;
4869 /* Give an error message saying we failed to find a reload for INSN,
4870 and clear out reload R. */
4871 static void
4872 failed_reload (insn, r)
4873 rtx insn;
4874 int r;
4876 if (asm_noperands (PATTERN (insn)) < 0)
4877 /* It's the compiler's fault. */
4878 fatal_insn ("Could not find a spill register", insn);
4880 /* It's the user's fault; the operand's mode and constraint
4881 don't match. Disable this reload so we don't crash in final. */
4882 error_for_asm (insn,
4883 "`asm' operand constraint incompatible with operand size");
4884 rld[r].in = 0;
4885 rld[r].out = 0;
4886 rld[r].reg_rtx = 0;
4887 rld[r].optional = 1;
4888 rld[r].secondary_p = 1;
4891 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4892 for reload R. If it's valid, get an rtx for it. Return nonzero if
4893 successful. */
4894 static int
4895 set_reload_reg (i, r)
4896 int i, r;
4898 int regno;
4899 rtx reg = spill_reg_rtx[i];
4901 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
4902 spill_reg_rtx[i] = reg
4903 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
4905 regno = true_regnum (reg);
4907 /* Detect when the reload reg can't hold the reload mode.
4908 This used to be one `if', but Sequent compiler can't handle that. */
4909 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
4911 enum machine_mode test_mode = VOIDmode;
4912 if (rld[r].in)
4913 test_mode = GET_MODE (rld[r].in);
4914 /* If rld[r].in has VOIDmode, it means we will load it
4915 in whatever mode the reload reg has: to wit, rld[r].mode.
4916 We have already tested that for validity. */
4917 /* Aside from that, we need to test that the expressions
4918 to reload from or into have modes which are valid for this
4919 reload register. Otherwise the reload insns would be invalid. */
4920 if (! (rld[r].in != 0 && test_mode != VOIDmode
4921 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
4922 if (! (rld[r].out != 0
4923 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
4925 /* The reg is OK. */
4926 last_spill_reg = i;
4928 /* Mark as in use for this insn the reload regs we use
4929 for this. */
4930 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
4931 rld[r].when_needed, rld[r].mode);
4933 rld[r].reg_rtx = reg;
4934 reload_spill_index[r] = spill_regs[i];
4935 return 1;
4938 return 0;
4941 /* Find a spill register to use as a reload register for reload R.
4942 LAST_RELOAD is non-zero if this is the last reload for the insn being
4943 processed.
4945 Set rld[R].reg_rtx to the register allocated.
4947 We return 1 if successful, or 0 if we couldn't find a spill reg and
4948 we didn't change anything. */
4950 static int
4951 allocate_reload_reg (chain, r, last_reload)
4952 struct insn_chain *chain ATTRIBUTE_UNUSED;
4953 int r;
4954 int last_reload;
4956 int i, pass, count;
4958 /* If we put this reload ahead, thinking it is a group,
4959 then insist on finding a group. Otherwise we can grab a
4960 reg that some other reload needs.
4961 (That can happen when we have a 68000 DATA_OR_FP_REG
4962 which is a group of data regs or one fp reg.)
4963 We need not be so restrictive if there are no more reloads
4964 for this insn.
4966 ??? Really it would be nicer to have smarter handling
4967 for that kind of reg class, where a problem like this is normal.
4968 Perhaps those classes should be avoided for reloading
4969 by use of more alternatives. */
4971 int force_group = rld[r].nregs > 1 && ! last_reload;
4973 /* If we want a single register and haven't yet found one,
4974 take any reg in the right class and not in use.
4975 If we want a consecutive group, here is where we look for it.
4977 We use two passes so we can first look for reload regs to
4978 reuse, which are already in use for other reloads in this insn,
4979 and only then use additional registers.
4980 I think that maximizing reuse is needed to make sure we don't
4981 run out of reload regs. Suppose we have three reloads, and
4982 reloads A and B can share regs. These need two regs.
4983 Suppose A and B are given different regs.
4984 That leaves none for C. */
4985 for (pass = 0; pass < 2; pass++)
4987 /* I is the index in spill_regs.
4988 We advance it round-robin between insns to use all spill regs
4989 equally, so that inherited reloads have a chance
4990 of leapfrogging each other. */
4992 i = last_spill_reg;
4994 for (count = 0; count < n_spills; count++)
4996 int class = (int) rld[r].class;
4997 int regnum;
4999 i++;
5000 if (i >= n_spills)
5001 i -= n_spills;
5002 regnum = spill_regs[i];
5004 if ((reload_reg_free_p (regnum, rld[r].opnum,
5005 rld[r].when_needed)
5006 || (rld[r].in
5007 /* We check reload_reg_used to make sure we
5008 don't clobber the return register. */
5009 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5010 && reload_reg_free_for_value_p (regnum,
5011 rld[r].opnum,
5012 rld[r].when_needed,
5013 rld[r].in,
5014 rld[r].out, r, 1)))
5015 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5016 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5017 /* Look first for regs to share, then for unshared. But
5018 don't share regs used for inherited reloads; they are
5019 the ones we want to preserve. */
5020 && (pass
5021 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5022 regnum)
5023 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5024 regnum))))
5026 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5027 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5028 (on 68000) got us two FP regs. If NR is 1,
5029 we would reject both of them. */
5030 if (force_group)
5031 nr = rld[r].nregs;
5032 /* If we need only one reg, we have already won. */
5033 if (nr == 1)
5035 /* But reject a single reg if we demand a group. */
5036 if (force_group)
5037 continue;
5038 break;
5040 /* Otherwise check that as many consecutive regs as we need
5041 are available here. */
5042 while (nr > 1)
5044 int regno = regnum + nr - 1;
5045 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5046 && spill_reg_order[regno] >= 0
5047 && reload_reg_free_p (regno, rld[r].opnum,
5048 rld[r].when_needed)))
5049 break;
5050 nr--;
5052 if (nr == 1)
5053 break;
5057 /* If we found something on pass 1, omit pass 2. */
5058 if (count < n_spills)
5059 break;
5062 /* We should have found a spill register by now. */
5063 if (count >= n_spills)
5064 return 0;
5066 /* I is the index in SPILL_REG_RTX of the reload register we are to
5067 allocate. Get an rtx for it and find its register number. */
5069 return set_reload_reg (i, r);
5072 /* Initialize all the tables needed to allocate reload registers.
5073 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5074 is the array we use to restore the reg_rtx field for every reload. */
5076 static void
5077 choose_reload_regs_init (chain, save_reload_reg_rtx)
5078 struct insn_chain *chain;
5079 rtx *save_reload_reg_rtx;
5081 int i;
5083 for (i = 0; i < n_reloads; i++)
5084 rld[i].reg_rtx = save_reload_reg_rtx[i];
5086 bzero (reload_inherited, MAX_RELOADS);
5087 bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
5088 bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
5090 CLEAR_HARD_REG_SET (reload_reg_used);
5091 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5092 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5093 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5094 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5095 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5097 CLEAR_HARD_REG_SET (reg_used_in_insn);
5099 HARD_REG_SET tmp;
5100 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5101 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5102 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5103 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5104 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5105 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5108 for (i = 0; i < reload_n_operands; i++)
5110 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5111 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5112 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5113 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5114 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5115 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5118 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5120 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5122 for (i = 0; i < n_reloads; i++)
5123 /* If we have already decided to use a certain register,
5124 don't use it in another way. */
5125 if (rld[i].reg_rtx)
5126 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5127 rld[i].when_needed, rld[i].mode);
5130 /* Assign hard reg targets for the pseudo-registers we must reload
5131 into hard regs for this insn.
5132 Also output the instructions to copy them in and out of the hard regs.
5134 For machines with register classes, we are responsible for
5135 finding a reload reg in the proper class. */
5137 static void
5138 choose_reload_regs (chain)
5139 struct insn_chain *chain;
5141 rtx insn = chain->insn;
5142 register int i, j;
5143 unsigned int max_group_size = 1;
5144 enum reg_class group_class = NO_REGS;
5145 int pass, win, inheritance;
5147 rtx save_reload_reg_rtx[MAX_RELOADS];
5149 /* In order to be certain of getting the registers we need,
5150 we must sort the reloads into order of increasing register class.
5151 Then our grabbing of reload registers will parallel the process
5152 that provided the reload registers.
5154 Also note whether any of the reloads wants a consecutive group of regs.
5155 If so, record the maximum size of the group desired and what
5156 register class contains all the groups needed by this insn. */
5158 for (j = 0; j < n_reloads; j++)
5160 reload_order[j] = j;
5161 reload_spill_index[j] = -1;
5163 if (rld[j].nregs > 1)
5165 max_group_size = MAX (rld[j].nregs, max_group_size);
5166 group_class
5167 = reg_class_superunion[(int)rld[j].class][(int)group_class];
5170 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5173 if (n_reloads > 1)
5174 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5176 /* If -O, try first with inheritance, then turning it off.
5177 If not -O, don't do inheritance.
5178 Using inheritance when not optimizing leads to paradoxes
5179 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5180 because one side of the comparison might be inherited. */
5181 win = 0;
5182 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5184 choose_reload_regs_init (chain, save_reload_reg_rtx);
5186 /* Process the reloads in order of preference just found.
5187 Beyond this point, subregs can be found in reload_reg_rtx.
5189 This used to look for an existing reloaded home for all of the
5190 reloads, and only then perform any new reloads. But that could lose
5191 if the reloads were done out of reg-class order because a later
5192 reload with a looser constraint might have an old home in a register
5193 needed by an earlier reload with a tighter constraint.
5195 To solve this, we make two passes over the reloads, in the order
5196 described above. In the first pass we try to inherit a reload
5197 from a previous insn. If there is a later reload that needs a
5198 class that is a proper subset of the class being processed, we must
5199 also allocate a spill register during the first pass.
5201 Then make a second pass over the reloads to allocate any reloads
5202 that haven't been given registers yet. */
5204 for (j = 0; j < n_reloads; j++)
5206 register int r = reload_order[j];
5207 rtx search_equiv = NULL_RTX;
5209 /* Ignore reloads that got marked inoperative. */
5210 if (rld[r].out == 0 && rld[r].in == 0
5211 && ! rld[r].secondary_p)
5212 continue;
5214 /* If find_reloads chose to use reload_in or reload_out as a reload
5215 register, we don't need to chose one. Otherwise, try even if it
5216 found one since we might save an insn if we find the value lying
5217 around.
5218 Try also when reload_in is a pseudo without a hard reg. */
5219 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5220 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5221 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5222 && GET_CODE (rld[r].in) != MEM
5223 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5224 continue;
5226 #if 0 /* No longer needed for correct operation.
5227 It might give better code, or might not; worth an experiment? */
5228 /* If this is an optional reload, we can't inherit from earlier insns
5229 until we are sure that any non-optional reloads have been allocated.
5230 The following code takes advantage of the fact that optional reloads
5231 are at the end of reload_order. */
5232 if (rld[r].optional != 0)
5233 for (i = 0; i < j; i++)
5234 if ((rld[reload_order[i]].out != 0
5235 || rld[reload_order[i]].in != 0
5236 || rld[reload_order[i]].secondary_p)
5237 && ! rld[reload_order[i]].optional
5238 && rld[reload_order[i]].reg_rtx == 0)
5239 allocate_reload_reg (chain, reload_order[i], 0);
5240 #endif
5242 /* First see if this pseudo is already available as reloaded
5243 for a previous insn. We cannot try to inherit for reloads
5244 that are smaller than the maximum number of registers needed
5245 for groups unless the register we would allocate cannot be used
5246 for the groups.
5248 We could check here to see if this is a secondary reload for
5249 an object that is already in a register of the desired class.
5250 This would avoid the need for the secondary reload register.
5251 But this is complex because we can't easily determine what
5252 objects might want to be loaded via this reload. So let a
5253 register be allocated here. In `emit_reload_insns' we suppress
5254 one of the loads in the case described above. */
5256 if (inheritance)
5258 int word = 0;
5259 register int regno = -1;
5260 enum machine_mode mode = VOIDmode;
5262 if (rld[r].in == 0)
5264 else if (GET_CODE (rld[r].in) == REG)
5266 regno = REGNO (rld[r].in);
5267 mode = GET_MODE (rld[r].in);
5269 else if (GET_CODE (rld[r].in_reg) == REG)
5271 regno = REGNO (rld[r].in_reg);
5272 mode = GET_MODE (rld[r].in_reg);
5274 else if (GET_CODE (rld[r].in_reg) == SUBREG
5275 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5277 word = SUBREG_WORD (rld[r].in_reg);
5278 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5279 if (regno < FIRST_PSEUDO_REGISTER)
5280 regno += word;
5281 mode = GET_MODE (rld[r].in_reg);
5283 #ifdef AUTO_INC_DEC
5284 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5285 || GET_CODE (rld[r].in_reg) == PRE_DEC
5286 || GET_CODE (rld[r].in_reg) == POST_INC
5287 || GET_CODE (rld[r].in_reg) == POST_DEC)
5288 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5290 regno = REGNO (XEXP (rld[r].in_reg, 0));
5291 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5292 rld[r].out = rld[r].in;
5294 #endif
5295 #if 0
5296 /* This won't work, since REGNO can be a pseudo reg number.
5297 Also, it takes much more hair to keep track of all the things
5298 that can invalidate an inherited reload of part of a pseudoreg. */
5299 else if (GET_CODE (rld[r].in) == SUBREG
5300 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5301 regno = REGNO (SUBREG_REG (rld[r].in)) + SUBREG_WORD (rld[r].in);
5302 #endif
5304 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5306 enum reg_class class = rld[r].class, last_class;
5307 rtx last_reg = reg_last_reload_reg[regno];
5308 enum machine_mode need_mode;
5310 i = REGNO (last_reg) + word;
5311 last_class = REGNO_REG_CLASS (i);
5313 need_mode = smallest_mode_for_size ((word+1) * UNITS_PER_WORD,
5314 GET_MODE_CLASS (mode));
5316 if (
5317 #ifdef CLASS_CANNOT_CHANGE_MODE
5318 (TEST_HARD_REG_BIT
5319 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5320 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5321 need_mode)
5322 : (GET_MODE_SIZE (GET_MODE (last_reg))
5323 >= GET_MODE_SIZE (need_mode)))
5324 #else
5325 (GET_MODE_SIZE (GET_MODE (last_reg))
5326 >= GET_MODE_SIZE (need_mode))
5327 #endif
5328 && reg_reloaded_contents[i] == regno
5329 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5330 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5331 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5332 /* Even if we can't use this register as a reload
5333 register, we might use it for reload_override_in,
5334 if copying it to the desired class is cheap
5335 enough. */
5336 || ((REGISTER_MOVE_COST (last_class, class)
5337 < MEMORY_MOVE_COST (mode, class, 1))
5338 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5339 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5340 last_reg)
5341 == NO_REGS)
5342 #endif
5343 #ifdef SECONDARY_MEMORY_NEEDED
5344 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5345 mode)
5346 #endif
5349 && (rld[r].nregs == max_group_size
5350 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5352 && reload_reg_free_for_value_p (i, rld[r].opnum,
5353 rld[r].when_needed,
5354 rld[r].in,
5355 const0_rtx, r, 1))
5357 /* If a group is needed, verify that all the subsequent
5358 registers still have their values intact. */
5359 int nr
5360 = HARD_REGNO_NREGS (i, rld[r].mode);
5361 int k;
5363 for (k = 1; k < nr; k++)
5364 if (reg_reloaded_contents[i + k] != regno
5365 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5366 break;
5368 if (k == nr)
5370 int i1;
5372 last_reg = (GET_MODE (last_reg) == mode
5373 ? last_reg : gen_rtx_REG (mode, i));
5375 /* We found a register that contains the
5376 value we need. If this register is the
5377 same as an `earlyclobber' operand of the
5378 current insn, just mark it as a place to
5379 reload from since we can't use it as the
5380 reload register itself. */
5382 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5383 if (reg_overlap_mentioned_for_reload_p
5384 (reg_last_reload_reg[regno],
5385 reload_earlyclobbers[i1]))
5386 break;
5388 if (i1 != n_earlyclobbers
5389 || ! (reload_reg_free_for_value_p
5390 (i, rld[r].opnum, rld[r].when_needed,
5391 rld[r].in, rld[r].out, r, 1))
5392 /* Don't use it if we'd clobber a pseudo reg. */
5393 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5394 && rld[r].out
5395 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5396 /* Don't clobber the frame pointer. */
5397 || (i == HARD_FRAME_POINTER_REGNUM && rld[r].out)
5398 /* Don't really use the inherited spill reg
5399 if we need it wider than we've got it. */
5400 || (GET_MODE_SIZE (rld[r].mode)
5401 > GET_MODE_SIZE (mode))
5402 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5405 /* If find_reloads chose reload_out as reload
5406 register, stay with it - that leaves the
5407 inherited register for subsequent reloads. */
5408 || (rld[r].out && rld[r].reg_rtx
5409 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5411 reload_override_in[r] = last_reg;
5412 reload_inheritance_insn[r]
5413 = reg_reloaded_insn[i];
5415 else
5417 int k;
5418 /* We can use this as a reload reg. */
5419 /* Mark the register as in use for this part of
5420 the insn. */
5421 mark_reload_reg_in_use (i,
5422 rld[r].opnum,
5423 rld[r].when_needed,
5424 rld[r].mode);
5425 rld[r].reg_rtx = last_reg;
5426 reload_inherited[r] = 1;
5427 reload_inheritance_insn[r]
5428 = reg_reloaded_insn[i];
5429 reload_spill_index[r] = i;
5430 for (k = 0; k < nr; k++)
5431 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5432 i + k);
5439 /* Here's another way to see if the value is already lying around. */
5440 if (inheritance
5441 && rld[r].in != 0
5442 && ! reload_inherited[r]
5443 && rld[r].out == 0
5444 && (CONSTANT_P (rld[r].in)
5445 || GET_CODE (rld[r].in) == PLUS
5446 || GET_CODE (rld[r].in) == REG
5447 || GET_CODE (rld[r].in) == MEM)
5448 && (rld[r].nregs == max_group_size
5449 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5450 search_equiv = rld[r].in;
5451 /* If this is an output reload from a simple move insn, look
5452 if an equivalence for the input is available. */
5453 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5455 rtx set = single_set (insn);
5457 if (set
5458 && rtx_equal_p (rld[r].out, SET_DEST (set))
5459 && CONSTANT_P (SET_SRC (set)))
5460 search_equiv = SET_SRC (set);
5463 if (search_equiv)
5465 register rtx equiv
5466 = find_equiv_reg (search_equiv, insn, rld[r].class,
5467 -1, NULL_PTR, 0, rld[r].mode);
5468 int regno = 0;
5470 if (equiv != 0)
5472 if (GET_CODE (equiv) == REG)
5473 regno = REGNO (equiv);
5474 else if (GET_CODE (equiv) == SUBREG)
5476 /* This must be a SUBREG of a hard register.
5477 Make a new REG since this might be used in an
5478 address and not all machines support SUBREGs
5479 there. */
5480 regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
5481 equiv = gen_rtx_REG (rld[r].mode, regno);
5483 else
5484 abort ();
5487 /* If we found a spill reg, reject it unless it is free
5488 and of the desired class. */
5489 if (equiv != 0
5490 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5491 && ! reload_reg_free_for_value_p (regno, rld[r].opnum,
5492 rld[r].when_needed,
5493 rld[r].in,
5494 rld[r].out, r, 1))
5495 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5496 regno)))
5497 equiv = 0;
5499 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5500 equiv = 0;
5502 /* We found a register that contains the value we need.
5503 If this register is the same as an `earlyclobber' operand
5504 of the current insn, just mark it as a place to reload from
5505 since we can't use it as the reload register itself. */
5507 if (equiv != 0)
5508 for (i = 0; i < n_earlyclobbers; i++)
5509 if (reg_overlap_mentioned_for_reload_p (equiv,
5510 reload_earlyclobbers[i]))
5512 reload_override_in[r] = equiv;
5513 equiv = 0;
5514 break;
5517 /* If the equiv register we have found is explicitly clobbered
5518 in the current insn, it depends on the reload type if we
5519 can use it, use it for reload_override_in, or not at all.
5520 In particular, we then can't use EQUIV for a
5521 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5523 if (equiv != 0 && regno_clobbered_p (regno, insn))
5525 switch (rld[r].when_needed)
5527 case RELOAD_FOR_OTHER_ADDRESS:
5528 case RELOAD_FOR_INPADDR_ADDRESS:
5529 case RELOAD_FOR_INPUT_ADDRESS:
5530 case RELOAD_FOR_OPADDR_ADDR:
5531 break;
5532 case RELOAD_OTHER:
5533 case RELOAD_FOR_INPUT:
5534 case RELOAD_FOR_OPERAND_ADDRESS:
5535 reload_override_in[r] = equiv;
5536 /* Fall through. */
5537 default:
5538 equiv = 0;
5539 break;
5543 /* If we found an equivalent reg, say no code need be generated
5544 to load it, and use it as our reload reg. */
5545 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5547 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5548 int k;
5549 rld[r].reg_rtx = equiv;
5550 reload_inherited[r] = 1;
5552 /* If reg_reloaded_valid is not set for this register,
5553 there might be a stale spill_reg_store lying around.
5554 We must clear it, since otherwise emit_reload_insns
5555 might delete the store. */
5556 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5557 spill_reg_store[regno] = NULL_RTX;
5558 /* If any of the hard registers in EQUIV are spill
5559 registers, mark them as in use for this insn. */
5560 for (k = 0; k < nr; k++)
5562 i = spill_reg_order[regno + k];
5563 if (i >= 0)
5565 mark_reload_reg_in_use (regno, rld[r].opnum,
5566 rld[r].when_needed,
5567 rld[r].mode);
5568 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5569 regno + k);
5575 /* If we found a register to use already, or if this is an optional
5576 reload, we are done. */
5577 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5578 continue;
5580 #if 0 /* No longer needed for correct operation. Might or might not
5581 give better code on the average. Want to experiment? */
5583 /* See if there is a later reload that has a class different from our
5584 class that intersects our class or that requires less register
5585 than our reload. If so, we must allocate a register to this
5586 reload now, since that reload might inherit a previous reload
5587 and take the only available register in our class. Don't do this
5588 for optional reloads since they will force all previous reloads
5589 to be allocated. Also don't do this for reloads that have been
5590 turned off. */
5592 for (i = j + 1; i < n_reloads; i++)
5594 int s = reload_order[i];
5596 if ((rld[s].in == 0 && rld[s].out == 0
5597 && ! rld[s].secondary_p)
5598 || rld[s].optional)
5599 continue;
5601 if ((rld[s].class != rld[r].class
5602 && reg_classes_intersect_p (rld[r].class,
5603 rld[s].class))
5604 || rld[s].nregs < rld[r].nregs)
5605 break;
5608 if (i == n_reloads)
5609 continue;
5611 allocate_reload_reg (chain, r, j == n_reloads - 1);
5612 #endif
5615 /* Now allocate reload registers for anything non-optional that
5616 didn't get one yet. */
5617 for (j = 0; j < n_reloads; j++)
5619 register int r = reload_order[j];
5621 /* Ignore reloads that got marked inoperative. */
5622 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5623 continue;
5625 /* Skip reloads that already have a register allocated or are
5626 optional. */
5627 if (rld[r].reg_rtx != 0 || rld[r].optional)
5628 continue;
5630 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5631 break;
5634 /* If that loop got all the way, we have won. */
5635 if (j == n_reloads)
5637 win = 1;
5638 break;
5641 /* Loop around and try without any inheritance. */
5644 if (! win)
5646 /* First undo everything done by the failed attempt
5647 to allocate with inheritance. */
5648 choose_reload_regs_init (chain, save_reload_reg_rtx);
5650 /* Some sanity tests to verify that the reloads found in the first
5651 pass are identical to the ones we have now. */
5652 if (chain->n_reloads != n_reloads)
5653 abort ();
5655 for (i = 0; i < n_reloads; i++)
5657 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5658 continue;
5659 if (chain->rld[i].when_needed != rld[i].when_needed)
5660 abort ();
5661 for (j = 0; j < n_spills; j++)
5662 if (spill_regs[j] == chain->rld[i].regno)
5663 if (! set_reload_reg (j, i))
5664 failed_reload (chain->insn, i);
5668 /* If we thought we could inherit a reload, because it seemed that
5669 nothing else wanted the same reload register earlier in the insn,
5670 verify that assumption, now that all reloads have been assigned.
5671 Likewise for reloads where reload_override_in has been set. */
5673 /* If doing expensive optimizations, do one preliminary pass that doesn't
5674 cancel any inheritance, but removes reloads that have been needed only
5675 for reloads that we know can be inherited. */
5676 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5678 for (j = 0; j < n_reloads; j++)
5680 register int r = reload_order[j];
5681 rtx check_reg;
5682 if (reload_inherited[r] && rld[r].reg_rtx)
5683 check_reg = rld[r].reg_rtx;
5684 else if (reload_override_in[r]
5685 && (GET_CODE (reload_override_in[r]) == REG
5686 || GET_CODE (reload_override_in[r]) == SUBREG))
5687 check_reg = reload_override_in[r];
5688 else
5689 continue;
5690 if (! reload_reg_free_for_value_p (true_regnum (check_reg),
5691 rld[r].opnum,
5692 rld[r].when_needed,
5693 rld[r].in,
5694 (reload_inherited[r]
5695 ? rld[r].out : const0_rtx),
5696 r, 1))
5698 if (pass)
5699 continue;
5700 reload_inherited[r] = 0;
5701 reload_override_in[r] = 0;
5703 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5704 reload_override_in, then we do not need its related
5705 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5706 likewise for other reload types.
5707 We handle this by removing a reload when its only replacement
5708 is mentioned in reload_in of the reload we are going to inherit.
5709 A special case are auto_inc expressions; even if the input is
5710 inherited, we still need the address for the output. We can
5711 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5712 If we suceeded removing some reload and we are doing a preliminary
5713 pass just to remove such reloads, make another pass, since the
5714 removal of one reload might allow us to inherit another one. */
5715 else if (rld[r].in
5716 && rld[r].out != rld[r].in
5717 && remove_address_replacements (rld[r].in) && pass)
5718 pass = 2;
5722 /* Now that reload_override_in is known valid,
5723 actually override reload_in. */
5724 for (j = 0; j < n_reloads; j++)
5725 if (reload_override_in[j])
5726 rld[j].in = reload_override_in[j];
5728 /* If this reload won't be done because it has been cancelled or is
5729 optional and not inherited, clear reload_reg_rtx so other
5730 routines (such as subst_reloads) don't get confused. */
5731 for (j = 0; j < n_reloads; j++)
5732 if (rld[j].reg_rtx != 0
5733 && ((rld[j].optional && ! reload_inherited[j])
5734 || (rld[j].in == 0 && rld[j].out == 0
5735 && ! rld[j].secondary_p)))
5737 int regno = true_regnum (rld[j].reg_rtx);
5739 if (spill_reg_order[regno] >= 0)
5740 clear_reload_reg_in_use (regno, rld[j].opnum,
5741 rld[j].when_needed, rld[j].mode);
5742 rld[j].reg_rtx = 0;
5743 reload_spill_index[j] = -1;
5746 /* Record which pseudos and which spill regs have output reloads. */
5747 for (j = 0; j < n_reloads; j++)
5749 register int r = reload_order[j];
5751 i = reload_spill_index[r];
5753 /* I is nonneg if this reload uses a register.
5754 If rld[r].reg_rtx is 0, this is an optional reload
5755 that we opted to ignore. */
5756 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5757 && rld[r].reg_rtx != 0)
5759 register int nregno = REGNO (rld[r].out_reg);
5760 int nr = 1;
5762 if (nregno < FIRST_PSEUDO_REGISTER)
5763 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5765 while (--nr >= 0)
5766 reg_has_output_reload[nregno + nr] = 1;
5768 if (i >= 0)
5770 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5771 while (--nr >= 0)
5772 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5775 if (rld[r].when_needed != RELOAD_OTHER
5776 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5777 && rld[r].when_needed != RELOAD_FOR_INSN)
5778 abort ();
5783 /* Deallocate the reload register for reload R. This is called from
5784 remove_address_replacements. */
5786 void
5787 deallocate_reload_reg (r)
5788 int r;
5790 int regno;
5792 if (! rld[r].reg_rtx)
5793 return;
5794 regno = true_regnum (rld[r].reg_rtx);
5795 rld[r].reg_rtx = 0;
5796 if (spill_reg_order[regno] >= 0)
5797 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5798 rld[r].mode);
5799 reload_spill_index[r] = -1;
5802 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5803 reloads of the same item for fear that we might not have enough reload
5804 registers. However, normally they will get the same reload register
5805 and hence actually need not be loaded twice.
5807 Here we check for the most common case of this phenomenon: when we have
5808 a number of reloads for the same object, each of which were allocated
5809 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5810 reload, and is not modified in the insn itself. If we find such,
5811 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5812 This will not increase the number of spill registers needed and will
5813 prevent redundant code. */
5815 static void
5816 merge_assigned_reloads (insn)
5817 rtx insn;
5819 int i, j;
5821 /* Scan all the reloads looking for ones that only load values and
5822 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5823 assigned and not modified by INSN. */
5825 for (i = 0; i < n_reloads; i++)
5827 int conflicting_input = 0;
5828 int max_input_address_opnum = -1;
5829 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5831 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5832 || rld[i].out != 0 || rld[i].reg_rtx == 0
5833 || reg_set_p (rld[i].reg_rtx, insn))
5834 continue;
5836 /* Look at all other reloads. Ensure that the only use of this
5837 reload_reg_rtx is in a reload that just loads the same value
5838 as we do. Note that any secondary reloads must be of the identical
5839 class since the values, modes, and result registers are the
5840 same, so we need not do anything with any secondary reloads. */
5842 for (j = 0; j < n_reloads; j++)
5844 if (i == j || rld[j].reg_rtx == 0
5845 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5846 rld[i].reg_rtx))
5847 continue;
5849 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5850 && rld[j].opnum > max_input_address_opnum)
5851 max_input_address_opnum = rld[j].opnum;
5853 /* If the reload regs aren't exactly the same (e.g, different modes)
5854 or if the values are different, we can't merge this reload.
5855 But if it is an input reload, we might still merge
5856 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
5858 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5859 || rld[j].out != 0 || rld[j].in == 0
5860 || ! rtx_equal_p (rld[i].in, rld[j].in))
5862 if (rld[j].when_needed != RELOAD_FOR_INPUT
5863 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
5864 || rld[i].opnum > rld[j].opnum)
5865 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
5866 break;
5867 conflicting_input = 1;
5868 if (min_conflicting_input_opnum > rld[j].opnum)
5869 min_conflicting_input_opnum = rld[j].opnum;
5873 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
5874 we, in fact, found any matching reloads. */
5876 if (j == n_reloads
5877 && max_input_address_opnum <= min_conflicting_input_opnum)
5879 for (j = 0; j < n_reloads; j++)
5880 if (i != j && rld[j].reg_rtx != 0
5881 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5882 && (! conflicting_input
5883 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5884 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
5886 rld[i].when_needed = RELOAD_OTHER;
5887 rld[j].in = 0;
5888 reload_spill_index[j] = -1;
5889 transfer_replacements (i, j);
5892 /* If this is now RELOAD_OTHER, look for any reloads that load
5893 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
5894 if they were for inputs, RELOAD_OTHER for outputs. Note that
5895 this test is equivalent to looking for reloads for this operand
5896 number. */
5898 if (rld[i].when_needed == RELOAD_OTHER)
5899 for (j = 0; j < n_reloads; j++)
5900 if (rld[j].in != 0
5901 && rld[i].when_needed != RELOAD_OTHER
5902 && reg_overlap_mentioned_for_reload_p (rld[j].in,
5903 rld[i].in))
5904 rld[j].when_needed
5905 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
5906 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
5907 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
5913 /* These arrays are filled by emit_reload_insns and its subroutines. */
5914 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
5915 static rtx other_input_address_reload_insns = 0;
5916 static rtx other_input_reload_insns = 0;
5917 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
5918 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5919 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
5920 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
5921 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5922 static rtx operand_reload_insns = 0;
5923 static rtx other_operand_reload_insns = 0;
5924 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
5926 /* Values to be put in spill_reg_store are put here first. */
5927 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
5928 static HARD_REG_SET reg_reloaded_died;
5930 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
5931 has the number J. OLD contains the value to be used as input. */
5933 static void
5934 emit_input_reload_insns (chain, rl, old, j)
5935 struct insn_chain *chain;
5936 struct reload *rl;
5937 rtx old;
5938 int j;
5940 rtx insn = chain->insn;
5941 register rtx reloadreg = rl->reg_rtx;
5942 rtx oldequiv_reg = 0;
5943 rtx oldequiv = 0;
5944 int special = 0;
5945 enum machine_mode mode;
5946 rtx *where;
5948 /* Determine the mode to reload in.
5949 This is very tricky because we have three to choose from.
5950 There is the mode the insn operand wants (rl->inmode).
5951 There is the mode of the reload register RELOADREG.
5952 There is the intrinsic mode of the operand, which we could find
5953 by stripping some SUBREGs.
5954 It turns out that RELOADREG's mode is irrelevant:
5955 we can change that arbitrarily.
5957 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
5958 then the reload reg may not support QImode moves, so use SImode.
5959 If foo is in memory due to spilling a pseudo reg, this is safe,
5960 because the QImode value is in the least significant part of a
5961 slot big enough for a SImode. If foo is some other sort of
5962 memory reference, then it is impossible to reload this case,
5963 so previous passes had better make sure this never happens.
5965 Then consider a one-word union which has SImode and one of its
5966 members is a float, being fetched as (SUBREG:SF union:SI).
5967 We must fetch that as SFmode because we could be loading into
5968 a float-only register. In this case OLD's mode is correct.
5970 Consider an immediate integer: it has VOIDmode. Here we need
5971 to get a mode from something else.
5973 In some cases, there is a fourth mode, the operand's
5974 containing mode. If the insn specifies a containing mode for
5975 this operand, it overrides all others.
5977 I am not sure whether the algorithm here is always right,
5978 but it does the right things in those cases. */
5980 mode = GET_MODE (old);
5981 if (mode == VOIDmode)
5982 mode = rl->inmode;
5984 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5985 /* If we need a secondary register for this operation, see if
5986 the value is already in a register in that class. Don't
5987 do this if the secondary register will be used as a scratch
5988 register. */
5990 if (rl->secondary_in_reload >= 0
5991 && rl->secondary_in_icode == CODE_FOR_nothing
5992 && optimize)
5993 oldequiv
5994 = find_equiv_reg (old, insn,
5995 rld[rl->secondary_in_reload].class,
5996 -1, NULL_PTR, 0, mode);
5997 #endif
5999 /* If reloading from memory, see if there is a register
6000 that already holds the same value. If so, reload from there.
6001 We can pass 0 as the reload_reg_p argument because
6002 any other reload has either already been emitted,
6003 in which case find_equiv_reg will see the reload-insn,
6004 or has yet to be emitted, in which case it doesn't matter
6005 because we will use this equiv reg right away. */
6007 if (oldequiv == 0 && optimize
6008 && (GET_CODE (old) == MEM
6009 || (GET_CODE (old) == REG
6010 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6011 && reg_renumber[REGNO (old)] < 0)))
6012 oldequiv = find_equiv_reg (old, insn, ALL_REGS,
6013 -1, NULL_PTR, 0, mode);
6015 if (oldequiv)
6017 unsigned int regno = true_regnum (oldequiv);
6019 /* Don't use OLDEQUIV if any other reload changes it at an
6020 earlier stage of this insn or at this stage. */
6021 if (! reload_reg_free_for_value_p (regno, rl->opnum,
6022 rl->when_needed,
6023 rl->in, const0_rtx, j,
6025 oldequiv = 0;
6027 /* If it is no cheaper to copy from OLDEQUIV into the
6028 reload register than it would be to move from memory,
6029 don't use it. Likewise, if we need a secondary register
6030 or memory. */
6032 if (oldequiv != 0
6033 && ((REGNO_REG_CLASS (regno) != rl->class
6034 && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
6035 rl->class)
6036 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6037 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6038 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6039 mode, oldequiv)
6040 != NO_REGS)
6041 #endif
6042 #ifdef SECONDARY_MEMORY_NEEDED
6043 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6044 rl->class,
6045 mode)
6046 #endif
6048 oldequiv = 0;
6051 /* delete_output_reload is only invoked properly if old contains
6052 the original pseudo register. Since this is replaced with a
6053 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6054 find the pseudo in RELOAD_IN_REG. */
6055 if (oldequiv == 0
6056 && reload_override_in[j]
6057 && GET_CODE (rl->in_reg) == REG)
6059 oldequiv = old;
6060 old = rl->in_reg;
6062 if (oldequiv == 0)
6063 oldequiv = old;
6064 else if (GET_CODE (oldequiv) == REG)
6065 oldequiv_reg = oldequiv;
6066 else if (GET_CODE (oldequiv) == SUBREG)
6067 oldequiv_reg = SUBREG_REG (oldequiv);
6069 /* If we are reloading from a register that was recently stored in
6070 with an output-reload, see if we can prove there was
6071 actually no need to store the old value in it. */
6073 if (optimize && GET_CODE (oldequiv) == REG
6074 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6075 && spill_reg_store[REGNO (oldequiv)]
6076 && GET_CODE (old) == REG
6077 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6078 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6079 rl->out_reg)))
6080 delete_output_reload (insn, j, REGNO (oldequiv));
6082 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6083 then load RELOADREG from OLDEQUIV. Note that we cannot use
6084 gen_lowpart_common since it can do the wrong thing when
6085 RELOADREG has a multi-word mode. Note that RELOADREG
6086 must always be a REG here. */
6088 if (GET_MODE (reloadreg) != mode)
6089 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6090 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6091 oldequiv = SUBREG_REG (oldequiv);
6092 if (GET_MODE (oldequiv) != VOIDmode
6093 && mode != GET_MODE (oldequiv))
6094 oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
6096 /* Switch to the right place to emit the reload insns. */
6097 switch (rl->when_needed)
6099 case RELOAD_OTHER:
6100 where = &other_input_reload_insns;
6101 break;
6102 case RELOAD_FOR_INPUT:
6103 where = &input_reload_insns[rl->opnum];
6104 break;
6105 case RELOAD_FOR_INPUT_ADDRESS:
6106 where = &input_address_reload_insns[rl->opnum];
6107 break;
6108 case RELOAD_FOR_INPADDR_ADDRESS:
6109 where = &inpaddr_address_reload_insns[rl->opnum];
6110 break;
6111 case RELOAD_FOR_OUTPUT_ADDRESS:
6112 where = &output_address_reload_insns[rl->opnum];
6113 break;
6114 case RELOAD_FOR_OUTADDR_ADDRESS:
6115 where = &outaddr_address_reload_insns[rl->opnum];
6116 break;
6117 case RELOAD_FOR_OPERAND_ADDRESS:
6118 where = &operand_reload_insns;
6119 break;
6120 case RELOAD_FOR_OPADDR_ADDR:
6121 where = &other_operand_reload_insns;
6122 break;
6123 case RELOAD_FOR_OTHER_ADDRESS:
6124 where = &other_input_address_reload_insns;
6125 break;
6126 default:
6127 abort ();
6130 push_to_sequence (*where);
6132 /* Auto-increment addresses must be reloaded in a special way. */
6133 if (rl->out && ! rl->out_reg)
6135 /* We are not going to bother supporting the case where a
6136 incremented register can't be copied directly from
6137 OLDEQUIV since this seems highly unlikely. */
6138 if (rl->secondary_in_reload >= 0)
6139 abort ();
6141 if (reload_inherited[j])
6142 oldequiv = reloadreg;
6144 old = XEXP (rl->in_reg, 0);
6146 if (optimize && GET_CODE (oldequiv) == REG
6147 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6148 && spill_reg_store[REGNO (oldequiv)]
6149 && GET_CODE (old) == REG
6150 && (dead_or_set_p (insn,
6151 spill_reg_stored_to[REGNO (oldequiv)])
6152 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6153 old)))
6154 delete_output_reload (insn, j, REGNO (oldequiv));
6156 /* Prevent normal processing of this reload. */
6157 special = 1;
6158 /* Output a special code sequence for this case. */
6159 new_spill_reg_store[REGNO (reloadreg)]
6160 = inc_for_reload (reloadreg, oldequiv, rl->out,
6161 rl->inc);
6164 /* If we are reloading a pseudo-register that was set by the previous
6165 insn, see if we can get rid of that pseudo-register entirely
6166 by redirecting the previous insn into our reload register. */
6168 else if (optimize && GET_CODE (old) == REG
6169 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6170 && dead_or_set_p (insn, old)
6171 /* This is unsafe if some other reload
6172 uses the same reg first. */
6173 && reload_reg_free_for_value_p (REGNO (reloadreg),
6174 rl->opnum,
6175 rl->when_needed,
6176 old, rl->out,
6177 j, 0))
6179 rtx temp = PREV_INSN (insn);
6180 while (temp && GET_CODE (temp) == NOTE)
6181 temp = PREV_INSN (temp);
6182 if (temp
6183 && GET_CODE (temp) == INSN
6184 && GET_CODE (PATTERN (temp)) == SET
6185 && SET_DEST (PATTERN (temp)) == old
6186 /* Make sure we can access insn_operand_constraint. */
6187 && asm_noperands (PATTERN (temp)) < 0
6188 /* This is unsafe if prev insn rejects our reload reg. */
6189 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6190 reloadreg)
6191 /* This is unsafe if operand occurs more than once in current
6192 insn. Perhaps some occurrences aren't reloaded. */
6193 && count_occurrences (PATTERN (insn), old) == 1
6194 /* Don't risk splitting a matching pair of operands. */
6195 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6197 /* Store into the reload register instead of the pseudo. */
6198 SET_DEST (PATTERN (temp)) = reloadreg;
6200 /* If the previous insn is an output reload, the source is
6201 a reload register, and its spill_reg_store entry will
6202 contain the previous destination. This is now
6203 invalid. */
6204 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6205 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6207 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6208 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6211 /* If these are the only uses of the pseudo reg,
6212 pretend for GDB it lives in the reload reg we used. */
6213 if (REG_N_DEATHS (REGNO (old)) == 1
6214 && REG_N_SETS (REGNO (old)) == 1)
6216 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6217 alter_reg (REGNO (old), -1);
6219 special = 1;
6223 /* We can't do that, so output an insn to load RELOADREG. */
6225 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6226 /* If we have a secondary reload, pick up the secondary register
6227 and icode, if any. If OLDEQUIV and OLD are different or
6228 if this is an in-out reload, recompute whether or not we
6229 still need a secondary register and what the icode should
6230 be. If we still need a secondary register and the class or
6231 icode is different, go back to reloading from OLD if using
6232 OLDEQUIV means that we got the wrong type of register. We
6233 cannot have different class or icode due to an in-out reload
6234 because we don't make such reloads when both the input and
6235 output need secondary reload registers. */
6237 if (! special && rl->secondary_in_reload >= 0)
6239 rtx second_reload_reg = 0;
6240 int secondary_reload = rl->secondary_in_reload;
6241 rtx real_oldequiv = oldequiv;
6242 rtx real_old = old;
6243 rtx tmp;
6244 enum insn_code icode;
6246 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6247 and similarly for OLD.
6248 See comments in get_secondary_reload in reload.c. */
6249 /* If it is a pseudo that cannot be replaced with its
6250 equivalent MEM, we must fall back to reload_in, which
6251 will have all the necessary substitutions registered.
6252 Likewise for a pseudo that can't be replaced with its
6253 equivalent constant.
6255 Take extra care for subregs of such pseudos. Note that
6256 we cannot use reg_equiv_mem in this case because it is
6257 not in the right mode. */
6259 tmp = oldequiv;
6260 if (GET_CODE (tmp) == SUBREG)
6261 tmp = SUBREG_REG (tmp);
6262 if (GET_CODE (tmp) == REG
6263 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6264 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6265 || reg_equiv_constant[REGNO (tmp)] != 0))
6267 if (! reg_equiv_mem[REGNO (tmp)]
6268 || num_not_at_initial_offset
6269 || GET_CODE (oldequiv) == SUBREG)
6270 real_oldequiv = rl->in;
6271 else
6272 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6275 tmp = old;
6276 if (GET_CODE (tmp) == SUBREG)
6277 tmp = SUBREG_REG (tmp);
6278 if (GET_CODE (tmp) == REG
6279 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6280 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6281 || reg_equiv_constant[REGNO (tmp)] != 0))
6283 if (! reg_equiv_mem[REGNO (tmp)]
6284 || num_not_at_initial_offset
6285 || GET_CODE (old) == SUBREG)
6286 real_old = rl->in;
6287 else
6288 real_old = reg_equiv_mem[REGNO (tmp)];
6291 second_reload_reg = rld[secondary_reload].reg_rtx;
6292 icode = rl->secondary_in_icode;
6294 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6295 || (rl->in != 0 && rl->out != 0))
6297 enum reg_class new_class
6298 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6299 mode, real_oldequiv);
6301 if (new_class == NO_REGS)
6302 second_reload_reg = 0;
6303 else
6305 enum insn_code new_icode;
6306 enum machine_mode new_mode;
6308 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6309 REGNO (second_reload_reg)))
6310 oldequiv = old, real_oldequiv = real_old;
6311 else
6313 new_icode = reload_in_optab[(int) mode];
6314 if (new_icode != CODE_FOR_nothing
6315 && ((insn_data[(int) new_icode].operand[0].predicate
6316 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6317 (reloadreg, mode)))
6318 || (insn_data[(int) new_icode].operand[1].predicate
6319 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6320 (real_oldequiv, mode)))))
6321 new_icode = CODE_FOR_nothing;
6323 if (new_icode == CODE_FOR_nothing)
6324 new_mode = mode;
6325 else
6326 new_mode = insn_data[(int) new_icode].operand[2].mode;
6328 if (GET_MODE (second_reload_reg) != new_mode)
6330 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6331 new_mode))
6332 oldequiv = old, real_oldequiv = real_old;
6333 else
6334 second_reload_reg
6335 = gen_rtx_REG (new_mode,
6336 REGNO (second_reload_reg));
6342 /* If we still need a secondary reload register, check
6343 to see if it is being used as a scratch or intermediate
6344 register and generate code appropriately. If we need
6345 a scratch register, use REAL_OLDEQUIV since the form of
6346 the insn may depend on the actual address if it is
6347 a MEM. */
6349 if (second_reload_reg)
6351 if (icode != CODE_FOR_nothing)
6353 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6354 second_reload_reg));
6355 special = 1;
6357 else
6359 /* See if we need a scratch register to load the
6360 intermediate register (a tertiary reload). */
6361 enum insn_code tertiary_icode
6362 = rld[secondary_reload].secondary_in_icode;
6364 if (tertiary_icode != CODE_FOR_nothing)
6366 rtx third_reload_reg
6367 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6369 emit_insn ((GEN_FCN (tertiary_icode)
6370 (second_reload_reg, real_oldequiv,
6371 third_reload_reg)));
6373 else
6374 gen_reload (second_reload_reg, real_oldequiv,
6375 rl->opnum,
6376 rl->when_needed);
6378 oldequiv = second_reload_reg;
6382 #endif
6384 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6386 rtx real_oldequiv = oldequiv;
6388 if ((GET_CODE (oldequiv) == REG
6389 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6390 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6391 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6392 || (GET_CODE (oldequiv) == SUBREG
6393 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6394 && (REGNO (SUBREG_REG (oldequiv))
6395 >= FIRST_PSEUDO_REGISTER)
6396 && ((reg_equiv_memory_loc
6397 [REGNO (SUBREG_REG (oldequiv))] != 0)
6398 || (reg_equiv_constant
6399 [REGNO (SUBREG_REG (oldequiv))] != 0))))
6400 real_oldequiv = rl->in;
6401 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6402 rl->when_needed);
6405 /* End this sequence. */
6406 *where = get_insns ();
6407 end_sequence ();
6409 /* Update reload_override_in so that delete_address_reloads_1
6410 can see the actual register usage. */
6411 if (oldequiv_reg)
6412 reload_override_in[j] = oldequiv;
6415 /* Generate insns to for the output reload RL, which is for the insn described
6416 by CHAIN and has the number J. */
6417 static void
6418 emit_output_reload_insns (chain, rl, j)
6419 struct insn_chain *chain;
6420 struct reload *rl;
6421 int j;
6423 rtx reloadreg = rl->reg_rtx;
6424 rtx insn = chain->insn;
6425 int special = 0;
6426 rtx old = rl->out;
6427 enum machine_mode mode = GET_MODE (old);
6428 rtx p;
6430 if (rl->when_needed == RELOAD_OTHER)
6431 start_sequence ();
6432 else
6433 push_to_sequence (output_reload_insns[rl->opnum]);
6435 /* Determine the mode to reload in.
6436 See comments above (for input reloading). */
6438 if (mode == VOIDmode)
6440 /* VOIDmode should never happen for an output. */
6441 if (asm_noperands (PATTERN (insn)) < 0)
6442 /* It's the compiler's fault. */
6443 fatal_insn ("VOIDmode on an output", insn);
6444 error_for_asm (insn, "output operand is constant in `asm'");
6445 /* Prevent crash--use something we know is valid. */
6446 mode = word_mode;
6447 old = gen_rtx_REG (mode, REGNO (reloadreg));
6450 if (GET_MODE (reloadreg) != mode)
6451 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6453 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6455 /* If we need two reload regs, set RELOADREG to the intermediate
6456 one, since it will be stored into OLD. We might need a secondary
6457 register only for an input reload, so check again here. */
6459 if (rl->secondary_out_reload >= 0)
6461 rtx real_old = old;
6463 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6464 && reg_equiv_mem[REGNO (old)] != 0)
6465 real_old = reg_equiv_mem[REGNO (old)];
6467 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6468 mode, real_old)
6469 != NO_REGS))
6471 rtx second_reloadreg = reloadreg;
6472 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6474 /* See if RELOADREG is to be used as a scratch register
6475 or as an intermediate register. */
6476 if (rl->secondary_out_icode != CODE_FOR_nothing)
6478 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6479 (real_old, second_reloadreg, reloadreg)));
6480 special = 1;
6482 else
6484 /* See if we need both a scratch and intermediate reload
6485 register. */
6487 int secondary_reload = rl->secondary_out_reload;
6488 enum insn_code tertiary_icode
6489 = rld[secondary_reload].secondary_out_icode;
6491 if (GET_MODE (reloadreg) != mode)
6492 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6494 if (tertiary_icode != CODE_FOR_nothing)
6496 rtx third_reloadreg
6497 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6498 rtx tem;
6500 /* Copy primary reload reg to secondary reload reg.
6501 (Note that these have been swapped above, then
6502 secondary reload reg to OLD using our insn. */
6504 /* If REAL_OLD is a paradoxical SUBREG, remove it
6505 and try to put the opposite SUBREG on
6506 RELOADREG. */
6507 if (GET_CODE (real_old) == SUBREG
6508 && (GET_MODE_SIZE (GET_MODE (real_old))
6509 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6510 && 0 != (tem = gen_lowpart_common
6511 (GET_MODE (SUBREG_REG (real_old)),
6512 reloadreg)))
6513 real_old = SUBREG_REG (real_old), reloadreg = tem;
6515 gen_reload (reloadreg, second_reloadreg,
6516 rl->opnum, rl->when_needed);
6517 emit_insn ((GEN_FCN (tertiary_icode)
6518 (real_old, reloadreg, third_reloadreg)));
6519 special = 1;
6522 else
6523 /* Copy between the reload regs here and then to
6524 OUT later. */
6526 gen_reload (reloadreg, second_reloadreg,
6527 rl->opnum, rl->when_needed);
6531 #endif
6533 /* Output the last reload insn. */
6534 if (! special)
6536 rtx set;
6538 /* Don't output the last reload if OLD is not the dest of
6539 INSN and is in the src and is clobbered by INSN. */
6540 if (! flag_expensive_optimizations
6541 || GET_CODE (old) != REG
6542 || !(set = single_set (insn))
6543 || rtx_equal_p (old, SET_DEST (set))
6544 || !reg_mentioned_p (old, SET_SRC (set))
6545 || !regno_clobbered_p (REGNO (old), insn))
6546 gen_reload (old, reloadreg, rl->opnum,
6547 rl->when_needed);
6550 /* Look at all insns we emitted, just to be safe. */
6551 for (p = get_insns (); p; p = NEXT_INSN (p))
6552 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6554 rtx pat = PATTERN (p);
6556 /* If this output reload doesn't come from a spill reg,
6557 clear any memory of reloaded copies of the pseudo reg.
6558 If this output reload comes from a spill reg,
6559 reg_has_output_reload will make this do nothing. */
6560 note_stores (pat, forget_old_reloads_1, NULL);
6562 if (reg_mentioned_p (rl->reg_rtx, pat))
6564 rtx set = single_set (insn);
6565 if (reload_spill_index[j] < 0
6566 && set
6567 && SET_SRC (set) == rl->reg_rtx)
6569 int src = REGNO (SET_SRC (set));
6571 reload_spill_index[j] = src;
6572 SET_HARD_REG_BIT (reg_is_output_reload, src);
6573 if (find_regno_note (insn, REG_DEAD, src))
6574 SET_HARD_REG_BIT (reg_reloaded_died, src);
6576 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6578 int s = rl->secondary_out_reload;
6579 set = single_set (p);
6580 /* If this reload copies only to the secondary reload
6581 register, the secondary reload does the actual
6582 store. */
6583 if (s >= 0 && set == NULL_RTX)
6584 ; /* We can't tell what function the secondary reload
6585 has and where the actual store to the pseudo is
6586 made; leave new_spill_reg_store alone. */
6587 else if (s >= 0
6588 && SET_SRC (set) == rl->reg_rtx
6589 && SET_DEST (set) == rld[s].reg_rtx)
6591 /* Usually the next instruction will be the
6592 secondary reload insn; if we can confirm
6593 that it is, setting new_spill_reg_store to
6594 that insn will allow an extra optimization. */
6595 rtx s_reg = rld[s].reg_rtx;
6596 rtx next = NEXT_INSN (p);
6597 rld[s].out = rl->out;
6598 rld[s].out_reg = rl->out_reg;
6599 set = single_set (next);
6600 if (set && SET_SRC (set) == s_reg
6601 && ! new_spill_reg_store[REGNO (s_reg)])
6603 SET_HARD_REG_BIT (reg_is_output_reload,
6604 REGNO (s_reg));
6605 new_spill_reg_store[REGNO (s_reg)] = next;
6608 else
6609 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6614 if (rl->when_needed == RELOAD_OTHER)
6616 emit_insns (other_output_reload_insns[rl->opnum]);
6617 other_output_reload_insns[rl->opnum] = get_insns ();
6619 else
6620 output_reload_insns[rl->opnum] = get_insns ();
6622 end_sequence ();
6625 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6626 and has the number J. */
6627 static void
6628 do_input_reload (chain, rl, j)
6629 struct insn_chain *chain;
6630 struct reload *rl;
6631 int j;
6633 int expect_occurrences = 1;
6634 rtx insn = chain->insn;
6635 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6636 ? rl->in_reg : rl->in);
6638 if (old != 0
6639 /* AUTO_INC reloads need to be handled even if inherited. We got an
6640 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6641 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6642 && ! rtx_equal_p (rl->reg_rtx, old)
6643 && rl->reg_rtx != 0)
6644 emit_input_reload_insns (chain, rld + j, old, j);
6646 /* When inheriting a wider reload, we have a MEM in rl->in,
6647 e.g. inheriting a SImode output reload for
6648 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6649 if (optimize && reload_inherited[j] && rl->in
6650 && GET_CODE (rl->in) == MEM
6651 && GET_CODE (rl->in_reg) == MEM
6652 && reload_spill_index[j] >= 0
6653 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6655 expect_occurrences
6656 = count_occurrences (PATTERN (insn), rl->in) == 1 ? 0 : -1;
6657 rl->in
6658 = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6661 /* If we are reloading a register that was recently stored in with an
6662 output-reload, see if we can prove there was
6663 actually no need to store the old value in it. */
6665 if (optimize
6666 && (reload_inherited[j] || reload_override_in[j])
6667 && rl->reg_rtx
6668 && GET_CODE (rl->reg_rtx) == REG
6669 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6670 #if 0
6671 /* There doesn't seem to be any reason to restrict this to pseudos
6672 and doing so loses in the case where we are copying from a
6673 register of the wrong class. */
6674 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6675 >= FIRST_PSEUDO_REGISTER)
6676 #endif
6677 /* The insn might have already some references to stackslots
6678 replaced by MEMs, while reload_out_reg still names the
6679 original pseudo. */
6680 && (dead_or_set_p (insn,
6681 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6682 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6683 rl->out_reg)))
6684 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6687 /* Do output reloading for reload RL, which is for the insn described by
6688 CHAIN and has the number J.
6689 ??? At some point we need to support handling output reloads of
6690 JUMP_INSNs or insns that set cc0. */
6691 static void
6692 do_output_reload (chain, rl, j)
6693 struct insn_chain *chain;
6694 struct reload *rl;
6695 int j;
6697 rtx note, old;
6698 rtx insn = chain->insn;
6699 /* If this is an output reload that stores something that is
6700 not loaded in this same reload, see if we can eliminate a previous
6701 store. */
6702 rtx pseudo = rl->out_reg;
6704 if (pseudo
6705 && GET_CODE (pseudo) == REG
6706 && ! rtx_equal_p (rl->in_reg, pseudo)
6707 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6708 && reg_last_reload_reg[REGNO (pseudo)])
6710 int pseudo_no = REGNO (pseudo);
6711 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6713 /* We don't need to test full validity of last_regno for
6714 inherit here; we only want to know if the store actually
6715 matches the pseudo. */
6716 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6717 && reg_reloaded_contents[last_regno] == pseudo_no
6718 && spill_reg_store[last_regno]
6719 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6720 delete_output_reload (insn, j, last_regno);
6723 old = rl->out_reg;
6724 if (old == 0
6725 || rl->reg_rtx == old
6726 || rl->reg_rtx == 0)
6727 return;
6729 /* An output operand that dies right away does need a reload,
6730 but need not be copied from it. Show the new location in the
6731 REG_UNUSED note. */
6732 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6733 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6735 XEXP (note, 0) = rl->reg_rtx;
6736 return;
6738 /* Likewise for a SUBREG of an operand that dies. */
6739 else if (GET_CODE (old) == SUBREG
6740 && GET_CODE (SUBREG_REG (old)) == REG
6741 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6742 SUBREG_REG (old))))
6744 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6745 rl->reg_rtx);
6746 return;
6748 else if (GET_CODE (old) == SCRATCH)
6749 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6750 but we don't want to make an output reload. */
6751 return;
6753 /* If is a JUMP_INSN, we can't support output reloads yet. */
6754 if (GET_CODE (insn) == JUMP_INSN)
6755 abort ();
6757 emit_output_reload_insns (chain, rld + j, j);
6760 /* Output insns to reload values in and out of the chosen reload regs. */
6762 static void
6763 emit_reload_insns (chain)
6764 struct insn_chain *chain;
6766 rtx insn = chain->insn;
6768 register int j;
6769 rtx following_insn = NEXT_INSN (insn);
6770 rtx before_insn = PREV_INSN (insn);
6772 CLEAR_HARD_REG_SET (reg_reloaded_died);
6774 for (j = 0; j < reload_n_operands; j++)
6775 input_reload_insns[j] = input_address_reload_insns[j]
6776 = inpaddr_address_reload_insns[j]
6777 = output_reload_insns[j] = output_address_reload_insns[j]
6778 = outaddr_address_reload_insns[j]
6779 = other_output_reload_insns[j] = 0;
6780 other_input_address_reload_insns = 0;
6781 other_input_reload_insns = 0;
6782 operand_reload_insns = 0;
6783 other_operand_reload_insns = 0;
6785 /* Now output the instructions to copy the data into and out of the
6786 reload registers. Do these in the order that the reloads were reported,
6787 since reloads of base and index registers precede reloads of operands
6788 and the operands may need the base and index registers reloaded. */
6790 for (j = 0; j < n_reloads; j++)
6792 if (rld[j].reg_rtx
6793 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6794 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6796 do_input_reload (chain, rld + j, j);
6797 do_output_reload (chain, rld + j, j);
6800 /* Now write all the insns we made for reloads in the order expected by
6801 the allocation functions. Prior to the insn being reloaded, we write
6802 the following reloads:
6804 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6806 RELOAD_OTHER reloads.
6808 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6809 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6810 RELOAD_FOR_INPUT reload for the operand.
6812 RELOAD_FOR_OPADDR_ADDRS reloads.
6814 RELOAD_FOR_OPERAND_ADDRESS reloads.
6816 After the insn being reloaded, we write the following:
6818 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6819 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6820 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6821 reloads for the operand. The RELOAD_OTHER output reloads are
6822 output in descending order by reload number. */
6824 emit_insns_before (other_input_address_reload_insns, insn);
6825 emit_insns_before (other_input_reload_insns, insn);
6827 for (j = 0; j < reload_n_operands; j++)
6829 emit_insns_before (inpaddr_address_reload_insns[j], insn);
6830 emit_insns_before (input_address_reload_insns[j], insn);
6831 emit_insns_before (input_reload_insns[j], insn);
6834 emit_insns_before (other_operand_reload_insns, insn);
6835 emit_insns_before (operand_reload_insns, insn);
6837 for (j = 0; j < reload_n_operands; j++)
6839 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
6840 emit_insns_before (output_address_reload_insns[j], following_insn);
6841 emit_insns_before (output_reload_insns[j], following_insn);
6842 emit_insns_before (other_output_reload_insns[j], following_insn);
6845 /* Keep basic block info up to date. */
6846 if (n_basic_blocks)
6848 if (BLOCK_HEAD (chain->block) == insn)
6849 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
6850 if (BLOCK_END (chain->block) == insn)
6851 BLOCK_END (chain->block) = PREV_INSN (following_insn);
6854 /* For all the spill regs newly reloaded in this instruction,
6855 record what they were reloaded from, so subsequent instructions
6856 can inherit the reloads.
6858 Update spill_reg_store for the reloads of this insn.
6859 Copy the elements that were updated in the loop above. */
6861 for (j = 0; j < n_reloads; j++)
6863 register int r = reload_order[j];
6864 register int i = reload_spill_index[r];
6866 /* If this is a non-inherited input reload from a pseudo, we must
6867 clear any memory of a previous store to the same pseudo. Only do
6868 something if there will not be an output reload for the pseudo
6869 being reloaded. */
6870 if (rld[r].in_reg != 0
6871 && ! (reload_inherited[r] || reload_override_in[r]))
6873 rtx reg = rld[r].in_reg;
6875 if (GET_CODE (reg) == SUBREG)
6876 reg = SUBREG_REG (reg);
6878 if (GET_CODE (reg) == REG
6879 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
6880 && ! reg_has_output_reload[REGNO (reg)])
6882 int nregno = REGNO (reg);
6884 if (reg_last_reload_reg[nregno])
6886 int last_regno = REGNO (reg_last_reload_reg[nregno]);
6888 if (reg_reloaded_contents[last_regno] == nregno)
6889 spill_reg_store[last_regno] = 0;
6894 /* I is nonneg if this reload used a register.
6895 If rld[r].reg_rtx is 0, this is an optional reload
6896 that we opted to ignore. */
6898 if (i >= 0 && rld[r].reg_rtx != 0)
6900 int nr
6901 = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
6902 int k;
6903 int part_reaches_end = 0;
6904 int all_reaches_end = 1;
6906 /* For a multi register reload, we need to check if all or part
6907 of the value lives to the end. */
6908 for (k = 0; k < nr; k++)
6910 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
6911 rld[r].when_needed))
6912 part_reaches_end = 1;
6913 else
6914 all_reaches_end = 0;
6917 /* Ignore reloads that don't reach the end of the insn in
6918 entirety. */
6919 if (all_reaches_end)
6921 /* First, clear out memory of what used to be in this spill reg.
6922 If consecutive registers are used, clear them all. */
6924 for (k = 0; k < nr; k++)
6925 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
6927 /* Maybe the spill reg contains a copy of reload_out. */
6928 if (rld[r].out != 0
6929 && (GET_CODE (rld[r].out) == REG
6930 #ifdef AUTO_INC_DEC
6931 || ! rld[r].out_reg
6932 #endif
6933 || GET_CODE (rld[r].out_reg) == REG))
6935 rtx out = (GET_CODE (rld[r].out) == REG
6936 ? rld[r].out
6937 : rld[r].out_reg
6938 ? rld[r].out_reg
6939 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
6940 register int nregno = REGNO (out);
6941 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
6942 : HARD_REGNO_NREGS (nregno,
6943 GET_MODE (rld[r].reg_rtx)));
6945 spill_reg_store[i] = new_spill_reg_store[i];
6946 spill_reg_stored_to[i] = out;
6947 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
6949 /* If NREGNO is a hard register, it may occupy more than
6950 one register. If it does, say what is in the
6951 rest of the registers assuming that both registers
6952 agree on how many words the object takes. If not,
6953 invalidate the subsequent registers. */
6955 if (nregno < FIRST_PSEUDO_REGISTER)
6956 for (k = 1; k < nnr; k++)
6957 reg_last_reload_reg[nregno + k]
6958 = (nr == nnr
6959 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
6960 REGNO (rld[r].reg_rtx) + k)
6961 : 0);
6963 /* Now do the inverse operation. */
6964 for (k = 0; k < nr; k++)
6966 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
6967 reg_reloaded_contents[i + k]
6968 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
6969 ? nregno
6970 : nregno + k);
6971 reg_reloaded_insn[i + k] = insn;
6972 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
6976 /* Maybe the spill reg contains a copy of reload_in. Only do
6977 something if there will not be an output reload for
6978 the register being reloaded. */
6979 else if (rld[r].out_reg == 0
6980 && rld[r].in != 0
6981 && ((GET_CODE (rld[r].in) == REG
6982 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
6983 && ! reg_has_output_reload[REGNO (rld[r].in)])
6984 || (GET_CODE (rld[r].in_reg) == REG
6985 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
6986 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
6988 register int nregno;
6989 int nnr;
6991 if (GET_CODE (rld[r].in) == REG
6992 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
6993 nregno = REGNO (rld[r].in);
6994 else if (GET_CODE (rld[r].in_reg) == REG)
6995 nregno = REGNO (rld[r].in_reg);
6996 else
6997 nregno = REGNO (XEXP (rld[r].in_reg, 0));
6999 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7000 : HARD_REGNO_NREGS (nregno,
7001 GET_MODE (rld[r].reg_rtx)));
7003 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7005 if (nregno < FIRST_PSEUDO_REGISTER)
7006 for (k = 1; k < nnr; k++)
7007 reg_last_reload_reg[nregno + k]
7008 = (nr == nnr
7009 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7010 REGNO (rld[r].reg_rtx) + k)
7011 : 0);
7013 /* Unless we inherited this reload, show we haven't
7014 recently done a store.
7015 Previous stores of inherited auto_inc expressions
7016 also have to be discarded. */
7017 if (! reload_inherited[r]
7018 || (rld[r].out && ! rld[r].out_reg))
7019 spill_reg_store[i] = 0;
7021 for (k = 0; k < nr; k++)
7023 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7024 reg_reloaded_contents[i + k]
7025 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7026 ? nregno
7027 : nregno + k);
7028 reg_reloaded_insn[i + k] = insn;
7029 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7034 /* However, if part of the reload reaches the end, then we must
7035 invalidate the old info for the part that survives to the end. */
7036 else if (part_reaches_end)
7038 for (k = 0; k < nr; k++)
7039 if (reload_reg_reaches_end_p (i + k,
7040 rld[r].opnum,
7041 rld[r].when_needed))
7042 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7046 /* The following if-statement was #if 0'd in 1.34 (or before...).
7047 It's reenabled in 1.35 because supposedly nothing else
7048 deals with this problem. */
7050 /* If a register gets output-reloaded from a non-spill register,
7051 that invalidates any previous reloaded copy of it.
7052 But forget_old_reloads_1 won't get to see it, because
7053 it thinks only about the original insn. So invalidate it here. */
7054 if (i < 0 && rld[r].out != 0
7055 && (GET_CODE (rld[r].out) == REG
7056 || (GET_CODE (rld[r].out) == MEM
7057 && GET_CODE (rld[r].out_reg) == REG)))
7059 rtx out = (GET_CODE (rld[r].out) == REG
7060 ? rld[r].out : rld[r].out_reg);
7061 register int nregno = REGNO (out);
7062 if (nregno >= FIRST_PSEUDO_REGISTER)
7064 rtx src_reg, store_insn = NULL_RTX;
7066 reg_last_reload_reg[nregno] = 0;
7068 /* If we can find a hard register that is stored, record
7069 the storing insn so that we may delete this insn with
7070 delete_output_reload. */
7071 src_reg = rld[r].reg_rtx;
7073 /* If this is an optional reload, try to find the source reg
7074 from an input reload. */
7075 if (! src_reg)
7077 rtx set = single_set (insn);
7078 if (set && SET_DEST (set) == rld[r].out)
7080 int k;
7082 src_reg = SET_SRC (set);
7083 store_insn = insn;
7084 for (k = 0; k < n_reloads; k++)
7086 if (rld[k].in == src_reg)
7088 src_reg = rld[k].reg_rtx;
7089 break;
7094 else
7095 store_insn = new_spill_reg_store[REGNO (src_reg)];
7096 if (src_reg && GET_CODE (src_reg) == REG
7097 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7099 int src_regno = REGNO (src_reg);
7100 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7101 /* The place where to find a death note varies with
7102 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7103 necessarily checked exactly in the code that moves
7104 notes, so just check both locations. */
7105 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7106 if (! note)
7107 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7108 while (nr-- > 0)
7110 spill_reg_store[src_regno + nr] = store_insn;
7111 spill_reg_stored_to[src_regno + nr] = out;
7112 reg_reloaded_contents[src_regno + nr] = nregno;
7113 reg_reloaded_insn[src_regno + nr] = store_insn;
7114 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7115 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7116 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7117 if (note)
7118 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7119 else
7120 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7122 reg_last_reload_reg[nregno] = src_reg;
7125 else
7127 int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (rld[r].out));
7129 while (num_regs-- > 0)
7130 reg_last_reload_reg[nregno + num_regs] = 0;
7134 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7137 /* Emit code to perform a reload from IN (which may be a reload register) to
7138 OUT (which may also be a reload register). IN or OUT is from operand
7139 OPNUM with reload type TYPE.
7141 Returns first insn emitted. */
7144 gen_reload (out, in, opnum, type)
7145 rtx out;
7146 rtx in;
7147 int opnum;
7148 enum reload_type type;
7150 rtx last = get_last_insn ();
7151 rtx tem;
7153 /* If IN is a paradoxical SUBREG, remove it and try to put the
7154 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7155 if (GET_CODE (in) == SUBREG
7156 && (GET_MODE_SIZE (GET_MODE (in))
7157 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7158 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7159 in = SUBREG_REG (in), out = tem;
7160 else if (GET_CODE (out) == SUBREG
7161 && (GET_MODE_SIZE (GET_MODE (out))
7162 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7163 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7164 out = SUBREG_REG (out), in = tem;
7166 /* How to do this reload can get quite tricky. Normally, we are being
7167 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7168 register that didn't get a hard register. In that case we can just
7169 call emit_move_insn.
7171 We can also be asked to reload a PLUS that adds a register or a MEM to
7172 another register, constant or MEM. This can occur during frame pointer
7173 elimination and while reloading addresses. This case is handled by
7174 trying to emit a single insn to perform the add. If it is not valid,
7175 we use a two insn sequence.
7177 Finally, we could be called to handle an 'o' constraint by putting
7178 an address into a register. In that case, we first try to do this
7179 with a named pattern of "reload_load_address". If no such pattern
7180 exists, we just emit a SET insn and hope for the best (it will normally
7181 be valid on machines that use 'o').
7183 This entire process is made complex because reload will never
7184 process the insns we generate here and so we must ensure that
7185 they will fit their constraints and also by the fact that parts of
7186 IN might be being reloaded separately and replaced with spill registers.
7187 Because of this, we are, in some sense, just guessing the right approach
7188 here. The one listed above seems to work.
7190 ??? At some point, this whole thing needs to be rethought. */
7192 if (GET_CODE (in) == PLUS
7193 && (GET_CODE (XEXP (in, 0)) == REG
7194 || GET_CODE (XEXP (in, 0)) == SUBREG
7195 || GET_CODE (XEXP (in, 0)) == MEM)
7196 && (GET_CODE (XEXP (in, 1)) == REG
7197 || GET_CODE (XEXP (in, 1)) == SUBREG
7198 || CONSTANT_P (XEXP (in, 1))
7199 || GET_CODE (XEXP (in, 1)) == MEM))
7201 /* We need to compute the sum of a register or a MEM and another
7202 register, constant, or MEM, and put it into the reload
7203 register. The best possible way of doing this is if the machine
7204 has a three-operand ADD insn that accepts the required operands.
7206 The simplest approach is to try to generate such an insn and see if it
7207 is recognized and matches its constraints. If so, it can be used.
7209 It might be better not to actually emit the insn unless it is valid,
7210 but we need to pass the insn as an operand to `recog' and
7211 `extract_insn' and it is simpler to emit and then delete the insn if
7212 not valid than to dummy things up. */
7214 rtx op0, op1, tem, insn;
7215 int code;
7217 op0 = find_replacement (&XEXP (in, 0));
7218 op1 = find_replacement (&XEXP (in, 1));
7220 /* Since constraint checking is strict, commutativity won't be
7221 checked, so we need to do that here to avoid spurious failure
7222 if the add instruction is two-address and the second operand
7223 of the add is the same as the reload reg, which is frequently
7224 the case. If the insn would be A = B + A, rearrange it so
7225 it will be A = A + B as constrain_operands expects. */
7227 if (GET_CODE (XEXP (in, 1)) == REG
7228 && REGNO (out) == REGNO (XEXP (in, 1)))
7229 tem = op0, op0 = op1, op1 = tem;
7231 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7232 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7234 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7235 code = recog_memoized (insn);
7237 if (code >= 0)
7239 extract_insn (insn);
7240 /* We want constrain operands to treat this insn strictly in
7241 its validity determination, i.e., the way it would after reload
7242 has completed. */
7243 if (constrain_operands (1))
7244 return insn;
7247 delete_insns_since (last);
7249 /* If that failed, we must use a conservative two-insn sequence.
7251 Use a move to copy one operand into the reload register. Prefer
7252 to reload a constant, MEM or pseudo since the move patterns can
7253 handle an arbitrary operand. If OP1 is not a constant, MEM or
7254 pseudo and OP1 is not a valid operand for an add instruction, then
7255 reload OP1.
7257 After reloading one of the operands into the reload register, add
7258 the reload register to the output register.
7260 If there is another way to do this for a specific machine, a
7261 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7262 we emit below. */
7264 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7266 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7267 || (GET_CODE (op1) == REG
7268 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7269 || (code != CODE_FOR_nothing
7270 && ! ((*insn_data[code].operand[2].predicate)
7271 (op1, insn_data[code].operand[2].mode))))
7272 tem = op0, op0 = op1, op1 = tem;
7274 gen_reload (out, op0, opnum, type);
7276 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7277 This fixes a problem on the 32K where the stack pointer cannot
7278 be used as an operand of an add insn. */
7280 if (rtx_equal_p (op0, op1))
7281 op1 = out;
7283 insn = emit_insn (gen_add2_insn (out, op1));
7285 /* If that failed, copy the address register to the reload register.
7286 Then add the constant to the reload register. */
7288 code = recog_memoized (insn);
7290 if (code >= 0)
7292 extract_insn (insn);
7293 /* We want constrain operands to treat this insn strictly in
7294 its validity determination, i.e., the way it would after reload
7295 has completed. */
7296 if (constrain_operands (1))
7298 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7299 REG_NOTES (insn)
7300 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7301 return insn;
7305 delete_insns_since (last);
7307 gen_reload (out, op1, opnum, type);
7308 insn = emit_insn (gen_add2_insn (out, op0));
7309 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7312 #ifdef SECONDARY_MEMORY_NEEDED
7313 /* If we need a memory location to do the move, do it that way. */
7314 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7315 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7316 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7317 REGNO_REG_CLASS (REGNO (out)),
7318 GET_MODE (out)))
7320 /* Get the memory to use and rewrite both registers to its mode. */
7321 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7323 if (GET_MODE (loc) != GET_MODE (out))
7324 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7326 if (GET_MODE (loc) != GET_MODE (in))
7327 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7329 gen_reload (loc, in, opnum, type);
7330 gen_reload (out, loc, opnum, type);
7332 #endif
7334 /* If IN is a simple operand, use gen_move_insn. */
7335 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7336 emit_insn (gen_move_insn (out, in));
7338 #ifdef HAVE_reload_load_address
7339 else if (HAVE_reload_load_address)
7340 emit_insn (gen_reload_load_address (out, in));
7341 #endif
7343 /* Otherwise, just write (set OUT IN) and hope for the best. */
7344 else
7345 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7347 /* Return the first insn emitted.
7348 We can not just return get_last_insn, because there may have
7349 been multiple instructions emitted. Also note that gen_move_insn may
7350 emit more than one insn itself, so we can not assume that there is one
7351 insn emitted per emit_insn_before call. */
7353 return last ? NEXT_INSN (last) : get_insns ();
7356 /* Delete a previously made output-reload
7357 whose result we now believe is not needed.
7358 First we double-check.
7360 INSN is the insn now being processed.
7361 LAST_RELOAD_REG is the hard register number for which we want to delete
7362 the last output reload.
7363 J is the reload-number that originally used REG. The caller has made
7364 certain that reload J doesn't use REG any longer for input. */
7366 static void
7367 delete_output_reload (insn, j, last_reload_reg)
7368 rtx insn;
7369 int j;
7370 int last_reload_reg;
7372 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7373 rtx reg = spill_reg_stored_to[last_reload_reg];
7374 int k;
7375 int n_occurrences;
7376 int n_inherited = 0;
7377 register rtx i1;
7378 rtx substed;
7380 /* Get the raw pseudo-register referred to. */
7382 while (GET_CODE (reg) == SUBREG)
7383 reg = SUBREG_REG (reg);
7384 substed = reg_equiv_memory_loc[REGNO (reg)];
7386 /* This is unsafe if the operand occurs more often in the current
7387 insn than it is inherited. */
7388 for (k = n_reloads - 1; k >= 0; k--)
7390 rtx reg2 = rld[k].in;
7391 if (! reg2)
7392 continue;
7393 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7394 reg2 = rld[k].in_reg;
7395 #ifdef AUTO_INC_DEC
7396 if (rld[k].out && ! rld[k].out_reg)
7397 reg2 = XEXP (rld[k].in_reg, 0);
7398 #endif
7399 while (GET_CODE (reg2) == SUBREG)
7400 reg2 = SUBREG_REG (reg2);
7401 if (rtx_equal_p (reg2, reg))
7403 if (reload_inherited[k] || reload_override_in[k] || k == j)
7405 n_inherited++;
7406 reg2 = rld[k].out_reg;
7407 if (! reg2)
7408 continue;
7409 while (GET_CODE (reg2) == SUBREG)
7410 reg2 = XEXP (reg2, 0);
7411 if (rtx_equal_p (reg2, reg))
7412 n_inherited++;
7414 else
7415 return;
7418 n_occurrences = count_occurrences (PATTERN (insn), reg);
7419 if (substed)
7420 n_occurrences += count_occurrences (PATTERN (insn), substed);
7421 if (n_occurrences > n_inherited)
7422 return;
7424 /* If the pseudo-reg we are reloading is no longer referenced
7425 anywhere between the store into it and here,
7426 and no jumps or labels intervene, then the value can get
7427 here through the reload reg alone.
7428 Otherwise, give up--return. */
7429 for (i1 = NEXT_INSN (output_reload_insn);
7430 i1 != insn; i1 = NEXT_INSN (i1))
7432 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7433 return;
7434 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7435 && reg_mentioned_p (reg, PATTERN (i1)))
7437 /* If this is USE in front of INSN, we only have to check that
7438 there are no more references than accounted for by inheritance. */
7439 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7441 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7442 i1 = NEXT_INSN (i1);
7444 if (n_occurrences <= n_inherited && i1 == insn)
7445 break;
7446 return;
7450 /* The caller has already checked that REG dies or is set in INSN.
7451 It has also checked that we are optimizing, and thus some inaccurancies
7452 in the debugging information are acceptable.
7453 So we could just delete output_reload_insn.
7454 But in some cases we can improve the debugging information without
7455 sacrificing optimization - maybe even improving the code:
7456 See if the pseudo reg has been completely replaced
7457 with reload regs. If so, delete the store insn
7458 and forget we had a stack slot for the pseudo. */
7459 if (rld[j].out != rld[j].in
7460 && REG_N_DEATHS (REGNO (reg)) == 1
7461 && REG_N_SETS (REGNO (reg)) == 1
7462 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7463 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7465 rtx i2;
7467 /* We know that it was used only between here
7468 and the beginning of the current basic block.
7469 (We also know that the last use before INSN was
7470 the output reload we are thinking of deleting, but never mind that.)
7471 Search that range; see if any ref remains. */
7472 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7474 rtx set = single_set (i2);
7476 /* Uses which just store in the pseudo don't count,
7477 since if they are the only uses, they are dead. */
7478 if (set != 0 && SET_DEST (set) == reg)
7479 continue;
7480 if (GET_CODE (i2) == CODE_LABEL
7481 || GET_CODE (i2) == JUMP_INSN)
7482 break;
7483 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7484 && reg_mentioned_p (reg, PATTERN (i2)))
7486 /* Some other ref remains; just delete the output reload we
7487 know to be dead. */
7488 delete_address_reloads (output_reload_insn, insn);
7489 PUT_CODE (output_reload_insn, NOTE);
7490 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7491 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7492 return;
7496 /* Delete the now-dead stores into this pseudo. */
7497 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7499 rtx set = single_set (i2);
7501 if (set != 0 && SET_DEST (set) == reg)
7503 delete_address_reloads (i2, insn);
7504 /* This might be a basic block head,
7505 thus don't use delete_insn. */
7506 PUT_CODE (i2, NOTE);
7507 NOTE_SOURCE_FILE (i2) = 0;
7508 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7510 if (GET_CODE (i2) == CODE_LABEL
7511 || GET_CODE (i2) == JUMP_INSN)
7512 break;
7515 /* For the debugging info,
7516 say the pseudo lives in this reload reg. */
7517 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7518 alter_reg (REGNO (reg), -1);
7520 delete_address_reloads (output_reload_insn, insn);
7521 PUT_CODE (output_reload_insn, NOTE);
7522 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7523 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7527 /* We are going to delete DEAD_INSN. Recursively delete loads of
7528 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7529 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7530 static void
7531 delete_address_reloads (dead_insn, current_insn)
7532 rtx dead_insn, current_insn;
7534 rtx set = single_set (dead_insn);
7535 rtx set2, dst, prev, next;
7536 if (set)
7538 rtx dst = SET_DEST (set);
7539 if (GET_CODE (dst) == MEM)
7540 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7542 /* If we deleted the store from a reloaded post_{in,de}c expression,
7543 we can delete the matching adds. */
7544 prev = PREV_INSN (dead_insn);
7545 next = NEXT_INSN (dead_insn);
7546 if (! prev || ! next)
7547 return;
7548 set = single_set (next);
7549 set2 = single_set (prev);
7550 if (! set || ! set2
7551 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7552 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7553 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7554 return;
7555 dst = SET_DEST (set);
7556 if (! rtx_equal_p (dst, SET_DEST (set2))
7557 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7558 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7559 || (INTVAL (XEXP (SET_SRC (set), 1))
7560 != - INTVAL (XEXP (SET_SRC (set2), 1))))
7561 return;
7562 delete_insn (prev);
7563 delete_insn (next);
7566 /* Subfunction of delete_address_reloads: process registers found in X. */
7567 static void
7568 delete_address_reloads_1 (dead_insn, x, current_insn)
7569 rtx dead_insn, x, current_insn;
7571 rtx prev, set, dst, i2;
7572 int i, j;
7573 enum rtx_code code = GET_CODE (x);
7575 if (code != REG)
7577 const char *fmt= GET_RTX_FORMAT (code);
7578 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7580 if (fmt[i] == 'e')
7581 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7582 else if (fmt[i] == 'E')
7584 for (j = XVECLEN (x, i) - 1; j >=0; j--)
7585 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7586 current_insn);
7589 return;
7592 if (spill_reg_order[REGNO (x)] < 0)
7593 return;
7595 /* Scan backwards for the insn that sets x. This might be a way back due
7596 to inheritance. */
7597 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7599 code = GET_CODE (prev);
7600 if (code == CODE_LABEL || code == JUMP_INSN)
7601 return;
7602 if (GET_RTX_CLASS (code) != 'i')
7603 continue;
7604 if (reg_set_p (x, PATTERN (prev)))
7605 break;
7606 if (reg_referenced_p (x, PATTERN (prev)))
7607 return;
7609 if (! prev || INSN_UID (prev) < reload_first_uid)
7610 return;
7611 /* Check that PREV only sets the reload register. */
7612 set = single_set (prev);
7613 if (! set)
7614 return;
7615 dst = SET_DEST (set);
7616 if (GET_CODE (dst) != REG
7617 || ! rtx_equal_p (dst, x))
7618 return;
7619 if (! reg_set_p (dst, PATTERN (dead_insn)))
7621 /* Check if DST was used in a later insn -
7622 it might have been inherited. */
7623 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7625 if (GET_CODE (i2) == CODE_LABEL)
7626 break;
7627 if (GET_RTX_CLASS (GET_CODE (i2)) != 'i')
7628 continue;
7629 if (reg_referenced_p (dst, PATTERN (i2)))
7631 /* If there is a reference to the register in the current insn,
7632 it might be loaded in a non-inherited reload. If no other
7633 reload uses it, that means the register is set before
7634 referenced. */
7635 if (i2 == current_insn)
7637 for (j = n_reloads - 1; j >= 0; j--)
7638 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7639 || reload_override_in[j] == dst)
7640 return;
7641 for (j = n_reloads - 1; j >= 0; j--)
7642 if (rld[j].in && rld[j].reg_rtx == dst)
7643 break;
7644 if (j >= 0)
7645 break;
7647 return;
7649 if (GET_CODE (i2) == JUMP_INSN)
7650 break;
7651 /* If DST is still live at CURRENT_INSN, check if it is used for
7652 any reload. Note that even if CURRENT_INSN sets DST, we still
7653 have to check the reloads. */
7654 if (i2 == current_insn)
7656 for (j = n_reloads - 1; j >= 0; j--)
7657 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7658 || reload_override_in[j] == dst)
7659 return;
7660 /* ??? We can't finish the loop here, because dst might be
7661 allocated to a pseudo in this block if no reload in this
7662 block needs any of the clsses containing DST - see
7663 spill_hard_reg. There is no easy way to tell this, so we
7664 have to scan till the end of the basic block. */
7666 if (reg_set_p (dst, PATTERN (i2)))
7667 break;
7670 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7671 reg_reloaded_contents[REGNO (dst)] = -1;
7672 /* Can't use delete_insn here because PREV might be a basic block head. */
7673 PUT_CODE (prev, NOTE);
7674 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7675 NOTE_SOURCE_FILE (prev) = 0;
7678 /* Output reload-insns to reload VALUE into RELOADREG.
7679 VALUE is an autoincrement or autodecrement RTX whose operand
7680 is a register or memory location;
7681 so reloading involves incrementing that location.
7682 IN is either identical to VALUE, or some cheaper place to reload from.
7684 INC_AMOUNT is the number to increment or decrement by (always positive).
7685 This cannot be deduced from VALUE.
7687 Return the instruction that stores into RELOADREG. */
7689 static rtx
7690 inc_for_reload (reloadreg, in, value, inc_amount)
7691 rtx reloadreg;
7692 rtx in, value;
7693 int inc_amount;
7695 /* REG or MEM to be copied and incremented. */
7696 rtx incloc = XEXP (value, 0);
7697 /* Nonzero if increment after copying. */
7698 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7699 rtx last;
7700 rtx inc;
7701 rtx add_insn;
7702 int code;
7703 rtx store;
7704 rtx real_in = in == value ? XEXP (in, 0) : in;
7706 /* No hard register is equivalent to this register after
7707 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7708 we could inc/dec that register as well (maybe even using it for
7709 the source), but I'm not sure it's worth worrying about. */
7710 if (GET_CODE (incloc) == REG)
7711 reg_last_reload_reg[REGNO (incloc)] = 0;
7713 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7714 inc_amount = - inc_amount;
7716 inc = GEN_INT (inc_amount);
7718 /* If this is post-increment, first copy the location to the reload reg. */
7719 if (post && real_in != reloadreg)
7720 emit_insn (gen_move_insn (reloadreg, real_in));
7722 if (in == value)
7724 /* See if we can directly increment INCLOC. Use a method similar to
7725 that in gen_reload. */
7727 last = get_last_insn ();
7728 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7729 gen_rtx_PLUS (GET_MODE (incloc),
7730 incloc, inc)));
7732 code = recog_memoized (add_insn);
7733 if (code >= 0)
7735 extract_insn (add_insn);
7736 if (constrain_operands (1))
7738 /* If this is a pre-increment and we have incremented the value
7739 where it lives, copy the incremented value to RELOADREG to
7740 be used as an address. */
7742 if (! post)
7743 emit_insn (gen_move_insn (reloadreg, incloc));
7745 return add_insn;
7748 delete_insns_since (last);
7751 /* If couldn't do the increment directly, must increment in RELOADREG.
7752 The way we do this depends on whether this is pre- or post-increment.
7753 For pre-increment, copy INCLOC to the reload register, increment it
7754 there, then save back. */
7756 if (! post)
7758 if (in != reloadreg)
7759 emit_insn (gen_move_insn (reloadreg, real_in));
7760 emit_insn (gen_add2_insn (reloadreg, inc));
7761 store = emit_insn (gen_move_insn (incloc, reloadreg));
7763 else
7765 /* Postincrement.
7766 Because this might be a jump insn or a compare, and because RELOADREG
7767 may not be available after the insn in an input reload, we must do
7768 the incrementation before the insn being reloaded for.
7770 We have already copied IN to RELOADREG. Increment the copy in
7771 RELOADREG, save that back, then decrement RELOADREG so it has
7772 the original value. */
7774 emit_insn (gen_add2_insn (reloadreg, inc));
7775 store = emit_insn (gen_move_insn (incloc, reloadreg));
7776 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7779 return store;
7782 /* Return 1 if we are certain that the constraint-string STRING allows
7783 the hard register REG. Return 0 if we can't be sure of this. */
7785 static int
7786 constraint_accepts_reg_p (string, reg)
7787 const char *string;
7788 rtx reg;
7790 int value = 0;
7791 int regno = true_regnum (reg);
7792 int c;
7794 /* Initialize for first alternative. */
7795 value = 0;
7796 /* Check that each alternative contains `g' or `r'. */
7797 while (1)
7798 switch (c = *string++)
7800 case 0:
7801 /* If an alternative lacks `g' or `r', we lose. */
7802 return value;
7803 case ',':
7804 /* If an alternative lacks `g' or `r', we lose. */
7805 if (value == 0)
7806 return 0;
7807 /* Initialize for next alternative. */
7808 value = 0;
7809 break;
7810 case 'g':
7811 case 'r':
7812 /* Any general reg wins for this alternative. */
7813 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7814 value = 1;
7815 break;
7816 default:
7817 /* Any reg in specified class wins for this alternative. */
7819 enum reg_class class = REG_CLASS_FROM_LETTER (c);
7821 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
7822 value = 1;
7827 /* Return the number of places FIND appears within X, but don't count
7828 an occurrence if some SET_DEST is FIND. */
7831 count_occurrences (x, find)
7832 register rtx x, find;
7834 register int i, j;
7835 register enum rtx_code code;
7836 register const char *format_ptr;
7837 int count;
7839 if (x == find)
7840 return 1;
7841 if (x == 0)
7842 return 0;
7844 code = GET_CODE (x);
7846 switch (code)
7848 case REG:
7849 case QUEUED:
7850 case CONST_INT:
7851 case CONST_DOUBLE:
7852 case SYMBOL_REF:
7853 case CODE_LABEL:
7854 case PC:
7855 case CC0:
7856 return 0;
7858 case MEM:
7859 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
7860 return 1;
7861 break;
7862 case SET:
7863 if (SET_DEST (x) == find)
7864 return count_occurrences (SET_SRC (x), find);
7865 break;
7867 default:
7868 break;
7871 format_ptr = GET_RTX_FORMAT (code);
7872 count = 0;
7874 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7876 switch (*format_ptr++)
7878 case 'e':
7879 count += count_occurrences (XEXP (x, i), find);
7880 break;
7882 case 'E':
7883 if (XVEC (x, i) != NULL)
7885 for (j = 0; j < XVECLEN (x, i); j++)
7886 count += count_occurrences (XVECEXP (x, i, j), find);
7888 break;
7891 return count;
7894 /* INSN is a no-op; delete it.
7895 If this sets the return value of the function, we must keep a USE around,
7896 in case this is in a different basic block than the final USE. Otherwise,
7897 we could loose important register lifeness information on
7898 SMALL_REGISTER_CLASSES machines, where return registers might be used as
7899 spills: subsequent passes assume that spill registers are dead at the end
7900 of a basic block.
7901 VALUE must be the return value in such a case, NULL otherwise. */
7902 static void
7903 reload_cse_delete_noop_set (insn, value)
7904 rtx insn, value;
7906 if (value)
7908 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
7909 INSN_CODE (insn) = -1;
7910 REG_NOTES (insn) = NULL_RTX;
7912 else
7914 PUT_CODE (insn, NOTE);
7915 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7916 NOTE_SOURCE_FILE (insn) = 0;
7920 /* See whether a single set SET is a noop. */
7921 static int
7922 reload_cse_noop_set_p (set)
7923 rtx set;
7925 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
7928 /* Try to simplify INSN. */
7929 static void
7930 reload_cse_simplify (insn)
7931 rtx insn;
7933 rtx body = PATTERN (insn);
7935 if (GET_CODE (body) == SET)
7937 int count = 0;
7938 if (reload_cse_noop_set_p (body))
7940 rtx value = SET_DEST (body);
7941 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
7942 value = 0;
7943 reload_cse_delete_noop_set (insn, value);
7944 return;
7947 /* It's not a no-op, but we can try to simplify it. */
7948 count += reload_cse_simplify_set (body, insn);
7950 if (count > 0)
7951 apply_change_group ();
7952 else
7953 reload_cse_simplify_operands (insn);
7955 else if (GET_CODE (body) == PARALLEL)
7957 int i;
7958 int count = 0;
7959 rtx value = NULL_RTX;
7961 /* If every action in a PARALLEL is a noop, we can delete
7962 the entire PARALLEL. */
7963 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7965 rtx part = XVECEXP (body, 0, i);
7966 if (GET_CODE (part) == SET)
7968 if (! reload_cse_noop_set_p (part))
7969 break;
7970 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
7972 if (value)
7973 break;
7974 value = SET_DEST (part);
7977 else if (GET_CODE (part) != CLOBBER)
7978 break;
7981 if (i < 0)
7983 reload_cse_delete_noop_set (insn, value);
7984 /* We're done with this insn. */
7985 return;
7988 /* It's not a no-op, but we can try to simplify it. */
7989 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7990 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
7991 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
7993 if (count > 0)
7994 apply_change_group ();
7995 else
7996 reload_cse_simplify_operands (insn);
8000 /* Do a very simple CSE pass over the hard registers.
8002 This function detects no-op moves where we happened to assign two
8003 different pseudo-registers to the same hard register, and then
8004 copied one to the other. Reload will generate a useless
8005 instruction copying a register to itself.
8007 This function also detects cases where we load a value from memory
8008 into two different registers, and (if memory is more expensive than
8009 registers) changes it to simply copy the first register into the
8010 second register.
8012 Another optimization is performed that scans the operands of each
8013 instruction to see whether the value is already available in a
8014 hard register. It then replaces the operand with the hard register
8015 if possible, much like an optional reload would. */
8017 static void
8018 reload_cse_regs_1 (first)
8019 rtx first;
8021 rtx insn;
8023 cselib_init ();
8024 init_alias_analysis ();
8026 for (insn = first; insn; insn = NEXT_INSN (insn))
8028 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
8029 reload_cse_simplify (insn);
8031 cselib_process_insn (insn);
8034 /* Clean up. */
8035 end_alias_analysis ();
8036 cselib_finish ();
8039 /* Call cse / combine like post-reload optimization phases.
8040 FIRST is the first instruction. */
8041 void
8042 reload_cse_regs (first)
8043 rtx first;
8045 reload_cse_regs_1 (first);
8046 reload_combine ();
8047 reload_cse_move2add (first);
8048 if (flag_expensive_optimizations)
8049 reload_cse_regs_1 (first);
8052 /* Try to simplify a single SET instruction. SET is the set pattern.
8053 INSN is the instruction it came from.
8054 This function only handles one case: if we set a register to a value
8055 which is not a register, we try to find that value in some other register
8056 and change the set into a register copy. */
8058 static int
8059 reload_cse_simplify_set (set, insn)
8060 rtx set;
8061 rtx insn;
8063 int did_change = 0;
8064 int dreg;
8065 rtx src;
8066 enum reg_class dclass;
8067 int old_cost;
8068 cselib_val *val;
8069 struct elt_loc_list *l;
8071 dreg = true_regnum (SET_DEST (set));
8072 if (dreg < 0)
8073 return 0;
8075 src = SET_SRC (set);
8076 if (side_effects_p (src) || true_regnum (src) >= 0)
8077 return 0;
8079 dclass = REGNO_REG_CLASS (dreg);
8081 /* If memory loads are cheaper than register copies, don't change them. */
8082 if (GET_CODE (src) == MEM)
8083 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8084 else if (CONSTANT_P (src))
8085 old_cost = rtx_cost (src, SET);
8086 else if (GET_CODE (src) == REG)
8087 old_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (src)), dclass);
8088 else
8089 /* ??? */
8090 old_cost = rtx_cost (src, SET);
8092 val = cselib_lookup (src, VOIDmode, 0);
8093 if (! val)
8094 return 0;
8095 for (l = val->locs; l; l = l->next)
8097 int this_cost;
8098 if (CONSTANT_P (l->loc) && ! references_value_p (l->loc, 0))
8099 this_cost = rtx_cost (l->loc, SET);
8100 else if (GET_CODE (l->loc) == REG)
8101 this_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (l->loc)),
8102 dclass);
8103 else
8104 continue;
8105 /* If equal costs, prefer registers over anything else. That tends to
8106 lead to smaller instructions on some machines. */
8107 if ((this_cost < old_cost
8108 || (this_cost == old_cost
8109 && GET_CODE (l->loc) == REG
8110 && GET_CODE (SET_SRC (set)) != REG))
8111 && validate_change (insn, &SET_SRC (set), copy_rtx (l->loc), 1))
8112 old_cost = this_cost, did_change = 1;
8115 return did_change;
8118 /* Try to replace operands in INSN with equivalent values that are already
8119 in registers. This can be viewed as optional reloading.
8121 For each non-register operand in the insn, see if any hard regs are
8122 known to be equivalent to that operand. Record the alternatives which
8123 can accept these hard registers. Among all alternatives, select the
8124 ones which are better or equal to the one currently matching, where
8125 "better" is in terms of '?' and '!' constraints. Among the remaining
8126 alternatives, select the one which replaces most operands with
8127 hard registers. */
8129 static int
8130 reload_cse_simplify_operands (insn)
8131 rtx insn;
8133 int i,j;
8135 /* For each operand, all registers that are equivalent to it. */
8136 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8138 const char *constraints[MAX_RECOG_OPERANDS];
8140 /* Vector recording how bad an alternative is. */
8141 int *alternative_reject;
8142 /* Vector recording how many registers can be introduced by choosing
8143 this alternative. */
8144 int *alternative_nregs;
8145 /* Array of vectors recording, for each operand and each alternative,
8146 which hard register to substitute, or -1 if the operand should be
8147 left as it is. */
8148 int *op_alt_regno[MAX_RECOG_OPERANDS];
8149 /* Array of alternatives, sorted in order of decreasing desirability. */
8150 int *alternative_order;
8151 rtx reg = gen_rtx_REG (VOIDmode, -1);
8153 extract_insn (insn);
8155 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8156 return 0;
8158 /* Figure out which alternative currently matches. */
8159 if (! constrain_operands (1))
8160 fatal_insn_not_found (insn);
8162 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8163 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8164 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8165 bzero ((char *)alternative_reject, recog_data.n_alternatives * sizeof (int));
8166 bzero ((char *)alternative_nregs, recog_data.n_alternatives * sizeof (int));
8168 /* For each operand, find out which regs are equivalent. */
8169 for (i = 0; i < recog_data.n_operands; i++)
8171 cselib_val *v;
8172 struct elt_loc_list *l;
8174 CLEAR_HARD_REG_SET (equiv_regs[i]);
8176 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8177 right, so avoid the problem here. */
8178 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL)
8179 continue;
8181 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8182 if (! v)
8183 continue;
8185 for (l = v->locs; l; l = l->next)
8186 if (GET_CODE (l->loc) == REG)
8187 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8190 for (i = 0; i < recog_data.n_operands; i++)
8192 enum machine_mode mode;
8193 int regno;
8194 const char *p;
8196 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8197 for (j = 0; j < recog_data.n_alternatives; j++)
8198 op_alt_regno[i][j] = -1;
8200 p = constraints[i] = recog_data.constraints[i];
8201 mode = recog_data.operand_mode[i];
8203 /* Add the reject values for each alternative given by the constraints
8204 for this operand. */
8205 j = 0;
8206 while (*p != '\0')
8208 char c = *p++;
8209 if (c == ',')
8210 j++;
8211 else if (c == '?')
8212 alternative_reject[j] += 3;
8213 else if (c == '!')
8214 alternative_reject[j] += 300;
8217 /* We won't change operands which are already registers. We
8218 also don't want to modify output operands. */
8219 regno = true_regnum (recog_data.operand[i]);
8220 if (regno >= 0
8221 || constraints[i][0] == '='
8222 || constraints[i][0] == '+')
8223 continue;
8225 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8227 int class = (int) NO_REGS;
8229 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8230 continue;
8232 REGNO (reg) = regno;
8233 PUT_MODE (reg, mode);
8235 /* We found a register equal to this operand. Now look for all
8236 alternatives that can accept this register and have not been
8237 assigned a register they can use yet. */
8238 j = 0;
8239 p = constraints[i];
8240 for (;;)
8242 char c = *p++;
8244 switch (c)
8246 case '=': case '+': case '?':
8247 case '#': case '&': case '!':
8248 case '*': case '%':
8249 case '0': case '1': case '2': case '3': case '4':
8250 case '5': case '6': case '7': case '8': case '9':
8251 case 'm': case '<': case '>': case 'V': case 'o':
8252 case 'E': case 'F': case 'G': case 'H':
8253 case 's': case 'i': case 'n':
8254 case 'I': case 'J': case 'K': case 'L':
8255 case 'M': case 'N': case 'O': case 'P':
8256 #ifdef EXTRA_CONSTRAINT
8257 case 'Q': case 'R': case 'S': case 'T': case 'U':
8258 #endif
8259 case 'p': case 'X':
8260 /* These don't say anything we care about. */
8261 break;
8263 case 'g': case 'r':
8264 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8265 break;
8267 default:
8268 class
8269 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
8270 break;
8272 case ',': case '\0':
8273 /* See if REGNO fits this alternative, and set it up as the
8274 replacement register if we don't have one for this
8275 alternative yet and the operand being replaced is not
8276 a cheap CONST_INT. */
8277 if (op_alt_regno[i][j] == -1
8278 && reg_fits_class_p (reg, class, 0, mode)
8279 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8280 || (rtx_cost (recog_data.operand[i], SET)
8281 > rtx_cost (reg, SET))))
8283 alternative_nregs[j]++;
8284 op_alt_regno[i][j] = regno;
8286 j++;
8287 break;
8290 if (c == '\0')
8291 break;
8296 /* Record all alternatives which are better or equal to the currently
8297 matching one in the alternative_order array. */
8298 for (i = j = 0; i < recog_data.n_alternatives; i++)
8299 if (alternative_reject[i] <= alternative_reject[which_alternative])
8300 alternative_order[j++] = i;
8301 recog_data.n_alternatives = j;
8303 /* Sort it. Given a small number of alternatives, a dumb algorithm
8304 won't hurt too much. */
8305 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8307 int best = i;
8308 int best_reject = alternative_reject[alternative_order[i]];
8309 int best_nregs = alternative_nregs[alternative_order[i]];
8310 int tmp;
8312 for (j = i + 1; j < recog_data.n_alternatives; j++)
8314 int this_reject = alternative_reject[alternative_order[j]];
8315 int this_nregs = alternative_nregs[alternative_order[j]];
8317 if (this_reject < best_reject
8318 || (this_reject == best_reject && this_nregs < best_nregs))
8320 best = j;
8321 best_reject = this_reject;
8322 best_nregs = this_nregs;
8326 tmp = alternative_order[best];
8327 alternative_order[best] = alternative_order[i];
8328 alternative_order[i] = tmp;
8331 /* Substitute the operands as determined by op_alt_regno for the best
8332 alternative. */
8333 j = alternative_order[0];
8335 for (i = 0; i < recog_data.n_operands; i++)
8337 enum machine_mode mode = recog_data.operand_mode[i];
8338 if (op_alt_regno[i][j] == -1)
8339 continue;
8341 validate_change (insn, recog_data.operand_loc[i],
8342 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8345 for (i = recog_data.n_dups - 1; i >= 0; i--)
8347 int op = recog_data.dup_num[i];
8348 enum machine_mode mode = recog_data.operand_mode[op];
8350 if (op_alt_regno[op][j] == -1)
8351 continue;
8353 validate_change (insn, recog_data.dup_loc[i],
8354 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8357 return apply_change_group ();
8360 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8361 addressing now.
8362 This code might also be useful when reload gave up on reg+reg addresssing
8363 because of clashes between the return register and INDEX_REG_CLASS. */
8365 /* The maximum number of uses of a register we can keep track of to
8366 replace them with reg+reg addressing. */
8367 #define RELOAD_COMBINE_MAX_USES 6
8369 /* INSN is the insn where a register has ben used, and USEP points to the
8370 location of the register within the rtl. */
8371 struct reg_use { rtx insn, *usep; };
8373 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8374 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8375 indicates where it becomes live again.
8376 Otherwise, USE_INDEX is the index of the last encountered use of the
8377 register (which is first among these we have seen since we scan backwards),
8378 OFFSET contains the constant offset that is added to the register in
8379 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8380 last, of these uses.
8381 STORE_RUID is always meaningful if we only want to use a value in a
8382 register in a different place: it denotes the next insn in the insn
8383 stream (i.e. the last ecountered) that sets or clobbers the register. */
8384 static struct
8386 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8387 int use_index;
8388 rtx offset;
8389 int store_ruid;
8390 int use_ruid;
8391 } reg_state[FIRST_PSEUDO_REGISTER];
8393 /* Reverse linear uid. This is increased in reload_combine while scanning
8394 the instructions from last to first. It is used to set last_label_ruid
8395 and the store_ruid / use_ruid fields in reg_state. */
8396 static int reload_combine_ruid;
8398 #define LABEL_LIVE(LABEL) \
8399 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8401 static void
8402 reload_combine ()
8404 rtx insn, set;
8405 int first_index_reg = 1, last_index_reg = 0;
8406 int i;
8407 unsigned int r;
8408 int last_label_ruid;
8409 int min_labelno, n_labels;
8410 HARD_REG_SET ever_live_at_start, *label_live;
8412 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8413 reload has already used it where appropriate, so there is no use in
8414 trying to generate it now. */
8415 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8416 return;
8418 /* To avoid wasting too much time later searching for an index register,
8419 determine the minimum and maximum index register numbers. */
8420 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8421 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8423 if (! first_index_reg)
8424 first_index_reg = r;
8426 last_index_reg = r;
8429 /* If no index register is available, we can quit now. */
8430 if (first_index_reg > last_index_reg)
8431 return;
8433 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8434 information is a bit fuzzy immediately after reload, but it's
8435 still good enough to determine which registers are live at a jump
8436 destination. */
8437 min_labelno = get_first_label_num ();
8438 n_labels = max_label_num () - min_labelno;
8439 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8440 CLEAR_HARD_REG_SET (ever_live_at_start);
8442 for (i = n_basic_blocks - 1; i >= 0; i--)
8444 insn = BLOCK_HEAD (i);
8445 if (GET_CODE (insn) == CODE_LABEL)
8447 HARD_REG_SET live;
8449 REG_SET_TO_HARD_REG_SET (live,
8450 BASIC_BLOCK (i)->global_live_at_start);
8451 compute_use_by_pseudos (&live,
8452 BASIC_BLOCK (i)->global_live_at_start);
8453 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8454 IOR_HARD_REG_SET (ever_live_at_start, live);
8458 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8459 last_label_ruid = reload_combine_ruid = 0;
8460 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8462 reg_state[r].store_ruid = reload_combine_ruid;
8463 if (fixed_regs[r])
8464 reg_state[r].use_index = -1;
8465 else
8466 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8469 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8471 rtx note;
8473 /* We cannot do our optimization across labels. Invalidating all the use
8474 information we have would be costly, so we just note where the label
8475 is and then later disable any optimization that would cross it. */
8476 if (GET_CODE (insn) == CODE_LABEL)
8477 last_label_ruid = reload_combine_ruid;
8478 else if (GET_CODE (insn) == BARRIER)
8479 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8480 if (! fixed_regs[r])
8481 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8483 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8484 continue;
8486 reload_combine_ruid++;
8488 /* Look for (set (REGX) (CONST_INT))
8489 (set (REGX) (PLUS (REGX) (REGY)))
8491 ... (MEM (REGX)) ...
8492 and convert it to
8493 (set (REGZ) (CONST_INT))
8495 ... (MEM (PLUS (REGZ) (REGY)))... .
8497 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8498 and that we know all uses of REGX before it dies. */
8499 set = single_set (insn);
8500 if (set != NULL_RTX
8501 && GET_CODE (SET_DEST (set)) == REG
8502 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8503 GET_MODE (SET_DEST (set)))
8504 == 1)
8505 && GET_CODE (SET_SRC (set)) == PLUS
8506 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8507 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8508 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8510 rtx reg = SET_DEST (set);
8511 rtx plus = SET_SRC (set);
8512 rtx base = XEXP (plus, 1);
8513 rtx prev = prev_nonnote_insn (insn);
8514 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8515 unsigned int regno = REGNO (reg);
8516 rtx const_reg = NULL_RTX;
8517 rtx reg_sum = NULL_RTX;
8519 /* Now, we need an index register.
8520 We'll set index_reg to this index register, const_reg to the
8521 register that is to be loaded with the constant
8522 (denoted as REGZ in the substitution illustration above),
8523 and reg_sum to the register-register that we want to use to
8524 substitute uses of REG (typically in MEMs) with.
8525 First check REG and BASE for being index registers;
8526 we can use them even if they are not dead. */
8527 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8528 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8529 REGNO (base)))
8531 const_reg = reg;
8532 reg_sum = plus;
8534 else
8536 /* Otherwise, look for a free index register. Since we have
8537 checked above that neiter REG nor BASE are index registers,
8538 if we find anything at all, it will be different from these
8539 two registers. */
8540 for (i = first_index_reg; i <= last_index_reg; i++)
8542 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8544 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8545 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8546 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8548 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8550 const_reg = index_reg;
8551 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8552 break;
8557 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8558 (REGY), i.e. BASE, is not clobbered before the last use we'll
8559 create. */
8560 if (prev_set != 0
8561 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8562 && rtx_equal_p (SET_DEST (prev_set), reg)
8563 && reg_state[regno].use_index >= 0
8564 && (reg_state[REGNO (base)].store_ruid
8565 <= reg_state[regno].use_ruid)
8566 && reg_sum != 0)
8568 int i;
8570 /* Change destination register and, if necessary, the
8571 constant value in PREV, the constant loading instruction. */
8572 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8573 if (reg_state[regno].offset != const0_rtx)
8574 validate_change (prev,
8575 &SET_SRC (prev_set),
8576 GEN_INT (INTVAL (SET_SRC (prev_set))
8577 + INTVAL (reg_state[regno].offset)),
8580 /* Now for every use of REG that we have recorded, replace REG
8581 with REG_SUM. */
8582 for (i = reg_state[regno].use_index;
8583 i < RELOAD_COMBINE_MAX_USES; i++)
8584 validate_change (reg_state[regno].reg_use[i].insn,
8585 reg_state[regno].reg_use[i].usep,
8586 reg_sum, 1);
8588 if (apply_change_group ())
8590 rtx *np;
8592 /* Delete the reg-reg addition. */
8593 PUT_CODE (insn, NOTE);
8594 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8595 NOTE_SOURCE_FILE (insn) = 0;
8597 if (reg_state[regno].offset != const0_rtx)
8598 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8599 are now invalid. */
8600 for (np = &REG_NOTES (prev); *np; )
8602 if (REG_NOTE_KIND (*np) == REG_EQUAL
8603 || REG_NOTE_KIND (*np) == REG_EQUIV)
8604 *np = XEXP (*np, 1);
8605 else
8606 np = &XEXP (*np, 1);
8609 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8610 reg_state[REGNO (const_reg)].store_ruid
8611 = reload_combine_ruid;
8612 continue;
8617 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8619 if (GET_CODE (insn) == CALL_INSN)
8621 rtx link;
8623 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8624 if (call_used_regs[r])
8626 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8627 reg_state[r].store_ruid = reload_combine_ruid;
8630 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8631 link = XEXP (link, 1))
8632 if (GET_CODE (XEXP (XEXP (link, 0), 0)) == REG)
8634 unsigned int regno = REGNO (XEXP (XEXP (link, 0), 0));
8636 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8638 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8639 reg_state[regno].store_ruid = reload_combine_ruid;
8641 else
8642 reg_state[regno].use_index = -1;
8646 else if (GET_CODE (insn) == JUMP_INSN
8647 && GET_CODE (PATTERN (insn)) != RETURN)
8649 /* Non-spill registers might be used at the call destination in
8650 some unknown fashion, so we have to mark the unknown use. */
8651 HARD_REG_SET *live;
8653 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8654 && JUMP_LABEL (insn))
8655 live = &LABEL_LIVE (JUMP_LABEL (insn));
8656 else
8657 live = &ever_live_at_start;
8659 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8660 if (TEST_HARD_REG_BIT (*live, i))
8661 reg_state[i].use_index = -1;
8664 reload_combine_note_use (&PATTERN (insn), insn);
8665 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8667 if (REG_NOTE_KIND (note) == REG_INC
8668 && GET_CODE (XEXP (note, 0)) == REG)
8670 int regno = REGNO (XEXP (note, 0));
8672 reg_state[regno].store_ruid = reload_combine_ruid;
8673 reg_state[regno].use_index = -1;
8678 free (label_live);
8681 /* Check if DST is a register or a subreg of a register; if it is,
8682 update reg_state[regno].store_ruid and reg_state[regno].use_index
8683 accordingly. Called via note_stores from reload_combine. */
8685 static void
8686 reload_combine_note_store (dst, set, data)
8687 rtx dst, set;
8688 void *data ATTRIBUTE_UNUSED;
8690 int regno = 0;
8691 int i;
8692 enum machine_mode mode = GET_MODE (dst);
8694 if (GET_CODE (dst) == SUBREG)
8696 regno = SUBREG_WORD (dst);
8697 dst = SUBREG_REG (dst);
8699 if (GET_CODE (dst) != REG)
8700 return;
8701 regno += REGNO (dst);
8703 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8704 careful with registers / register parts that are not full words.
8706 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8707 if (GET_CODE (set) != SET
8708 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8709 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8710 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8712 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8714 reg_state[i].use_index = -1;
8715 reg_state[i].store_ruid = reload_combine_ruid;
8718 else
8720 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8722 reg_state[i].store_ruid = reload_combine_ruid;
8723 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8728 /* XP points to a piece of rtl that has to be checked for any uses of
8729 registers.
8730 *XP is the pattern of INSN, or a part of it.
8731 Called from reload_combine, and recursively by itself. */
8732 static void
8733 reload_combine_note_use (xp, insn)
8734 rtx *xp, insn;
8736 rtx x = *xp;
8737 enum rtx_code code = x->code;
8738 const char *fmt;
8739 int i, j;
8740 rtx offset = const0_rtx; /* For the REG case below. */
8742 switch (code)
8744 case SET:
8745 if (GET_CODE (SET_DEST (x)) == REG)
8747 reload_combine_note_use (&SET_SRC (x), insn);
8748 return;
8750 break;
8752 case USE:
8753 /* If this is the USE of a return value, we can't change it. */
8754 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8756 /* Mark the return register as used in an unknown fashion. */
8757 rtx reg = XEXP (x, 0);
8758 int regno = REGNO (reg);
8759 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8761 while (--nregs >= 0)
8762 reg_state[regno + nregs].use_index = -1;
8763 return;
8765 break;
8767 case CLOBBER:
8768 if (GET_CODE (SET_DEST (x)) == REG)
8769 return;
8770 break;
8772 case PLUS:
8773 /* We are interested in (plus (reg) (const_int)) . */
8774 if (GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST_INT)
8775 break;
8776 offset = XEXP (x, 1);
8777 x = XEXP (x, 0);
8778 /* Fall through. */
8779 case REG:
8781 int regno = REGNO (x);
8782 int use_index;
8783 int nregs;
8785 /* Some spurious USEs of pseudo registers might remain.
8786 Just ignore them. */
8787 if (regno >= FIRST_PSEUDO_REGISTER)
8788 return;
8790 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8792 /* We can't substitute into multi-hard-reg uses. */
8793 if (nregs > 1)
8795 while (--nregs >= 0)
8796 reg_state[regno + nregs].use_index = -1;
8797 return;
8800 /* If this register is already used in some unknown fashion, we
8801 can't do anything.
8802 If we decrement the index from zero to -1, we can't store more
8803 uses, so this register becomes used in an unknown fashion. */
8804 use_index = --reg_state[regno].use_index;
8805 if (use_index < 0)
8806 return;
8808 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8810 /* We have found another use for a register that is already
8811 used later. Check if the offsets match; if not, mark the
8812 register as used in an unknown fashion. */
8813 if (! rtx_equal_p (offset, reg_state[regno].offset))
8815 reg_state[regno].use_index = -1;
8816 return;
8819 else
8821 /* This is the first use of this register we have seen since we
8822 marked it as dead. */
8823 reg_state[regno].offset = offset;
8824 reg_state[regno].use_ruid = reload_combine_ruid;
8826 reg_state[regno].reg_use[use_index].insn = insn;
8827 reg_state[regno].reg_use[use_index].usep = xp;
8828 return;
8831 default:
8832 break;
8835 /* Recursively process the components of X. */
8836 fmt = GET_RTX_FORMAT (code);
8837 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8839 if (fmt[i] == 'e')
8840 reload_combine_note_use (&XEXP (x, i), insn);
8841 else if (fmt[i] == 'E')
8843 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8844 reload_combine_note_use (&XVECEXP (x, i, j), insn);
8849 /* See if we can reduce the cost of a constant by replacing a move with
8850 an add. */
8851 /* We cannot do our optimization across labels. Invalidating all the
8852 information about register contents we have would be costly, so we
8853 use last_label_luid (local variable of reload_cse_move2add) to note
8854 where the label is and then later disable any optimization that would
8855 cross it.
8856 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
8857 reg_set_luid[n] is larger than last_label_luid[n] . */
8858 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
8860 /* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
8861 reg_mode[n] to be valid.
8862 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
8863 has been set to reg_offset[n] in mode reg_mode[n] .
8864 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
8865 register n has been set to the sum of reg_offset[n] and register
8866 reg_base_reg[n], calculated in mode reg_mode[n] . */
8867 static rtx reg_offset[FIRST_PSEUDO_REGISTER];
8868 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
8869 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
8871 /* move2add_luid is linearily increased while scanning the instructions
8872 from first to last. It is used to set reg_set_luid in
8873 reload_cse_move2add and move2add_note_store. */
8874 static int move2add_luid;
8876 /* Generate a CONST_INT and force it in the range of MODE. */
8878 static rtx
8879 gen_mode_int (mode, value)
8880 enum machine_mode mode;
8881 HOST_WIDE_INT value;
8883 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
8884 int width = GET_MODE_BITSIZE (mode);
8886 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
8887 sign extend it. */
8888 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8889 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8890 cval |= (HOST_WIDE_INT) -1 << width;
8892 return GEN_INT (cval);
8895 static void
8896 reload_cse_move2add (first)
8897 rtx first;
8899 int i;
8900 rtx insn;
8901 int last_label_luid;
8903 for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
8904 reg_set_luid[i] = 0;
8906 last_label_luid = 0;
8907 move2add_luid = 1;
8908 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
8910 rtx pat, note;
8912 if (GET_CODE (insn) == CODE_LABEL)
8913 last_label_luid = move2add_luid;
8914 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8915 continue;
8916 pat = PATTERN (insn);
8917 /* For simplicity, we only perform this optimization on
8918 straightforward SETs. */
8919 if (GET_CODE (pat) == SET
8920 && GET_CODE (SET_DEST (pat)) == REG)
8922 rtx reg = SET_DEST (pat);
8923 int regno = REGNO (reg);
8924 rtx src = SET_SRC (pat);
8926 /* Check if we have valid information on the contents of this
8927 register in the mode of REG. */
8928 /* ??? We don't know how zero / sign extension is handled, hence
8929 we can't go from a narrower to a wider mode. */
8930 if (reg_set_luid[regno] > last_label_luid
8931 && ((GET_MODE_SIZE (GET_MODE (reg))
8932 == GET_MODE_SIZE (reg_mode[regno]))
8933 || ((GET_MODE_SIZE (GET_MODE (reg))
8934 <= GET_MODE_SIZE (reg_mode[regno]))
8935 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (reg)),
8936 GET_MODE_BITSIZE (reg_mode[regno]))))
8937 && GET_CODE (reg_offset[regno]) == CONST_INT)
8939 /* Try to transform (set (REGX) (CONST_INT A))
8941 (set (REGX) (CONST_INT B))
8943 (set (REGX) (CONST_INT A))
8945 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8947 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
8949 int success = 0;
8950 rtx new_src
8951 = gen_mode_int (GET_MODE (reg),
8952 INTVAL (src) - INTVAL (reg_offset[regno]));
8953 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
8954 use (set (reg) (reg)) instead.
8955 We don't delete this insn, nor do we convert it into a
8956 note, to avoid losing register notes or the return
8957 value flag. jump2 already knowns how to get rid of
8958 no-op moves. */
8959 if (new_src == const0_rtx)
8960 success = validate_change (insn, &SET_SRC (pat), reg, 0);
8961 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
8962 && have_add2_insn (GET_MODE (reg)))
8963 success = validate_change (insn, &PATTERN (insn),
8964 gen_add2_insn (reg, new_src), 0);
8965 reg_set_luid[regno] = move2add_luid;
8966 reg_mode[regno] = GET_MODE (reg);
8967 reg_offset[regno] = src;
8968 continue;
8971 /* Try to transform (set (REGX) (REGY))
8972 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8974 (set (REGX) (REGY))
8975 (set (REGX) (PLUS (REGX) (CONST_INT B)))
8977 (REGX) (REGY))
8978 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8980 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8981 else if (GET_CODE (src) == REG
8982 && reg_base_reg[regno] == (int) REGNO (src)
8983 && reg_set_luid[regno] > reg_set_luid[REGNO (src)])
8985 rtx next = next_nonnote_insn (insn);
8986 rtx set = NULL_RTX;
8987 if (next)
8988 set = single_set (next);
8989 if (next
8990 && set
8991 && SET_DEST (set) == reg
8992 && GET_CODE (SET_SRC (set)) == PLUS
8993 && XEXP (SET_SRC (set), 0) == reg
8994 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
8996 rtx src3 = XEXP (SET_SRC (set), 1);
8997 rtx new_src
8998 = gen_mode_int (GET_MODE (reg),
8999 INTVAL (src3)
9000 - INTVAL (reg_offset[regno]));
9001 int success = 0;
9003 if (new_src == const0_rtx)
9004 /* See above why we create (set (reg) (reg)) here. */
9005 success
9006 = validate_change (next, &SET_SRC (set), reg, 0);
9007 else if ((rtx_cost (new_src, PLUS)
9008 < 2 + rtx_cost (src3, SET))
9009 && have_add2_insn (GET_MODE (reg)))
9010 success
9011 = validate_change (next, &PATTERN (next),
9012 gen_add2_insn (reg, new_src), 0);
9013 if (success)
9015 /* INSN might be the first insn in a basic block
9016 if the preceding insn is a conditional jump
9017 or a possible-throwing call. */
9018 PUT_CODE (insn, NOTE);
9019 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
9020 NOTE_SOURCE_FILE (insn) = 0;
9022 insn = next;
9023 reg_set_luid[regno] = move2add_luid;
9024 reg_mode[regno] = GET_MODE (reg);
9025 reg_offset[regno] = src3;
9026 continue;
9032 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9034 if (REG_NOTE_KIND (note) == REG_INC
9035 && GET_CODE (XEXP (note, 0)) == REG)
9037 /* Indicate that this register has been recently written to,
9038 but the exact contents are not available. */
9039 int regno = REGNO (XEXP (note, 0));
9040 if (regno < FIRST_PSEUDO_REGISTER)
9042 reg_set_luid[regno] = move2add_luid;
9043 reg_offset[regno] = note;
9047 note_stores (PATTERN (insn), move2add_note_store, NULL);
9048 /* If this is a CALL_INSN, all call used registers are stored with
9049 unknown values. */
9050 if (GET_CODE (insn) == CALL_INSN)
9052 for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
9054 if (call_used_regs[i])
9056 reg_set_luid[i] = move2add_luid;
9057 reg_offset[i] = insn; /* Invalidate contents. */
9064 /* SET is a SET or CLOBBER that sets DST.
9065 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9066 Called from reload_cse_move2add via note_stores. */
9068 static void
9069 move2add_note_store (dst, set, data)
9070 rtx dst, set;
9071 void *data ATTRIBUTE_UNUSED;
9073 unsigned int regno = 0;
9074 unsigned int i;
9075 enum machine_mode mode = GET_MODE (dst);
9077 if (GET_CODE (dst) == SUBREG)
9079 regno = SUBREG_WORD (dst);
9080 dst = SUBREG_REG (dst);
9083 if (GET_CODE (dst) != REG)
9084 return;
9086 regno += REGNO (dst);
9088 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9089 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9090 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9091 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9093 rtx src = SET_SRC (set);
9095 reg_mode[regno] = mode;
9096 switch (GET_CODE (src))
9098 case PLUS:
9100 rtx src0 = XEXP (src, 0);
9102 if (GET_CODE (src0) == REG)
9104 if (REGNO (src0) != regno
9105 || reg_offset[regno] != const0_rtx)
9107 reg_base_reg[regno] = REGNO (src0);
9108 reg_set_luid[regno] = move2add_luid;
9111 reg_offset[regno] = XEXP (src, 1);
9112 break;
9115 reg_set_luid[regno] = move2add_luid;
9116 reg_offset[regno] = set; /* Invalidate contents. */
9117 break;
9120 case REG:
9121 reg_base_reg[regno] = REGNO (SET_SRC (set));
9122 reg_offset[regno] = const0_rtx;
9123 reg_set_luid[regno] = move2add_luid;
9124 break;
9126 default:
9127 reg_base_reg[regno] = -1;
9128 reg_offset[regno] = SET_SRC (set);
9129 reg_set_luid[regno] = move2add_luid;
9130 break;
9133 else
9135 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9137 for (i = regno; i < endregno; i++)
9139 /* Indicate that this register has been recently written to,
9140 but the exact contents are not available. */
9141 reg_set_luid[i] = move2add_luid;
9142 reg_offset[i] = dst;
9147 #ifdef AUTO_INC_DEC
9148 static void
9149 add_auto_inc_notes (insn, x)
9150 rtx insn;
9151 rtx x;
9153 enum rtx_code code = GET_CODE (x);
9154 const char *fmt;
9155 int i, j;
9157 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9159 REG_NOTES (insn)
9160 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9161 return;
9164 /* Scan all the operand sub-expressions. */
9165 fmt = GET_RTX_FORMAT (code);
9166 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9168 if (fmt[i] == 'e')
9169 add_auto_inc_notes (insn, XEXP (x, i));
9170 else if (fmt[i] == 'E')
9171 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9172 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9175 #endif