1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
125 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
126 struct move_by_pieces
*);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned);
129 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
);
130 static tree
emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
132 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
136 struct store_by_pieces
*);
137 static bool clear_storage_via_clrmem (rtx
, rtx
, unsigned);
138 static rtx
clear_storage_via_libcall (rtx
, rtx
);
139 static tree
clear_storage_libcall_fn (int);
140 static rtx
compress_float_constant (rtx
, rtx
);
141 static rtx
get_subtarget (rtx
);
142 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
143 HOST_WIDE_INT
, enum machine_mode
,
144 tree
, tree
, int, int);
145 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
146 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
149 static unsigned HOST_WIDE_INT
highest_pow2_factor (tree
);
150 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
152 static int is_aligning_offset (tree
, tree
);
153 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
154 enum expand_modifier
);
155 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
156 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
158 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
160 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
161 static rtx
const_vector_from_tree (tree
);
162 static void write_complex_part (rtx
, rtx
, bool);
164 /* Record for each mode whether we can move a register directly to or
165 from an object of that mode in memory. If we can't, we won't try
166 to use that mode directly when accessing a field of that mode. */
168 static char direct_load
[NUM_MACHINE_MODES
];
169 static char direct_store
[NUM_MACHINE_MODES
];
171 /* Record for each mode whether we can float-extend from memory. */
173 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO)
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO)
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero, or
193 to "memcpy" storage when the source is a constant string. */
194 #ifndef STORE_BY_PIECES_P
195 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
196 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
197 < (unsigned int) MOVE_RATIO)
200 /* This array records the insn_code of insns to perform block moves. */
201 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
203 /* This array records the insn_code of insns to perform block clears. */
204 enum insn_code clrmem_optab
[NUM_MACHINE_MODES
];
206 /* These arrays record the insn_code of two different kinds of insns
207 to perform block compares. */
208 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
209 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
213 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
214 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
215 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
216 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
217 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
218 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
219 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
229 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
230 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
231 enum insn_code sync_compare_and_swap_cc
[NUM_MACHINE_MODES
];
232 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
233 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
245 init_expr_once (void)
248 enum machine_mode mode
;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
257 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg
= gen_rtx_REG (VOIDmode
, -1);
263 insn
= rtx_alloc (INSN
);
264 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
265 PATTERN (insn
) = pat
;
267 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
268 mode
= (enum machine_mode
) ((int) mode
+ 1))
272 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
273 PUT_MODE (mem
, mode
);
274 PUT_MODE (mem1
, mode
);
275 PUT_MODE (reg
, mode
);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
281 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
282 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
285 if (! HARD_REGNO_MODE_OK (regno
, mode
))
291 SET_DEST (pat
) = reg
;
292 if (recog (pat
, insn
, &num_clobbers
) >= 0)
293 direct_load
[(int) mode
] = 1;
295 SET_SRC (pat
) = mem1
;
296 SET_DEST (pat
) = reg
;
297 if (recog (pat
, insn
, &num_clobbers
) >= 0)
298 direct_load
[(int) mode
] = 1;
301 SET_DEST (pat
) = mem
;
302 if (recog (pat
, insn
, &num_clobbers
) >= 0)
303 direct_store
[(int) mode
] = 1;
306 SET_DEST (pat
) = mem1
;
307 if (recog (pat
, insn
, &num_clobbers
) >= 0)
308 direct_store
[(int) mode
] = 1;
312 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
314 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
315 mode
= GET_MODE_WIDER_MODE (mode
))
317 enum machine_mode srcmode
;
318 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
319 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
323 ic
= can_extend_p (mode
, srcmode
, 0);
324 if (ic
== CODE_FOR_nothing
)
327 PUT_MODE (mem
, srcmode
);
329 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
330 float_extend_from_mem
[mode
][srcmode
] = true;
335 /* This is run at the start of compiling a function. */
340 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
349 convert_move (rtx to
, rtx from
, int unsignedp
)
351 enum machine_mode to_mode
= GET_MODE (to
);
352 enum machine_mode from_mode
= GET_MODE (from
);
353 int to_real
= GET_MODE_CLASS (to_mode
) == MODE_FLOAT
;
354 int from_real
= GET_MODE_CLASS (from_mode
) == MODE_FLOAT
;
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
360 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
363 gcc_assert (to_real
== from_real
);
365 /* If the source and destination are already the same, then there's
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
374 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
376 >= GET_MODE_SIZE (to_mode
))
377 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
378 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
380 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
382 if (to_mode
== from_mode
383 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
385 emit_move_insn (to
, from
);
389 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
391 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
393 if (VECTOR_MODE_P (to_mode
))
394 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
396 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
398 emit_move_insn (to
, from
);
402 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
404 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
405 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
414 gcc_assert (GET_MODE_PRECISION (from_mode
)
415 != GET_MODE_PRECISION (to_mode
));
417 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
422 /* Try converting directly if the insn is supported. */
424 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
425 if (code
!= CODE_FOR_nothing
)
427 emit_unop_insn (code
, to
, from
,
428 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
432 /* Otherwise use a libcall. */
433 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
435 /* Is this conversion implemented yet? */
436 gcc_assert (libcall
);
439 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
441 insns
= get_insns ();
443 emit_libcall_block (insns
, to
, value
,
444 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
446 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
450 /* Handle pointer conversion. */ /* SPEE 900220. */
451 /* Targets are expected to provide conversion insns between PxImode and
452 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
453 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
455 enum machine_mode full_mode
456 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
458 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
459 != CODE_FOR_nothing
);
461 if (full_mode
!= from_mode
)
462 from
= convert_to_mode (full_mode
, from
, unsignedp
);
463 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
467 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
469 enum machine_mode full_mode
470 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
472 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
473 != CODE_FOR_nothing
);
475 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
477 if (to_mode
== full_mode
)
480 /* else proceed to integer conversions below. */
481 from_mode
= full_mode
;
484 /* Now both modes are integers. */
486 /* Handle expanding beyond a word. */
487 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
488 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
495 enum machine_mode lowpart_mode
;
496 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
498 /* Try converting directly if the insn is supported. */
499 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
502 /* If FROM is a SUBREG, put it into a register. Do this
503 so that we always generate the same set of insns for
504 better cse'ing; if an intermediate assignment occurred,
505 we won't be doing the operation directly on the SUBREG. */
506 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
507 from
= force_reg (from_mode
, from
);
508 emit_unop_insn (code
, to
, from
, equiv_code
);
511 /* Next, try converting via full word. */
512 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
513 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
514 != CODE_FOR_nothing
))
518 if (reg_overlap_mentioned_p (to
, from
))
519 from
= force_reg (from_mode
, from
);
520 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
522 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
523 emit_unop_insn (code
, to
,
524 gen_lowpart (word_mode
, to
), equiv_code
);
528 /* No special multiword conversion insn; do it by hand. */
531 /* Since we will turn this into a no conflict block, we must ensure
532 that the source does not overlap the target. */
534 if (reg_overlap_mentioned_p (to
, from
))
535 from
= force_reg (from_mode
, from
);
537 /* Get a copy of FROM widened to a word, if necessary. */
538 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
539 lowpart_mode
= word_mode
;
541 lowpart_mode
= from_mode
;
543 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
545 lowpart
= gen_lowpart (lowpart_mode
, to
);
546 emit_move_insn (lowpart
, lowfrom
);
548 /* Compute the value to put in each remaining word. */
550 fill_value
= const0_rtx
;
555 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
556 && STORE_FLAG_VALUE
== -1)
558 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
560 fill_value
= gen_reg_rtx (word_mode
);
561 emit_insn (gen_slt (fill_value
));
567 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
568 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
570 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
574 /* Fill the remaining words. */
575 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
577 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
578 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
580 gcc_assert (subword
);
582 if (fill_value
!= subword
)
583 emit_move_insn (subword
, fill_value
);
586 insns
= get_insns ();
589 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
590 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
594 /* Truncating multi-word to a word or less. */
595 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
596 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
599 && ! MEM_VOLATILE_P (from
)
600 && direct_load
[(int) to_mode
]
601 && ! mode_dependent_address_p (XEXP (from
, 0)))
603 || GET_CODE (from
) == SUBREG
))
604 from
= force_reg (from_mode
, from
);
605 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
609 /* Now follow all the conversions between integers
610 no more than a word long. */
612 /* For truncation, usually we can just refer to FROM in a narrower mode. */
613 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
614 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
615 GET_MODE_BITSIZE (from_mode
)))
618 && ! MEM_VOLATILE_P (from
)
619 && direct_load
[(int) to_mode
]
620 && ! mode_dependent_address_p (XEXP (from
, 0)))
622 || GET_CODE (from
) == SUBREG
))
623 from
= force_reg (from_mode
, from
);
624 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
625 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
626 from
= copy_to_reg (from
);
627 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
631 /* Handle extension. */
632 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
634 /* Convert directly if that works. */
635 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
639 from
= force_not_mem (from
);
641 emit_unop_insn (code
, to
, from
, equiv_code
);
646 enum machine_mode intermediate
;
650 /* Search for a mode to convert via. */
651 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
652 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
653 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
655 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
656 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
657 GET_MODE_BITSIZE (intermediate
))))
658 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
659 != CODE_FOR_nothing
))
661 convert_move (to
, convert_to_mode (intermediate
, from
,
662 unsignedp
), unsignedp
);
666 /* No suitable intermediate mode.
667 Generate what we need with shifts. */
668 shift_amount
= build_int_cst (NULL_TREE
,
669 GET_MODE_BITSIZE (to_mode
)
670 - GET_MODE_BITSIZE (from_mode
));
671 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
672 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
674 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
677 emit_move_insn (to
, tmp
);
682 /* Support special truncate insns for certain modes. */
683 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
685 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
690 /* Handle truncation of volatile memrefs, and so on;
691 the things that couldn't be truncated directly,
692 and for which there was no special instruction.
694 ??? Code above formerly short-circuited this, for most integer
695 mode pairs, with a force_reg in from_mode followed by a recursive
696 call to this routine. Appears always to have been wrong. */
697 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
699 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
700 emit_move_insn (to
, temp
);
704 /* Mode combination is not recognized. */
708 /* Return an rtx for a value that would result
709 from converting X to mode MODE.
710 Both X and MODE may be floating, or both integer.
711 UNSIGNEDP is nonzero if X is an unsigned value.
712 This can be done by referring to a part of X in place
713 or by copying to a new temporary with conversion. */
716 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
718 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
721 /* Return an rtx for a value that would result
722 from converting X from mode OLDMODE to mode MODE.
723 Both modes may be floating, or both integer.
724 UNSIGNEDP is nonzero if X is an unsigned value.
726 This can be done by referring to a part of X in place
727 or by copying to a new temporary with conversion.
729 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
732 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
736 /* If FROM is a SUBREG that indicates that we have already done at least
737 the required extension, strip it. */
739 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
740 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
741 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
742 x
= gen_lowpart (mode
, x
);
744 if (GET_MODE (x
) != VOIDmode
)
745 oldmode
= GET_MODE (x
);
750 /* There is one case that we must handle specially: If we are converting
751 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
752 we are to interpret the constant as unsigned, gen_lowpart will do
753 the wrong if the constant appears negative. What we want to do is
754 make the high-order word of the constant zero, not all ones. */
756 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
757 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
758 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
760 HOST_WIDE_INT val
= INTVAL (x
);
762 if (oldmode
!= VOIDmode
763 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
765 int width
= GET_MODE_BITSIZE (oldmode
);
767 /* We need to zero extend VAL. */
768 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
771 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
774 /* We can do this with a gen_lowpart if both desired and current modes
775 are integer, and this is either a constant integer, a register, or a
776 non-volatile MEM. Except for the constant case where MODE is no
777 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
779 if ((GET_CODE (x
) == CONST_INT
780 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
781 || (GET_MODE_CLASS (mode
) == MODE_INT
782 && GET_MODE_CLASS (oldmode
) == MODE_INT
783 && (GET_CODE (x
) == CONST_DOUBLE
784 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
785 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
786 && direct_load
[(int) mode
])
788 && (! HARD_REGISTER_P (x
)
789 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
790 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
791 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
793 /* ?? If we don't know OLDMODE, we have to assume here that
794 X does not need sign- or zero-extension. This may not be
795 the case, but it's the best we can do. */
796 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
797 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
799 HOST_WIDE_INT val
= INTVAL (x
);
800 int width
= GET_MODE_BITSIZE (oldmode
);
802 /* We must sign or zero-extend in this case. Start by
803 zero-extending, then sign extend if we need to. */
804 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
806 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
807 val
|= (HOST_WIDE_INT
) (-1) << width
;
809 return gen_int_mode (val
, mode
);
812 return gen_lowpart (mode
, x
);
815 /* Converting from integer constant into mode is always equivalent to an
817 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
819 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
820 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
823 temp
= gen_reg_rtx (mode
);
824 convert_move (temp
, x
, unsignedp
);
828 /* STORE_MAX_PIECES is the number of bytes at a time that we can
829 store efficiently. Due to internal GCC limitations, this is
830 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
831 for an immediate constant. */
833 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
835 /* Determine whether the LEN bytes can be moved by using several move
836 instructions. Return nonzero if a call to move_by_pieces should
840 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
841 unsigned int align ATTRIBUTE_UNUSED
)
843 return MOVE_BY_PIECES_P (len
, align
);
846 /* Generate several move instructions to copy LEN bytes from block FROM to
847 block TO. (These are MEM rtx's with BLKmode).
849 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
850 used to push FROM to the stack.
852 ALIGN is maximum stack alignment we can assume.
854 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
855 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
859 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
860 unsigned int align
, int endp
)
862 struct move_by_pieces data
;
863 rtx to_addr
, from_addr
= XEXP (from
, 0);
864 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
865 enum machine_mode mode
= VOIDmode
, tmode
;
866 enum insn_code icode
;
868 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
871 data
.from_addr
= from_addr
;
874 to_addr
= XEXP (to
, 0);
877 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
878 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
880 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
887 #ifdef STACK_GROWS_DOWNWARD
893 data
.to_addr
= to_addr
;
896 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
897 || GET_CODE (from_addr
) == POST_INC
898 || GET_CODE (from_addr
) == POST_DEC
);
900 data
.explicit_inc_from
= 0;
901 data
.explicit_inc_to
= 0;
902 if (data
.reverse
) data
.offset
= len
;
905 /* If copying requires more than two move insns,
906 copy addresses to registers (to make displacements shorter)
907 and use post-increment if available. */
908 if (!(data
.autinc_from
&& data
.autinc_to
)
909 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
911 /* Find the mode of the largest move... */
912 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
913 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
914 if (GET_MODE_SIZE (tmode
) < max_size
)
917 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
919 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
920 data
.autinc_from
= 1;
921 data
.explicit_inc_from
= -1;
923 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
925 data
.from_addr
= copy_addr_to_reg (from_addr
);
926 data
.autinc_from
= 1;
927 data
.explicit_inc_from
= 1;
929 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
930 data
.from_addr
= copy_addr_to_reg (from_addr
);
931 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
933 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
935 data
.explicit_inc_to
= -1;
937 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
939 data
.to_addr
= copy_addr_to_reg (to_addr
);
941 data
.explicit_inc_to
= 1;
943 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
944 data
.to_addr
= copy_addr_to_reg (to_addr
);
947 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
948 if (align
>= GET_MODE_ALIGNMENT (tmode
))
949 align
= GET_MODE_ALIGNMENT (tmode
);
952 enum machine_mode xmode
;
954 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
956 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
957 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
958 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
961 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
964 /* First move what we can in the largest integer mode, then go to
965 successively smaller modes. */
969 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
970 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
971 if (GET_MODE_SIZE (tmode
) < max_size
)
974 if (mode
== VOIDmode
)
977 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
978 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
979 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
981 max_size
= GET_MODE_SIZE (mode
);
984 /* The code above should have handled everything. */
985 gcc_assert (!data
.len
);
991 gcc_assert (!data
.reverse
);
996 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
997 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
999 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1002 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1009 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1017 /* Return number of insns required to move L bytes by pieces.
1018 ALIGN (in bits) is maximum alignment we can assume. */
1020 static unsigned HOST_WIDE_INT
1021 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1022 unsigned int max_size
)
1024 unsigned HOST_WIDE_INT n_insns
= 0;
1025 enum machine_mode tmode
;
1027 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1028 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1029 align
= GET_MODE_ALIGNMENT (tmode
);
1032 enum machine_mode tmode
, xmode
;
1034 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1036 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1037 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1038 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1041 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1044 while (max_size
> 1)
1046 enum machine_mode mode
= VOIDmode
;
1047 enum insn_code icode
;
1049 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1050 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1051 if (GET_MODE_SIZE (tmode
) < max_size
)
1054 if (mode
== VOIDmode
)
1057 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1058 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1059 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1061 max_size
= GET_MODE_SIZE (mode
);
1068 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1069 with move instructions for mode MODE. GENFUN is the gen_... function
1070 to make a move insn for that mode. DATA has all the other info. */
1073 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1074 struct move_by_pieces
*data
)
1076 unsigned int size
= GET_MODE_SIZE (mode
);
1077 rtx to1
= NULL_RTX
, from1
;
1079 while (data
->len
>= size
)
1082 data
->offset
-= size
;
1086 if (data
->autinc_to
)
1087 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1090 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1093 if (data
->autinc_from
)
1094 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1097 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1099 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1100 emit_insn (gen_add2_insn (data
->to_addr
,
1101 GEN_INT (-(HOST_WIDE_INT
)size
)));
1102 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1103 emit_insn (gen_add2_insn (data
->from_addr
,
1104 GEN_INT (-(HOST_WIDE_INT
)size
)));
1107 emit_insn ((*genfun
) (to1
, from1
));
1110 #ifdef PUSH_ROUNDING
1111 emit_single_push_insn (mode
, from1
, NULL
);
1117 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1118 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1119 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1120 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1122 if (! data
->reverse
)
1123 data
->offset
+= size
;
1129 /* Emit code to move a block Y to a block X. This may be done with
1130 string-move instructions, with multiple scalar move instructions,
1131 or with a library call.
1133 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1134 SIZE is an rtx that says how long they are.
1135 ALIGN is the maximum alignment we can assume they have.
1136 METHOD describes what kind of copy this is, and what mechanisms may be used.
1138 Return the address of the new block, if memcpy is called and returns it,
1142 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1150 case BLOCK_OP_NORMAL
:
1151 may_use_call
= true;
1154 case BLOCK_OP_CALL_PARM
:
1155 may_use_call
= block_move_libcall_safe_for_call_parm ();
1157 /* Make inhibit_defer_pop nonzero around the library call
1158 to force it to pop the arguments right away. */
1162 case BLOCK_OP_NO_LIBCALL
:
1163 may_use_call
= false;
1170 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1172 gcc_assert (MEM_P (x
));
1173 gcc_assert (MEM_P (y
));
1176 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1177 block copy is more efficient for other large modes, e.g. DCmode. */
1178 x
= adjust_address (x
, BLKmode
, 0);
1179 y
= adjust_address (y
, BLKmode
, 0);
1181 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1182 can be incorrect is coming from __builtin_memcpy. */
1183 if (GET_CODE (size
) == CONST_INT
)
1185 if (INTVAL (size
) == 0)
1188 x
= shallow_copy_rtx (x
);
1189 y
= shallow_copy_rtx (y
);
1190 set_mem_size (x
, size
);
1191 set_mem_size (y
, size
);
1194 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1195 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1196 else if (emit_block_move_via_movmem (x
, y
, size
, align
))
1198 else if (may_use_call
)
1199 retval
= emit_block_move_via_libcall (x
, y
, size
);
1201 emit_block_move_via_loop (x
, y
, size
, align
);
1203 if (method
== BLOCK_OP_CALL_PARM
)
1209 /* A subroutine of emit_block_move. Returns true if calling the
1210 block move libcall will not clobber any parameters which may have
1211 already been placed on the stack. */
1214 block_move_libcall_safe_for_call_parm (void)
1216 /* If arguments are pushed on the stack, then they're safe. */
1220 /* If registers go on the stack anyway, any argument is sure to clobber
1221 an outgoing argument. */
1222 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1224 tree fn
= emit_block_move_libcall_fn (false);
1226 if (REG_PARM_STACK_SPACE (fn
) != 0)
1231 /* If any argument goes in memory, then it might clobber an outgoing
1234 CUMULATIVE_ARGS args_so_far
;
1237 fn
= emit_block_move_libcall_fn (false);
1238 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1240 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1241 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1243 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1244 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1245 if (!tmp
|| !REG_P (tmp
))
1247 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1249 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1255 /* A subroutine of emit_block_move. Expand a movmem pattern;
1256 return true if successful. */
1259 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
)
1261 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1262 int save_volatile_ok
= volatile_ok
;
1263 enum machine_mode mode
;
1265 /* Since this is a move insn, we don't care about volatility. */
1268 /* Try the most limited insn first, because there's no point
1269 including more than one in the machine description unless
1270 the more limited one has some advantage. */
1272 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1273 mode
= GET_MODE_WIDER_MODE (mode
))
1275 enum insn_code code
= movmem_optab
[(int) mode
];
1276 insn_operand_predicate_fn pred
;
1278 if (code
!= CODE_FOR_nothing
1279 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1280 here because if SIZE is less than the mode mask, as it is
1281 returned by the macro, it will definitely be less than the
1282 actual mode mask. */
1283 && ((GET_CODE (size
) == CONST_INT
1284 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1285 <= (GET_MODE_MASK (mode
) >> 1)))
1286 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1287 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1288 || (*pred
) (x
, BLKmode
))
1289 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1290 || (*pred
) (y
, BLKmode
))
1291 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1292 || (*pred
) (opalign
, VOIDmode
)))
1295 rtx last
= get_last_insn ();
1298 op2
= convert_to_mode (mode
, size
, 1);
1299 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1300 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1301 op2
= copy_to_mode_reg (mode
, op2
);
1303 /* ??? When called via emit_block_move_for_call, it'd be
1304 nice if there were some way to inform the backend, so
1305 that it doesn't fail the expansion because it thinks
1306 emitting the libcall would be more efficient. */
1308 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1312 volatile_ok
= save_volatile_ok
;
1316 delete_insns_since (last
);
1320 volatile_ok
= save_volatile_ok
;
1324 /* A subroutine of emit_block_move. Expand a call to memcpy.
1325 Return the return value from memcpy, 0 otherwise. */
1328 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
)
1330 rtx dst_addr
, src_addr
;
1331 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1332 enum machine_mode size_mode
;
1335 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1336 pseudos. We can then place those new pseudos into a VAR_DECL and
1339 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1340 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1342 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1343 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1345 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1346 src_tree
= make_tree (ptr_type_node
, src_addr
);
1348 size_mode
= TYPE_MODE (sizetype
);
1350 size
= convert_to_mode (size_mode
, size
, 1);
1351 size
= copy_to_mode_reg (size_mode
, size
);
1353 /* It is incorrect to use the libcall calling conventions to call
1354 memcpy in this context. This could be a user call to memcpy and
1355 the user may wish to examine the return value from memcpy. For
1356 targets where libcalls and normal calls have different conventions
1357 for returning pointers, we could end up generating incorrect code. */
1359 size_tree
= make_tree (sizetype
, size
);
1361 fn
= emit_block_move_libcall_fn (true);
1362 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1363 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1364 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1366 /* Now we have to build up the CALL_EXPR itself. */
1367 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1368 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1369 call_expr
, arg_list
, NULL_TREE
);
1371 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
1376 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1377 for the function we use for block copies. The first time FOR_CALL
1378 is true, we call assemble_external. */
1380 static GTY(()) tree block_move_fn
;
1383 init_block_move_fn (const char *asmspec
)
1389 fn
= get_identifier ("memcpy");
1390 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1391 const_ptr_type_node
, sizetype
,
1394 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1395 DECL_EXTERNAL (fn
) = 1;
1396 TREE_PUBLIC (fn
) = 1;
1397 DECL_ARTIFICIAL (fn
) = 1;
1398 TREE_NOTHROW (fn
) = 1;
1404 set_user_assembler_name (block_move_fn
, asmspec
);
1408 emit_block_move_libcall_fn (int for_call
)
1410 static bool emitted_extern
;
1413 init_block_move_fn (NULL
);
1415 if (for_call
&& !emitted_extern
)
1417 emitted_extern
= true;
1418 make_decl_rtl (block_move_fn
);
1419 assemble_external (block_move_fn
);
1422 return block_move_fn
;
1425 /* A subroutine of emit_block_move. Copy the data via an explicit
1426 loop. This is used only when libcalls are forbidden. */
1427 /* ??? It'd be nice to copy in hunks larger than QImode. */
1430 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1431 unsigned int align ATTRIBUTE_UNUSED
)
1433 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1434 enum machine_mode iter_mode
;
1436 iter_mode
= GET_MODE (size
);
1437 if (iter_mode
== VOIDmode
)
1438 iter_mode
= word_mode
;
1440 top_label
= gen_label_rtx ();
1441 cmp_label
= gen_label_rtx ();
1442 iter
= gen_reg_rtx (iter_mode
);
1444 emit_move_insn (iter
, const0_rtx
);
1446 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1447 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1448 do_pending_stack_adjust ();
1450 emit_jump (cmp_label
);
1451 emit_label (top_label
);
1453 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1454 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1455 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1456 x
= change_address (x
, QImode
, x_addr
);
1457 y
= change_address (y
, QImode
, y_addr
);
1459 emit_move_insn (x
, y
);
1461 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1462 true, OPTAB_LIB_WIDEN
);
1464 emit_move_insn (iter
, tmp
);
1466 emit_label (cmp_label
);
1468 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1472 /* Copy all or part of a value X into registers starting at REGNO.
1473 The number of registers to be filled is NREGS. */
1476 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1479 #ifdef HAVE_load_multiple
1487 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1488 x
= validize_mem (force_const_mem (mode
, x
));
1490 /* See if the machine can do this with a load multiple insn. */
1491 #ifdef HAVE_load_multiple
1492 if (HAVE_load_multiple
)
1494 last
= get_last_insn ();
1495 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1503 delete_insns_since (last
);
1507 for (i
= 0; i
< nregs
; i
++)
1508 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1509 operand_subword_force (x
, i
, mode
));
1512 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1513 The number of registers to be filled is NREGS. */
1516 move_block_from_reg (int regno
, rtx x
, int nregs
)
1523 /* See if the machine can do this with a store multiple insn. */
1524 #ifdef HAVE_store_multiple
1525 if (HAVE_store_multiple
)
1527 rtx last
= get_last_insn ();
1528 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1536 delete_insns_since (last
);
1540 for (i
= 0; i
< nregs
; i
++)
1542 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1546 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1550 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1551 ORIG, where ORIG is a non-consecutive group of registers represented by
1552 a PARALLEL. The clone is identical to the original except in that the
1553 original set of registers is replaced by a new set of pseudo registers.
1554 The new set has the same modes as the original set. */
1557 gen_group_rtx (rtx orig
)
1562 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1564 length
= XVECLEN (orig
, 0);
1565 tmps
= alloca (sizeof (rtx
) * length
);
1567 /* Skip a NULL entry in first slot. */
1568 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1573 for (; i
< length
; i
++)
1575 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1576 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1578 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1581 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1584 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1585 except that values are placed in TMPS[i], and must later be moved
1586 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1589 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1593 enum machine_mode m
= GET_MODE (orig_src
);
1595 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1598 && !SCALAR_INT_MODE_P (m
)
1599 && !MEM_P (orig_src
)
1600 && GET_CODE (orig_src
) != CONCAT
)
1602 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1603 if (imode
== BLKmode
)
1604 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1606 src
= gen_reg_rtx (imode
);
1607 if (imode
!= BLKmode
)
1608 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1609 emit_move_insn (src
, orig_src
);
1610 /* ...and back again. */
1611 if (imode
!= BLKmode
)
1612 src
= gen_lowpart (imode
, src
);
1613 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1617 /* Check for a NULL entry, used to indicate that the parameter goes
1618 both on the stack and in registers. */
1619 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1624 /* Process the pieces. */
1625 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1627 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1628 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1629 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1632 /* Handle trailing fragments that run over the size of the struct. */
1633 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1635 /* Arrange to shift the fragment to where it belongs.
1636 extract_bit_field loads to the lsb of the reg. */
1638 #ifdef BLOCK_REG_PADDING
1639 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1640 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1645 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1646 bytelen
= ssize
- bytepos
;
1647 gcc_assert (bytelen
> 0);
1650 /* If we won't be loading directly from memory, protect the real source
1651 from strange tricks we might play; but make sure that the source can
1652 be loaded directly into the destination. */
1654 if (!MEM_P (orig_src
)
1655 && (!CONSTANT_P (orig_src
)
1656 || (GET_MODE (orig_src
) != mode
1657 && GET_MODE (orig_src
) != VOIDmode
)))
1659 if (GET_MODE (orig_src
) == VOIDmode
)
1660 src
= gen_reg_rtx (mode
);
1662 src
= gen_reg_rtx (GET_MODE (orig_src
));
1664 emit_move_insn (src
, orig_src
);
1667 /* Optimize the access just a bit. */
1669 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1670 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1671 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1672 && bytelen
== GET_MODE_SIZE (mode
))
1674 tmps
[i
] = gen_reg_rtx (mode
);
1675 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1677 else if (COMPLEX_MODE_P (mode
)
1678 && GET_MODE (src
) == mode
1679 && bytelen
== GET_MODE_SIZE (mode
))
1680 /* Let emit_move_complex do the bulk of the work. */
1682 else if (GET_CODE (src
) == CONCAT
)
1684 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1685 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1687 if ((bytepos
== 0 && bytelen
== slen0
)
1688 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1690 /* The following assumes that the concatenated objects all
1691 have the same size. In this case, a simple calculation
1692 can be used to determine the object and the bit field
1694 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1695 if (! CONSTANT_P (tmps
[i
])
1696 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1697 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1698 (bytepos
% slen0
) * BITS_PER_UNIT
,
1699 1, NULL_RTX
, mode
, mode
);
1705 gcc_assert (!bytepos
);
1706 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1707 emit_move_insn (mem
, src
);
1708 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1709 0, 1, NULL_RTX
, mode
, mode
);
1712 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1713 SIMD register, which is currently broken. While we get GCC
1714 to emit proper RTL for these cases, let's dump to memory. */
1715 else if (VECTOR_MODE_P (GET_MODE (dst
))
1718 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1721 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1722 emit_move_insn (mem
, src
);
1723 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1725 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1726 && XVECLEN (dst
, 0) > 1)
1727 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1728 else if (CONSTANT_P (src
)
1729 || (REG_P (src
) && GET_MODE (src
) == mode
))
1732 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1733 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1737 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1738 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1742 /* Emit code to move a block SRC of type TYPE to a block DST,
1743 where DST is non-consecutive registers represented by a PARALLEL.
1744 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1748 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1753 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1754 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1756 /* Copy the extracted pieces into the proper (probable) hard regs. */
1757 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1759 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1762 emit_move_insn (d
, tmps
[i
]);
1766 /* Similar, but load SRC into new pseudos in a format that looks like
1767 PARALLEL. This can later be fed to emit_group_move to get things
1768 in the right place. */
1771 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1776 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1777 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1779 /* Convert the vector to look just like the original PARALLEL, except
1780 with the computed values. */
1781 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1783 rtx e
= XVECEXP (parallel
, 0, i
);
1784 rtx d
= XEXP (e
, 0);
1788 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1789 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1791 RTVEC_ELT (vec
, i
) = e
;
1794 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1797 /* Emit code to move a block SRC to block DST, where SRC and DST are
1798 non-consecutive groups of registers, each represented by a PARALLEL. */
1801 emit_group_move (rtx dst
, rtx src
)
1805 gcc_assert (GET_CODE (src
) == PARALLEL
1806 && GET_CODE (dst
) == PARALLEL
1807 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1809 /* Skip first entry if NULL. */
1810 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1811 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1812 XEXP (XVECEXP (src
, 0, i
), 0));
1815 /* Move a group of registers represented by a PARALLEL into pseudos. */
1818 emit_group_move_into_temps (rtx src
)
1820 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1823 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1825 rtx e
= XVECEXP (src
, 0, i
);
1826 rtx d
= XEXP (e
, 0);
1829 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1830 RTVEC_ELT (vec
, i
) = e
;
1833 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1836 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1837 where SRC is non-consecutive registers represented by a PARALLEL.
1838 SSIZE represents the total size of block ORIG_DST, or -1 if not
1842 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1846 enum machine_mode m
= GET_MODE (orig_dst
);
1848 gcc_assert (GET_CODE (src
) == PARALLEL
);
1850 if (!SCALAR_INT_MODE_P (m
)
1851 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1853 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1854 if (imode
== BLKmode
)
1855 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1857 dst
= gen_reg_rtx (imode
);
1858 emit_group_store (dst
, src
, type
, ssize
);
1859 if (imode
!= BLKmode
)
1860 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1861 emit_move_insn (orig_dst
, dst
);
1865 /* Check for a NULL entry, used to indicate that the parameter goes
1866 both on the stack and in registers. */
1867 if (XEXP (XVECEXP (src
, 0, 0), 0))
1872 tmps
= alloca (sizeof (rtx
) * XVECLEN (src
, 0));
1874 /* Copy the (probable) hard regs into pseudos. */
1875 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1877 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1878 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1879 emit_move_insn (tmps
[i
], reg
);
1882 /* If we won't be storing directly into memory, protect the real destination
1883 from strange tricks we might play. */
1885 if (GET_CODE (dst
) == PARALLEL
)
1889 /* We can get a PARALLEL dst if there is a conditional expression in
1890 a return statement. In that case, the dst and src are the same,
1891 so no action is necessary. */
1892 if (rtx_equal_p (dst
, src
))
1895 /* It is unclear if we can ever reach here, but we may as well handle
1896 it. Allocate a temporary, and split this into a store/load to/from
1899 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1900 emit_group_store (temp
, src
, type
, ssize
);
1901 emit_group_load (dst
, temp
, type
, ssize
);
1904 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1906 dst
= gen_reg_rtx (GET_MODE (orig_dst
));
1907 /* Make life a bit easier for combine. */
1908 emit_move_insn (dst
, CONST0_RTX (GET_MODE (orig_dst
)));
1911 /* Process the pieces. */
1912 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1914 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1915 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1916 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1919 /* Handle trailing fragments that run over the size of the struct. */
1920 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1922 /* store_bit_field always takes its value from the lsb.
1923 Move the fragment to the lsb if it's not already there. */
1925 #ifdef BLOCK_REG_PADDING
1926 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
1927 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1933 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1934 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
1935 build_int_cst (NULL_TREE
, shift
),
1938 bytelen
= ssize
- bytepos
;
1941 if (GET_CODE (dst
) == CONCAT
)
1943 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1944 dest
= XEXP (dst
, 0);
1945 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1947 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
1948 dest
= XEXP (dst
, 1);
1952 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
1953 dest
= assign_stack_temp (GET_MODE (dest
),
1954 GET_MODE_SIZE (GET_MODE (dest
)), 0);
1955 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
1962 /* Optimize the access just a bit. */
1964 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
1965 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
1966 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1967 && bytelen
== GET_MODE_SIZE (mode
))
1968 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
1970 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
1974 /* Copy from the pseudo into the (probable) hard reg. */
1975 if (orig_dst
!= dst
)
1976 emit_move_insn (orig_dst
, dst
);
1979 /* Generate code to copy a BLKmode object of TYPE out of a
1980 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1981 is null, a stack temporary is created. TGTBLK is returned.
1983 The purpose of this routine is to handle functions that return
1984 BLKmode structures in registers. Some machines (the PA for example)
1985 want to return all small structures in registers regardless of the
1986 structure's alignment. */
1989 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
1991 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
1992 rtx src
= NULL
, dst
= NULL
;
1993 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
1994 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
1998 tgtblk
= assign_temp (build_qualified_type (type
,
2000 | TYPE_QUAL_CONST
)),
2002 preserve_temp_slots (tgtblk
);
2005 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2006 into a new pseudo which is a full word. */
2008 if (GET_MODE (srcreg
) != BLKmode
2009 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2010 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2012 /* If the structure doesn't take up a whole number of words, see whether
2013 SRCREG is padded on the left or on the right. If it's on the left,
2014 set PADDING_CORRECTION to the number of bits to skip.
2016 In most ABIs, the structure will be returned at the least end of
2017 the register, which translates to right padding on little-endian
2018 targets and left padding on big-endian targets. The opposite
2019 holds if the structure is returned at the most significant
2020 end of the register. */
2021 if (bytes
% UNITS_PER_WORD
!= 0
2022 && (targetm
.calls
.return_in_msb (type
)
2024 : BYTES_BIG_ENDIAN
))
2026 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2028 /* Copy the structure BITSIZE bites at a time.
2030 We could probably emit more efficient code for machines which do not use
2031 strict alignment, but it doesn't seem worth the effort at the current
2033 for (bitpos
= 0, xbitpos
= padding_correction
;
2034 bitpos
< bytes
* BITS_PER_UNIT
;
2035 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2037 /* We need a new source operand each time xbitpos is on a
2038 word boundary and when xbitpos == padding_correction
2039 (the first time through). */
2040 if (xbitpos
% BITS_PER_WORD
== 0
2041 || xbitpos
== padding_correction
)
2042 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2045 /* We need a new destination operand each time bitpos is on
2047 if (bitpos
% BITS_PER_WORD
== 0)
2048 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2050 /* Use xbitpos for the source extraction (right justified) and
2051 xbitpos for the destination store (left justified). */
2052 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2053 extract_bit_field (src
, bitsize
,
2054 xbitpos
% BITS_PER_WORD
, 1,
2055 NULL_RTX
, word_mode
, word_mode
));
2061 /* Add a USE expression for REG to the (possibly empty) list pointed
2062 to by CALL_FUSAGE. REG must denote a hard register. */
2065 use_reg (rtx
*call_fusage
, rtx reg
)
2067 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2070 = gen_rtx_EXPR_LIST (VOIDmode
,
2071 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2074 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2075 starting at REGNO. All of these registers must be hard registers. */
2078 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2082 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2084 for (i
= 0; i
< nregs
; i
++)
2085 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2088 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2089 PARALLEL REGS. This is for calls that pass values in multiple
2090 non-contiguous locations. The Irix 6 ABI has examples of this. */
2093 use_group_regs (rtx
*call_fusage
, rtx regs
)
2097 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2099 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2101 /* A NULL entry means the parameter goes both on the stack and in
2102 registers. This can also be a MEM for targets that pass values
2103 partially on the stack and partially in registers. */
2104 if (reg
!= 0 && REG_P (reg
))
2105 use_reg (call_fusage
, reg
);
2110 /* Determine whether the LEN bytes generated by CONSTFUN can be
2111 stored to memory using several move instructions. CONSTFUNDATA is
2112 a pointer which will be passed as argument in every CONSTFUN call.
2113 ALIGN is maximum alignment we can assume. Return nonzero if a
2114 call to store_by_pieces should succeed. */
2117 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2118 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2119 void *constfundata
, unsigned int align
)
2121 unsigned HOST_WIDE_INT l
;
2122 unsigned int max_size
;
2123 HOST_WIDE_INT offset
= 0;
2124 enum machine_mode mode
, tmode
;
2125 enum insn_code icode
;
2132 if (! STORE_BY_PIECES_P (len
, align
))
2135 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2136 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2137 align
= GET_MODE_ALIGNMENT (tmode
);
2140 enum machine_mode xmode
;
2142 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2144 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2145 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2146 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2149 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2152 /* We would first store what we can in the largest integer mode, then go to
2153 successively smaller modes. */
2156 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2161 max_size
= STORE_MAX_PIECES
+ 1;
2162 while (max_size
> 1)
2164 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2165 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2166 if (GET_MODE_SIZE (tmode
) < max_size
)
2169 if (mode
== VOIDmode
)
2172 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2173 if (icode
!= CODE_FOR_nothing
2174 && align
>= GET_MODE_ALIGNMENT (mode
))
2176 unsigned int size
= GET_MODE_SIZE (mode
);
2183 cst
= (*constfun
) (constfundata
, offset
, mode
);
2184 if (!LEGITIMATE_CONSTANT_P (cst
))
2194 max_size
= GET_MODE_SIZE (mode
);
2197 /* The code above should have handled everything. */
2204 /* Generate several move instructions to store LEN bytes generated by
2205 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2206 pointer which will be passed as argument in every CONSTFUN call.
2207 ALIGN is maximum alignment we can assume.
2208 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2209 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2213 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2214 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2215 void *constfundata
, unsigned int align
, int endp
)
2217 struct store_by_pieces data
;
2221 gcc_assert (endp
!= 2);
2225 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2226 data
.constfun
= constfun
;
2227 data
.constfundata
= constfundata
;
2230 store_by_pieces_1 (&data
, align
);
2235 gcc_assert (!data
.reverse
);
2240 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2241 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2243 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2246 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2253 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2261 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2262 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2265 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2267 struct store_by_pieces data
;
2272 data
.constfun
= clear_by_pieces_1
;
2273 data
.constfundata
= NULL
;
2276 store_by_pieces_1 (&data
, align
);
2279 /* Callback routine for clear_by_pieces.
2280 Return const0_rtx unconditionally. */
2283 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2284 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2285 enum machine_mode mode ATTRIBUTE_UNUSED
)
2290 /* Subroutine of clear_by_pieces and store_by_pieces.
2291 Generate several move instructions to store LEN bytes of block TO. (A MEM
2292 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2295 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2296 unsigned int align ATTRIBUTE_UNUSED
)
2298 rtx to_addr
= XEXP (data
->to
, 0);
2299 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2300 enum machine_mode mode
= VOIDmode
, tmode
;
2301 enum insn_code icode
;
2304 data
->to_addr
= to_addr
;
2306 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2307 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2309 data
->explicit_inc_to
= 0;
2311 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2313 data
->offset
= data
->len
;
2315 /* If storing requires more than two move insns,
2316 copy addresses to registers (to make displacements shorter)
2317 and use post-increment if available. */
2318 if (!data
->autinc_to
2319 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2321 /* Determine the main mode we'll be using. */
2322 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2323 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2324 if (GET_MODE_SIZE (tmode
) < max_size
)
2327 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2329 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2330 data
->autinc_to
= 1;
2331 data
->explicit_inc_to
= -1;
2334 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2335 && ! data
->autinc_to
)
2337 data
->to_addr
= copy_addr_to_reg (to_addr
);
2338 data
->autinc_to
= 1;
2339 data
->explicit_inc_to
= 1;
2342 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2343 data
->to_addr
= copy_addr_to_reg (to_addr
);
2346 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2347 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2348 align
= GET_MODE_ALIGNMENT (tmode
);
2351 enum machine_mode xmode
;
2353 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2355 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2356 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2357 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2360 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2363 /* First store what we can in the largest integer mode, then go to
2364 successively smaller modes. */
2366 while (max_size
> 1)
2368 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2369 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2370 if (GET_MODE_SIZE (tmode
) < max_size
)
2373 if (mode
== VOIDmode
)
2376 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2377 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2378 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2380 max_size
= GET_MODE_SIZE (mode
);
2383 /* The code above should have handled everything. */
2384 gcc_assert (!data
->len
);
2387 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2388 with move instructions for mode MODE. GENFUN is the gen_... function
2389 to make a move insn for that mode. DATA has all the other info. */
2392 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2393 struct store_by_pieces
*data
)
2395 unsigned int size
= GET_MODE_SIZE (mode
);
2398 while (data
->len
>= size
)
2401 data
->offset
-= size
;
2403 if (data
->autinc_to
)
2404 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2407 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2409 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2410 emit_insn (gen_add2_insn (data
->to_addr
,
2411 GEN_INT (-(HOST_WIDE_INT
) size
)));
2413 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2414 emit_insn ((*genfun
) (to1
, cst
));
2416 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2417 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2419 if (! data
->reverse
)
2420 data
->offset
+= size
;
2426 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2427 its length in bytes. */
2430 clear_storage (rtx object
, rtx size
)
2432 enum machine_mode mode
= GET_MODE (object
);
2435 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2436 just move a zero. Otherwise, do this a piece at a time. */
2438 && GET_CODE (size
) == CONST_INT
2439 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2441 rtx zero
= CONST0_RTX (mode
);
2444 emit_move_insn (object
, zero
);
2448 if (COMPLEX_MODE_P (mode
))
2450 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2453 write_complex_part (object
, zero
, 0);
2454 write_complex_part (object
, zero
, 1);
2460 if (size
== const0_rtx
)
2463 align
= MEM_ALIGN (object
);
2465 if (GET_CODE (size
) == CONST_INT
2466 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2467 clear_by_pieces (object
, INTVAL (size
), align
);
2468 else if (clear_storage_via_clrmem (object
, size
, align
))
2471 return clear_storage_via_libcall (object
, size
);
2476 /* A subroutine of clear_storage. Expand a clrmem pattern;
2477 return true if successful. */
2480 clear_storage_via_clrmem (rtx object
, rtx size
, unsigned int align
)
2482 /* Try the most limited insn first, because there's no point
2483 including more than one in the machine description unless
2484 the more limited one has some advantage. */
2486 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2487 enum machine_mode mode
;
2489 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2490 mode
= GET_MODE_WIDER_MODE (mode
))
2492 enum insn_code code
= clrmem_optab
[(int) mode
];
2493 insn_operand_predicate_fn pred
;
2495 if (code
!= CODE_FOR_nothing
2496 /* We don't need MODE to be narrower than
2497 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2498 the mode mask, as it is returned by the macro, it will
2499 definitely be less than the actual mode mask. */
2500 && ((GET_CODE (size
) == CONST_INT
2501 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2502 <= (GET_MODE_MASK (mode
) >> 1)))
2503 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2504 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2505 || (*pred
) (object
, BLKmode
))
2506 && ((pred
= insn_data
[(int) code
].operand
[2].predicate
) == 0
2507 || (*pred
) (opalign
, VOIDmode
)))
2510 rtx last
= get_last_insn ();
2513 op1
= convert_to_mode (mode
, size
, 1);
2514 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2515 if (pred
!= 0 && ! (*pred
) (op1
, mode
))
2516 op1
= copy_to_mode_reg (mode
, op1
);
2518 pat
= GEN_FCN ((int) code
) (object
, op1
, opalign
);
2525 delete_insns_since (last
);
2532 /* A subroutine of clear_storage. Expand a call to memset.
2533 Return the return value of memset, 0 otherwise. */
2536 clear_storage_via_libcall (rtx object
, rtx size
)
2538 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
2539 enum machine_mode size_mode
;
2542 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2543 place those into new pseudos into a VAR_DECL and use them later. */
2545 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2547 size_mode
= TYPE_MODE (sizetype
);
2548 size
= convert_to_mode (size_mode
, size
, 1);
2549 size
= copy_to_mode_reg (size_mode
, size
);
2551 /* It is incorrect to use the libcall calling conventions to call
2552 memset in this context. This could be a user call to memset and
2553 the user may wish to examine the return value from memset. For
2554 targets where libcalls and normal calls have different conventions
2555 for returning pointers, we could end up generating incorrect code. */
2557 object_tree
= make_tree (ptr_type_node
, object
);
2558 size_tree
= make_tree (sizetype
, size
);
2560 fn
= clear_storage_libcall_fn (true);
2561 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2562 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
2563 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2565 /* Now we have to build up the CALL_EXPR itself. */
2566 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2567 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2568 call_expr
, arg_list
, NULL_TREE
);
2570 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
2575 /* A subroutine of clear_storage_via_libcall. Create the tree node
2576 for the function we use for block clears. The first time FOR_CALL
2577 is true, we call assemble_external. */
2579 static GTY(()) tree block_clear_fn
;
2582 init_block_clear_fn (const char *asmspec
)
2584 if (!block_clear_fn
)
2588 fn
= get_identifier ("memset");
2589 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2590 integer_type_node
, sizetype
,
2593 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2594 DECL_EXTERNAL (fn
) = 1;
2595 TREE_PUBLIC (fn
) = 1;
2596 DECL_ARTIFICIAL (fn
) = 1;
2597 TREE_NOTHROW (fn
) = 1;
2599 block_clear_fn
= fn
;
2603 set_user_assembler_name (block_clear_fn
, asmspec
);
2607 clear_storage_libcall_fn (int for_call
)
2609 static bool emitted_extern
;
2611 if (!block_clear_fn
)
2612 init_block_clear_fn (NULL
);
2614 if (for_call
&& !emitted_extern
)
2616 emitted_extern
= true;
2617 make_decl_rtl (block_clear_fn
);
2618 assemble_external (block_clear_fn
);
2621 return block_clear_fn
;
2624 /* Write to one of the components of the complex value CPLX. Write VAL to
2625 the real part if IMAG_P is false, and the imaginary part if its true. */
2628 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2630 enum machine_mode cmode
;
2631 enum machine_mode imode
;
2634 if (GET_CODE (cplx
) == CONCAT
)
2636 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2640 cmode
= GET_MODE (cplx
);
2641 imode
= GET_MODE_INNER (cmode
);
2642 ibitsize
= GET_MODE_BITSIZE (imode
);
2644 /* If the sub-object is at least word sized, then we know that subregging
2645 will work. This special case is important, since store_bit_field
2646 wants to operate on integer modes, and there's rarely an OImode to
2647 correspond to TCmode. */
2648 if (ibitsize
>= BITS_PER_WORD
2649 /* For hard regs we have exact predicates. Assume we can split
2650 the original object if it spans an even number of hard regs.
2651 This special case is important for SCmode on 64-bit platforms
2652 where the natural size of floating-point regs is 32-bit. */
2653 || (GET_CODE (cplx
) == REG
2654 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2655 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0)
2656 /* For MEMs we always try to make a "subreg", that is to adjust
2657 the MEM, because store_bit_field may generate overly
2658 convoluted RTL for sub-word fields. */
2661 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2662 imag_p
? GET_MODE_SIZE (imode
) : 0);
2665 emit_move_insn (part
, val
);
2669 /* simplify_gen_subreg may fail for sub-word MEMs. */
2670 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2673 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2676 /* Extract one of the components of the complex value CPLX. Extract the
2677 real part if IMAG_P is false, and the imaginary part if it's true. */
2680 read_complex_part (rtx cplx
, bool imag_p
)
2682 enum machine_mode cmode
, imode
;
2685 if (GET_CODE (cplx
) == CONCAT
)
2686 return XEXP (cplx
, imag_p
);
2688 cmode
= GET_MODE (cplx
);
2689 imode
= GET_MODE_INNER (cmode
);
2690 ibitsize
= GET_MODE_BITSIZE (imode
);
2692 /* Special case reads from complex constants that got spilled to memory. */
2693 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2695 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2696 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2698 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2699 if (CONSTANT_CLASS_P (part
))
2700 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2704 /* If the sub-object is at least word sized, then we know that subregging
2705 will work. This special case is important, since extract_bit_field
2706 wants to operate on integer modes, and there's rarely an OImode to
2707 correspond to TCmode. */
2708 if (ibitsize
>= BITS_PER_WORD
2709 /* For hard regs we have exact predicates. Assume we can split
2710 the original object if it spans an even number of hard regs.
2711 This special case is important for SCmode on 64-bit platforms
2712 where the natural size of floating-point regs is 32-bit. */
2713 || (GET_CODE (cplx
) == REG
2714 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2715 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0)
2716 /* For MEMs we always try to make a "subreg", that is to adjust
2717 the MEM, because extract_bit_field may generate overly
2718 convoluted RTL for sub-word fields. */
2721 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2722 imag_p
? GET_MODE_SIZE (imode
) : 0);
2726 /* simplify_gen_subreg may fail for sub-word MEMs. */
2727 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2730 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2731 true, NULL_RTX
, imode
, imode
);
2734 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2735 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2736 represented in NEW_MODE. If FORCE is true, this will never happen, as
2737 we'll force-create a SUBREG if needed. */
2740 emit_move_change_mode (enum machine_mode new_mode
,
2741 enum machine_mode old_mode
, rtx x
, bool force
)
2745 if (reload_in_progress
&& MEM_P (x
))
2747 /* We can't use gen_lowpart here because it may call change_address
2748 which is not appropriate if we were called when a reload was in
2749 progress. We don't have to worry about changing the address since
2750 the size in bytes is supposed to be the same. Copy the MEM to
2751 change the mode and move any substitutions from the old MEM to
2754 ret
= adjust_address_nv (x
, new_mode
, 0);
2755 copy_replacements (x
, ret
);
2759 /* Note that we do want simplify_subreg's behavior of validating
2760 that the new mode is ok for a hard register. If we were to use
2761 simplify_gen_subreg, we would create the subreg, but would
2762 probably run into the target not being able to implement it. */
2763 /* Except, of course, when FORCE is true, when this is exactly what
2764 we want. Which is needed for CCmodes on some targets. */
2766 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2768 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2774 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2775 an integer mode of the same size as MODE. Returns the instruction
2776 emitted, or NULL if such a move could not be generated. */
2779 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
)
2781 enum machine_mode imode
;
2782 enum insn_code code
;
2784 /* There must exist a mode of the exact size we require. */
2785 imode
= int_mode_for_mode (mode
);
2786 if (imode
== BLKmode
)
2789 /* The target must support moves in this mode. */
2790 code
= mov_optab
->handlers
[imode
].insn_code
;
2791 if (code
== CODE_FOR_nothing
)
2794 x
= emit_move_change_mode (imode
, mode
, x
, false);
2797 y
= emit_move_change_mode (imode
, mode
, y
, false);
2800 return emit_insn (GEN_FCN (code
) (x
, y
));
2803 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2804 Return an equivalent MEM that does not use an auto-increment. */
2807 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
2809 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
2810 HOST_WIDE_INT adjust
;
2813 adjust
= GET_MODE_SIZE (mode
);
2814 #ifdef PUSH_ROUNDING
2815 adjust
= PUSH_ROUNDING (adjust
);
2817 if (code
== PRE_DEC
|| code
== POST_DEC
)
2820 /* Do not use anti_adjust_stack, since we don't want to update
2821 stack_pointer_delta. */
2822 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
2823 GEN_INT (adjust
), stack_pointer_rtx
,
2824 0, OPTAB_LIB_WIDEN
);
2825 if (temp
!= stack_pointer_rtx
)
2826 emit_move_insn (stack_pointer_rtx
, temp
);
2832 temp
= stack_pointer_rtx
;
2835 temp
= plus_constant (stack_pointer_rtx
, -GET_MODE_SIZE (mode
));
2838 temp
= plus_constant (stack_pointer_rtx
, GET_MODE_SIZE (mode
));
2844 return replace_equiv_address (x
, temp
);
2847 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2848 X is known to satisfy push_operand, and MODE is known to be complex.
2849 Returns the last instruction emitted. */
2852 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
2854 enum machine_mode submode
= GET_MODE_INNER (mode
);
2857 #ifdef PUSH_ROUNDING
2858 unsigned int submodesize
= GET_MODE_SIZE (submode
);
2860 /* In case we output to the stack, but the size is smaller than the
2861 machine can push exactly, we need to use move instructions. */
2862 if (PUSH_ROUNDING (submodesize
) != submodesize
)
2864 x
= emit_move_resolve_push (mode
, x
);
2865 return emit_move_insn (x
, y
);
2869 /* Note that the real part always precedes the imag part in memory
2870 regardless of machine's endianness. */
2871 switch (GET_CODE (XEXP (x
, 0)))
2885 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2886 read_complex_part (y
, imag_first
));
2887 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2888 read_complex_part (y
, !imag_first
));
2891 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2892 MODE is known to be complex. Returns the last instruction emitted. */
2895 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
2899 /* Need to take special care for pushes, to maintain proper ordering
2900 of the data, and possibly extra padding. */
2901 if (push_operand (x
, mode
))
2902 return emit_move_complex_push (mode
, x
, y
);
2904 /* See if we can coerce the target into moving both values at once. */
2906 /* Move floating point as parts. */
2907 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
2908 && mov_optab
->handlers
[GET_MODE_INNER (mode
)].insn_code
!= CODE_FOR_nothing
)
2910 /* Not possible if the values are inherently not adjacent. */
2911 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
2913 /* Is possible if both are registers (or subregs of registers). */
2914 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
2916 /* If one of the operands is a memory, and alignment constraints
2917 are friendly enough, we may be able to do combined memory operations.
2918 We do not attempt this if Y is a constant because that combination is
2919 usually better with the by-parts thing below. */
2920 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
2921 && (!STRICT_ALIGNMENT
2922 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
2931 /* For memory to memory moves, optimal behavior can be had with the
2932 existing block move logic. */
2933 if (MEM_P (x
) && MEM_P (y
))
2935 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
2936 BLOCK_OP_NO_LIBCALL
);
2937 return get_last_insn ();
2940 ret
= emit_move_via_integer (mode
, x
, y
);
2945 /* Show the output dies here. This is necessary for SUBREGs
2946 of pseudos since we cannot track their lifetimes correctly;
2947 hard regs shouldn't appear here except as return values. */
2948 if (!reload_completed
&& !reload_in_progress
2949 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
2950 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
2952 write_complex_part (x
, read_complex_part (y
, false), false);
2953 write_complex_part (x
, read_complex_part (y
, true), true);
2954 return get_last_insn ();
2957 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2958 MODE is known to be MODE_CC. Returns the last instruction emitted. */
2961 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
2965 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
2968 enum insn_code code
= mov_optab
->handlers
[CCmode
].insn_code
;
2969 if (code
!= CODE_FOR_nothing
)
2971 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
2972 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
2973 return emit_insn (GEN_FCN (code
) (x
, y
));
2977 /* Otherwise, find the MODE_INT mode of the same width. */
2978 ret
= emit_move_via_integer (mode
, x
, y
);
2979 gcc_assert (ret
!= NULL
);
2983 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2984 MODE is any multi-word or full-word mode that lacks a move_insn
2985 pattern. Note that you will get better code if you define such
2986 patterns, even if they must turn into multiple assembler instructions. */
2989 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
2996 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
2998 /* If X is a push on the stack, do the push now and replace
2999 X with a reference to the stack pointer. */
3000 if (push_operand (x
, mode
))
3001 x
= emit_move_resolve_push (mode
, x
);
3003 /* If we are in reload, see if either operand is a MEM whose address
3004 is scheduled for replacement. */
3005 if (reload_in_progress
&& MEM_P (x
)
3006 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3007 x
= replace_equiv_address_nv (x
, inner
);
3008 if (reload_in_progress
&& MEM_P (y
)
3009 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3010 y
= replace_equiv_address_nv (y
, inner
);
3014 need_clobber
= false;
3016 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3019 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3020 rtx ypart
= operand_subword (y
, i
, 1, mode
);
3022 /* If we can't get a part of Y, put Y into memory if it is a
3023 constant. Otherwise, force it into a register. If we still
3024 can't get a part of Y, abort. */
3025 if (ypart
== 0 && CONSTANT_P (y
))
3027 y
= force_const_mem (mode
, y
);
3028 ypart
= operand_subword (y
, i
, 1, mode
);
3030 else if (ypart
== 0)
3031 ypart
= operand_subword_force (y
, i
, mode
);
3033 gcc_assert (xpart
&& ypart
);
3035 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3037 last_insn
= emit_move_insn (xpart
, ypart
);
3043 /* Show the output dies here. This is necessary for SUBREGs
3044 of pseudos since we cannot track their lifetimes correctly;
3045 hard regs shouldn't appear here except as return values.
3046 We never want to emit such a clobber after reload. */
3048 && ! (reload_in_progress
|| reload_completed
)
3049 && need_clobber
!= 0)
3050 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3057 /* Low level part of emit_move_insn.
3058 Called just like emit_move_insn, but assumes X and Y
3059 are basically valid. */
3062 emit_move_insn_1 (rtx x
, rtx y
)
3064 enum machine_mode mode
= GET_MODE (x
);
3065 enum insn_code code
;
3067 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3069 code
= mov_optab
->handlers
[mode
].insn_code
;
3070 if (code
!= CODE_FOR_nothing
)
3071 return emit_insn (GEN_FCN (code
) (x
, y
));
3073 /* Expand complex moves by moving real part and imag part. */
3074 if (COMPLEX_MODE_P (mode
))
3075 return emit_move_complex (mode
, x
, y
);
3077 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3078 return emit_move_ccmode (mode
, x
, y
);
3080 /* Try using a move pattern for the corresponding integer mode. This is
3081 only safe when simplify_subreg can convert MODE constants into integer
3082 constants. At present, it can only do this reliably if the value
3083 fits within a HOST_WIDE_INT. */
3084 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3086 rtx ret
= emit_move_via_integer (mode
, x
, y
);
3091 return emit_move_multi_word (mode
, x
, y
);
3094 /* Generate code to copy Y into X.
3095 Both Y and X must have the same mode, except that
3096 Y can be a constant with VOIDmode.
3097 This mode cannot be BLKmode; use emit_block_move for that.
3099 Return the last instruction emitted. */
3102 emit_move_insn (rtx x
, rtx y
)
3104 enum machine_mode mode
= GET_MODE (x
);
3105 rtx y_cst
= NULL_RTX
;
3108 gcc_assert (mode
!= BLKmode
3109 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3114 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3115 && (last_insn
= compress_float_constant (x
, y
)))
3120 if (!LEGITIMATE_CONSTANT_P (y
))
3122 y
= force_const_mem (mode
, y
);
3124 /* If the target's cannot_force_const_mem prevented the spill,
3125 assume that the target's move expanders will also take care
3126 of the non-legitimate constant. */
3132 /* If X or Y are memory references, verify that their addresses are valid
3135 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3136 && ! push_operand (x
, GET_MODE (x
)))
3138 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3139 x
= validize_mem (x
);
3142 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3144 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3145 y
= validize_mem (y
);
3147 gcc_assert (mode
!= BLKmode
);
3149 last_insn
= emit_move_insn_1 (x
, y
);
3151 if (y_cst
&& REG_P (x
)
3152 && (set
= single_set (last_insn
)) != NULL_RTX
3153 && SET_DEST (set
) == x
3154 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3155 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3160 /* If Y is representable exactly in a narrower mode, and the target can
3161 perform the extension directly from constant or memory, then emit the
3162 move as an extension. */
3165 compress_float_constant (rtx x
, rtx y
)
3167 enum machine_mode dstmode
= GET_MODE (x
);
3168 enum machine_mode orig_srcmode
= GET_MODE (y
);
3169 enum machine_mode srcmode
;
3172 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3174 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3175 srcmode
!= orig_srcmode
;
3176 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3179 rtx trunc_y
, last_insn
;
3181 /* Skip if the target can't extend this way. */
3182 ic
= can_extend_p (dstmode
, srcmode
, 0);
3183 if (ic
== CODE_FOR_nothing
)
3186 /* Skip if the narrowed value isn't exact. */
3187 if (! exact_real_truncate (srcmode
, &r
))
3190 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3192 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3194 /* Skip if the target needs extra instructions to perform
3196 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3199 else if (float_extend_from_mem
[dstmode
][srcmode
])
3200 trunc_y
= validize_mem (force_const_mem (srcmode
, trunc_y
));
3204 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3205 last_insn
= get_last_insn ();
3208 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3216 /* Pushing data onto the stack. */
3218 /* Push a block of length SIZE (perhaps variable)
3219 and return an rtx to address the beginning of the block.
3220 The value may be virtual_outgoing_args_rtx.
3222 EXTRA is the number of bytes of padding to push in addition to SIZE.
3223 BELOW nonzero means this padding comes at low addresses;
3224 otherwise, the padding comes at high addresses. */
3227 push_block (rtx size
, int extra
, int below
)
3231 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3232 if (CONSTANT_P (size
))
3233 anti_adjust_stack (plus_constant (size
, extra
));
3234 else if (REG_P (size
) && extra
== 0)
3235 anti_adjust_stack (size
);
3238 temp
= copy_to_mode_reg (Pmode
, size
);
3240 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3241 temp
, 0, OPTAB_LIB_WIDEN
);
3242 anti_adjust_stack (temp
);
3245 #ifndef STACK_GROWS_DOWNWARD
3251 temp
= virtual_outgoing_args_rtx
;
3252 if (extra
!= 0 && below
)
3253 temp
= plus_constant (temp
, extra
);
3257 if (GET_CODE (size
) == CONST_INT
)
3258 temp
= plus_constant (virtual_outgoing_args_rtx
,
3259 -INTVAL (size
) - (below
? 0 : extra
));
3260 else if (extra
!= 0 && !below
)
3261 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3262 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3264 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3265 negate_rtx (Pmode
, size
));
3268 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3271 #ifdef PUSH_ROUNDING
3273 /* Emit single push insn. */
3276 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3279 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3281 enum insn_code icode
;
3282 insn_operand_predicate_fn pred
;
3284 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3285 /* If there is push pattern, use it. Otherwise try old way of throwing
3286 MEM representing push operation to move expander. */
3287 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3288 if (icode
!= CODE_FOR_nothing
)
3290 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3291 && !((*pred
) (x
, mode
))))
3292 x
= force_reg (mode
, x
);
3293 emit_insn (GEN_FCN (icode
) (x
));
3296 if (GET_MODE_SIZE (mode
) == rounded_size
)
3297 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3298 /* If we are to pad downward, adjust the stack pointer first and
3299 then store X into the stack location using an offset. This is
3300 because emit_move_insn does not know how to pad; it does not have
3302 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3304 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3305 HOST_WIDE_INT offset
;
3307 emit_move_insn (stack_pointer_rtx
,
3308 expand_binop (Pmode
,
3309 #ifdef STACK_GROWS_DOWNWARD
3315 GEN_INT (rounded_size
),
3316 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3318 offset
= (HOST_WIDE_INT
) padding_size
;
3319 #ifdef STACK_GROWS_DOWNWARD
3320 if (STACK_PUSH_CODE
== POST_DEC
)
3321 /* We have already decremented the stack pointer, so get the
3323 offset
+= (HOST_WIDE_INT
) rounded_size
;
3325 if (STACK_PUSH_CODE
== POST_INC
)
3326 /* We have already incremented the stack pointer, so get the
3328 offset
-= (HOST_WIDE_INT
) rounded_size
;
3330 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3334 #ifdef STACK_GROWS_DOWNWARD
3335 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3336 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3337 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3339 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3340 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3341 GEN_INT (rounded_size
));
3343 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3346 dest
= gen_rtx_MEM (mode
, dest_addr
);
3350 set_mem_attributes (dest
, type
, 1);
3352 if (flag_optimize_sibling_calls
)
3353 /* Function incoming arguments may overlap with sibling call
3354 outgoing arguments and we cannot allow reordering of reads
3355 from function arguments with stores to outgoing arguments
3356 of sibling calls. */
3357 set_mem_alias_set (dest
, 0);
3359 emit_move_insn (dest
, x
);
3363 /* Generate code to push X onto the stack, assuming it has mode MODE and
3365 MODE is redundant except when X is a CONST_INT (since they don't
3367 SIZE is an rtx for the size of data to be copied (in bytes),
3368 needed only if X is BLKmode.
3370 ALIGN (in bits) is maximum alignment we can assume.
3372 If PARTIAL and REG are both nonzero, then copy that many of the first
3373 bytes of X into registers starting with REG, and push the rest of X.
3374 The amount of space pushed is decreased by PARTIAL bytes.
3375 REG must be a hard register in this case.
3376 If REG is zero but PARTIAL is not, take any all others actions for an
3377 argument partially in registers, but do not actually load any
3380 EXTRA is the amount in bytes of extra space to leave next to this arg.
3381 This is ignored if an argument block has already been allocated.
3383 On a machine that lacks real push insns, ARGS_ADDR is the address of
3384 the bottom of the argument block for this call. We use indexing off there
3385 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3386 argument block has not been preallocated.
3388 ARGS_SO_FAR is the size of args previously pushed for this call.
3390 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3391 for arguments passed in registers. If nonzero, it will be the number
3392 of bytes required. */
3395 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3396 unsigned int align
, int partial
, rtx reg
, int extra
,
3397 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3401 enum direction stack_direction
3402 #ifdef STACK_GROWS_DOWNWARD
3408 /* Decide where to pad the argument: `downward' for below,
3409 `upward' for above, or `none' for don't pad it.
3410 Default is below for small data on big-endian machines; else above. */
3411 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3413 /* Invert direction if stack is post-decrement.
3415 if (STACK_PUSH_CODE
== POST_DEC
)
3416 if (where_pad
!= none
)
3417 where_pad
= (where_pad
== downward
? upward
: downward
);
3421 if (mode
== BLKmode
)
3423 /* Copy a block into the stack, entirely or partially. */
3430 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3431 used
= partial
- offset
;
3435 /* USED is now the # of bytes we need not copy to the stack
3436 because registers will take care of them. */
3439 xinner
= adjust_address (xinner
, BLKmode
, used
);
3441 /* If the partial register-part of the arg counts in its stack size,
3442 skip the part of stack space corresponding to the registers.
3443 Otherwise, start copying to the beginning of the stack space,
3444 by setting SKIP to 0. */
3445 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3447 #ifdef PUSH_ROUNDING
3448 /* Do it with several push insns if that doesn't take lots of insns
3449 and if there is no difficulty with push insns that skip bytes
3450 on the stack for alignment purposes. */
3453 && GET_CODE (size
) == CONST_INT
3455 && MEM_ALIGN (xinner
) >= align
3456 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3457 /* Here we avoid the case of a structure whose weak alignment
3458 forces many pushes of a small amount of data,
3459 and such small pushes do rounding that causes trouble. */
3460 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3461 || align
>= BIGGEST_ALIGNMENT
3462 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3463 == (align
/ BITS_PER_UNIT
)))
3464 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3466 /* Push padding now if padding above and stack grows down,
3467 or if padding below and stack grows up.
3468 But if space already allocated, this has already been done. */
3469 if (extra
&& args_addr
== 0
3470 && where_pad
!= none
&& where_pad
!= stack_direction
)
3471 anti_adjust_stack (GEN_INT (extra
));
3473 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3476 #endif /* PUSH_ROUNDING */
3480 /* Otherwise make space on the stack and copy the data
3481 to the address of that space. */
3483 /* Deduct words put into registers from the size we must copy. */
3486 if (GET_CODE (size
) == CONST_INT
)
3487 size
= GEN_INT (INTVAL (size
) - used
);
3489 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3490 GEN_INT (used
), NULL_RTX
, 0,
3494 /* Get the address of the stack space.
3495 In this case, we do not deal with EXTRA separately.
3496 A single stack adjust will do. */
3499 temp
= push_block (size
, extra
, where_pad
== downward
);
3502 else if (GET_CODE (args_so_far
) == CONST_INT
)
3503 temp
= memory_address (BLKmode
,
3504 plus_constant (args_addr
,
3505 skip
+ INTVAL (args_so_far
)));
3507 temp
= memory_address (BLKmode
,
3508 plus_constant (gen_rtx_PLUS (Pmode
,
3513 if (!ACCUMULATE_OUTGOING_ARGS
)
3515 /* If the source is referenced relative to the stack pointer,
3516 copy it to another register to stabilize it. We do not need
3517 to do this if we know that we won't be changing sp. */
3519 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3520 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3521 temp
= copy_to_reg (temp
);
3524 target
= gen_rtx_MEM (BLKmode
, temp
);
3526 /* We do *not* set_mem_attributes here, because incoming arguments
3527 may overlap with sibling call outgoing arguments and we cannot
3528 allow reordering of reads from function arguments with stores
3529 to outgoing arguments of sibling calls. We do, however, want
3530 to record the alignment of the stack slot. */
3531 /* ALIGN may well be better aligned than TYPE, e.g. due to
3532 PARM_BOUNDARY. Assume the caller isn't lying. */
3533 set_mem_align (target
, align
);
3535 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3538 else if (partial
> 0)
3540 /* Scalar partly in registers. */
3542 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3545 /* # bytes of start of argument
3546 that we must make space for but need not store. */
3547 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_WORD
);
3548 int args_offset
= INTVAL (args_so_far
);
3551 /* Push padding now if padding above and stack grows down,
3552 or if padding below and stack grows up.
3553 But if space already allocated, this has already been done. */
3554 if (extra
&& args_addr
== 0
3555 && where_pad
!= none
&& where_pad
!= stack_direction
)
3556 anti_adjust_stack (GEN_INT (extra
));
3558 /* If we make space by pushing it, we might as well push
3559 the real data. Otherwise, we can leave OFFSET nonzero
3560 and leave the space uninitialized. */
3564 /* Now NOT_STACK gets the number of words that we don't need to
3565 allocate on the stack. */
3566 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3568 /* If the partial register-part of the arg counts in its stack size,
3569 skip the part of stack space corresponding to the registers.
3570 Otherwise, start copying to the beginning of the stack space,
3571 by setting SKIP to 0. */
3572 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3574 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3575 x
= validize_mem (force_const_mem (mode
, x
));
3577 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3578 SUBREGs of such registers are not allowed. */
3579 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3580 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3581 x
= copy_to_reg (x
);
3583 /* Loop over all the words allocated on the stack for this arg. */
3584 /* We can do it by words, because any scalar bigger than a word
3585 has a size a multiple of a word. */
3586 #ifndef PUSH_ARGS_REVERSED
3587 for (i
= not_stack
; i
< size
; i
++)
3589 for (i
= size
- 1; i
>= not_stack
; i
--)
3591 if (i
>= not_stack
+ offset
)
3592 emit_push_insn (operand_subword_force (x
, i
, mode
),
3593 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3595 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3597 reg_parm_stack_space
, alignment_pad
);
3604 /* Push padding now if padding above and stack grows down,
3605 or if padding below and stack grows up.
3606 But if space already allocated, this has already been done. */
3607 if (extra
&& args_addr
== 0
3608 && where_pad
!= none
&& where_pad
!= stack_direction
)
3609 anti_adjust_stack (GEN_INT (extra
));
3611 #ifdef PUSH_ROUNDING
3612 if (args_addr
== 0 && PUSH_ARGS
)
3613 emit_single_push_insn (mode
, x
, type
);
3617 if (GET_CODE (args_so_far
) == CONST_INT
)
3619 = memory_address (mode
,
3620 plus_constant (args_addr
,
3621 INTVAL (args_so_far
)));
3623 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3625 dest
= gen_rtx_MEM (mode
, addr
);
3627 /* We do *not* set_mem_attributes here, because incoming arguments
3628 may overlap with sibling call outgoing arguments and we cannot
3629 allow reordering of reads from function arguments with stores
3630 to outgoing arguments of sibling calls. We do, however, want
3631 to record the alignment of the stack slot. */
3632 /* ALIGN may well be better aligned than TYPE, e.g. due to
3633 PARM_BOUNDARY. Assume the caller isn't lying. */
3634 set_mem_align (dest
, align
);
3636 emit_move_insn (dest
, x
);
3640 /* If part should go in registers, copy that part
3641 into the appropriate registers. Do this now, at the end,
3642 since mem-to-mem copies above may do function calls. */
3643 if (partial
> 0 && reg
!= 0)
3645 /* Handle calls that pass values in multiple non-contiguous locations.
3646 The Irix 6 ABI has examples of this. */
3647 if (GET_CODE (reg
) == PARALLEL
)
3648 emit_group_load (reg
, x
, type
, -1);
3651 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3652 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3656 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3657 anti_adjust_stack (GEN_INT (extra
));
3659 if (alignment_pad
&& args_addr
== 0)
3660 anti_adjust_stack (alignment_pad
);
3663 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3667 get_subtarget (rtx x
)
3671 /* Only registers can be subtargets. */
3673 /* Don't use hard regs to avoid extending their life. */
3674 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3678 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3679 FIELD is a bitfield. Returns true if the optimization was successful,
3680 and there's nothing else to do. */
3683 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
3684 unsigned HOST_WIDE_INT bitpos
,
3685 enum machine_mode mode1
, rtx str_rtx
,
3688 enum machine_mode str_mode
= GET_MODE (str_rtx
);
3689 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3694 if (mode1
!= VOIDmode
3695 || bitsize
>= BITS_PER_WORD
3696 || str_bitsize
> BITS_PER_WORD
3697 || TREE_SIDE_EFFECTS (to
)
3698 || TREE_THIS_VOLATILE (to
))
3702 if (!BINARY_CLASS_P (src
)
3703 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
3706 op0
= TREE_OPERAND (src
, 0);
3707 op1
= TREE_OPERAND (src
, 1);
3710 if (!operand_equal_p (to
, op0
, 0))
3713 if (MEM_P (str_rtx
))
3715 unsigned HOST_WIDE_INT offset1
;
3717 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
3718 str_mode
= word_mode
;
3719 str_mode
= get_best_mode (bitsize
, bitpos
,
3720 MEM_ALIGN (str_rtx
), str_mode
, 0);
3721 if (str_mode
== VOIDmode
)
3723 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3726 bitpos
%= str_bitsize
;
3727 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
3728 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
3730 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3733 /* If the bit field covers the whole REG/MEM, store_field
3734 will likely generate better code. */
3735 if (bitsize
>= str_bitsize
)
3738 /* We can't handle fields split across multiple entities. */
3739 if (bitpos
+ bitsize
> str_bitsize
)
3742 if (BYTES_BIG_ENDIAN
)
3743 bitpos
= str_bitsize
- bitpos
- bitsize
;
3745 switch (TREE_CODE (src
))
3749 /* For now, just optimize the case of the topmost bitfield
3750 where we don't need to do any masking and also
3751 1 bit bitfields where xor can be used.
3752 We might win by one instruction for the other bitfields
3753 too if insv/extv instructions aren't used, so that
3754 can be added later. */
3755 if (bitpos
+ bitsize
!= str_bitsize
3756 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
3759 value
= expand_expr (op1
, NULL_RTX
, str_mode
, 0);
3760 value
= convert_modes (str_mode
,
3761 TYPE_MODE (TREE_TYPE (op1
)), value
,
3762 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3764 /* We may be accessing data outside the field, which means
3765 we can alias adjacent data. */
3766 if (MEM_P (str_rtx
))
3768 str_rtx
= shallow_copy_rtx (str_rtx
);
3769 set_mem_alias_set (str_rtx
, 0);
3770 set_mem_expr (str_rtx
, 0);
3773 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
3774 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
3776 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
3779 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
3780 build_int_cst (NULL_TREE
, bitpos
),
3782 result
= expand_binop (str_mode
, binop
, str_rtx
,
3783 value
, str_rtx
, 1, OPTAB_WIDEN
);
3784 if (result
!= str_rtx
)
3785 emit_move_insn (str_rtx
, result
);
3790 if (TREE_CODE (op1
) != INTEGER_CST
)
3792 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
3793 value
= convert_modes (GET_MODE (str_rtx
),
3794 TYPE_MODE (TREE_TYPE (op1
)), value
,
3795 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3797 /* We may be accessing data outside the field, which means
3798 we can alias adjacent data. */
3799 if (MEM_P (str_rtx
))
3801 str_rtx
= shallow_copy_rtx (str_rtx
);
3802 set_mem_alias_set (str_rtx
, 0);
3803 set_mem_expr (str_rtx
, 0);
3806 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
3807 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3809 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
3811 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
3814 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
3815 build_int_cst (NULL_TREE
, bitpos
),
3817 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
3818 value
, str_rtx
, 1, OPTAB_WIDEN
);
3819 if (result
!= str_rtx
)
3820 emit_move_insn (str_rtx
, result
);
3831 /* Expand an assignment that stores the value of FROM into TO. */
3834 expand_assignment (tree to
, tree from
)
3839 /* Don't crash if the lhs of the assignment was erroneous. */
3841 if (TREE_CODE (to
) == ERROR_MARK
)
3843 result
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3847 /* Assignment of a structure component needs special treatment
3848 if the structure component's rtx is not simply a MEM.
3849 Assignment of an array element at a constant index, and assignment of
3850 an array element in an unaligned packed structure field, has the same
3852 if (handled_component_p (to
)
3853 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
3855 enum machine_mode mode1
;
3856 HOST_WIDE_INT bitsize
, bitpos
;
3863 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
3864 &unsignedp
, &volatilep
, true);
3866 /* If we are going to use store_bit_field and extract_bit_field,
3867 make sure to_rtx will be safe for multiple use. */
3869 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, 0);
3873 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
3875 gcc_assert (MEM_P (to_rtx
));
3877 #ifdef POINTERS_EXTEND_UNSIGNED
3878 if (GET_MODE (offset_rtx
) != Pmode
)
3879 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
3881 if (GET_MODE (offset_rtx
) != ptr_mode
)
3882 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
3885 /* A constant address in TO_RTX can have VOIDmode, we must not try
3886 to call force_reg for that case. Avoid that case. */
3888 && GET_MODE (to_rtx
) == BLKmode
3889 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
3891 && (bitpos
% bitsize
) == 0
3892 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
3893 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
3895 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
3899 to_rtx
= offset_address (to_rtx
, offset_rtx
,
3900 highest_pow2_factor_for_target (to
,
3904 /* Handle expand_expr of a complex value returning a CONCAT. */
3905 if (GET_CODE (to_rtx
) == CONCAT
)
3907 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
3909 gcc_assert (bitpos
== 0);
3910 result
= store_expr (from
, to_rtx
, false);
3914 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
3915 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false);
3922 /* If the field is at offset zero, we could have been given the
3923 DECL_RTX of the parent struct. Don't munge it. */
3924 to_rtx
= shallow_copy_rtx (to_rtx
);
3926 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
3928 /* Deal with volatile and readonly fields. The former is only
3929 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3931 MEM_VOLATILE_P (to_rtx
) = 1;
3932 if (component_uses_parent_alias_set (to
))
3933 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
3936 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
3940 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
3941 TREE_TYPE (tem
), get_alias_set (to
));
3945 preserve_temp_slots (result
);
3951 /* If the rhs is a function call and its value is not an aggregate,
3952 call the function before we start to compute the lhs.
3953 This is needed for correct code for cases such as
3954 val = setjmp (buf) on machines where reference to val
3955 requires loading up part of an address in a separate insn.
3957 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3958 since it might be a promoted variable where the zero- or sign- extension
3959 needs to be done. Handling this in the normal way is safe because no
3960 computation is done before the call. */
3961 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
3962 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
3963 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
3964 && REG_P (DECL_RTL (to
))))
3969 value
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3971 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3973 /* Handle calls that return values in multiple non-contiguous locations.
3974 The Irix 6 ABI has examples of this. */
3975 if (GET_CODE (to_rtx
) == PARALLEL
)
3976 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
3977 int_size_in_bytes (TREE_TYPE (from
)));
3978 else if (GET_MODE (to_rtx
) == BLKmode
)
3979 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
3982 if (POINTER_TYPE_P (TREE_TYPE (to
)))
3983 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
3984 emit_move_insn (to_rtx
, value
);
3986 preserve_temp_slots (to_rtx
);
3992 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3993 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3996 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3998 /* Don't move directly into a return register. */
3999 if (TREE_CODE (to
) == RESULT_DECL
4000 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4005 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
4007 if (GET_CODE (to_rtx
) == PARALLEL
)
4008 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4009 int_size_in_bytes (TREE_TYPE (from
)));
4011 emit_move_insn (to_rtx
, temp
);
4013 preserve_temp_slots (to_rtx
);
4019 /* In case we are returning the contents of an object which overlaps
4020 the place the value is being stored, use a safe function when copying
4021 a value through a pointer into a structure value return block. */
4022 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4023 && current_function_returns_struct
4024 && !current_function_returns_pcc_struct
)
4029 size
= expr_size (from
);
4030 from_rtx
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4032 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4033 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4034 XEXP (from_rtx
, 0), Pmode
,
4035 convert_to_mode (TYPE_MODE (sizetype
),
4036 size
, TYPE_UNSIGNED (sizetype
)),
4037 TYPE_MODE (sizetype
));
4039 preserve_temp_slots (to_rtx
);
4045 /* Compute FROM and store the value in the rtx we got. */
4048 result
= store_expr (from
, to_rtx
, 0);
4049 preserve_temp_slots (result
);
4055 /* Generate code for computing expression EXP,
4056 and storing the value into TARGET.
4058 If the mode is BLKmode then we may return TARGET itself.
4059 It turns out that in BLKmode it doesn't cause a problem.
4060 because C has no operators that could combine two different
4061 assignments into the same BLKmode object with different values
4062 with no sequence point. Will other languages need this to
4065 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4066 stack, and block moves may need to be treated specially. */
4069 store_expr (tree exp
, rtx target
, int call_param_p
)
4072 rtx alt_rtl
= NULL_RTX
;
4073 int dont_return_target
= 0;
4075 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4077 /* C++ can generate ?: expressions with a throw expression in one
4078 branch and an rvalue in the other. Here, we resolve attempts to
4079 store the throw expression's nonexistent result. */
4080 gcc_assert (!call_param_p
);
4081 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4084 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4086 /* Perform first part of compound expression, then assign from second
4088 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4089 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4090 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4092 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4094 /* For conditional expression, get safe form of the target. Then
4095 test the condition, doing the appropriate assignment on either
4096 side. This avoids the creation of unnecessary temporaries.
4097 For non-BLKmode, it is more efficient not to do this. */
4099 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4101 do_pending_stack_adjust ();
4103 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4104 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4105 emit_jump_insn (gen_jump (lab2
));
4108 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
);
4114 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4115 /* If this is a scalar in a register that is stored in a wider mode
4116 than the declared mode, compute the result into its declared mode
4117 and then convert to the wider mode. Our value is the computed
4120 rtx inner_target
= 0;
4122 /* We can do the conversion inside EXP, which will often result
4123 in some optimizations. Do the conversion in two steps: first
4124 change the signedness, if needed, then the extend. But don't
4125 do this if the type of EXP is a subtype of something else
4126 since then the conversion might involve more than just
4127 converting modes. */
4128 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4129 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4130 && (!lang_hooks
.reduce_bit_field_operations
4131 || (GET_MODE_PRECISION (GET_MODE (target
))
4132 == TYPE_PRECISION (TREE_TYPE (exp
)))))
4134 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4135 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4137 (lang_hooks
.types
.signed_or_unsigned_type
4138 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4140 exp
= convert (lang_hooks
.types
.type_for_mode
4141 (GET_MODE (SUBREG_REG (target
)),
4142 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4145 inner_target
= SUBREG_REG (target
);
4148 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4149 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4151 /* If TEMP is a VOIDmode constant, use convert_modes to make
4152 sure that we properly convert it. */
4153 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4155 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4156 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4157 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4158 GET_MODE (target
), temp
,
4159 SUBREG_PROMOTED_UNSIGNED_P (target
));
4162 convert_move (SUBREG_REG (target
), temp
,
4163 SUBREG_PROMOTED_UNSIGNED_P (target
));
4169 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
4171 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4173 /* Return TARGET if it's a specified hardware register.
4174 If TARGET is a volatile mem ref, either return TARGET
4175 or return a reg copied *from* TARGET; ANSI requires this.
4177 Otherwise, if TEMP is not TARGET, return TEMP
4178 if it is constant (for efficiency),
4179 or if we really want the correct value. */
4180 if (!(target
&& REG_P (target
)
4181 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4182 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4183 && ! rtx_equal_p (temp
, target
)
4184 && CONSTANT_P (temp
))
4185 dont_return_target
= 1;
4188 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4189 the same as that of TARGET, adjust the constant. This is needed, for
4190 example, in case it is a CONST_DOUBLE and we want only a word-sized
4192 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4193 && TREE_CODE (exp
) != ERROR_MARK
4194 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4195 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4196 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4198 /* If value was not generated in the target, store it there.
4199 Convert the value to TARGET's type first if necessary and emit the
4200 pending incrementations that have been queued when expanding EXP.
4201 Note that we cannot emit the whole queue blindly because this will
4202 effectively disable the POST_INC optimization later.
4204 If TEMP and TARGET compare equal according to rtx_equal_p, but
4205 one or both of them are volatile memory refs, we have to distinguish
4207 - expand_expr has used TARGET. In this case, we must not generate
4208 another copy. This can be detected by TARGET being equal according
4210 - expand_expr has not used TARGET - that means that the source just
4211 happens to have the same RTX form. Since temp will have been created
4212 by expand_expr, it will compare unequal according to == .
4213 We must generate a copy in this case, to reach the correct number
4214 of volatile memory references. */
4216 if ((! rtx_equal_p (temp
, target
)
4217 || (temp
!= target
&& (side_effects_p (temp
)
4218 || side_effects_p (target
))))
4219 && TREE_CODE (exp
) != ERROR_MARK
4220 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4221 but TARGET is not valid memory reference, TEMP will differ
4222 from TARGET although it is really the same location. */
4223 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4224 /* If there's nothing to copy, don't bother. Don't call expr_size
4225 unless necessary, because some front-ends (C++) expr_size-hook
4226 aborts on objects that are not supposed to be bit-copied or
4228 && expr_size (exp
) != const0_rtx
)
4230 if (GET_MODE (temp
) != GET_MODE (target
)
4231 && GET_MODE (temp
) != VOIDmode
)
4233 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4234 if (dont_return_target
)
4236 /* In this case, we will return TEMP,
4237 so make sure it has the proper mode.
4238 But don't forget to store the value into TARGET. */
4239 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4240 emit_move_insn (target
, temp
);
4243 convert_move (target
, temp
, unsignedp
);
4246 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4248 /* Handle copying a string constant into an array. The string
4249 constant may be shorter than the array. So copy just the string's
4250 actual length, and clear the rest. First get the size of the data
4251 type of the string, which is actually the size of the target. */
4252 rtx size
= expr_size (exp
);
4254 if (GET_CODE (size
) == CONST_INT
4255 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4256 emit_block_move (target
, temp
, size
,
4258 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4261 /* Compute the size of the data to copy from the string. */
4263 = size_binop (MIN_EXPR
,
4264 make_tree (sizetype
, size
),
4265 size_int (TREE_STRING_LENGTH (exp
)));
4267 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4269 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4272 /* Copy that much. */
4273 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4274 TYPE_UNSIGNED (sizetype
));
4275 emit_block_move (target
, temp
, copy_size_rtx
,
4277 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4279 /* Figure out how much is left in TARGET that we have to clear.
4280 Do all calculations in ptr_mode. */
4281 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4283 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4284 target
= adjust_address (target
, BLKmode
,
4285 INTVAL (copy_size_rtx
));
4289 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4290 copy_size_rtx
, NULL_RTX
, 0,
4293 #ifdef POINTERS_EXTEND_UNSIGNED
4294 if (GET_MODE (copy_size_rtx
) != Pmode
)
4295 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4296 TYPE_UNSIGNED (sizetype
));
4299 target
= offset_address (target
, copy_size_rtx
,
4300 highest_pow2_factor (copy_size
));
4301 label
= gen_label_rtx ();
4302 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4303 GET_MODE (size
), 0, label
);
4306 if (size
!= const0_rtx
)
4307 clear_storage (target
, size
);
4313 /* Handle calls that return values in multiple non-contiguous locations.
4314 The Irix 6 ABI has examples of this. */
4315 else if (GET_CODE (target
) == PARALLEL
)
4316 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4317 int_size_in_bytes (TREE_TYPE (exp
)));
4318 else if (GET_MODE (temp
) == BLKmode
)
4319 emit_block_move (target
, temp
, expr_size (exp
),
4321 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4324 temp
= force_operand (temp
, target
);
4326 emit_move_insn (target
, temp
);
4333 /* Examine CTOR to discover:
4334 * how many scalar fields are set to nonzero values,
4335 and place it in *P_NZ_ELTS;
4336 * how many scalar fields are set to non-constant values,
4337 and place it in *P_NC_ELTS; and
4338 * how many scalar fields in total are in CTOR,
4339 and place it in *P_ELT_COUNT.
4340 * if a type is a union, and the initializer from the constructor
4341 is not the largest element in the union, then set *p_must_clear. */
4344 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4345 HOST_WIDE_INT
*p_nc_elts
,
4346 HOST_WIDE_INT
*p_elt_count
,
4349 HOST_WIDE_INT nz_elts
, nc_elts
, elt_count
;
4356 for (list
= CONSTRUCTOR_ELTS (ctor
); list
; list
= TREE_CHAIN (list
))
4358 tree value
= TREE_VALUE (list
);
4359 tree purpose
= TREE_PURPOSE (list
);
4363 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4365 tree lo_index
= TREE_OPERAND (purpose
, 0);
4366 tree hi_index
= TREE_OPERAND (purpose
, 1);
4368 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4369 mult
= (tree_low_cst (hi_index
, 1)
4370 - tree_low_cst (lo_index
, 1) + 1);
4373 switch (TREE_CODE (value
))
4377 HOST_WIDE_INT nz
= 0, nc
= 0, ic
= 0;
4378 categorize_ctor_elements_1 (value
, &nz
, &nc
, &ic
, p_must_clear
);
4379 nz_elts
+= mult
* nz
;
4380 nc_elts
+= mult
* nc
;
4381 elt_count
+= mult
* ic
;
4387 if (!initializer_zerop (value
))
4393 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4394 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4398 if (!initializer_zerop (TREE_REALPART (value
)))
4400 if (!initializer_zerop (TREE_IMAGPART (value
)))
4408 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4410 if (!initializer_zerop (TREE_VALUE (v
)))
4420 if (!initializer_constant_valid_p (value
, TREE_TYPE (value
)))
4427 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4428 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4431 bool clear_this
= true;
4433 list
= CONSTRUCTOR_ELTS (ctor
);
4436 /* We don't expect more than one element of the union to be
4437 initialized. Not sure what we should do otherwise... */
4438 gcc_assert (TREE_CHAIN (list
) == NULL
);
4440 init_sub_type
= TREE_TYPE (TREE_VALUE (list
));
4442 /* ??? We could look at each element of the union, and find the
4443 largest element. Which would avoid comparing the size of the
4444 initialized element against any tail padding in the union.
4445 Doesn't seem worth the effort... */
4446 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4447 TYPE_SIZE (init_sub_type
)) == 1)
4449 /* And now we have to find out if the element itself is fully
4450 constructed. E.g. for union { struct { int a, b; } s; } u
4451 = { .s = { .a = 1 } }. */
4452 if (elt_count
== count_type_elements (init_sub_type
))
4457 *p_must_clear
= clear_this
;
4460 *p_nz_elts
+= nz_elts
;
4461 *p_nc_elts
+= nc_elts
;
4462 *p_elt_count
+= elt_count
;
4466 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4467 HOST_WIDE_INT
*p_nc_elts
,
4468 HOST_WIDE_INT
*p_elt_count
,
4474 *p_must_clear
= false;
4475 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_nc_elts
, p_elt_count
,
4479 /* Count the number of scalars in TYPE. Return -1 on overflow or
4483 count_type_elements (tree type
)
4485 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4486 switch (TREE_CODE (type
))
4490 tree telts
= array_type_nelts (type
);
4491 if (telts
&& host_integerp (telts
, 1))
4493 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4494 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
));
4497 else if (max
/ n
> m
)
4505 HOST_WIDE_INT n
= 0, t
;
4508 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4509 if (TREE_CODE (f
) == FIELD_DECL
)
4511 t
= count_type_elements (TREE_TYPE (f
));
4521 case QUAL_UNION_TYPE
:
4523 /* Ho hum. How in the world do we guess here? Clearly it isn't
4524 right to count the fields. Guess based on the number of words. */
4525 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4528 return n
/ UNITS_PER_WORD
;
4535 return TYPE_VECTOR_SUBPARTS (type
);
4544 case REFERENCE_TYPE
:
4556 /* Return 1 if EXP contains mostly (3/4) zeros. */
4559 mostly_zeros_p (tree exp
)
4561 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4564 HOST_WIDE_INT nz_elts
, nc_elts
, count
, elts
;
4567 categorize_ctor_elements (exp
, &nz_elts
, &nc_elts
, &count
, &must_clear
);
4571 elts
= count_type_elements (TREE_TYPE (exp
));
4573 return nz_elts
< elts
/ 4;
4576 return initializer_zerop (exp
);
4579 /* Helper function for store_constructor.
4580 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4581 TYPE is the type of the CONSTRUCTOR, not the element type.
4582 CLEARED is as for store_constructor.
4583 ALIAS_SET is the alias set to use for any stores.
4585 This provides a recursive shortcut back to store_constructor when it isn't
4586 necessary to go through store_field. This is so that we can pass through
4587 the cleared field to let store_constructor know that we may not have to
4588 clear a substructure if the outer structure has already been cleared. */
4591 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4592 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4593 tree exp
, tree type
, int cleared
, int alias_set
)
4595 if (TREE_CODE (exp
) == CONSTRUCTOR
4596 /* We can only call store_constructor recursively if the size and
4597 bit position are on a byte boundary. */
4598 && bitpos
% BITS_PER_UNIT
== 0
4599 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4600 /* If we have a nonzero bitpos for a register target, then we just
4601 let store_field do the bitfield handling. This is unlikely to
4602 generate unnecessary clear instructions anyways. */
4603 && (bitpos
== 0 || MEM_P (target
)))
4607 = adjust_address (target
,
4608 GET_MODE (target
) == BLKmode
4610 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4611 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4614 /* Update the alias set, if required. */
4615 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4616 && MEM_ALIAS_SET (target
) != 0)
4618 target
= copy_rtx (target
);
4619 set_mem_alias_set (target
, alias_set
);
4622 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4625 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
4628 /* Store the value of constructor EXP into the rtx TARGET.
4629 TARGET is either a REG or a MEM; we know it cannot conflict, since
4630 safe_from_p has been called.
4631 CLEARED is true if TARGET is known to have been zero'd.
4632 SIZE is the number of bytes of TARGET we are allowed to modify: this
4633 may not be the same as the size of EXP if we are assigning to a field
4634 which has been packed to exclude padding bits. */
4637 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4639 tree type
= TREE_TYPE (exp
);
4640 #ifdef WORD_REGISTER_OPERATIONS
4641 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4644 switch (TREE_CODE (type
))
4648 case QUAL_UNION_TYPE
:
4652 /* If size is zero or the target is already cleared, do nothing. */
4653 if (size
== 0 || cleared
)
4655 /* We either clear the aggregate or indicate the value is dead. */
4656 else if ((TREE_CODE (type
) == UNION_TYPE
4657 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4658 && ! CONSTRUCTOR_ELTS (exp
))
4659 /* If the constructor is empty, clear the union. */
4661 clear_storage (target
, expr_size (exp
));
4665 /* If we are building a static constructor into a register,
4666 set the initial value as zero so we can fold the value into
4667 a constant. But if more than one register is involved,
4668 this probably loses. */
4669 else if (REG_P (target
) && TREE_STATIC (exp
)
4670 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4672 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4676 /* If the constructor has fewer fields than the structure or
4677 if we are initializing the structure to mostly zeros, clear
4678 the whole structure first. Don't do this if TARGET is a
4679 register whose mode size isn't equal to SIZE since
4680 clear_storage can't handle this case. */
4682 && ((list_length (CONSTRUCTOR_ELTS (exp
))
4683 != fields_length (type
))
4684 || mostly_zeros_p (exp
))
4686 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4689 clear_storage (target
, GEN_INT (size
));
4694 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4696 /* Store each element of the constructor into the
4697 corresponding field of TARGET. */
4699 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
4701 tree field
= TREE_PURPOSE (elt
);
4702 tree value
= TREE_VALUE (elt
);
4703 enum machine_mode mode
;
4704 HOST_WIDE_INT bitsize
;
4705 HOST_WIDE_INT bitpos
= 0;
4707 rtx to_rtx
= target
;
4709 /* Just ignore missing fields. We cleared the whole
4710 structure, above, if any fields are missing. */
4714 if (cleared
&& initializer_zerop (value
))
4717 if (host_integerp (DECL_SIZE (field
), 1))
4718 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4722 mode
= DECL_MODE (field
);
4723 if (DECL_BIT_FIELD (field
))
4726 offset
= DECL_FIELD_OFFSET (field
);
4727 if (host_integerp (offset
, 0)
4728 && host_integerp (bit_position (field
), 0))
4730 bitpos
= int_bit_position (field
);
4734 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
4741 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
4742 make_tree (TREE_TYPE (exp
),
4745 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, 0);
4746 gcc_assert (MEM_P (to_rtx
));
4748 #ifdef POINTERS_EXTEND_UNSIGNED
4749 if (GET_MODE (offset_rtx
) != Pmode
)
4750 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4752 if (GET_MODE (offset_rtx
) != ptr_mode
)
4753 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4756 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4757 highest_pow2_factor (offset
));
4760 #ifdef WORD_REGISTER_OPERATIONS
4761 /* If this initializes a field that is smaller than a
4762 word, at the start of a word, try to widen it to a full
4763 word. This special case allows us to output C++ member
4764 function initializations in a form that the optimizers
4767 && bitsize
< BITS_PER_WORD
4768 && bitpos
% BITS_PER_WORD
== 0
4769 && GET_MODE_CLASS (mode
) == MODE_INT
4770 && TREE_CODE (value
) == INTEGER_CST
4772 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
4774 tree type
= TREE_TYPE (value
);
4776 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
4778 type
= lang_hooks
.types
.type_for_size
4779 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
4780 value
= convert (type
, value
);
4783 if (BYTES_BIG_ENDIAN
)
4785 = fold (build2 (LSHIFT_EXPR
, type
, value
,
4786 build_int_cst (NULL_TREE
,
4787 BITS_PER_WORD
- bitsize
)));
4788 bitsize
= BITS_PER_WORD
;
4793 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
4794 && DECL_NONADDRESSABLE_P (field
))
4796 to_rtx
= copy_rtx (to_rtx
);
4797 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4800 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
4801 value
, type
, cleared
,
4802 get_alias_set (TREE_TYPE (field
)));
4812 tree elttype
= TREE_TYPE (type
);
4814 HOST_WIDE_INT minelt
= 0;
4815 HOST_WIDE_INT maxelt
= 0;
4817 domain
= TYPE_DOMAIN (type
);
4818 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
4819 && TYPE_MAX_VALUE (domain
)
4820 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
4821 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
4823 /* If we have constant bounds for the range of the type, get them. */
4826 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
4827 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
4830 /* If the constructor has fewer elements than the array, clear
4831 the whole array first. Similarly if this is static
4832 constructor of a non-BLKmode object. */
4835 else if (REG_P (target
) && TREE_STATIC (exp
))
4839 HOST_WIDE_INT count
= 0, zero_count
= 0;
4840 need_to_clear
= ! const_bounds_p
;
4842 /* This loop is a more accurate version of the loop in
4843 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4844 is also needed to check for missing elements. */
4845 for (elt
= CONSTRUCTOR_ELTS (exp
);
4846 elt
!= NULL_TREE
&& ! need_to_clear
;
4847 elt
= TREE_CHAIN (elt
))
4849 tree index
= TREE_PURPOSE (elt
);
4850 HOST_WIDE_INT this_node_count
;
4852 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4854 tree lo_index
= TREE_OPERAND (index
, 0);
4855 tree hi_index
= TREE_OPERAND (index
, 1);
4857 if (! host_integerp (lo_index
, 1)
4858 || ! host_integerp (hi_index
, 1))
4864 this_node_count
= (tree_low_cst (hi_index
, 1)
4865 - tree_low_cst (lo_index
, 1) + 1);
4868 this_node_count
= 1;
4870 count
+= this_node_count
;
4871 if (mostly_zeros_p (TREE_VALUE (elt
)))
4872 zero_count
+= this_node_count
;
4875 /* Clear the entire array first if there are any missing
4876 elements, or if the incidence of zero elements is >=
4879 && (count
< maxelt
- minelt
+ 1
4880 || 4 * zero_count
>= 3 * count
))
4884 if (need_to_clear
&& size
> 0)
4887 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4889 clear_storage (target
, GEN_INT (size
));
4893 if (!cleared
&& REG_P (target
))
4894 /* Inform later passes that the old value is dead. */
4895 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4897 /* Store each element of the constructor into the
4898 corresponding element of TARGET, determined by counting the
4900 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
4902 elt
= TREE_CHAIN (elt
), i
++)
4904 enum machine_mode mode
;
4905 HOST_WIDE_INT bitsize
;
4906 HOST_WIDE_INT bitpos
;
4908 tree value
= TREE_VALUE (elt
);
4909 tree index
= TREE_PURPOSE (elt
);
4910 rtx xtarget
= target
;
4912 if (cleared
&& initializer_zerop (value
))
4915 unsignedp
= TYPE_UNSIGNED (elttype
);
4916 mode
= TYPE_MODE (elttype
);
4917 if (mode
== BLKmode
)
4918 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
4919 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
4922 bitsize
= GET_MODE_BITSIZE (mode
);
4924 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4926 tree lo_index
= TREE_OPERAND (index
, 0);
4927 tree hi_index
= TREE_OPERAND (index
, 1);
4928 rtx index_r
, pos_rtx
;
4929 HOST_WIDE_INT lo
, hi
, count
;
4932 /* If the range is constant and "small", unroll the loop. */
4934 && host_integerp (lo_index
, 0)
4935 && host_integerp (hi_index
, 0)
4936 && (lo
= tree_low_cst (lo_index
, 0),
4937 hi
= tree_low_cst (hi_index
, 0),
4938 count
= hi
- lo
+ 1,
4941 || (host_integerp (TYPE_SIZE (elttype
), 1)
4942 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
4945 lo
-= minelt
; hi
-= minelt
;
4946 for (; lo
<= hi
; lo
++)
4948 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
4951 && !MEM_KEEP_ALIAS_SET_P (target
)
4952 && TREE_CODE (type
) == ARRAY_TYPE
4953 && TYPE_NONALIASED_COMPONENT (type
))
4955 target
= copy_rtx (target
);
4956 MEM_KEEP_ALIAS_SET_P (target
) = 1;
4959 store_constructor_field
4960 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
4961 get_alias_set (elttype
));
4966 rtx loop_start
= gen_label_rtx ();
4967 rtx loop_end
= gen_label_rtx ();
4970 expand_expr (hi_index
, NULL_RTX
, VOIDmode
, 0);
4971 unsignedp
= TYPE_UNSIGNED (domain
);
4973 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
4976 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
4978 SET_DECL_RTL (index
, index_r
);
4979 store_expr (lo_index
, index_r
, 0);
4981 /* Build the head of the loop. */
4982 do_pending_stack_adjust ();
4983 emit_label (loop_start
);
4985 /* Assign value to element index. */
4987 = convert (ssizetype
,
4988 fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
4989 index
, TYPE_MIN_VALUE (domain
))));
4990 position
= size_binop (MULT_EXPR
, position
,
4992 TYPE_SIZE_UNIT (elttype
)));
4994 pos_rtx
= expand_expr (position
, 0, VOIDmode
, 0);
4995 xtarget
= offset_address (target
, pos_rtx
,
4996 highest_pow2_factor (position
));
4997 xtarget
= adjust_address (xtarget
, mode
, 0);
4998 if (TREE_CODE (value
) == CONSTRUCTOR
)
4999 store_constructor (value
, xtarget
, cleared
,
5000 bitsize
/ BITS_PER_UNIT
);
5002 store_expr (value
, xtarget
, 0);
5004 /* Generate a conditional jump to exit the loop. */
5005 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5007 jumpif (exit_cond
, loop_end
);
5009 /* Update the loop counter, and jump to the head of
5011 expand_assignment (index
,
5012 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5013 index
, integer_one_node
));
5015 emit_jump (loop_start
);
5017 /* Build the end of the loop. */
5018 emit_label (loop_end
);
5021 else if ((index
!= 0 && ! host_integerp (index
, 0))
5022 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5027 index
= ssize_int (1);
5030 index
= fold_convert (ssizetype
,
5031 fold (build2 (MINUS_EXPR
,
5034 TYPE_MIN_VALUE (domain
))));
5036 position
= size_binop (MULT_EXPR
, index
,
5038 TYPE_SIZE_UNIT (elttype
)));
5039 xtarget
= offset_address (target
,
5040 expand_expr (position
, 0, VOIDmode
, 0),
5041 highest_pow2_factor (position
));
5042 xtarget
= adjust_address (xtarget
, mode
, 0);
5043 store_expr (value
, xtarget
, 0);
5048 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5049 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5051 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5053 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5054 && TREE_CODE (type
) == ARRAY_TYPE
5055 && TYPE_NONALIASED_COMPONENT (type
))
5057 target
= copy_rtx (target
);
5058 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5060 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5061 type
, cleared
, get_alias_set (elttype
));
5073 tree elttype
= TREE_TYPE (type
);
5074 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5075 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5076 HOST_WIDE_INT bitsize
;
5077 HOST_WIDE_INT bitpos
;
5078 rtvec vector
= NULL
;
5081 gcc_assert (eltmode
!= BLKmode
);
5083 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5084 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5086 enum machine_mode mode
= GET_MODE (target
);
5088 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
5089 if (icode
!= CODE_FOR_nothing
)
5093 vector
= rtvec_alloc (n_elts
);
5094 for (i
= 0; i
< n_elts
; i
++)
5095 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5099 /* If the constructor has fewer elements than the vector,
5100 clear the whole array first. Similarly if this is static
5101 constructor of a non-BLKmode object. */
5104 else if (REG_P (target
) && TREE_STATIC (exp
))
5108 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5110 for (elt
= CONSTRUCTOR_ELTS (exp
);
5112 elt
= TREE_CHAIN (elt
))
5114 int n_elts_here
= tree_low_cst
5115 (int_const_binop (TRUNC_DIV_EXPR
,
5116 TYPE_SIZE (TREE_TYPE (TREE_VALUE (elt
))),
5117 TYPE_SIZE (elttype
), 0), 1);
5119 count
+= n_elts_here
;
5120 if (mostly_zeros_p (TREE_VALUE (elt
)))
5121 zero_count
+= n_elts_here
;
5124 /* Clear the entire vector first if there are any missing elements,
5125 or if the incidence of zero elements is >= 75%. */
5126 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5129 if (need_to_clear
&& size
> 0 && !vector
)
5132 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5134 clear_storage (target
, GEN_INT (size
));
5138 if (!cleared
&& REG_P (target
))
5139 /* Inform later passes that the old value is dead. */
5140 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
5142 /* Store each element of the constructor into the corresponding
5143 element of TARGET, determined by counting the elements. */
5144 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
5146 elt
= TREE_CHAIN (elt
), i
+= bitsize
/ elt_size
)
5148 tree value
= TREE_VALUE (elt
);
5149 tree index
= TREE_PURPOSE (elt
);
5150 HOST_WIDE_INT eltpos
;
5152 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5153 if (cleared
&& initializer_zerop (value
))
5157 eltpos
= tree_low_cst (index
, 1);
5163 /* Vector CONSTRUCTORs should only be built from smaller
5164 vectors in the case of BLKmode vectors. */
5165 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5166 RTVEC_ELT (vector
, eltpos
)
5167 = expand_expr (value
, NULL_RTX
, VOIDmode
, 0);
5171 enum machine_mode value_mode
=
5172 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5173 ? TYPE_MODE (TREE_TYPE (value
))
5175 bitpos
= eltpos
* elt_size
;
5176 store_constructor_field (target
, bitsize
, bitpos
,
5177 value_mode
, value
, type
,
5178 cleared
, get_alias_set (elttype
));
5183 emit_insn (GEN_FCN (icode
)
5185 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5194 /* Store the value of EXP (an expression tree)
5195 into a subfield of TARGET which has mode MODE and occupies
5196 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5197 If MODE is VOIDmode, it means that we are storing into a bit-field.
5199 Always return const0_rtx unless we have something particular to
5202 TYPE is the type of the underlying object,
5204 ALIAS_SET is the alias set for the destination. This value will
5205 (in general) be different from that for TARGET, since TARGET is a
5206 reference to the containing structure. */
5209 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5210 enum machine_mode mode
, tree exp
, tree type
, int alias_set
)
5212 HOST_WIDE_INT width_mask
= 0;
5214 if (TREE_CODE (exp
) == ERROR_MARK
)
5217 /* If we have nothing to store, do nothing unless the expression has
5220 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5221 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5222 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5224 /* If we are storing into an unaligned field of an aligned union that is
5225 in a register, we may have the mode of TARGET being an integer mode but
5226 MODE == BLKmode. In that case, get an aligned object whose size and
5227 alignment are the same as TARGET and store TARGET into it (we can avoid
5228 the store if the field being stored is the entire width of TARGET). Then
5229 call ourselves recursively to store the field into a BLKmode version of
5230 that object. Finally, load from the object into TARGET. This is not
5231 very efficient in general, but should only be slightly more expensive
5232 than the otherwise-required unaligned accesses. Perhaps this can be
5233 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5234 twice, once with emit_move_insn and once via store_field. */
5237 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5239 rtx object
= assign_temp (type
, 0, 1, 1);
5240 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5242 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5243 emit_move_insn (object
, target
);
5245 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
5247 emit_move_insn (target
, object
);
5249 /* We want to return the BLKmode version of the data. */
5253 if (GET_CODE (target
) == CONCAT
)
5255 /* We're storing into a struct containing a single __complex. */
5257 gcc_assert (!bitpos
);
5258 return store_expr (exp
, target
, 0);
5261 /* If the structure is in a register or if the component
5262 is a bit field, we cannot use addressing to access it.
5263 Use bit-field techniques or SUBREG to store in it. */
5265 if (mode
== VOIDmode
5266 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5267 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5268 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5270 || GET_CODE (target
) == SUBREG
5271 /* If the field isn't aligned enough to store as an ordinary memref,
5272 store it as a bit field. */
5274 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5275 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5276 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5277 || (bitpos
% BITS_PER_UNIT
!= 0)))
5278 /* If the RHS and field are a constant size and the size of the
5279 RHS isn't the same size as the bitfield, we must use bitfield
5282 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5283 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5287 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5288 implies a mask operation. If the precision is the same size as
5289 the field we're storing into, that mask is redundant. This is
5290 particularly common with bit field assignments generated by the
5292 if (TREE_CODE (exp
) == NOP_EXPR
)
5294 tree type
= TREE_TYPE (exp
);
5295 if (INTEGRAL_TYPE_P (type
)
5296 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5297 && bitsize
== TYPE_PRECISION (type
))
5299 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5300 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5301 exp
= TREE_OPERAND (exp
, 0);
5305 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, 0);
5307 /* If BITSIZE is narrower than the size of the type of EXP
5308 we will be narrowing TEMP. Normally, what's wanted are the
5309 low-order bits. However, if EXP's type is a record and this is
5310 big-endian machine, we want the upper BITSIZE bits. */
5311 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5312 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5313 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5314 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5315 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5319 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5321 if (mode
!= VOIDmode
&& mode
!= BLKmode
5322 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5323 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5325 /* If the modes of TARGET and TEMP are both BLKmode, both
5326 must be in memory and BITPOS must be aligned on a byte
5327 boundary. If so, we simply do a block copy. */
5328 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5330 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5331 && !(bitpos
% BITS_PER_UNIT
));
5333 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5334 emit_block_move (target
, temp
,
5335 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5342 /* Store the value in the bitfield. */
5343 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5349 /* Now build a reference to just the desired component. */
5350 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5352 if (to_rtx
== target
)
5353 to_rtx
= copy_rtx (to_rtx
);
5355 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5356 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5357 set_mem_alias_set (to_rtx
, alias_set
);
5359 return store_expr (exp
, to_rtx
, 0);
5363 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5364 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5365 codes and find the ultimate containing object, which we return.
5367 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5368 bit position, and *PUNSIGNEDP to the signedness of the field.
5369 If the position of the field is variable, we store a tree
5370 giving the variable offset (in units) in *POFFSET.
5371 This offset is in addition to the bit position.
5372 If the position is not variable, we store 0 in *POFFSET.
5374 If any of the extraction expressions is volatile,
5375 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5377 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5378 is a mode that can be used to access the field. In that case, *PBITSIZE
5381 If the field describes a variable-sized object, *PMODE is set to
5382 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5383 this case, but the address of the object can be found.
5385 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5386 look through nodes that serve as markers of a greater alignment than
5387 the one that can be deduced from the expression. These nodes make it
5388 possible for front-ends to prevent temporaries from being created by
5389 the middle-end on alignment considerations. For that purpose, the
5390 normal operating mode at high-level is to always pass FALSE so that
5391 the ultimate containing object is really returned; moreover, the
5392 associated predicate handled_component_p will always return TRUE
5393 on these nodes, thus indicating that they are essentially handled
5394 by get_inner_reference. TRUE should only be passed when the caller
5395 is scanning the expression in order to build another representation
5396 and specifically knows how to handle these nodes; as such, this is
5397 the normal operating mode in the RTL expanders. */
5400 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5401 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5402 enum machine_mode
*pmode
, int *punsignedp
,
5403 int *pvolatilep
, bool keep_aligning
)
5406 enum machine_mode mode
= VOIDmode
;
5407 tree offset
= size_zero_node
;
5408 tree bit_offset
= bitsize_zero_node
;
5411 /* First get the mode, signedness, and size. We do this from just the
5412 outermost expression. */
5413 if (TREE_CODE (exp
) == COMPONENT_REF
)
5415 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5416 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5417 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5419 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5421 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5423 size_tree
= TREE_OPERAND (exp
, 1);
5424 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5428 mode
= TYPE_MODE (TREE_TYPE (exp
));
5429 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5431 if (mode
== BLKmode
)
5432 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5434 *pbitsize
= GET_MODE_BITSIZE (mode
);
5439 if (! host_integerp (size_tree
, 1))
5440 mode
= BLKmode
, *pbitsize
= -1;
5442 *pbitsize
= tree_low_cst (size_tree
, 1);
5445 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5446 and find the ultimate containing object. */
5449 switch (TREE_CODE (exp
))
5452 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5453 TREE_OPERAND (exp
, 2));
5458 tree field
= TREE_OPERAND (exp
, 1);
5459 tree this_offset
= component_ref_field_offset (exp
);
5461 /* If this field hasn't been filled in yet, don't go past it.
5462 This should only happen when folding expressions made during
5463 type construction. */
5464 if (this_offset
== 0)
5467 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5468 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5469 DECL_FIELD_BIT_OFFSET (field
));
5471 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5476 case ARRAY_RANGE_REF
:
5478 tree index
= TREE_OPERAND (exp
, 1);
5479 tree low_bound
= array_ref_low_bound (exp
);
5480 tree unit_size
= array_ref_element_size (exp
);
5482 /* We assume all arrays have sizes that are a multiple of a byte.
5483 First subtract the lower bound, if any, in the type of the
5484 index, then convert to sizetype and multiply by the size of
5485 the array element. */
5486 if (! integer_zerop (low_bound
))
5487 index
= fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
5490 offset
= size_binop (PLUS_EXPR
, offset
,
5491 size_binop (MULT_EXPR
,
5492 convert (sizetype
, index
),
5501 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5502 bitsize_int (*pbitsize
));
5505 case VIEW_CONVERT_EXPR
:
5506 if (keep_aligning
&& STRICT_ALIGNMENT
5507 && (TYPE_ALIGN (TREE_TYPE (exp
))
5508 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5509 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5510 < BIGGEST_ALIGNMENT
)
5511 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5512 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
5520 /* If any reference in the chain is volatile, the effect is volatile. */
5521 if (TREE_THIS_VOLATILE (exp
))
5524 exp
= TREE_OPERAND (exp
, 0);
5528 /* If OFFSET is constant, see if we can return the whole thing as a
5529 constant bit position. Otherwise, split it up. */
5530 if (host_integerp (offset
, 0)
5531 && 0 != (tem
= size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
5533 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5534 && host_integerp (tem
, 0))
5535 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5537 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5543 /* Return a tree of sizetype representing the size, in bytes, of the element
5544 of EXP, an ARRAY_REF. */
5547 array_ref_element_size (tree exp
)
5549 tree aligned_size
= TREE_OPERAND (exp
, 3);
5550 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5552 /* If a size was specified in the ARRAY_REF, it's the size measured
5553 in alignment units of the element type. So multiply by that value. */
5556 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5557 sizetype from another type of the same width and signedness. */
5558 if (TREE_TYPE (aligned_size
) != sizetype
)
5559 aligned_size
= fold_convert (sizetype
, aligned_size
);
5560 return size_binop (MULT_EXPR
, aligned_size
,
5561 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5564 /* Otherwise, take the size from that of the element type. Substitute
5565 any PLACEHOLDER_EXPR that we have. */
5567 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5570 /* Return a tree representing the lower bound of the array mentioned in
5571 EXP, an ARRAY_REF. */
5574 array_ref_low_bound (tree exp
)
5576 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5578 /* If a lower bound is specified in EXP, use it. */
5579 if (TREE_OPERAND (exp
, 2))
5580 return TREE_OPERAND (exp
, 2);
5582 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5583 substituting for a PLACEHOLDER_EXPR as needed. */
5584 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5585 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5587 /* Otherwise, return a zero of the appropriate type. */
5588 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5591 /* Return a tree representing the upper bound of the array mentioned in
5592 EXP, an ARRAY_REF. */
5595 array_ref_up_bound (tree exp
)
5597 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5599 /* If there is a domain type and it has an upper bound, use it, substituting
5600 for a PLACEHOLDER_EXPR as needed. */
5601 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5602 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5604 /* Otherwise fail. */
5608 /* Return a tree representing the offset, in bytes, of the field referenced
5609 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5612 component_ref_field_offset (tree exp
)
5614 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5615 tree field
= TREE_OPERAND (exp
, 1);
5617 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5618 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5622 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5623 sizetype from another type of the same width and signedness. */
5624 if (TREE_TYPE (aligned_offset
) != sizetype
)
5625 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5626 return size_binop (MULT_EXPR
, aligned_offset
,
5627 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5630 /* Otherwise, take the offset from that of the field. Substitute
5631 any PLACEHOLDER_EXPR that we have. */
5633 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5636 /* Return 1 if T is an expression that get_inner_reference handles. */
5639 handled_component_p (tree t
)
5641 switch (TREE_CODE (t
))
5646 case ARRAY_RANGE_REF
:
5647 case VIEW_CONVERT_EXPR
:
5657 /* Given an rtx VALUE that may contain additions and multiplications, return
5658 an equivalent value that just refers to a register, memory, or constant.
5659 This is done by generating instructions to perform the arithmetic and
5660 returning a pseudo-register containing the value.
5662 The returned value may be a REG, SUBREG, MEM or constant. */
5665 force_operand (rtx value
, rtx target
)
5668 /* Use subtarget as the target for operand 0 of a binary operation. */
5669 rtx subtarget
= get_subtarget (target
);
5670 enum rtx_code code
= GET_CODE (value
);
5672 /* Check for subreg applied to an expression produced by loop optimizer. */
5674 && !REG_P (SUBREG_REG (value
))
5675 && !MEM_P (SUBREG_REG (value
)))
5677 value
= simplify_gen_subreg (GET_MODE (value
),
5678 force_reg (GET_MODE (SUBREG_REG (value
)),
5679 force_operand (SUBREG_REG (value
),
5681 GET_MODE (SUBREG_REG (value
)),
5682 SUBREG_BYTE (value
));
5683 code
= GET_CODE (value
);
5686 /* Check for a PIC address load. */
5687 if ((code
== PLUS
|| code
== MINUS
)
5688 && XEXP (value
, 0) == pic_offset_table_rtx
5689 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5690 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5691 || GET_CODE (XEXP (value
, 1)) == CONST
))
5694 subtarget
= gen_reg_rtx (GET_MODE (value
));
5695 emit_move_insn (subtarget
, value
);
5699 if (code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5702 target
= gen_reg_rtx (GET_MODE (value
));
5703 convert_move (target
, force_operand (XEXP (value
, 0), NULL
),
5704 code
== ZERO_EXTEND
);
5708 if (ARITHMETIC_P (value
))
5710 op2
= XEXP (value
, 1);
5711 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
5713 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5716 op2
= negate_rtx (GET_MODE (value
), op2
);
5719 /* Check for an addition with OP2 a constant integer and our first
5720 operand a PLUS of a virtual register and something else. In that
5721 case, we want to emit the sum of the virtual register and the
5722 constant first and then add the other value. This allows virtual
5723 register instantiation to simply modify the constant rather than
5724 creating another one around this addition. */
5725 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5726 && GET_CODE (XEXP (value
, 0)) == PLUS
5727 && REG_P (XEXP (XEXP (value
, 0), 0))
5728 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5729 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5731 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
5732 XEXP (XEXP (value
, 0), 0), op2
,
5733 subtarget
, 0, OPTAB_LIB_WIDEN
);
5734 return expand_simple_binop (GET_MODE (value
), code
, temp
,
5735 force_operand (XEXP (XEXP (value
,
5737 target
, 0, OPTAB_LIB_WIDEN
);
5740 op1
= force_operand (XEXP (value
, 0), subtarget
);
5741 op2
= force_operand (op2
, NULL_RTX
);
5745 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
5747 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
5748 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5749 target
, 1, OPTAB_LIB_WIDEN
);
5751 return expand_divmod (0,
5752 FLOAT_MODE_P (GET_MODE (value
))
5753 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
5754 GET_MODE (value
), op1
, op2
, target
, 0);
5757 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5761 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
5765 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5769 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5770 target
, 0, OPTAB_LIB_WIDEN
);
5773 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5774 target
, 1, OPTAB_LIB_WIDEN
);
5777 if (UNARY_P (value
))
5779 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
5780 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
5783 #ifdef INSN_SCHEDULING
5784 /* On machines that have insn scheduling, we want all memory reference to be
5785 explicit, so we need to deal with such paradoxical SUBREGs. */
5786 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
5787 && (GET_MODE_SIZE (GET_MODE (value
))
5788 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
5790 = simplify_gen_subreg (GET_MODE (value
),
5791 force_reg (GET_MODE (SUBREG_REG (value
)),
5792 force_operand (SUBREG_REG (value
),
5794 GET_MODE (SUBREG_REG (value
)),
5795 SUBREG_BYTE (value
));
5801 /* Subroutine of expand_expr: return nonzero iff there is no way that
5802 EXP can reference X, which is being modified. TOP_P is nonzero if this
5803 call is going to be used to determine whether we need a temporary
5804 for EXP, as opposed to a recursive call to this function.
5806 It is always safe for this routine to return zero since it merely
5807 searches for optimization opportunities. */
5810 safe_from_p (rtx x
, tree exp
, int top_p
)
5816 /* If EXP has varying size, we MUST use a target since we currently
5817 have no way of allocating temporaries of variable size
5818 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5819 So we assume here that something at a higher level has prevented a
5820 clash. This is somewhat bogus, but the best we can do. Only
5821 do this when X is BLKmode and when we are at the top level. */
5822 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
5823 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
5824 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
5825 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
5826 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
5828 && GET_MODE (x
) == BLKmode
)
5829 /* If X is in the outgoing argument area, it is always safe. */
5831 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
5832 || (GET_CODE (XEXP (x
, 0)) == PLUS
5833 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
5836 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5837 find the underlying pseudo. */
5838 if (GET_CODE (x
) == SUBREG
)
5841 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5845 /* Now look at our tree code and possibly recurse. */
5846 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
5848 case tcc_declaration
:
5849 exp_rtl
= DECL_RTL_IF_SET (exp
);
5855 case tcc_exceptional
:
5856 if (TREE_CODE (exp
) == TREE_LIST
)
5860 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
5862 exp
= TREE_CHAIN (exp
);
5865 if (TREE_CODE (exp
) != TREE_LIST
)
5866 return safe_from_p (x
, exp
, 0);
5869 else if (TREE_CODE (exp
) == ERROR_MARK
)
5870 return 1; /* An already-visited SAVE_EXPR? */
5875 /* The only case we look at here is the DECL_INITIAL inside a
5877 return (TREE_CODE (exp
) != DECL_EXPR
5878 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
5879 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
5880 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
5883 case tcc_comparison
:
5884 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
5889 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5891 case tcc_expression
:
5893 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5894 the expression. If it is set, we conflict iff we are that rtx or
5895 both are in memory. Otherwise, we check all operands of the
5896 expression recursively. */
5898 switch (TREE_CODE (exp
))
5901 /* If the operand is static or we are static, we can't conflict.
5902 Likewise if we don't conflict with the operand at all. */
5903 if (staticp (TREE_OPERAND (exp
, 0))
5904 || TREE_STATIC (exp
)
5905 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
5908 /* Otherwise, the only way this can conflict is if we are taking
5909 the address of a DECL a that address if part of X, which is
5911 exp
= TREE_OPERAND (exp
, 0);
5914 if (!DECL_RTL_SET_P (exp
)
5915 || !MEM_P (DECL_RTL (exp
)))
5918 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
5922 case MISALIGNED_INDIRECT_REF
:
5923 case ALIGN_INDIRECT_REF
:
5926 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
5927 get_alias_set (exp
)))
5932 /* Assume that the call will clobber all hard registers and
5934 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5939 case WITH_CLEANUP_EXPR
:
5940 case CLEANUP_POINT_EXPR
:
5941 /* Lowered by gimplify.c. */
5945 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5951 /* If we have an rtx, we do not need to scan our operands. */
5955 nops
= TREE_CODE_LENGTH (TREE_CODE (exp
));
5956 for (i
= 0; i
< nops
; i
++)
5957 if (TREE_OPERAND (exp
, i
) != 0
5958 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
5961 /* If this is a language-specific tree code, it may require
5962 special handling. */
5963 if ((unsigned int) TREE_CODE (exp
)
5964 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5965 && !lang_hooks
.safe_from_p (x
, exp
))
5970 /* Should never get a type here. */
5974 /* If we have an rtl, find any enclosed object. Then see if we conflict
5978 if (GET_CODE (exp_rtl
) == SUBREG
)
5980 exp_rtl
= SUBREG_REG (exp_rtl
);
5982 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
5986 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5987 are memory and they conflict. */
5988 return ! (rtx_equal_p (x
, exp_rtl
)
5989 || (MEM_P (x
) && MEM_P (exp_rtl
)
5990 && true_dependence (exp_rtl
, VOIDmode
, x
,
5991 rtx_addr_varies_p
)));
5994 /* If we reach here, it is safe. */
5999 /* Return the highest power of two that EXP is known to be a multiple of.
6000 This is used in updating alignment of MEMs in array references. */
6002 static unsigned HOST_WIDE_INT
6003 highest_pow2_factor (tree exp
)
6005 unsigned HOST_WIDE_INT c0
, c1
;
6007 switch (TREE_CODE (exp
))
6010 /* We can find the lowest bit that's a one. If the low
6011 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6012 We need to handle this case since we can find it in a COND_EXPR,
6013 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6014 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6016 if (TREE_CONSTANT_OVERFLOW (exp
))
6017 return BIGGEST_ALIGNMENT
;
6020 /* Note: tree_low_cst is intentionally not used here,
6021 we don't care about the upper bits. */
6022 c0
= TREE_INT_CST_LOW (exp
);
6024 return c0
? c0
: BIGGEST_ALIGNMENT
;
6028 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6029 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6030 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6031 return MIN (c0
, c1
);
6034 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6035 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6038 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6040 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6041 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6043 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6044 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6045 return MAX (1, c0
/ c1
);
6049 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6051 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6054 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6057 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6058 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6059 return MIN (c0
, c1
);
6068 /* Similar, except that the alignment requirements of TARGET are
6069 taken into account. Assume it is at least as aligned as its
6070 type, unless it is a COMPONENT_REF in which case the layout of
6071 the structure gives the alignment. */
6073 static unsigned HOST_WIDE_INT
6074 highest_pow2_factor_for_target (tree target
, tree exp
)
6076 unsigned HOST_WIDE_INT target_align
, factor
;
6078 factor
= highest_pow2_factor (exp
);
6079 if (TREE_CODE (target
) == COMPONENT_REF
)
6080 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6082 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6083 return MAX (factor
, target_align
);
6086 /* Expands variable VAR. */
6089 expand_var (tree var
)
6091 if (DECL_EXTERNAL (var
))
6094 if (TREE_STATIC (var
))
6095 /* If this is an inlined copy of a static local variable,
6096 look up the original decl. */
6097 var
= DECL_ORIGIN (var
);
6099 if (TREE_STATIC (var
)
6100 ? !TREE_ASM_WRITTEN (var
)
6101 : !DECL_RTL_SET_P (var
))
6103 if (TREE_CODE (var
) == VAR_DECL
&& DECL_VALUE_EXPR (var
))
6104 /* Should be ignored. */;
6105 else if (lang_hooks
.expand_decl (var
))
6107 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6109 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6110 rest_of_decl_compilation (var
, 0, 0);
6112 /* No expansion needed. */
6113 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6114 || TREE_CODE (var
) == CONST_DECL
6115 || TREE_CODE (var
) == FUNCTION_DECL
6116 || TREE_CODE (var
) == LABEL_DECL
);
6120 /* Subroutine of expand_expr. Expand the two operands of a binary
6121 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6122 The value may be stored in TARGET if TARGET is nonzero. The
6123 MODIFIER argument is as documented by expand_expr. */
6126 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6127 enum expand_modifier modifier
)
6129 if (! safe_from_p (target
, exp1
, 1))
6131 if (operand_equal_p (exp0
, exp1
, 0))
6133 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6134 *op1
= copy_rtx (*op0
);
6138 /* If we need to preserve evaluation order, copy exp0 into its own
6139 temporary variable so that it can't be clobbered by exp1. */
6140 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6141 exp0
= save_expr (exp0
);
6142 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6143 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6148 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6149 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6152 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6153 enum expand_modifier modifier
)
6155 rtx result
, subtarget
;
6157 HOST_WIDE_INT bitsize
, bitpos
;
6158 int volatilep
, unsignedp
;
6159 enum machine_mode mode1
;
6161 /* If we are taking the address of a constant and are at the top level,
6162 we have to use output_constant_def since we can't call force_const_mem
6164 /* ??? This should be considered a front-end bug. We should not be
6165 generating ADDR_EXPR of something that isn't an LVALUE. The only
6166 exception here is STRING_CST. */
6167 if (TREE_CODE (exp
) == CONSTRUCTOR
6168 || CONSTANT_CLASS_P (exp
))
6169 return XEXP (output_constant_def (exp
, 0), 0);
6171 /* Everything must be something allowed by is_gimple_addressable. */
6172 switch (TREE_CODE (exp
))
6175 /* This case will happen via recursion for &a->b. */
6176 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, EXPAND_NORMAL
);
6179 /* Recurse and make the output_constant_def clause above handle this. */
6180 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6184 /* The real part of the complex number is always first, therefore
6185 the address is the same as the address of the parent object. */
6188 inner
= TREE_OPERAND (exp
, 0);
6192 /* The imaginary part of the complex number is always second.
6193 The expression is therefore always offset by the size of the
6196 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6197 inner
= TREE_OPERAND (exp
, 0);
6201 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6202 expand_expr, as that can have various side effects; LABEL_DECLs for
6203 example, may not have their DECL_RTL set yet. Assume language
6204 specific tree nodes can be expanded in some interesting way. */
6206 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6208 result
= expand_expr (exp
, target
, tmode
,
6209 modifier
== EXPAND_INITIALIZER
6210 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6212 /* If the DECL isn't in memory, then the DECL wasn't properly
6213 marked TREE_ADDRESSABLE, which will be either a front-end
6214 or a tree optimizer bug. */
6215 gcc_assert (GET_CODE (result
) == MEM
);
6216 result
= XEXP (result
, 0);
6218 /* ??? Is this needed anymore? */
6219 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6221 assemble_external (exp
);
6222 TREE_USED (exp
) = 1;
6225 if (modifier
!= EXPAND_INITIALIZER
6226 && modifier
!= EXPAND_CONST_ADDRESS
)
6227 result
= force_operand (result
, target
);
6231 /* Pass FALSE as the last argument to get_inner_reference although
6232 we are expanding to RTL. The rationale is that we know how to
6233 handle "aligning nodes" here: we can just bypass them because
6234 they won't change the final object whose address will be returned
6235 (they actually exist only for that purpose). */
6236 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6237 &mode1
, &unsignedp
, &volatilep
, false);
6241 /* We must have made progress. */
6242 gcc_assert (inner
!= exp
);
6244 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6245 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6251 if (modifier
!= EXPAND_NORMAL
)
6252 result
= force_operand (result
, NULL
);
6253 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6255 result
= convert_memory_address (tmode
, result
);
6256 tmp
= convert_memory_address (tmode
, tmp
);
6258 if (modifier
== EXPAND_SUM
)
6259 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6262 subtarget
= bitpos
? NULL_RTX
: target
;
6263 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6264 1, OPTAB_LIB_WIDEN
);
6270 /* Someone beforehand should have rejected taking the address
6271 of such an object. */
6272 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6274 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6275 if (modifier
< EXPAND_SUM
)
6276 result
= force_operand (result
, target
);
6282 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6283 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6286 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6287 enum expand_modifier modifier
)
6289 enum machine_mode rmode
;
6292 /* Target mode of VOIDmode says "whatever's natural". */
6293 if (tmode
== VOIDmode
)
6294 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6296 /* We can get called with some Weird Things if the user does silliness
6297 like "(short) &a". In that case, convert_memory_address won't do
6298 the right thing, so ignore the given target mode. */
6299 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6302 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6305 /* Despite expand_expr claims concerning ignoring TMODE when not
6306 strictly convenient, stuff breaks if we don't honor it. Note
6307 that combined with the above, we only do this for pointer modes. */
6308 rmode
= GET_MODE (result
);
6309 if (rmode
== VOIDmode
)
6312 result
= convert_memory_address (tmode
, result
);
6318 /* expand_expr: generate code for computing expression EXP.
6319 An rtx for the computed value is returned. The value is never null.
6320 In the case of a void EXP, const0_rtx is returned.
6322 The value may be stored in TARGET if TARGET is nonzero.
6323 TARGET is just a suggestion; callers must assume that
6324 the rtx returned may not be the same as TARGET.
6326 If TARGET is CONST0_RTX, it means that the value will be ignored.
6328 If TMODE is not VOIDmode, it suggests generating the
6329 result in mode TMODE. But this is done only when convenient.
6330 Otherwise, TMODE is ignored and the value generated in its natural mode.
6331 TMODE is just a suggestion; callers must assume that
6332 the rtx returned may not have mode TMODE.
6334 Note that TARGET may have neither TMODE nor MODE. In that case, it
6335 probably will not be used.
6337 If MODIFIER is EXPAND_SUM then when EXP is an addition
6338 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6339 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6340 products as above, or REG or MEM, or constant.
6341 Ordinarily in such cases we would output mul or add instructions
6342 and then return a pseudo reg containing the sum.
6344 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6345 it also marks a label as absolutely required (it can't be dead).
6346 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6347 This is used for outputting expressions used in initializers.
6349 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6350 with a constant address even if that address is not normally legitimate.
6351 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6353 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6354 a call parameter. Such targets require special care as we haven't yet
6355 marked TARGET so that it's safe from being trashed by libcalls. We
6356 don't want to use TARGET for anything but the final result;
6357 Intermediate values must go elsewhere. Additionally, calls to
6358 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6360 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6361 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6362 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6363 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6366 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6367 enum expand_modifier
, rtx
*);
6370 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6371 enum expand_modifier modifier
, rtx
*alt_rtl
)
6374 rtx ret
, last
= NULL
;
6376 /* Handle ERROR_MARK before anybody tries to access its type. */
6377 if (TREE_CODE (exp
) == ERROR_MARK
6378 || TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
)
6380 ret
= CONST0_RTX (tmode
);
6381 return ret
? ret
: const0_rtx
;
6384 if (flag_non_call_exceptions
)
6386 rn
= lookup_stmt_eh_region (exp
);
6387 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6389 last
= get_last_insn ();
6392 /* If this is an expression of some kind and it has an associated line
6393 number, then emit the line number before expanding the expression.
6395 We need to save and restore the file and line information so that
6396 errors discovered during expansion are emitted with the right
6397 information. It would be better of the diagnostic routines
6398 used the file/line information embedded in the tree nodes rather
6400 if (cfun
&& EXPR_HAS_LOCATION (exp
))
6402 location_t saved_location
= input_location
;
6403 input_location
= EXPR_LOCATION (exp
);
6404 emit_line_note (input_location
);
6406 /* Record where the insns produced belong. */
6407 record_block_change (TREE_BLOCK (exp
));
6409 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6411 input_location
= saved_location
;
6415 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6418 /* If using non-call exceptions, mark all insns that may trap.
6419 expand_call() will mark CALL_INSNs before we get to this code,
6420 but it doesn't handle libcalls, and these may trap. */
6424 for (insn
= next_real_insn (last
); insn
;
6425 insn
= next_real_insn (insn
))
6427 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6428 /* If we want exceptions for non-call insns, any
6429 may_trap_p instruction may throw. */
6430 && GET_CODE (PATTERN (insn
)) != CLOBBER
6431 && GET_CODE (PATTERN (insn
)) != USE
6432 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6434 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6444 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6445 enum expand_modifier modifier
, rtx
*alt_rtl
)
6448 tree type
= TREE_TYPE (exp
);
6450 enum machine_mode mode
;
6451 enum tree_code code
= TREE_CODE (exp
);
6453 rtx subtarget
, original_target
;
6456 bool reduce_bit_field
= false;
6457 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6458 ? reduce_to_bit_field_precision ((expr), \
6463 mode
= TYPE_MODE (type
);
6464 unsignedp
= TYPE_UNSIGNED (type
);
6465 if (lang_hooks
.reduce_bit_field_operations
6466 && TREE_CODE (type
) == INTEGER_TYPE
6467 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6469 /* An operation in what may be a bit-field type needs the
6470 result to be reduced to the precision of the bit-field type,
6471 which is narrower than that of the type's mode. */
6472 reduce_bit_field
= true;
6473 if (modifier
== EXPAND_STACK_PARM
)
6477 /* Use subtarget as the target for operand 0 of a binary operation. */
6478 subtarget
= get_subtarget (target
);
6479 original_target
= target
;
6480 ignore
= (target
== const0_rtx
6481 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6482 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6483 || code
== VIEW_CONVERT_EXPR
)
6484 && TREE_CODE (type
) == VOID_TYPE
));
6486 /* If we are going to ignore this result, we need only do something
6487 if there is a side-effect somewhere in the expression. If there
6488 is, short-circuit the most common cases here. Note that we must
6489 not call expand_expr with anything but const0_rtx in case this
6490 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6494 if (! TREE_SIDE_EFFECTS (exp
))
6497 /* Ensure we reference a volatile object even if value is ignored, but
6498 don't do this if all we are doing is taking its address. */
6499 if (TREE_THIS_VOLATILE (exp
)
6500 && TREE_CODE (exp
) != FUNCTION_DECL
6501 && mode
!= VOIDmode
&& mode
!= BLKmode
6502 && modifier
!= EXPAND_CONST_ADDRESS
)
6504 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6506 temp
= copy_to_reg (temp
);
6510 if (TREE_CODE_CLASS (code
) == tcc_unary
6511 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6512 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6515 else if (TREE_CODE_CLASS (code
) == tcc_binary
6516 || TREE_CODE_CLASS (code
) == tcc_comparison
6517 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6519 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6520 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6523 else if (code
== BIT_FIELD_REF
)
6525 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6526 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6527 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6534 /* If will do cse, generate all results into pseudo registers
6535 since 1) that allows cse to find more things
6536 and 2) otherwise cse could produce an insn the machine
6537 cannot support. An exception is a CONSTRUCTOR into a multi-word
6538 MEM: that's much more likely to be most efficient into the MEM.
6539 Another is a CALL_EXPR which must return in memory. */
6541 if (! cse_not_expected
&& mode
!= BLKmode
&& target
6542 && (!REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
6543 && ! (code
== CONSTRUCTOR
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
6544 && ! (code
== CALL_EXPR
&& aggregate_value_p (exp
, exp
)))
6551 tree function
= decl_function_context (exp
);
6553 temp
= label_rtx (exp
);
6554 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6556 if (function
!= current_function_decl
6558 LABEL_REF_NONLOCAL_P (temp
) = 1;
6560 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6565 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6570 /* If a static var's type was incomplete when the decl was written,
6571 but the type is complete now, lay out the decl now. */
6572 if (DECL_SIZE (exp
) == 0
6573 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6574 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6575 layout_decl (exp
, 0);
6577 /* ... fall through ... */
6581 gcc_assert (DECL_RTL (exp
));
6583 /* Ensure variable marked as used even if it doesn't go through
6584 a parser. If it hasn't be used yet, write out an external
6586 if (! TREE_USED (exp
))
6588 assemble_external (exp
);
6589 TREE_USED (exp
) = 1;
6592 /* Show we haven't gotten RTL for this yet. */
6595 /* Variables inherited from containing functions should have
6596 been lowered by this point. */
6597 context
= decl_function_context (exp
);
6598 gcc_assert (!context
6599 || context
== current_function_decl
6600 || TREE_STATIC (exp
)
6601 /* ??? C++ creates functions that are not TREE_STATIC. */
6602 || TREE_CODE (exp
) == FUNCTION_DECL
);
6604 /* This is the case of an array whose size is to be determined
6605 from its initializer, while the initializer is still being parsed.
6608 if (MEM_P (DECL_RTL (exp
))
6609 && REG_P (XEXP (DECL_RTL (exp
), 0)))
6610 temp
= validize_mem (DECL_RTL (exp
));
6612 /* If DECL_RTL is memory, we are in the normal case and either
6613 the address is not valid or it is not a register and -fforce-addr
6614 is specified, get the address into a register. */
6616 else if (MEM_P (DECL_RTL (exp
))
6617 && modifier
!= EXPAND_CONST_ADDRESS
6618 && modifier
!= EXPAND_SUM
6619 && modifier
!= EXPAND_INITIALIZER
6620 && (! memory_address_p (DECL_MODE (exp
),
6621 XEXP (DECL_RTL (exp
), 0))
6623 && !REG_P (XEXP (DECL_RTL (exp
), 0)))))
6626 *alt_rtl
= DECL_RTL (exp
);
6627 temp
= replace_equiv_address (DECL_RTL (exp
),
6628 copy_rtx (XEXP (DECL_RTL (exp
), 0)));
6631 /* If we got something, return it. But first, set the alignment
6632 if the address is a register. */
6635 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
6636 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6641 /* If the mode of DECL_RTL does not match that of the decl, it
6642 must be a promoted value. We return a SUBREG of the wanted mode,
6643 but mark it so that we know that it was already extended. */
6645 if (REG_P (DECL_RTL (exp
))
6646 && GET_MODE (DECL_RTL (exp
)) != DECL_MODE (exp
))
6648 enum machine_mode pmode
;
6650 /* Get the signedness used for this variable. Ensure we get the
6651 same mode we got when the variable was declared. */
6652 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6653 (TREE_CODE (exp
) == RESULT_DECL
? 1 : 0));
6654 gcc_assert (GET_MODE (DECL_RTL (exp
)) == pmode
);
6656 temp
= gen_lowpart_SUBREG (mode
, DECL_RTL (exp
));
6657 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6658 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6662 return DECL_RTL (exp
);
6665 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6666 TREE_INT_CST_HIGH (exp
), mode
);
6668 /* ??? If overflow is set, fold will have done an incomplete job,
6669 which can result in (plus xx (const_int 0)), which can get
6670 simplified by validate_replace_rtx during virtual register
6671 instantiation, which can result in unrecognizable insns.
6672 Avoid this by forcing all overflows into registers. */
6673 if (TREE_CONSTANT_OVERFLOW (exp
)
6674 && modifier
!= EXPAND_INITIALIZER
)
6675 temp
= force_reg (mode
, temp
);
6680 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_INT
6681 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_FLOAT
)
6682 return const_vector_from_tree (exp
);
6684 return expand_expr (build1 (CONSTRUCTOR
, TREE_TYPE (exp
),
6685 TREE_VECTOR_CST_ELTS (exp
)),
6686 ignore
? const0_rtx
: target
, tmode
, modifier
);
6689 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6692 /* If optimized, generate immediate CONST_DOUBLE
6693 which will be turned into memory by reload if necessary.
6695 We used to force a register so that loop.c could see it. But
6696 this does not allow gen_* patterns to perform optimizations with
6697 the constants. It also produces two insns in cases like "x = 1.0;".
6698 On most machines, floating-point constants are not permitted in
6699 many insns, so we'd end up copying it to a register in any case.
6701 Now, we do the copying in expand_binop, if appropriate. */
6702 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6703 TYPE_MODE (TREE_TYPE (exp
)));
6706 /* Handle evaluating a complex constant in a CONCAT target. */
6707 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6709 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
6712 rtarg
= XEXP (original_target
, 0);
6713 itarg
= XEXP (original_target
, 1);
6715 /* Move the real and imaginary parts separately. */
6716 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
6717 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
6720 emit_move_insn (rtarg
, op0
);
6722 emit_move_insn (itarg
, op1
);
6724 return original_target
;
6727 /* ... fall through ... */
6730 temp
= output_constant_def (exp
, 1);
6732 /* temp contains a constant address.
6733 On RISC machines where a constant address isn't valid,
6734 make some insns to get that address into a register. */
6735 if (modifier
!= EXPAND_CONST_ADDRESS
6736 && modifier
!= EXPAND_INITIALIZER
6737 && modifier
!= EXPAND_SUM
6738 && (! memory_address_p (mode
, XEXP (temp
, 0))
6739 || flag_force_addr
))
6740 return replace_equiv_address (temp
,
6741 copy_rtx (XEXP (temp
, 0)));
6746 tree val
= TREE_OPERAND (exp
, 0);
6747 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
6749 if (!SAVE_EXPR_RESOLVED_P (exp
))
6751 /* We can indeed still hit this case, typically via builtin
6752 expanders calling save_expr immediately before expanding
6753 something. Assume this means that we only have to deal
6754 with non-BLKmode values. */
6755 gcc_assert (GET_MODE (ret
) != BLKmode
);
6757 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
6758 DECL_ARTIFICIAL (val
) = 1;
6759 DECL_IGNORED_P (val
) = 1;
6760 TREE_OPERAND (exp
, 0) = val
;
6761 SAVE_EXPR_RESOLVED_P (exp
) = 1;
6763 if (!CONSTANT_P (ret
))
6764 ret
= copy_to_reg (ret
);
6765 SET_DECL_RTL (val
, ret
);
6772 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
6773 expand_goto (TREE_OPERAND (exp
, 0));
6775 expand_computed_goto (TREE_OPERAND (exp
, 0));
6779 /* If we don't need the result, just ensure we evaluate any
6785 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
6786 expand_expr (TREE_VALUE (elt
), const0_rtx
, VOIDmode
, 0);
6791 /* All elts simple constants => refer to a constant in memory. But
6792 if this is a non-BLKmode mode, let it store a field at a time
6793 since that should make a CONST_INT or CONST_DOUBLE when we
6794 fold. Likewise, if we have a target we can use, it is best to
6795 store directly into the target unless the type is large enough
6796 that memcpy will be used. If we are making an initializer and
6797 all operands are constant, put it in memory as well.
6799 FIXME: Avoid trying to fill vector constructors piece-meal.
6800 Output them with output_constant_def below unless we're sure
6801 they're zeros. This should go away when vector initializers
6802 are treated like VECTOR_CST instead of arrays.
6804 else if ((TREE_STATIC (exp
)
6805 && ((mode
== BLKmode
6806 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6807 || TREE_ADDRESSABLE (exp
)
6808 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6809 && (! MOVE_BY_PIECES_P
6810 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6812 && ! mostly_zeros_p (exp
))))
6813 || ((modifier
== EXPAND_INITIALIZER
6814 || modifier
== EXPAND_CONST_ADDRESS
)
6815 && TREE_CONSTANT (exp
)))
6817 rtx constructor
= output_constant_def (exp
, 1);
6819 if (modifier
!= EXPAND_CONST_ADDRESS
6820 && modifier
!= EXPAND_INITIALIZER
6821 && modifier
!= EXPAND_SUM
)
6822 constructor
= validize_mem (constructor
);
6828 /* Handle calls that pass values in multiple non-contiguous
6829 locations. The Irix 6 ABI has examples of this. */
6830 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
6831 || GET_CODE (target
) == PARALLEL
6832 || modifier
== EXPAND_STACK_PARM
)
6834 = assign_temp (build_qualified_type (type
,
6836 | (TREE_READONLY (exp
)
6837 * TYPE_QUAL_CONST
))),
6838 0, TREE_ADDRESSABLE (exp
), 1);
6840 store_constructor (exp
, target
, 0, int_expr_size (exp
));
6844 case MISALIGNED_INDIRECT_REF
:
6845 case ALIGN_INDIRECT_REF
:
6848 tree exp1
= TREE_OPERAND (exp
, 0);
6851 if (modifier
!= EXPAND_WRITE
)
6855 t
= fold_read_from_constant_string (exp
);
6857 return expand_expr (t
, target
, tmode
, modifier
);
6860 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
6861 op0
= memory_address (mode
, op0
);
6863 if (code
== ALIGN_INDIRECT_REF
)
6865 int align
= TYPE_ALIGN_UNIT (type
);
6866 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
6867 op0
= memory_address (mode
, op0
);
6870 temp
= gen_rtx_MEM (mode
, op0
);
6872 orig
= REF_ORIGINAL (exp
);
6875 set_mem_attributes (temp
, orig
, 0);
6877 /* Resolve the misalignment now, so that we don't have to remember
6878 to resolve it later. Of course, this only works for reads. */
6879 /* ??? When we get around to supporting writes, we'll have to handle
6880 this in store_expr directly. The vectorizer isn't generating
6881 those yet, however. */
6882 if (code
== MISALIGNED_INDIRECT_REF
)
6887 gcc_assert (modifier
== EXPAND_NORMAL
);
6889 /* The vectorizer should have already checked the mode. */
6890 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
6891 gcc_assert (icode
!= CODE_FOR_nothing
);
6893 /* We've already validated the memory, and we're creating a
6894 new pseudo destination. The predicates really can't fail. */
6895 reg
= gen_reg_rtx (mode
);
6897 /* Nor can the insn generator. */
6898 insn
= GEN_FCN (icode
) (reg
, temp
);
6910 tree array
= TREE_OPERAND (exp
, 0);
6911 tree index
= TREE_OPERAND (exp
, 1);
6913 /* Fold an expression like: "foo"[2].
6914 This is not done in fold so it won't happen inside &.
6915 Don't fold if this is for wide characters since it's too
6916 difficult to do correctly and this is a very rare case. */
6918 if (modifier
!= EXPAND_CONST_ADDRESS
6919 && modifier
!= EXPAND_INITIALIZER
6920 && modifier
!= EXPAND_MEMORY
)
6922 tree t
= fold_read_from_constant_string (exp
);
6925 return expand_expr (t
, target
, tmode
, modifier
);
6928 /* If this is a constant index into a constant array,
6929 just get the value from the array. Handle both the cases when
6930 we have an explicit constructor and when our operand is a variable
6931 that was declared const. */
6933 if (modifier
!= EXPAND_CONST_ADDRESS
6934 && modifier
!= EXPAND_INITIALIZER
6935 && modifier
!= EXPAND_MEMORY
6936 && TREE_CODE (array
) == CONSTRUCTOR
6937 && ! TREE_SIDE_EFFECTS (array
)
6938 && TREE_CODE (index
) == INTEGER_CST
)
6942 for (elem
= CONSTRUCTOR_ELTS (array
);
6943 (elem
&& !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6944 elem
= TREE_CHAIN (elem
))
6947 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6948 return expand_expr (fold (TREE_VALUE (elem
)), target
, tmode
,
6952 else if (optimize
>= 1
6953 && modifier
!= EXPAND_CONST_ADDRESS
6954 && modifier
!= EXPAND_INITIALIZER
6955 && modifier
!= EXPAND_MEMORY
6956 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
6957 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
6958 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
6959 && targetm
.binds_local_p (array
))
6961 if (TREE_CODE (index
) == INTEGER_CST
)
6963 tree init
= DECL_INITIAL (array
);
6965 if (TREE_CODE (init
) == CONSTRUCTOR
)
6969 for (elem
= CONSTRUCTOR_ELTS (init
);
6971 && !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6972 elem
= TREE_CHAIN (elem
))
6975 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6976 return expand_expr (fold (TREE_VALUE (elem
)), target
,
6979 else if (TREE_CODE (init
) == STRING_CST
6980 && 0 > compare_tree_int (index
,
6981 TREE_STRING_LENGTH (init
)))
6983 tree type
= TREE_TYPE (TREE_TYPE (init
));
6984 enum machine_mode mode
= TYPE_MODE (type
);
6986 if (GET_MODE_CLASS (mode
) == MODE_INT
6987 && GET_MODE_SIZE (mode
) == 1)
6988 return gen_int_mode (TREE_STRING_POINTER (init
)
6989 [TREE_INT_CST_LOW (index
)], mode
);
6994 goto normal_inner_ref
;
6997 /* If the operand is a CONSTRUCTOR, we can just extract the
6998 appropriate field if it is present. */
6999 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7003 for (elt
= CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)); elt
;
7004 elt
= TREE_CHAIN (elt
))
7005 if (TREE_PURPOSE (elt
) == TREE_OPERAND (exp
, 1)
7006 /* We can normally use the value of the field in the
7007 CONSTRUCTOR. However, if this is a bitfield in
7008 an integral mode that we can fit in a HOST_WIDE_INT,
7009 we must mask only the number of bits in the bitfield,
7010 since this is done implicitly by the constructor. If
7011 the bitfield does not meet either of those conditions,
7012 we can't do this optimization. */
7013 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt
))
7014 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt
)))
7016 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt
)))
7017 <= HOST_BITS_PER_WIDE_INT
))))
7019 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
))
7020 && modifier
== EXPAND_STACK_PARM
)
7022 op0
= expand_expr (TREE_VALUE (elt
), target
, tmode
, modifier
);
7023 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
)))
7025 HOST_WIDE_INT bitsize
7026 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt
)));
7027 enum machine_mode imode
7028 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt
)));
7030 if (TYPE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt
))))
7032 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7033 op0
= expand_and (imode
, op0
, op1
, target
);
7038 = build_int_cst (NULL_TREE
,
7039 GET_MODE_BITSIZE (imode
) - bitsize
);
7041 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7043 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7051 goto normal_inner_ref
;
7054 case ARRAY_RANGE_REF
:
7057 enum machine_mode mode1
;
7058 HOST_WIDE_INT bitsize
, bitpos
;
7061 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7062 &mode1
, &unsignedp
, &volatilep
, true);
7065 /* If we got back the original object, something is wrong. Perhaps
7066 we are evaluating an expression too early. In any event, don't
7067 infinitely recurse. */
7068 gcc_assert (tem
!= exp
);
7070 /* If TEM's type is a union of variable size, pass TARGET to the inner
7071 computation, since it will need a temporary and TARGET is known
7072 to have to do. This occurs in unchecked conversion in Ada. */
7076 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7077 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7079 && modifier
!= EXPAND_STACK_PARM
7080 ? target
: NULL_RTX
),
7082 (modifier
== EXPAND_INITIALIZER
7083 || modifier
== EXPAND_CONST_ADDRESS
7084 || modifier
== EXPAND_STACK_PARM
)
7085 ? modifier
: EXPAND_NORMAL
);
7087 /* If this is a constant, put it into a register if it is a
7088 legitimate constant and OFFSET is 0 and memory if it isn't. */
7089 if (CONSTANT_P (op0
))
7091 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7092 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7094 op0
= force_reg (mode
, op0
);
7096 op0
= validize_mem (force_const_mem (mode
, op0
));
7099 /* Otherwise, if this object not in memory and we either have an
7100 offset or a BLKmode result, put it there. This case can't occur in
7101 C, but can in Ada if we have unchecked conversion of an expression
7102 from a scalar type to an array or record type or for an
7103 ARRAY_RANGE_REF whose type is BLKmode. */
7104 else if (!MEM_P (op0
)
7106 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7108 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7109 (TYPE_QUALS (TREE_TYPE (tem
))
7110 | TYPE_QUAL_CONST
));
7111 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7113 emit_move_insn (memloc
, op0
);
7119 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7122 gcc_assert (MEM_P (op0
));
7124 #ifdef POINTERS_EXTEND_UNSIGNED
7125 if (GET_MODE (offset_rtx
) != Pmode
)
7126 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7128 if (GET_MODE (offset_rtx
) != ptr_mode
)
7129 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7132 if (GET_MODE (op0
) == BLKmode
7133 /* A constant address in OP0 can have VOIDmode, we must
7134 not try to call force_reg in that case. */
7135 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7137 && (bitpos
% bitsize
) == 0
7138 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7139 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7141 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7145 op0
= offset_address (op0
, offset_rtx
,
7146 highest_pow2_factor (offset
));
7149 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7150 record its alignment as BIGGEST_ALIGNMENT. */
7151 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7152 && is_aligning_offset (offset
, tem
))
7153 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7155 /* Don't forget about volatility even if this is a bitfield. */
7156 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7158 if (op0
== orig_op0
)
7159 op0
= copy_rtx (op0
);
7161 MEM_VOLATILE_P (op0
) = 1;
7164 /* The following code doesn't handle CONCAT.
7165 Assume only bitpos == 0 can be used for CONCAT, due to
7166 one element arrays having the same mode as its element. */
7167 if (GET_CODE (op0
) == CONCAT
)
7169 gcc_assert (bitpos
== 0
7170 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7174 /* In cases where an aligned union has an unaligned object
7175 as a field, we might be extracting a BLKmode value from
7176 an integer-mode (e.g., SImode) object. Handle this case
7177 by doing the extract into an object as wide as the field
7178 (which we know to be the width of a basic mode), then
7179 storing into memory, and changing the mode to BLKmode. */
7180 if (mode1
== VOIDmode
7181 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7182 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7183 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7184 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7185 && modifier
!= EXPAND_CONST_ADDRESS
7186 && modifier
!= EXPAND_INITIALIZER
)
7187 /* If the field isn't aligned enough to fetch as a memref,
7188 fetch it as a bit field. */
7189 || (mode1
!= BLKmode
7190 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7191 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7193 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7194 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7195 && ((modifier
== EXPAND_CONST_ADDRESS
7196 || modifier
== EXPAND_INITIALIZER
)
7198 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7199 || (bitpos
% BITS_PER_UNIT
!= 0)))
7200 /* If the type and the field are a constant size and the
7201 size of the type isn't the same size as the bitfield,
7202 we must use bitfield operations. */
7204 && TYPE_SIZE (TREE_TYPE (exp
))
7205 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7206 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7209 enum machine_mode ext_mode
= mode
;
7211 if (ext_mode
== BLKmode
7212 && ! (target
!= 0 && MEM_P (op0
)
7214 && bitpos
% BITS_PER_UNIT
== 0))
7215 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7217 if (ext_mode
== BLKmode
)
7220 target
= assign_temp (type
, 0, 1, 1);
7225 /* In this case, BITPOS must start at a byte boundary and
7226 TARGET, if specified, must be a MEM. */
7227 gcc_assert (MEM_P (op0
)
7228 && (!target
|| MEM_P (target
))
7229 && !(bitpos
% BITS_PER_UNIT
));
7231 emit_block_move (target
,
7232 adjust_address (op0
, VOIDmode
,
7233 bitpos
/ BITS_PER_UNIT
),
7234 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7236 (modifier
== EXPAND_STACK_PARM
7237 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7242 op0
= validize_mem (op0
);
7244 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7245 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7247 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7248 (modifier
== EXPAND_STACK_PARM
7249 ? NULL_RTX
: target
),
7250 ext_mode
, ext_mode
);
7252 /* If the result is a record type and BITSIZE is narrower than
7253 the mode of OP0, an integral mode, and this is a big endian
7254 machine, we must put the field into the high-order bits. */
7255 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7256 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7257 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7258 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7259 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7263 /* If the result type is BLKmode, store the data into a temporary
7264 of the appropriate type, but with the mode corresponding to the
7265 mode for the data we have (op0's mode). It's tempting to make
7266 this a constant type, since we know it's only being stored once,
7267 but that can cause problems if we are taking the address of this
7268 COMPONENT_REF because the MEM of any reference via that address
7269 will have flags corresponding to the type, which will not
7270 necessarily be constant. */
7271 if (mode
== BLKmode
)
7274 = assign_stack_temp_for_type
7275 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7277 emit_move_insn (new, op0
);
7278 op0
= copy_rtx (new);
7279 PUT_MODE (op0
, BLKmode
);
7280 set_mem_attributes (op0
, exp
, 1);
7286 /* If the result is BLKmode, use that to access the object
7288 if (mode
== BLKmode
)
7291 /* Get a reference to just this component. */
7292 if (modifier
== EXPAND_CONST_ADDRESS
7293 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7294 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7296 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7298 if (op0
== orig_op0
)
7299 op0
= copy_rtx (op0
);
7301 set_mem_attributes (op0
, exp
, 0);
7302 if (REG_P (XEXP (op0
, 0)))
7303 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7305 MEM_VOLATILE_P (op0
) |= volatilep
;
7306 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7307 || modifier
== EXPAND_CONST_ADDRESS
7308 || modifier
== EXPAND_INITIALIZER
)
7310 else if (target
== 0)
7311 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7313 convert_move (target
, op0
, unsignedp
);
7318 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7321 /* Check for a built-in function. */
7322 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7323 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7325 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7327 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7328 == BUILT_IN_FRONTEND
)
7329 return lang_hooks
.expand_expr (exp
, original_target
,
7333 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7336 return expand_call (exp
, target
, ignore
);
7338 case NON_LVALUE_EXPR
:
7341 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7344 if (TREE_CODE (type
) == UNION_TYPE
)
7346 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7348 /* If both input and output are BLKmode, this conversion isn't doing
7349 anything except possibly changing memory attribute. */
7350 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7352 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7355 result
= copy_rtx (result
);
7356 set_mem_attributes (result
, exp
, 0);
7362 if (TYPE_MODE (type
) != BLKmode
)
7363 target
= gen_reg_rtx (TYPE_MODE (type
));
7365 target
= assign_temp (type
, 0, 1, 1);
7369 /* Store data into beginning of memory target. */
7370 store_expr (TREE_OPERAND (exp
, 0),
7371 adjust_address (target
, TYPE_MODE (valtype
), 0),
7372 modifier
== EXPAND_STACK_PARM
);
7376 gcc_assert (REG_P (target
));
7378 /* Store this field into a union of the proper type. */
7379 store_field (target
,
7380 MIN ((int_size_in_bytes (TREE_TYPE
7381 (TREE_OPERAND (exp
, 0)))
7383 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7384 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7388 /* Return the entire union. */
7392 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7394 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7397 /* If the signedness of the conversion differs and OP0 is
7398 a promoted SUBREG, clear that indication since we now
7399 have to do the proper extension. */
7400 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7401 && GET_CODE (op0
) == SUBREG
)
7402 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7404 return REDUCE_BIT_FIELD (op0
);
7407 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7408 if (GET_MODE (op0
) == mode
)
7411 /* If OP0 is a constant, just convert it into the proper mode. */
7412 else if (CONSTANT_P (op0
))
7414 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7415 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7417 if (modifier
== EXPAND_INITIALIZER
)
7418 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
7419 subreg_lowpart_offset (mode
,
7422 op0
= convert_modes (mode
, inner_mode
, op0
,
7423 TYPE_UNSIGNED (inner_type
));
7426 else if (modifier
== EXPAND_INITIALIZER
)
7427 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7429 else if (target
== 0)
7430 op0
= convert_to_mode (mode
, op0
,
7431 TYPE_UNSIGNED (TREE_TYPE
7432 (TREE_OPERAND (exp
, 0))));
7435 convert_move (target
, op0
,
7436 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7440 return REDUCE_BIT_FIELD (op0
);
7442 case VIEW_CONVERT_EXPR
:
7443 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7445 /* If the input and output modes are both the same, we are done.
7446 Otherwise, if neither mode is BLKmode and both are integral and within
7447 a word, we can use gen_lowpart. If neither is true, make sure the
7448 operand is in memory and convert the MEM to the new mode. */
7449 if (TYPE_MODE (type
) == GET_MODE (op0
))
7451 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7452 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7453 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
7454 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_WORD
7455 && GET_MODE_SIZE (GET_MODE (op0
)) <= UNITS_PER_WORD
)
7456 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7457 else if (!MEM_P (op0
))
7459 /* If the operand is not a MEM, force it into memory. Since we
7460 are going to be be changing the mode of the MEM, don't call
7461 force_const_mem for constants because we don't allow pool
7462 constants to change mode. */
7463 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7465 gcc_assert (!TREE_ADDRESSABLE (exp
));
7467 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7469 = assign_stack_temp_for_type
7470 (TYPE_MODE (inner_type
),
7471 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7473 emit_move_insn (target
, op0
);
7477 /* At this point, OP0 is in the correct mode. If the output type is such
7478 that the operand is known to be aligned, indicate that it is.
7479 Otherwise, we need only be concerned about alignment for non-BLKmode
7483 op0
= copy_rtx (op0
);
7485 if (TYPE_ALIGN_OK (type
))
7486 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7487 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7488 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7490 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7491 HOST_WIDE_INT temp_size
7492 = MAX (int_size_in_bytes (inner_type
),
7493 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7494 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7495 temp_size
, 0, type
);
7496 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7498 gcc_assert (!TREE_ADDRESSABLE (exp
));
7500 if (GET_MODE (op0
) == BLKmode
)
7501 emit_block_move (new_with_op0_mode
, op0
,
7502 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7503 (modifier
== EXPAND_STACK_PARM
7504 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7506 emit_move_insn (new_with_op0_mode
, op0
);
7511 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7517 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7518 something else, make sure we add the register to the constant and
7519 then to the other thing. This case can occur during strength
7520 reduction and doing it this way will produce better code if the
7521 frame pointer or argument pointer is eliminated.
7523 fold-const.c will ensure that the constant is always in the inner
7524 PLUS_EXPR, so the only case we need to do anything about is if
7525 sp, ap, or fp is our second argument, in which case we must swap
7526 the innermost first argument and our second argument. */
7528 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7529 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7530 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7531 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7532 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7533 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7535 tree t
= TREE_OPERAND (exp
, 1);
7537 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7538 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7541 /* If the result is to be ptr_mode and we are adding an integer to
7542 something, we might be forming a constant. So try to use
7543 plus_constant. If it produces a sum and we can't accept it,
7544 use force_operand. This allows P = &ARR[const] to generate
7545 efficient code on machines where a SYMBOL_REF is not a valid
7548 If this is an EXPAND_SUM call, always return the sum. */
7549 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
7550 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
7552 if (modifier
== EXPAND_STACK_PARM
)
7554 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
7555 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7556 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
7560 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
7562 /* Use immed_double_const to ensure that the constant is
7563 truncated according to the mode of OP1, then sign extended
7564 to a HOST_WIDE_INT. Using the constant directly can result
7565 in non-canonical RTL in a 64x32 cross compile. */
7567 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
7569 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
7570 op1
= plus_constant (op1
, INTVAL (constant_part
));
7571 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7572 op1
= force_operand (op1
, target
);
7573 return REDUCE_BIT_FIELD (op1
);
7576 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7577 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_INT
7578 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
7582 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7583 (modifier
== EXPAND_INITIALIZER
7584 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
7585 if (! CONSTANT_P (op0
))
7587 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
7588 VOIDmode
, modifier
);
7589 /* Return a PLUS if modifier says it's OK. */
7590 if (modifier
== EXPAND_SUM
7591 || modifier
== EXPAND_INITIALIZER
)
7592 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
7595 /* Use immed_double_const to ensure that the constant is
7596 truncated according to the mode of OP1, then sign extended
7597 to a HOST_WIDE_INT. Using the constant directly can result
7598 in non-canonical RTL in a 64x32 cross compile. */
7600 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
7602 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7603 op0
= plus_constant (op0
, INTVAL (constant_part
));
7604 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7605 op0
= force_operand (op0
, target
);
7606 return REDUCE_BIT_FIELD (op0
);
7610 /* No sense saving up arithmetic to be done
7611 if it's all in the wrong mode to form part of an address.
7612 And force_operand won't know whether to sign-extend or
7614 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7615 || mode
!= ptr_mode
)
7617 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7618 subtarget
, &op0
, &op1
, 0);
7619 if (op0
== const0_rtx
)
7621 if (op1
== const0_rtx
)
7626 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7627 subtarget
, &op0
, &op1
, modifier
);
7628 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7631 /* For initializers, we are allowed to return a MINUS of two
7632 symbolic constants. Here we handle all cases when both operands
7634 /* Handle difference of two symbolic constants,
7635 for the sake of an initializer. */
7636 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7637 && really_constant_p (TREE_OPERAND (exp
, 0))
7638 && really_constant_p (TREE_OPERAND (exp
, 1)))
7640 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7641 NULL_RTX
, &op0
, &op1
, modifier
);
7643 /* If the last operand is a CONST_INT, use plus_constant of
7644 the negated constant. Else make the MINUS. */
7645 if (GET_CODE (op1
) == CONST_INT
)
7646 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
7648 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
7651 /* No sense saving up arithmetic to be done
7652 if it's all in the wrong mode to form part of an address.
7653 And force_operand won't know whether to sign-extend or
7655 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7656 || mode
!= ptr_mode
)
7659 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7660 subtarget
, &op0
, &op1
, modifier
);
7662 /* Convert A - const to A + (-const). */
7663 if (GET_CODE (op1
) == CONST_INT
)
7665 op1
= negate_rtx (mode
, op1
);
7666 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7672 /* If first operand is constant, swap them.
7673 Thus the following special case checks need only
7674 check the second operand. */
7675 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
7677 tree t1
= TREE_OPERAND (exp
, 0);
7678 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
7679 TREE_OPERAND (exp
, 1) = t1
;
7682 /* Attempt to return something suitable for generating an
7683 indexed address, for machines that support that. */
7685 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
7686 && host_integerp (TREE_OPERAND (exp
, 1), 0))
7688 tree exp1
= TREE_OPERAND (exp
, 1);
7690 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7694 op0
= force_operand (op0
, NULL_RTX
);
7696 op0
= copy_to_mode_reg (mode
, op0
);
7698 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
7699 gen_int_mode (tree_low_cst (exp1
, 0),
7700 TYPE_MODE (TREE_TYPE (exp1
)))));
7703 if (modifier
== EXPAND_STACK_PARM
)
7706 /* Check for multiplying things that have been extended
7707 from a narrower type. If this machine supports multiplying
7708 in that narrower type with a result in the desired type,
7709 do it that way, and avoid the explicit type-conversion. */
7710 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
7711 && TREE_CODE (type
) == INTEGER_TYPE
7712 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7713 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7714 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7715 && int_fits_type_p (TREE_OPERAND (exp
, 1),
7716 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7717 /* Don't use a widening multiply if a shift will do. */
7718 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
7719 > HOST_BITS_PER_WIDE_INT
)
7720 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
7722 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
7723 && (TYPE_PRECISION (TREE_TYPE
7724 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7725 == TYPE_PRECISION (TREE_TYPE
7727 (TREE_OPERAND (exp
, 0), 0))))
7728 /* If both operands are extended, they must either both
7729 be zero-extended or both be sign-extended. */
7730 && (TYPE_UNSIGNED (TREE_TYPE
7731 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7732 == TYPE_UNSIGNED (TREE_TYPE
7734 (TREE_OPERAND (exp
, 0), 0)))))))
7736 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
7737 enum machine_mode innermode
= TYPE_MODE (op0type
);
7738 bool zextend_p
= TYPE_UNSIGNED (op0type
);
7739 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
7740 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
7742 if (mode
== GET_MODE_WIDER_MODE (innermode
))
7744 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
7746 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7747 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7748 TREE_OPERAND (exp
, 1),
7749 NULL_RTX
, &op0
, &op1
, 0);
7751 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7752 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7753 NULL_RTX
, &op0
, &op1
, 0);
7756 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
7757 && innermode
== word_mode
)
7760 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7761 NULL_RTX
, VOIDmode
, 0);
7762 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7763 op1
= convert_modes (innermode
, mode
,
7764 expand_expr (TREE_OPERAND (exp
, 1),
7765 NULL_RTX
, VOIDmode
, 0),
7768 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7769 NULL_RTX
, VOIDmode
, 0);
7770 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
7771 unsignedp
, OPTAB_LIB_WIDEN
);
7772 hipart
= gen_highpart (innermode
, temp
);
7773 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
7777 emit_move_insn (hipart
, htem
);
7778 return REDUCE_BIT_FIELD (temp
);
7782 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7783 subtarget
, &op0
, &op1
, 0);
7784 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
7786 case TRUNC_DIV_EXPR
:
7787 case FLOOR_DIV_EXPR
:
7789 case ROUND_DIV_EXPR
:
7790 case EXACT_DIV_EXPR
:
7791 if (modifier
== EXPAND_STACK_PARM
)
7793 /* Possible optimization: compute the dividend with EXPAND_SUM
7794 then if the divisor is constant can optimize the case
7795 where some terms of the dividend have coeffs divisible by it. */
7796 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7797 subtarget
, &op0
, &op1
, 0);
7798 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
7801 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7802 expensive divide. If not, combine will rebuild the original
7804 if (flag_unsafe_math_optimizations
&& optimize
&& !optimize_size
7805 && TREE_CODE (type
) == REAL_TYPE
7806 && !real_onep (TREE_OPERAND (exp
, 0)))
7807 return expand_expr (build2 (MULT_EXPR
, type
, TREE_OPERAND (exp
, 0),
7808 build2 (RDIV_EXPR
, type
,
7809 build_real (type
, dconst1
),
7810 TREE_OPERAND (exp
, 1))),
7811 target
, tmode
, modifier
);
7815 case TRUNC_MOD_EXPR
:
7816 case FLOOR_MOD_EXPR
:
7818 case ROUND_MOD_EXPR
:
7819 if (modifier
== EXPAND_STACK_PARM
)
7821 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7822 subtarget
, &op0
, &op1
, 0);
7823 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
7825 case FIX_ROUND_EXPR
:
7826 case FIX_FLOOR_EXPR
:
7828 gcc_unreachable (); /* Not used for C. */
7830 case FIX_TRUNC_EXPR
:
7831 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7832 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7833 target
= gen_reg_rtx (mode
);
7834 expand_fix (target
, op0
, unsignedp
);
7838 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7839 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7840 target
= gen_reg_rtx (mode
);
7841 /* expand_float can't figure out what to do if FROM has VOIDmode.
7842 So give it the correct mode. With -O, cse will optimize this. */
7843 if (GET_MODE (op0
) == VOIDmode
)
7844 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
7846 expand_float (target
, op0
,
7847 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7851 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7852 if (modifier
== EXPAND_STACK_PARM
)
7854 temp
= expand_unop (mode
,
7855 optab_for_tree_code (NEGATE_EXPR
, type
),
7858 return REDUCE_BIT_FIELD (temp
);
7861 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7862 if (modifier
== EXPAND_STACK_PARM
)
7865 /* ABS_EXPR is not valid for complex arguments. */
7866 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7867 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
7869 /* Unsigned abs is simply the operand. Testing here means we don't
7870 risk generating incorrect code below. */
7871 if (TYPE_UNSIGNED (type
))
7874 return expand_abs (mode
, op0
, target
, unsignedp
,
7875 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
7879 target
= original_target
;
7881 || modifier
== EXPAND_STACK_PARM
7882 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
7883 || GET_MODE (target
) != mode
7885 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
7886 target
= gen_reg_rtx (mode
);
7887 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7888 target
, &op0
, &op1
, 0);
7890 /* First try to do it with a special MIN or MAX instruction.
7891 If that does not win, use a conditional jump to select the proper
7893 this_optab
= optab_for_tree_code (code
, type
);
7894 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
7899 /* At this point, a MEM target is no longer useful; we will get better
7902 if (! REG_P (target
))
7903 target
= gen_reg_rtx (mode
);
7905 /* If op1 was placed in target, swap op0 and op1. */
7906 if (target
!= op0
&& target
== op1
)
7913 /* We generate better code and avoid problems with op1 mentioning
7914 target by forcing op1 into a pseudo if it isn't a constant. */
7915 if (! CONSTANT_P (op1
))
7916 op1
= force_reg (mode
, op1
);
7918 #ifdef HAVE_conditional_move
7919 /* Use a conditional move if possible. */
7920 if (can_conditionally_move_p (mode
))
7922 enum rtx_code comparison_code
;
7925 if (code
== MAX_EXPR
)
7926 comparison_code
= unsignedp
? GEU
: GE
;
7928 comparison_code
= unsignedp
? LEU
: LE
;
7930 /* ??? Same problem as in expmed.c: emit_conditional_move
7931 forces a stack adjustment via compare_from_rtx, and we
7932 lose the stack adjustment if the sequence we are about
7933 to create is discarded. */
7934 do_pending_stack_adjust ();
7938 /* Try to emit the conditional move. */
7939 insn
= emit_conditional_move (target
, comparison_code
,
7944 /* If we could do the conditional move, emit the sequence,
7948 rtx seq
= get_insns ();
7954 /* Otherwise discard the sequence and fall back to code with
7960 emit_move_insn (target
, op0
);
7962 temp
= gen_label_rtx ();
7964 /* If this mode is an integer too wide to compare properly,
7965 compare word by word. Rely on cse to optimize constant cases. */
7966 if (GET_MODE_CLASS (mode
) == MODE_INT
7967 && ! can_compare_p (GE
, mode
, ccp_jump
))
7969 if (code
== MAX_EXPR
)
7970 do_jump_by_parts_greater_rtx (mode
, unsignedp
, target
, op1
,
7973 do_jump_by_parts_greater_rtx (mode
, unsignedp
, op1
, target
,
7978 do_compare_rtx_and_jump (target
, op1
, code
== MAX_EXPR
? GE
: LE
,
7979 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
7981 emit_move_insn (target
, op1
);
7986 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7987 if (modifier
== EXPAND_STACK_PARM
)
7989 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
7993 /* ??? Can optimize bitwise operations with one arg constant.
7994 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7995 and (a bitwise1 b) bitwise2 b (etc)
7996 but that is probably not worth while. */
7998 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7999 boolean values when we want in all cases to compute both of them. In
8000 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8001 as actual zero-or-1 values and then bitwise anding. In cases where
8002 there cannot be any side effects, better code would be made by
8003 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8004 how to recognize those cases. */
8006 case TRUTH_AND_EXPR
:
8007 code
= BIT_AND_EXPR
;
8012 code
= BIT_IOR_EXPR
;
8016 case TRUTH_XOR_EXPR
:
8017 code
= BIT_XOR_EXPR
;
8025 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8027 if (modifier
== EXPAND_STACK_PARM
)
8029 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8030 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8033 /* Could determine the answer when only additive constants differ. Also,
8034 the addition of one can be handled by changing the condition. */
8041 case UNORDERED_EXPR
:
8049 temp
= do_store_flag (exp
,
8050 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8051 tmode
!= VOIDmode
? tmode
: mode
, 0);
8055 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8056 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8058 && REG_P (original_target
)
8059 && (GET_MODE (original_target
)
8060 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8062 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8065 /* If temp is constant, we can just compute the result. */
8066 if (GET_CODE (temp
) == CONST_INT
)
8068 if (INTVAL (temp
) != 0)
8069 emit_move_insn (target
, const1_rtx
);
8071 emit_move_insn (target
, const0_rtx
);
8076 if (temp
!= original_target
)
8078 enum machine_mode mode1
= GET_MODE (temp
);
8079 if (mode1
== VOIDmode
)
8080 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8082 temp
= copy_to_mode_reg (mode1
, temp
);
8085 op1
= gen_label_rtx ();
8086 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8087 GET_MODE (temp
), unsignedp
, op1
);
8088 emit_move_insn (temp
, const1_rtx
);
8093 /* If no set-flag instruction, must generate a conditional store
8094 into a temporary variable. Drop through and handle this
8099 || modifier
== EXPAND_STACK_PARM
8100 || ! safe_from_p (target
, exp
, 1)
8101 /* Make sure we don't have a hard reg (such as function's return
8102 value) live across basic blocks, if not optimizing. */
8103 || (!optimize
&& REG_P (target
)
8104 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8105 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8108 emit_move_insn (target
, const0_rtx
);
8110 op1
= gen_label_rtx ();
8111 jumpifnot (exp
, op1
);
8114 emit_move_insn (target
, const1_rtx
);
8117 return ignore
? const0_rtx
: target
;
8119 case TRUTH_NOT_EXPR
:
8120 if (modifier
== EXPAND_STACK_PARM
)
8122 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8123 /* The parser is careful to generate TRUTH_NOT_EXPR
8124 only with operands that are always zero or one. */
8125 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8126 target
, 1, OPTAB_LIB_WIDEN
);
8130 case STATEMENT_LIST
:
8132 tree_stmt_iterator iter
;
8134 gcc_assert (ignore
);
8136 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
8137 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
8142 /* A COND_EXPR with its type being VOID_TYPE represents a
8143 conditional jump and is handled in
8144 expand_gimple_cond_expr. */
8145 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
8147 /* Note that COND_EXPRs whose type is a structure or union
8148 are required to be constructed to contain assignments of
8149 a temporary variable, so that we can evaluate them here
8150 for side effect only. If type is void, we must do likewise. */
8152 gcc_assert (!TREE_ADDRESSABLE (type
)
8154 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8155 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8157 /* If we are not to produce a result, we have no target. Otherwise,
8158 if a target was specified use it; it will not be used as an
8159 intermediate target unless it is safe. If no target, use a
8162 if (modifier
!= EXPAND_STACK_PARM
8164 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8165 && GET_MODE (original_target
) == mode
8166 #ifdef HAVE_conditional_move
8167 && (! can_conditionally_move_p (mode
)
8168 || REG_P (original_target
))
8170 && !MEM_P (original_target
))
8171 temp
= original_target
;
8173 temp
= assign_temp (type
, 0, 0, 1);
8175 do_pending_stack_adjust ();
8177 op0
= gen_label_rtx ();
8178 op1
= gen_label_rtx ();
8179 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8180 store_expr (TREE_OPERAND (exp
, 1), temp
,
8181 modifier
== EXPAND_STACK_PARM
);
8183 emit_jump_insn (gen_jump (op1
));
8186 store_expr (TREE_OPERAND (exp
, 2), temp
,
8187 modifier
== EXPAND_STACK_PARM
);
8194 target
= expand_vec_cond_expr (exp
, target
);
8199 tree lhs
= TREE_OPERAND (exp
, 0);
8200 tree rhs
= TREE_OPERAND (exp
, 1);
8202 gcc_assert (ignore
);
8204 /* Check for |= or &= of a bitfield of size one into another bitfield
8205 of size 1. In this case, (unless we need the result of the
8206 assignment) we can do this more efficiently with a
8207 test followed by an assignment, if necessary.
8209 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8210 things change so we do, this code should be enhanced to
8212 if (TREE_CODE (lhs
) == COMPONENT_REF
8213 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8214 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8215 && TREE_OPERAND (rhs
, 0) == lhs
8216 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8217 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8218 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8220 rtx label
= gen_label_rtx ();
8222 do_jump (TREE_OPERAND (rhs
, 1),
8223 TREE_CODE (rhs
) == BIT_IOR_EXPR
? label
: 0,
8224 TREE_CODE (rhs
) == BIT_AND_EXPR
? label
: 0);
8225 expand_assignment (lhs
, convert (TREE_TYPE (rhs
),
8226 (TREE_CODE (rhs
) == BIT_IOR_EXPR
8228 : integer_zero_node
)));
8229 do_pending_stack_adjust ();
8234 expand_assignment (lhs
, rhs
);
8240 if (!TREE_OPERAND (exp
, 0))
8241 expand_null_return ();
8243 expand_return (TREE_OPERAND (exp
, 0));
8247 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8250 /* Get the rtx code of the operands. */
8251 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8252 op1
= expand_expr (TREE_OPERAND (exp
, 1), 0, VOIDmode
, 0);
8255 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8257 /* Move the real (op0) and imaginary (op1) parts to their location. */
8258 write_complex_part (target
, op0
, false);
8259 write_complex_part (target
, op1
, true);
8264 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8265 return read_complex_part (op0
, false);
8268 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8269 return read_complex_part (op0
, true);
8272 expand_resx_expr (exp
);
8275 case TRY_CATCH_EXPR
:
8277 case EH_FILTER_EXPR
:
8278 case TRY_FINALLY_EXPR
:
8279 /* Lowered by tree-eh.c. */
8282 case WITH_CLEANUP_EXPR
:
8283 case CLEANUP_POINT_EXPR
:
8285 case CASE_LABEL_EXPR
:
8291 case PREINCREMENT_EXPR
:
8292 case PREDECREMENT_EXPR
:
8293 case POSTINCREMENT_EXPR
:
8294 case POSTDECREMENT_EXPR
:
8297 case TRUTH_ANDIF_EXPR
:
8298 case TRUTH_ORIF_EXPR
:
8299 /* Lowered by gimplify.c. */
8303 return get_exception_pointer (cfun
);
8306 return get_exception_filter (cfun
);
8309 /* Function descriptors are not valid except for as
8310 initialization constants, and should not be expanded. */
8318 expand_label (TREE_OPERAND (exp
, 0));
8322 expand_asm_expr (exp
);
8325 case WITH_SIZE_EXPR
:
8326 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8327 have pulled out the size to use in whatever context it needed. */
8328 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8331 case REALIGN_LOAD_EXPR
:
8333 tree oprnd0
= TREE_OPERAND (exp
, 0);
8334 tree oprnd1
= TREE_OPERAND (exp
, 1);
8335 tree oprnd2
= TREE_OPERAND (exp
, 2);
8338 this_optab
= optab_for_tree_code (code
, type
);
8339 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8340 op2
= expand_expr (oprnd2
, NULL_RTX
, VOIDmode
, 0);
8341 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8350 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8354 /* Here to do an ordinary binary operator. */
8356 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8357 subtarget
, &op0
, &op1
, 0);
8359 this_optab
= optab_for_tree_code (code
, type
);
8361 if (modifier
== EXPAND_STACK_PARM
)
8363 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8364 unsignedp
, OPTAB_LIB_WIDEN
);
8366 return REDUCE_BIT_FIELD (temp
);
8368 #undef REDUCE_BIT_FIELD
8370 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8371 signedness of TYPE), possibly returning the result in TARGET. */
8373 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8375 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8376 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8378 if (TYPE_UNSIGNED (type
))
8381 if (prec
< HOST_BITS_PER_WIDE_INT
)
8382 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8385 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8386 ((unsigned HOST_WIDE_INT
) 1
8387 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8389 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8393 tree count
= build_int_cst (NULL_TREE
,
8394 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8395 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8396 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8400 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8401 when applied to the address of EXP produces an address known to be
8402 aligned more than BIGGEST_ALIGNMENT. */
8405 is_aligning_offset (tree offset
, tree exp
)
8407 /* Strip off any conversions. */
8408 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8409 || TREE_CODE (offset
) == NOP_EXPR
8410 || TREE_CODE (offset
) == CONVERT_EXPR
)
8411 offset
= TREE_OPERAND (offset
, 0);
8413 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8414 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8415 if (TREE_CODE (offset
) != BIT_AND_EXPR
8416 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8417 || compare_tree_int (TREE_OPERAND (offset
, 1),
8418 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8419 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8422 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8423 It must be NEGATE_EXPR. Then strip any more conversions. */
8424 offset
= TREE_OPERAND (offset
, 0);
8425 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8426 || TREE_CODE (offset
) == NOP_EXPR
8427 || TREE_CODE (offset
) == CONVERT_EXPR
)
8428 offset
= TREE_OPERAND (offset
, 0);
8430 if (TREE_CODE (offset
) != NEGATE_EXPR
)
8433 offset
= TREE_OPERAND (offset
, 0);
8434 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8435 || TREE_CODE (offset
) == NOP_EXPR
8436 || TREE_CODE (offset
) == CONVERT_EXPR
)
8437 offset
= TREE_OPERAND (offset
, 0);
8439 /* This must now be the address of EXP. */
8440 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
8443 /* Return the tree node if an ARG corresponds to a string constant or zero
8444 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8445 in bytes within the string that ARG is accessing. The type of the
8446 offset will be `sizetype'. */
8449 string_constant (tree arg
, tree
*ptr_offset
)
8454 if (TREE_CODE (arg
) == ADDR_EXPR
)
8456 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
8458 *ptr_offset
= size_zero_node
;
8459 return TREE_OPERAND (arg
, 0);
8461 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
8463 array
= TREE_OPERAND (arg
, 0);
8464 offset
= size_zero_node
;
8466 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
8468 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
8469 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
8470 if (TREE_CODE (array
) != STRING_CST
8471 && TREE_CODE (array
) != VAR_DECL
)
8477 else if (TREE_CODE (arg
) == PLUS_EXPR
)
8479 tree arg0
= TREE_OPERAND (arg
, 0);
8480 tree arg1
= TREE_OPERAND (arg
, 1);
8485 if (TREE_CODE (arg0
) == ADDR_EXPR
8486 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
8487 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
8489 array
= TREE_OPERAND (arg0
, 0);
8492 else if (TREE_CODE (arg1
) == ADDR_EXPR
8493 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
8494 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
8496 array
= TREE_OPERAND (arg1
, 0);
8505 if (TREE_CODE (array
) == STRING_CST
)
8507 *ptr_offset
= convert (sizetype
, offset
);
8510 else if (TREE_CODE (array
) == VAR_DECL
)
8514 /* Variables initialized to string literals can be handled too. */
8515 if (DECL_INITIAL (array
) == NULL_TREE
8516 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
8519 /* If they are read-only, non-volatile and bind locally. */
8520 if (! TREE_READONLY (array
)
8521 || TREE_SIDE_EFFECTS (array
)
8522 || ! targetm
.binds_local_p (array
))
8525 /* Avoid const char foo[4] = "abcde"; */
8526 if (DECL_SIZE_UNIT (array
) == NULL_TREE
8527 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
8528 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
8529 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
8532 /* If variable is bigger than the string literal, OFFSET must be constant
8533 and inside of the bounds of the string literal. */
8534 offset
= convert (sizetype
, offset
);
8535 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
8536 && (! host_integerp (offset
, 1)
8537 || compare_tree_int (offset
, length
) >= 0))
8540 *ptr_offset
= offset
;
8541 return DECL_INITIAL (array
);
8547 /* Generate code to calculate EXP using a store-flag instruction
8548 and return an rtx for the result. EXP is either a comparison
8549 or a TRUTH_NOT_EXPR whose operand is a comparison.
8551 If TARGET is nonzero, store the result there if convenient.
8553 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8556 Return zero if there is no suitable set-flag instruction
8557 available on this machine.
8559 Once expand_expr has been called on the arguments of the comparison,
8560 we are committed to doing the store flag, since it is not safe to
8561 re-evaluate the expression. We emit the store-flag insn by calling
8562 emit_store_flag, but only expand the arguments if we have a reason
8563 to believe that emit_store_flag will be successful. If we think that
8564 it will, but it isn't, we have to simulate the store-flag with a
8565 set/jump/set sequence. */
8568 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
8571 tree arg0
, arg1
, type
;
8573 enum machine_mode operand_mode
;
8577 enum insn_code icode
;
8578 rtx subtarget
= target
;
8581 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8582 result at the end. We can't simply invert the test since it would
8583 have already been inverted if it were valid. This case occurs for
8584 some floating-point comparisons. */
8586 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
8587 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
8589 arg0
= TREE_OPERAND (exp
, 0);
8590 arg1
= TREE_OPERAND (exp
, 1);
8592 /* Don't crash if the comparison was erroneous. */
8593 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8596 type
= TREE_TYPE (arg0
);
8597 operand_mode
= TYPE_MODE (type
);
8598 unsignedp
= TYPE_UNSIGNED (type
);
8600 /* We won't bother with BLKmode store-flag operations because it would mean
8601 passing a lot of information to emit_store_flag. */
8602 if (operand_mode
== BLKmode
)
8605 /* We won't bother with store-flag operations involving function pointers
8606 when function pointers must be canonicalized before comparisons. */
8607 #ifdef HAVE_canonicalize_funcptr_for_compare
8608 if (HAVE_canonicalize_funcptr_for_compare
8609 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
8610 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8612 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
8613 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8614 == FUNCTION_TYPE
))))
8621 /* Get the rtx comparison code to use. We know that EXP is a comparison
8622 operation of some type. Some comparisons against 1 and -1 can be
8623 converted to comparisons with zero. Do so here so that the tests
8624 below will be aware that we have a comparison with zero. These
8625 tests will not catch constants in the first operand, but constants
8626 are rarely passed as the first operand. */
8628 switch (TREE_CODE (exp
))
8637 if (integer_onep (arg1
))
8638 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
8640 code
= unsignedp
? LTU
: LT
;
8643 if (! unsignedp
&& integer_all_onesp (arg1
))
8644 arg1
= integer_zero_node
, code
= LT
;
8646 code
= unsignedp
? LEU
: LE
;
8649 if (! unsignedp
&& integer_all_onesp (arg1
))
8650 arg1
= integer_zero_node
, code
= GE
;
8652 code
= unsignedp
? GTU
: GT
;
8655 if (integer_onep (arg1
))
8656 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
8658 code
= unsignedp
? GEU
: GE
;
8661 case UNORDERED_EXPR
:
8690 /* Put a constant second. */
8691 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
8693 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
8694 code
= swap_condition (code
);
8697 /* If this is an equality or inequality test of a single bit, we can
8698 do this by shifting the bit being tested to the low-order bit and
8699 masking the result with the constant 1. If the condition was EQ,
8700 we xor it with 1. This does not require an scc insn and is faster
8701 than an scc insn even if we have it.
8703 The code to make this transformation was moved into fold_single_bit_test,
8704 so we just call into the folder and expand its result. */
8706 if ((code
== NE
|| code
== EQ
)
8707 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
8708 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
8710 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
8711 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
8713 target
, VOIDmode
, EXPAND_NORMAL
);
8716 /* Now see if we are likely to be able to do this. Return if not. */
8717 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
8720 icode
= setcc_gen_code
[(int) code
];
8721 if (icode
== CODE_FOR_nothing
8722 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
8724 /* We can only do this if it is one of the special cases that
8725 can be handled without an scc insn. */
8726 if ((code
== LT
&& integer_zerop (arg1
))
8727 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
8729 else if (BRANCH_COST
>= 0
8730 && ! only_cheap
&& (code
== NE
|| code
== EQ
)
8731 && TREE_CODE (type
) != REAL_TYPE
8732 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
8733 != CODE_FOR_nothing
)
8734 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
8735 != CODE_FOR_nothing
)))
8741 if (! get_subtarget (target
)
8742 || GET_MODE (subtarget
) != operand_mode
)
8745 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
8748 target
= gen_reg_rtx (mode
);
8750 result
= emit_store_flag (target
, code
, op0
, op1
,
8751 operand_mode
, unsignedp
, 1);
8756 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
8757 result
, 0, OPTAB_LIB_WIDEN
);
8761 /* If this failed, we have to do this with set/compare/jump/set code. */
8763 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
8764 target
= gen_reg_rtx (GET_MODE (target
));
8766 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
8767 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
8768 operand_mode
, NULL_RTX
);
8769 if (GET_CODE (result
) == CONST_INT
)
8770 return (((result
== const0_rtx
&& ! invert
)
8771 || (result
!= const0_rtx
&& invert
))
8772 ? const0_rtx
: const1_rtx
);
8774 /* The code of RESULT may not match CODE if compare_from_rtx
8775 decided to swap its operands and reverse the original code.
8777 We know that compare_from_rtx returns either a CONST_INT or
8778 a new comparison code, so it is safe to just extract the
8779 code from RESULT. */
8780 code
= GET_CODE (result
);
8782 label
= gen_label_rtx ();
8783 gcc_assert (bcc_gen_fctn
[(int) code
]);
8785 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
8786 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
8793 /* Stubs in case we haven't got a casesi insn. */
8795 # define HAVE_casesi 0
8796 # define gen_casesi(a, b, c, d, e) (0)
8797 # define CODE_FOR_casesi CODE_FOR_nothing
8800 /* If the machine does not have a case insn that compares the bounds,
8801 this means extra overhead for dispatch tables, which raises the
8802 threshold for using them. */
8803 #ifndef CASE_VALUES_THRESHOLD
8804 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8805 #endif /* CASE_VALUES_THRESHOLD */
8808 case_values_threshold (void)
8810 return CASE_VALUES_THRESHOLD
;
8813 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8814 0 otherwise (i.e. if there is no casesi instruction). */
8816 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
8817 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
8819 enum machine_mode index_mode
= SImode
;
8820 int index_bits
= GET_MODE_BITSIZE (index_mode
);
8821 rtx op1
, op2
, index
;
8822 enum machine_mode op_mode
;
8827 /* Convert the index to SImode. */
8828 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
8830 enum machine_mode omode
= TYPE_MODE (index_type
);
8831 rtx rangertx
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8833 /* We must handle the endpoints in the original mode. */
8834 index_expr
= build2 (MINUS_EXPR
, index_type
,
8835 index_expr
, minval
);
8836 minval
= integer_zero_node
;
8837 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8838 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
8839 omode
, 1, default_label
);
8840 /* Now we can safely truncate. */
8841 index
= convert_to_mode (index_mode
, index
, 0);
8845 if (TYPE_MODE (index_type
) != index_mode
)
8847 index_expr
= convert (lang_hooks
.types
.type_for_size
8848 (index_bits
, 0), index_expr
);
8849 index_type
= TREE_TYPE (index_expr
);
8852 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8855 do_pending_stack_adjust ();
8857 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
8858 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
8860 index
= copy_to_mode_reg (op_mode
, index
);
8862 op1
= expand_expr (minval
, NULL_RTX
, VOIDmode
, 0);
8864 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
8865 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
8866 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
8867 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
8869 op1
= copy_to_mode_reg (op_mode
, op1
);
8871 op2
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8873 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
8874 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
8875 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
8876 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
8878 op2
= copy_to_mode_reg (op_mode
, op2
);
8880 emit_jump_insn (gen_casesi (index
, op1
, op2
,
8881 table_label
, default_label
));
8885 /* Attempt to generate a tablejump instruction; same concept. */
8886 #ifndef HAVE_tablejump
8887 #define HAVE_tablejump 0
8888 #define gen_tablejump(x, y) (0)
8891 /* Subroutine of the next function.
8893 INDEX is the value being switched on, with the lowest value
8894 in the table already subtracted.
8895 MODE is its expected mode (needed if INDEX is constant).
8896 RANGE is the length of the jump table.
8897 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8899 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8900 index value is out of range. */
8903 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
8908 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
8909 cfun
->max_jumptable_ents
= INTVAL (range
);
8911 /* Do an unsigned comparison (in the proper mode) between the index
8912 expression and the value which represents the length of the range.
8913 Since we just finished subtracting the lower bound of the range
8914 from the index expression, this comparison allows us to simultaneously
8915 check that the original index expression value is both greater than
8916 or equal to the minimum value of the range and less than or equal to
8917 the maximum value of the range. */
8919 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
8922 /* If index is in range, it must fit in Pmode.
8923 Convert to Pmode so we can index with it. */
8925 index
= convert_to_mode (Pmode
, index
, 1);
8927 /* Don't let a MEM slip through, because then INDEX that comes
8928 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8929 and break_out_memory_refs will go to work on it and mess it up. */
8930 #ifdef PIC_CASE_VECTOR_ADDRESS
8931 if (flag_pic
&& !REG_P (index
))
8932 index
= copy_to_mode_reg (Pmode
, index
);
8935 /* If flag_force_addr were to affect this address
8936 it could interfere with the tricky assumptions made
8937 about addresses that contain label-refs,
8938 which may be valid only very near the tablejump itself. */
8939 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
8940 GET_MODE_SIZE, because this indicates how large insns are. The other
8941 uses should all be Pmode, because they are addresses. This code
8942 could fail if addresses and insns are not the same size. */
8943 index
= gen_rtx_PLUS (Pmode
,
8944 gen_rtx_MULT (Pmode
, index
,
8945 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
8946 gen_rtx_LABEL_REF (Pmode
, table_label
));
8947 #ifdef PIC_CASE_VECTOR_ADDRESS
8949 index
= PIC_CASE_VECTOR_ADDRESS (index
);
8952 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
8953 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
8954 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
8955 convert_move (temp
, vector
, 0);
8957 emit_jump_insn (gen_tablejump (temp
, table_label
));
8959 /* If we are generating PIC code or if the table is PC-relative, the
8960 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
8961 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
8966 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
8967 rtx table_label
, rtx default_label
)
8971 if (! HAVE_tablejump
)
8974 index_expr
= fold (build2 (MINUS_EXPR
, index_type
,
8975 convert (index_type
, index_expr
),
8976 convert (index_type
, minval
)));
8977 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8978 do_pending_stack_adjust ();
8980 do_tablejump (index
, TYPE_MODE (index_type
),
8981 convert_modes (TYPE_MODE (index_type
),
8982 TYPE_MODE (TREE_TYPE (range
)),
8983 expand_expr (range
, NULL_RTX
,
8985 TYPE_UNSIGNED (TREE_TYPE (range
))),
8986 table_label
, default_label
);
8990 /* Nonzero if the mode is a valid vector mode for this architecture.
8991 This returns nonzero even if there is no hardware support for the
8992 vector mode, but we can emulate with narrower modes. */
8995 vector_mode_valid_p (enum machine_mode mode
)
8997 enum mode_class
class = GET_MODE_CLASS (mode
);
8998 enum machine_mode innermode
;
9000 /* Doh! What's going on? */
9001 if (class != MODE_VECTOR_INT
9002 && class != MODE_VECTOR_FLOAT
)
9005 /* Hardware support. Woo hoo! */
9006 if (targetm
.vector_mode_supported_p (mode
))
9009 innermode
= GET_MODE_INNER (mode
);
9011 /* We should probably return 1 if requesting V4DI and we have no DI,
9012 but we have V2DI, but this is probably very unlikely. */
9014 /* If we have support for the inner mode, we can safely emulate it.
9015 We may not have V2DI, but me can emulate with a pair of DIs. */
9016 return targetm
.scalar_mode_supported_p (innermode
);
9019 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9021 const_vector_from_tree (tree exp
)
9026 enum machine_mode inner
, mode
;
9028 mode
= TYPE_MODE (TREE_TYPE (exp
));
9030 if (initializer_zerop (exp
))
9031 return CONST0_RTX (mode
);
9033 units
= GET_MODE_NUNITS (mode
);
9034 inner
= GET_MODE_INNER (mode
);
9036 v
= rtvec_alloc (units
);
9038 link
= TREE_VECTOR_CST_ELTS (exp
);
9039 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
9041 elt
= TREE_VALUE (link
);
9043 if (TREE_CODE (elt
) == REAL_CST
)
9044 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
9047 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
9048 TREE_INT_CST_HIGH (elt
),
9052 /* Initialize remaining elements to 0. */
9053 for (; i
< units
; ++i
)
9054 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
9056 return gen_rtx_CONST_VECTOR (mode
, v
);
9058 #include "gt-expr.h"