1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
6 // defined in FIPS 186-3.
10 // [NSA]: Suite B implementer's guide to FIPS 186-3,
11 // http://www.nsa.gov/ia/_files/ecdsa.pdf
13 // http://www.secg.org/download/aid-780/sec1-v2.pdf
21 // PublicKey represents an ECDSA public key.
22 type PublicKey
struct {
27 // PrivateKey represents a ECDSA private key.
28 type PrivateKey
struct {
33 var one
= new(big
.Int
).SetInt64(1)
35 // randFieldElement returns a random element of the field underlying the given
36 // curve using the procedure given in [NSA] A.2.1.
37 func randFieldElement(c elliptic
.Curve
, rand io
.Reader
) (k
*big
.Int
, err error
) {
39 b
:= make([]byte, params
.BitSize
/8+8)
40 _
, err
= io
.ReadFull(rand
, b
)
45 k
= new(big
.Int
).SetBytes(b
)
46 n
:= new(big
.Int
).Sub(params
.N
, one
)
52 // GenerateKey generates a public and private key pair.
53 func GenerateKey(c elliptic
.Curve
, rand io
.Reader
) (priv
*PrivateKey
, err error
) {
54 k
, err
:= randFieldElement(c
, rand
)
59 priv
= new(PrivateKey
)
60 priv
.PublicKey
.Curve
= c
62 priv
.PublicKey
.X
, priv
.PublicKey
.Y
= c
.ScalarBaseMult(k
.Bytes())
66 // hashToInt converts a hash value to an integer. There is some disagreement
67 // about how this is done. [NSA] suggests that this is done in the obvious
68 // manner, but [SECG] truncates the hash to the bit-length of the curve order
69 // first. We follow [SECG] because that's what OpenSSL does. Additionally,
70 // OpenSSL right shifts excess bits from the number if the hash is too large
71 // and we mirror that too.
72 func hashToInt(hash
[]byte, c elliptic
.Curve
) *big
.Int
{
73 orderBits
:= c
.Params().N
.BitLen()
74 orderBytes
:= (orderBits
+ 7) / 8
75 if len(hash
) > orderBytes
{
76 hash
= hash
[:orderBytes
]
79 ret
:= new(big
.Int
).SetBytes(hash
)
80 excess
:= len(hash
)*8 - orderBits
82 ret
.Rsh(ret
, uint(excess
))
87 // Sign signs an arbitrary length hash (which should be the result of hashing a
88 // larger message) using the private key, priv. It returns the signature as a
89 // pair of integers. The security of the private key depends on the entropy of
91 func Sign(rand io
.Reader
, priv
*PrivateKey
, hash
[]byte) (r
, s
*big
.Int
, err error
) {
93 c
:= priv
.PublicKey
.Curve
99 k
, err
= randFieldElement(c
, rand
)
105 kInv
= new(big
.Int
).ModInverse(k
, N
)
106 r
, _
= priv
.Curve
.ScalarBaseMult(k
.Bytes())
113 e
:= hashToInt(hash
, c
)
114 s
= new(big
.Int
).Mul(priv
.D
, r
)
126 // Verify verifies the signature in r, s of hash using the public key, pub. It
127 // returns true iff the signature is valid.
128 func Verify(pub
*PublicKey
, hash
[]byte, r
, s
*big
.Int
) bool {
133 if r
.Sign() == 0 || s
.Sign() == 0 {
136 if r
.Cmp(N
) >= 0 || s
.Cmp(N
) >= 0 {
139 e
:= hashToInt(hash
, c
)
140 w
:= new(big
.Int
).ModInverse(s
, N
)
147 x1
, y1
:= c
.ScalarBaseMult(u1
.Bytes())
148 x2
, y2
:= c
.ScalarMult(pub
.X
, pub
.Y
, u2
.Bytes())
149 x
, y
:= c
.Add(x1
, y1
, x2
, y2
)
150 if x
.Sign() == 0 && y
.Sign() == 0 {