* gcc.dg/guality/guality.exp: Skip on AIX.
[official-gcc.git] / libgo / go / crypto / ecdsa / ecdsa.go
blob2550002293957fdb690f1adeb291de8e1b5e71e3
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
6 // defined in FIPS 186-3.
7 package ecdsa
9 // References:
10 // [NSA]: Suite B implementer's guide to FIPS 186-3,
11 // http://www.nsa.gov/ia/_files/ecdsa.pdf
12 // [SECG]: SECG, SEC1
13 // http://www.secg.org/download/aid-780/sec1-v2.pdf
15 import (
16 "crypto/elliptic"
17 "io"
18 "math/big"
21 // PublicKey represents an ECDSA public key.
22 type PublicKey struct {
23 elliptic.Curve
24 X, Y *big.Int
27 // PrivateKey represents a ECDSA private key.
28 type PrivateKey struct {
29 PublicKey
30 D *big.Int
33 var one = new(big.Int).SetInt64(1)
35 // randFieldElement returns a random element of the field underlying the given
36 // curve using the procedure given in [NSA] A.2.1.
37 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
38 params := c.Params()
39 b := make([]byte, params.BitSize/8+8)
40 _, err = io.ReadFull(rand, b)
41 if err != nil {
42 return
45 k = new(big.Int).SetBytes(b)
46 n := new(big.Int).Sub(params.N, one)
47 k.Mod(k, n)
48 k.Add(k, one)
49 return
52 // GenerateKey generates a public and private key pair.
53 func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
54 k, err := randFieldElement(c, rand)
55 if err != nil {
56 return
59 priv = new(PrivateKey)
60 priv.PublicKey.Curve = c
61 priv.D = k
62 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
63 return
66 // hashToInt converts a hash value to an integer. There is some disagreement
67 // about how this is done. [NSA] suggests that this is done in the obvious
68 // manner, but [SECG] truncates the hash to the bit-length of the curve order
69 // first. We follow [SECG] because that's what OpenSSL does. Additionally,
70 // OpenSSL right shifts excess bits from the number if the hash is too large
71 // and we mirror that too.
72 func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
73 orderBits := c.Params().N.BitLen()
74 orderBytes := (orderBits + 7) / 8
75 if len(hash) > orderBytes {
76 hash = hash[:orderBytes]
79 ret := new(big.Int).SetBytes(hash)
80 excess := len(hash)*8 - orderBits
81 if excess > 0 {
82 ret.Rsh(ret, uint(excess))
84 return ret
87 // Sign signs an arbitrary length hash (which should be the result of hashing a
88 // larger message) using the private key, priv. It returns the signature as a
89 // pair of integers. The security of the private key depends on the entropy of
90 // rand.
91 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
92 // See [NSA] 3.4.1
93 c := priv.PublicKey.Curve
94 N := c.Params().N
96 var k, kInv *big.Int
97 for {
98 for {
99 k, err = randFieldElement(c, rand)
100 if err != nil {
101 r = nil
102 return
105 kInv = new(big.Int).ModInverse(k, N)
106 r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
107 r.Mod(r, N)
108 if r.Sign() != 0 {
109 break
113 e := hashToInt(hash, c)
114 s = new(big.Int).Mul(priv.D, r)
115 s.Add(s, e)
116 s.Mul(s, kInv)
117 s.Mod(s, N)
118 if s.Sign() != 0 {
119 break
123 return
126 // Verify verifies the signature in r, s of hash using the public key, pub. It
127 // returns true iff the signature is valid.
128 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
129 // See [NSA] 3.4.2
130 c := pub.Curve
131 N := c.Params().N
133 if r.Sign() == 0 || s.Sign() == 0 {
134 return false
136 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
137 return false
139 e := hashToInt(hash, c)
140 w := new(big.Int).ModInverse(s, N)
142 u1 := e.Mul(e, w)
143 u1.Mod(u1, N)
144 u2 := w.Mul(r, w)
145 u2.Mod(u2, N)
147 x1, y1 := c.ScalarBaseMult(u1.Bytes())
148 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
149 x, y := c.Add(x1, y1, x2, y2)
150 if x.Sign() == 0 && y.Sign() == 0 {
151 return false
153 x.Mod(x, N)
154 return x.Cmp(r) == 0