* config/nvptx/nvptx.c (write_function_decl_and_comment): Print
[official-gcc.git] / gcc / cfg.c
bloba13096b580a1b3cdea8bd8b57cc7b2e291c03e4e
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains low level functions to manipulate the CFG and
21 analyze it. All other modules should not transform the data structure
22 directly and use abstraction instead. The file is supposed to be
23 ordered bottom-up and should not contain any code dependent on a
24 particular intermediate language (RTL or trees).
26 Available functionality:
27 - Initialization/deallocation
28 init_flow, clear_edges
29 - Low level basic block manipulation
30 alloc_block, expunge_block
31 - Edge manipulation
32 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
33 - Low level edge redirection (without updating instruction chain)
34 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
35 - Dumping and debugging
36 dump_flow_info, debug_flow_info, dump_edge_info
37 - Allocation of AUX fields for basic blocks
38 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
39 - clear_bb_flags
40 - Consistency checking
41 verify_flow_info
42 - Dumping and debugging
43 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
45 TODO: Document these "Available functionality" functions in the files
46 that implement them.
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "backend.h"
53 #include "hard-reg-set.h"
54 #include "tree.h"
55 #include "cfghooks.h"
56 #include "df.h"
57 #include "cfganal.h"
58 #include "cfgloop.h" /* FIXME: For struct loop. */
59 #include "dumpfile.h"
62 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
64 /* Called once at initialization time. */
66 void
67 init_flow (struct function *the_fun)
69 if (!the_fun->cfg)
70 the_fun->cfg = ggc_cleared_alloc<control_flow_graph> ();
71 n_edges_for_fn (the_fun) = 0;
72 ENTRY_BLOCK_PTR_FOR_FN (the_fun)
73 = ggc_cleared_alloc<basic_block_def> ();
74 ENTRY_BLOCK_PTR_FOR_FN (the_fun)->index = ENTRY_BLOCK;
75 EXIT_BLOCK_PTR_FOR_FN (the_fun)
76 = ggc_cleared_alloc<basic_block_def> ();
77 EXIT_BLOCK_PTR_FOR_FN (the_fun)->index = EXIT_BLOCK;
78 ENTRY_BLOCK_PTR_FOR_FN (the_fun)->next_bb
79 = EXIT_BLOCK_PTR_FOR_FN (the_fun);
80 EXIT_BLOCK_PTR_FOR_FN (the_fun)->prev_bb
81 = ENTRY_BLOCK_PTR_FOR_FN (the_fun);
84 /* Helper function for remove_edge and clear_edges. Frees edge structure
85 without actually removing it from the pred/succ arrays. */
87 static void
88 free_edge (function *fn, edge e)
90 n_edges_for_fn (fn)--;
91 ggc_free (e);
94 /* Free the memory associated with the edge structures. */
96 void
97 clear_edges (struct function *fn)
99 basic_block bb;
100 edge e;
101 edge_iterator ei;
103 FOR_EACH_BB_FN (bb, fn)
105 FOR_EACH_EDGE (e, ei, bb->succs)
106 free_edge (fn, e);
107 vec_safe_truncate (bb->succs, 0);
108 vec_safe_truncate (bb->preds, 0);
111 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (fn)->succs)
112 free_edge (fn, e);
113 vec_safe_truncate (EXIT_BLOCK_PTR_FOR_FN (fn)->preds, 0);
114 vec_safe_truncate (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs, 0);
116 gcc_assert (!n_edges_for_fn (fn));
119 /* Allocate memory for basic_block. */
121 basic_block
122 alloc_block (void)
124 basic_block bb;
125 bb = ggc_cleared_alloc<basic_block_def> ();
126 return bb;
129 /* Link block B to chain after AFTER. */
130 void
131 link_block (basic_block b, basic_block after)
133 b->next_bb = after->next_bb;
134 b->prev_bb = after;
135 after->next_bb = b;
136 b->next_bb->prev_bb = b;
139 /* Unlink block B from chain. */
140 void
141 unlink_block (basic_block b)
143 b->next_bb->prev_bb = b->prev_bb;
144 b->prev_bb->next_bb = b->next_bb;
145 b->prev_bb = NULL;
146 b->next_bb = NULL;
149 /* Sequentially order blocks and compact the arrays. */
150 void
151 compact_blocks (void)
153 int i;
155 SET_BASIC_BLOCK_FOR_FN (cfun, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (cfun));
156 SET_BASIC_BLOCK_FOR_FN (cfun, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (cfun));
158 if (df)
159 df_compact_blocks ();
160 else
162 basic_block bb;
164 i = NUM_FIXED_BLOCKS;
165 FOR_EACH_BB_FN (bb, cfun)
167 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
168 bb->index = i;
169 i++;
171 gcc_assert (i == n_basic_blocks_for_fn (cfun));
173 for (; i < last_basic_block_for_fn (cfun); i++)
174 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
176 last_basic_block_for_fn (cfun) = n_basic_blocks_for_fn (cfun);
179 /* Remove block B from the basic block array. */
181 void
182 expunge_block (basic_block b)
184 unlink_block (b);
185 SET_BASIC_BLOCK_FOR_FN (cfun, b->index, NULL);
186 n_basic_blocks_for_fn (cfun)--;
187 /* We should be able to ggc_free here, but we are not.
188 The dead SSA_NAMES are left pointing to dead statements that are pointing
189 to dead basic blocks making garbage collector to die.
190 We should be able to release all dead SSA_NAMES and at the same time we should
191 clear out BB pointer of dead statements consistently. */
194 /* Connect E to E->src. */
196 static inline void
197 connect_src (edge e)
199 vec_safe_push (e->src->succs, e);
200 df_mark_solutions_dirty ();
203 /* Connect E to E->dest. */
205 static inline void
206 connect_dest (edge e)
208 basic_block dest = e->dest;
209 vec_safe_push (dest->preds, e);
210 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
211 df_mark_solutions_dirty ();
214 /* Disconnect edge E from E->src. */
216 static inline void
217 disconnect_src (edge e)
219 basic_block src = e->src;
220 edge_iterator ei;
221 edge tmp;
223 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
225 if (tmp == e)
227 src->succs->unordered_remove (ei.index);
228 df_mark_solutions_dirty ();
229 return;
231 else
232 ei_next (&ei);
235 gcc_unreachable ();
238 /* Disconnect edge E from E->dest. */
240 static inline void
241 disconnect_dest (edge e)
243 basic_block dest = e->dest;
244 unsigned int dest_idx = e->dest_idx;
246 dest->preds->unordered_remove (dest_idx);
248 /* If we removed an edge in the middle of the edge vector, we need
249 to update dest_idx of the edge that moved into the "hole". */
250 if (dest_idx < EDGE_COUNT (dest->preds))
251 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
252 df_mark_solutions_dirty ();
255 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
256 created edge. Use this only if you are sure that this edge can't
257 possibly already exist. */
259 edge
260 unchecked_make_edge (basic_block src, basic_block dst, int flags)
262 edge e;
263 e = ggc_cleared_alloc<edge_def> ();
264 n_edges_for_fn (cfun)++;
266 e->src = src;
267 e->dest = dst;
268 e->flags = flags;
270 connect_src (e);
271 connect_dest (e);
273 execute_on_growing_pred (e);
274 return e;
277 /* Create an edge connecting SRC and DST with FLAGS optionally using
278 edge cache CACHE. Return the new edge, NULL if already exist. */
280 edge
281 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
283 if (edge_cache == NULL
284 || src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
285 || dst == EXIT_BLOCK_PTR_FOR_FN (cfun))
286 return make_edge (src, dst, flags);
288 /* Does the requested edge already exist? */
289 if (! bitmap_bit_p (edge_cache, dst->index))
291 /* The edge does not exist. Create one and update the
292 cache. */
293 bitmap_set_bit (edge_cache, dst->index);
294 return unchecked_make_edge (src, dst, flags);
297 /* At this point, we know that the requested edge exists. Adjust
298 flags if necessary. */
299 if (flags)
301 edge e = find_edge (src, dst);
302 e->flags |= flags;
305 return NULL;
308 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
309 created edge or NULL if already exist. */
311 edge
312 make_edge (basic_block src, basic_block dest, int flags)
314 edge e = find_edge (src, dest);
316 /* Make sure we don't add duplicate edges. */
317 if (e)
319 e->flags |= flags;
320 return NULL;
323 return unchecked_make_edge (src, dest, flags);
326 /* Create an edge connecting SRC to DEST and set probability by knowing
327 that it is the single edge leaving SRC. */
329 edge
330 make_single_succ_edge (basic_block src, basic_block dest, int flags)
332 edge e = make_edge (src, dest, flags);
334 e->probability = REG_BR_PROB_BASE;
335 e->count = src->count;
336 return e;
339 /* This function will remove an edge from the flow graph. */
341 void
342 remove_edge_raw (edge e)
344 remove_predictions_associated_with_edge (e);
345 execute_on_shrinking_pred (e);
347 disconnect_src (e);
348 disconnect_dest (e);
350 free_edge (cfun, e);
353 /* Redirect an edge's successor from one block to another. */
355 void
356 redirect_edge_succ (edge e, basic_block new_succ)
358 execute_on_shrinking_pred (e);
360 disconnect_dest (e);
362 e->dest = new_succ;
364 /* Reconnect the edge to the new successor block. */
365 connect_dest (e);
367 execute_on_growing_pred (e);
370 /* Redirect an edge's predecessor from one block to another. */
372 void
373 redirect_edge_pred (edge e, basic_block new_pred)
375 disconnect_src (e);
377 e->src = new_pred;
379 /* Reconnect the edge to the new predecessor block. */
380 connect_src (e);
383 /* Clear all basic block flags that do not have to be preserved. */
384 void
385 clear_bb_flags (void)
387 basic_block bb;
389 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
390 bb->flags &= BB_FLAGS_TO_PRESERVE;
393 /* Check the consistency of profile information. We can't do that
394 in verify_flow_info, as the counts may get invalid for incompletely
395 solved graphs, later eliminating of conditionals or roundoff errors.
396 It is still practical to have them reported for debugging of simple
397 testcases. */
398 static void
399 check_bb_profile (basic_block bb, FILE * file, int indent, int flags)
401 edge e;
402 int sum = 0;
403 gcov_type lsum;
404 edge_iterator ei;
405 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
406 char *s_indent = (char *) alloca ((size_t) indent + 1);
407 memset ((void *) s_indent, ' ', (size_t) indent);
408 s_indent[indent] = '\0';
410 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
411 return;
413 if (bb != EXIT_BLOCK_PTR_FOR_FN (fun))
415 FOR_EACH_EDGE (e, ei, bb->succs)
416 sum += e->probability;
417 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
418 fprintf (file, "%s%sInvalid sum of outgoing probabilities %.1f%%\n",
419 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
420 sum * 100.0 / REG_BR_PROB_BASE);
421 lsum = 0;
422 FOR_EACH_EDGE (e, ei, bb->succs)
423 lsum += e->count;
424 if (EDGE_COUNT (bb->succs)
425 && (lsum - bb->count > 100 || lsum - bb->count < -100))
426 fprintf (file, "%s%sInvalid sum of outgoing counts %i, should be %i\n",
427 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
428 (int) lsum, (int) bb->count);
430 if (bb != ENTRY_BLOCK_PTR_FOR_FN (fun))
432 sum = 0;
433 FOR_EACH_EDGE (e, ei, bb->preds)
434 sum += EDGE_FREQUENCY (e);
435 if (abs (sum - bb->frequency) > 100)
436 fprintf (file,
437 "%s%sInvalid sum of incoming frequencies %i, should be %i\n",
438 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
439 sum, bb->frequency);
440 lsum = 0;
441 FOR_EACH_EDGE (e, ei, bb->preds)
442 lsum += e->count;
443 if (lsum - bb->count > 100 || lsum - bb->count < -100)
444 fprintf (file, "%s%sInvalid sum of incoming counts %i, should be %i\n",
445 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
446 (int) lsum, (int) bb->count);
448 if (BB_PARTITION (bb) == BB_COLD_PARTITION)
450 /* Warn about inconsistencies in the partitioning that are
451 currently caused by profile insanities created via optimization. */
452 if (!probably_never_executed_bb_p (fun, bb))
453 fprintf (file, "%s%sBlock in cold partition with hot count\n",
454 (flags & TDF_COMMENT) ? ";; " : "", s_indent);
455 FOR_EACH_EDGE (e, ei, bb->preds)
457 if (!probably_never_executed_edge_p (fun, e))
458 fprintf (file,
459 "%s%sBlock in cold partition with incoming hot edge\n",
460 (flags & TDF_COMMENT) ? ";; " : "", s_indent);
465 void
466 dump_edge_info (FILE *file, edge e, int flags, int do_succ)
468 basic_block side = (do_succ ? e->dest : e->src);
469 bool do_details = false;
471 if ((flags & TDF_DETAILS) != 0
472 && (flags & TDF_SLIM) == 0)
473 do_details = true;
475 if (side->index == ENTRY_BLOCK)
476 fputs (" ENTRY", file);
477 else if (side->index == EXIT_BLOCK)
478 fputs (" EXIT", file);
479 else
480 fprintf (file, " %d", side->index);
482 if (e->probability && do_details)
483 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
485 if (e->count && do_details)
487 fputs (" count:", file);
488 fprintf (file, "%" PRId64, e->count);
491 if (e->flags && do_details)
493 static const char * const bitnames[] =
495 #define DEF_EDGE_FLAG(NAME,IDX) #NAME ,
496 #include "cfg-flags.def"
497 NULL
498 #undef DEF_EDGE_FLAG
500 bool comma = false;
501 int i, flags = e->flags;
503 gcc_assert (e->flags <= EDGE_ALL_FLAGS);
504 fputs (" (", file);
505 for (i = 0; flags; i++)
506 if (flags & (1 << i))
508 flags &= ~(1 << i);
510 if (comma)
511 fputc (',', file);
512 fputs (bitnames[i], file);
513 comma = true;
516 fputc (')', file);
520 DEBUG_FUNCTION void
521 debug (edge_def &ref)
523 /* FIXME (crowl): Is this desireable? */
524 dump_edge_info (stderr, &ref, 0, false);
525 dump_edge_info (stderr, &ref, 0, true);
528 DEBUG_FUNCTION void
529 debug (edge_def *ptr)
531 if (ptr)
532 debug (*ptr);
533 else
534 fprintf (stderr, "<nil>\n");
537 /* Simple routines to easily allocate AUX fields of basic blocks. */
539 static struct obstack block_aux_obstack;
540 static void *first_block_aux_obj = 0;
541 static struct obstack edge_aux_obstack;
542 static void *first_edge_aux_obj = 0;
544 /* Allocate a memory block of SIZE as BB->aux. The obstack must
545 be first initialized by alloc_aux_for_blocks. */
547 static void
548 alloc_aux_for_block (basic_block bb, int size)
550 /* Verify that aux field is clear. */
551 gcc_assert (!bb->aux && first_block_aux_obj);
552 bb->aux = obstack_alloc (&block_aux_obstack, size);
553 memset (bb->aux, 0, size);
556 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
557 alloc_aux_for_block for each basic block. */
559 void
560 alloc_aux_for_blocks (int size)
562 static int initialized;
564 if (!initialized)
566 gcc_obstack_init (&block_aux_obstack);
567 initialized = 1;
569 else
570 /* Check whether AUX data are still allocated. */
571 gcc_assert (!first_block_aux_obj);
573 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
574 if (size)
576 basic_block bb;
578 FOR_ALL_BB_FN (bb, cfun)
579 alloc_aux_for_block (bb, size);
583 /* Clear AUX pointers of all blocks. */
585 void
586 clear_aux_for_blocks (void)
588 basic_block bb;
590 FOR_ALL_BB_FN (bb, cfun)
591 bb->aux = NULL;
594 /* Free data allocated in block_aux_obstack and clear AUX pointers
595 of all blocks. */
597 void
598 free_aux_for_blocks (void)
600 gcc_assert (first_block_aux_obj);
601 obstack_free (&block_aux_obstack, first_block_aux_obj);
602 first_block_aux_obj = NULL;
604 clear_aux_for_blocks ();
607 /* Allocate a memory edge of SIZE as E->aux. The obstack must
608 be first initialized by alloc_aux_for_edges. */
610 void
611 alloc_aux_for_edge (edge e, int size)
613 /* Verify that aux field is clear. */
614 gcc_assert (!e->aux && first_edge_aux_obj);
615 e->aux = obstack_alloc (&edge_aux_obstack, size);
616 memset (e->aux, 0, size);
619 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
620 alloc_aux_for_edge for each basic edge. */
622 void
623 alloc_aux_for_edges (int size)
625 static int initialized;
627 if (!initialized)
629 gcc_obstack_init (&edge_aux_obstack);
630 initialized = 1;
632 else
633 /* Check whether AUX data are still allocated. */
634 gcc_assert (!first_edge_aux_obj);
636 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
637 if (size)
639 basic_block bb;
641 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
642 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
644 edge e;
645 edge_iterator ei;
647 FOR_EACH_EDGE (e, ei, bb->succs)
648 alloc_aux_for_edge (e, size);
653 /* Clear AUX pointers of all edges. */
655 void
656 clear_aux_for_edges (void)
658 basic_block bb;
659 edge e;
661 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
662 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
664 edge_iterator ei;
665 FOR_EACH_EDGE (e, ei, bb->succs)
666 e->aux = NULL;
670 /* Free data allocated in edge_aux_obstack and clear AUX pointers
671 of all edges. */
673 void
674 free_aux_for_edges (void)
676 gcc_assert (first_edge_aux_obj);
677 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
678 first_edge_aux_obj = NULL;
680 clear_aux_for_edges ();
683 DEBUG_FUNCTION void
684 debug_bb (basic_block bb)
686 dump_bb (stderr, bb, 0, dump_flags);
689 DEBUG_FUNCTION basic_block
690 debug_bb_n (int n)
692 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, n);
693 debug_bb (bb);
694 return bb;
697 /* Dumps cfg related information about basic block BB to OUTF.
698 If HEADER is true, dump things that appear before the instructions
699 contained in BB. If FOOTER is true, dump things that appear after.
700 Flags are the TDF_* masks as documented in dumpfile.h.
701 NB: With TDF_DETAILS, it is assumed that cfun is available, so
702 that maybe_hot_bb_p and probably_never_executed_bb_p don't ICE. */
704 void
705 dump_bb_info (FILE *outf, basic_block bb, int indent, int flags,
706 bool do_header, bool do_footer)
708 edge_iterator ei;
709 edge e;
710 static const char * const bb_bitnames[] =
712 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) #NAME ,
713 #include "cfg-flags.def"
714 NULL
715 #undef DEF_BASIC_BLOCK_FLAG
717 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
718 bool first;
719 char *s_indent = (char *) alloca ((size_t) indent + 1);
720 memset ((void *) s_indent, ' ', (size_t) indent);
721 s_indent[indent] = '\0';
723 gcc_assert (bb->flags <= BB_ALL_FLAGS);
725 if (do_header)
727 unsigned i;
729 if (flags & TDF_COMMENT)
730 fputs (";; ", outf);
731 fprintf (outf, "%sbasic block %d, loop depth %d",
732 s_indent, bb->index, bb_loop_depth (bb));
733 if (flags & TDF_DETAILS)
735 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
736 fprintf (outf, ", count " "%" PRId64,
737 (int64_t) bb->count);
738 fprintf (outf, ", freq %i", bb->frequency);
739 if (maybe_hot_bb_p (fun, bb))
740 fputs (", maybe hot", outf);
741 if (probably_never_executed_bb_p (fun, bb))
742 fputs (", probably never executed", outf);
744 fputc ('\n', outf);
746 if (flags & TDF_DETAILS)
748 check_bb_profile (bb, outf, indent, flags);
749 if (flags & TDF_COMMENT)
750 fputs (";; ", outf);
751 fprintf (outf, "%s prev block ", s_indent);
752 if (bb->prev_bb)
753 fprintf (outf, "%d", bb->prev_bb->index);
754 else
755 fprintf (outf, "(nil)");
756 fprintf (outf, ", next block ");
757 if (bb->next_bb)
758 fprintf (outf, "%d", bb->next_bb->index);
759 else
760 fprintf (outf, "(nil)");
762 fputs (", flags:", outf);
763 first = true;
764 for (i = 0; i < n_bitnames; i++)
765 if (bb->flags & (1 << i))
767 if (first)
768 fputs (" (", outf);
769 else
770 fputs (", ", outf);
771 first = false;
772 fputs (bb_bitnames[i], outf);
774 if (!first)
775 fputc (')', outf);
776 fputc ('\n', outf);
779 if (flags & TDF_COMMENT)
780 fputs (";; ", outf);
781 fprintf (outf, "%s pred: ", s_indent);
782 first = true;
783 FOR_EACH_EDGE (e, ei, bb->preds)
785 if (! first)
787 if (flags & TDF_COMMENT)
788 fputs (";; ", outf);
789 fprintf (outf, "%s ", s_indent);
791 first = false;
792 dump_edge_info (outf, e, flags, 0);
793 fputc ('\n', outf);
795 if (first)
796 fputc ('\n', outf);
799 if (do_footer)
801 if (flags & TDF_COMMENT)
802 fputs (";; ", outf);
803 fprintf (outf, "%s succ: ", s_indent);
804 first = true;
805 FOR_EACH_EDGE (e, ei, bb->succs)
807 if (! first)
809 if (flags & TDF_COMMENT)
810 fputs (";; ", outf);
811 fprintf (outf, "%s ", s_indent);
813 first = false;
814 dump_edge_info (outf, e, flags, 1);
815 fputc ('\n', outf);
817 if (first)
818 fputc ('\n', outf);
822 /* Dumps a brief description of cfg to FILE. */
824 void
825 brief_dump_cfg (FILE *file, int flags)
827 basic_block bb;
829 FOR_EACH_BB_FN (bb, cfun)
831 dump_bb_info (file, bb, 0,
832 flags & (TDF_COMMENT | TDF_DETAILS),
833 true, true);
837 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
838 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
839 redirected to destination of TAKEN_EDGE.
841 This function may leave the profile inconsistent in the case TAKEN_EDGE
842 frequency or count is believed to be lower than FREQUENCY or COUNT
843 respectively. */
844 void
845 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
846 gcov_type count, edge taken_edge)
848 edge c;
849 int prob;
850 edge_iterator ei;
852 bb->count -= count;
853 if (bb->count < 0)
855 if (dump_file)
856 fprintf (dump_file, "bb %i count became negative after threading",
857 bb->index);
858 bb->count = 0;
861 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
862 Watch for overflows. */
863 if (bb->frequency)
864 prob = GCOV_COMPUTE_SCALE (edge_frequency, bb->frequency);
865 else
866 prob = 0;
867 if (prob > taken_edge->probability)
869 if (dump_file)
870 fprintf (dump_file, "Jump threading proved probability of edge "
871 "%i->%i too small (it is %i, should be %i).\n",
872 taken_edge->src->index, taken_edge->dest->index,
873 taken_edge->probability, prob);
874 prob = taken_edge->probability;
877 /* Now rescale the probabilities. */
878 taken_edge->probability -= prob;
879 prob = REG_BR_PROB_BASE - prob;
880 bb->frequency -= edge_frequency;
881 if (bb->frequency < 0)
882 bb->frequency = 0;
883 if (prob <= 0)
885 if (dump_file)
886 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
887 "frequency of block should end up being 0, it is %i\n",
888 bb->index, bb->frequency);
889 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
890 ei = ei_start (bb->succs);
891 ei_next (&ei);
892 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
893 c->probability = 0;
895 else if (prob != REG_BR_PROB_BASE)
897 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
899 FOR_EACH_EDGE (c, ei, bb->succs)
901 /* Protect from overflow due to additional scaling. */
902 if (c->probability > prob)
903 c->probability = REG_BR_PROB_BASE;
904 else
906 c->probability = RDIV (c->probability * scale, 65536);
907 if (c->probability > REG_BR_PROB_BASE)
908 c->probability = REG_BR_PROB_BASE;
913 gcc_assert (bb == taken_edge->src);
914 taken_edge->count -= count;
915 if (taken_edge->count < 0)
917 if (dump_file)
918 fprintf (dump_file, "edge %i->%i count became negative after threading",
919 taken_edge->src->index, taken_edge->dest->index);
920 taken_edge->count = 0;
924 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
925 by NUM/DEN, in int arithmetic. May lose some accuracy. */
926 void
927 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
929 int i;
930 edge e;
931 if (num < 0)
932 num = 0;
934 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
935 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
936 and still safely fit in int during calculations. */
937 if (den > 1000)
939 if (num > 1000000)
940 return;
942 num = RDIV (1000 * num, den);
943 den = 1000;
945 if (num > 100 * den)
946 return;
948 for (i = 0; i < nbbs; i++)
950 edge_iterator ei;
951 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
952 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
953 if (bbs[i]->frequency > BB_FREQ_MAX)
954 bbs[i]->frequency = BB_FREQ_MAX;
955 bbs[i]->count = RDIV (bbs[i]->count * num, den);
956 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
957 e->count = RDIV (e->count * num, den);
961 /* numbers smaller than this value are safe to multiply without getting
962 64bit overflow. */
963 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (int64_t) * 4 - 1))
965 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
966 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
967 function but considerably slower. */
968 void
969 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
970 gcov_type den)
972 int i;
973 edge e;
974 gcov_type fraction = RDIV (num * 65536, den);
976 gcc_assert (fraction >= 0);
978 if (num < MAX_SAFE_MULTIPLIER)
979 for (i = 0; i < nbbs; i++)
981 edge_iterator ei;
982 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
983 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
984 bbs[i]->count = RDIV (bbs[i]->count * num, den);
985 else
986 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
987 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
988 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
989 e->count = RDIV (e->count * num, den);
990 else
991 e->count = RDIV (e->count * fraction, 65536);
993 else
994 for (i = 0; i < nbbs; i++)
996 edge_iterator ei;
997 if (sizeof (gcov_type) > sizeof (int))
998 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
999 else
1000 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1001 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1002 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1003 e->count = RDIV (e->count * fraction, 65536);
1007 /* Helper types for hash tables. */
1009 struct htab_bb_copy_original_entry
1011 /* Block we are attaching info to. */
1012 int index1;
1013 /* Index of original or copy (depending on the hashtable) */
1014 int index2;
1017 struct bb_copy_hasher : nofree_ptr_hash <htab_bb_copy_original_entry>
1019 static inline hashval_t hash (const htab_bb_copy_original_entry *);
1020 static inline bool equal (const htab_bb_copy_original_entry *existing,
1021 const htab_bb_copy_original_entry * candidate);
1024 inline hashval_t
1025 bb_copy_hasher::hash (const htab_bb_copy_original_entry *data)
1027 return data->index1;
1030 inline bool
1031 bb_copy_hasher::equal (const htab_bb_copy_original_entry *data,
1032 const htab_bb_copy_original_entry *data2)
1034 return data->index1 == data2->index1;
1037 /* Data structures used to maintain mapping between basic blocks and
1038 copies. */
1039 static hash_table<bb_copy_hasher> *bb_original;
1040 static hash_table<bb_copy_hasher> *bb_copy;
1042 /* And between loops and copies. */
1043 static hash_table<bb_copy_hasher> *loop_copy;
1044 static object_allocator<htab_bb_copy_original_entry> *original_copy_bb_pool;
1046 /* Initialize the data structures to maintain mapping between blocks
1047 and its copies. */
1048 void
1049 initialize_original_copy_tables (void)
1051 original_copy_bb_pool = new object_allocator<htab_bb_copy_original_entry>
1052 ("original_copy");
1053 bb_original = new hash_table<bb_copy_hasher> (10);
1054 bb_copy = new hash_table<bb_copy_hasher> (10);
1055 loop_copy = new hash_table<bb_copy_hasher> (10);
1058 /* Free the data structures to maintain mapping between blocks and
1059 its copies. */
1060 void
1061 free_original_copy_tables (void)
1063 gcc_assert (original_copy_bb_pool);
1064 delete bb_copy;
1065 bb_copy = NULL;
1066 delete bb_original;
1067 bb_copy = NULL;
1068 delete loop_copy;
1069 loop_copy = NULL;
1070 delete original_copy_bb_pool;
1071 original_copy_bb_pool = NULL;
1074 /* Removes the value associated with OBJ from table TAB. */
1076 static void
1077 copy_original_table_clear (hash_table<bb_copy_hasher> *tab, unsigned obj)
1079 htab_bb_copy_original_entry **slot;
1080 struct htab_bb_copy_original_entry key, *elt;
1082 if (!original_copy_bb_pool)
1083 return;
1085 key.index1 = obj;
1086 slot = tab->find_slot (&key, NO_INSERT);
1087 if (!slot)
1088 return;
1090 elt = *slot;
1091 tab->clear_slot (slot);
1092 original_copy_bb_pool->remove (elt);
1095 /* Sets the value associated with OBJ in table TAB to VAL.
1096 Do nothing when data structures are not initialized. */
1098 static void
1099 copy_original_table_set (hash_table<bb_copy_hasher> *tab,
1100 unsigned obj, unsigned val)
1102 struct htab_bb_copy_original_entry **slot;
1103 struct htab_bb_copy_original_entry key;
1105 if (!original_copy_bb_pool)
1106 return;
1108 key.index1 = obj;
1109 slot = tab->find_slot (&key, INSERT);
1110 if (!*slot)
1112 *slot = original_copy_bb_pool->allocate ();
1113 (*slot)->index1 = obj;
1115 (*slot)->index2 = val;
1118 /* Set original for basic block. Do nothing when data structures are not
1119 initialized so passes not needing this don't need to care. */
1120 void
1121 set_bb_original (basic_block bb, basic_block original)
1123 copy_original_table_set (bb_original, bb->index, original->index);
1126 /* Get the original basic block. */
1127 basic_block
1128 get_bb_original (basic_block bb)
1130 struct htab_bb_copy_original_entry *entry;
1131 struct htab_bb_copy_original_entry key;
1133 gcc_assert (original_copy_bb_pool);
1135 key.index1 = bb->index;
1136 entry = bb_original->find (&key);
1137 if (entry)
1138 return BASIC_BLOCK_FOR_FN (cfun, entry->index2);
1139 else
1140 return NULL;
1143 /* Set copy for basic block. Do nothing when data structures are not
1144 initialized so passes not needing this don't need to care. */
1145 void
1146 set_bb_copy (basic_block bb, basic_block copy)
1148 copy_original_table_set (bb_copy, bb->index, copy->index);
1151 /* Get the copy of basic block. */
1152 basic_block
1153 get_bb_copy (basic_block bb)
1155 struct htab_bb_copy_original_entry *entry;
1156 struct htab_bb_copy_original_entry key;
1158 gcc_assert (original_copy_bb_pool);
1160 key.index1 = bb->index;
1161 entry = bb_copy->find (&key);
1162 if (entry)
1163 return BASIC_BLOCK_FOR_FN (cfun, entry->index2);
1164 else
1165 return NULL;
1168 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1169 initialized so passes not needing this don't need to care. */
1171 void
1172 set_loop_copy (struct loop *loop, struct loop *copy)
1174 if (!copy)
1175 copy_original_table_clear (loop_copy, loop->num);
1176 else
1177 copy_original_table_set (loop_copy, loop->num, copy->num);
1180 /* Get the copy of LOOP. */
1182 struct loop *
1183 get_loop_copy (struct loop *loop)
1185 struct htab_bb_copy_original_entry *entry;
1186 struct htab_bb_copy_original_entry key;
1188 gcc_assert (original_copy_bb_pool);
1190 key.index1 = loop->num;
1191 entry = loop_copy->find (&key);
1192 if (entry)
1193 return get_loop (cfun, entry->index2);
1194 else
1195 return NULL;