2001-01-23 Alexandre Petit-Bianco <apbianco@cygnus.com>
[official-gcc.git] / gcc / regclass.c
blob610de28f1b4dd4033470360c25da04b68bcdd179
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "basic-block.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "real.h"
40 #include "toplev.h"
41 #include "output.h"
42 #include "ggc.h"
44 #ifndef REGISTER_MOVE_COST
45 #define REGISTER_MOVE_COST(m, x, y) 2
46 #endif
48 static void init_reg_sets_1 PARAMS ((void));
49 static void init_reg_modes PARAMS ((void));
51 /* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
53 reloads for pseudos auto-incremented since reload can't handle it. */
55 #ifdef AUTO_INC_DEC
56 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
57 #define FORBIDDEN_INC_DEC_CLASSES
58 #endif
59 #endif
61 /* Register tables used by many passes. */
63 /* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
66 a pseudo reg for general use. */
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
70 /* Same info as a HARD_REG_SET. */
72 HARD_REG_SET fixed_reg_set;
74 /* Data for initializing the above. */
76 static char initial_fixed_regs[] = FIXED_REGISTERS;
78 /* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
84 char call_used_regs[FIRST_PSEUDO_REGISTER];
86 /* Same info as a HARD_REG_SET. */
88 HARD_REG_SET call_used_reg_set;
90 /* HARD_REG_SET of registers we want to avoid caller saving. */
91 HARD_REG_SET losing_caller_save_reg_set;
93 /* Data for initializing the above. */
95 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
97 /* Indexed by hard register number, contains 1 for registers that are
98 fixed use or call used registers that cannot hold quantities across
99 calls even if we are willing to save and restore them. call fixed
100 registers are a subset of call used registers. */
102 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
104 /* The same info as a HARD_REG_SET. */
106 HARD_REG_SET call_fixed_reg_set;
108 /* Number of non-fixed registers. */
110 int n_non_fixed_regs;
112 /* Indexed by hard register number, contains 1 for registers
113 that are being used for global register decls.
114 These must be exempt from ordinary flow analysis
115 and are also considered fixed. */
117 char global_regs[FIRST_PSEUDO_REGISTER];
119 /* Table of register numbers in the order in which to try to use them. */
120 #ifdef REG_ALLOC_ORDER
121 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
123 /* The inverse of reg_alloc_order. */
124 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
125 #endif
127 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
129 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
131 /* The same information, but as an array of unsigned ints. We copy from
132 these unsigned ints to the table above. We do this so the tm.h files
133 do not have to be aware of the wordsize for machines with <= 64 regs. */
135 #define N_REG_INTS \
136 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
138 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
139 = REG_CLASS_CONTENTS;
141 /* For each reg class, number of regs it contains. */
143 unsigned int reg_class_size[N_REG_CLASSES];
145 /* For each reg class, table listing all the containing classes. */
147 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
149 /* For each reg class, table listing all the classes contained in it. */
151 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
153 /* For each pair of reg classes,
154 a largest reg class contained in their union. */
156 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
158 /* For each pair of reg classes,
159 the smallest reg class containing their union. */
161 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
163 /* Array containing all of the register names. Unless
164 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
166 #ifdef DEBUG_REGISTER_NAMES
167 const char * reg_names[] = REGISTER_NAMES;
168 #endif
170 /* For each hard register, the widest mode object that it can contain.
171 This will be a MODE_INT mode if the register can hold integers. Otherwise
172 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
173 register. */
175 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
177 /* Maximum cost of moving from a register in one class to a register in
178 another class. Based on REGISTER_MOVE_COST. */
180 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
182 /* Similar, but here we don't have to move if the first index is a subset
183 of the second so in that case the cost is zero. */
185 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
187 /* Similar, but here we don't have to move if the first index is a superset
188 of the second so in that case the cost is zero. */
190 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
192 #ifdef FORBIDDEN_INC_DEC_CLASSES
194 /* These are the classes that regs which are auto-incremented or decremented
195 cannot be put in. */
197 static int forbidden_inc_dec_class[N_REG_CLASSES];
199 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
200 context. */
202 static char *in_inc_dec;
204 #endif /* FORBIDDEN_INC_DEC_CLASSES */
206 #ifdef CLASS_CANNOT_CHANGE_MODE
208 /* These are the classes containing only registers that can be used in
209 a SUBREG expression that changes the mode of the register in some
210 way that is illegal. */
212 static int class_can_change_mode[N_REG_CLASSES];
214 /* Registers, including pseudos, which change modes in some way that
215 is illegal. */
217 static regset reg_changes_mode;
219 #endif /* CLASS_CANNOT_CHANGE_MODE */
221 #ifdef HAVE_SECONDARY_RELOADS
223 /* Sample MEM values for use by memory_move_secondary_cost. */
225 static rtx top_of_stack[MAX_MACHINE_MODE];
227 #endif /* HAVE_SECONDARY_RELOADS */
229 /* Linked list of reg_info structures allocated for reg_n_info array.
230 Grouping all of the allocated structures together in one lump
231 means only one call to bzero to clear them, rather than n smaller
232 calls. */
233 struct reg_info_data {
234 struct reg_info_data *next; /* next set of reg_info structures */
235 size_t min_index; /* minimum index # */
236 size_t max_index; /* maximum index # */
237 char used_p; /* non-zero if this has been used previously */
238 reg_info data[1]; /* beginning of the reg_info data */
241 static struct reg_info_data *reg_info_head;
243 /* No more global register variables may be declared; true once
244 regclass has been initialized. */
246 static int no_global_reg_vars = 0;
249 /* Function called only once to initialize the above data on reg usage.
250 Once this is done, various switches may override. */
252 void
253 init_reg_sets ()
255 register int i, j;
257 /* First copy the register information from the initial int form into
258 the regsets. */
260 for (i = 0; i < N_REG_CLASSES; i++)
262 CLEAR_HARD_REG_SET (reg_class_contents[i]);
264 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
265 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
266 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
267 SET_HARD_REG_BIT (reg_class_contents[i], j);
270 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
271 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
272 memset (global_regs, 0, sizeof global_regs);
274 /* Do any additional initialization regsets may need */
275 INIT_ONCE_REG_SET ();
277 #ifdef REG_ALLOC_ORDER
278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
279 inv_reg_alloc_order[reg_alloc_order[i]] = i;
280 #endif
283 /* After switches have been processed, which perhaps alter
284 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
286 static void
287 init_reg_sets_1 ()
289 register unsigned int i, j;
290 register unsigned int /* enum machine_mode */ m;
292 /* This macro allows the fixed or call-used registers
293 and the register classes to depend on target flags. */
295 #ifdef CONDITIONAL_REGISTER_USAGE
296 CONDITIONAL_REGISTER_USAGE;
297 #endif
299 /* Compute number of hard regs in each class. */
301 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
302 for (i = 0; i < N_REG_CLASSES; i++)
303 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
304 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
305 reg_class_size[i]++;
307 /* Initialize the table of subunions.
308 reg_class_subunion[I][J] gets the largest-numbered reg-class
309 that is contained in the union of classes I and J. */
311 for (i = 0; i < N_REG_CLASSES; i++)
313 for (j = 0; j < N_REG_CLASSES; j++)
315 #ifdef HARD_REG_SET
316 register /* Declare it register if it's a scalar. */
317 #endif
318 HARD_REG_SET c;
319 register int k;
321 COPY_HARD_REG_SET (c, reg_class_contents[i]);
322 IOR_HARD_REG_SET (c, reg_class_contents[j]);
323 for (k = 0; k < N_REG_CLASSES; k++)
325 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
326 subclass1);
327 continue;
329 subclass1:
330 /* keep the largest subclass */ /* SPEE 900308 */
331 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
332 reg_class_contents[(int) reg_class_subunion[i][j]],
333 subclass2);
334 reg_class_subunion[i][j] = (enum reg_class) k;
335 subclass2:
341 /* Initialize the table of superunions.
342 reg_class_superunion[I][J] gets the smallest-numbered reg-class
343 containing the union of classes I and J. */
345 for (i = 0; i < N_REG_CLASSES; i++)
347 for (j = 0; j < N_REG_CLASSES; j++)
349 #ifdef HARD_REG_SET
350 register /* Declare it register if it's a scalar. */
351 #endif
352 HARD_REG_SET c;
353 register int k;
355 COPY_HARD_REG_SET (c, reg_class_contents[i]);
356 IOR_HARD_REG_SET (c, reg_class_contents[j]);
357 for (k = 0; k < N_REG_CLASSES; k++)
358 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
360 superclass:
361 reg_class_superunion[i][j] = (enum reg_class) k;
365 /* Initialize the tables of subclasses and superclasses of each reg class.
366 First clear the whole table, then add the elements as they are found. */
368 for (i = 0; i < N_REG_CLASSES; i++)
370 for (j = 0; j < N_REG_CLASSES; j++)
372 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
373 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
377 for (i = 0; i < N_REG_CLASSES; i++)
379 if (i == (int) NO_REGS)
380 continue;
382 for (j = i + 1; j < N_REG_CLASSES; j++)
384 enum reg_class *p;
386 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
387 subclass);
388 continue;
389 subclass:
390 /* Reg class I is a subclass of J.
391 Add J to the table of superclasses of I. */
392 p = &reg_class_superclasses[i][0];
393 while (*p != LIM_REG_CLASSES) p++;
394 *p = (enum reg_class) j;
395 /* Add I to the table of superclasses of J. */
396 p = &reg_class_subclasses[j][0];
397 while (*p != LIM_REG_CLASSES) p++;
398 *p = (enum reg_class) i;
402 /* Initialize "constant" tables. */
404 CLEAR_HARD_REG_SET (fixed_reg_set);
405 CLEAR_HARD_REG_SET (call_used_reg_set);
406 CLEAR_HARD_REG_SET (call_fixed_reg_set);
408 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
410 n_non_fixed_regs = 0;
412 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
414 if (fixed_regs[i])
415 SET_HARD_REG_BIT (fixed_reg_set, i);
416 else
417 n_non_fixed_regs++;
419 if (call_used_regs[i])
420 SET_HARD_REG_BIT (call_used_reg_set, i);
421 if (call_fixed_regs[i])
422 SET_HARD_REG_BIT (call_fixed_reg_set, i);
423 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
424 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
427 /* Initialize the move cost table. Find every subset of each class
428 and take the maximum cost of moving any subset to any other. */
430 for (m = 0; m < MAX_MACHINE_MODE; m++)
431 for (i = 0; i < N_REG_CLASSES; i++)
432 for (j = 0; j < N_REG_CLASSES; j++)
434 int cost = i == j ? 2 : REGISTER_MOVE_COST (m, i, j);
435 enum reg_class *p1, *p2;
437 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
438 if (*p2 != i)
439 cost = MAX (cost, REGISTER_MOVE_COST (m, i, *p2));
441 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
443 if (*p1 != j)
444 cost = MAX (cost, REGISTER_MOVE_COST (m, *p1, j));
446 for (p2 = &reg_class_subclasses[j][0];
447 *p2 != LIM_REG_CLASSES; p2++)
448 if (*p1 != *p2)
449 cost = MAX (cost, REGISTER_MOVE_COST (m, *p1, *p2));
452 move_cost[m][i][j] = cost;
454 if (reg_class_subset_p (i, j))
455 may_move_in_cost[m][i][j] = 0;
456 else
457 may_move_in_cost[m][i][j] = cost;
459 if (reg_class_subset_p (j, i))
460 may_move_out_cost[m][i][j] = 0;
461 else
462 may_move_out_cost[m][i][j] = cost;
465 #ifdef CLASS_CANNOT_CHANGE_MODE
467 HARD_REG_SET c;
468 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
470 for (i = 0; i < N_REG_CLASSES; i++)
472 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
473 class_can_change_mode [i] = 0;
474 continue;
475 ok_class:
476 class_can_change_mode [i] = 1;
479 #endif /* CLASS_CANNOT_CHANGE_MODE */
482 /* Compute the table of register modes.
483 These values are used to record death information for individual registers
484 (as opposed to a multi-register mode). */
486 static void
487 init_reg_modes ()
489 register int i;
491 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
493 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
495 /* If we couldn't find a valid mode, just use the previous mode.
496 ??? One situation in which we need to do this is on the mips where
497 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
498 to use DF mode for the even registers and VOIDmode for the odd
499 (for the cpu models where the odd ones are inaccessible). */
500 if (reg_raw_mode[i] == VOIDmode)
501 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
505 /* Finish initializing the register sets and
506 initialize the register modes. */
508 void
509 init_regs ()
511 /* This finishes what was started by init_reg_sets, but couldn't be done
512 until after register usage was specified. */
513 init_reg_sets_1 ();
515 init_reg_modes ();
517 #ifdef HAVE_SECONDARY_RELOADS
519 /* Make some fake stack-frame MEM references for use in
520 memory_move_secondary_cost. */
521 int i;
523 for (i = 0; i < MAX_MACHINE_MODE; i++)
524 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
525 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
527 #endif
530 #ifdef HAVE_SECONDARY_RELOADS
532 /* Compute extra cost of moving registers to/from memory due to reloads.
533 Only needed if secondary reloads are required for memory moves. */
536 memory_move_secondary_cost (mode, class, in)
537 enum machine_mode mode;
538 enum reg_class class;
539 int in;
541 enum reg_class altclass;
542 int partial_cost = 0;
543 /* We need a memory reference to feed to SECONDARY... macros. */
544 /* mem may be unused even if the SECONDARY_ macros are defined. */
545 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
548 if (in)
550 #ifdef SECONDARY_INPUT_RELOAD_CLASS
551 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
552 #else
553 altclass = NO_REGS;
554 #endif
556 else
558 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
559 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
560 #else
561 altclass = NO_REGS;
562 #endif
565 if (altclass == NO_REGS)
566 return 0;
568 if (in)
569 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
570 else
571 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
573 if (class == altclass)
574 /* This isn't simply a copy-to-temporary situation. Can't guess
575 what it is, so MEMORY_MOVE_COST really ought not to be calling
576 here in that case.
578 I'm tempted to put in an abort here, but returning this will
579 probably only give poor estimates, which is what we would've
580 had before this code anyways. */
581 return partial_cost;
583 /* Check if the secondary reload register will also need a
584 secondary reload. */
585 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
587 #endif
589 /* Return a machine mode that is legitimate for hard reg REGNO and large
590 enough to save nregs. If we can't find one, return VOIDmode. */
592 enum machine_mode
593 choose_hard_reg_mode (regno, nregs)
594 unsigned int regno ATTRIBUTE_UNUSED;
595 unsigned int nregs;
597 enum machine_mode found_mode = VOIDmode, mode;
599 /* We first look for the largest integer mode that can be validly
600 held in REGNO. If none, we look for the largest floating-point mode.
601 If we still didn't find a valid mode, try CCmode. */
603 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
604 mode != VOIDmode;
605 mode = GET_MODE_WIDER_MODE (mode))
606 if (HARD_REGNO_NREGS (regno, mode) == nregs
607 && HARD_REGNO_MODE_OK (regno, mode))
608 found_mode = mode;
610 if (found_mode != VOIDmode)
611 return found_mode;
613 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
614 mode != VOIDmode;
615 mode = GET_MODE_WIDER_MODE (mode))
616 if (HARD_REGNO_NREGS (regno, mode) == nregs
617 && HARD_REGNO_MODE_OK (regno, mode))
618 found_mode = mode;
620 if (found_mode != VOIDmode)
621 return found_mode;
623 /* Iterate over all of the CCmodes. */
624 for (mode = CCmode; mode < NUM_MACHINE_MODES; ++mode)
625 if (HARD_REGNO_NREGS (regno, mode) == nregs
626 && HARD_REGNO_MODE_OK (regno, mode))
627 return mode;
629 /* We can't find a mode valid for this register. */
630 return VOIDmode;
633 /* Specify the usage characteristics of the register named NAME.
634 It should be a fixed register if FIXED and a
635 call-used register if CALL_USED. */
637 void
638 fix_register (name, fixed, call_used)
639 const char *name;
640 int fixed, call_used;
642 int i;
644 /* Decode the name and update the primary form of
645 the register info. */
647 if ((i = decode_reg_name (name)) >= 0)
649 if ((i == STACK_POINTER_REGNUM
650 #ifdef HARD_FRAME_POINTER_REGNUM
651 || i == HARD_FRAME_POINTER_REGNUM
652 #else
653 || i == FRAME_POINTER_REGNUM
654 #endif
656 && (fixed == 0 || call_used == 0))
658 static const char * const what_option[2][2] = {
659 { "call-saved", "call-used" },
660 { "no-such-option", "fixed" }};
662 error ("can't use '%s' as a %s register", name,
663 what_option[fixed][call_used]);
665 else
667 fixed_regs[i] = fixed;
668 call_used_regs[i] = call_used;
671 else
673 warning ("unknown register name: %s", name);
677 /* Mark register number I as global. */
679 void
680 globalize_reg (i)
681 int i;
683 if (fixed_regs[i] == 0 && no_global_reg_vars)
684 error ("global register variable follows a function definition");
686 if (global_regs[i])
688 warning ("register used for two global register variables");
689 return;
692 if (call_used_regs[i] && ! fixed_regs[i])
693 warning ("call-clobbered register used for global register variable");
695 global_regs[i] = 1;
697 /* If already fixed, nothing else to do. */
698 if (fixed_regs[i])
699 return;
701 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
702 n_non_fixed_regs--;
704 SET_HARD_REG_BIT (fixed_reg_set, i);
705 SET_HARD_REG_BIT (call_used_reg_set, i);
706 SET_HARD_REG_BIT (call_fixed_reg_set, i);
709 /* Now the data and code for the `regclass' pass, which happens
710 just before local-alloc. */
712 /* The `costs' struct records the cost of using a hard register of each class
713 and of using memory for each pseudo. We use this data to set up
714 register class preferences. */
716 struct costs
718 int cost[N_REG_CLASSES];
719 int mem_cost;
722 /* Structure used to record preferrences of given pseudo. */
723 struct reg_pref
725 /* (enum reg_class) prefclass is the preferred class. */
726 char prefclass;
728 /* altclass is a register class that we should use for allocating
729 pseudo if no register in the preferred class is available.
730 If no register in this class is available, memory is preferred.
732 It might appear to be more general to have a bitmask of classes here,
733 but since it is recommended that there be a class corresponding to the
734 union of most major pair of classes, that generality is not required. */
735 char altclass;
738 /* Record the cost of each class for each pseudo. */
740 static struct costs *costs;
742 /* Initialized once, and used to initialize cost values for each insn. */
744 static struct costs init_cost;
746 /* Record preferrences of each pseudo.
747 This is available after `regclass' is run. */
749 static struct reg_pref *reg_pref;
751 /* Allocated buffers for reg_pref. */
753 static struct reg_pref *reg_pref_buffer;
755 /* Account for the fact that insns within a loop are executed very commonly,
756 but don't keep doing this as loops go too deep. */
758 static int loop_cost;
760 static rtx scan_one_insn PARAMS ((rtx, int));
761 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
762 static void dump_regclass PARAMS ((FILE *));
763 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
764 const char **, rtx,
765 struct costs *, struct reg_pref *));
766 static int copy_cost PARAMS ((rtx, enum machine_mode,
767 enum reg_class, int));
768 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
769 #ifdef FORBIDDEN_INC_DEC_CLASSES
770 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
771 #endif
772 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
774 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
775 This function is sometimes called before the info has been computed.
776 When that happens, just return GENERAL_REGS, which is innocuous. */
778 enum reg_class
779 reg_preferred_class (regno)
780 int regno;
782 if (reg_pref == 0)
783 return GENERAL_REGS;
784 return (enum reg_class) reg_pref[regno].prefclass;
787 enum reg_class
788 reg_alternate_class (regno)
789 int regno;
791 if (reg_pref == 0)
792 return ALL_REGS;
794 return (enum reg_class) reg_pref[regno].altclass;
797 /* Initialize some global data for this pass. */
799 void
800 regclass_init ()
802 int i;
804 init_cost.mem_cost = 10000;
805 for (i = 0; i < N_REG_CLASSES; i++)
806 init_cost.cost[i] = 10000;
808 /* This prevents dump_flow_info from losing if called
809 before regclass is run. */
810 reg_pref = NULL;
812 /* No more global register variables may be declared. */
813 no_global_reg_vars = 1;
816 /* Dump register costs. */
817 static void
818 dump_regclass (dump)
819 FILE *dump;
821 static const char *const reg_class_names[] = REG_CLASS_NAMES;
822 int i;
823 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
825 enum reg_class class;
826 if (REG_N_REFS (i))
828 fprintf (dump, " Register %i costs:", i);
829 for (class = 0; class < N_REG_CLASSES; class++)
830 fprintf (dump, " %s:%i", reg_class_names[(int) class],
831 costs[i].cost[class]);
832 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
838 /* Calculate the costs of insn operands. */
840 static void
841 record_operand_costs (insn, op_costs, reg_pref)
842 rtx insn;
843 struct costs *op_costs;
844 struct reg_pref *reg_pref;
846 const char *constraints[MAX_RECOG_OPERANDS];
847 enum machine_mode modes[MAX_RECOG_OPERANDS];
848 int i;
850 for (i = 0; i < recog_data.n_operands; i++)
852 constraints[i] = recog_data.constraints[i];
853 modes[i] = recog_data.operand_mode[i];
856 /* If we get here, we are set up to record the costs of all the
857 operands for this insn. Start by initializing the costs.
858 Then handle any address registers. Finally record the desired
859 classes for any pseudos, doing it twice if some pair of
860 operands are commutative. */
862 for (i = 0; i < recog_data.n_operands; i++)
864 op_costs[i] = init_cost;
866 if (GET_CODE (recog_data.operand[i]) == SUBREG)
868 rtx inner = SUBREG_REG (recog_data.operand[i]);
869 #ifdef CLASS_CANNOT_CHANGE_MODE
870 if (GET_CODE (inner) == REG
871 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
872 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
873 #endif
874 recog_data.operand[i] = inner;
877 if (GET_CODE (recog_data.operand[i]) == MEM)
878 record_address_regs (XEXP (recog_data.operand[i], 0),
879 BASE_REG_CLASS, loop_cost * 2);
880 else if (constraints[i][0] == 'p')
881 record_address_regs (recog_data.operand[i],
882 BASE_REG_CLASS, loop_cost * 2);
885 /* Check for commutative in a separate loop so everything will
886 have been initialized. We must do this even if one operand
887 is a constant--see addsi3 in m68k.md. */
889 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
890 if (constraints[i][0] == '%')
892 const char *xconstraints[MAX_RECOG_OPERANDS];
893 int j;
895 /* Handle commutative operands by swapping the constraints.
896 We assume the modes are the same. */
898 for (j = 0; j < recog_data.n_operands; j++)
899 xconstraints[j] = constraints[j];
901 xconstraints[i] = constraints[i+1];
902 xconstraints[i+1] = constraints[i];
903 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
904 recog_data.operand, modes,
905 xconstraints, insn, op_costs, reg_pref);
908 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
909 recog_data.operand, modes,
910 constraints, insn, op_costs, reg_pref);
913 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
914 time it would save code to put a certain register in a certain class.
915 PASS, when nonzero, inhibits some optimizations which need only be done
916 once.
917 Return the last insn processed, so that the scan can be continued from
918 there. */
920 static rtx
921 scan_one_insn (insn, pass)
922 rtx insn;
923 int pass;
925 enum rtx_code code = GET_CODE (insn);
926 enum rtx_code pat_code;
927 rtx set, note;
928 int i, j;
929 struct costs op_costs[MAX_RECOG_OPERANDS];
931 if (GET_RTX_CLASS (code) != 'i')
932 return insn;
934 pat_code = GET_CODE (PATTERN (insn));
935 if (pat_code == USE
936 || pat_code == CLOBBER
937 || pat_code == ASM_INPUT
938 || pat_code == ADDR_VEC
939 || pat_code == ADDR_DIFF_VEC)
940 return insn;
942 set = single_set (insn);
943 extract_insn (insn);
945 /* If this insn loads a parameter from its stack slot, then
946 it represents a savings, rather than a cost, if the
947 parameter is stored in memory. Record this fact. */
949 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
950 && GET_CODE (SET_SRC (set)) == MEM
951 && (note = find_reg_note (insn, REG_EQUIV,
952 NULL_RTX)) != 0
953 && GET_CODE (XEXP (note, 0)) == MEM)
955 costs[REGNO (SET_DEST (set))].mem_cost
956 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
957 GENERAL_REGS, 1)
958 * loop_cost);
959 record_address_regs (XEXP (SET_SRC (set), 0),
960 BASE_REG_CLASS, loop_cost * 2);
961 return insn;
964 /* Improve handling of two-address insns such as
965 (set X (ashift CONST Y)) where CONST must be made to
966 match X. Change it into two insns: (set X CONST)
967 (set X (ashift X Y)). If we left this for reloading, it
968 would probably get three insns because X and Y might go
969 in the same place. This prevents X and Y from receiving
970 the same hard reg.
972 We can only do this if the modes of operands 0 and 1
973 (which might not be the same) are tieable and we only need
974 do this during our first pass. */
976 if (pass == 0 && optimize
977 && recog_data.n_operands >= 3
978 && recog_data.constraints[1][0] == '0'
979 && recog_data.constraints[1][1] == 0
980 && CONSTANT_P (recog_data.operand[1])
981 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
982 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
983 && GET_CODE (recog_data.operand[0]) == REG
984 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
985 recog_data.operand_mode[1]))
987 rtx previnsn = prev_real_insn (insn);
988 rtx dest
989 = gen_lowpart (recog_data.operand_mode[1],
990 recog_data.operand[0]);
991 rtx newinsn
992 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
994 /* If this insn was the start of a basic block,
995 include the new insn in that block.
996 We need not check for code_label here;
997 while a basic block can start with a code_label,
998 INSN could not be at the beginning of that block. */
999 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1001 int b;
1002 for (b = 0; b < n_basic_blocks; b++)
1003 if (insn == BLOCK_HEAD (b))
1004 BLOCK_HEAD (b) = newinsn;
1007 /* This makes one more setting of new insns's dest. */
1008 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1010 *recog_data.operand_loc[1] = recog_data.operand[0];
1011 for (i = recog_data.n_dups - 1; i >= 0; i--)
1012 if (recog_data.dup_num[i] == 1)
1013 *recog_data.dup_loc[i] = recog_data.operand[0];
1015 return PREV_INSN (newinsn);
1018 record_operand_costs (insn, op_costs, reg_pref);
1020 /* Now add the cost for each operand to the total costs for
1021 its register. */
1023 for (i = 0; i < recog_data.n_operands; i++)
1024 if (GET_CODE (recog_data.operand[i]) == REG
1025 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1027 int regno = REGNO (recog_data.operand[i]);
1028 struct costs *p = &costs[regno], *q = &op_costs[i];
1030 p->mem_cost += q->mem_cost * loop_cost;
1031 for (j = 0; j < N_REG_CLASSES; j++)
1032 p->cost[j] += q->cost[j] * loop_cost;
1035 return insn;
1038 /* This is a pass of the compiler that scans all instructions
1039 and calculates the preferred class for each pseudo-register.
1040 This information can be accessed later by calling `reg_preferred_class'.
1041 This pass comes just before local register allocation. */
1043 void
1044 regclass (f, nregs, dump)
1045 rtx f;
1046 int nregs;
1047 FILE *dump;
1049 register rtx insn;
1050 register int i;
1051 int pass;
1053 init_recog ();
1055 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1057 #ifdef CLASS_CANNOT_CHANGE_MODE
1058 reg_changes_mode = BITMAP_XMALLOC();
1059 #endif
1061 #ifdef FORBIDDEN_INC_DEC_CLASSES
1063 in_inc_dec = (char *) xmalloc (nregs);
1065 /* Initialize information about which register classes can be used for
1066 pseudos that are auto-incremented or auto-decremented. It would
1067 seem better to put this in init_reg_sets, but we need to be able
1068 to allocate rtx, which we can't do that early. */
1070 for (i = 0; i < N_REG_CLASSES; i++)
1072 rtx r = gen_rtx_REG (VOIDmode, 0);
1073 enum machine_mode m;
1074 register int j;
1076 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1077 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1079 REGNO (r) = j;
1081 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1082 m = (enum machine_mode) ((int) m + 1))
1083 if (HARD_REGNO_MODE_OK (j, m))
1085 PUT_MODE (r, m);
1087 /* If a register is not directly suitable for an
1088 auto-increment or decrement addressing mode and
1089 requires secondary reloads, disallow its class from
1090 being used in such addresses. */
1092 if ((0
1093 #ifdef SECONDARY_RELOAD_CLASS
1094 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1095 != NO_REGS)
1096 #else
1097 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1098 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1099 != NO_REGS)
1100 #endif
1101 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1102 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1103 != NO_REGS)
1104 #endif
1105 #endif
1107 && ! auto_inc_dec_reg_p (r, m))
1108 forbidden_inc_dec_class[i] = 1;
1112 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1114 /* Normally we scan the insns once and determine the best class to use for
1115 each register. However, if -fexpensive_optimizations are on, we do so
1116 twice, the second time using the tentative best classes to guide the
1117 selection. */
1119 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1121 int index;
1123 if (dump)
1124 fprintf (dump, "\n\nPass %i\n\n",pass);
1125 /* Zero out our accumulation of the cost of each class for each reg. */
1127 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1129 #ifdef FORBIDDEN_INC_DEC_CLASSES
1130 memset (in_inc_dec, 0, nregs);
1131 #endif
1133 /* Scan the instructions and record each time it would
1134 save code to put a certain register in a certain class. */
1136 if (!optimize)
1138 loop_cost = 1;
1139 for (insn = f; insn; insn = NEXT_INSN (insn))
1140 insn = scan_one_insn (insn, pass);
1142 else
1143 for (index = 0; index < n_basic_blocks; index++)
1145 basic_block bb = BASIC_BLOCK (index);
1147 /* Show that an insn inside a loop is likely to be executed three
1148 times more than insns outside a loop. This is much more
1149 aggressive than the assumptions made elsewhere and is being
1150 tried as an experiment. */
1151 if (optimize_size)
1152 loop_cost = 1;
1153 else
1154 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1155 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1157 insn = scan_one_insn (insn, pass);
1158 if (insn == bb->end)
1159 break;
1163 /* Now for each register look at how desirable each class is
1164 and find which class is preferred. Store that in
1165 `prefclass'. Record in `altclass' the largest register
1166 class any of whose registers is better than memory. */
1168 if (pass == 0)
1169 reg_pref = reg_pref_buffer;
1171 if (dump)
1173 dump_regclass (dump);
1174 fprintf (dump,"\n");
1176 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1178 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1179 enum reg_class best = ALL_REGS, alt = NO_REGS;
1180 /* This is an enum reg_class, but we call it an int
1181 to save lots of casts. */
1182 register int class;
1183 register struct costs *p = &costs[i];
1185 /* In non-optimizing compilation REG_N_REFS is not initialized
1186 yet. */
1187 if (optimize && !REG_N_REFS (i))
1188 continue;
1190 for (class = (int) ALL_REGS - 1; class > 0; class--)
1192 /* Ignore classes that are too small for this operand or
1193 invalid for a operand that was auto-incremented. */
1194 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1195 > reg_class_size[class]
1196 #ifdef FORBIDDEN_INC_DEC_CLASSES
1197 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1198 #endif
1199 #ifdef CLASS_CANNOT_CHANGE_MODE
1200 || (REGNO_REG_SET_P (reg_changes_mode, i)
1201 && ! class_can_change_mode [class])
1202 #endif
1205 else if (p->cost[class] < best_cost)
1207 best_cost = p->cost[class];
1208 best = (enum reg_class) class;
1210 else if (p->cost[class] == best_cost)
1211 best = reg_class_subunion[(int)best][class];
1214 /* Record the alternate register class; i.e., a class for which
1215 every register in it is better than using memory. If adding a
1216 class would make a smaller class (i.e., no union of just those
1217 classes exists), skip that class. The major unions of classes
1218 should be provided as a register class. Don't do this if we
1219 will be doing it again later. */
1221 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1222 for (class = 0; class < N_REG_CLASSES; class++)
1223 if (p->cost[class] < p->mem_cost
1224 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1225 > reg_class_size[(int) alt])
1226 #ifdef FORBIDDEN_INC_DEC_CLASSES
1227 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1228 #endif
1229 #ifdef CLASS_CANNOT_CHANGE_MODE
1230 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1231 && ! class_can_change_mode [class])
1232 #endif
1234 alt = reg_class_subunion[(int) alt][class];
1236 /* If we don't add any classes, nothing to try. */
1237 if (alt == best)
1238 alt = NO_REGS;
1240 if (dump
1241 && (reg_pref[i].prefclass != (int) best
1242 || reg_pref[i].altclass != (int) alt))
1244 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1245 fprintf (dump, " Register %i", i);
1246 if (alt == ALL_REGS || best == ALL_REGS)
1247 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1248 else if (alt == NO_REGS)
1249 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1250 else
1251 fprintf (dump, " pref %s, else %s\n",
1252 reg_class_names[(int) best],
1253 reg_class_names[(int) alt]);
1256 /* We cast to (int) because (char) hits bugs in some compilers. */
1257 reg_pref[i].prefclass = (int) best;
1258 reg_pref[i].altclass = (int) alt;
1262 #ifdef FORBIDDEN_INC_DEC_CLASSES
1263 free (in_inc_dec);
1264 #endif
1265 #ifdef CLASS_CANNOT_CHANGE_MODE
1266 BITMAP_XFREE (reg_changes_mode);
1267 #endif
1268 free (costs);
1271 /* Record the cost of using memory or registers of various classes for
1272 the operands in INSN.
1274 N_ALTS is the number of alternatives.
1276 N_OPS is the number of operands.
1278 OPS is an array of the operands.
1280 MODES are the modes of the operands, in case any are VOIDmode.
1282 CONSTRAINTS are the constraints to use for the operands. This array
1283 is modified by this procedure.
1285 This procedure works alternative by alternative. For each alternative
1286 we assume that we will be able to allocate all pseudos to their ideal
1287 register class and calculate the cost of using that alternative. Then
1288 we compute for each operand that is a pseudo-register, the cost of
1289 having the pseudo allocated to each register class and using it in that
1290 alternative. To this cost is added the cost of the alternative.
1292 The cost of each class for this insn is its lowest cost among all the
1293 alternatives. */
1295 static void
1296 record_reg_classes (n_alts, n_ops, ops, modes,
1297 constraints, insn, op_costs, reg_pref)
1298 int n_alts;
1299 int n_ops;
1300 rtx *ops;
1301 enum machine_mode *modes;
1302 const char **constraints;
1303 rtx insn;
1304 struct costs *op_costs;
1305 struct reg_pref *reg_pref;
1307 int alt;
1308 int i, j;
1309 rtx set;
1311 /* Process each alternative, each time minimizing an operand's cost with
1312 the cost for each operand in that alternative. */
1314 for (alt = 0; alt < n_alts; alt++)
1316 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1317 int alt_fail = 0;
1318 int alt_cost = 0;
1319 enum reg_class classes[MAX_RECOG_OPERANDS];
1320 int allows_mem[MAX_RECOG_OPERANDS];
1321 int class;
1323 for (i = 0; i < n_ops; i++)
1325 const char *p = constraints[i];
1326 rtx op = ops[i];
1327 enum machine_mode mode = modes[i];
1328 int allows_addr = 0;
1329 int win = 0;
1330 unsigned char c;
1332 /* Initially show we know nothing about the register class. */
1333 classes[i] = NO_REGS;
1334 allows_mem[i] = 0;
1336 /* If this operand has no constraints at all, we can conclude
1337 nothing about it since anything is valid. */
1339 if (*p == 0)
1341 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1342 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1344 continue;
1347 /* If this alternative is only relevant when this operand
1348 matches a previous operand, we do different things depending
1349 on whether this operand is a pseudo-reg or not. We must process
1350 any modifiers for the operand before we can make this test. */
1352 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1353 p++;
1355 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1357 /* Copy class and whether memory is allowed from the matching
1358 alternative. Then perform any needed cost computations
1359 and/or adjustments. */
1360 j = p[0] - '0';
1361 classes[i] = classes[j];
1362 allows_mem[i] = allows_mem[j];
1364 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1366 /* If this matches the other operand, we have no added
1367 cost and we win. */
1368 if (rtx_equal_p (ops[j], op))
1369 win = 1;
1371 /* If we can put the other operand into a register, add to
1372 the cost of this alternative the cost to copy this
1373 operand to the register used for the other operand. */
1375 else if (classes[j] != NO_REGS)
1376 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1378 else if (GET_CODE (ops[j]) != REG
1379 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1381 /* This op is a pseudo but the one it matches is not. */
1383 /* If we can't put the other operand into a register, this
1384 alternative can't be used. */
1386 if (classes[j] == NO_REGS)
1387 alt_fail = 1;
1389 /* Otherwise, add to the cost of this alternative the cost
1390 to copy the other operand to the register used for this
1391 operand. */
1393 else
1394 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1396 else
1398 /* The costs of this operand are not the same as the other
1399 operand since move costs are not symmetric. Moreover,
1400 if we cannot tie them, this alternative needs to do a
1401 copy, which is one instruction. */
1403 struct costs *pp = &this_op_costs[i];
1405 for (class = 0; class < N_REG_CLASSES; class++)
1406 pp->cost[class]
1407 = ((recog_data.operand_type[i] != OP_OUT
1408 ? may_move_in_cost[mode][class][(int) classes[i]]
1409 : 0)
1410 + (recog_data.operand_type[i] != OP_IN
1411 ? may_move_out_cost[mode][(int) classes[i]][class]
1412 : 0));
1414 /* If the alternative actually allows memory, make things
1415 a bit cheaper since we won't need an extra insn to
1416 load it. */
1418 pp->mem_cost
1419 = ((recog_data.operand_type[i] != OP_IN
1420 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1421 : 0)
1422 + (recog_data.operand_type[i] != OP_OUT
1423 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1424 : 0) - allows_mem[i]);
1426 /* If we have assigned a class to this register in our
1427 first pass, add a cost to this alternative corresponding
1428 to what we would add if this register were not in the
1429 appropriate class. */
1431 if (reg_pref)
1432 alt_cost
1433 += (may_move_in_cost[mode]
1434 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1435 [(int) classes[i]]);
1437 if (REGNO (ops[i]) != REGNO (ops[j])
1438 && ! find_reg_note (insn, REG_DEAD, op))
1439 alt_cost += 2;
1441 /* This is in place of ordinary cost computation
1442 for this operand, so skip to the end of the
1443 alternative (should be just one character). */
1444 while (*p && *p++ != ',')
1447 constraints[i] = p;
1448 continue;
1452 /* Scan all the constraint letters. See if the operand matches
1453 any of the constraints. Collect the valid register classes
1454 and see if this operand accepts memory. */
1456 while (*p && (c = *p++) != ',')
1457 switch (c)
1459 case '*':
1460 /* Ignore the next letter for this pass. */
1461 p++;
1462 break;
1464 case '?':
1465 alt_cost += 2;
1466 case '!': case '#': case '&':
1467 case '0': case '1': case '2': case '3': case '4':
1468 case '5': case '6': case '7': case '8': case '9':
1469 break;
1471 case 'p':
1472 allows_addr = 1;
1473 win = address_operand (op, GET_MODE (op));
1474 /* We know this operand is an address, so we want it to be
1475 allocated to a register that can be the base of an
1476 address, ie BASE_REG_CLASS. */
1477 classes[i]
1478 = reg_class_subunion[(int) classes[i]]
1479 [(int) BASE_REG_CLASS];
1480 break;
1482 case 'm': case 'o': case 'V':
1483 /* It doesn't seem worth distinguishing between offsettable
1484 and non-offsettable addresses here. */
1485 allows_mem[i] = 1;
1486 if (GET_CODE (op) == MEM)
1487 win = 1;
1488 break;
1490 case '<':
1491 if (GET_CODE (op) == MEM
1492 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1493 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1494 win = 1;
1495 break;
1497 case '>':
1498 if (GET_CODE (op) == MEM
1499 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1500 || GET_CODE (XEXP (op, 0)) == POST_INC))
1501 win = 1;
1502 break;
1504 case 'E':
1505 #ifndef REAL_ARITHMETIC
1506 /* Match any floating double constant, but only if
1507 we can examine the bits of it reliably. */
1508 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1509 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1510 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1511 break;
1512 #endif
1513 if (GET_CODE (op) == CONST_DOUBLE)
1514 win = 1;
1515 break;
1517 case 'F':
1518 if (GET_CODE (op) == CONST_DOUBLE)
1519 win = 1;
1520 break;
1522 case 'G':
1523 case 'H':
1524 if (GET_CODE (op) == CONST_DOUBLE
1525 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1526 win = 1;
1527 break;
1529 case 's':
1530 if (GET_CODE (op) == CONST_INT
1531 || (GET_CODE (op) == CONST_DOUBLE
1532 && GET_MODE (op) == VOIDmode))
1533 break;
1534 case 'i':
1535 if (CONSTANT_P (op)
1536 #ifdef LEGITIMATE_PIC_OPERAND_P
1537 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1538 #endif
1540 win = 1;
1541 break;
1543 case 'n':
1544 if (GET_CODE (op) == CONST_INT
1545 || (GET_CODE (op) == CONST_DOUBLE
1546 && GET_MODE (op) == VOIDmode))
1547 win = 1;
1548 break;
1550 case 'I':
1551 case 'J':
1552 case 'K':
1553 case 'L':
1554 case 'M':
1555 case 'N':
1556 case 'O':
1557 case 'P':
1558 if (GET_CODE (op) == CONST_INT
1559 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1560 win = 1;
1561 break;
1563 case 'X':
1564 win = 1;
1565 break;
1567 case 'g':
1568 if (GET_CODE (op) == MEM
1569 || (CONSTANT_P (op)
1570 #ifdef LEGITIMATE_PIC_OPERAND_P
1571 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1572 #endif
1574 win = 1;
1575 allows_mem[i] = 1;
1576 case 'r':
1577 classes[i]
1578 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1579 break;
1581 default:
1582 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1583 classes[i]
1584 = reg_class_subunion[(int) classes[i]]
1585 [(int) REG_CLASS_FROM_LETTER (c)];
1586 #ifdef EXTRA_CONSTRAINT
1587 else if (EXTRA_CONSTRAINT (op, c))
1588 win = 1;
1589 #endif
1590 break;
1593 constraints[i] = p;
1595 /* How we account for this operand now depends on whether it is a
1596 pseudo register or not. If it is, we first check if any
1597 register classes are valid. If not, we ignore this alternative,
1598 since we want to assume that all pseudos get allocated for
1599 register preferencing. If some register class is valid, compute
1600 the costs of moving the pseudo into that class. */
1602 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1604 if (classes[i] == NO_REGS)
1606 /* We must always fail if the operand is a REG, but
1607 we did not find a suitable class.
1609 Otherwise we may perform an uninitialized read
1610 from this_op_costs after the `continue' statement
1611 below. */
1612 alt_fail = 1;
1614 else
1616 struct costs *pp = &this_op_costs[i];
1618 for (class = 0; class < N_REG_CLASSES; class++)
1619 pp->cost[class]
1620 = ((recog_data.operand_type[i] != OP_OUT
1621 ? may_move_in_cost[mode][class][(int) classes[i]]
1622 : 0)
1623 + (recog_data.operand_type[i] != OP_IN
1624 ? may_move_out_cost[mode][(int) classes[i]][class]
1625 : 0));
1627 /* If the alternative actually allows memory, make things
1628 a bit cheaper since we won't need an extra insn to
1629 load it. */
1631 pp->mem_cost
1632 = ((recog_data.operand_type[i] != OP_IN
1633 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1634 : 0)
1635 + (recog_data.operand_type[i] != OP_OUT
1636 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1637 : 0) - allows_mem[i]);
1639 /* If we have assigned a class to this register in our
1640 first pass, add a cost to this alternative corresponding
1641 to what we would add if this register were not in the
1642 appropriate class. */
1644 if (reg_pref)
1645 alt_cost
1646 += (may_move_in_cost[mode]
1647 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1648 [(int) classes[i]]);
1652 /* Otherwise, if this alternative wins, either because we
1653 have already determined that or if we have a hard register of
1654 the proper class, there is no cost for this alternative. */
1656 else if (win
1657 || (GET_CODE (op) == REG
1658 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1661 /* If registers are valid, the cost of this alternative includes
1662 copying the object to and/or from a register. */
1664 else if (classes[i] != NO_REGS)
1666 if (recog_data.operand_type[i] != OP_OUT)
1667 alt_cost += copy_cost (op, mode, classes[i], 1);
1669 if (recog_data.operand_type[i] != OP_IN)
1670 alt_cost += copy_cost (op, mode, classes[i], 0);
1673 /* The only other way this alternative can be used is if this is a
1674 constant that could be placed into memory. */
1676 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1677 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1678 else
1679 alt_fail = 1;
1682 if (alt_fail)
1683 continue;
1685 /* Finally, update the costs with the information we've calculated
1686 about this alternative. */
1688 for (i = 0; i < n_ops; i++)
1689 if (GET_CODE (ops[i]) == REG
1690 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1692 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1693 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1695 pp->mem_cost = MIN (pp->mem_cost,
1696 (qq->mem_cost + alt_cost) * scale);
1698 for (class = 0; class < N_REG_CLASSES; class++)
1699 pp->cost[class] = MIN (pp->cost[class],
1700 (qq->cost[class] + alt_cost) * scale);
1704 /* If this insn is a single set copying operand 1 to operand 0
1705 and one operand is a pseudo with the other a hard reg or a pseudo
1706 that prefers a register that is in its own register class then
1707 we may want to adjust the cost of that register class to -1.
1709 Avoid the adjustment if the source does not die to avoid stressing of
1710 register allocator by preferrencing two coliding registers into single
1711 class.
1713 Also avoid the adjustment if a copy between registers of the class
1714 is expensive (ten times the cost of a default copy is considered
1715 arbitrarily expensive). This avoids losing when the preferred class
1716 is very expensive as the source of a copy instruction. */
1718 if ((set = single_set (insn)) != 0
1719 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1720 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1721 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1722 for (i = 0; i <= 1; i++)
1723 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1725 unsigned int regno = REGNO (ops[!i]);
1726 enum machine_mode mode = GET_MODE (ops[!i]);
1727 int class;
1728 unsigned int nr;
1730 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1732 enum reg_class pref = reg_pref[regno].prefclass;
1734 if ((reg_class_size[(unsigned char) pref]
1735 == CLASS_MAX_NREGS (pref, mode))
1736 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1737 op_costs[i].cost[(unsigned char) pref] = -1;
1739 else if (regno < FIRST_PSEUDO_REGISTER)
1740 for (class = 0; class < N_REG_CLASSES; class++)
1741 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1742 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1744 if (reg_class_size[class] == 1)
1745 op_costs[i].cost[class] = -1;
1746 else
1748 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1750 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1751 regno + nr))
1752 break;
1755 if (nr == HARD_REGNO_NREGS (regno,mode))
1756 op_costs[i].cost[class] = -1;
1762 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1763 TO_P is zero) a register of class CLASS in mode MODE.
1765 X must not be a pseudo. */
1767 static int
1768 copy_cost (x, mode, class, to_p)
1769 rtx x;
1770 enum machine_mode mode ATTRIBUTE_UNUSED;
1771 enum reg_class class;
1772 int to_p ATTRIBUTE_UNUSED;
1774 #ifdef HAVE_SECONDARY_RELOADS
1775 enum reg_class secondary_class = NO_REGS;
1776 #endif
1778 /* If X is a SCRATCH, there is actually nothing to move since we are
1779 assuming optimal allocation. */
1781 if (GET_CODE (x) == SCRATCH)
1782 return 0;
1784 /* Get the class we will actually use for a reload. */
1785 class = PREFERRED_RELOAD_CLASS (x, class);
1787 #ifdef HAVE_SECONDARY_RELOADS
1788 /* If we need a secondary reload (we assume here that we are using
1789 the secondary reload as an intermediate, not a scratch register), the
1790 cost is that to load the input into the intermediate register, then
1791 to copy them. We use a special value of TO_P to avoid recursion. */
1793 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1794 if (to_p == 1)
1795 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1796 #endif
1798 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1799 if (! to_p)
1800 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1801 #endif
1803 if (secondary_class != NO_REGS)
1804 return (move_cost[mode][(int) secondary_class][(int) class]
1805 + copy_cost (x, mode, secondary_class, 2));
1806 #endif /* HAVE_SECONDARY_RELOADS */
1808 /* For memory, use the memory move cost, for (hard) registers, use the
1809 cost to move between the register classes, and use 2 for everything
1810 else (constants). */
1812 if (GET_CODE (x) == MEM || class == NO_REGS)
1813 return MEMORY_MOVE_COST (mode, class, to_p);
1815 else if (GET_CODE (x) == REG)
1816 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1818 else
1819 /* If this is a constant, we may eventually want to call rtx_cost here. */
1820 return COSTS_N_INSNS (1);
1823 /* Record the pseudo registers we must reload into hard registers
1824 in a subexpression of a memory address, X.
1826 CLASS is the class that the register needs to be in and is either
1827 BASE_REG_CLASS or INDEX_REG_CLASS.
1829 SCALE is twice the amount to multiply the cost by (it is twice so we
1830 can represent half-cost adjustments). */
1832 static void
1833 record_address_regs (x, class, scale)
1834 rtx x;
1835 enum reg_class class;
1836 int scale;
1838 register enum rtx_code code = GET_CODE (x);
1840 switch (code)
1842 case CONST_INT:
1843 case CONST:
1844 case CC0:
1845 case PC:
1846 case SYMBOL_REF:
1847 case LABEL_REF:
1848 return;
1850 case PLUS:
1851 /* When we have an address that is a sum,
1852 we must determine whether registers are "base" or "index" regs.
1853 If there is a sum of two registers, we must choose one to be
1854 the "base". Luckily, we can use the REG_POINTER to make a good
1855 choice most of the time. We only need to do this on machines
1856 that can have two registers in an address and where the base
1857 and index register classes are different.
1859 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1860 that seems bogus since it should only be set when we are sure
1861 the register is being used as a pointer. */
1864 rtx arg0 = XEXP (x, 0);
1865 rtx arg1 = XEXP (x, 1);
1866 register enum rtx_code code0 = GET_CODE (arg0);
1867 register enum rtx_code code1 = GET_CODE (arg1);
1869 /* Look inside subregs. */
1870 if (code0 == SUBREG)
1871 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1872 if (code1 == SUBREG)
1873 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1875 /* If this machine only allows one register per address, it must
1876 be in the first operand. */
1878 if (MAX_REGS_PER_ADDRESS == 1)
1879 record_address_regs (arg0, class, scale);
1881 /* If index and base registers are the same on this machine, just
1882 record registers in any non-constant operands. We assume here,
1883 as well as in the tests below, that all addresses are in
1884 canonical form. */
1886 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1888 record_address_regs (arg0, class, scale);
1889 if (! CONSTANT_P (arg1))
1890 record_address_regs (arg1, class, scale);
1893 /* If the second operand is a constant integer, it doesn't change
1894 what class the first operand must be. */
1896 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1897 record_address_regs (arg0, class, scale);
1899 /* If the second operand is a symbolic constant, the first operand
1900 must be an index register. */
1902 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1903 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1905 /* If both operands are registers but one is already a hard register
1906 of index or base class, give the other the class that the hard
1907 register is not. */
1909 #ifdef REG_OK_FOR_BASE_P
1910 else if (code0 == REG && code1 == REG
1911 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1912 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1913 record_address_regs (arg1,
1914 REG_OK_FOR_BASE_P (arg0)
1915 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1916 scale);
1917 else if (code0 == REG && code1 == REG
1918 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1919 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1920 record_address_regs (arg0,
1921 REG_OK_FOR_BASE_P (arg1)
1922 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1923 scale);
1924 #endif
1926 /* If one operand is known to be a pointer, it must be the base
1927 with the other operand the index. Likewise if the other operand
1928 is a MULT. */
1930 else if ((code0 == REG && REG_POINTER (arg0))
1931 || code1 == MULT)
1933 record_address_regs (arg0, BASE_REG_CLASS, scale);
1934 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1936 else if ((code1 == REG && REG_POINTER (arg1))
1937 || code0 == MULT)
1939 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1940 record_address_regs (arg1, BASE_REG_CLASS, scale);
1943 /* Otherwise, count equal chances that each might be a base
1944 or index register. This case should be rare. */
1946 else
1948 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1949 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1950 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1951 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1954 break;
1956 /* Double the importance of a pseudo register that is incremented
1957 or decremented, since it would take two extra insns
1958 if it ends up in the wrong place. */
1959 case POST_MODIFY:
1960 case PRE_MODIFY:
1961 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
1962 if (REG_P (XEXP (XEXP (x, 1), 1)))
1963 record_address_regs (XEXP (XEXP (x, 1), 1),
1964 INDEX_REG_CLASS, 2 * scale);
1965 break;
1967 case POST_INC:
1968 case PRE_INC:
1969 case POST_DEC:
1970 case PRE_DEC:
1971 /* Double the importance of a pseudo register that is incremented
1972 or decremented, since it would take two extra insns
1973 if it ends up in the wrong place. If the operand is a pseudo,
1974 show it is being used in an INC_DEC context. */
1976 #ifdef FORBIDDEN_INC_DEC_CLASSES
1977 if (GET_CODE (XEXP (x, 0)) == REG
1978 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1979 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1980 #endif
1982 record_address_regs (XEXP (x, 0), class, 2 * scale);
1983 break;
1985 case REG:
1987 register struct costs *pp = &costs[REGNO (x)];
1988 register int i;
1990 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1992 for (i = 0; i < N_REG_CLASSES; i++)
1993 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
1995 break;
1997 default:
1999 register const char *fmt = GET_RTX_FORMAT (code);
2000 register int i;
2001 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2002 if (fmt[i] == 'e')
2003 record_address_regs (XEXP (x, i), class, scale);
2008 #ifdef FORBIDDEN_INC_DEC_CLASSES
2010 /* Return 1 if REG is valid as an auto-increment memory reference
2011 to an object of MODE. */
2013 static int
2014 auto_inc_dec_reg_p (reg, mode)
2015 rtx reg;
2016 enum machine_mode mode;
2018 if (HAVE_POST_INCREMENT
2019 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2020 return 1;
2022 if (HAVE_POST_DECREMENT
2023 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2024 return 1;
2026 if (HAVE_PRE_INCREMENT
2027 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2028 return 1;
2030 if (HAVE_PRE_DECREMENT
2031 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2032 return 1;
2034 return 0;
2036 #endif
2038 static short *renumber;
2039 static size_t regno_allocated;
2040 static unsigned int reg_n_max;
2042 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2043 reg_scan and flow_analysis that are indexed by the register number. If
2044 NEW_P is non zero, initialize all of the registers, otherwise only
2045 initialize the new registers allocated. The same table is kept from
2046 function to function, only reallocating it when we need more room. If
2047 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2049 void
2050 allocate_reg_info (num_regs, new_p, renumber_p)
2051 size_t num_regs;
2052 int new_p;
2053 int renumber_p;
2055 size_t size_info;
2056 size_t size_renumber;
2057 size_t min = (new_p) ? 0 : reg_n_max;
2058 struct reg_info_data *reg_data;
2060 if (num_regs > regno_allocated)
2062 size_t old_allocated = regno_allocated;
2064 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2065 size_renumber = regno_allocated * sizeof (short);
2067 if (!reg_n_info)
2069 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2070 renumber = (short *) xmalloc (size_renumber);
2071 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2072 * sizeof (struct reg_pref));
2075 else
2077 VARRAY_GROW (reg_n_info, regno_allocated);
2079 if (new_p) /* if we're zapping everything, no need to realloc */
2081 free ((char *)renumber);
2082 free ((char *)reg_pref);
2083 renumber = (short *) xmalloc (size_renumber);
2084 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2085 * sizeof (struct reg_pref));
2088 else
2090 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2091 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2092 regno_allocated
2093 * sizeof (struct reg_pref));
2097 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2098 + sizeof (struct reg_info_data) - sizeof (reg_info);
2099 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2100 reg_data->min_index = old_allocated;
2101 reg_data->max_index = regno_allocated - 1;
2102 reg_data->next = reg_info_head;
2103 reg_info_head = reg_data;
2106 reg_n_max = num_regs;
2107 if (min < num_regs)
2109 /* Loop through each of the segments allocated for the actual
2110 reg_info pages, and set up the pointers, zero the pages, etc. */
2111 for (reg_data = reg_info_head;
2112 reg_data && reg_data->max_index >= min;
2113 reg_data = reg_data->next)
2115 size_t min_index = reg_data->min_index;
2116 size_t max_index = reg_data->max_index;
2117 size_t max = MIN (max_index, num_regs);
2118 size_t local_min = min - min_index;
2119 size_t i;
2121 if (reg_data->min_index > num_regs)
2122 continue;
2124 if (min < min_index)
2125 local_min = 0;
2126 if (!reg_data->used_p) /* page just allocated with calloc */
2127 reg_data->used_p = 1; /* no need to zero */
2128 else
2129 memset ((char *) &reg_data->data[local_min], 0,
2130 sizeof (reg_info) * (max - min_index - local_min + 1));
2132 for (i = min_index+local_min; i <= max; i++)
2134 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2135 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2136 renumber[i] = -1;
2137 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2138 reg_pref_buffer[i].altclass = (char) NO_REGS;
2143 /* If {pref,alt}class have already been allocated, update the pointers to
2144 the newly realloced ones. */
2145 if (reg_pref)
2146 reg_pref = reg_pref_buffer;
2148 if (renumber_p)
2149 reg_renumber = renumber;
2151 /* Tell the regset code about the new number of registers */
2152 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2155 /* Free up the space allocated by allocate_reg_info. */
2156 void
2157 free_reg_info ()
2159 if (reg_n_info)
2161 struct reg_info_data *reg_data;
2162 struct reg_info_data *reg_next;
2164 VARRAY_FREE (reg_n_info);
2165 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2167 reg_next = reg_data->next;
2168 free ((char *)reg_data);
2171 free (reg_pref_buffer);
2172 reg_pref_buffer = (struct reg_pref *)0;
2173 reg_info_head = (struct reg_info_data *)0;
2174 renumber = (short *)0;
2176 regno_allocated = 0;
2177 reg_n_max = 0;
2180 /* This is the `regscan' pass of the compiler, run just before cse
2181 and again just before loop.
2183 It finds the first and last use of each pseudo-register
2184 and records them in the vectors regno_first_uid, regno_last_uid
2185 and counts the number of sets in the vector reg_n_sets.
2187 REPEAT is nonzero the second time this is called. */
2189 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2190 Always at least 3, since the combiner could put that many together
2191 and we want this to remain correct for all the remaining passes.
2192 This corresponds to the maximum number of times note_stores will call
2193 a function for any insn. */
2195 int max_parallel;
2197 /* Used as a temporary to record the largest number of registers in
2198 PARALLEL in a SET_DEST. This is added to max_parallel. */
2200 static int max_set_parallel;
2202 void
2203 reg_scan (f, nregs, repeat)
2204 rtx f;
2205 unsigned int nregs;
2206 int repeat ATTRIBUTE_UNUSED;
2208 register rtx insn;
2210 allocate_reg_info (nregs, TRUE, FALSE);
2211 max_parallel = 3;
2212 max_set_parallel = 0;
2214 for (insn = f; insn; insn = NEXT_INSN (insn))
2215 if (GET_CODE (insn) == INSN
2216 || GET_CODE (insn) == CALL_INSN
2217 || GET_CODE (insn) == JUMP_INSN)
2219 if (GET_CODE (PATTERN (insn)) == PARALLEL
2220 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2221 max_parallel = XVECLEN (PATTERN (insn), 0);
2222 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2224 if (REG_NOTES (insn))
2225 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2228 max_parallel += max_set_parallel;
2231 /* Update 'regscan' information by looking at the insns
2232 from FIRST to LAST. Some new REGs have been created,
2233 and any REG with number greater than OLD_MAX_REGNO is
2234 such a REG. We only update information for those. */
2236 void
2237 reg_scan_update (first, last, old_max_regno)
2238 rtx first;
2239 rtx last;
2240 unsigned int old_max_regno;
2242 register rtx insn;
2244 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2246 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2247 if (GET_CODE (insn) == INSN
2248 || GET_CODE (insn) == CALL_INSN
2249 || GET_CODE (insn) == JUMP_INSN)
2251 if (GET_CODE (PATTERN (insn)) == PARALLEL
2252 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2253 max_parallel = XVECLEN (PATTERN (insn), 0);
2254 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2256 if (REG_NOTES (insn))
2257 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2261 /* X is the expression to scan. INSN is the insn it appears in.
2262 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2263 We should only record information for REGs with numbers
2264 greater than or equal to MIN_REGNO. */
2266 static void
2267 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2268 rtx x;
2269 rtx insn;
2270 int note_flag;
2271 unsigned int min_regno;
2273 register enum rtx_code code;
2274 register rtx dest;
2275 register rtx note;
2277 code = GET_CODE (x);
2278 switch (code)
2280 case CONST:
2281 case CONST_INT:
2282 case CONST_DOUBLE:
2283 case CC0:
2284 case PC:
2285 case SYMBOL_REF:
2286 case LABEL_REF:
2287 case ADDR_VEC:
2288 case ADDR_DIFF_VEC:
2289 return;
2291 case REG:
2293 unsigned int regno = REGNO (x);
2295 if (regno >= min_regno)
2297 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2298 if (!note_flag)
2299 REGNO_LAST_UID (regno) = INSN_UID (insn);
2300 if (REGNO_FIRST_UID (regno) == 0)
2301 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2304 break;
2306 case EXPR_LIST:
2307 if (XEXP (x, 0))
2308 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2309 if (XEXP (x, 1))
2310 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2311 break;
2313 case INSN_LIST:
2314 if (XEXP (x, 1))
2315 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2316 break;
2318 case SET:
2319 /* Count a set of the destination if it is a register. */
2320 for (dest = SET_DEST (x);
2321 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2322 || GET_CODE (dest) == ZERO_EXTEND;
2323 dest = XEXP (dest, 0))
2326 /* For a PARALLEL, record the number of things (less the usual one for a
2327 SET) that are set. */
2328 if (GET_CODE (dest) == PARALLEL)
2329 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2331 if (GET_CODE (dest) == REG
2332 && REGNO (dest) >= min_regno)
2333 REG_N_SETS (REGNO (dest))++;
2335 /* If this is setting a pseudo from another pseudo or the sum of a
2336 pseudo and a constant integer and the other pseudo is known to be
2337 a pointer, set the destination to be a pointer as well.
2339 Likewise if it is setting the destination from an address or from a
2340 value equivalent to an address or to the sum of an address and
2341 something else.
2343 But don't do any of this if the pseudo corresponds to a user
2344 variable since it should have already been set as a pointer based
2345 on the type. */
2347 if (GET_CODE (SET_DEST (x)) == REG
2348 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2349 && REGNO (SET_DEST (x)) >= min_regno
2350 /* If the destination pseudo is set more than once, then other
2351 sets might not be to a pointer value (consider access to a
2352 union in two threads of control in the presense of global
2353 optimizations). So only set REG_POINTER on the destination
2354 pseudo if this is the only set of that pseudo. */
2355 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2356 && ! REG_USERVAR_P (SET_DEST (x))
2357 && ! REG_POINTER (SET_DEST (x))
2358 && ((GET_CODE (SET_SRC (x)) == REG
2359 && REG_POINTER (SET_SRC (x)))
2360 || ((GET_CODE (SET_SRC (x)) == PLUS
2361 || GET_CODE (SET_SRC (x)) == LO_SUM)
2362 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2363 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2364 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2365 || GET_CODE (SET_SRC (x)) == CONST
2366 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2367 || GET_CODE (SET_SRC (x)) == LABEL_REF
2368 || (GET_CODE (SET_SRC (x)) == HIGH
2369 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2370 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2371 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2372 || ((GET_CODE (SET_SRC (x)) == PLUS
2373 || GET_CODE (SET_SRC (x)) == LO_SUM)
2374 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2375 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2376 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2377 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2378 && (GET_CODE (XEXP (note, 0)) == CONST
2379 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2380 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2381 REG_POINTER (SET_DEST (x)) = 1;
2383 /* ... fall through ... */
2385 default:
2387 register const char *fmt = GET_RTX_FORMAT (code);
2388 register int i;
2389 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2391 if (fmt[i] == 'e')
2392 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2393 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2395 register int j;
2396 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2397 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2404 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2405 is also in C2. */
2408 reg_class_subset_p (c1, c2)
2409 register enum reg_class c1;
2410 register enum reg_class c2;
2412 if (c1 == c2) return 1;
2414 if (c2 == ALL_REGS)
2415 win:
2416 return 1;
2417 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2418 reg_class_contents[(int)c2],
2419 win);
2420 return 0;
2423 /* Return nonzero if there is a register that is in both C1 and C2. */
2426 reg_classes_intersect_p (c1, c2)
2427 register enum reg_class c1;
2428 register enum reg_class c2;
2430 #ifdef HARD_REG_SET
2431 register
2432 #endif
2433 HARD_REG_SET c;
2435 if (c1 == c2) return 1;
2437 if (c1 == ALL_REGS || c2 == ALL_REGS)
2438 return 1;
2440 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2441 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2443 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2444 return 1;
2446 lose:
2447 return 0;
2450 /* Release any memory allocated by register sets. */
2452 void
2453 regset_release_memory ()
2455 bitmap_release_memory ();