2001-01-23 Alexandre Petit-Bianco <apbianco@cygnus.com>
[official-gcc.git] / gcc / reg-stack.c
blob48dd3bd6966ac13fd6145027eb2dbd680538830e
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "tree.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "function.h"
160 #include "insn-config.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "insn-flags.h"
165 #include "toplev.h"
166 #include "recog.h"
167 #include "output.h"
168 #include "basic-block.h"
169 #include "varray.h"
171 #ifdef STACK_REGS
173 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
175 /* This is the basic stack record. TOP is an index into REG[] such
176 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
178 If TOP is -2, REG[] is not yet initialized. Stack initialization
179 consists of placing each live reg in array `reg' and setting `top'
180 appropriately.
182 REG_SET indicates which registers are live. */
184 typedef struct stack_def
186 int top; /* index to top stack element */
187 HARD_REG_SET reg_set; /* set of live registers */
188 char reg[REG_STACK_SIZE]; /* register - stack mapping */
189 } *stack;
191 /* This is used to carry information about basic blocks. It is
192 attached to the AUX field of the standard CFG block. */
194 typedef struct block_info_def
196 struct stack_def stack_in; /* Input stack configuration. */
197 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
198 int done; /* True if block already converted. */
199 } *block_info;
201 #define BLOCK_INFO(B) ((block_info) (B)->aux)
203 /* Passed to change_stack to indicate where to emit insns. */
204 enum emit_where
206 EMIT_AFTER,
207 EMIT_BEFORE
210 /* We use this array to cache info about insns, because otherwise we
211 spend too much time in stack_regs_mentioned_p.
213 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
214 the insn uses stack registers, two indicates the insn does not use
215 stack registers. */
216 static varray_type stack_regs_mentioned_data;
218 /* The block we're currently working on. */
219 static basic_block current_block;
221 /* This is the register file for all register after conversion */
222 static rtx
223 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
225 #define FP_MODE_REG(regno,mode) \
226 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int)(mode)])
228 /* Used to initialize uninitialized registers. */
229 static rtx nan;
231 /* Forward declarations */
233 static int stack_regs_mentioned_p PARAMS ((rtx pat));
234 static void straighten_stack PARAMS ((rtx, stack));
235 static void pop_stack PARAMS ((stack, int));
236 static rtx *get_true_reg PARAMS ((rtx *));
238 static int check_asm_stack_operands PARAMS ((rtx));
239 static int get_asm_operand_n_inputs PARAMS ((rtx));
240 static rtx stack_result PARAMS ((tree));
241 static void replace_reg PARAMS ((rtx *, int));
242 static void remove_regno_note PARAMS ((rtx, enum reg_note, int));
243 static int get_hard_regnum PARAMS ((stack, rtx));
244 static void delete_insn_for_stacker PARAMS ((rtx));
245 static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
246 enum emit_where));
247 static void emit_swap_insn PARAMS ((rtx, stack, rtx));
248 static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
249 static int swap_rtx_condition_1 PARAMS ((rtx));
250 static int swap_rtx_condition PARAMS ((rtx));
251 static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
252 static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
253 static void subst_asm_stack_regs PARAMS ((rtx, stack));
254 static void subst_stack_regs PARAMS ((rtx, stack));
255 static void change_stack PARAMS ((rtx, stack, stack,
256 enum emit_where));
257 static int convert_regs_entry PARAMS ((void));
258 static void convert_regs_exit PARAMS ((void));
259 static int convert_regs_1 PARAMS ((FILE *, basic_block));
260 static int convert_regs_2 PARAMS ((FILE *, basic_block));
261 static int convert_regs PARAMS ((FILE *));
262 static void print_stack PARAMS ((FILE *, stack));
263 static rtx next_flags_user PARAMS ((rtx));
264 static void record_label_references PARAMS ((rtx, rtx));
266 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
268 static int
269 stack_regs_mentioned_p (pat)
270 rtx pat;
272 register const char *fmt;
273 register int i;
275 if (STACK_REG_P (pat))
276 return 1;
278 fmt = GET_RTX_FORMAT (GET_CODE (pat));
279 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
281 if (fmt[i] == 'E')
283 register int j;
285 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
286 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
287 return 1;
289 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
290 return 1;
293 return 0;
296 /* Return nonzero if INSN mentions stacked registers, else return zero. */
299 stack_regs_mentioned (insn)
300 rtx insn;
302 unsigned int uid, max;
303 int test;
305 if (! INSN_P (insn))
306 return 0;
308 uid = INSN_UID (insn);
309 max = VARRAY_SIZE (stack_regs_mentioned_data);
310 if (uid >= max)
312 /* Allocate some extra size to avoid too many reallocs, but
313 do not grow too quickly. */
314 max = uid + uid / 20;
315 VARRAY_GROW (stack_regs_mentioned_data, max);
318 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
319 if (test == 0)
321 /* This insn has yet to be examined. Do so now. */
322 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
323 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
326 return test == 1;
329 static rtx ix86_flags_rtx;
331 static rtx
332 next_flags_user (insn)
333 rtx insn;
335 /* Search forward looking for the first use of this value.
336 Stop at block boundaries. */
337 /* ??? This really cries for BLOCK_END! */
339 while (1)
341 insn = NEXT_INSN (insn);
342 if (!insn)
343 return NULL_RTX;
345 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
346 return insn;
348 if (GET_CODE (insn) == JUMP_INSN
349 || GET_CODE (insn) == CODE_LABEL
350 || GET_CODE (insn) == CALL_INSN)
351 return NULL_RTX;
355 /* Reorganise the stack into ascending numbers,
356 after this insn. */
358 static void
359 straighten_stack (insn, regstack)
360 rtx insn;
361 stack regstack;
363 struct stack_def temp_stack;
364 int top;
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
378 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
381 /* Pop a register from the stack */
383 static void
384 pop_stack (regstack, regno)
385 stack regstack;
386 int regno;
388 int top = regstack->top;
390 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
391 regstack->top--;
392 /* If regno was not at the top of stack then adjust stack */
393 if (regstack->reg [top] != regno)
395 int i;
396 for (i = regstack->top; i >= 0; i--)
397 if (regstack->reg [i] == regno)
399 int j;
400 for (j = i; j < top; j++)
401 regstack->reg [j] = regstack->reg [j + 1];
402 break;
407 /* Convert register usage from "flat" register file usage to a "stack
408 register file. FIRST is the first insn in the function, FILE is the
409 dump file, if used.
411 Construct a CFG and run life analysis. Then convert each insn one
412 by one. Run a last jump_optimize pass, if optimizing, to eliminate
413 code duplication created when the converter inserts pop insns on
414 the edges. */
416 void
417 reg_to_stack (first, file)
418 rtx first;
419 FILE *file;
421 int i;
422 int max_uid;
423 block_info bi;
425 /* See if there is something to do. Flow analysis is quite
426 expensive so we might save some compilation time. */
427 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
428 if (regs_ever_live[i])
429 break;
430 if (i > LAST_STACK_REG)
431 return;
433 /* Ok, floating point instructions exist. If not optimizing,
434 build the CFG and run life analysis. */
435 find_basic_blocks (first, max_reg_num (), file);
436 count_or_remove_death_notes (NULL, 1);
437 life_analysis (first, file, PROP_DEATH_NOTES);
439 /* Set up block info for each basic block. */
440 bi = (block_info) xcalloc ((n_basic_blocks + 1), sizeof (*bi));
441 for (i = n_basic_blocks - 1; i >= 0; --i)
442 BASIC_BLOCK (i)->aux = bi + i;
443 EXIT_BLOCK_PTR->aux = bi + n_basic_blocks;
445 /* Create the replacement registers up front. */
446 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
448 enum machine_mode mode;
449 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
450 mode != VOIDmode;
451 mode = GET_MODE_WIDER_MODE (mode))
452 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
453 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
454 mode != VOIDmode;
455 mode = GET_MODE_WIDER_MODE (mode))
456 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
459 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
461 /* A QNaN for initializing uninitialized variables.
463 ??? We can't load from constant memory in PIC mode, because
464 we're insertting these instructions before the prologue and
465 the PIC register hasn't been set up. In that case, fall back
466 on zero, which we can get from `ldz'. */
468 if (flag_pic)
469 nan = CONST0_RTX (SFmode);
470 else
472 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
473 nan = force_const_mem (SFmode, nan);
476 /* Allocate a cache for stack_regs_mentioned. */
477 max_uid = get_max_uid ();
478 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
479 "stack_regs_mentioned cache");
481 if (convert_regs (file) && optimize)
483 jump_optimize (first, JUMP_CROSS_JUMP_DEATH_MATTERS,
484 !JUMP_NOOP_MOVES, !JUMP_AFTER_REGSCAN);
487 /* Clean up. */
488 VARRAY_FREE (stack_regs_mentioned_data);
489 free (bi);
492 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
493 label's chain of references, and note which insn contains each
494 reference. */
496 static void
497 record_label_references (insn, pat)
498 rtx insn, pat;
500 register enum rtx_code code = GET_CODE (pat);
501 register int i;
502 register const char *fmt;
504 if (code == LABEL_REF)
506 register rtx label = XEXP (pat, 0);
507 register rtx ref;
509 if (GET_CODE (label) != CODE_LABEL)
510 abort ();
512 /* If this is an undefined label, LABEL_REFS (label) contains
513 garbage. */
514 if (INSN_UID (label) == 0)
515 return;
517 /* Don't make a duplicate in the code_label's chain. */
519 for (ref = LABEL_REFS (label);
520 ref && ref != label;
521 ref = LABEL_NEXTREF (ref))
522 if (CONTAINING_INSN (ref) == insn)
523 return;
525 CONTAINING_INSN (pat) = insn;
526 LABEL_NEXTREF (pat) = LABEL_REFS (label);
527 LABEL_REFS (label) = pat;
529 return;
532 fmt = GET_RTX_FORMAT (code);
533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
535 if (fmt[i] == 'e')
536 record_label_references (insn, XEXP (pat, i));
537 if (fmt[i] == 'E')
539 register int j;
540 for (j = 0; j < XVECLEN (pat, i); j++)
541 record_label_references (insn, XVECEXP (pat, i, j));
546 /* Return a pointer to the REG expression within PAT. If PAT is not a
547 REG, possible enclosed by a conversion rtx, return the inner part of
548 PAT that stopped the search. */
550 static rtx *
551 get_true_reg (pat)
552 rtx *pat;
554 for (;;)
555 switch (GET_CODE (*pat))
557 case SUBREG:
558 /* Eliminate FP subregister accesses in favour of the
559 actual FP register in use. */
561 rtx subreg;
562 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
564 *pat = FP_MODE_REG (REGNO (subreg) + SUBREG_WORD (*pat),
565 GET_MODE (subreg));
566 default:
567 return pat;
570 case FLOAT:
571 case FIX:
572 case FLOAT_EXTEND:
573 pat = & XEXP (*pat, 0);
577 /* There are many rules that an asm statement for stack-like regs must
578 follow. Those rules are explained at the top of this file: the rule
579 numbers below refer to that explanation. */
581 static int
582 check_asm_stack_operands (insn)
583 rtx insn;
585 int i;
586 int n_clobbers;
587 int malformed_asm = 0;
588 rtx body = PATTERN (insn);
590 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
591 char implicitly_dies[FIRST_PSEUDO_REGISTER];
592 int alt;
594 rtx *clobber_reg = 0;
595 int n_inputs, n_outputs;
597 /* Find out what the constraints require. If no constraint
598 alternative matches, this asm is malformed. */
599 extract_insn (insn);
600 constrain_operands (1);
601 alt = which_alternative;
603 preprocess_constraints ();
605 n_inputs = get_asm_operand_n_inputs (body);
606 n_outputs = recog_data.n_operands - n_inputs;
608 if (alt < 0)
610 malformed_asm = 1;
611 /* Avoid further trouble with this insn. */
612 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
613 return 0;
616 /* Strip SUBREGs here to make the following code simpler. */
617 for (i = 0; i < recog_data.n_operands; i++)
618 if (GET_CODE (recog_data.operand[i]) == SUBREG
619 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
620 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
622 /* Set up CLOBBER_REG. */
624 n_clobbers = 0;
626 if (GET_CODE (body) == PARALLEL)
628 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
630 for (i = 0; i < XVECLEN (body, 0); i++)
631 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
633 rtx clobber = XVECEXP (body, 0, i);
634 rtx reg = XEXP (clobber, 0);
636 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
637 reg = SUBREG_REG (reg);
639 if (STACK_REG_P (reg))
641 clobber_reg[n_clobbers] = reg;
642 n_clobbers++;
647 /* Enforce rule #4: Output operands must specifically indicate which
648 reg an output appears in after an asm. "=f" is not allowed: the
649 operand constraints must select a class with a single reg.
651 Also enforce rule #5: Output operands must start at the top of
652 the reg-stack: output operands may not "skip" a reg. */
654 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
655 for (i = 0; i < n_outputs; i++)
656 if (STACK_REG_P (recog_data.operand[i]))
658 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
660 error_for_asm (insn, "Output constraint %d must specify a single register", i);
661 malformed_asm = 1;
663 else
664 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
668 /* Search for first non-popped reg. */
669 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
670 if (! reg_used_as_output[i])
671 break;
673 /* If there are any other popped regs, that's an error. */
674 for (; i < LAST_STACK_REG + 1; i++)
675 if (reg_used_as_output[i])
676 break;
678 if (i != LAST_STACK_REG + 1)
680 error_for_asm (insn, "Output regs must be grouped at top of stack");
681 malformed_asm = 1;
684 /* Enforce rule #2: All implicitly popped input regs must be closer
685 to the top of the reg-stack than any input that is not implicitly
686 popped. */
688 memset (implicitly_dies, 0, sizeof (implicitly_dies));
689 for (i = n_outputs; i < n_outputs + n_inputs; i++)
690 if (STACK_REG_P (recog_data.operand[i]))
692 /* An input reg is implicitly popped if it is tied to an
693 output, or if there is a CLOBBER for it. */
694 int j;
696 for (j = 0; j < n_clobbers; j++)
697 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
698 break;
700 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
701 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
704 /* Search for first non-popped reg. */
705 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
706 if (! implicitly_dies[i])
707 break;
709 /* If there are any other popped regs, that's an error. */
710 for (; i < LAST_STACK_REG + 1; i++)
711 if (implicitly_dies[i])
712 break;
714 if (i != LAST_STACK_REG + 1)
716 error_for_asm (insn,
717 "Implicitly popped regs must be grouped at top of stack");
718 malformed_asm = 1;
721 /* Enfore rule #3: If any input operand uses the "f" constraint, all
722 output constraints must use the "&" earlyclobber.
724 ??? Detect this more deterministically by having constrain_asm_operands
725 record any earlyclobber. */
727 for (i = n_outputs; i < n_outputs + n_inputs; i++)
728 if (recog_op_alt[i][alt].matches == -1)
730 int j;
732 for (j = 0; j < n_outputs; j++)
733 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
735 error_for_asm (insn,
736 "Output operand %d must use `&' constraint", j);
737 malformed_asm = 1;
741 if (malformed_asm)
743 /* Avoid further trouble with this insn. */
744 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
745 return 0;
748 return 1;
751 /* Calculate the number of inputs and outputs in BODY, an
752 asm_operands. N_OPERANDS is the total number of operands, and
753 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
754 placed. */
756 static int
757 get_asm_operand_n_inputs (body)
758 rtx body;
760 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
761 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
763 else if (GET_CODE (body) == ASM_OPERANDS)
764 return ASM_OPERANDS_INPUT_LENGTH (body);
766 else if (GET_CODE (body) == PARALLEL
767 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
768 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
770 else if (GET_CODE (body) == PARALLEL
771 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
772 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
774 abort ();
777 /* If current function returns its result in an fp stack register,
778 return the REG. Otherwise, return 0. */
780 static rtx
781 stack_result (decl)
782 tree decl;
784 rtx result;
786 /* If the value is supposed to be returned in memory, then clearly
787 it is not returned in a stack register. */
788 if (aggregate_value_p (DECL_RESULT (decl)))
789 return 0;
791 result = DECL_RTL (DECL_RESULT (decl));
792 /* ?!? What is this code supposed to do? Can this code actually
793 trigger if we kick out aggregates above? */
794 if (result != 0
795 && ! (GET_CODE (result) == REG
796 && REGNO (result) < FIRST_PSEUDO_REGISTER))
798 #ifdef FUNCTION_OUTGOING_VALUE
799 result
800 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
801 #else
802 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
803 #endif
806 return result != 0 && STACK_REG_P (result) ? result : 0;
811 * This section deals with stack register substitution, and forms the second
812 * pass over the RTL.
815 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
816 the desired hard REGNO. */
818 static void
819 replace_reg (reg, regno)
820 rtx *reg;
821 int regno;
823 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
824 || ! STACK_REG_P (*reg))
825 abort ();
827 switch (GET_MODE_CLASS (GET_MODE (*reg)))
829 default: abort ();
830 case MODE_FLOAT:
831 case MODE_COMPLEX_FLOAT:;
834 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
837 /* Remove a note of type NOTE, which must be found, for register
838 number REGNO from INSN. Remove only one such note. */
840 static void
841 remove_regno_note (insn, note, regno)
842 rtx insn;
843 enum reg_note note;
844 int regno;
846 register rtx *note_link, this;
848 note_link = &REG_NOTES(insn);
849 for (this = *note_link; this; this = XEXP (this, 1))
850 if (REG_NOTE_KIND (this) == note
851 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
853 *note_link = XEXP (this, 1);
854 return;
856 else
857 note_link = &XEXP (this, 1);
859 abort ();
862 /* Find the hard register number of virtual register REG in REGSTACK.
863 The hard register number is relative to the top of the stack. -1 is
864 returned if the register is not found. */
866 static int
867 get_hard_regnum (regstack, reg)
868 stack regstack;
869 rtx reg;
871 int i;
873 if (! STACK_REG_P (reg))
874 abort ();
876 for (i = regstack->top; i >= 0; i--)
877 if (regstack->reg[i] == REGNO (reg))
878 break;
880 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
883 /* Delete INSN from the RTL. Mark the insn, but don't remove it from
884 the chain of insns. Doing so could confuse block_begin and block_end
885 if this were the only insn in the block. */
887 static void
888 delete_insn_for_stacker (insn)
889 rtx insn;
891 PUT_CODE (insn, NOTE);
892 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
893 NOTE_SOURCE_FILE (insn) = 0;
896 /* Emit an insn to pop virtual register REG before or after INSN.
897 REGSTACK is the stack state after INSN and is updated to reflect this
898 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
899 is represented as a SET whose destination is the register to be popped
900 and source is the top of stack. A death note for the top of stack
901 cases the movdf pattern to pop. */
903 static rtx
904 emit_pop_insn (insn, regstack, reg, where)
905 rtx insn;
906 stack regstack;
907 rtx reg;
908 enum emit_where where;
910 rtx pop_insn, pop_rtx;
911 int hard_regno;
913 hard_regno = get_hard_regnum (regstack, reg);
915 if (hard_regno < FIRST_STACK_REG)
916 abort ();
918 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
919 FP_MODE_REG (FIRST_STACK_REG, DFmode));
921 if (where == EMIT_AFTER)
922 pop_insn = emit_block_insn_after (pop_rtx, insn, current_block);
923 else
924 pop_insn = emit_block_insn_before (pop_rtx, insn, current_block);
926 REG_NOTES (pop_insn)
927 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
928 REG_NOTES (pop_insn));
930 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
931 = regstack->reg[regstack->top];
932 regstack->top -= 1;
933 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
935 return pop_insn;
938 /* Emit an insn before or after INSN to swap virtual register REG with
939 the top of stack. REGSTACK is the stack state before the swap, and
940 is updated to reflect the swap. A swap insn is represented as a
941 PARALLEL of two patterns: each pattern moves one reg to the other.
943 If REG is already at the top of the stack, no insn is emitted. */
945 static void
946 emit_swap_insn (insn, regstack, reg)
947 rtx insn;
948 stack regstack;
949 rtx reg;
951 int hard_regno;
952 rtx swap_rtx;
953 int tmp, other_reg; /* swap regno temps */
954 rtx i1; /* the stack-reg insn prior to INSN */
955 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
957 hard_regno = get_hard_regnum (regstack, reg);
959 if (hard_regno < FIRST_STACK_REG)
960 abort ();
961 if (hard_regno == FIRST_STACK_REG)
962 return;
964 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
966 tmp = regstack->reg[other_reg];
967 regstack->reg[other_reg] = regstack->reg[regstack->top];
968 regstack->reg[regstack->top] = tmp;
970 /* Find the previous insn involving stack regs, but don't pass a
971 block boundary. */
972 i1 = NULL;
973 if (current_block && insn != current_block->head)
975 rtx tmp = PREV_INSN (insn);
976 rtx limit = PREV_INSN (current_block->head);
977 while (tmp != limit)
979 if (GET_CODE (tmp) == CODE_LABEL
980 || NOTE_INSN_BASIC_BLOCK_P (tmp)
981 || (GET_CODE (tmp) == INSN
982 && stack_regs_mentioned (tmp)))
984 i1 = tmp;
985 break;
987 tmp = PREV_INSN (tmp);
991 if (i1 != NULL_RTX
992 && (i1set = single_set (i1)) != NULL_RTX)
994 rtx i1src = *get_true_reg (&SET_SRC (i1set));
995 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
997 /* If the previous register stack push was from the reg we are to
998 swap with, omit the swap. */
1000 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1001 && GET_CODE (i1src) == REG && REGNO (i1src) == hard_regno - 1
1002 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1003 return;
1005 /* If the previous insn wrote to the reg we are to swap with,
1006 omit the swap. */
1008 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == hard_regno
1009 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1010 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1011 return;
1014 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1015 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1017 if (i1)
1018 emit_block_insn_after (swap_rtx, i1, current_block);
1019 else if (current_block)
1020 emit_block_insn_before (swap_rtx, current_block->head, current_block);
1021 else
1022 emit_insn_before (swap_rtx, insn);
1025 /* Handle a move to or from a stack register in PAT, which is in INSN.
1026 REGSTACK is the current stack. */
1028 static void
1029 move_for_stack_reg (insn, regstack, pat)
1030 rtx insn;
1031 stack regstack;
1032 rtx pat;
1034 rtx *psrc = get_true_reg (&SET_SRC (pat));
1035 rtx *pdest = get_true_reg (&SET_DEST (pat));
1036 rtx src, dest;
1037 rtx note;
1039 src = *psrc; dest = *pdest;
1041 if (STACK_REG_P (src) && STACK_REG_P (dest))
1043 /* Write from one stack reg to another. If SRC dies here, then
1044 just change the register mapping and delete the insn. */
1046 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1047 if (note)
1049 int i;
1051 /* If this is a no-op move, there must not be a REG_DEAD note. */
1052 if (REGNO (src) == REGNO (dest))
1053 abort ();
1055 for (i = regstack->top; i >= 0; i--)
1056 if (regstack->reg[i] == REGNO (src))
1057 break;
1059 /* The source must be live, and the dest must be dead. */
1060 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1061 abort ();
1063 /* It is possible that the dest is unused after this insn.
1064 If so, just pop the src. */
1066 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1068 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1070 delete_insn_for_stacker (insn);
1071 return;
1074 regstack->reg[i] = REGNO (dest);
1076 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1077 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1079 delete_insn_for_stacker (insn);
1081 return;
1084 /* The source reg does not die. */
1086 /* If this appears to be a no-op move, delete it, or else it
1087 will confuse the machine description output patterns. But if
1088 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1089 for REG_UNUSED will not work for deleted insns. */
1091 if (REGNO (src) == REGNO (dest))
1093 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1094 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1096 delete_insn_for_stacker (insn);
1097 return;
1100 /* The destination ought to be dead */
1101 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1102 abort ();
1104 replace_reg (psrc, get_hard_regnum (regstack, src));
1106 regstack->reg[++regstack->top] = REGNO (dest);
1107 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1108 replace_reg (pdest, FIRST_STACK_REG);
1110 else if (STACK_REG_P (src))
1112 /* Save from a stack reg to MEM, or possibly integer reg. Since
1113 only top of stack may be saved, emit an exchange first if
1114 needs be. */
1116 emit_swap_insn (insn, regstack, src);
1118 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1119 if (note)
1121 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1122 regstack->top--;
1123 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1125 else if (GET_MODE (src) == XFmode && regstack->top < REG_STACK_SIZE - 1)
1127 /* A 387 cannot write an XFmode value to a MEM without
1128 clobbering the source reg. The output code can handle
1129 this by reading back the value from the MEM.
1130 But it is more efficient to use a temp register if one is
1131 available. Push the source value here if the register
1132 stack is not full, and then write the value to memory via
1133 a pop. */
1134 rtx push_rtx, push_insn;
1135 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, XFmode);
1137 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1138 push_insn = emit_insn_before (push_rtx, insn);
1139 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1140 REG_NOTES (insn));
1143 replace_reg (psrc, FIRST_STACK_REG);
1145 else if (STACK_REG_P (dest))
1147 /* Load from MEM, or possibly integer REG or constant, into the
1148 stack regs. The actual target is always the top of the
1149 stack. The stack mapping is changed to reflect that DEST is
1150 now at top of stack. */
1152 /* The destination ought to be dead */
1153 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1154 abort ();
1156 if (regstack->top >= REG_STACK_SIZE)
1157 abort ();
1159 regstack->reg[++regstack->top] = REGNO (dest);
1160 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1161 replace_reg (pdest, FIRST_STACK_REG);
1163 else
1164 abort ();
1167 /* Swap the condition on a branch, if there is one. Return true if we
1168 found a condition to swap. False if the condition was not used as
1169 such. */
1171 static int
1172 swap_rtx_condition_1 (pat)
1173 rtx pat;
1175 register const char *fmt;
1176 register int i, r = 0;
1178 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1180 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1181 r = 1;
1183 else
1185 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1186 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1188 if (fmt[i] == 'E')
1190 register int j;
1192 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1193 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1195 else if (fmt[i] == 'e')
1196 r |= swap_rtx_condition_1 (XEXP (pat, i));
1200 return r;
1203 static int
1204 swap_rtx_condition (insn)
1205 rtx insn;
1207 rtx pat = PATTERN (insn);
1209 /* We're looking for a single set to cc0 or an HImode temporary. */
1211 if (GET_CODE (pat) == SET
1212 && GET_CODE (SET_DEST (pat)) == REG
1213 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1215 insn = next_flags_user (insn);
1216 if (insn == NULL_RTX)
1217 return 0;
1218 pat = PATTERN (insn);
1221 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1222 not doing anything with the cc value right now. We may be able to
1223 search for one though. */
1225 if (GET_CODE (pat) == SET
1226 && GET_CODE (SET_SRC (pat)) == UNSPEC
1227 && XINT (SET_SRC (pat), 1) == 9)
1229 rtx dest = SET_DEST (pat);
1231 /* Search forward looking for the first use of this value.
1232 Stop at block boundaries. */
1233 /* ??? This really cries for BLOCK_END! */
1234 while (1)
1236 insn = NEXT_INSN (insn);
1237 if (insn == NULL_RTX)
1238 return 0;
1239 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1240 break;
1241 if (GET_CODE (insn) == JUMP_INSN)
1242 return 0;
1243 if (GET_CODE (insn) == CODE_LABEL)
1244 return 0;
1247 /* So we've found the insn using this value. If it is anything
1248 other than sahf, aka unspec 10, or the value does not die
1249 (meaning we'd have to search further), then we must give up. */
1250 pat = PATTERN (insn);
1251 if (GET_CODE (pat) != SET
1252 || GET_CODE (SET_SRC (pat)) != UNSPEC
1253 || XINT (SET_SRC (pat), 1) != 10
1254 || ! dead_or_set_p (insn, dest))
1255 return 0;
1257 /* Now we are prepared to handle this as a normal cc0 setter. */
1258 insn = next_flags_user (insn);
1259 if (insn == NULL_RTX)
1260 return 0;
1261 pat = PATTERN (insn);
1264 if (swap_rtx_condition_1 (pat))
1266 INSN_CODE (insn) = -1;
1267 if (recog_memoized (insn) == -1)
1269 swap_rtx_condition_1 (pat);
1270 return 0;
1272 return 1;
1274 return 0;
1277 /* Handle a comparison. Special care needs to be taken to avoid
1278 causing comparisons that a 387 cannot do correctly, such as EQ.
1280 Also, a pop insn may need to be emitted. The 387 does have an
1281 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1282 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1283 set up. */
1285 static void
1286 compare_for_stack_reg (insn, regstack, pat_src)
1287 rtx insn;
1288 stack regstack;
1289 rtx pat_src;
1291 rtx *src1, *src2;
1292 rtx src1_note, src2_note;
1293 rtx flags_user;
1295 src1 = get_true_reg (&XEXP (pat_src, 0));
1296 src2 = get_true_reg (&XEXP (pat_src, 1));
1297 flags_user = next_flags_user (insn);
1299 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1300 registers that die in this insn - move those to stack top first. */
1301 if ((! STACK_REG_P (*src1)
1302 || (STACK_REG_P (*src2)
1303 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1304 && swap_rtx_condition (insn))
1306 rtx temp;
1307 temp = XEXP (pat_src, 0);
1308 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1309 XEXP (pat_src, 1) = temp;
1311 src1 = get_true_reg (&XEXP (pat_src, 0));
1312 src2 = get_true_reg (&XEXP (pat_src, 1));
1314 INSN_CODE (insn) = -1;
1317 /* We will fix any death note later. */
1319 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1321 if (STACK_REG_P (*src2))
1322 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1323 else
1324 src2_note = NULL_RTX;
1326 emit_swap_insn (insn, regstack, *src1);
1328 replace_reg (src1, FIRST_STACK_REG);
1330 if (STACK_REG_P (*src2))
1331 replace_reg (src2, get_hard_regnum (regstack, *src2));
1333 if (src1_note)
1335 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1336 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1339 /* If the second operand dies, handle that. But if the operands are
1340 the same stack register, don't bother, because only one death is
1341 needed, and it was just handled. */
1343 if (src2_note
1344 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1345 && REGNO (*src1) == REGNO (*src2)))
1347 /* As a special case, two regs may die in this insn if src2 is
1348 next to top of stack and the top of stack also dies. Since
1349 we have already popped src1, "next to top of stack" is really
1350 at top (FIRST_STACK_REG) now. */
1352 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1353 && src1_note)
1355 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1356 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1358 else
1360 /* The 386 can only represent death of the first operand in
1361 the case handled above. In all other cases, emit a separate
1362 pop and remove the death note from here. */
1364 /* link_cc0_insns (insn); */
1366 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1368 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1369 EMIT_AFTER);
1374 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1375 is the current register layout. */
1377 static void
1378 subst_stack_regs_pat (insn, regstack, pat)
1379 rtx insn;
1380 stack regstack;
1381 rtx pat;
1383 rtx *dest, *src;
1385 switch (GET_CODE (pat))
1387 case USE:
1388 /* Deaths in USE insns can happen in non optimizing compilation.
1389 Handle them by popping the dying register. */
1390 src = get_true_reg (&XEXP (pat, 0));
1391 if (STACK_REG_P (*src)
1392 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1394 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1395 return;
1397 /* ??? Uninitialized USE should not happen. */
1398 else if (get_hard_regnum (regstack, *src) == -1)
1399 abort();
1400 break;
1402 case CLOBBER:
1404 rtx note;
1406 dest = get_true_reg (&XEXP (pat, 0));
1407 if (STACK_REG_P (*dest))
1409 note = find_reg_note (insn, REG_DEAD, *dest);
1411 if (pat != PATTERN (insn))
1413 /* The fix_truncdi_1 pattern wants to be able to allocate
1414 it's own scratch register. It does this by clobbering
1415 an fp reg so that it is assured of an empty reg-stack
1416 register. If the register is live, kill it now.
1417 Remove the DEAD/UNUSED note so we don't try to kill it
1418 later too. */
1420 if (note)
1421 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1422 else
1424 note = find_reg_note (insn, REG_UNUSED, *dest);
1425 if (!note)
1426 abort ();
1428 remove_note (insn, note);
1429 replace_reg (dest, LAST_STACK_REG);
1431 else
1433 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1434 indicates an uninitialized value. Because reload removed
1435 all other clobbers, this must be due to a function
1436 returning without a value. Load up a NaN. */
1438 if (! note
1439 && get_hard_regnum (regstack, *dest) == -1)
1441 pat = gen_rtx_SET (VOIDmode,
1442 FP_MODE_REG (REGNO (*dest), SFmode),
1443 nan);
1444 PATTERN (insn) = pat;
1445 move_for_stack_reg (insn, regstack, pat);
1449 break;
1452 case SET:
1454 rtx *src1 = (rtx *) NULL_PTR, *src2;
1455 rtx src1_note, src2_note;
1456 rtx pat_src;
1458 dest = get_true_reg (&SET_DEST (pat));
1459 src = get_true_reg (&SET_SRC (pat));
1460 pat_src = SET_SRC (pat);
1462 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1463 if (STACK_REG_P (*src)
1464 || (STACK_REG_P (*dest)
1465 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1466 || GET_CODE (*src) == CONST_DOUBLE)))
1468 move_for_stack_reg (insn, regstack, pat);
1469 break;
1472 switch (GET_CODE (pat_src))
1474 case COMPARE:
1475 compare_for_stack_reg (insn, regstack, pat_src);
1476 break;
1478 case CALL:
1480 int count;
1481 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1482 --count >= 0;)
1484 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1485 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1488 replace_reg (dest, FIRST_STACK_REG);
1489 break;
1491 case REG:
1492 /* This is a `tstM2' case. */
1493 if (*dest != cc0_rtx)
1494 abort ();
1495 src1 = src;
1497 /* Fall through. */
1499 case FLOAT_TRUNCATE:
1500 case SQRT:
1501 case ABS:
1502 case NEG:
1503 /* These insns only operate on the top of the stack. DEST might
1504 be cc0_rtx if we're processing a tstM pattern. Also, it's
1505 possible that the tstM case results in a REG_DEAD note on the
1506 source. */
1508 if (src1 == 0)
1509 src1 = get_true_reg (&XEXP (pat_src, 0));
1511 emit_swap_insn (insn, regstack, *src1);
1513 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1515 if (STACK_REG_P (*dest))
1516 replace_reg (dest, FIRST_STACK_REG);
1518 if (src1_note)
1520 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1521 regstack->top--;
1522 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1525 replace_reg (src1, FIRST_STACK_REG);
1526 break;
1528 case MINUS:
1529 case DIV:
1530 /* On i386, reversed forms of subM3 and divM3 exist for
1531 MODE_FLOAT, so the same code that works for addM3 and mulM3
1532 can be used. */
1533 case MULT:
1534 case PLUS:
1535 /* These insns can accept the top of stack as a destination
1536 from a stack reg or mem, or can use the top of stack as a
1537 source and some other stack register (possibly top of stack)
1538 as a destination. */
1540 src1 = get_true_reg (&XEXP (pat_src, 0));
1541 src2 = get_true_reg (&XEXP (pat_src, 1));
1543 /* We will fix any death note later. */
1545 if (STACK_REG_P (*src1))
1546 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1547 else
1548 src1_note = NULL_RTX;
1549 if (STACK_REG_P (*src2))
1550 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1551 else
1552 src2_note = NULL_RTX;
1554 /* If either operand is not a stack register, then the dest
1555 must be top of stack. */
1557 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1558 emit_swap_insn (insn, regstack, *dest);
1559 else
1561 /* Both operands are REG. If neither operand is already
1562 at the top of stack, choose to make the one that is the dest
1563 the new top of stack. */
1565 int src1_hard_regnum, src2_hard_regnum;
1567 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1568 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1569 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1570 abort ();
1572 if (src1_hard_regnum != FIRST_STACK_REG
1573 && src2_hard_regnum != FIRST_STACK_REG)
1574 emit_swap_insn (insn, regstack, *dest);
1577 if (STACK_REG_P (*src1))
1578 replace_reg (src1, get_hard_regnum (regstack, *src1));
1579 if (STACK_REG_P (*src2))
1580 replace_reg (src2, get_hard_regnum (regstack, *src2));
1582 if (src1_note)
1584 rtx src1_reg = XEXP (src1_note, 0);
1586 /* If the register that dies is at the top of stack, then
1587 the destination is somewhere else - merely substitute it.
1588 But if the reg that dies is not at top of stack, then
1589 move the top of stack to the dead reg, as though we had
1590 done the insn and then a store-with-pop. */
1592 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1594 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1595 replace_reg (dest, get_hard_regnum (regstack, *dest));
1597 else
1599 int regno = get_hard_regnum (regstack, src1_reg);
1601 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1602 replace_reg (dest, regno);
1604 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1605 = regstack->reg[regstack->top];
1608 CLEAR_HARD_REG_BIT (regstack->reg_set,
1609 REGNO (XEXP (src1_note, 0)));
1610 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1611 regstack->top--;
1613 else if (src2_note)
1615 rtx src2_reg = XEXP (src2_note, 0);
1616 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1618 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1619 replace_reg (dest, get_hard_regnum (regstack, *dest));
1621 else
1623 int regno = get_hard_regnum (regstack, src2_reg);
1625 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1626 replace_reg (dest, regno);
1628 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1629 = regstack->reg[regstack->top];
1632 CLEAR_HARD_REG_BIT (regstack->reg_set,
1633 REGNO (XEXP (src2_note, 0)));
1634 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1635 regstack->top--;
1637 else
1639 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1640 replace_reg (dest, get_hard_regnum (regstack, *dest));
1643 /* Keep operand 1 maching with destination. */
1644 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1645 && REG_P (*src1) && REG_P (*src2)
1646 && REGNO (*src1) != REGNO (*dest))
1648 int tmp = REGNO (*src1);
1649 replace_reg (src1, REGNO (*src2));
1650 replace_reg (src2, tmp);
1652 break;
1654 case UNSPEC:
1655 switch (XINT (pat_src, 1))
1657 case 1: /* sin */
1658 case 2: /* cos */
1659 /* These insns only operate on the top of the stack. */
1661 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1663 emit_swap_insn (insn, regstack, *src1);
1665 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1667 if (STACK_REG_P (*dest))
1668 replace_reg (dest, FIRST_STACK_REG);
1670 if (src1_note)
1672 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1673 regstack->top--;
1674 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1677 replace_reg (src1, FIRST_STACK_REG);
1678 break;
1680 case 10:
1681 /* (unspec [(unspec [(compare ..)] 9)] 10)
1682 Unspec 9 is fnstsw; unspec 10 is sahf. The combination
1683 matches the PPRO fcomi instruction. */
1685 pat_src = XVECEXP (pat_src, 0, 0);
1686 if (GET_CODE (pat_src) != UNSPEC
1687 || XINT (pat_src, 1) != 9)
1688 abort ();
1689 /* FALLTHRU */
1691 case 9:
1692 /* (unspec [(compare ..)] 9) */
1693 /* Combined fcomp+fnstsw generated for doing well with
1694 CSE. When optimizing this would have been broken
1695 up before now. */
1697 pat_src = XVECEXP (pat_src, 0, 0);
1698 if (GET_CODE (pat_src) != COMPARE)
1699 abort ();
1701 compare_for_stack_reg (insn, regstack, pat_src);
1702 break;
1704 default:
1705 abort ();
1707 break;
1709 case IF_THEN_ELSE:
1710 /* This insn requires the top of stack to be the destination. */
1712 /* If the comparison operator is an FP comparison operator,
1713 it is handled correctly by compare_for_stack_reg () who
1714 will move the destination to the top of stack. But if the
1715 comparison operator is not an FP comparison operator, we
1716 have to handle it here. */
1717 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1718 && REGNO (*dest) != regstack->reg[regstack->top])
1719 emit_swap_insn (insn, regstack, *dest);
1721 src1 = get_true_reg (&XEXP (pat_src, 1));
1722 src2 = get_true_reg (&XEXP (pat_src, 2));
1724 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1725 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1728 rtx src_note [3];
1729 int i;
1731 src_note[0] = 0;
1732 src_note[1] = src1_note;
1733 src_note[2] = src2_note;
1735 if (STACK_REG_P (*src1))
1736 replace_reg (src1, get_hard_regnum (regstack, *src1));
1737 if (STACK_REG_P (*src2))
1738 replace_reg (src2, get_hard_regnum (regstack, *src2));
1740 for (i = 1; i <= 2; i++)
1741 if (src_note [i])
1743 int regno = REGNO (XEXP (src_note[i], 0));
1745 /* If the register that dies is not at the top of
1746 stack, then move the top of stack to the dead reg */
1747 if (regno != regstack->reg[regstack->top])
1749 remove_regno_note (insn, REG_DEAD, regno);
1750 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1751 EMIT_AFTER);
1753 else
1755 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
1756 replace_reg (&XEXP (src_note[i], 0), FIRST_STACK_REG);
1757 regstack->top--;
1762 /* Make dest the top of stack. Add dest to regstack if
1763 not present. */
1764 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1765 regstack->reg[++regstack->top] = REGNO (*dest);
1766 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1767 replace_reg (dest, FIRST_STACK_REG);
1768 break;
1770 default:
1771 abort ();
1773 break;
1776 default:
1777 break;
1781 /* Substitute hard regnums for any stack regs in INSN, which has
1782 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1783 before the insn, and is updated with changes made here.
1785 There are several requirements and assumptions about the use of
1786 stack-like regs in asm statements. These rules are enforced by
1787 record_asm_stack_regs; see comments there for details. Any
1788 asm_operands left in the RTL at this point may be assume to meet the
1789 requirements, since record_asm_stack_regs removes any problem asm. */
1791 static void
1792 subst_asm_stack_regs (insn, regstack)
1793 rtx insn;
1794 stack regstack;
1796 rtx body = PATTERN (insn);
1797 int alt;
1799 rtx *note_reg; /* Array of note contents */
1800 rtx **note_loc; /* Address of REG field of each note */
1801 enum reg_note *note_kind; /* The type of each note */
1803 rtx *clobber_reg = 0;
1804 rtx **clobber_loc = 0;
1806 struct stack_def temp_stack;
1807 int n_notes;
1808 int n_clobbers;
1809 rtx note;
1810 int i;
1811 int n_inputs, n_outputs;
1813 if (! check_asm_stack_operands (insn))
1814 return;
1816 /* Find out what the constraints required. If no constraint
1817 alternative matches, that is a compiler bug: we should have caught
1818 such an insn in check_asm_stack_operands. */
1819 extract_insn (insn);
1820 constrain_operands (1);
1821 alt = which_alternative;
1823 preprocess_constraints ();
1825 n_inputs = get_asm_operand_n_inputs (body);
1826 n_outputs = recog_data.n_operands - n_inputs;
1828 if (alt < 0)
1829 abort ();
1831 /* Strip SUBREGs here to make the following code simpler. */
1832 for (i = 0; i < recog_data.n_operands; i++)
1833 if (GET_CODE (recog_data.operand[i]) == SUBREG
1834 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1836 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1837 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1840 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1842 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1843 i++;
1845 note_reg = (rtx *) alloca (i * sizeof (rtx));
1846 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1847 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1849 n_notes = 0;
1850 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1852 rtx reg = XEXP (note, 0);
1853 rtx *loc = & XEXP (note, 0);
1855 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1857 loc = & SUBREG_REG (reg);
1858 reg = SUBREG_REG (reg);
1861 if (STACK_REG_P (reg)
1862 && (REG_NOTE_KIND (note) == REG_DEAD
1863 || REG_NOTE_KIND (note) == REG_UNUSED))
1865 note_reg[n_notes] = reg;
1866 note_loc[n_notes] = loc;
1867 note_kind[n_notes] = REG_NOTE_KIND (note);
1868 n_notes++;
1872 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1874 n_clobbers = 0;
1876 if (GET_CODE (body) == PARALLEL)
1878 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1879 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
1881 for (i = 0; i < XVECLEN (body, 0); i++)
1882 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1884 rtx clobber = XVECEXP (body, 0, i);
1885 rtx reg = XEXP (clobber, 0);
1886 rtx *loc = & XEXP (clobber, 0);
1888 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1890 loc = & SUBREG_REG (reg);
1891 reg = SUBREG_REG (reg);
1894 if (STACK_REG_P (reg))
1896 clobber_reg[n_clobbers] = reg;
1897 clobber_loc[n_clobbers] = loc;
1898 n_clobbers++;
1903 temp_stack = *regstack;
1905 /* Put the input regs into the desired place in TEMP_STACK. */
1907 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1908 if (STACK_REG_P (recog_data.operand[i])
1909 && reg_class_subset_p (recog_op_alt[i][alt].class,
1910 FLOAT_REGS)
1911 && recog_op_alt[i][alt].class != FLOAT_REGS)
1913 /* If an operand needs to be in a particular reg in
1914 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1915 these constraints are for single register classes, and
1916 reload guaranteed that operand[i] is already in that class,
1917 we can just use REGNO (recog_data.operand[i]) to know which
1918 actual reg this operand needs to be in. */
1920 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
1922 if (regno < 0)
1923 abort ();
1925 if (regno != REGNO (recog_data.operand[i]))
1927 /* recog_data.operand[i] is not in the right place. Find
1928 it and swap it with whatever is already in I's place.
1929 K is where recog_data.operand[i] is now. J is where it
1930 should be. */
1931 int j, k, temp;
1933 k = temp_stack.top - (regno - FIRST_STACK_REG);
1934 j = (temp_stack.top
1935 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
1937 temp = temp_stack.reg[k];
1938 temp_stack.reg[k] = temp_stack.reg[j];
1939 temp_stack.reg[j] = temp;
1943 /* Emit insns before INSN to make sure the reg-stack is in the right
1944 order. */
1946 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1948 /* Make the needed input register substitutions. Do death notes and
1949 clobbers too, because these are for inputs, not outputs. */
1951 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1952 if (STACK_REG_P (recog_data.operand[i]))
1954 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
1956 if (regnum < 0)
1957 abort ();
1959 replace_reg (recog_data.operand_loc[i], regnum);
1962 for (i = 0; i < n_notes; i++)
1963 if (note_kind[i] == REG_DEAD)
1965 int regnum = get_hard_regnum (regstack, note_reg[i]);
1967 if (regnum < 0)
1968 abort ();
1970 replace_reg (note_loc[i], regnum);
1973 for (i = 0; i < n_clobbers; i++)
1975 /* It's OK for a CLOBBER to reference a reg that is not live.
1976 Don't try to replace it in that case. */
1977 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
1979 if (regnum >= 0)
1981 /* Sigh - clobbers always have QImode. But replace_reg knows
1982 that these regs can't be MODE_INT and will abort. Just put
1983 the right reg there without calling replace_reg. */
1985 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
1989 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
1991 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1992 if (STACK_REG_P (recog_data.operand[i]))
1994 /* An input reg is implicitly popped if it is tied to an
1995 output, or if there is a CLOBBER for it. */
1996 int j;
1998 for (j = 0; j < n_clobbers; j++)
1999 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2000 break;
2002 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2004 /* recog_data.operand[i] might not be at the top of stack.
2005 But that's OK, because all we need to do is pop the
2006 right number of regs off of the top of the reg-stack.
2007 record_asm_stack_regs guaranteed that all implicitly
2008 popped regs were grouped at the top of the reg-stack. */
2010 CLEAR_HARD_REG_BIT (regstack->reg_set,
2011 regstack->reg[regstack->top]);
2012 regstack->top--;
2016 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2017 Note that there isn't any need to substitute register numbers.
2018 ??? Explain why this is true. */
2020 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2022 /* See if there is an output for this hard reg. */
2023 int j;
2025 for (j = 0; j < n_outputs; j++)
2026 if (STACK_REG_P (recog_data.operand[j])
2027 && REGNO (recog_data.operand[j]) == i)
2029 regstack->reg[++regstack->top] = i;
2030 SET_HARD_REG_BIT (regstack->reg_set, i);
2031 break;
2035 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2036 input that the asm didn't implicitly pop. If the asm didn't
2037 implicitly pop an input reg, that reg will still be live.
2039 Note that we can't use find_regno_note here: the register numbers
2040 in the death notes have already been substituted. */
2042 for (i = 0; i < n_outputs; i++)
2043 if (STACK_REG_P (recog_data.operand[i]))
2045 int j;
2047 for (j = 0; j < n_notes; j++)
2048 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2049 && note_kind[j] == REG_UNUSED)
2051 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2052 EMIT_AFTER);
2053 break;
2057 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2058 if (STACK_REG_P (recog_data.operand[i]))
2060 int j;
2062 for (j = 0; j < n_notes; j++)
2063 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2064 && note_kind[j] == REG_DEAD
2065 && TEST_HARD_REG_BIT (regstack->reg_set,
2066 REGNO (recog_data.operand[i])))
2068 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2069 EMIT_AFTER);
2070 break;
2075 /* Substitute stack hard reg numbers for stack virtual registers in
2076 INSN. Non-stack register numbers are not changed. REGSTACK is the
2077 current stack content. Insns may be emitted as needed to arrange the
2078 stack for the 387 based on the contents of the insn. */
2080 static void
2081 subst_stack_regs (insn, regstack)
2082 rtx insn;
2083 stack regstack;
2085 register rtx *note_link, note;
2086 register int i;
2088 if (GET_CODE (insn) == CALL_INSN)
2090 int top = regstack->top;
2092 /* If there are any floating point parameters to be passed in
2093 registers for this call, make sure they are in the right
2094 order. */
2096 if (top >= 0)
2098 straighten_stack (PREV_INSN (insn), regstack);
2100 /* Now mark the arguments as dead after the call. */
2102 while (regstack->top >= 0)
2104 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2105 regstack->top--;
2110 /* Do the actual substitution if any stack regs are mentioned.
2111 Since we only record whether entire insn mentions stack regs, and
2112 subst_stack_regs_pat only works for patterns that contain stack regs,
2113 we must check each pattern in a parallel here. A call_value_pop could
2114 fail otherwise. */
2116 if (stack_regs_mentioned (insn))
2118 int n_operands = asm_noperands (PATTERN (insn));
2119 if (n_operands >= 0)
2121 /* This insn is an `asm' with operands. Decode the operands,
2122 decide how many are inputs, and do register substitution.
2123 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2125 subst_asm_stack_regs (insn, regstack);
2126 return;
2129 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2130 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2132 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2133 subst_stack_regs_pat (insn, regstack,
2134 XVECEXP (PATTERN (insn), 0, i));
2136 else
2137 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2140 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2141 REG_UNUSED will already have been dealt with, so just return. */
2143 if (GET_CODE (insn) == NOTE)
2144 return;
2146 /* If there is a REG_UNUSED note on a stack register on this insn,
2147 the indicated reg must be popped. The REG_UNUSED note is removed,
2148 since the form of the newly emitted pop insn references the reg,
2149 making it no longer `unset'. */
2151 note_link = &REG_NOTES(insn);
2152 for (note = *note_link; note; note = XEXP (note, 1))
2153 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2155 *note_link = XEXP (note, 1);
2156 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2158 else
2159 note_link = &XEXP (note, 1);
2162 /* Change the organization of the stack so that it fits a new basic
2163 block. Some registers might have to be popped, but there can never be
2164 a register live in the new block that is not now live.
2166 Insert any needed insns before or after INSN, as indicated by
2167 WHERE. OLD is the original stack layout, and NEW is the desired
2168 form. OLD is updated to reflect the code emitted, ie, it will be
2169 the same as NEW upon return.
2171 This function will not preserve block_end[]. But that information
2172 is no longer needed once this has executed. */
2174 static void
2175 change_stack (insn, old, new, where)
2176 rtx insn;
2177 stack old;
2178 stack new;
2179 enum emit_where where;
2181 int reg;
2182 int update_end = 0;
2184 /* We will be inserting new insns "backwards". If we are to insert
2185 after INSN, find the next insn, and insert before it. */
2187 if (where == EMIT_AFTER)
2189 if (current_block && current_block->end == insn)
2190 update_end = 1;
2191 insn = NEXT_INSN (insn);
2194 /* Pop any registers that are not needed in the new block. */
2196 for (reg = old->top; reg >= 0; reg--)
2197 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2198 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2199 EMIT_BEFORE);
2201 if (new->top == -2)
2203 /* If the new block has never been processed, then it can inherit
2204 the old stack order. */
2206 new->top = old->top;
2207 memcpy (new->reg, old->reg, sizeof (new->reg));
2209 else
2211 /* This block has been entered before, and we must match the
2212 previously selected stack order. */
2214 /* By now, the only difference should be the order of the stack,
2215 not their depth or liveliness. */
2217 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2218 abort ();
2219 win:
2220 if (old->top != new->top)
2221 abort ();
2223 /* If the stack is not empty (new->top != -1), loop here emitting
2224 swaps until the stack is correct.
2226 The worst case number of swaps emitted is N + 2, where N is the
2227 depth of the stack. In some cases, the reg at the top of
2228 stack may be correct, but swapped anyway in order to fix
2229 other regs. But since we never swap any other reg away from
2230 its correct slot, this algorithm will converge. */
2232 if (new->top != -1)
2235 /* Swap the reg at top of stack into the position it is
2236 supposed to be in, until the correct top of stack appears. */
2238 while (old->reg[old->top] != new->reg[new->top])
2240 for (reg = new->top; reg >= 0; reg--)
2241 if (new->reg[reg] == old->reg[old->top])
2242 break;
2244 if (reg == -1)
2245 abort ();
2247 emit_swap_insn (insn, old,
2248 FP_MODE_REG (old->reg[reg], DFmode));
2251 /* See if any regs remain incorrect. If so, bring an
2252 incorrect reg to the top of stack, and let the while loop
2253 above fix it. */
2255 for (reg = new->top; reg >= 0; reg--)
2256 if (new->reg[reg] != old->reg[reg])
2258 emit_swap_insn (insn, old,
2259 FP_MODE_REG (old->reg[reg], DFmode));
2260 break;
2262 } while (reg >= 0);
2264 /* At this point there must be no differences. */
2266 for (reg = old->top; reg >= 0; reg--)
2267 if (old->reg[reg] != new->reg[reg])
2268 abort ();
2271 if (update_end)
2272 current_block->end = PREV_INSN (insn);
2275 /* Print stack configuration. */
2277 static void
2278 print_stack (file, s)
2279 FILE *file;
2280 stack s;
2282 if (! file)
2283 return;
2285 if (s->top == -2)
2286 fprintf (file, "uninitialized\n");
2287 else if (s->top == -1)
2288 fprintf (file, "empty\n");
2289 else
2291 int i;
2292 fputs ("[ ", file);
2293 for (i = 0; i <= s->top; ++i)
2294 fprintf (file, "%d ", s->reg[i]);
2295 fputs ("]\n", file);
2299 /* This function was doing life analysis. We now let the regular live
2300 code do it's job, so we only need to check some extra invariants
2301 that reg-stack expects. Primary among these being that all registers
2302 are initialized before use.
2304 The function returns true when code was emitted to CFG edges and
2305 commit_edge_insertions needs to be called. */
2307 static int
2308 convert_regs_entry ()
2310 int inserted = 0, i;
2311 edge e;
2313 for (i = n_basic_blocks - 1; i >= 0; --i)
2315 basic_block block = BASIC_BLOCK (i);
2316 block_info bi = BLOCK_INFO (block);
2317 int reg;
2319 /* Set current register status at last instruction `uninitialized'. */
2320 bi->stack_in.top = -2;
2322 /* Copy live_at_end and live_at_start into temporaries. */
2323 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2325 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2326 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2327 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2328 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2332 /* Load something into each stack register live at function entry.
2333 Such live registers can be caused by uninitialized variables or
2334 functions not returning values on all paths. In order to keep
2335 the push/pop code happy, and to not scrog the register stack, we
2336 must put something in these registers. Use a QNaN.
2338 Note that we are insertting converted code here. This code is
2339 never seen by the convert_regs pass. */
2341 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2343 basic_block block = e->dest;
2344 block_info bi = BLOCK_INFO (block);
2345 int reg, top = -1;
2347 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2348 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2350 rtx init;
2352 bi->stack_in.reg[++top] = reg;
2354 init = gen_rtx_SET (VOIDmode,
2355 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2356 nan);
2357 insert_insn_on_edge (init, e);
2358 inserted = 1;
2361 bi->stack_in.top = top;
2364 return inserted;
2367 /* Construct the desired stack for function exit. This will either
2368 be `empty', or the function return value at top-of-stack. */
2370 static void
2371 convert_regs_exit ()
2373 int value_reg_low, value_reg_high;
2374 stack output_stack;
2375 rtx retvalue;
2377 retvalue = stack_result (current_function_decl);
2378 value_reg_low = value_reg_high = -1;
2379 if (retvalue)
2381 value_reg_low = REGNO (retvalue);
2382 value_reg_high = value_reg_low
2383 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2386 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2387 if (value_reg_low == -1)
2388 output_stack->top = -1;
2389 else
2391 int reg;
2393 output_stack->top = value_reg_high - value_reg_low;
2394 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2396 output_stack->reg[reg - value_reg_low] = reg;
2397 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2402 /* Convert stack register references in one block. */
2404 static int
2405 convert_regs_1 (file, block)
2406 FILE *file;
2407 basic_block block;
2409 struct stack_def regstack, tmpstack;
2410 block_info bi = BLOCK_INFO (block);
2411 int inserted, reg;
2412 rtx insn, next;
2413 edge e;
2415 current_block = block;
2417 if (file)
2419 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2420 print_stack (file, &bi->stack_in);
2423 /* Process all insns in this block. Keep track of NEXT so that we
2424 don't process insns emitted while substituting in INSN. */
2425 next = block->head;
2426 regstack = bi->stack_in;
2429 insn = next;
2430 next = NEXT_INSN (insn);
2432 /* Ensure we have not missed a block boundary. */
2433 if (next == NULL)
2434 abort ();
2435 if (insn == block->end)
2436 next = NULL;
2438 /* Don't bother processing unless there is a stack reg
2439 mentioned or if it's a CALL_INSN. */
2440 if (stack_regs_mentioned (insn)
2441 || GET_CODE (insn) == CALL_INSN)
2443 if (file)
2445 fprintf (file, " insn %d input stack: ",
2446 INSN_UID (insn));
2447 print_stack (file, &regstack);
2449 subst_stack_regs (insn, &regstack);
2452 while (next);
2454 if (file)
2456 fprintf (file, "Expected live registers [");
2457 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2458 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2459 fprintf (file, " %d", reg);
2460 fprintf (file, " ]\nOutput stack: ");
2461 print_stack (file, &regstack);
2464 insn = block->end;
2465 if (GET_CODE (insn) == JUMP_INSN)
2466 insn = PREV_INSN (insn);
2468 /* If the function is declared to return a value, but it returns one
2469 in only some cases, some registers might come live here. Emit
2470 necessary moves for them. */
2472 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2474 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2475 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2477 rtx set;
2479 if (file)
2481 fprintf (file, "Emitting insn initializing reg %d\n",
2482 reg);
2485 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2486 nan);
2487 insn = emit_block_insn_after (set, insn, block);
2488 subst_stack_regs (insn, &regstack);
2492 /* Something failed if the stack lives don't match. */
2493 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2494 abort ();
2495 win:
2497 /* Adjust the stack of this block on exit to match the stack of the
2498 target block, or copy stack info into the stack of the successor
2499 of the successor hasn't been processed yet. */
2500 inserted = 0;
2501 for (e = block->succ; e ; e = e->succ_next)
2503 basic_block target = e->dest;
2504 stack target_stack = &BLOCK_INFO (target)->stack_in;
2506 if (file)
2507 fprintf (file, "Edge to block %d: ", target->index);
2509 if (target_stack->top == -2)
2511 /* The target block hasn't had a stack order selected.
2512 We need merely ensure that no pops are needed. */
2513 for (reg = regstack.top; reg >= 0; --reg)
2514 if (! TEST_HARD_REG_BIT (target_stack->reg_set,
2515 regstack.reg[reg]))
2516 break;
2518 if (reg == -1)
2520 if (file)
2521 fprintf (file, "new block; copying stack position\n");
2523 /* change_stack kills values in regstack. */
2524 tmpstack = regstack;
2526 change_stack (block->end, &tmpstack,
2527 target_stack, EMIT_AFTER);
2528 continue;
2531 if (file)
2532 fprintf (file, "new block; pops needed\n");
2534 else
2536 if (target_stack->top == regstack.top)
2538 for (reg = target_stack->top; reg >= 0; --reg)
2539 if (target_stack->reg[reg] != regstack.reg[reg])
2540 break;
2542 if (reg == -1)
2544 if (file)
2545 fprintf (file, "no changes needed\n");
2546 continue;
2550 if (file)
2552 fprintf (file, "correcting stack to ");
2553 print_stack (file, target_stack);
2557 /* Care for EH edges specially. The normal return path may return
2558 a value in st(0), but the EH path will not, and there's no need
2559 to add popping code to the edge. */
2560 if (e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
2562 /* Assert that the lifetimes are as we expect -- one value
2563 live at st(0) on the end of the source block, and no
2564 values live at the beginning of the destination block. */
2565 HARD_REG_SET tmp;
2567 CLEAR_HARD_REG_SET (tmp);
2568 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2569 abort();
2570 eh1:
2572 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2573 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2574 abort();
2575 eh2:
2577 target_stack->top = -1;
2580 /* It is better to output directly to the end of the block
2581 instead of to the edge, because emit_swap can do minimal
2582 insn scheduling. We can do this when there is only one
2583 edge out, and it is not abnormal. */
2584 else if (block->succ->succ_next == NULL
2585 && ! (e->flags & EDGE_ABNORMAL))
2587 /* change_stack kills values in regstack. */
2588 tmpstack = regstack;
2590 change_stack (block->end, &tmpstack, target_stack,
2591 (GET_CODE (block->end) == JUMP_INSN
2592 ? EMIT_BEFORE : EMIT_AFTER));
2594 else
2596 rtx seq, after;
2598 /* We don't support abnormal edges. Global takes care to
2599 avoid any live register across them, so we should never
2600 have to insert instructions on such edges. */
2601 if (e->flags & EDGE_ABNORMAL)
2602 abort ();
2604 current_block = NULL;
2605 start_sequence ();
2607 /* ??? change_stack needs some point to emit insns after.
2608 Also needed to keep gen_sequence from returning a
2609 pattern as opposed to a sequence, which would lose
2610 REG_DEAD notes. */
2611 after = emit_note (NULL, NOTE_INSN_DELETED);
2613 tmpstack = regstack;
2614 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2616 seq = gen_sequence ();
2617 end_sequence ();
2619 insert_insn_on_edge (seq, e);
2620 inserted = 1;
2621 current_block = block;
2625 return inserted;
2628 /* Convert registers in all blocks reachable from BLOCK. */
2630 static int
2631 convert_regs_2 (file, block)
2632 FILE *file;
2633 basic_block block;
2635 basic_block *stack, *sp;
2636 int inserted;
2638 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2639 sp = stack;
2641 *sp++ = block;
2642 BLOCK_INFO (block)->done = 1;
2644 inserted = 0;
2647 edge e;
2649 block = *--sp;
2650 inserted |= convert_regs_1 (file, block);
2652 for (e = block->succ; e ; e = e->succ_next)
2653 if (! BLOCK_INFO (e->dest)->done)
2655 *sp++ = e->dest;
2656 BLOCK_INFO (e->dest)->done = 1;
2659 while (sp != stack);
2661 return inserted;
2664 /* Traverse all basic blocks in a function, converting the register
2665 references in each insn from the "flat" register file that gcc uses,
2666 to the stack-like registers the 387 uses. */
2668 static int
2669 convert_regs (file)
2670 FILE *file;
2672 int inserted, i;
2673 edge e;
2675 /* Initialize uninitialized registers on function entry. */
2676 inserted = convert_regs_entry ();
2678 /* Construct the desired stack for function exit. */
2679 convert_regs_exit ();
2680 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2682 /* ??? Future: process inner loops first, and give them arbitrary
2683 initial stacks which emit_swap_insn can modify. This ought to
2684 prevent double fxch that aften appears at the head of a loop. */
2686 /* Process all blocks reachable from all entry points. */
2687 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2688 inserted |= convert_regs_2 (file, e->dest);
2690 /* ??? Process all unreachable blocks. Though there's no excuse
2691 for keeping these even when not optimizing. */
2692 for (i = 0; i < n_basic_blocks; ++i)
2694 basic_block b = BASIC_BLOCK (i);
2695 block_info bi = BLOCK_INFO (b);
2697 if (! bi->done)
2699 int reg;
2701 /* Create an arbitrary input stack. */
2702 bi->stack_in.top = -1;
2703 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2704 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2705 bi->stack_in.reg[++bi->stack_in.top] = reg;
2707 inserted |= convert_regs_2 (file, b);
2711 if (inserted)
2712 commit_edge_insertions ();
2714 if (file)
2715 fputc ('\n', file);
2717 return inserted;
2719 #endif /* STACK_REGS */