2001-01-23 Alexandre Petit-Bianco <apbianco@cygnus.com>
[official-gcc.git] / gcc / ggc-page.c
blob4738ed248dd029effeddf78d8ce2df8afafbebd9
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "tree.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "toplev.h"
27 #include "varray.h"
28 #include "flags.h"
29 #include "ggc.h"
30 #include "timevar.h"
32 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
33 file open. Prefer either to valloc. */
34 #ifdef HAVE_MMAP_ANON
35 # undef HAVE_MMAP_DEV_ZERO
37 # include <sys/mman.h>
38 # ifndef MAP_FAILED
39 # define MAP_FAILED -1
40 # endif
41 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
42 # define MAP_ANONYMOUS MAP_ANON
43 # endif
44 # define USING_MMAP
46 #endif
48 #ifdef HAVE_MMAP_DEV_ZERO
50 # include <sys/mman.h>
51 # ifndef MAP_FAILED
52 # define MAP_FAILED -1
53 # endif
54 # define USING_MMAP
56 #endif
58 #ifndef USING_MMAP
59 #define USING_MALLOC_PAGE_GROUPS
60 #endif
62 /* Stategy:
64 This garbage-collecting allocator allocates objects on one of a set
65 of pages. Each page can allocate objects of a single size only;
66 available sizes are powers of two starting at four bytes. The size
67 of an allocation request is rounded up to the next power of two
68 (`order'), and satisfied from the appropriate page.
70 Each page is recorded in a page-entry, which also maintains an
71 in-use bitmap of object positions on the page. This allows the
72 allocation state of a particular object to be flipped without
73 touching the page itself.
75 Each page-entry also has a context depth, which is used to track
76 pushing and popping of allocation contexts. Only objects allocated
77 in the current (highest-numbered) context may be collected.
79 Page entries are arranged in an array of singly-linked lists. The
80 array is indexed by the allocation size, in bits, of the pages on
81 it; i.e. all pages on a list allocate objects of the same size.
82 Pages are ordered on the list such that all non-full pages precede
83 all full pages, with non-full pages arranged in order of decreasing
84 context depth.
86 Empty pages (of all orders) are kept on a single page cache list,
87 and are considered first when new pages are required; they are
88 deallocated at the start of the next collection if they haven't
89 been recycled by then. */
92 /* Define GGC_POISON to poison memory marked unused by the collector. */
93 #undef GGC_POISON
95 /* Define GGC_ALWAYS_COLLECT to perform collection every time
96 ggc_collect is invoked. Otherwise, collection is performed only
97 when a significant amount of memory has been allocated since the
98 last collection. */
99 #undef GGC_ALWAYS_COLLECT
101 #ifdef ENABLE_GC_CHECKING
102 #define GGC_POISON
103 #endif
104 #ifdef ENABLE_GC_ALWAYS_COLLECT
105 #define GGC_ALWAYS_COLLECT
106 #endif
108 /* Define GGC_DEBUG_LEVEL to print debugging information.
109 0: No debugging output.
110 1: GC statistics only.
111 2: Page-entry allocations/deallocations as well.
112 3: Object allocations as well.
113 4: Object marks as well. */
114 #define GGC_DEBUG_LEVEL (0)
116 #ifndef HOST_BITS_PER_PTR
117 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
118 #endif
121 /* A two-level tree is used to look up the page-entry for a given
122 pointer. Two chunks of the pointer's bits are extracted to index
123 the first and second levels of the tree, as follows:
125 HOST_PAGE_SIZE_BITS
126 32 | |
127 msb +----------------+----+------+------+ lsb
128 | | |
129 PAGE_L1_BITS |
131 PAGE_L2_BITS
133 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
134 pages are aligned on system page boundaries. The next most
135 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
136 index values in the lookup table, respectively.
138 For 32-bit architectures and the settings below, there are no
139 leftover bits. For architectures with wider pointers, the lookup
140 tree points to a list of pages, which must be scanned to find the
141 correct one. */
143 #define PAGE_L1_BITS (8)
144 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
145 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
146 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
148 #define LOOKUP_L1(p) \
149 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
151 #define LOOKUP_L2(p) \
152 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
154 /* The number of objects per allocation page, for objects on a page of
155 the indicated ORDER. */
156 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
158 /* The size of an object on a page of the indicated ORDER. */
159 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
161 /* The number of extra orders, not corresponding to power-of-two sized
162 objects. */
164 #define NUM_EXTRA_ORDERS \
165 (sizeof (extra_order_size_table) / sizeof (extra_order_size_table[0]))
167 /* The Ith entry is the maximum size of an object to be stored in the
168 Ith extra order. Adding a new entry to this array is the *only*
169 thing you need to do to add a new special allocation size. */
171 static const size_t extra_order_size_table[] = {
172 sizeof (struct tree_decl),
173 sizeof (struct tree_list)
176 /* The total number of orders. */
178 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
180 /* We use this structure to determine the alignment required for
181 allocations. For power-of-two sized allocations, that's not a
182 problem, but it does matter for odd-sized allocations. */
184 struct max_alignment {
185 char c;
186 union {
187 HOST_WIDEST_INT i;
188 #ifdef HAVE_LONG_DOUBLE
189 long double d;
190 #else
191 double d;
192 #endif
193 } u;
196 /* The biggest alignment required. */
198 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
200 /* The Ith entry is the number of objects on a page or order I. */
202 static unsigned objects_per_page_table[NUM_ORDERS];
204 /* The Ith entry is the size of an object on a page of order I. */
206 static size_t object_size_table[NUM_ORDERS];
208 /* A page_entry records the status of an allocation page. This
209 structure is dynamically sized to fit the bitmap in_use_p. */
210 typedef struct page_entry
212 /* The next page-entry with objects of the same size, or NULL if
213 this is the last page-entry. */
214 struct page_entry *next;
216 /* The number of bytes allocated. (This will always be a multiple
217 of the host system page size.) */
218 size_t bytes;
220 /* The address at which the memory is allocated. */
221 char *page;
223 #ifdef USING_MALLOC_PAGE_GROUPS
224 /* Back pointer to the page group this page came from. */
225 struct page_group *group;
226 #endif
228 /* Saved in-use bit vector for pages that aren't in the topmost
229 context during collection. */
230 unsigned long *save_in_use_p;
232 /* Context depth of this page. */
233 unsigned short context_depth;
235 /* The number of free objects remaining on this page. */
236 unsigned short num_free_objects;
238 /* A likely candidate for the bit position of a free object for the
239 next allocation from this page. */
240 unsigned short next_bit_hint;
242 /* The lg of size of objects allocated from this page. */
243 unsigned char order;
245 /* A bit vector indicating whether or not objects are in use. The
246 Nth bit is one if the Nth object on this page is allocated. This
247 array is dynamically sized. */
248 unsigned long in_use_p[1];
249 } page_entry;
251 #ifdef USING_MALLOC_PAGE_GROUPS
252 /* A page_group describes a large allocation from malloc, from which
253 we parcel out aligned pages. */
254 typedef struct page_group
256 /* A linked list of all extant page groups. */
257 struct page_group *next;
259 /* The address we received from malloc. */
260 char *allocation;
262 /* The size of the block. */
263 size_t alloc_size;
265 /* A bitmask of pages in use. */
266 unsigned int in_use;
267 } page_group;
268 #endif
270 #if HOST_BITS_PER_PTR <= 32
272 /* On 32-bit hosts, we use a two level page table, as pictured above. */
273 typedef page_entry **page_table[PAGE_L1_SIZE];
275 #else
277 /* On 64-bit hosts, we use the same two level page tables plus a linked
278 list that disambiguates the top 32-bits. There will almost always be
279 exactly one entry in the list. */
280 typedef struct page_table_chain
282 struct page_table_chain *next;
283 size_t high_bits;
284 page_entry **table[PAGE_L1_SIZE];
285 } *page_table;
287 #endif
289 /* The rest of the global variables. */
290 static struct globals
292 /* The Nth element in this array is a page with objects of size 2^N.
293 If there are any pages with free objects, they will be at the
294 head of the list. NULL if there are no page-entries for this
295 object size. */
296 page_entry *pages[NUM_ORDERS];
298 /* The Nth element in this array is the last page with objects of
299 size 2^N. NULL if there are no page-entries for this object
300 size. */
301 page_entry *page_tails[NUM_ORDERS];
303 /* Lookup table for associating allocation pages with object addresses. */
304 page_table lookup;
306 /* The system's page size. */
307 size_t pagesize;
308 size_t lg_pagesize;
310 /* Bytes currently allocated. */
311 size_t allocated;
313 /* Bytes currently allocated at the end of the last collection. */
314 size_t allocated_last_gc;
316 /* Total amount of memory mapped. */
317 size_t bytes_mapped;
319 /* The current depth in the context stack. */
320 unsigned short context_depth;
322 /* A file descriptor open to /dev/zero for reading. */
323 #if defined (HAVE_MMAP_DEV_ZERO)
324 int dev_zero_fd;
325 #endif
327 /* A cache of free system pages. */
328 page_entry *free_pages;
330 #ifdef USING_MALLOC_PAGE_GROUPS
331 page_group *page_groups;
332 #endif
334 /* The file descriptor for debugging output. */
335 FILE *debug_file;
336 } G;
338 /* The size in bytes required to maintain a bitmap for the objects
339 on a page-entry. */
340 #define BITMAP_SIZE(Num_objects) \
341 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
343 /* Skip garbage collection if the current allocation is not at least
344 this factor times the allocation at the end of the last collection.
345 In other words, total allocation must expand by (this factor minus
346 one) before collection is performed. */
347 #define GGC_MIN_EXPAND_FOR_GC (1.3)
349 /* Bound `allocated_last_gc' to 4MB, to prevent the memory expansion
350 test from triggering too often when the heap is small. */
351 #define GGC_MIN_LAST_ALLOCATED (4 * 1024 * 1024)
353 /* Allocate pages in chunks of this size, to throttle calls to memory
354 allocation routines. The first page is used, the rest go onto the
355 free list. This cannot be larger than HOST_BITS_PER_INT for the
356 in_use bitmask for page_group. */
357 #define GGC_QUIRE_SIZE 16
359 static int ggc_allocated_p PARAMS ((const void *));
360 static page_entry *lookup_page_table_entry PARAMS ((const void *));
361 static void set_page_table_entry PARAMS ((void *, page_entry *));
362 #ifdef USING_MMAP
363 static char *alloc_anon PARAMS ((char *, size_t));
364 #endif
365 #ifdef USING_MALLOC_PAGE_GROUPS
366 static size_t page_group_index PARAMS ((char *, char *));
367 static void set_page_group_in_use PARAMS ((page_group *, char *));
368 static void clear_page_group_in_use PARAMS ((page_group *, char *));
369 #endif
370 static struct page_entry * alloc_page PARAMS ((unsigned));
371 static void free_page PARAMS ((struct page_entry *));
372 static void release_pages PARAMS ((void));
373 static void clear_marks PARAMS ((void));
374 static void sweep_pages PARAMS ((void));
375 static void ggc_recalculate_in_use_p PARAMS ((page_entry *));
377 #ifdef GGC_POISON
378 static void poison_pages PARAMS ((void));
379 #endif
381 void debug_print_page_list PARAMS ((int));
383 /* Returns non-zero if P was allocated in GC'able memory. */
385 static inline int
386 ggc_allocated_p (p)
387 const void *p;
389 page_entry ***base;
390 size_t L1, L2;
392 #if HOST_BITS_PER_PTR <= 32
393 base = &G.lookup[0];
394 #else
395 page_table table = G.lookup;
396 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
397 while (1)
399 if (table == NULL)
400 return 0;
401 if (table->high_bits == high_bits)
402 break;
403 table = table->next;
405 base = &table->table[0];
406 #endif
408 /* Extract the level 1 and 2 indicies. */
409 L1 = LOOKUP_L1 (p);
410 L2 = LOOKUP_L2 (p);
412 return base[L1] && base[L1][L2];
415 /* Traverse the page table and find the entry for a page.
416 Die (probably) if the object wasn't allocated via GC. */
418 static inline page_entry *
419 lookup_page_table_entry(p)
420 const void *p;
422 page_entry ***base;
423 size_t L1, L2;
425 #if HOST_BITS_PER_PTR <= 32
426 base = &G.lookup[0];
427 #else
428 page_table table = G.lookup;
429 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
430 while (table->high_bits != high_bits)
431 table = table->next;
432 base = &table->table[0];
433 #endif
435 /* Extract the level 1 and 2 indicies. */
436 L1 = LOOKUP_L1 (p);
437 L2 = LOOKUP_L2 (p);
439 return base[L1][L2];
442 /* Set the page table entry for a page. */
444 static void
445 set_page_table_entry(p, entry)
446 void *p;
447 page_entry *entry;
449 page_entry ***base;
450 size_t L1, L2;
452 #if HOST_BITS_PER_PTR <= 32
453 base = &G.lookup[0];
454 #else
455 page_table table;
456 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
457 for (table = G.lookup; table; table = table->next)
458 if (table->high_bits == high_bits)
459 goto found;
461 /* Not found -- allocate a new table. */
462 table = (page_table) xcalloc (1, sizeof(*table));
463 table->next = G.lookup;
464 table->high_bits = high_bits;
465 G.lookup = table;
466 found:
467 base = &table->table[0];
468 #endif
470 /* Extract the level 1 and 2 indicies. */
471 L1 = LOOKUP_L1 (p);
472 L2 = LOOKUP_L2 (p);
474 if (base[L1] == NULL)
475 base[L1] = (page_entry **) xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
477 base[L1][L2] = entry;
480 /* Prints the page-entry for object size ORDER, for debugging. */
482 void
483 debug_print_page_list (order)
484 int order;
486 page_entry *p;
487 printf ("Head=%p, Tail=%p:\n", (PTR) G.pages[order],
488 (PTR) G.page_tails[order]);
489 p = G.pages[order];
490 while (p != NULL)
492 printf ("%p(%1d|%3d) -> ", (PTR) p, p->context_depth,
493 p->num_free_objects);
494 p = p->next;
496 printf ("NULL\n");
497 fflush (stdout);
500 #ifdef USING_MMAP
501 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
502 (if non-null). The ifdef structure here is intended to cause a
503 compile error unless exactly one of the HAVE_* is defined. */
505 static inline char *
506 alloc_anon (pref, size)
507 char *pref ATTRIBUTE_UNUSED;
508 size_t size;
510 #ifdef HAVE_MMAP_ANON
511 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
512 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
513 #endif
514 #ifdef HAVE_MMAP_DEV_ZERO
515 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
516 MAP_PRIVATE, G.dev_zero_fd, 0);
517 #endif
519 if (page == (char *) MAP_FAILED)
521 perror ("Virtual memory exhausted");
522 exit (FATAL_EXIT_CODE);
525 /* Remember that we allocated this memory. */
526 G.bytes_mapped += size;
528 return page;
530 #endif
531 #ifdef USING_MALLOC_PAGE_GROUPS
532 /* Compute the index for this page into the page group. */
534 static inline size_t
535 page_group_index (allocation, page)
536 char *allocation, *page;
538 return (size_t)(page - allocation) >> G.lg_pagesize;
541 /* Set and clear the in_use bit for this page in the page group. */
543 static inline void
544 set_page_group_in_use (group, page)
545 page_group *group;
546 char *page;
548 group->in_use |= 1 << page_group_index (group->allocation, page);
551 static inline void
552 clear_page_group_in_use (group, page)
553 page_group *group;
554 char *page;
556 group->in_use &= ~(1 << page_group_index (group->allocation, page));
558 #endif
560 /* Allocate a new page for allocating objects of size 2^ORDER,
561 and return an entry for it. The entry is not added to the
562 appropriate page_table list. */
564 static inline struct page_entry *
565 alloc_page (order)
566 unsigned order;
568 struct page_entry *entry, *p, **pp;
569 char *page;
570 size_t num_objects;
571 size_t bitmap_size;
572 size_t page_entry_size;
573 size_t entry_size;
574 #ifdef USING_MALLOC_PAGE_GROUPS
575 page_group *group;
576 #endif
578 num_objects = OBJECTS_PER_PAGE (order);
579 bitmap_size = BITMAP_SIZE (num_objects + 1);
580 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
581 entry_size = num_objects * OBJECT_SIZE (order);
582 if (entry_size < G.pagesize)
583 entry_size = G.pagesize;
585 entry = NULL;
586 page = NULL;
588 /* Check the list of free pages for one we can use. */
589 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
590 if (p->bytes == entry_size)
591 break;
593 if (p != NULL)
595 /* Recycle the allocated memory from this page ... */
596 *pp = p->next;
597 page = p->page;
599 #ifdef USING_MALLOC_PAGE_GROUPS
600 group = p->group;
601 #endif
603 /* ... and, if possible, the page entry itself. */
604 if (p->order == order)
606 entry = p;
607 memset (entry, 0, page_entry_size);
609 else
610 free (p);
612 #ifdef USING_MMAP
613 else if (entry_size == G.pagesize)
615 /* We want just one page. Allocate a bunch of them and put the
616 extras on the freelist. (Can only do this optimization with
617 mmap for backing store.) */
618 struct page_entry *e, *f = G.free_pages;
619 int i;
621 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
623 /* This loop counts down so that the chain will be in ascending
624 memory order. */
625 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
627 e = (struct page_entry *) xcalloc (1, page_entry_size);
628 e->order = order;
629 e->bytes = G.pagesize;
630 e->page = page + (i << G.lg_pagesize);
631 e->next = f;
632 f = e;
635 G.free_pages = f;
637 else
638 page = alloc_anon (NULL, entry_size);
639 #endif
640 #ifdef USING_MALLOC_PAGE_GROUPS
641 else
643 /* Allocate a large block of memory and serve out the aligned
644 pages therein. This results in much less memory wastage
645 than the traditional implementation of valloc. */
647 char *allocation, *a, *enda;
648 size_t alloc_size, head_slop, tail_slop;
649 int multiple_pages = (entry_size == G.pagesize);
651 if (multiple_pages)
652 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
653 else
654 alloc_size = entry_size + G.pagesize - 1;
655 allocation = xmalloc (alloc_size);
657 page = (char *)(((size_t) allocation + G.pagesize - 1) & -G.pagesize);
658 head_slop = page - allocation;
659 if (multiple_pages)
660 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
661 else
662 tail_slop = alloc_size - entry_size - head_slop;
663 enda = allocation + alloc_size - tail_slop;
665 /* We allocated N pages, which are likely not aligned, leaving
666 us with N-1 usable pages. We plan to place the page_group
667 structure somewhere in the slop. */
668 if (head_slop >= sizeof (page_group))
669 group = (page_group *)page - 1;
670 else
672 /* We magically got an aligned allocation. Too bad, we have
673 to waste a page anyway. */
674 if (tail_slop == 0)
676 enda -= G.pagesize;
677 tail_slop += G.pagesize;
679 if (tail_slop < sizeof (page_group))
680 abort ();
681 group = (page_group *)enda;
682 tail_slop -= sizeof (page_group);
685 /* Remember that we allocated this memory. */
686 group->next = G.page_groups;
687 group->allocation = allocation;
688 group->alloc_size = alloc_size;
689 group->in_use = 0;
690 G.page_groups = group;
691 G.bytes_mapped += alloc_size;
693 /* If we allocated multiple pages, put the rest on the free list. */
694 if (multiple_pages)
696 struct page_entry *e, *f = G.free_pages;
697 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
699 e = (struct page_entry *) xcalloc (1, page_entry_size);
700 e->order = order;
701 e->bytes = G.pagesize;
702 e->page = a;
703 e->group = group;
704 e->next = f;
705 f = e;
707 G.free_pages = f;
710 #endif
712 if (entry == NULL)
713 entry = (struct page_entry *) xcalloc (1, page_entry_size);
715 entry->bytes = entry_size;
716 entry->page = page;
717 entry->context_depth = G.context_depth;
718 entry->order = order;
719 entry->num_free_objects = num_objects;
720 entry->next_bit_hint = 1;
722 #ifdef USING_MALLOC_PAGE_GROUPS
723 entry->group = group;
724 set_page_group_in_use (group, page);
725 #endif
727 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
728 increment the hint. */
729 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
730 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
732 set_page_table_entry (page, entry);
734 if (GGC_DEBUG_LEVEL >= 2)
735 fprintf (G.debug_file,
736 "Allocating page at %p, object size=%ld, data %p-%p\n",
737 (PTR) entry, (long) OBJECT_SIZE (order), page,
738 page + entry_size - 1);
740 return entry;
743 /* For a page that is no longer needed, put it on the free page list. */
745 static inline void
746 free_page (entry)
747 page_entry *entry;
749 if (GGC_DEBUG_LEVEL >= 2)
750 fprintf (G.debug_file,
751 "Deallocating page at %p, data %p-%p\n", (PTR) entry,
752 entry->page, entry->page + entry->bytes - 1);
754 set_page_table_entry (entry->page, NULL);
756 #ifdef USING_MALLOC_PAGE_GROUPS
757 clear_page_group_in_use (entry->group, entry->page);
758 #endif
760 entry->next = G.free_pages;
761 G.free_pages = entry;
764 /* Release the free page cache to the system. */
766 static void
767 release_pages ()
769 #ifdef USING_MMAP
770 page_entry *p, *next;
771 char *start;
772 size_t len;
774 /* Gather up adjacent pages so they are unmapped together. */
775 p = G.free_pages;
777 while (p)
779 start = p->page;
780 next = p->next;
781 len = p->bytes;
782 free (p);
783 p = next;
785 while (p && p->page == start + len)
787 next = p->next;
788 len += p->bytes;
789 free (p);
790 p = next;
793 munmap (start, len);
794 G.bytes_mapped -= len;
797 G.free_pages = NULL;
798 #endif
799 #ifdef USING_MALLOC_PAGE_GROUPS
800 page_entry **pp, *p;
801 page_group **gp, *g;
803 /* Remove all pages from free page groups from the list. */
804 pp = &G.free_pages;
805 while ((p = *pp) != NULL)
806 if (p->group->in_use == 0)
808 *pp = p->next;
809 free (p);
811 else
812 pp = &p->next;
814 /* Remove all free page groups, and release the storage. */
815 gp = &G.page_groups;
816 while ((g = *gp) != NULL)
817 if (g->in_use == 0)
819 *gp = g->next;
820 G.bytes_mapped -= g->alloc_size;
821 free (g->allocation);
823 else
824 gp = &g->next;
825 #endif
828 /* This table provides a fast way to determine ceil(log_2(size)) for
829 allocation requests. The minimum allocation size is four bytes. */
831 static unsigned char size_lookup[257] =
833 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
834 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
835 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
836 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
837 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
838 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
839 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
840 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
841 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
842 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
843 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
844 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
845 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
846 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
847 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
848 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
852 /* Allocate a chunk of memory of SIZE bytes. If ZERO is non-zero, the
853 memory is zeroed; otherwise, its contents are undefined. */
855 void *
856 ggc_alloc (size)
857 size_t size;
859 unsigned order, word, bit, object_offset;
860 struct page_entry *entry;
861 void *result;
863 if (size <= 256)
864 order = size_lookup[size];
865 else
867 order = 9;
868 while (size > OBJECT_SIZE (order))
869 order++;
872 /* If there are non-full pages for this size allocation, they are at
873 the head of the list. */
874 entry = G.pages[order];
876 /* If there is no page for this object size, or all pages in this
877 context are full, allocate a new page. */
878 if (entry == NULL || entry->num_free_objects == 0)
880 struct page_entry *new_entry;
881 new_entry = alloc_page (order);
883 /* If this is the only entry, it's also the tail. */
884 if (entry == NULL)
885 G.page_tails[order] = new_entry;
887 /* Put new pages at the head of the page list. */
888 new_entry->next = entry;
889 entry = new_entry;
890 G.pages[order] = new_entry;
892 /* For a new page, we know the word and bit positions (in the
893 in_use bitmap) of the first available object -- they're zero. */
894 new_entry->next_bit_hint = 1;
895 word = 0;
896 bit = 0;
897 object_offset = 0;
899 else
901 /* First try to use the hint left from the previous allocation
902 to locate a clear bit in the in-use bitmap. We've made sure
903 that the one-past-the-end bit is always set, so if the hint
904 has run over, this test will fail. */
905 unsigned hint = entry->next_bit_hint;
906 word = hint / HOST_BITS_PER_LONG;
907 bit = hint % HOST_BITS_PER_LONG;
909 /* If the hint didn't work, scan the bitmap from the beginning. */
910 if ((entry->in_use_p[word] >> bit) & 1)
912 word = bit = 0;
913 while (~entry->in_use_p[word] == 0)
914 ++word;
915 while ((entry->in_use_p[word] >> bit) & 1)
916 ++bit;
917 hint = word * HOST_BITS_PER_LONG + bit;
920 /* Next time, try the next bit. */
921 entry->next_bit_hint = hint + 1;
923 object_offset = hint * OBJECT_SIZE (order);
926 /* Set the in-use bit. */
927 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
929 /* Keep a running total of the number of free objects. If this page
930 fills up, we may have to move it to the end of the list if the
931 next page isn't full. If the next page is full, all subsequent
932 pages are full, so there's no need to move it. */
933 if (--entry->num_free_objects == 0
934 && entry->next != NULL
935 && entry->next->num_free_objects > 0)
937 G.pages[order] = entry->next;
938 entry->next = NULL;
939 G.page_tails[order]->next = entry;
940 G.page_tails[order] = entry;
943 /* Calculate the object's address. */
944 result = entry->page + object_offset;
946 #ifdef GGC_POISON
947 /* `Poison' the entire allocated object, including any padding at
948 the end. */
949 memset (result, 0xaf, OBJECT_SIZE (order));
950 #endif
952 /* Keep track of how many bytes are being allocated. This
953 information is used in deciding when to collect. */
954 G.allocated += OBJECT_SIZE (order);
956 if (GGC_DEBUG_LEVEL >= 3)
957 fprintf (G.debug_file,
958 "Allocating object, requested size=%ld, actual=%ld at %p on %p\n",
959 (long) size, (long) OBJECT_SIZE (order), result, (PTR) entry);
961 return result;
964 /* If P is not marked, marks it and return false. Otherwise return true.
965 P must have been allocated by the GC allocator; it mustn't point to
966 static objects, stack variables, or memory allocated with malloc. */
969 ggc_set_mark (p)
970 const void *p;
972 page_entry *entry;
973 unsigned bit, word;
974 unsigned long mask;
976 /* Look up the page on which the object is alloced. If the object
977 wasn't allocated by the collector, we'll probably die. */
978 entry = lookup_page_table_entry (p);
979 #ifdef ENABLE_CHECKING
980 if (entry == NULL)
981 abort ();
982 #endif
984 /* Calculate the index of the object on the page; this is its bit
985 position in the in_use_p bitmap. */
986 bit = (((const char *) p) - entry->page) / OBJECT_SIZE (entry->order);
987 word = bit / HOST_BITS_PER_LONG;
988 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
990 /* If the bit was previously set, skip it. */
991 if (entry->in_use_p[word] & mask)
992 return 1;
994 /* Otherwise set it, and decrement the free object count. */
995 entry->in_use_p[word] |= mask;
996 entry->num_free_objects -= 1;
998 if (GGC_DEBUG_LEVEL >= 4)
999 fprintf (G.debug_file, "Marking %p\n", p);
1001 return 0;
1004 /* Mark P, but check first that it was allocated by the collector. */
1006 void
1007 ggc_mark_if_gcable (p)
1008 const void *p;
1010 if (p && ggc_allocated_p (p))
1011 ggc_set_mark (p);
1014 /* Return the size of the gc-able object P. */
1016 size_t
1017 ggc_get_size (p)
1018 const void *p;
1020 page_entry *pe = lookup_page_table_entry (p);
1021 return OBJECT_SIZE (pe->order);
1024 /* Initialize the ggc-mmap allocator. */
1026 void
1027 init_ggc ()
1029 unsigned order;
1031 G.pagesize = getpagesize();
1032 G.lg_pagesize = exact_log2 (G.pagesize);
1034 #ifdef HAVE_MMAP_DEV_ZERO
1035 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1036 if (G.dev_zero_fd == -1)
1037 abort ();
1038 #endif
1040 #if 0
1041 G.debug_file = fopen ("ggc-mmap.debug", "w");
1042 #else
1043 G.debug_file = stdout;
1044 #endif
1046 G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
1048 #ifdef USING_MMAP
1049 /* StunOS has an amazing off-by-one error for the first mmap allocation
1050 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1051 believe, is an unaligned page allocation, which would cause us to
1052 hork badly if we tried to use it. */
1054 char *p = alloc_anon (NULL, G.pagesize);
1055 struct page_entry *e;
1056 if ((size_t)p & (G.pagesize - 1))
1058 /* How losing. Discard this one and try another. If we still
1059 can't get something useful, give up. */
1061 p = alloc_anon (NULL, G.pagesize);
1062 if ((size_t)p & (G.pagesize - 1))
1063 abort ();
1066 /* We have a good page, might as well hold onto it... */
1067 e = (struct page_entry *) xcalloc (1, sizeof (struct page_entry));
1068 e->bytes = G.pagesize;
1069 e->page = p;
1070 e->next = G.free_pages;
1071 G.free_pages = e;
1073 #endif
1075 /* Initialize the object size table. */
1076 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1077 object_size_table[order] = (size_t) 1 << order;
1078 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1080 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1082 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1083 so that we're sure of getting aligned memory. */
1084 s = CEIL (s, MAX_ALIGNMENT) * MAX_ALIGNMENT;
1085 object_size_table[order] = s;
1088 /* Initialize the objects-per-page table. */
1089 for (order = 0; order < NUM_ORDERS; ++order)
1091 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1092 if (objects_per_page_table[order] == 0)
1093 objects_per_page_table[order] = 1;
1096 /* Reset the size_lookup array to put appropriately sized objects in
1097 the special orders. All objects bigger than the previous power
1098 of two, but no greater than the special size, should go in the
1099 new order. */
1100 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1102 int o;
1103 int i;
1105 o = size_lookup[OBJECT_SIZE (order)];
1106 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1107 size_lookup[i] = order;
1111 /* Increment the `GC context'. Objects allocated in an outer context
1112 are never freed, eliminating the need to register their roots. */
1114 void
1115 ggc_push_context ()
1117 ++G.context_depth;
1119 /* Die on wrap. */
1120 if (G.context_depth == 0)
1121 abort ();
1124 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1125 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1127 static void
1128 ggc_recalculate_in_use_p (p)
1129 page_entry *p;
1131 unsigned int i;
1132 size_t num_objects;
1134 /* Because the past-the-end bit in in_use_p is always set, we
1135 pretend there is one additional object. */
1136 num_objects = OBJECTS_PER_PAGE (p->order) + 1;
1138 /* Reset the free object count. */
1139 p->num_free_objects = num_objects;
1141 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1142 for (i = 0;
1143 i < CEIL (BITMAP_SIZE (num_objects),
1144 sizeof (*p->in_use_p));
1145 ++i)
1147 unsigned long j;
1149 /* Something is in use if it is marked, or if it was in use in a
1150 context further down the context stack. */
1151 p->in_use_p[i] |= p->save_in_use_p[i];
1153 /* Decrement the free object count for every object allocated. */
1154 for (j = p->in_use_p[i]; j; j >>= 1)
1155 p->num_free_objects -= (j & 1);
1158 if (p->num_free_objects >= num_objects)
1159 abort ();
1162 /* Decrement the `GC context'. All objects allocated since the
1163 previous ggc_push_context are migrated to the outer context. */
1165 void
1166 ggc_pop_context ()
1168 unsigned order, depth;
1170 depth = --G.context_depth;
1172 /* Any remaining pages in the popped context are lowered to the new
1173 current context; i.e. objects allocated in the popped context and
1174 left over are imported into the previous context. */
1175 for (order = 2; order < NUM_ORDERS; order++)
1177 page_entry *p;
1179 for (p = G.pages[order]; p != NULL; p = p->next)
1181 if (p->context_depth > depth)
1182 p->context_depth = depth;
1184 /* If this page is now in the topmost context, and we'd
1185 saved its allocation state, restore it. */
1186 else if (p->context_depth == depth && p->save_in_use_p)
1188 ggc_recalculate_in_use_p (p);
1189 free (p->save_in_use_p);
1190 p->save_in_use_p = 0;
1196 /* Unmark all objects. */
1198 static inline void
1199 clear_marks ()
1201 unsigned order;
1203 for (order = 2; order < NUM_ORDERS; order++)
1205 size_t num_objects = OBJECTS_PER_PAGE (order);
1206 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1207 page_entry *p;
1209 for (p = G.pages[order]; p != NULL; p = p->next)
1211 #ifdef ENABLE_CHECKING
1212 /* The data should be page-aligned. */
1213 if ((size_t) p->page & (G.pagesize - 1))
1214 abort ();
1215 #endif
1217 /* Pages that aren't in the topmost context are not collected;
1218 nevertheless, we need their in-use bit vectors to store GC
1219 marks. So, back them up first. */
1220 if (p->context_depth < G.context_depth)
1222 if (! p->save_in_use_p)
1223 p->save_in_use_p = xmalloc (bitmap_size);
1224 memcpy (p->save_in_use_p, p->in_use_p, bitmap_size);
1227 /* Reset reset the number of free objects and clear the
1228 in-use bits. These will be adjusted by mark_obj. */
1229 p->num_free_objects = num_objects;
1230 memset (p->in_use_p, 0, bitmap_size);
1232 /* Make sure the one-past-the-end bit is always set. */
1233 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1234 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1239 /* Free all empty pages. Partially empty pages need no attention
1240 because the `mark' bit doubles as an `unused' bit. */
1242 static inline void
1243 sweep_pages ()
1245 unsigned order;
1247 for (order = 2; order < NUM_ORDERS; order++)
1249 /* The last page-entry to consider, regardless of entries
1250 placed at the end of the list. */
1251 page_entry * const last = G.page_tails[order];
1253 size_t num_objects = OBJECTS_PER_PAGE (order);
1254 size_t live_objects;
1255 page_entry *p, *previous;
1256 int done;
1258 p = G.pages[order];
1259 if (p == NULL)
1260 continue;
1262 previous = NULL;
1265 page_entry *next = p->next;
1267 /* Loop until all entries have been examined. */
1268 done = (p == last);
1270 /* Add all live objects on this page to the count of
1271 allocated memory. */
1272 live_objects = num_objects - p->num_free_objects;
1274 G.allocated += OBJECT_SIZE (order) * live_objects;
1276 /* Only objects on pages in the topmost context should get
1277 collected. */
1278 if (p->context_depth < G.context_depth)
1281 /* Remove the page if it's empty. */
1282 else if (live_objects == 0)
1284 if (! previous)
1285 G.pages[order] = next;
1286 else
1287 previous->next = next;
1289 /* Are we removing the last element? */
1290 if (p == G.page_tails[order])
1291 G.page_tails[order] = previous;
1292 free_page (p);
1293 p = previous;
1296 /* If the page is full, move it to the end. */
1297 else if (p->num_free_objects == 0)
1299 /* Don't move it if it's already at the end. */
1300 if (p != G.page_tails[order])
1302 /* Move p to the end of the list. */
1303 p->next = NULL;
1304 G.page_tails[order]->next = p;
1306 /* Update the tail pointer... */
1307 G.page_tails[order] = p;
1309 /* ... and the head pointer, if necessary. */
1310 if (! previous)
1311 G.pages[order] = next;
1312 else
1313 previous->next = next;
1314 p = previous;
1318 /* If we've fallen through to here, it's a page in the
1319 topmost context that is neither full nor empty. Such a
1320 page must precede pages at lesser context depth in the
1321 list, so move it to the head. */
1322 else if (p != G.pages[order])
1324 previous->next = p->next;
1325 p->next = G.pages[order];
1326 G.pages[order] = p;
1327 /* Are we moving the last element? */
1328 if (G.page_tails[order] == p)
1329 G.page_tails[order] = previous;
1330 p = previous;
1333 previous = p;
1334 p = next;
1336 while (! done);
1338 /* Now, restore the in_use_p vectors for any pages from contexts
1339 other than the current one. */
1340 for (p = G.pages[order]; p; p = p->next)
1341 if (p->context_depth != G.context_depth)
1342 ggc_recalculate_in_use_p (p);
1346 #ifdef GGC_POISON
1347 /* Clobber all free objects. */
1349 static inline void
1350 poison_pages ()
1352 unsigned order;
1354 for (order = 2; order < NUM_ORDERS; order++)
1356 size_t num_objects = OBJECTS_PER_PAGE (order);
1357 size_t size = OBJECT_SIZE (order);
1358 page_entry *p;
1360 for (p = G.pages[order]; p != NULL; p = p->next)
1362 size_t i;
1364 if (p->context_depth != G.context_depth)
1365 /* Since we don't do any collection for pages in pushed
1366 contexts, there's no need to do any poisoning. And
1367 besides, the IN_USE_P array isn't valid until we pop
1368 contexts. */
1369 continue;
1371 for (i = 0; i < num_objects; i++)
1373 size_t word, bit;
1374 word = i / HOST_BITS_PER_LONG;
1375 bit = i % HOST_BITS_PER_LONG;
1376 if (((p->in_use_p[word] >> bit) & 1) == 0)
1377 memset (p->page + i * size, 0xa5, size);
1382 #endif
1384 /* Top level mark-and-sweep routine. */
1386 void
1387 ggc_collect ()
1389 /* Avoid frequent unnecessary work by skipping collection if the
1390 total allocations haven't expanded much since the last
1391 collection. */
1392 #ifndef GGC_ALWAYS_COLLECT
1393 if (G.allocated < GGC_MIN_EXPAND_FOR_GC * G.allocated_last_gc)
1394 return;
1395 #endif
1397 timevar_push (TV_GC);
1398 if (!quiet_flag)
1399 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1401 /* Zero the total allocated bytes. This will be recalculated in the
1402 sweep phase. */
1403 G.allocated = 0;
1405 /* Release the pages we freed the last time we collected, but didn't
1406 reuse in the interim. */
1407 release_pages ();
1409 clear_marks ();
1410 ggc_mark_roots ();
1412 #ifdef GGC_POISON
1413 poison_pages ();
1414 #endif
1416 sweep_pages ();
1418 G.allocated_last_gc = G.allocated;
1419 if (G.allocated_last_gc < GGC_MIN_LAST_ALLOCATED)
1420 G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
1422 timevar_pop (TV_GC);
1424 if (!quiet_flag)
1425 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1428 /* Print allocation statistics. */
1429 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1430 ? (x) \
1431 : ((x) < 1024*1024*10 \
1432 ? (x) / 1024 \
1433 : (x) / (1024*1024))))
1434 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1436 void
1437 ggc_print_statistics ()
1439 struct ggc_statistics stats;
1440 unsigned int i;
1441 size_t total_overhead = 0;
1443 /* Clear the statistics. */
1444 memset (&stats, 0, sizeof (stats));
1446 /* Make sure collection will really occur. */
1447 G.allocated_last_gc = 0;
1449 /* Collect and print the statistics common across collectors. */
1450 ggc_print_common_statistics (stderr, &stats);
1452 /* Release free pages so that we will not count the bytes allocated
1453 there as part of the total allocated memory. */
1454 release_pages ();
1456 /* Collect some information about the various sizes of
1457 allocation. */
1458 fprintf (stderr, "\n%-5s %10s %10s %10s\n",
1459 "Log", "Allocated", "Used", "Overhead");
1460 for (i = 0; i < NUM_ORDERS; ++i)
1462 page_entry *p;
1463 size_t allocated;
1464 size_t in_use;
1465 size_t overhead;
1467 /* Skip empty entries. */
1468 if (!G.pages[i])
1469 continue;
1471 overhead = allocated = in_use = 0;
1473 /* Figure out the total number of bytes allocated for objects of
1474 this size, and how many of them are actually in use. Also figure
1475 out how much memory the page table is using. */
1476 for (p = G.pages[i]; p; p = p->next)
1478 allocated += p->bytes;
1479 in_use +=
1480 (OBJECTS_PER_PAGE (i) - p->num_free_objects) * OBJECT_SIZE (i);
1482 overhead += (sizeof (page_entry) - sizeof (long)
1483 + BITMAP_SIZE (OBJECTS_PER_PAGE (i) + 1));
1485 fprintf (stderr, "%-5d %10ld%c %10ld%c %10ld%c\n", i,
1486 SCALE (allocated), LABEL (allocated),
1487 SCALE (in_use), LABEL (in_use),
1488 SCALE (overhead), LABEL (overhead));
1489 total_overhead += overhead;
1491 fprintf (stderr, "%-5s %10ld%c %10ld%c %10ld%c\n", "Total",
1492 SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
1493 SCALE (G.allocated), LABEL(G.allocated),
1494 SCALE (total_overhead), LABEL (total_overhead));