1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
48 #include "insn-flags.h"
50 #include "insn-codes.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
56 #include "basic-block.h"
63 #ifndef ACCUMULATE_OUTGOING_ARGS
64 #define ACCUMULATE_OUTGOING_ARGS 0
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
75 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
76 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
84 #define NAME__MAIN "__main"
85 #define SYMBOL__MAIN __main
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93 /* Similar, but round to the next highest integer that meets the
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
98 during rtl generation. If they are different register numbers, this is
99 always true. It may also be true if
100 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
101 generation. See fix_lexical_addr for details. */
103 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
104 #define NEED_SEPARATE_AP
107 /* Nonzero if function being compiled doesn't contain any calls
108 (ignoring the prologue and epilogue). This is set prior to
109 local register allocation and is valid for the remaining
111 int current_function_is_leaf
;
113 /* Nonzero if function being compiled doesn't contain any instructions
114 that can throw an exception. This is set prior to final. */
116 int current_function_nothrow
;
118 /* Nonzero if function being compiled doesn't modify the stack pointer
119 (ignoring the prologue and epilogue). This is only valid after
120 life_analysis has run. */
121 int current_function_sp_is_unchanging
;
123 /* Nonzero if the function being compiled is a leaf function which only
124 uses leaf registers. This is valid after reload (specifically after
125 sched2) and is useful only if the port defines LEAF_REGISTERS. */
126 int current_function_uses_only_leaf_regs
;
128 /* Nonzero once virtual register instantiation has been done.
129 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
130 static int virtuals_instantiated
;
132 /* These variables hold pointers to functions to create and destroy
133 target specific, per-function data structures. */
134 void (*init_machine_status
) PARAMS ((struct function
*));
135 void (*free_machine_status
) PARAMS ((struct function
*));
136 /* This variable holds a pointer to a function to register any
137 data items in the target specific, per-function data structure
138 that will need garbage collection. */
139 void (*mark_machine_status
) PARAMS ((struct function
*));
141 /* Likewise, but for language-specific data. */
142 void (*init_lang_status
) PARAMS ((struct function
*));
143 void (*save_lang_status
) PARAMS ((struct function
*));
144 void (*restore_lang_status
) PARAMS ((struct function
*));
145 void (*mark_lang_status
) PARAMS ((struct function
*));
146 void (*free_lang_status
) PARAMS ((struct function
*));
148 /* The FUNCTION_DECL for an inline function currently being expanded. */
149 tree inline_function_decl
;
151 /* The currently compiled function. */
152 struct function
*cfun
= 0;
154 /* Global list of all compiled functions. */
155 struct function
*all_functions
= 0;
157 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
158 static varray_type prologue
;
159 static varray_type epilogue
;
161 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
163 static varray_type sibcall_epilogue
;
165 /* In order to evaluate some expressions, such as function calls returning
166 structures in memory, we need to temporarily allocate stack locations.
167 We record each allocated temporary in the following structure.
169 Associated with each temporary slot is a nesting level. When we pop up
170 one level, all temporaries associated with the previous level are freed.
171 Normally, all temporaries are freed after the execution of the statement
172 in which they were created. However, if we are inside a ({...}) grouping,
173 the result may be in a temporary and hence must be preserved. If the
174 result could be in a temporary, we preserve it if we can determine which
175 one it is in. If we cannot determine which temporary may contain the
176 result, all temporaries are preserved. A temporary is preserved by
177 pretending it was allocated at the previous nesting level.
179 Automatic variables are also assigned temporary slots, at the nesting
180 level where they are defined. They are marked a "kept" so that
181 free_temp_slots will not free them. */
185 /* Points to next temporary slot. */
186 struct temp_slot
*next
;
187 /* The rtx to used to reference the slot. */
189 /* The rtx used to represent the address if not the address of the
190 slot above. May be an EXPR_LIST if multiple addresses exist. */
192 /* The alignment (in bits) of the slot. */
194 /* The size, in units, of the slot. */
196 /* The type of the object in the slot, or zero if it doesn't correspond
197 to a type. We use this to determine whether a slot can be reused.
198 It can be reused if objects of the type of the new slot will always
199 conflict with objects of the type of the old slot. */
201 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
203 /* Non-zero if this temporary is currently in use. */
205 /* Non-zero if this temporary has its address taken. */
207 /* Nesting level at which this slot is being used. */
209 /* Non-zero if this should survive a call to free_temp_slots. */
211 /* The offset of the slot from the frame_pointer, including extra space
212 for alignment. This info is for combine_temp_slots. */
213 HOST_WIDE_INT base_offset
;
214 /* The size of the slot, including extra space for alignment. This
215 info is for combine_temp_slots. */
216 HOST_WIDE_INT full_size
;
219 /* This structure is used to record MEMs or pseudos used to replace VAR, any
220 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
221 maintain this list in case two operands of an insn were required to match;
222 in that case we must ensure we use the same replacement. */
224 struct fixup_replacement
228 struct fixup_replacement
*next
;
231 struct insns_for_mem_entry
{
232 /* The KEY in HE will be a MEM. */
233 struct hash_entry he
;
234 /* These are the INSNS which reference the MEM. */
238 /* Forward declarations. */
240 static rtx assign_stack_local_1
PARAMS ((enum machine_mode
, HOST_WIDE_INT
,
241 int, struct function
*));
242 static rtx assign_stack_temp_for_type
PARAMS ((enum machine_mode
,
243 HOST_WIDE_INT
, int, tree
));
244 static struct temp_slot
*find_temp_slot_from_address
PARAMS ((rtx
));
245 static void put_reg_into_stack
PARAMS ((struct function
*, rtx
, tree
,
246 enum machine_mode
, enum machine_mode
,
247 int, unsigned int, int,
248 struct hash_table
*));
249 static void schedule_fixup_var_refs
PARAMS ((struct function
*, rtx
, tree
,
251 struct hash_table
*));
252 static void fixup_var_refs
PARAMS ((rtx
, enum machine_mode
, int,
253 struct hash_table
*));
254 static struct fixup_replacement
255 *find_fixup_replacement
PARAMS ((struct fixup_replacement
**, rtx
));
256 static void fixup_var_refs_insns
PARAMS ((rtx
, rtx
, enum machine_mode
,
258 static void fixup_var_refs_insns_with_hash
259 PARAMS ((struct hash_table
*, rtx
,
260 enum machine_mode
, int));
261 static void fixup_var_refs_insn
PARAMS ((rtx
, rtx
, enum machine_mode
,
263 static void fixup_var_refs_1
PARAMS ((rtx
, enum machine_mode
, rtx
*, rtx
,
264 struct fixup_replacement
**));
265 static rtx fixup_memory_subreg
PARAMS ((rtx
, rtx
, int));
266 static rtx walk_fixup_memory_subreg
PARAMS ((rtx
, rtx
, int));
267 static rtx fixup_stack_1
PARAMS ((rtx
, rtx
));
268 static void optimize_bit_field
PARAMS ((rtx
, rtx
, rtx
*));
269 static void instantiate_decls
PARAMS ((tree
, int));
270 static void instantiate_decls_1
PARAMS ((tree
, int));
271 static void instantiate_decl
PARAMS ((rtx
, HOST_WIDE_INT
, int));
272 static int instantiate_virtual_regs_1
PARAMS ((rtx
*, rtx
, int));
273 static void delete_handlers
PARAMS ((void));
274 static void pad_to_arg_alignment
PARAMS ((struct args_size
*, int,
275 struct args_size
*));
276 #ifndef ARGS_GROW_DOWNWARD
277 static void pad_below
PARAMS ((struct args_size
*, enum machine_mode
,
280 static rtx round_trampoline_addr
PARAMS ((rtx
));
281 static rtx adjust_trampoline_addr
PARAMS ((rtx
));
282 static tree
*identify_blocks_1
PARAMS ((rtx
, tree
*, tree
*, tree
*));
283 static void reorder_blocks_0
PARAMS ((rtx
));
284 static void reorder_blocks_1
PARAMS ((rtx
, tree
, varray_type
*));
285 static tree blocks_nreverse
PARAMS ((tree
));
286 static int all_blocks
PARAMS ((tree
, tree
*));
287 static tree
*get_block_vector
PARAMS ((tree
, int *));
288 /* We always define `record_insns' even if its not used so that we
289 can always export `prologue_epilogue_contains'. */
290 static void record_insns
PARAMS ((rtx
, varray_type
*)) ATTRIBUTE_UNUSED
;
291 static int contains
PARAMS ((rtx
, varray_type
));
293 static void emit_return_into_block
PARAMS ((basic_block
, rtx
));
295 static void put_addressof_into_stack
PARAMS ((rtx
, struct hash_table
*));
296 static boolean purge_addressof_1
PARAMS ((rtx
*, rtx
, int, int,
297 struct hash_table
*));
298 static void purge_single_hard_subreg_set
PARAMS ((rtx
));
300 static void keep_stack_depressed
PARAMS ((rtx
));
302 static int is_addressof
PARAMS ((rtx
*, void *));
303 static struct hash_entry
*insns_for_mem_newfunc
PARAMS ((struct hash_entry
*,
306 static unsigned long insns_for_mem_hash
PARAMS ((hash_table_key
));
307 static boolean insns_for_mem_comp
PARAMS ((hash_table_key
, hash_table_key
));
308 static int insns_for_mem_walk
PARAMS ((rtx
*, void *));
309 static void compute_insns_for_mem
PARAMS ((rtx
, rtx
, struct hash_table
*));
310 static void mark_temp_slot
PARAMS ((struct temp_slot
*));
311 static void mark_function_status
PARAMS ((struct function
*));
312 static void mark_function_chain
PARAMS ((void *));
313 static void prepare_function_start
PARAMS ((void));
314 static void do_clobber_return_reg
PARAMS ((rtx
, void *));
315 static void do_use_return_reg
PARAMS ((rtx
, void *));
317 /* Pointer to chain of `struct function' for containing functions. */
318 struct function
*outer_function_chain
;
320 /* Given a function decl for a containing function,
321 return the `struct function' for it. */
324 find_function_data (decl
)
329 for (p
= outer_function_chain
; p
; p
= p
->next
)
336 /* Save the current context for compilation of a nested function.
337 This is called from language-specific code. The caller should use
338 the save_lang_status callback to save any language-specific state,
339 since this function knows only about language-independent
343 push_function_context_to (context
)
346 struct function
*p
, *context_data
;
350 context_data
= (context
== current_function_decl
352 : find_function_data (context
));
353 context_data
->contains_functions
= 1;
357 init_dummy_function_start ();
360 p
->next
= outer_function_chain
;
361 outer_function_chain
= p
;
362 p
->fixup_var_refs_queue
= 0;
364 if (save_lang_status
)
365 (*save_lang_status
) (p
);
371 push_function_context ()
373 push_function_context_to (current_function_decl
);
376 /* Restore the last saved context, at the end of a nested function.
377 This function is called from language-specific code. */
380 pop_function_context_from (context
)
381 tree context ATTRIBUTE_UNUSED
;
383 struct function
*p
= outer_function_chain
;
384 struct var_refs_queue
*queue
;
385 struct var_refs_queue
*next
;
388 outer_function_chain
= p
->next
;
390 current_function_decl
= p
->decl
;
393 restore_emit_status (p
);
395 if (restore_lang_status
)
396 (*restore_lang_status
) (p
);
398 /* Finish doing put_var_into_stack for any of our variables
399 which became addressable during the nested function. */
400 for (queue
= p
->fixup_var_refs_queue
; queue
; queue
= next
)
403 fixup_var_refs (queue
->modified
, queue
->promoted_mode
,
404 queue
->unsignedp
, 0);
407 p
->fixup_var_refs_queue
= 0;
409 /* Reset variables that have known state during rtx generation. */
410 rtx_equal_function_value_matters
= 1;
411 virtuals_instantiated
= 0;
412 generating_concat_p
= 1;
416 pop_function_context ()
418 pop_function_context_from (current_function_decl
);
421 /* Clear out all parts of the state in F that can safely be discarded
422 after the function has been parsed, but not compiled, to let
423 garbage collection reclaim the memory. */
426 free_after_parsing (f
)
429 /* f->expr->forced_labels is used by code generation. */
430 /* f->emit->regno_reg_rtx is used by code generation. */
431 /* f->varasm is used by code generation. */
432 /* f->eh->eh_return_stub_label is used by code generation. */
434 if (free_lang_status
)
435 (*free_lang_status
) (f
);
436 free_stmt_status (f
);
439 /* Clear out all parts of the state in F that can safely be discarded
440 after the function has been compiled, to let garbage collection
441 reclaim the memory. */
444 free_after_compilation (f
)
447 struct temp_slot
*ts
;
448 struct temp_slot
*next
;
451 free_expr_status (f
);
452 free_emit_status (f
);
453 free_varasm_status (f
);
455 if (free_machine_status
)
456 (*free_machine_status
) (f
);
458 if (f
->x_parm_reg_stack_loc
)
459 free (f
->x_parm_reg_stack_loc
);
461 for (ts
= f
->x_temp_slots
; ts
; ts
= next
)
466 f
->x_temp_slots
= NULL
;
468 f
->arg_offset_rtx
= NULL
;
469 f
->return_rtx
= NULL
;
470 f
->internal_arg_pointer
= NULL
;
471 f
->x_nonlocal_labels
= NULL
;
472 f
->x_nonlocal_goto_handler_slots
= NULL
;
473 f
->x_nonlocal_goto_handler_labels
= NULL
;
474 f
->x_nonlocal_goto_stack_level
= NULL
;
475 f
->x_cleanup_label
= NULL
;
476 f
->x_return_label
= NULL
;
477 f
->x_save_expr_regs
= NULL
;
478 f
->x_stack_slot_list
= NULL
;
479 f
->x_rtl_expr_chain
= NULL
;
480 f
->x_tail_recursion_label
= NULL
;
481 f
->x_tail_recursion_reentry
= NULL
;
482 f
->x_arg_pointer_save_area
= NULL
;
483 f
->x_clobber_return_insn
= NULL
;
484 f
->x_context_display
= NULL
;
485 f
->x_trampoline_list
= NULL
;
486 f
->x_parm_birth_insn
= NULL
;
487 f
->x_last_parm_insn
= NULL
;
488 f
->x_parm_reg_stack_loc
= NULL
;
489 f
->fixup_var_refs_queue
= NULL
;
490 f
->original_arg_vector
= NULL
;
491 f
->original_decl_initial
= NULL
;
492 f
->inl_last_parm_insn
= NULL
;
493 f
->epilogue_delay_list
= NULL
;
496 /* Allocate fixed slots in the stack frame of the current function. */
498 /* Return size needed for stack frame based on slots so far allocated in
500 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
501 the caller may have to do that. */
504 get_func_frame_size (f
)
507 #ifdef FRAME_GROWS_DOWNWARD
508 return -f
->x_frame_offset
;
510 return f
->x_frame_offset
;
514 /* Return size needed for stack frame based on slots so far allocated.
515 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
516 the caller may have to do that. */
520 return get_func_frame_size (cfun
);
523 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
524 with machine mode MODE.
526 ALIGN controls the amount of alignment for the address of the slot:
527 0 means according to MODE,
528 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
529 positive specifies alignment boundary in bits.
531 We do not round to stack_boundary here.
533 FUNCTION specifies the function to allocate in. */
536 assign_stack_local_1 (mode
, size
, align
, function
)
537 enum machine_mode mode
;
540 struct function
*function
;
542 register rtx x
, addr
;
543 int bigend_correction
= 0;
551 alignment
= BIGGEST_ALIGNMENT
;
553 alignment
= GET_MODE_ALIGNMENT (mode
);
555 /* Allow the target to (possibly) increase the alignment of this
557 type
= type_for_mode (mode
, 0);
559 alignment
= LOCAL_ALIGNMENT (type
, alignment
);
561 alignment
/= BITS_PER_UNIT
;
563 else if (align
== -1)
565 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
566 size
= CEIL_ROUND (size
, alignment
);
569 alignment
= align
/ BITS_PER_UNIT
;
571 #ifdef FRAME_GROWS_DOWNWARD
572 function
->x_frame_offset
-= size
;
575 /* Ignore alignment we can't do with expected alignment of the boundary. */
576 if (alignment
* BITS_PER_UNIT
> PREFERRED_STACK_BOUNDARY
)
577 alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
579 if (function
->stack_alignment_needed
< alignment
* BITS_PER_UNIT
)
580 function
->stack_alignment_needed
= alignment
* BITS_PER_UNIT
;
582 /* Round frame offset to that alignment.
583 We must be careful here, since FRAME_OFFSET might be negative and
584 division with a negative dividend isn't as well defined as we might
585 like. So we instead assume that ALIGNMENT is a power of two and
586 use logical operations which are unambiguous. */
587 #ifdef FRAME_GROWS_DOWNWARD
588 function
->x_frame_offset
= FLOOR_ROUND (function
->x_frame_offset
, alignment
);
590 function
->x_frame_offset
= CEIL_ROUND (function
->x_frame_offset
, alignment
);
593 /* On a big-endian machine, if we are allocating more space than we will use,
594 use the least significant bytes of those that are allocated. */
595 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
)
596 bigend_correction
= size
- GET_MODE_SIZE (mode
);
598 /* If we have already instantiated virtual registers, return the actual
599 address relative to the frame pointer. */
600 if (function
== cfun
&& virtuals_instantiated
)
601 addr
= plus_constant (frame_pointer_rtx
,
602 (frame_offset
+ bigend_correction
603 + STARTING_FRAME_OFFSET
));
605 addr
= plus_constant (virtual_stack_vars_rtx
,
606 function
->x_frame_offset
+ bigend_correction
);
608 #ifndef FRAME_GROWS_DOWNWARD
609 function
->x_frame_offset
+= size
;
612 x
= gen_rtx_MEM (mode
, addr
);
614 function
->x_stack_slot_list
615 = gen_rtx_EXPR_LIST (VOIDmode
, x
, function
->x_stack_slot_list
);
620 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
624 assign_stack_local (mode
, size
, align
)
625 enum machine_mode mode
;
629 return assign_stack_local_1 (mode
, size
, align
, cfun
);
632 /* Allocate a temporary stack slot and record it for possible later
635 MODE is the machine mode to be given to the returned rtx.
637 SIZE is the size in units of the space required. We do no rounding here
638 since assign_stack_local will do any required rounding.
640 KEEP is 1 if this slot is to be retained after a call to
641 free_temp_slots. Automatic variables for a block are allocated
642 with this flag. KEEP is 2 if we allocate a longer term temporary,
643 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
644 if we are to allocate something at an inner level to be treated as
645 a variable in the block (e.g., a SAVE_EXPR).
647 TYPE is the type that will be used for the stack slot. */
650 assign_stack_temp_for_type (mode
, size
, keep
, type
)
651 enum machine_mode mode
;
657 struct temp_slot
*p
, *best_p
= 0;
659 /* If SIZE is -1 it means that somebody tried to allocate a temporary
660 of a variable size. */
665 align
= BIGGEST_ALIGNMENT
;
667 align
= GET_MODE_ALIGNMENT (mode
);
670 type
= type_for_mode (mode
, 0);
673 align
= LOCAL_ALIGNMENT (type
, align
);
675 /* Try to find an available, already-allocated temporary of the proper
676 mode which meets the size and alignment requirements. Choose the
677 smallest one with the closest alignment. */
678 for (p
= temp_slots
; p
; p
= p
->next
)
679 if (p
->align
>= align
&& p
->size
>= size
&& GET_MODE (p
->slot
) == mode
681 && objects_must_conflict_p (p
->type
, type
)
682 && (best_p
== 0 || best_p
->size
> p
->size
683 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
685 if (p
->align
== align
&& p
->size
== size
)
693 /* Make our best, if any, the one to use. */
696 /* If there are enough aligned bytes left over, make them into a new
697 temp_slot so that the extra bytes don't get wasted. Do this only
698 for BLKmode slots, so that we can be sure of the alignment. */
699 if (GET_MODE (best_p
->slot
) == BLKmode
)
701 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
702 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
704 if (best_p
->size
- rounded_size
>= alignment
)
706 p
= (struct temp_slot
*) xmalloc (sizeof (struct temp_slot
));
707 p
->in_use
= p
->addr_taken
= 0;
708 p
->size
= best_p
->size
- rounded_size
;
709 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
710 p
->full_size
= best_p
->full_size
- rounded_size
;
711 p
->slot
= gen_rtx_MEM (BLKmode
,
712 plus_constant (XEXP (best_p
->slot
, 0),
714 p
->align
= best_p
->align
;
717 p
->type
= best_p
->type
;
718 p
->next
= temp_slots
;
721 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, p
->slot
,
724 best_p
->size
= rounded_size
;
725 best_p
->full_size
= rounded_size
;
732 /* If we still didn't find one, make a new temporary. */
735 HOST_WIDE_INT frame_offset_old
= frame_offset
;
737 p
= (struct temp_slot
*) xmalloc (sizeof (struct temp_slot
));
739 /* We are passing an explicit alignment request to assign_stack_local.
740 One side effect of that is assign_stack_local will not round SIZE
741 to ensure the frame offset remains suitably aligned.
743 So for requests which depended on the rounding of SIZE, we go ahead
744 and round it now. We also make sure ALIGNMENT is at least
745 BIGGEST_ALIGNMENT. */
746 if (mode
== BLKmode
&& align
< BIGGEST_ALIGNMENT
)
748 p
->slot
= assign_stack_local (mode
,
750 ? CEIL_ROUND (size
, align
/ BITS_PER_UNIT
)
756 /* The following slot size computation is necessary because we don't
757 know the actual size of the temporary slot until assign_stack_local
758 has performed all the frame alignment and size rounding for the
759 requested temporary. Note that extra space added for alignment
760 can be either above or below this stack slot depending on which
761 way the frame grows. We include the extra space if and only if it
762 is above this slot. */
763 #ifdef FRAME_GROWS_DOWNWARD
764 p
->size
= frame_offset_old
- frame_offset
;
769 /* Now define the fields used by combine_temp_slots. */
770 #ifdef FRAME_GROWS_DOWNWARD
771 p
->base_offset
= frame_offset
;
772 p
->full_size
= frame_offset_old
- frame_offset
;
774 p
->base_offset
= frame_offset_old
;
775 p
->full_size
= frame_offset
- frame_offset_old
;
778 p
->next
= temp_slots
;
784 p
->rtl_expr
= seq_rtl_expr
;
789 p
->level
= target_temp_slot_level
;
794 p
->level
= var_temp_slot_level
;
799 p
->level
= temp_slot_level
;
803 /* We may be reusing an old slot, so clear any MEM flags that may have been
805 RTX_UNCHANGING_P (p
->slot
) = 0;
806 MEM_IN_STRUCT_P (p
->slot
) = 0;
807 MEM_SCALAR_P (p
->slot
) = 0;
808 MEM_VOLATILE_P (p
->slot
) = 0;
810 /* If we know the alias set for the memory that will be used, use
811 it. If there's no TYPE, then we don't know anything about the
812 alias set for the memory. */
814 MEM_ALIAS_SET (p
->slot
) = get_alias_set (type
);
816 MEM_ALIAS_SET (p
->slot
) = 0;
818 /* If a type is specified, set the relevant flags. */
821 RTX_UNCHANGING_P (p
->slot
) = TYPE_READONLY (type
);
822 MEM_VOLATILE_P (p
->slot
) = TYPE_VOLATILE (type
);
823 MEM_SET_IN_STRUCT_P (p
->slot
, AGGREGATE_TYPE_P (type
));
829 /* Allocate a temporary stack slot and record it for possible later
830 reuse. First three arguments are same as in preceding function. */
833 assign_stack_temp (mode
, size
, keep
)
834 enum machine_mode mode
;
838 return assign_stack_temp_for_type (mode
, size
, keep
, NULL_TREE
);
841 /* Assign a temporary of given TYPE.
842 KEEP is as for assign_stack_temp.
843 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
844 it is 0 if a register is OK.
845 DONT_PROMOTE is 1 if we should not promote values in register
849 assign_temp (type
, keep
, memory_required
, dont_promote
)
853 int dont_promote ATTRIBUTE_UNUSED
;
855 enum machine_mode mode
= TYPE_MODE (type
);
856 #ifndef PROMOTE_FOR_CALL_ONLY
857 int unsignedp
= TREE_UNSIGNED (type
);
860 if (mode
== BLKmode
|| memory_required
)
862 HOST_WIDE_INT size
= int_size_in_bytes (type
);
865 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
866 problems with allocating the stack space. */
870 /* Unfortunately, we don't yet know how to allocate variable-sized
871 temporaries. However, sometimes we have a fixed upper limit on
872 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
873 instead. This is the case for Chill variable-sized strings. */
874 if (size
== -1 && TREE_CODE (type
) == ARRAY_TYPE
875 && TYPE_ARRAY_MAX_SIZE (type
) != NULL_TREE
876 && host_integerp (TYPE_ARRAY_MAX_SIZE (type
), 1))
877 size
= tree_low_cst (TYPE_ARRAY_MAX_SIZE (type
), 1);
879 tmp
= assign_stack_temp_for_type (mode
, size
, keep
, type
);
883 #ifndef PROMOTE_FOR_CALL_ONLY
885 mode
= promote_mode (type
, mode
, &unsignedp
, 0);
888 return gen_reg_rtx (mode
);
891 /* Combine temporary stack slots which are adjacent on the stack.
893 This allows for better use of already allocated stack space. This is only
894 done for BLKmode slots because we can be sure that we won't have alignment
895 problems in this case. */
898 combine_temp_slots ()
900 struct temp_slot
*p
, *q
;
901 struct temp_slot
*prev_p
, *prev_q
;
904 /* We can't combine slots, because the information about which slot
905 is in which alias set will be lost. */
906 if (flag_strict_aliasing
)
909 /* If there are a lot of temp slots, don't do anything unless
910 high levels of optimizaton. */
911 if (! flag_expensive_optimizations
)
912 for (p
= temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
913 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
916 for (p
= temp_slots
, prev_p
= 0; p
; p
= prev_p
? prev_p
->next
: temp_slots
)
920 if (! p
->in_use
&& GET_MODE (p
->slot
) == BLKmode
)
921 for (q
= p
->next
, prev_q
= p
; q
; q
= prev_q
->next
)
924 if (! q
->in_use
&& GET_MODE (q
->slot
) == BLKmode
)
926 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
928 /* Q comes after P; combine Q into P. */
930 p
->full_size
+= q
->full_size
;
933 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
935 /* P comes after Q; combine P into Q. */
937 q
->full_size
+= p
->full_size
;
942 /* Either delete Q or advance past it. */
945 prev_q
->next
= q
->next
;
951 /* Either delete P or advance past it. */
955 prev_p
->next
= p
->next
;
957 temp_slots
= p
->next
;
964 /* Find the temp slot corresponding to the object at address X. */
966 static struct temp_slot
*
967 find_temp_slot_from_address (x
)
973 for (p
= temp_slots
; p
; p
= p
->next
)
978 else if (XEXP (p
->slot
, 0) == x
980 || (GET_CODE (x
) == PLUS
981 && XEXP (x
, 0) == virtual_stack_vars_rtx
982 && GET_CODE (XEXP (x
, 1)) == CONST_INT
983 && INTVAL (XEXP (x
, 1)) >= p
->base_offset
984 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
))
987 else if (p
->address
!= 0 && GET_CODE (p
->address
) == EXPR_LIST
)
988 for (next
= p
->address
; next
; next
= XEXP (next
, 1))
989 if (XEXP (next
, 0) == x
)
993 /* If we have a sum involving a register, see if it points to a temp
995 if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 0)) == REG
996 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
998 else if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == REG
999 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
1005 /* Indicate that NEW is an alternate way of referring to the temp slot
1006 that previously was known by OLD. */
1009 update_temp_slot_address (old
, new)
1012 struct temp_slot
*p
;
1014 if (rtx_equal_p (old
, new))
1017 p
= find_temp_slot_from_address (old
);
1019 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1020 is a register, see if one operand of the PLUS is a temporary
1021 location. If so, NEW points into it. Otherwise, if both OLD and
1022 NEW are a PLUS and if there is a register in common between them.
1023 If so, try a recursive call on those values. */
1026 if (GET_CODE (old
) != PLUS
)
1029 if (GET_CODE (new) == REG
)
1031 update_temp_slot_address (XEXP (old
, 0), new);
1032 update_temp_slot_address (XEXP (old
, 1), new);
1035 else if (GET_CODE (new) != PLUS
)
1038 if (rtx_equal_p (XEXP (old
, 0), XEXP (new, 0)))
1039 update_temp_slot_address (XEXP (old
, 1), XEXP (new, 1));
1040 else if (rtx_equal_p (XEXP (old
, 1), XEXP (new, 0)))
1041 update_temp_slot_address (XEXP (old
, 0), XEXP (new, 1));
1042 else if (rtx_equal_p (XEXP (old
, 0), XEXP (new, 1)))
1043 update_temp_slot_address (XEXP (old
, 1), XEXP (new, 0));
1044 else if (rtx_equal_p (XEXP (old
, 1), XEXP (new, 1)))
1045 update_temp_slot_address (XEXP (old
, 0), XEXP (new, 0));
1050 /* Otherwise add an alias for the temp's address. */
1051 else if (p
->address
== 0)
1055 if (GET_CODE (p
->address
) != EXPR_LIST
)
1056 p
->address
= gen_rtx_EXPR_LIST (VOIDmode
, p
->address
, NULL_RTX
);
1058 p
->address
= gen_rtx_EXPR_LIST (VOIDmode
, new, p
->address
);
1062 /* If X could be a reference to a temporary slot, mark the fact that its
1063 address was taken. */
1066 mark_temp_addr_taken (x
)
1069 struct temp_slot
*p
;
1074 /* If X is not in memory or is at a constant address, it cannot be in
1075 a temporary slot. */
1076 if (GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0)))
1079 p
= find_temp_slot_from_address (XEXP (x
, 0));
1084 /* If X could be a reference to a temporary slot, mark that slot as
1085 belonging to the to one level higher than the current level. If X
1086 matched one of our slots, just mark that one. Otherwise, we can't
1087 easily predict which it is, so upgrade all of them. Kept slots
1088 need not be touched.
1090 This is called when an ({...}) construct occurs and a statement
1091 returns a value in memory. */
1094 preserve_temp_slots (x
)
1097 struct temp_slot
*p
= 0;
1099 /* If there is no result, we still might have some objects whose address
1100 were taken, so we need to make sure they stay around. */
1103 for (p
= temp_slots
; p
; p
= p
->next
)
1104 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->addr_taken
)
1110 /* If X is a register that is being used as a pointer, see if we have
1111 a temporary slot we know it points to. To be consistent with
1112 the code below, we really should preserve all non-kept slots
1113 if we can't find a match, but that seems to be much too costly. */
1114 if (GET_CODE (x
) == REG
&& REG_POINTER (x
))
1115 p
= find_temp_slot_from_address (x
);
1117 /* If X is not in memory or is at a constant address, it cannot be in
1118 a temporary slot, but it can contain something whose address was
1120 if (p
== 0 && (GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0))))
1122 for (p
= temp_slots
; p
; p
= p
->next
)
1123 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->addr_taken
)
1129 /* First see if we can find a match. */
1131 p
= find_temp_slot_from_address (XEXP (x
, 0));
1135 /* Move everything at our level whose address was taken to our new
1136 level in case we used its address. */
1137 struct temp_slot
*q
;
1139 if (p
->level
== temp_slot_level
)
1141 for (q
= temp_slots
; q
; q
= q
->next
)
1142 if (q
!= p
&& q
->addr_taken
&& q
->level
== p
->level
)
1151 /* Otherwise, preserve all non-kept slots at this level. */
1152 for (p
= temp_slots
; p
; p
= p
->next
)
1153 if (p
->in_use
&& p
->level
== temp_slot_level
&& ! p
->keep
)
1157 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1158 with that RTL_EXPR, promote it into a temporary slot at the present
1159 level so it will not be freed when we free slots made in the
1163 preserve_rtl_expr_result (x
)
1166 struct temp_slot
*p
;
1168 /* If X is not in memory or is at a constant address, it cannot be in
1169 a temporary slot. */
1170 if (x
== 0 || GET_CODE (x
) != MEM
|| CONSTANT_P (XEXP (x
, 0)))
1173 /* If we can find a match, move it to our level unless it is already at
1175 p
= find_temp_slot_from_address (XEXP (x
, 0));
1178 p
->level
= MIN (p
->level
, temp_slot_level
);
1185 /* Free all temporaries used so far. This is normally called at the end
1186 of generating code for a statement. Don't free any temporaries
1187 currently in use for an RTL_EXPR that hasn't yet been emitted.
1188 We could eventually do better than this since it can be reused while
1189 generating the same RTL_EXPR, but this is complex and probably not
1195 struct temp_slot
*p
;
1197 for (p
= temp_slots
; p
; p
= p
->next
)
1198 if (p
->in_use
&& p
->level
== temp_slot_level
&& ! p
->keep
1199 && p
->rtl_expr
== 0)
1202 combine_temp_slots ();
1205 /* Free all temporary slots used in T, an RTL_EXPR node. */
1208 free_temps_for_rtl_expr (t
)
1211 struct temp_slot
*p
;
1213 for (p
= temp_slots
; p
; p
= p
->next
)
1214 if (p
->rtl_expr
== t
)
1216 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1217 needs to be preserved. This can happen if a temporary in
1218 the RTL_EXPR was addressed; preserve_temp_slots will move
1219 the temporary into a higher level. */
1220 if (temp_slot_level
<= p
->level
)
1223 p
->rtl_expr
= NULL_TREE
;
1226 combine_temp_slots ();
1229 /* Mark all temporaries ever allocated in this function as not suitable
1230 for reuse until the current level is exited. */
1233 mark_all_temps_used ()
1235 struct temp_slot
*p
;
1237 for (p
= temp_slots
; p
; p
= p
->next
)
1239 p
->in_use
= p
->keep
= 1;
1240 p
->level
= MIN (p
->level
, temp_slot_level
);
1244 /* Push deeper into the nesting level for stack temporaries. */
1252 /* Likewise, but save the new level as the place to allocate variables
1257 push_temp_slots_for_block ()
1261 var_temp_slot_level
= temp_slot_level
;
1264 /* Likewise, but save the new level as the place to allocate temporaries
1265 for TARGET_EXPRs. */
1268 push_temp_slots_for_target ()
1272 target_temp_slot_level
= temp_slot_level
;
1275 /* Set and get the value of target_temp_slot_level. The only
1276 permitted use of these functions is to save and restore this value. */
1279 get_target_temp_slot_level ()
1281 return target_temp_slot_level
;
1285 set_target_temp_slot_level (level
)
1288 target_temp_slot_level
= level
;
1292 /* Pop a temporary nesting level. All slots in use in the current level
1298 struct temp_slot
*p
;
1300 for (p
= temp_slots
; p
; p
= p
->next
)
1301 if (p
->in_use
&& p
->level
== temp_slot_level
&& p
->rtl_expr
== 0)
1304 combine_temp_slots ();
1309 /* Initialize temporary slots. */
1314 /* We have not allocated any temporaries yet. */
1316 temp_slot_level
= 0;
1317 var_temp_slot_level
= 0;
1318 target_temp_slot_level
= 0;
1321 /* Retroactively move an auto variable from a register to a stack slot.
1322 This is done when an address-reference to the variable is seen. */
1325 put_var_into_stack (decl
)
1329 enum machine_mode promoted_mode
, decl_mode
;
1330 struct function
*function
= 0;
1332 int can_use_addressof
;
1333 int volatilep
= TREE_CODE (decl
) != SAVE_EXPR
&& TREE_THIS_VOLATILE (decl
);
1334 int usedp
= (TREE_USED (decl
)
1335 || (TREE_CODE (decl
) != SAVE_EXPR
&& DECL_INITIAL (decl
) != 0));
1337 context
= decl_function_context (decl
);
1339 /* Get the current rtl used for this object and its original mode. */
1340 reg
= TREE_CODE (decl
) == SAVE_EXPR
? SAVE_EXPR_RTL (decl
) : DECL_RTL (decl
);
1342 /* No need to do anything if decl has no rtx yet
1343 since in that case caller is setting TREE_ADDRESSABLE
1344 and a stack slot will be assigned when the rtl is made. */
1348 /* Get the declared mode for this object. */
1349 decl_mode
= (TREE_CODE (decl
) == SAVE_EXPR
? TYPE_MODE (TREE_TYPE (decl
))
1350 : DECL_MODE (decl
));
1351 /* Get the mode it's actually stored in. */
1352 promoted_mode
= GET_MODE (reg
);
1354 /* If this variable comes from an outer function,
1355 find that function's saved context. */
1356 if (context
!= current_function_decl
&& context
!= inline_function_decl
)
1357 for (function
= outer_function_chain
; function
; function
= function
->next
)
1358 if (function
->decl
== context
)
1361 /* If this is a variable-size object with a pseudo to address it,
1362 put that pseudo into the stack, if the var is nonlocal. */
1363 if (TREE_CODE (decl
) != SAVE_EXPR
&& DECL_NONLOCAL (decl
)
1364 && GET_CODE (reg
) == MEM
1365 && GET_CODE (XEXP (reg
, 0)) == REG
1366 && REGNO (XEXP (reg
, 0)) > LAST_VIRTUAL_REGISTER
)
1368 reg
= XEXP (reg
, 0);
1369 decl_mode
= promoted_mode
= GET_MODE (reg
);
1375 /* FIXME make it work for promoted modes too */
1376 && decl_mode
== promoted_mode
1377 #ifdef NON_SAVING_SETJMP
1378 && ! (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
1382 /* If we can't use ADDRESSOF, make sure we see through one we already
1384 if (! can_use_addressof
&& GET_CODE (reg
) == MEM
1385 && GET_CODE (XEXP (reg
, 0)) == ADDRESSOF
)
1386 reg
= XEXP (XEXP (reg
, 0), 0);
1388 /* Now we should have a value that resides in one or more pseudo regs. */
1390 if (GET_CODE (reg
) == REG
)
1392 /* If this variable lives in the current function and we don't need
1393 to put things in the stack for the sake of setjmp, try to keep it
1394 in a register until we know we actually need the address. */
1395 if (can_use_addressof
)
1396 gen_mem_addressof (reg
, decl
);
1398 put_reg_into_stack (function
, reg
, TREE_TYPE (decl
), promoted_mode
,
1399 decl_mode
, volatilep
, 0, usedp
, 0);
1401 else if (GET_CODE (reg
) == CONCAT
)
1403 /* A CONCAT contains two pseudos; put them both in the stack.
1404 We do it so they end up consecutive.
1405 We fixup references to the parts only after we fixup references
1406 to the whole CONCAT, lest we do double fixups for the latter
1408 enum machine_mode part_mode
= GET_MODE (XEXP (reg
, 0));
1409 tree part_type
= type_for_mode (part_mode
, 0);
1410 rtx lopart
= XEXP (reg
, 0);
1411 rtx hipart
= XEXP (reg
, 1);
1412 #ifdef FRAME_GROWS_DOWNWARD
1413 /* Since part 0 should have a lower address, do it second. */
1414 put_reg_into_stack (function
, hipart
, part_type
, part_mode
,
1415 part_mode
, volatilep
, 0, 0, 0);
1416 put_reg_into_stack (function
, lopart
, part_type
, part_mode
,
1417 part_mode
, volatilep
, 0, 0, 0);
1419 put_reg_into_stack (function
, lopart
, part_type
, part_mode
,
1420 part_mode
, volatilep
, 0, 0, 0);
1421 put_reg_into_stack (function
, hipart
, part_type
, part_mode
,
1422 part_mode
, volatilep
, 0, 0, 0);
1425 /* Change the CONCAT into a combined MEM for both parts. */
1426 PUT_CODE (reg
, MEM
);
1427 set_mem_attributes (reg
, decl
, 1);
1429 /* The two parts are in memory order already.
1430 Use the lower parts address as ours. */
1431 XEXP (reg
, 0) = XEXP (XEXP (reg
, 0), 0);
1432 /* Prevent sharing of rtl that might lose. */
1433 if (GET_CODE (XEXP (reg
, 0)) == PLUS
)
1434 XEXP (reg
, 0) = copy_rtx (XEXP (reg
, 0));
1437 schedule_fixup_var_refs (function
, reg
, TREE_TYPE (decl
),
1439 schedule_fixup_var_refs (function
, lopart
, part_type
, part_mode
, 0);
1440 schedule_fixup_var_refs (function
, hipart
, part_type
, part_mode
, 0);
1446 if (current_function_check_memory_usage
)
1447 emit_library_call (chkr_set_right_libfunc
, LCT_CONST_MAKE_BLOCK
, VOIDmode
,
1448 3, XEXP (reg
, 0), Pmode
,
1449 GEN_INT (GET_MODE_SIZE (GET_MODE (reg
))),
1450 TYPE_MODE (sizetype
),
1451 GEN_INT (MEMORY_USE_RW
),
1452 TYPE_MODE (integer_type_node
));
1455 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1456 into the stack frame of FUNCTION (0 means the current function).
1457 DECL_MODE is the machine mode of the user-level data type.
1458 PROMOTED_MODE is the machine mode of the register.
1459 VOLATILE_P is nonzero if this is for a "volatile" decl.
1460 USED_P is nonzero if this reg might have already been used in an insn. */
1463 put_reg_into_stack (function
, reg
, type
, promoted_mode
, decl_mode
, volatile_p
,
1464 original_regno
, used_p
, ht
)
1465 struct function
*function
;
1468 enum machine_mode promoted_mode
, decl_mode
;
1470 unsigned int original_regno
;
1472 struct hash_table
*ht
;
1474 struct function
*func
= function
? function
: cfun
;
1476 unsigned int regno
= original_regno
;
1479 regno
= REGNO (reg
);
1481 if (regno
< func
->x_max_parm_reg
)
1482 new = func
->x_parm_reg_stack_loc
[regno
];
1485 new = assign_stack_local_1 (decl_mode
, GET_MODE_SIZE (decl_mode
), 0, func
);
1487 PUT_CODE (reg
, MEM
);
1488 PUT_MODE (reg
, decl_mode
);
1489 XEXP (reg
, 0) = XEXP (new, 0);
1490 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1491 MEM_VOLATILE_P (reg
) = volatile_p
;
1493 /* If this is a memory ref that contains aggregate components,
1494 mark it as such for cse and loop optimize. If we are reusing a
1495 previously generated stack slot, then we need to copy the bit in
1496 case it was set for other reasons. For instance, it is set for
1497 __builtin_va_alist. */
1500 MEM_SET_IN_STRUCT_P (reg
,
1501 AGGREGATE_TYPE_P (type
) || MEM_IN_STRUCT_P (new));
1502 MEM_ALIAS_SET (reg
) = get_alias_set (type
);
1505 schedule_fixup_var_refs (function
, reg
, type
, promoted_mode
, ht
);
1508 /* Make sure that all refs to the variable, previously made
1509 when it was a register, are fixed up to be valid again.
1510 See function above for meaning of arguments. */
1513 schedule_fixup_var_refs (function
, reg
, type
, promoted_mode
, ht
)
1514 struct function
*function
;
1517 enum machine_mode promoted_mode
;
1518 struct hash_table
*ht
;
1520 int unsigned_p
= type
? TREE_UNSIGNED (type
) : 0;
1524 struct var_refs_queue
*temp
;
1527 = (struct var_refs_queue
*) xmalloc (sizeof (struct var_refs_queue
));
1528 temp
->modified
= reg
;
1529 temp
->promoted_mode
= promoted_mode
;
1530 temp
->unsignedp
= unsigned_p
;
1531 temp
->next
= function
->fixup_var_refs_queue
;
1532 function
->fixup_var_refs_queue
= temp
;
1535 /* Variable is local; fix it up now. */
1536 fixup_var_refs (reg
, promoted_mode
, unsigned_p
, ht
);
1540 fixup_var_refs (var
, promoted_mode
, unsignedp
, ht
)
1542 enum machine_mode promoted_mode
;
1544 struct hash_table
*ht
;
1547 rtx first_insn
= get_insns ();
1548 struct sequence_stack
*stack
= seq_stack
;
1549 tree rtl_exps
= rtl_expr_chain
;
1551 /* If there's a hash table, it must record all uses of VAR. */
1556 fixup_var_refs_insns_with_hash (ht
, var
, promoted_mode
, unsignedp
);
1560 fixup_var_refs_insns (first_insn
, var
, promoted_mode
, unsignedp
,
1563 /* Scan all pending sequences too. */
1564 for (; stack
; stack
= stack
->next
)
1566 push_to_full_sequence (stack
->first
, stack
->last
);
1567 fixup_var_refs_insns (stack
->first
, var
, promoted_mode
, unsignedp
,
1569 /* Update remembered end of sequence
1570 in case we added an insn at the end. */
1571 stack
->last
= get_last_insn ();
1575 /* Scan all waiting RTL_EXPRs too. */
1576 for (pending
= rtl_exps
; pending
; pending
= TREE_CHAIN (pending
))
1578 rtx seq
= RTL_EXPR_SEQUENCE (TREE_VALUE (pending
));
1579 if (seq
!= const0_rtx
&& seq
!= 0)
1581 push_to_sequence (seq
);
1582 fixup_var_refs_insns (seq
, var
, promoted_mode
, unsignedp
, 0);
1587 /* Scan the catch clauses for exception handling too. */
1588 push_to_full_sequence (catch_clauses
, catch_clauses_last
);
1589 fixup_var_refs_insns (catch_clauses
, var
, promoted_mode
, unsignedp
, 0);
1590 end_full_sequence (&catch_clauses
, &catch_clauses_last
);
1593 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1594 some part of an insn. Return a struct fixup_replacement whose OLD
1595 value is equal to X. Allocate a new structure if no such entry exists. */
1597 static struct fixup_replacement
*
1598 find_fixup_replacement (replacements
, x
)
1599 struct fixup_replacement
**replacements
;
1602 struct fixup_replacement
*p
;
1604 /* See if we have already replaced this. */
1605 for (p
= *replacements
; p
!= 0 && ! rtx_equal_p (p
->old
, x
); p
= p
->next
)
1610 p
= (struct fixup_replacement
*) xmalloc (sizeof (struct fixup_replacement
));
1613 p
->next
= *replacements
;
1620 /* Scan the insn-chain starting with INSN for refs to VAR
1621 and fix them up. TOPLEVEL is nonzero if this chain is the
1622 main chain of insns for the current function. */
1625 fixup_var_refs_insns (insn
, var
, promoted_mode
, unsignedp
, toplevel
)
1628 enum machine_mode promoted_mode
;
1634 /* fixup_var_refs_insn might modify insn, so save its next
1636 rtx next
= NEXT_INSN (insn
);
1638 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1639 the three sequences they (potentially) contain, and process
1640 them recursively. The CALL_INSN itself is not interesting. */
1642 if (GET_CODE (insn
) == CALL_INSN
1643 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
1647 /* Look at the Normal call, sibling call and tail recursion
1648 sequences attached to the CALL_PLACEHOLDER. */
1649 for (i
= 0; i
< 3; i
++)
1651 rtx seq
= XEXP (PATTERN (insn
), i
);
1654 push_to_sequence (seq
);
1655 fixup_var_refs_insns (seq
, var
, promoted_mode
, unsignedp
, 0);
1656 XEXP (PATTERN (insn
), i
) = get_insns ();
1662 else if (INSN_P (insn
))
1663 fixup_var_refs_insn (insn
, var
, promoted_mode
, unsignedp
, toplevel
);
1669 /* Look up the insns which reference VAR in HT and fix them up. Other
1670 arguments are the same as fixup_var_refs_insns.
1672 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1673 because the hash table will point straight to the interesting insn
1674 (inside the CALL_PLACEHOLDER). */
1676 fixup_var_refs_insns_with_hash (ht
, var
, promoted_mode
, unsignedp
)
1677 struct hash_table
*ht
;
1679 enum machine_mode promoted_mode
;
1682 struct insns_for_mem_entry
*ime
= (struct insns_for_mem_entry
*)
1683 hash_lookup (ht
, var
, /*create=*/0, /*copy=*/0);
1684 rtx insn_list
= ime
->insns
;
1688 rtx insn
= XEXP (insn_list
, 0);
1691 fixup_var_refs_insn (insn
, var
, promoted_mode
, unsignedp
, 0);
1693 insn_list
= XEXP (insn_list
, 1);
1698 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1699 the insn under examination, VAR is the variable to fix up
1700 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1701 TOPLEVEL is nonzero if this is the main insn chain for this
1704 fixup_var_refs_insn (insn
, var
, promoted_mode
, unsignedp
, toplevel
)
1707 enum machine_mode promoted_mode
;
1712 rtx set
, prev
, prev_set
;
1715 /* Remember the notes in case we delete the insn. */
1716 note
= REG_NOTES (insn
);
1718 /* If this is a CLOBBER of VAR, delete it.
1720 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1721 and REG_RETVAL notes too. */
1722 if (GET_CODE (PATTERN (insn
)) == CLOBBER
1723 && (XEXP (PATTERN (insn
), 0) == var
1724 || (GET_CODE (XEXP (PATTERN (insn
), 0)) == CONCAT
1725 && (XEXP (XEXP (PATTERN (insn
), 0), 0) == var
1726 || XEXP (XEXP (PATTERN (insn
), 0), 1) == var
))))
1728 if ((note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)) != 0)
1729 /* The REG_LIBCALL note will go away since we are going to
1730 turn INSN into a NOTE, so just delete the
1731 corresponding REG_RETVAL note. */
1732 remove_note (XEXP (note
, 0),
1733 find_reg_note (XEXP (note
, 0), REG_RETVAL
,
1736 /* In unoptimized compilation, we shouldn't call delete_insn
1737 except in jump.c doing warnings. */
1738 PUT_CODE (insn
, NOTE
);
1739 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1740 NOTE_SOURCE_FILE (insn
) = 0;
1743 /* The insn to load VAR from a home in the arglist
1744 is now a no-op. When we see it, just delete it.
1745 Similarly if this is storing VAR from a register from which
1746 it was loaded in the previous insn. This will occur
1747 when an ADDRESSOF was made for an arglist slot. */
1749 && (set
= single_set (insn
)) != 0
1750 && SET_DEST (set
) == var
1751 /* If this represents the result of an insn group,
1752 don't delete the insn. */
1753 && find_reg_note (insn
, REG_RETVAL
, NULL_RTX
) == 0
1754 && (rtx_equal_p (SET_SRC (set
), var
)
1755 || (GET_CODE (SET_SRC (set
)) == REG
1756 && (prev
= prev_nonnote_insn (insn
)) != 0
1757 && (prev_set
= single_set (prev
)) != 0
1758 && SET_DEST (prev_set
) == SET_SRC (set
)
1759 && rtx_equal_p (SET_SRC (prev_set
), var
))))
1761 /* In unoptimized compilation, we shouldn't call delete_insn
1762 except in jump.c doing warnings. */
1763 PUT_CODE (insn
, NOTE
);
1764 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1765 NOTE_SOURCE_FILE (insn
) = 0;
1769 struct fixup_replacement
*replacements
= 0;
1770 rtx next_insn
= NEXT_INSN (insn
);
1772 if (SMALL_REGISTER_CLASSES
)
1774 /* If the insn that copies the results of a CALL_INSN
1775 into a pseudo now references VAR, we have to use an
1776 intermediate pseudo since we want the life of the
1777 return value register to be only a single insn.
1779 If we don't use an intermediate pseudo, such things as
1780 address computations to make the address of VAR valid
1781 if it is not can be placed between the CALL_INSN and INSN.
1783 To make sure this doesn't happen, we record the destination
1784 of the CALL_INSN and see if the next insn uses both that
1787 if (call_dest
!= 0 && GET_CODE (insn
) == INSN
1788 && reg_mentioned_p (var
, PATTERN (insn
))
1789 && reg_mentioned_p (call_dest
, PATTERN (insn
)))
1791 rtx temp
= gen_reg_rtx (GET_MODE (call_dest
));
1793 emit_insn_before (gen_move_insn (temp
, call_dest
), insn
);
1795 PATTERN (insn
) = replace_rtx (PATTERN (insn
),
1799 if (GET_CODE (insn
) == CALL_INSN
1800 && GET_CODE (PATTERN (insn
)) == SET
)
1801 call_dest
= SET_DEST (PATTERN (insn
));
1802 else if (GET_CODE (insn
) == CALL_INSN
1803 && GET_CODE (PATTERN (insn
)) == PARALLEL
1804 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1805 call_dest
= SET_DEST (XVECEXP (PATTERN (insn
), 0, 0));
1810 /* See if we have to do anything to INSN now that VAR is in
1811 memory. If it needs to be loaded into a pseudo, use a single
1812 pseudo for the entire insn in case there is a MATCH_DUP
1813 between two operands. We pass a pointer to the head of
1814 a list of struct fixup_replacements. If fixup_var_refs_1
1815 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1816 it will record them in this list.
1818 If it allocated a pseudo for any replacement, we copy into
1821 fixup_var_refs_1 (var
, promoted_mode
, &PATTERN (insn
), insn
,
1824 /* If this is last_parm_insn, and any instructions were output
1825 after it to fix it up, then we must set last_parm_insn to
1826 the last such instruction emitted. */
1827 if (insn
== last_parm_insn
)
1828 last_parm_insn
= PREV_INSN (next_insn
);
1830 while (replacements
)
1832 struct fixup_replacement
*next
;
1834 if (GET_CODE (replacements
->new) == REG
)
1839 /* OLD might be a (subreg (mem)). */
1840 if (GET_CODE (replacements
->old
) == SUBREG
)
1842 = fixup_memory_subreg (replacements
->old
, insn
, 0);
1845 = fixup_stack_1 (replacements
->old
, insn
);
1847 insert_before
= insn
;
1849 /* If we are changing the mode, do a conversion.
1850 This might be wasteful, but combine.c will
1851 eliminate much of the waste. */
1853 if (GET_MODE (replacements
->new)
1854 != GET_MODE (replacements
->old
))
1857 convert_move (replacements
->new,
1858 replacements
->old
, unsignedp
);
1859 seq
= gen_sequence ();
1863 seq
= gen_move_insn (replacements
->new,
1866 emit_insn_before (seq
, insert_before
);
1869 next
= replacements
->next
;
1870 free (replacements
);
1871 replacements
= next
;
1875 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1876 But don't touch other insns referred to by reg-notes;
1877 we will get them elsewhere. */
1880 if (GET_CODE (note
) != INSN_LIST
)
1882 = walk_fixup_memory_subreg (XEXP (note
, 0), insn
, 1);
1883 note
= XEXP (note
, 1);
1887 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1888 See if the rtx expression at *LOC in INSN needs to be changed.
1890 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1891 contain a list of original rtx's and replacements. If we find that we need
1892 to modify this insn by replacing a memory reference with a pseudo or by
1893 making a new MEM to implement a SUBREG, we consult that list to see if
1894 we have already chosen a replacement. If none has already been allocated,
1895 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1896 or the SUBREG, as appropriate, to the pseudo. */
1899 fixup_var_refs_1 (var
, promoted_mode
, loc
, insn
, replacements
)
1901 enum machine_mode promoted_mode
;
1904 struct fixup_replacement
**replacements
;
1907 register rtx x
= *loc
;
1908 RTX_CODE code
= GET_CODE (x
);
1909 register const char *fmt
;
1910 register rtx tem
, tem1
;
1911 struct fixup_replacement
*replacement
;
1916 if (XEXP (x
, 0) == var
)
1918 /* Prevent sharing of rtl that might lose. */
1919 rtx sub
= copy_rtx (XEXP (var
, 0));
1921 if (! validate_change (insn
, loc
, sub
, 0))
1923 rtx y
= gen_reg_rtx (GET_MODE (sub
));
1926 /* We should be able to replace with a register or all is lost.
1927 Note that we can't use validate_change to verify this, since
1928 we're not caring for replacing all dups simultaneously. */
1929 if (! validate_replace_rtx (*loc
, y
, insn
))
1932 /* Careful! First try to recognize a direct move of the
1933 value, mimicking how things are done in gen_reload wrt
1934 PLUS. Consider what happens when insn is a conditional
1935 move instruction and addsi3 clobbers flags. */
1938 new_insn
= emit_insn (gen_rtx_SET (VOIDmode
, y
, sub
));
1939 seq
= gen_sequence ();
1942 if (recog_memoized (new_insn
) < 0)
1944 /* That failed. Fall back on force_operand and hope. */
1947 sub
= force_operand (sub
, y
);
1949 emit_insn (gen_move_insn (y
, sub
));
1950 seq
= gen_sequence ();
1955 /* Don't separate setter from user. */
1956 if (PREV_INSN (insn
) && sets_cc0_p (PREV_INSN (insn
)))
1957 insn
= PREV_INSN (insn
);
1960 emit_insn_before (seq
, insn
);
1968 /* If we already have a replacement, use it. Otherwise,
1969 try to fix up this address in case it is invalid. */
1971 replacement
= find_fixup_replacement (replacements
, var
);
1972 if (replacement
->new)
1974 *loc
= replacement
->new;
1978 *loc
= replacement
->new = x
= fixup_stack_1 (x
, insn
);
1980 /* Unless we are forcing memory to register or we changed the mode,
1981 we can leave things the way they are if the insn is valid. */
1983 INSN_CODE (insn
) = -1;
1984 if (! flag_force_mem
&& GET_MODE (x
) == promoted_mode
1985 && recog_memoized (insn
) >= 0)
1988 *loc
= replacement
->new = gen_reg_rtx (promoted_mode
);
1992 /* If X contains VAR, we need to unshare it here so that we update
1993 each occurrence separately. But all identical MEMs in one insn
1994 must be replaced with the same rtx because of the possibility of
1997 if (reg_mentioned_p (var
, x
))
1999 replacement
= find_fixup_replacement (replacements
, x
);
2000 if (replacement
->new == 0)
2001 replacement
->new = copy_most_rtx (x
, var
);
2003 *loc
= x
= replacement
->new;
2004 code
= GET_CODE (x
);
2020 /* Note that in some cases those types of expressions are altered
2021 by optimize_bit_field, and do not survive to get here. */
2022 if (XEXP (x
, 0) == var
2023 || (GET_CODE (XEXP (x
, 0)) == SUBREG
2024 && SUBREG_REG (XEXP (x
, 0)) == var
))
2026 /* Get TEM as a valid MEM in the mode presently in the insn.
2028 We don't worry about the possibility of MATCH_DUP here; it
2029 is highly unlikely and would be tricky to handle. */
2032 if (GET_CODE (tem
) == SUBREG
)
2034 if (GET_MODE_BITSIZE (GET_MODE (tem
))
2035 > GET_MODE_BITSIZE (GET_MODE (var
)))
2037 replacement
= find_fixup_replacement (replacements
, var
);
2038 if (replacement
->new == 0)
2039 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2040 SUBREG_REG (tem
) = replacement
->new;
2042 /* The following code works only if we have a MEM, so we
2043 need to handle the subreg here. We directly substitute
2044 it assuming that a subreg must be OK here. We already
2045 scheduled a replacement to copy the mem into the
2051 tem
= fixup_memory_subreg (tem
, insn
, 0);
2054 tem
= fixup_stack_1 (tem
, insn
);
2056 /* Unless we want to load from memory, get TEM into the proper mode
2057 for an extract from memory. This can only be done if the
2058 extract is at a constant position and length. */
2060 if (! flag_force_mem
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
2061 && GET_CODE (XEXP (x
, 2)) == CONST_INT
2062 && ! mode_dependent_address_p (XEXP (tem
, 0))
2063 && ! MEM_VOLATILE_P (tem
))
2065 enum machine_mode wanted_mode
= VOIDmode
;
2066 enum machine_mode is_mode
= GET_MODE (tem
);
2067 HOST_WIDE_INT pos
= INTVAL (XEXP (x
, 2));
2070 if (GET_CODE (x
) == ZERO_EXTRACT
)
2073 = insn_data
[(int) CODE_FOR_extzv
].operand
[1].mode
;
2074 if (wanted_mode
== VOIDmode
)
2075 wanted_mode
= word_mode
;
2079 if (GET_CODE (x
) == SIGN_EXTRACT
)
2081 wanted_mode
= insn_data
[(int) CODE_FOR_extv
].operand
[1].mode
;
2082 if (wanted_mode
== VOIDmode
)
2083 wanted_mode
= word_mode
;
2086 /* If we have a narrower mode, we can do something. */
2087 if (wanted_mode
!= VOIDmode
2088 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
2090 HOST_WIDE_INT offset
= pos
/ BITS_PER_UNIT
;
2091 rtx old_pos
= XEXP (x
, 2);
2094 /* If the bytes and bits are counted differently, we
2095 must adjust the offset. */
2096 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
2097 offset
= (GET_MODE_SIZE (is_mode
)
2098 - GET_MODE_SIZE (wanted_mode
) - offset
);
2100 pos
%= GET_MODE_BITSIZE (wanted_mode
);
2102 newmem
= gen_rtx_MEM (wanted_mode
,
2103 plus_constant (XEXP (tem
, 0), offset
));
2104 MEM_COPY_ATTRIBUTES (newmem
, tem
);
2106 /* Make the change and see if the insn remains valid. */
2107 INSN_CODE (insn
) = -1;
2108 XEXP (x
, 0) = newmem
;
2109 XEXP (x
, 2) = GEN_INT (pos
);
2111 if (recog_memoized (insn
) >= 0)
2114 /* Otherwise, restore old position. XEXP (x, 0) will be
2116 XEXP (x
, 2) = old_pos
;
2120 /* If we get here, the bitfield extract insn can't accept a memory
2121 reference. Copy the input into a register. */
2123 tem1
= gen_reg_rtx (GET_MODE (tem
));
2124 emit_insn_before (gen_move_insn (tem1
, tem
), insn
);
2131 if (SUBREG_REG (x
) == var
)
2133 /* If this is a special SUBREG made because VAR was promoted
2134 from a wider mode, replace it with VAR and call ourself
2135 recursively, this time saying that the object previously
2136 had its current mode (by virtue of the SUBREG). */
2138 if (SUBREG_PROMOTED_VAR_P (x
))
2141 fixup_var_refs_1 (var
, GET_MODE (var
), loc
, insn
, replacements
);
2145 /* If this SUBREG makes VAR wider, it has become a paradoxical
2146 SUBREG with VAR in memory, but these aren't allowed at this
2147 stage of the compilation. So load VAR into a pseudo and take
2148 a SUBREG of that pseudo. */
2149 if (GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (GET_MODE (var
)))
2151 replacement
= find_fixup_replacement (replacements
, var
);
2152 if (replacement
->new == 0)
2153 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2154 SUBREG_REG (x
) = replacement
->new;
2158 /* See if we have already found a replacement for this SUBREG.
2159 If so, use it. Otherwise, make a MEM and see if the insn
2160 is recognized. If not, or if we should force MEM into a register,
2161 make a pseudo for this SUBREG. */
2162 replacement
= find_fixup_replacement (replacements
, x
);
2163 if (replacement
->new)
2165 *loc
= replacement
->new;
2169 replacement
->new = *loc
= fixup_memory_subreg (x
, insn
, 0);
2171 INSN_CODE (insn
) = -1;
2172 if (! flag_force_mem
&& recog_memoized (insn
) >= 0)
2175 *loc
= replacement
->new = gen_reg_rtx (GET_MODE (x
));
2181 /* First do special simplification of bit-field references. */
2182 if (GET_CODE (SET_DEST (x
)) == SIGN_EXTRACT
2183 || GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
2184 optimize_bit_field (x
, insn
, 0);
2185 if (GET_CODE (SET_SRC (x
)) == SIGN_EXTRACT
2186 || GET_CODE (SET_SRC (x
)) == ZERO_EXTRACT
)
2187 optimize_bit_field (x
, insn
, NULL_PTR
);
2189 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2190 into a register and then store it back out. */
2191 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
2192 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
2193 && SUBREG_REG (XEXP (SET_DEST (x
), 0)) == var
2194 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
2195 > GET_MODE_SIZE (GET_MODE (var
))))
2197 replacement
= find_fixup_replacement (replacements
, var
);
2198 if (replacement
->new == 0)
2199 replacement
->new = gen_reg_rtx (GET_MODE (var
));
2201 SUBREG_REG (XEXP (SET_DEST (x
), 0)) = replacement
->new;
2202 emit_insn_after (gen_move_insn (var
, replacement
->new), insn
);
2205 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2206 insn into a pseudo and store the low part of the pseudo into VAR. */
2207 if (GET_CODE (SET_DEST (x
)) == SUBREG
2208 && SUBREG_REG (SET_DEST (x
)) == var
2209 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2210 > GET_MODE_SIZE (GET_MODE (var
))))
2212 SET_DEST (x
) = tem
= gen_reg_rtx (GET_MODE (SET_DEST (x
)));
2213 emit_insn_after (gen_move_insn (var
, gen_lowpart (GET_MODE (var
),
2220 rtx dest
= SET_DEST (x
);
2221 rtx src
= SET_SRC (x
);
2223 rtx outerdest
= dest
;
2226 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
2227 || GET_CODE (dest
) == SIGN_EXTRACT
2228 || GET_CODE (dest
) == ZERO_EXTRACT
)
2229 dest
= XEXP (dest
, 0);
2231 if (GET_CODE (src
) == SUBREG
)
2232 src
= XEXP (src
, 0);
2234 /* If VAR does not appear at the top level of the SET
2235 just scan the lower levels of the tree. */
2237 if (src
!= var
&& dest
!= var
)
2240 /* We will need to rerecognize this insn. */
2241 INSN_CODE (insn
) = -1;
2244 if (GET_CODE (outerdest
) == ZERO_EXTRACT
&& dest
== var
)
2246 /* Since this case will return, ensure we fixup all the
2248 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (outerdest
, 1),
2249 insn
, replacements
);
2250 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (outerdest
, 2),
2251 insn
, replacements
);
2252 fixup_var_refs_1 (var
, promoted_mode
, &SET_SRC (x
),
2253 insn
, replacements
);
2255 tem
= XEXP (outerdest
, 0);
2257 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2258 that may appear inside a ZERO_EXTRACT.
2259 This was legitimate when the MEM was a REG. */
2260 if (GET_CODE (tem
) == SUBREG
2261 && SUBREG_REG (tem
) == var
)
2262 tem
= fixup_memory_subreg (tem
, insn
, 0);
2264 tem
= fixup_stack_1 (tem
, insn
);
2266 if (GET_CODE (XEXP (outerdest
, 1)) == CONST_INT
2267 && GET_CODE (XEXP (outerdest
, 2)) == CONST_INT
2268 && ! mode_dependent_address_p (XEXP (tem
, 0))
2269 && ! MEM_VOLATILE_P (tem
))
2271 enum machine_mode wanted_mode
;
2272 enum machine_mode is_mode
= GET_MODE (tem
);
2273 HOST_WIDE_INT pos
= INTVAL (XEXP (outerdest
, 2));
2275 wanted_mode
= insn_data
[(int) CODE_FOR_insv
].operand
[0].mode
;
2276 if (wanted_mode
== VOIDmode
)
2277 wanted_mode
= word_mode
;
2279 /* If we have a narrower mode, we can do something. */
2280 if (GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
2282 HOST_WIDE_INT offset
= pos
/ BITS_PER_UNIT
;
2283 rtx old_pos
= XEXP (outerdest
, 2);
2286 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
2287 offset
= (GET_MODE_SIZE (is_mode
)
2288 - GET_MODE_SIZE (wanted_mode
) - offset
);
2290 pos
%= GET_MODE_BITSIZE (wanted_mode
);
2292 newmem
= gen_rtx_MEM (wanted_mode
,
2293 plus_constant (XEXP (tem
, 0),
2295 MEM_COPY_ATTRIBUTES (newmem
, tem
);
2297 /* Make the change and see if the insn remains valid. */
2298 INSN_CODE (insn
) = -1;
2299 XEXP (outerdest
, 0) = newmem
;
2300 XEXP (outerdest
, 2) = GEN_INT (pos
);
2302 if (recog_memoized (insn
) >= 0)
2305 /* Otherwise, restore old position. XEXP (x, 0) will be
2307 XEXP (outerdest
, 2) = old_pos
;
2311 /* If we get here, the bit-field store doesn't allow memory
2312 or isn't located at a constant position. Load the value into
2313 a register, do the store, and put it back into memory. */
2315 tem1
= gen_reg_rtx (GET_MODE (tem
));
2316 emit_insn_before (gen_move_insn (tem1
, tem
), insn
);
2317 emit_insn_after (gen_move_insn (tem
, tem1
), insn
);
2318 XEXP (outerdest
, 0) = tem1
;
2323 /* STRICT_LOW_PART is a no-op on memory references
2324 and it can cause combinations to be unrecognizable,
2327 if (dest
== var
&& GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
)
2328 SET_DEST (x
) = XEXP (SET_DEST (x
), 0);
2330 /* A valid insn to copy VAR into or out of a register
2331 must be left alone, to avoid an infinite loop here.
2332 If the reference to VAR is by a subreg, fix that up,
2333 since SUBREG is not valid for a memref.
2334 Also fix up the address of the stack slot.
2336 Note that we must not try to recognize the insn until
2337 after we know that we have valid addresses and no
2338 (subreg (mem ...) ...) constructs, since these interfere
2339 with determining the validity of the insn. */
2341 if ((SET_SRC (x
) == var
2342 || (GET_CODE (SET_SRC (x
)) == SUBREG
2343 && SUBREG_REG (SET_SRC (x
)) == var
))
2344 && (GET_CODE (SET_DEST (x
)) == REG
2345 || (GET_CODE (SET_DEST (x
)) == SUBREG
2346 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
))
2347 && GET_MODE (var
) == promoted_mode
2348 && x
== single_set (insn
))
2352 replacement
= find_fixup_replacement (replacements
, SET_SRC (x
));
2353 if (replacement
->new)
2354 SET_SRC (x
) = replacement
->new;
2355 else if (GET_CODE (SET_SRC (x
)) == SUBREG
)
2356 SET_SRC (x
) = replacement
->new
2357 = fixup_memory_subreg (SET_SRC (x
), insn
, 0);
2359 SET_SRC (x
) = replacement
->new
2360 = fixup_stack_1 (SET_SRC (x
), insn
);
2362 if (recog_memoized (insn
) >= 0)
2365 /* INSN is not valid, but we know that we want to
2366 copy SET_SRC (x) to SET_DEST (x) in some way. So
2367 we generate the move and see whether it requires more
2368 than one insn. If it does, we emit those insns and
2369 delete INSN. Otherwise, we an just replace the pattern
2370 of INSN; we have already verified above that INSN has
2371 no other function that to do X. */
2373 pat
= gen_move_insn (SET_DEST (x
), SET_SRC (x
));
2374 if (GET_CODE (pat
) == SEQUENCE
)
2376 last
= emit_insn_before (pat
, insn
);
2378 /* INSN might have REG_RETVAL or other important notes, so
2379 we need to store the pattern of the last insn in the
2380 sequence into INSN similarly to the normal case. LAST
2381 should not have REG_NOTES, but we allow them if INSN has
2383 if (REG_NOTES (last
) && REG_NOTES (insn
))
2385 if (REG_NOTES (last
))
2386 REG_NOTES (insn
) = REG_NOTES (last
);
2387 PATTERN (insn
) = PATTERN (last
);
2389 PUT_CODE (last
, NOTE
);
2390 NOTE_LINE_NUMBER (last
) = NOTE_INSN_DELETED
;
2391 NOTE_SOURCE_FILE (last
) = 0;
2394 PATTERN (insn
) = pat
;
2399 if ((SET_DEST (x
) == var
2400 || (GET_CODE (SET_DEST (x
)) == SUBREG
2401 && SUBREG_REG (SET_DEST (x
)) == var
))
2402 && (GET_CODE (SET_SRC (x
)) == REG
2403 || (GET_CODE (SET_SRC (x
)) == SUBREG
2404 && GET_CODE (SUBREG_REG (SET_SRC (x
))) == REG
))
2405 && GET_MODE (var
) == promoted_mode
2406 && x
== single_set (insn
))
2410 if (GET_CODE (SET_DEST (x
)) == SUBREG
)
2411 SET_DEST (x
) = fixup_memory_subreg (SET_DEST (x
), insn
, 0);
2413 SET_DEST (x
) = fixup_stack_1 (SET_DEST (x
), insn
);
2415 if (recog_memoized (insn
) >= 0)
2418 pat
= gen_move_insn (SET_DEST (x
), SET_SRC (x
));
2419 if (GET_CODE (pat
) == SEQUENCE
)
2421 last
= emit_insn_before (pat
, insn
);
2423 /* INSN might have REG_RETVAL or other important notes, so
2424 we need to store the pattern of the last insn in the
2425 sequence into INSN similarly to the normal case. LAST
2426 should not have REG_NOTES, but we allow them if INSN has
2428 if (REG_NOTES (last
) && REG_NOTES (insn
))
2430 if (REG_NOTES (last
))
2431 REG_NOTES (insn
) = REG_NOTES (last
);
2432 PATTERN (insn
) = PATTERN (last
);
2434 PUT_CODE (last
, NOTE
);
2435 NOTE_LINE_NUMBER (last
) = NOTE_INSN_DELETED
;
2436 NOTE_SOURCE_FILE (last
) = 0;
2439 PATTERN (insn
) = pat
;
2444 /* Otherwise, storing into VAR must be handled specially
2445 by storing into a temporary and copying that into VAR
2446 with a new insn after this one. Note that this case
2447 will be used when storing into a promoted scalar since
2448 the insn will now have different modes on the input
2449 and output and hence will be invalid (except for the case
2450 of setting it to a constant, which does not need any
2451 change if it is valid). We generate extra code in that case,
2452 but combine.c will eliminate it. */
2457 rtx fixeddest
= SET_DEST (x
);
2459 /* STRICT_LOW_PART can be discarded, around a MEM. */
2460 if (GET_CODE (fixeddest
) == STRICT_LOW_PART
)
2461 fixeddest
= XEXP (fixeddest
, 0);
2462 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2463 if (GET_CODE (fixeddest
) == SUBREG
)
2465 fixeddest
= fixup_memory_subreg (fixeddest
, insn
, 0);
2466 promoted_mode
= GET_MODE (fixeddest
);
2469 fixeddest
= fixup_stack_1 (fixeddest
, insn
);
2471 temp
= gen_reg_rtx (promoted_mode
);
2473 emit_insn_after (gen_move_insn (fixeddest
,
2474 gen_lowpart (GET_MODE (fixeddest
),
2478 SET_DEST (x
) = temp
;
2486 /* Nothing special about this RTX; fix its operands. */
2488 fmt
= GET_RTX_FORMAT (code
);
2489 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2492 fixup_var_refs_1 (var
, promoted_mode
, &XEXP (x
, i
), insn
, replacements
);
2493 else if (fmt
[i
] == 'E')
2496 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2497 fixup_var_refs_1 (var
, promoted_mode
, &XVECEXP (x
, i
, j
),
2498 insn
, replacements
);
2503 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2504 return an rtx (MEM:m1 newaddr) which is equivalent.
2505 If any insns must be emitted to compute NEWADDR, put them before INSN.
2507 UNCRITICAL nonzero means accept paradoxical subregs.
2508 This is used for subregs found inside REG_NOTES. */
2511 fixup_memory_subreg (x
, insn
, uncritical
)
2516 int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
2517 rtx addr
= XEXP (SUBREG_REG (x
), 0);
2518 enum machine_mode mode
= GET_MODE (x
);
2521 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2522 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
2526 if (BYTES_BIG_ENDIAN
)
2527 offset
+= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
2528 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
)));
2529 addr
= plus_constant (addr
, offset
);
2530 if (!flag_force_addr
&& memory_address_p (mode
, addr
))
2531 /* Shortcut if no insns need be emitted. */
2532 return change_address (SUBREG_REG (x
), mode
, addr
);
2534 result
= change_address (SUBREG_REG (x
), mode
, addr
);
2535 emit_insn_before (gen_sequence (), insn
);
2540 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2541 Replace subexpressions of X in place.
2542 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2543 Otherwise return X, with its contents possibly altered.
2545 If any insns must be emitted to compute NEWADDR, put them before INSN.
2547 UNCRITICAL is as in fixup_memory_subreg. */
2550 walk_fixup_memory_subreg (x
, insn
, uncritical
)
2555 register enum rtx_code code
;
2556 register const char *fmt
;
2562 code
= GET_CODE (x
);
2564 if (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == MEM
)
2565 return fixup_memory_subreg (x
, insn
, uncritical
);
2567 /* Nothing special about this RTX; fix its operands. */
2569 fmt
= GET_RTX_FORMAT (code
);
2570 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2573 XEXP (x
, i
) = walk_fixup_memory_subreg (XEXP (x
, i
), insn
, uncritical
);
2574 else if (fmt
[i
] == 'E')
2577 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2579 = walk_fixup_memory_subreg (XVECEXP (x
, i
, j
), insn
, uncritical
);
2585 /* For each memory ref within X, if it refers to a stack slot
2586 with an out of range displacement, put the address in a temp register
2587 (emitting new insns before INSN to load these registers)
2588 and alter the memory ref to use that register.
2589 Replace each such MEM rtx with a copy, to avoid clobberage. */
2592 fixup_stack_1 (x
, insn
)
2597 register RTX_CODE code
= GET_CODE (x
);
2598 register const char *fmt
;
2602 register rtx ad
= XEXP (x
, 0);
2603 /* If we have address of a stack slot but it's not valid
2604 (displacement is too large), compute the sum in a register. */
2605 if (GET_CODE (ad
) == PLUS
2606 && GET_CODE (XEXP (ad
, 0)) == REG
2607 && ((REGNO (XEXP (ad
, 0)) >= FIRST_VIRTUAL_REGISTER
2608 && REGNO (XEXP (ad
, 0)) <= LAST_VIRTUAL_REGISTER
)
2609 || REGNO (XEXP (ad
, 0)) == FRAME_POINTER_REGNUM
2610 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2611 || REGNO (XEXP (ad
, 0)) == HARD_FRAME_POINTER_REGNUM
2613 || REGNO (XEXP (ad
, 0)) == STACK_POINTER_REGNUM
2614 || REGNO (XEXP (ad
, 0)) == ARG_POINTER_REGNUM
2615 || XEXP (ad
, 0) == current_function_internal_arg_pointer
)
2616 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
2619 if (memory_address_p (GET_MODE (x
), ad
))
2623 temp
= copy_to_reg (ad
);
2624 seq
= gen_sequence ();
2626 emit_insn_before (seq
, insn
);
2627 return change_address (x
, VOIDmode
, temp
);
2632 fmt
= GET_RTX_FORMAT (code
);
2633 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2636 XEXP (x
, i
) = fixup_stack_1 (XEXP (x
, i
), insn
);
2637 else if (fmt
[i
] == 'E')
2640 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2641 XVECEXP (x
, i
, j
) = fixup_stack_1 (XVECEXP (x
, i
, j
), insn
);
2647 /* Optimization: a bit-field instruction whose field
2648 happens to be a byte or halfword in memory
2649 can be changed to a move instruction.
2651 We call here when INSN is an insn to examine or store into a bit-field.
2652 BODY is the SET-rtx to be altered.
2654 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2655 (Currently this is called only from function.c, and EQUIV_MEM
2659 optimize_bit_field (body
, insn
, equiv_mem
)
2664 register rtx bitfield
;
2667 enum machine_mode mode
;
2669 if (GET_CODE (SET_DEST (body
)) == SIGN_EXTRACT
2670 || GET_CODE (SET_DEST (body
)) == ZERO_EXTRACT
)
2671 bitfield
= SET_DEST (body
), destflag
= 1;
2673 bitfield
= SET_SRC (body
), destflag
= 0;
2675 /* First check that the field being stored has constant size and position
2676 and is in fact a byte or halfword suitably aligned. */
2678 if (GET_CODE (XEXP (bitfield
, 1)) == CONST_INT
2679 && GET_CODE (XEXP (bitfield
, 2)) == CONST_INT
2680 && ((mode
= mode_for_size (INTVAL (XEXP (bitfield
, 1)), MODE_INT
, 1))
2682 && INTVAL (XEXP (bitfield
, 2)) % INTVAL (XEXP (bitfield
, 1)) == 0)
2684 register rtx memref
= 0;
2686 /* Now check that the containing word is memory, not a register,
2687 and that it is safe to change the machine mode. */
2689 if (GET_CODE (XEXP (bitfield
, 0)) == MEM
)
2690 memref
= XEXP (bitfield
, 0);
2691 else if (GET_CODE (XEXP (bitfield
, 0)) == REG
2693 memref
= equiv_mem
[REGNO (XEXP (bitfield
, 0))];
2694 else if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
2695 && GET_CODE (SUBREG_REG (XEXP (bitfield
, 0))) == MEM
)
2696 memref
= SUBREG_REG (XEXP (bitfield
, 0));
2697 else if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
2699 && GET_CODE (SUBREG_REG (XEXP (bitfield
, 0))) == REG
)
2700 memref
= equiv_mem
[REGNO (SUBREG_REG (XEXP (bitfield
, 0)))];
2703 && ! mode_dependent_address_p (XEXP (memref
, 0))
2704 && ! MEM_VOLATILE_P (memref
))
2706 /* Now adjust the address, first for any subreg'ing
2707 that we are now getting rid of,
2708 and then for which byte of the word is wanted. */
2710 HOST_WIDE_INT offset
= INTVAL (XEXP (bitfield
, 2));
2713 /* Adjust OFFSET to count bits from low-address byte. */
2714 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
2715 offset
= (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield
, 0)))
2716 - offset
- INTVAL (XEXP (bitfield
, 1)));
2718 /* Adjust OFFSET to count bytes from low-address byte. */
2719 offset
/= BITS_PER_UNIT
;
2720 if (GET_CODE (XEXP (bitfield
, 0)) == SUBREG
)
2722 offset
+= SUBREG_WORD (XEXP (bitfield
, 0)) * UNITS_PER_WORD
;
2723 if (BYTES_BIG_ENDIAN
)
2724 offset
-= (MIN (UNITS_PER_WORD
,
2725 GET_MODE_SIZE (GET_MODE (XEXP (bitfield
, 0))))
2726 - MIN (UNITS_PER_WORD
,
2727 GET_MODE_SIZE (GET_MODE (memref
))));
2731 memref
= change_address (memref
, mode
,
2732 plus_constant (XEXP (memref
, 0), offset
));
2733 insns
= get_insns ();
2735 emit_insns_before (insns
, insn
);
2737 /* Store this memory reference where
2738 we found the bit field reference. */
2742 validate_change (insn
, &SET_DEST (body
), memref
, 1);
2743 if (! CONSTANT_ADDRESS_P (SET_SRC (body
)))
2745 rtx src
= SET_SRC (body
);
2746 while (GET_CODE (src
) == SUBREG
2747 && SUBREG_WORD (src
) == 0)
2748 src
= SUBREG_REG (src
);
2749 if (GET_MODE (src
) != GET_MODE (memref
))
2750 src
= gen_lowpart (GET_MODE (memref
), SET_SRC (body
));
2751 validate_change (insn
, &SET_SRC (body
), src
, 1);
2753 else if (GET_MODE (SET_SRC (body
)) != VOIDmode
2754 && GET_MODE (SET_SRC (body
)) != GET_MODE (memref
))
2755 /* This shouldn't happen because anything that didn't have
2756 one of these modes should have got converted explicitly
2757 and then referenced through a subreg.
2758 This is so because the original bit-field was
2759 handled by agg_mode and so its tree structure had
2760 the same mode that memref now has. */
2765 rtx dest
= SET_DEST (body
);
2767 while (GET_CODE (dest
) == SUBREG
2768 && SUBREG_WORD (dest
) == 0
2769 && (GET_MODE_CLASS (GET_MODE (dest
))
2770 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest
))))
2771 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
2773 dest
= SUBREG_REG (dest
);
2775 validate_change (insn
, &SET_DEST (body
), dest
, 1);
2777 if (GET_MODE (dest
) == GET_MODE (memref
))
2778 validate_change (insn
, &SET_SRC (body
), memref
, 1);
2781 /* Convert the mem ref to the destination mode. */
2782 rtx newreg
= gen_reg_rtx (GET_MODE (dest
));
2785 convert_move (newreg
, memref
,
2786 GET_CODE (SET_SRC (body
)) == ZERO_EXTRACT
);
2790 validate_change (insn
, &SET_SRC (body
), newreg
, 1);
2794 /* See if we can convert this extraction or insertion into
2795 a simple move insn. We might not be able to do so if this
2796 was, for example, part of a PARALLEL.
2798 If we succeed, write out any needed conversions. If we fail,
2799 it is hard to guess why we failed, so don't do anything
2800 special; just let the optimization be suppressed. */
2802 if (apply_change_group () && seq
)
2803 emit_insns_before (seq
, insn
);
2808 /* These routines are responsible for converting virtual register references
2809 to the actual hard register references once RTL generation is complete.
2811 The following four variables are used for communication between the
2812 routines. They contain the offsets of the virtual registers from their
2813 respective hard registers. */
2815 static int in_arg_offset
;
2816 static int var_offset
;
2817 static int dynamic_offset
;
2818 static int out_arg_offset
;
2819 static int cfa_offset
;
2821 /* In most machines, the stack pointer register is equivalent to the bottom
2824 #ifndef STACK_POINTER_OFFSET
2825 #define STACK_POINTER_OFFSET 0
2828 /* If not defined, pick an appropriate default for the offset of dynamically
2829 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2830 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2832 #ifndef STACK_DYNAMIC_OFFSET
2834 /* The bottom of the stack points to the actual arguments. If
2835 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2836 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2837 stack space for register parameters is not pushed by the caller, but
2838 rather part of the fixed stack areas and hence not included in
2839 `current_function_outgoing_args_size'. Nevertheless, we must allow
2840 for it when allocating stack dynamic objects. */
2842 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2843 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2844 ((ACCUMULATE_OUTGOING_ARGS \
2845 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2846 + (STACK_POINTER_OFFSET)) \
2849 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2850 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2851 + (STACK_POINTER_OFFSET))
2855 /* On most machines, the CFA coincides with the first incoming parm. */
2857 #ifndef ARG_POINTER_CFA_OFFSET
2858 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2861 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2862 its address taken. DECL is the decl for the object stored in the
2863 register, for later use if we do need to force REG into the stack.
2864 REG is overwritten by the MEM like in put_reg_into_stack. */
2867 gen_mem_addressof (reg
, decl
)
2871 rtx r
= gen_rtx_ADDRESSOF (Pmode
, gen_reg_rtx (GET_MODE (reg
)),
2874 /* If the original REG was a user-variable, then so is the REG whose
2875 address is being taken. Likewise for unchanging. */
2876 REG_USERVAR_P (XEXP (r
, 0)) = REG_USERVAR_P (reg
);
2877 RTX_UNCHANGING_P (XEXP (r
, 0)) = RTX_UNCHANGING_P (reg
);
2879 PUT_CODE (reg
, MEM
);
2883 tree type
= TREE_TYPE (decl
);
2885 PUT_MODE (reg
, DECL_MODE (decl
));
2886 MEM_VOLATILE_P (reg
) = TREE_SIDE_EFFECTS (decl
);
2887 MEM_SET_IN_STRUCT_P (reg
, AGGREGATE_TYPE_P (type
));
2888 MEM_ALIAS_SET (reg
) = get_alias_set (decl
);
2890 if (TREE_USED (decl
) || DECL_INITIAL (decl
) != 0)
2891 fixup_var_refs (reg
, GET_MODE (reg
), TREE_UNSIGNED (type
), 0);
2895 /* We have no alias information about this newly created MEM. */
2896 MEM_ALIAS_SET (reg
) = 0;
2898 fixup_var_refs (reg
, GET_MODE (reg
), 0, 0);
2904 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2907 flush_addressof (decl
)
2910 if ((TREE_CODE (decl
) == PARM_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
2911 && DECL_RTL (decl
) != 0
2912 && GET_CODE (DECL_RTL (decl
)) == MEM
2913 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
2914 && GET_CODE (XEXP (XEXP (DECL_RTL (decl
), 0), 0)) == REG
)
2915 put_addressof_into_stack (XEXP (DECL_RTL (decl
), 0), 0);
2918 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2921 put_addressof_into_stack (r
, ht
)
2923 struct hash_table
*ht
;
2926 int volatile_p
, used_p
;
2928 rtx reg
= XEXP (r
, 0);
2930 if (GET_CODE (reg
) != REG
)
2933 decl
= ADDRESSOF_DECL (r
);
2936 type
= TREE_TYPE (decl
);
2937 volatile_p
= (TREE_CODE (decl
) != SAVE_EXPR
2938 && TREE_THIS_VOLATILE (decl
));
2939 used_p
= (TREE_USED (decl
)
2940 || (TREE_CODE (decl
) != SAVE_EXPR
2941 && DECL_INITIAL (decl
) != 0));
2950 put_reg_into_stack (0, reg
, type
, GET_MODE (reg
), GET_MODE (reg
),
2951 volatile_p
, ADDRESSOF_REGNO (r
), used_p
, ht
);
2954 /* List of replacements made below in purge_addressof_1 when creating
2955 bitfield insertions. */
2956 static rtx purge_bitfield_addressof_replacements
;
2958 /* List of replacements made below in purge_addressof_1 for patterns
2959 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2960 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2961 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2962 enough in complex cases, e.g. when some field values can be
2963 extracted by usage MEM with narrower mode. */
2964 static rtx purge_addressof_replacements
;
2966 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2967 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2968 the stack. If the function returns FALSE then the replacement could not
2972 purge_addressof_1 (loc
, insn
, force
, store
, ht
)
2976 struct hash_table
*ht
;
2982 boolean result
= true;
2984 /* Re-start here to avoid recursion in common cases. */
2991 code
= GET_CODE (x
);
2993 /* If we don't return in any of the cases below, we will recurse inside
2994 the RTX, which will normally result in any ADDRESSOF being forced into
2998 result
= purge_addressof_1 (&SET_DEST (x
), insn
, force
, 1, ht
);
2999 result
&= purge_addressof_1 (&SET_SRC (x
), insn
, force
, 0, ht
);
3003 else if (code
== ADDRESSOF
&& GET_CODE (XEXP (x
, 0)) == MEM
)
3005 /* We must create a copy of the rtx because it was created by
3006 overwriting a REG rtx which is always shared. */
3007 rtx sub
= copy_rtx (XEXP (XEXP (x
, 0), 0));
3010 if (validate_change (insn
, loc
, sub
, 0)
3011 || validate_replace_rtx (x
, sub
, insn
))
3015 sub
= force_operand (sub
, NULL_RTX
);
3016 if (! validate_change (insn
, loc
, sub
, 0)
3017 && ! validate_replace_rtx (x
, sub
, insn
))
3020 insns
= gen_sequence ();
3022 emit_insn_before (insns
, insn
);
3026 else if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == ADDRESSOF
&& ! force
)
3028 rtx sub
= XEXP (XEXP (x
, 0), 0);
3031 if (GET_CODE (sub
) == MEM
)
3033 sub2
= gen_rtx_MEM (GET_MODE (x
), copy_rtx (XEXP (sub
, 0)));
3034 MEM_COPY_ATTRIBUTES (sub2
, sub
);
3037 else if (GET_CODE (sub
) == REG
3038 && (MEM_VOLATILE_P (x
) || GET_MODE (x
) == BLKmode
))
3040 else if (GET_CODE (sub
) == REG
&& GET_MODE (x
) != GET_MODE (sub
))
3042 int size_x
, size_sub
;
3046 /* When processing REG_NOTES look at the list of
3047 replacements done on the insn to find the register that X
3051 for (tem
= purge_bitfield_addressof_replacements
;
3053 tem
= XEXP (XEXP (tem
, 1), 1))
3054 if (rtx_equal_p (x
, XEXP (tem
, 0)))
3056 *loc
= XEXP (XEXP (tem
, 1), 0);
3060 /* See comment for purge_addressof_replacements. */
3061 for (tem
= purge_addressof_replacements
;
3063 tem
= XEXP (XEXP (tem
, 1), 1))
3064 if (rtx_equal_p (XEXP (x
, 0), XEXP (tem
, 0)))
3066 rtx z
= XEXP (XEXP (tem
, 1), 0);
3068 if (GET_MODE (x
) == GET_MODE (z
)
3069 || (GET_CODE (XEXP (XEXP (tem
, 1), 0)) != REG
3070 && GET_CODE (XEXP (XEXP (tem
, 1), 0)) != SUBREG
))
3073 /* It can happen that the note may speak of things
3074 in a wider (or just different) mode than the
3075 code did. This is especially true of
3078 if (GET_CODE (z
) == SUBREG
&& SUBREG_WORD (z
) == 0)
3081 if (GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
3082 && (GET_MODE_SIZE (GET_MODE (x
))
3083 > GET_MODE_SIZE (GET_MODE (z
))))
3085 /* This can occur as a result in invalid
3086 pointer casts, e.g. float f; ...
3087 *(long long int *)&f.
3088 ??? We could emit a warning here, but
3089 without a line number that wouldn't be
3091 z
= gen_rtx_SUBREG (GET_MODE (x
), z
, 0);
3094 z
= gen_lowpart (GET_MODE (x
), z
);
3100 /* Sometimes we may not be able to find the replacement. For
3101 example when the original insn was a MEM in a wider mode,
3102 and the note is part of a sign extension of a narrowed
3103 version of that MEM. Gcc testcase compile/990829-1.c can
3104 generate an example of this siutation. Rather than complain
3105 we return false, which will prompt our caller to remove the
3110 size_x
= GET_MODE_BITSIZE (GET_MODE (x
));
3111 size_sub
= GET_MODE_BITSIZE (GET_MODE (sub
));
3113 /* Don't even consider working with paradoxical subregs,
3114 or the moral equivalent seen here. */
3115 if (size_x
<= size_sub
3116 && int_mode_for_mode (GET_MODE (sub
)) != BLKmode
)
3118 /* Do a bitfield insertion to mirror what would happen
3125 rtx p
= PREV_INSN (insn
);
3128 val
= gen_reg_rtx (GET_MODE (x
));
3129 if (! validate_change (insn
, loc
, val
, 0))
3131 /* Discard the current sequence and put the
3132 ADDRESSOF on stack. */
3136 seq
= gen_sequence ();
3138 emit_insn_before (seq
, insn
);
3139 compute_insns_for_mem (p
? NEXT_INSN (p
) : get_insns (),
3143 store_bit_field (sub
, size_x
, 0, GET_MODE (x
),
3144 val
, GET_MODE_SIZE (GET_MODE (sub
)),
3145 GET_MODE_ALIGNMENT (GET_MODE (sub
)));
3147 /* Make sure to unshare any shared rtl that store_bit_field
3148 might have created. */
3149 unshare_all_rtl_again (get_insns ());
3151 seq
= gen_sequence ();
3153 p
= emit_insn_after (seq
, insn
);
3154 if (NEXT_INSN (insn
))
3155 compute_insns_for_mem (NEXT_INSN (insn
),
3156 p
? NEXT_INSN (p
) : NULL_RTX
,
3161 rtx p
= PREV_INSN (insn
);
3164 val
= extract_bit_field (sub
, size_x
, 0, 1, NULL_RTX
,
3165 GET_MODE (x
), GET_MODE (x
),
3166 GET_MODE_SIZE (GET_MODE (sub
)),
3167 GET_MODE_SIZE (GET_MODE (sub
)));
3169 if (! validate_change (insn
, loc
, val
, 0))
3171 /* Discard the current sequence and put the
3172 ADDRESSOF on stack. */
3177 seq
= gen_sequence ();
3179 emit_insn_before (seq
, insn
);
3180 compute_insns_for_mem (p
? NEXT_INSN (p
) : get_insns (),
3184 /* Remember the replacement so that the same one can be done
3185 on the REG_NOTES. */
3186 purge_bitfield_addressof_replacements
3187 = gen_rtx_EXPR_LIST (VOIDmode
, x
,
3190 purge_bitfield_addressof_replacements
));
3192 /* We replaced with a reg -- all done. */
3197 else if (validate_change (insn
, loc
, sub
, 0))
3199 /* Remember the replacement so that the same one can be done
3200 on the REG_NOTES. */
3201 if (GET_CODE (sub
) == REG
|| GET_CODE (sub
) == SUBREG
)
3205 for (tem
= purge_addressof_replacements
;
3207 tem
= XEXP (XEXP (tem
, 1), 1))
3208 if (rtx_equal_p (XEXP (x
, 0), XEXP (tem
, 0)))
3210 XEXP (XEXP (tem
, 1), 0) = sub
;
3213 purge_addressof_replacements
3214 = gen_rtx (EXPR_LIST
, VOIDmode
, XEXP (x
, 0),
3215 gen_rtx_EXPR_LIST (VOIDmode
, sub
,
3216 purge_addressof_replacements
));
3222 /* else give up and put it into the stack */
3225 else if (code
== ADDRESSOF
)
3227 put_addressof_into_stack (x
, ht
);
3230 else if (code
== SET
)
3232 result
= purge_addressof_1 (&SET_DEST (x
), insn
, force
, 1, ht
);
3233 result
&= purge_addressof_1 (&SET_SRC (x
), insn
, force
, 0, ht
);
3237 /* Scan all subexpressions. */
3238 fmt
= GET_RTX_FORMAT (code
);
3239 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
3242 result
&= purge_addressof_1 (&XEXP (x
, i
), insn
, force
, 0, ht
);
3243 else if (*fmt
== 'E')
3244 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3245 result
&= purge_addressof_1 (&XVECEXP (x
, i
, j
), insn
, force
, 0, ht
);
3251 /* Return a new hash table entry in HT. */
3253 static struct hash_entry
*
3254 insns_for_mem_newfunc (he
, ht
, k
)
3255 struct hash_entry
*he
;
3256 struct hash_table
*ht
;
3257 hash_table_key k ATTRIBUTE_UNUSED
;
3259 struct insns_for_mem_entry
*ifmhe
;
3263 ifmhe
= ((struct insns_for_mem_entry
*)
3264 hash_allocate (ht
, sizeof (struct insns_for_mem_entry
)));
3265 ifmhe
->insns
= NULL_RTX
;
3270 /* Return a hash value for K, a REG. */
3272 static unsigned long
3273 insns_for_mem_hash (k
)
3276 /* K is really a RTX. Just use the address as the hash value. */
3277 return (unsigned long) k
;
3280 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3283 insns_for_mem_comp (k1
, k2
)
3290 struct insns_for_mem_walk_info
{
3291 /* The hash table that we are using to record which INSNs use which
3293 struct hash_table
*ht
;
3295 /* The INSN we are currently proessing. */
3298 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3299 to find the insns that use the REGs in the ADDRESSOFs. */
3303 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3304 that might be used in an ADDRESSOF expression, record this INSN in
3305 the hash table given by DATA (which is really a pointer to an
3306 insns_for_mem_walk_info structure). */
3309 insns_for_mem_walk (r
, data
)
3313 struct insns_for_mem_walk_info
*ifmwi
3314 = (struct insns_for_mem_walk_info
*) data
;
3316 if (ifmwi
->pass
== 0 && *r
&& GET_CODE (*r
) == ADDRESSOF
3317 && GET_CODE (XEXP (*r
, 0)) == REG
)
3318 hash_lookup (ifmwi
->ht
, XEXP (*r
, 0), /*create=*/1, /*copy=*/0);
3319 else if (ifmwi
->pass
== 1 && *r
&& GET_CODE (*r
) == REG
)
3321 /* Lookup this MEM in the hashtable, creating it if necessary. */
3322 struct insns_for_mem_entry
*ifme
3323 = (struct insns_for_mem_entry
*) hash_lookup (ifmwi
->ht
,
3328 /* If we have not already recorded this INSN, do so now. Since
3329 we process the INSNs in order, we know that if we have
3330 recorded it it must be at the front of the list. */
3331 if (ifme
&& (!ifme
->insns
|| XEXP (ifme
->insns
, 0) != ifmwi
->insn
))
3332 ifme
->insns
= gen_rtx_EXPR_LIST (VOIDmode
, ifmwi
->insn
,
3339 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3340 which REGs in HT. */
3343 compute_insns_for_mem (insns
, last_insn
, ht
)
3346 struct hash_table
*ht
;
3349 struct insns_for_mem_walk_info ifmwi
;
3352 for (ifmwi
.pass
= 0; ifmwi
.pass
< 2; ++ifmwi
.pass
)
3353 for (insn
= insns
; insn
!= last_insn
; insn
= NEXT_INSN (insn
))
3357 for_each_rtx (&insn
, insns_for_mem_walk
, &ifmwi
);
3361 /* Helper function for purge_addressof called through for_each_rtx.
3362 Returns true iff the rtl is an ADDRESSOF. */
3364 is_addressof (rtl
, data
)
3366 void *data ATTRIBUTE_UNUSED
;
3368 return GET_CODE (*rtl
) == ADDRESSOF
;
3371 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3372 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3376 purge_addressof (insns
)
3380 struct hash_table ht
;
3382 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3383 requires a fixup pass over the instruction stream to correct
3384 INSNs that depended on the REG being a REG, and not a MEM. But,
3385 these fixup passes are slow. Furthermore, most MEMs are not
3386 mentioned in very many instructions. So, we speed up the process
3387 by pre-calculating which REGs occur in which INSNs; that allows
3388 us to perform the fixup passes much more quickly. */
3389 hash_table_init (&ht
,
3390 insns_for_mem_newfunc
,
3392 insns_for_mem_comp
);
3393 compute_insns_for_mem (insns
, NULL_RTX
, &ht
);
3395 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3396 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
3397 || GET_CODE (insn
) == CALL_INSN
)
3399 if (! purge_addressof_1 (&PATTERN (insn
), insn
,
3400 asm_noperands (PATTERN (insn
)) > 0, 0, &ht
))
3401 /* If we could not replace the ADDRESSOFs in the insn,
3402 something is wrong. */
3405 if (! purge_addressof_1 (®_NOTES (insn
), NULL_RTX
, 0, 0, &ht
))
3407 /* If we could not replace the ADDRESSOFs in the insn's notes,
3408 we can just remove the offending notes instead. */
3411 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
3413 /* If we find a REG_RETVAL note then the insn is a libcall.
3414 Such insns must have REG_EQUAL notes as well, in order
3415 for later passes of the compiler to work. So it is not
3416 safe to delete the notes here, and instead we abort. */
3417 if (REG_NOTE_KIND (note
) == REG_RETVAL
)
3419 if (for_each_rtx (¬e
, is_addressof
, NULL
))
3420 remove_note (insn
, note
);
3426 hash_table_free (&ht
);
3427 purge_bitfield_addressof_replacements
= 0;
3428 purge_addressof_replacements
= 0;
3430 /* REGs are shared. purge_addressof will destructively replace a REG
3431 with a MEM, which creates shared MEMs.
3433 Unfortunately, the children of put_reg_into_stack assume that MEMs
3434 referring to the same stack slot are shared (fixup_var_refs and
3435 the associated hash table code).
3437 So, we have to do another unsharing pass after we have flushed any
3438 REGs that had their address taken into the stack.
3440 It may be worth tracking whether or not we converted any REGs into
3441 MEMs to avoid this overhead when it is not needed. */
3442 unshare_all_rtl_again (get_insns ());
3445 /* Convert a SET of a hard subreg to a set of the appropriet hard
3446 register. A subroutine of purge_hard_subreg_sets. */
3449 purge_single_hard_subreg_set (pattern
)
3452 rtx reg
= SET_DEST (pattern
);
3453 enum machine_mode mode
= GET_MODE (SET_DEST (pattern
));
3456 while (GET_CODE (reg
) == SUBREG
)
3458 word
+= SUBREG_WORD (reg
);
3459 reg
= SUBREG_REG (reg
);
3462 if (REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
3464 reg
= gen_rtx_REG (mode
, REGNO (reg
) + word
);
3465 SET_DEST (pattern
) = reg
;
3469 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3470 only such SETs that we expect to see are those left in because
3471 integrate can't handle sets of parts of a return value register.
3473 We don't use alter_subreg because we only want to eliminate subregs
3474 of hard registers. */
3477 purge_hard_subreg_sets (insn
)
3480 for (; insn
; insn
= NEXT_INSN (insn
))
3484 rtx pattern
= PATTERN (insn
);
3485 switch (GET_CODE (pattern
))
3488 if (GET_CODE (SET_DEST (pattern
)) == SUBREG
)
3489 purge_single_hard_subreg_set (pattern
);
3494 for (j
= XVECLEN (pattern
, 0) - 1; j
>= 0; j
--)
3496 rtx inner_pattern
= XVECEXP (pattern
, 0, j
);
3497 if (GET_CODE (inner_pattern
) == SET
3498 && GET_CODE (SET_DEST (inner_pattern
)) == SUBREG
)
3499 purge_single_hard_subreg_set (inner_pattern
);
3510 /* Pass through the INSNS of function FNDECL and convert virtual register
3511 references to hard register references. */
3514 instantiate_virtual_regs (fndecl
, insns
)
3521 /* Compute the offsets to use for this function. */
3522 in_arg_offset
= FIRST_PARM_OFFSET (fndecl
);
3523 var_offset
= STARTING_FRAME_OFFSET
;
3524 dynamic_offset
= STACK_DYNAMIC_OFFSET (fndecl
);
3525 out_arg_offset
= STACK_POINTER_OFFSET
;
3526 cfa_offset
= ARG_POINTER_CFA_OFFSET (fndecl
);
3528 /* Scan all variables and parameters of this function. For each that is
3529 in memory, instantiate all virtual registers if the result is a valid
3530 address. If not, we do it later. That will handle most uses of virtual
3531 regs on many machines. */
3532 instantiate_decls (fndecl
, 1);
3534 /* Initialize recognition, indicating that volatile is OK. */
3537 /* Scan through all the insns, instantiating every virtual register still
3539 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3540 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
3541 || GET_CODE (insn
) == CALL_INSN
)
3543 instantiate_virtual_regs_1 (&PATTERN (insn
), insn
, 1);
3544 instantiate_virtual_regs_1 (®_NOTES (insn
), NULL_RTX
, 0);
3545 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3546 if (GET_CODE (insn
) == CALL_INSN
)
3547 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn
),
3551 /* Instantiate the stack slots for the parm registers, for later use in
3552 addressof elimination. */
3553 for (i
= 0; i
< max_parm_reg
; ++i
)
3554 if (parm_reg_stack_loc
[i
])
3555 instantiate_virtual_regs_1 (&parm_reg_stack_loc
[i
], NULL_RTX
, 0);
3557 /* Now instantiate the remaining register equivalences for debugging info.
3558 These will not be valid addresses. */
3559 instantiate_decls (fndecl
, 0);
3561 /* Indicate that, from now on, assign_stack_local should use
3562 frame_pointer_rtx. */
3563 virtuals_instantiated
= 1;
3566 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3567 all virtual registers in their DECL_RTL's.
3569 If VALID_ONLY, do this only if the resulting address is still valid.
3570 Otherwise, always do it. */
3573 instantiate_decls (fndecl
, valid_only
)
3579 /* Process all parameters of the function. */
3580 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
3582 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (decl
));
3584 instantiate_decl (DECL_RTL (decl
), size
, valid_only
);
3586 /* If the parameter was promoted, then the incoming RTL mode may be
3587 larger than the declared type size. We must use the larger of
3589 size
= MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl
))), size
);
3590 instantiate_decl (DECL_INCOMING_RTL (decl
), size
, valid_only
);
3593 /* Now process all variables defined in the function or its subblocks. */
3594 instantiate_decls_1 (DECL_INITIAL (fndecl
), valid_only
);
3597 /* Subroutine of instantiate_decls: Process all decls in the given
3598 BLOCK node and all its subblocks. */
3601 instantiate_decls_1 (let
, valid_only
)
3607 for (t
= BLOCK_VARS (let
); t
; t
= TREE_CHAIN (t
))
3608 instantiate_decl (DECL_RTL (t
), int_size_in_bytes (TREE_TYPE (t
)),
3611 /* Process all subblocks. */
3612 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= TREE_CHAIN (t
))
3613 instantiate_decls_1 (t
, valid_only
);
3616 /* Subroutine of the preceding procedures: Given RTL representing a
3617 decl and the size of the object, do any instantiation required.
3619 If VALID_ONLY is non-zero, it means that the RTL should only be
3620 changed if the new address is valid. */
3623 instantiate_decl (x
, size
, valid_only
)
3628 enum machine_mode mode
;
3631 /* If this is not a MEM, no need to do anything. Similarly if the
3632 address is a constant or a register that is not a virtual register. */
3634 if (x
== 0 || GET_CODE (x
) != MEM
)
3638 if (CONSTANT_P (addr
)
3639 || (GET_CODE (addr
) == ADDRESSOF
&& GET_CODE (XEXP (addr
, 0)) == REG
)
3640 || (GET_CODE (addr
) == REG
3641 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
3642 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
3645 /* If we should only do this if the address is valid, copy the address.
3646 We need to do this so we can undo any changes that might make the
3647 address invalid. This copy is unfortunate, but probably can't be
3651 addr
= copy_rtx (addr
);
3653 instantiate_virtual_regs_1 (&addr
, NULL_RTX
, 0);
3655 if (valid_only
&& size
>= 0)
3657 unsigned HOST_WIDE_INT decl_size
= size
;
3659 /* Now verify that the resulting address is valid for every integer or
3660 floating-point mode up to and including SIZE bytes long. We do this
3661 since the object might be accessed in any mode and frame addresses
3664 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
3665 mode
!= VOIDmode
&& GET_MODE_SIZE (mode
) <= decl_size
;
3666 mode
= GET_MODE_WIDER_MODE (mode
))
3667 if (! memory_address_p (mode
, addr
))
3670 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
3671 mode
!= VOIDmode
&& GET_MODE_SIZE (mode
) <= decl_size
;
3672 mode
= GET_MODE_WIDER_MODE (mode
))
3673 if (! memory_address_p (mode
, addr
))
3677 /* Put back the address now that we have updated it and we either know
3678 it is valid or we don't care whether it is valid. */
3683 /* Given a pointer to a piece of rtx and an optional pointer to the
3684 containing object, instantiate any virtual registers present in it.
3686 If EXTRA_INSNS, we always do the replacement and generate
3687 any extra insns before OBJECT. If it zero, we do nothing if replacement
3690 Return 1 if we either had nothing to do or if we were able to do the
3691 needed replacement. Return 0 otherwise; we only return zero if
3692 EXTRA_INSNS is zero.
3694 We first try some simple transformations to avoid the creation of extra
3698 instantiate_virtual_regs_1 (loc
, object
, extra_insns
)
3706 HOST_WIDE_INT offset
= 0;
3712 /* Re-start here to avoid recursion in common cases. */
3719 code
= GET_CODE (x
);
3721 /* Check for some special cases. */
3738 /* We are allowed to set the virtual registers. This means that
3739 the actual register should receive the source minus the
3740 appropriate offset. This is used, for example, in the handling
3741 of non-local gotos. */
3742 if (SET_DEST (x
) == virtual_incoming_args_rtx
)
3743 new = arg_pointer_rtx
, offset
= -in_arg_offset
;
3744 else if (SET_DEST (x
) == virtual_stack_vars_rtx
)
3745 new = frame_pointer_rtx
, offset
= -var_offset
;
3746 else if (SET_DEST (x
) == virtual_stack_dynamic_rtx
)
3747 new = stack_pointer_rtx
, offset
= -dynamic_offset
;
3748 else if (SET_DEST (x
) == virtual_outgoing_args_rtx
)
3749 new = stack_pointer_rtx
, offset
= -out_arg_offset
;
3750 else if (SET_DEST (x
) == virtual_cfa_rtx
)
3751 new = arg_pointer_rtx
, offset
= -cfa_offset
;
3755 rtx src
= SET_SRC (x
);
3757 instantiate_virtual_regs_1 (&src
, NULL_RTX
, 0);
3759 /* The only valid sources here are PLUS or REG. Just do
3760 the simplest possible thing to handle them. */
3761 if (GET_CODE (src
) != REG
&& GET_CODE (src
) != PLUS
)
3765 if (GET_CODE (src
) != REG
)
3766 temp
= force_operand (src
, NULL_RTX
);
3769 temp
= force_operand (plus_constant (temp
, offset
), NULL_RTX
);
3773 emit_insns_before (seq
, object
);
3776 if (! validate_change (object
, &SET_SRC (x
), temp
, 0)
3783 instantiate_virtual_regs_1 (&SET_DEST (x
), object
, extra_insns
);
3788 /* Handle special case of virtual register plus constant. */
3789 if (CONSTANT_P (XEXP (x
, 1)))
3791 rtx old
, new_offset
;
3793 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3794 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
3796 rtx inner
= XEXP (XEXP (x
, 0), 0);
3798 if (inner
== virtual_incoming_args_rtx
)
3799 new = arg_pointer_rtx
, offset
= in_arg_offset
;
3800 else if (inner
== virtual_stack_vars_rtx
)
3801 new = frame_pointer_rtx
, offset
= var_offset
;
3802 else if (inner
== virtual_stack_dynamic_rtx
)
3803 new = stack_pointer_rtx
, offset
= dynamic_offset
;
3804 else if (inner
== virtual_outgoing_args_rtx
)
3805 new = stack_pointer_rtx
, offset
= out_arg_offset
;
3806 else if (inner
== virtual_cfa_rtx
)
3807 new = arg_pointer_rtx
, offset
= cfa_offset
;
3814 instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 1), object
,
3816 new = gen_rtx_PLUS (Pmode
, new, XEXP (XEXP (x
, 0), 1));
3819 else if (XEXP (x
, 0) == virtual_incoming_args_rtx
)
3820 new = arg_pointer_rtx
, offset
= in_arg_offset
;
3821 else if (XEXP (x
, 0) == virtual_stack_vars_rtx
)
3822 new = frame_pointer_rtx
, offset
= var_offset
;
3823 else if (XEXP (x
, 0) == virtual_stack_dynamic_rtx
)
3824 new = stack_pointer_rtx
, offset
= dynamic_offset
;
3825 else if (XEXP (x
, 0) == virtual_outgoing_args_rtx
)
3826 new = stack_pointer_rtx
, offset
= out_arg_offset
;
3827 else if (XEXP (x
, 0) == virtual_cfa_rtx
)
3828 new = arg_pointer_rtx
, offset
= cfa_offset
;
3831 /* We know the second operand is a constant. Unless the
3832 first operand is a REG (which has been already checked),
3833 it needs to be checked. */
3834 if (GET_CODE (XEXP (x
, 0)) != REG
)
3842 new_offset
= plus_constant (XEXP (x
, 1), offset
);
3844 /* If the new constant is zero, try to replace the sum with just
3846 if (new_offset
== const0_rtx
3847 && validate_change (object
, loc
, new, 0))
3850 /* Next try to replace the register and new offset.
3851 There are two changes to validate here and we can't assume that
3852 in the case of old offset equals new just changing the register
3853 will yield a valid insn. In the interests of a little efficiency,
3854 however, we only call validate change once (we don't queue up the
3855 changes and then call apply_change_group). */
3859 ? ! validate_change (object
, &XEXP (x
, 0), new, 0)
3860 : (XEXP (x
, 0) = new,
3861 ! validate_change (object
, &XEXP (x
, 1), new_offset
, 0)))
3869 /* Otherwise copy the new constant into a register and replace
3870 constant with that register. */
3871 temp
= gen_reg_rtx (Pmode
);
3873 if (validate_change (object
, &XEXP (x
, 1), temp
, 0))
3874 emit_insn_before (gen_move_insn (temp
, new_offset
), object
);
3877 /* If that didn't work, replace this expression with a
3878 register containing the sum. */
3881 new = gen_rtx_PLUS (Pmode
, new, new_offset
);
3884 temp
= force_operand (new, NULL_RTX
);
3888 emit_insns_before (seq
, object
);
3889 if (! validate_change (object
, loc
, temp
, 0)
3890 && ! validate_replace_rtx (x
, temp
, object
))
3898 /* Fall through to generic two-operand expression case. */
3904 case DIV
: case UDIV
:
3905 case MOD
: case UMOD
:
3906 case AND
: case IOR
: case XOR
:
3907 case ROTATERT
: case ROTATE
:
3908 case ASHIFTRT
: case LSHIFTRT
: case ASHIFT
:
3910 case GE
: case GT
: case GEU
: case GTU
:
3911 case LE
: case LT
: case LEU
: case LTU
:
3912 if (XEXP (x
, 1) && ! CONSTANT_P (XEXP (x
, 1)))
3913 instantiate_virtual_regs_1 (&XEXP (x
, 1), object
, extra_insns
);
3918 /* Most cases of MEM that convert to valid addresses have already been
3919 handled by our scan of decls. The only special handling we
3920 need here is to make a copy of the rtx to ensure it isn't being
3921 shared if we have to change it to a pseudo.
3923 If the rtx is a simple reference to an address via a virtual register,
3924 it can potentially be shared. In such cases, first try to make it
3925 a valid address, which can also be shared. Otherwise, copy it and
3928 First check for common cases that need no processing. These are
3929 usually due to instantiation already being done on a previous instance
3933 if (CONSTANT_ADDRESS_P (temp
)
3934 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3935 || temp
== arg_pointer_rtx
3937 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3938 || temp
== hard_frame_pointer_rtx
3940 || temp
== frame_pointer_rtx
)
3943 if (GET_CODE (temp
) == PLUS
3944 && CONSTANT_ADDRESS_P (XEXP (temp
, 1))
3945 && (XEXP (temp
, 0) == frame_pointer_rtx
3946 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3947 || XEXP (temp
, 0) == hard_frame_pointer_rtx
3949 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3950 || XEXP (temp
, 0) == arg_pointer_rtx
3955 if (temp
== virtual_stack_vars_rtx
3956 || temp
== virtual_incoming_args_rtx
3957 || (GET_CODE (temp
) == PLUS
3958 && CONSTANT_ADDRESS_P (XEXP (temp
, 1))
3959 && (XEXP (temp
, 0) == virtual_stack_vars_rtx
3960 || XEXP (temp
, 0) == virtual_incoming_args_rtx
)))
3962 /* This MEM may be shared. If the substitution can be done without
3963 the need to generate new pseudos, we want to do it in place
3964 so all copies of the shared rtx benefit. The call below will
3965 only make substitutions if the resulting address is still
3968 Note that we cannot pass X as the object in the recursive call
3969 since the insn being processed may not allow all valid
3970 addresses. However, if we were not passed on object, we can
3971 only modify X without copying it if X will have a valid
3974 ??? Also note that this can still lose if OBJECT is an insn that
3975 has less restrictions on an address that some other insn.
3976 In that case, we will modify the shared address. This case
3977 doesn't seem very likely, though. One case where this could
3978 happen is in the case of a USE or CLOBBER reference, but we
3979 take care of that below. */
3981 if (instantiate_virtual_regs_1 (&XEXP (x
, 0),
3982 object
? object
: x
, 0))
3985 /* Otherwise make a copy and process that copy. We copy the entire
3986 RTL expression since it might be a PLUS which could also be
3988 *loc
= x
= copy_rtx (x
);
3991 /* Fall through to generic unary operation case. */
3993 case STRICT_LOW_PART
:
3995 case PRE_DEC
: case PRE_INC
: case POST_DEC
: case POST_INC
:
3996 case SIGN_EXTEND
: case ZERO_EXTEND
:
3997 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
3998 case FLOAT
: case FIX
:
3999 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
4003 /* These case either have just one operand or we know that we need not
4004 check the rest of the operands. */
4010 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4011 go ahead and make the invalid one, but do it to a copy. For a REG,
4012 just make the recursive call, since there's no chance of a problem. */
4014 if ((GET_CODE (XEXP (x
, 0)) == MEM
4015 && instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 0), XEXP (x
, 0),
4017 || (GET_CODE (XEXP (x
, 0)) == REG
4018 && instantiate_virtual_regs_1 (&XEXP (x
, 0), object
, 0)))
4021 XEXP (x
, 0) = copy_rtx (XEXP (x
, 0));
4026 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4027 in front of this insn and substitute the temporary. */
4028 if (x
== virtual_incoming_args_rtx
)
4029 new = arg_pointer_rtx
, offset
= in_arg_offset
;
4030 else if (x
== virtual_stack_vars_rtx
)
4031 new = frame_pointer_rtx
, offset
= var_offset
;
4032 else if (x
== virtual_stack_dynamic_rtx
)
4033 new = stack_pointer_rtx
, offset
= dynamic_offset
;
4034 else if (x
== virtual_outgoing_args_rtx
)
4035 new = stack_pointer_rtx
, offset
= out_arg_offset
;
4036 else if (x
== virtual_cfa_rtx
)
4037 new = arg_pointer_rtx
, offset
= cfa_offset
;
4041 temp
= plus_constant (new, offset
);
4042 if (!validate_change (object
, loc
, temp
, 0))
4048 temp
= force_operand (temp
, NULL_RTX
);
4052 emit_insns_before (seq
, object
);
4053 if (! validate_change (object
, loc
, temp
, 0)
4054 && ! validate_replace_rtx (x
, temp
, object
))
4062 if (GET_CODE (XEXP (x
, 0)) == REG
)
4065 else if (GET_CODE (XEXP (x
, 0)) == MEM
)
4067 /* If we have a (addressof (mem ..)), do any instantiation inside
4068 since we know we'll be making the inside valid when we finally
4069 remove the ADDRESSOF. */
4070 instantiate_virtual_regs_1 (&XEXP (XEXP (x
, 0), 0), NULL_RTX
, 0);
4079 /* Scan all subexpressions. */
4080 fmt
= GET_RTX_FORMAT (code
);
4081 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
4084 if (!instantiate_virtual_regs_1 (&XEXP (x
, i
), object
, extra_insns
))
4087 else if (*fmt
== 'E')
4088 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4089 if (! instantiate_virtual_regs_1 (&XVECEXP (x
, i
, j
), object
,
4096 /* Optimization: assuming this function does not receive nonlocal gotos,
4097 delete the handlers for such, as well as the insns to establish
4098 and disestablish them. */
4104 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4106 /* Delete the handler by turning off the flag that would
4107 prevent jump_optimize from deleting it.
4108 Also permit deletion of the nonlocal labels themselves
4109 if nothing local refers to them. */
4110 if (GET_CODE (insn
) == CODE_LABEL
)
4114 LABEL_PRESERVE_P (insn
) = 0;
4116 /* Remove it from the nonlocal_label list, to avoid confusing
4118 for (t
= nonlocal_labels
, last_t
= 0; t
;
4119 last_t
= t
, t
= TREE_CHAIN (t
))
4120 if (DECL_RTL (TREE_VALUE (t
)) == insn
)
4125 nonlocal_labels
= TREE_CHAIN (nonlocal_labels
);
4127 TREE_CHAIN (last_t
) = TREE_CHAIN (t
);
4130 if (GET_CODE (insn
) == INSN
)
4134 for (t
= nonlocal_goto_handler_slots
; t
!= 0; t
= XEXP (t
, 1))
4135 if (reg_mentioned_p (t
, PATTERN (insn
)))
4141 || (nonlocal_goto_stack_level
!= 0
4142 && reg_mentioned_p (nonlocal_goto_stack_level
,
4152 return max_parm_reg
;
4155 /* Return the first insn following those generated by `assign_parms'. */
4158 get_first_nonparm_insn ()
4161 return NEXT_INSN (last_parm_insn
);
4162 return get_insns ();
4165 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4166 Crash if there is none. */
4169 get_first_block_beg ()
4171 register rtx searcher
;
4172 register rtx insn
= get_first_nonparm_insn ();
4174 for (searcher
= insn
; searcher
; searcher
= NEXT_INSN (searcher
))
4175 if (GET_CODE (searcher
) == NOTE
4176 && NOTE_LINE_NUMBER (searcher
) == NOTE_INSN_BLOCK_BEG
)
4179 abort (); /* Invalid call to this function. (See comments above.) */
4183 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4184 This means a type for which function calls must pass an address to the
4185 function or get an address back from the function.
4186 EXP may be a type node or an expression (whose type is tested). */
4189 aggregate_value_p (exp
)
4192 int i
, regno
, nregs
;
4195 tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
4197 if (TREE_CODE (type
) == VOID_TYPE
)
4199 if (RETURN_IN_MEMORY (type
))
4201 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4202 and thus can't be returned in registers. */
4203 if (TREE_ADDRESSABLE (type
))
4205 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
4207 /* Make sure we have suitable call-clobbered regs to return
4208 the value in; if not, we must return it in memory. */
4209 reg
= hard_function_value (type
, 0, 0);
4211 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4213 if (GET_CODE (reg
) != REG
)
4216 regno
= REGNO (reg
);
4217 nregs
= HARD_REGNO_NREGS (regno
, TYPE_MODE (type
));
4218 for (i
= 0; i
< nregs
; i
++)
4219 if (! call_used_regs
[regno
+ i
])
4224 /* Assign RTL expressions to the function's parameters.
4225 This may involve copying them into registers and using
4226 those registers as the RTL for them. */
4229 assign_parms (fndecl
)
4233 register rtx entry_parm
= 0;
4234 register rtx stack_parm
= 0;
4235 CUMULATIVE_ARGS args_so_far
;
4236 enum machine_mode promoted_mode
, passed_mode
;
4237 enum machine_mode nominal_mode
, promoted_nominal_mode
;
4239 /* Total space needed so far for args on the stack,
4240 given as a constant and a tree-expression. */
4241 struct args_size stack_args_size
;
4242 tree fntype
= TREE_TYPE (fndecl
);
4243 tree fnargs
= DECL_ARGUMENTS (fndecl
);
4244 /* This is used for the arg pointer when referring to stack args. */
4245 rtx internal_arg_pointer
;
4246 /* This is a dummy PARM_DECL that we used for the function result if
4247 the function returns a structure. */
4248 tree function_result_decl
= 0;
4249 #ifdef SETUP_INCOMING_VARARGS
4250 int varargs_setup
= 0;
4252 rtx conversion_insns
= 0;
4253 struct args_size alignment_pad
;
4255 /* Nonzero if the last arg is named `__builtin_va_alist',
4256 which is used on some machines for old-fashioned non-ANSI varargs.h;
4257 this should be stuck onto the stack as if it had arrived there. */
4259 = (current_function_varargs
4261 && (parm
= tree_last (fnargs
)) != 0
4263 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
4264 "__builtin_va_alist")));
4266 /* Nonzero if function takes extra anonymous args.
4267 This means the last named arg must be on the stack
4268 right before the anonymous ones. */
4270 = (TYPE_ARG_TYPES (fntype
) != 0
4271 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype
)))
4272 != void_type_node
));
4274 current_function_stdarg
= stdarg
;
4276 /* If the reg that the virtual arg pointer will be translated into is
4277 not a fixed reg or is the stack pointer, make a copy of the virtual
4278 arg pointer, and address parms via the copy. The frame pointer is
4279 considered fixed even though it is not marked as such.
4281 The second time through, simply use ap to avoid generating rtx. */
4283 if ((ARG_POINTER_REGNUM
== STACK_POINTER_REGNUM
4284 || ! (fixed_regs
[ARG_POINTER_REGNUM
]
4285 || ARG_POINTER_REGNUM
== FRAME_POINTER_REGNUM
)))
4286 internal_arg_pointer
= copy_to_reg (virtual_incoming_args_rtx
);
4288 internal_arg_pointer
= virtual_incoming_args_rtx
;
4289 current_function_internal_arg_pointer
= internal_arg_pointer
;
4291 stack_args_size
.constant
= 0;
4292 stack_args_size
.var
= 0;
4294 /* If struct value address is treated as the first argument, make it so. */
4295 if (aggregate_value_p (DECL_RESULT (fndecl
))
4296 && ! current_function_returns_pcc_struct
4297 && struct_value_incoming_rtx
== 0)
4299 tree type
= build_pointer_type (TREE_TYPE (fntype
));
4301 function_result_decl
= build_decl (PARM_DECL
, NULL_TREE
, type
);
4303 DECL_ARG_TYPE (function_result_decl
) = type
;
4304 TREE_CHAIN (function_result_decl
) = fnargs
;
4305 fnargs
= function_result_decl
;
4308 max_parm_reg
= LAST_VIRTUAL_REGISTER
+ 1;
4309 parm_reg_stack_loc
= (rtx
*) xcalloc (max_parm_reg
, sizeof (rtx
));
4311 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4312 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far
, fntype
, NULL_RTX
);
4314 INIT_CUMULATIVE_ARGS (args_so_far
, fntype
, NULL_RTX
, 0);
4317 /* We haven't yet found an argument that we must push and pretend the
4319 current_function_pretend_args_size
= 0;
4321 for (parm
= fnargs
; parm
; parm
= TREE_CHAIN (parm
))
4323 struct args_size stack_offset
;
4324 struct args_size arg_size
;
4325 int passed_pointer
= 0;
4326 int did_conversion
= 0;
4327 tree passed_type
= DECL_ARG_TYPE (parm
);
4328 tree nominal_type
= TREE_TYPE (parm
);
4331 /* Set LAST_NAMED if this is last named arg before some
4333 int last_named
= ((TREE_CHAIN (parm
) == 0
4334 || DECL_NAME (TREE_CHAIN (parm
)) == 0)
4335 && (stdarg
|| current_function_varargs
));
4336 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4337 most machines, if this is a varargs/stdarg function, then we treat
4338 the last named arg as if it were anonymous too. */
4339 int named_arg
= STRICT_ARGUMENT_NAMING
? 1 : ! last_named
;
4341 if (TREE_TYPE (parm
) == error_mark_node
4342 /* This can happen after weird syntax errors
4343 or if an enum type is defined among the parms. */
4344 || TREE_CODE (parm
) != PARM_DECL
4345 || passed_type
== NULL
)
4347 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
)
4348 = gen_rtx_MEM (BLKmode
, const0_rtx
);
4349 TREE_USED (parm
) = 1;
4353 /* For varargs.h function, save info about regs and stack space
4354 used by the individual args, not including the va_alist arg. */
4355 if (hide_last_arg
&& last_named
)
4356 current_function_args_info
= args_so_far
;
4358 /* Find mode of arg as it is passed, and mode of arg
4359 as it should be during execution of this function. */
4360 passed_mode
= TYPE_MODE (passed_type
);
4361 nominal_mode
= TYPE_MODE (nominal_type
);
4363 /* If the parm's mode is VOID, its value doesn't matter,
4364 and avoid the usual things like emit_move_insn that could crash. */
4365 if (nominal_mode
== VOIDmode
)
4367 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
) = const0_rtx
;
4371 /* If the parm is to be passed as a transparent union, use the
4372 type of the first field for the tests below. We have already
4373 verified that the modes are the same. */
4374 if (DECL_TRANSPARENT_UNION (parm
)
4375 || (TREE_CODE (passed_type
) == UNION_TYPE
4376 && TYPE_TRANSPARENT_UNION (passed_type
)))
4377 passed_type
= TREE_TYPE (TYPE_FIELDS (passed_type
));
4379 /* See if this arg was passed by invisible reference. It is if
4380 it is an object whose size depends on the contents of the
4381 object itself or if the machine requires these objects be passed
4384 if ((TREE_CODE (TYPE_SIZE (passed_type
)) != INTEGER_CST
4385 && contains_placeholder_p (TYPE_SIZE (passed_type
)))
4386 || TREE_ADDRESSABLE (passed_type
)
4387 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4388 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far
, passed_mode
,
4389 passed_type
, named_arg
)
4393 passed_type
= nominal_type
= build_pointer_type (passed_type
);
4395 passed_mode
= nominal_mode
= Pmode
;
4398 promoted_mode
= passed_mode
;
4400 #ifdef PROMOTE_FUNCTION_ARGS
4401 /* Compute the mode in which the arg is actually extended to. */
4402 unsignedp
= TREE_UNSIGNED (passed_type
);
4403 promoted_mode
= promote_mode (passed_type
, promoted_mode
, &unsignedp
, 1);
4406 /* Let machine desc say which reg (if any) the parm arrives in.
4407 0 means it arrives on the stack. */
4408 #ifdef FUNCTION_INCOMING_ARG
4409 entry_parm
= FUNCTION_INCOMING_ARG (args_so_far
, promoted_mode
,
4410 passed_type
, named_arg
);
4412 entry_parm
= FUNCTION_ARG (args_so_far
, promoted_mode
,
4413 passed_type
, named_arg
);
4416 if (entry_parm
== 0)
4417 promoted_mode
= passed_mode
;
4419 #ifdef SETUP_INCOMING_VARARGS
4420 /* If this is the last named parameter, do any required setup for
4421 varargs or stdargs. We need to know about the case of this being an
4422 addressable type, in which case we skip the registers it
4423 would have arrived in.
4425 For stdargs, LAST_NAMED will be set for two parameters, the one that
4426 is actually the last named, and the dummy parameter. We only
4427 want to do this action once.
4429 Also, indicate when RTL generation is to be suppressed. */
4430 if (last_named
&& !varargs_setup
)
4432 SETUP_INCOMING_VARARGS (args_so_far
, promoted_mode
, passed_type
,
4433 current_function_pretend_args_size
, 0);
4438 /* Determine parm's home in the stack,
4439 in case it arrives in the stack or we should pretend it did.
4441 Compute the stack position and rtx where the argument arrives
4444 There is one complexity here: If this was a parameter that would
4445 have been passed in registers, but wasn't only because it is
4446 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4447 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4448 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4449 0 as it was the previous time. */
4451 pretend_named
= named_arg
|| PRETEND_OUTGOING_VARARGS_NAMED
;
4452 locate_and_pad_parm (promoted_mode
, passed_type
,
4453 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4456 #ifdef FUNCTION_INCOMING_ARG
4457 FUNCTION_INCOMING_ARG (args_so_far
, promoted_mode
,
4459 pretend_named
) != 0,
4461 FUNCTION_ARG (args_so_far
, promoted_mode
,
4463 pretend_named
) != 0,
4466 fndecl
, &stack_args_size
, &stack_offset
, &arg_size
,
4470 rtx offset_rtx
= ARGS_SIZE_RTX (stack_offset
);
4472 if (offset_rtx
== const0_rtx
)
4473 stack_parm
= gen_rtx_MEM (promoted_mode
, internal_arg_pointer
);
4475 stack_parm
= gen_rtx_MEM (promoted_mode
,
4476 gen_rtx_PLUS (Pmode
,
4477 internal_arg_pointer
,
4480 set_mem_attributes (stack_parm
, parm
, 1);
4483 /* If this parameter was passed both in registers and in the stack,
4484 use the copy on the stack. */
4485 if (MUST_PASS_IN_STACK (promoted_mode
, passed_type
))
4488 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4489 /* If this parm was passed part in regs and part in memory,
4490 pretend it arrived entirely in memory
4491 by pushing the register-part onto the stack.
4493 In the special case of a DImode or DFmode that is split,
4494 we could put it together in a pseudoreg directly,
4495 but for now that's not worth bothering with. */
4499 int nregs
= FUNCTION_ARG_PARTIAL_NREGS (args_so_far
, promoted_mode
,
4500 passed_type
, named_arg
);
4504 current_function_pretend_args_size
4505 = (((nregs
* UNITS_PER_WORD
) + (PARM_BOUNDARY
/ BITS_PER_UNIT
) - 1)
4506 / (PARM_BOUNDARY
/ BITS_PER_UNIT
)
4507 * (PARM_BOUNDARY
/ BITS_PER_UNIT
));
4509 /* Handle calls that pass values in multiple non-contiguous
4510 locations. The Irix 6 ABI has examples of this. */
4511 if (GET_CODE (entry_parm
) == PARALLEL
)
4512 emit_group_store (validize_mem (stack_parm
), entry_parm
,
4513 int_size_in_bytes (TREE_TYPE (parm
)),
4514 TYPE_ALIGN (TREE_TYPE (parm
)));
4517 move_block_from_reg (REGNO (entry_parm
),
4518 validize_mem (stack_parm
), nregs
,
4519 int_size_in_bytes (TREE_TYPE (parm
)));
4521 entry_parm
= stack_parm
;
4526 /* If we didn't decide this parm came in a register,
4527 by default it came on the stack. */
4528 if (entry_parm
== 0)
4529 entry_parm
= stack_parm
;
4531 /* Record permanently how this parm was passed. */
4532 DECL_INCOMING_RTL (parm
) = entry_parm
;
4534 /* If there is actually space on the stack for this parm,
4535 count it in stack_args_size; otherwise set stack_parm to 0
4536 to indicate there is no preallocated stack slot for the parm. */
4538 if (entry_parm
== stack_parm
4539 || (GET_CODE (entry_parm
) == PARALLEL
4540 && XEXP (XVECEXP (entry_parm
, 0, 0), 0) == NULL_RTX
)
4541 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4542 /* On some machines, even if a parm value arrives in a register
4543 there is still an (uninitialized) stack slot allocated for it.
4545 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4546 whether this parameter already has a stack slot allocated,
4547 because an arg block exists only if current_function_args_size
4548 is larger than some threshold, and we haven't calculated that
4549 yet. So, for now, we just assume that stack slots never exist
4551 || REG_PARM_STACK_SPACE (fndecl
) > 0
4555 stack_args_size
.constant
+= arg_size
.constant
;
4557 ADD_PARM_SIZE (stack_args_size
, arg_size
.var
);
4560 /* No stack slot was pushed for this parm. */
4563 /* Update info on where next arg arrives in registers. */
4565 FUNCTION_ARG_ADVANCE (args_so_far
, promoted_mode
,
4566 passed_type
, named_arg
);
4568 /* If we can't trust the parm stack slot to be aligned enough
4569 for its ultimate type, don't use that slot after entry.
4570 We'll make another stack slot, if we need one. */
4572 unsigned int thisparm_boundary
4573 = FUNCTION_ARG_BOUNDARY (promoted_mode
, passed_type
);
4575 if (GET_MODE_ALIGNMENT (nominal_mode
) > thisparm_boundary
)
4579 /* If parm was passed in memory, and we need to convert it on entry,
4580 don't store it back in that same slot. */
4582 && nominal_mode
!= BLKmode
&& nominal_mode
!= passed_mode
)
4585 /* When an argument is passed in multiple locations, we can't
4586 make use of this information, but we can save some copying if
4587 the whole argument is passed in a single register. */
4588 if (GET_CODE (entry_parm
) == PARALLEL
4589 && nominal_mode
!= BLKmode
&& passed_mode
!= BLKmode
)
4591 int i
, len
= XVECLEN (entry_parm
, 0);
4593 for (i
= 0; i
< len
; i
++)
4594 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
4595 && GET_CODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0)) == REG
4596 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
4598 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
4600 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
4601 DECL_INCOMING_RTL (parm
) = entry_parm
;
4606 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4607 in the mode in which it arrives.
4608 STACK_PARM is an RTX for a stack slot where the parameter can live
4609 during the function (in case we want to put it there).
4610 STACK_PARM is 0 if no stack slot was pushed for it.
4612 Now output code if necessary to convert ENTRY_PARM to
4613 the type in which this function declares it,
4614 and store that result in an appropriate place,
4615 which may be a pseudo reg, may be STACK_PARM,
4616 or may be a local stack slot if STACK_PARM is 0.
4618 Set DECL_RTL to that place. */
4620 if (nominal_mode
== BLKmode
|| GET_CODE (entry_parm
) == PARALLEL
)
4622 /* If a BLKmode arrives in registers, copy it to a stack slot.
4623 Handle calls that pass values in multiple non-contiguous
4624 locations. The Irix 6 ABI has examples of this. */
4625 if (GET_CODE (entry_parm
) == REG
4626 || GET_CODE (entry_parm
) == PARALLEL
)
4629 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm
)),
4632 /* Note that we will be storing an integral number of words.
4633 So we have to be careful to ensure that we allocate an
4634 integral number of words. We do this below in the
4635 assign_stack_local if space was not allocated in the argument
4636 list. If it was, this will not work if PARM_BOUNDARY is not
4637 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4638 if it becomes a problem. */
4640 if (stack_parm
== 0)
4643 = assign_stack_local (GET_MODE (entry_parm
),
4645 set_mem_attributes (stack_parm
, parm
, 1);
4648 else if (PARM_BOUNDARY
% BITS_PER_WORD
!= 0)
4651 /* Handle calls that pass values in multiple non-contiguous
4652 locations. The Irix 6 ABI has examples of this. */
4653 if (GET_CODE (entry_parm
) == PARALLEL
)
4654 emit_group_store (validize_mem (stack_parm
), entry_parm
,
4655 int_size_in_bytes (TREE_TYPE (parm
)),
4656 TYPE_ALIGN (TREE_TYPE (parm
)));
4658 move_block_from_reg (REGNO (entry_parm
),
4659 validize_mem (stack_parm
),
4660 size_stored
/ UNITS_PER_WORD
,
4661 int_size_in_bytes (TREE_TYPE (parm
)));
4663 DECL_RTL (parm
) = stack_parm
;
4665 else if (! ((! optimize
4666 && ! DECL_REGISTER (parm
)
4667 && ! DECL_INLINE (fndecl
))
4668 || TREE_SIDE_EFFECTS (parm
)
4669 /* If -ffloat-store specified, don't put explicit
4670 float variables into registers. */
4671 || (flag_float_store
4672 && TREE_CODE (TREE_TYPE (parm
)) == REAL_TYPE
))
4673 /* Always assign pseudo to structure return or item passed
4674 by invisible reference. */
4675 || passed_pointer
|| parm
== function_result_decl
)
4677 /* Store the parm in a pseudoregister during the function, but we
4678 may need to do it in a wider mode. */
4680 register rtx parmreg
;
4681 unsigned int regno
, regnoi
= 0, regnor
= 0;
4683 unsignedp
= TREE_UNSIGNED (TREE_TYPE (parm
));
4685 promoted_nominal_mode
4686 = promote_mode (TREE_TYPE (parm
), nominal_mode
, &unsignedp
, 0);
4688 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
4689 mark_user_reg (parmreg
);
4691 /* If this was an item that we received a pointer to, set DECL_RTL
4696 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type
)), parmreg
);
4697 set_mem_attributes (DECL_RTL (parm
), parm
, 1);
4700 DECL_RTL (parm
) = parmreg
;
4702 /* Copy the value into the register. */
4703 if (nominal_mode
!= passed_mode
4704 || promoted_nominal_mode
!= promoted_mode
)
4707 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4708 mode, by the caller. We now have to convert it to
4709 NOMINAL_MODE, if different. However, PARMREG may be in
4710 a different mode than NOMINAL_MODE if it is being stored
4713 If ENTRY_PARM is a hard register, it might be in a register
4714 not valid for operating in its mode (e.g., an odd-numbered
4715 register for a DFmode). In that case, moves are the only
4716 thing valid, so we can't do a convert from there. This
4717 occurs when the calling sequence allow such misaligned
4720 In addition, the conversion may involve a call, which could
4721 clobber parameters which haven't been copied to pseudo
4722 registers yet. Therefore, we must first copy the parm to
4723 a pseudo reg here, and save the conversion until after all
4724 parameters have been moved. */
4726 rtx tempreg
= gen_reg_rtx (GET_MODE (entry_parm
));
4728 emit_move_insn (tempreg
, validize_mem (entry_parm
));
4730 push_to_sequence (conversion_insns
);
4731 tempreg
= convert_to_mode (nominal_mode
, tempreg
, unsignedp
);
4733 /* TREE_USED gets set erroneously during expand_assignment. */
4734 save_tree_used
= TREE_USED (parm
);
4735 expand_assignment (parm
,
4736 make_tree (nominal_type
, tempreg
), 0, 0);
4737 TREE_USED (parm
) = save_tree_used
;
4738 conversion_insns
= get_insns ();
4743 emit_move_insn (parmreg
, validize_mem (entry_parm
));
4745 /* If we were passed a pointer but the actual value
4746 can safely live in a register, put it in one. */
4747 if (passed_pointer
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
4749 && ! DECL_REGISTER (parm
)
4750 && ! DECL_INLINE (fndecl
))
4751 || TREE_SIDE_EFFECTS (parm
)
4752 /* If -ffloat-store specified, don't put explicit
4753 float variables into registers. */
4754 || (flag_float_store
4755 && TREE_CODE (TREE_TYPE (parm
)) == REAL_TYPE
)))
4757 /* We can't use nominal_mode, because it will have been set to
4758 Pmode above. We must use the actual mode of the parm. */
4759 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
4760 mark_user_reg (parmreg
);
4761 if (GET_MODE (parmreg
) != GET_MODE (DECL_RTL (parm
)))
4763 rtx tempreg
= gen_reg_rtx (GET_MODE (DECL_RTL (parm
)));
4765 push_to_sequence (conversion_insns
);
4766 emit_move_insn (tempreg
, DECL_RTL (parm
));
4768 = convert_to_mode (GET_MODE (parmreg
), tempreg
,
4769 TREE_UNSIGNED (TREE_TYPE (parm
)));
4770 emit_move_insn (parmreg
, DECL_RTL (parm
));
4771 conversion_insns
= get_insns();
4776 emit_move_insn (parmreg
, DECL_RTL (parm
));
4777 DECL_RTL (parm
) = parmreg
;
4778 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4782 #ifdef FUNCTION_ARG_CALLEE_COPIES
4783 /* If we are passed an arg by reference and it is our responsibility
4784 to make a copy, do it now.
4785 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4786 original argument, so we must recreate them in the call to
4787 FUNCTION_ARG_CALLEE_COPIES. */
4788 /* ??? Later add code to handle the case that if the argument isn't
4789 modified, don't do the copy. */
4791 else if (passed_pointer
4792 && FUNCTION_ARG_CALLEE_COPIES (args_so_far
,
4793 TYPE_MODE (DECL_ARG_TYPE (parm
)),
4794 DECL_ARG_TYPE (parm
),
4796 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm
)))
4799 tree type
= DECL_ARG_TYPE (parm
);
4801 /* This sequence may involve a library call perhaps clobbering
4802 registers that haven't been copied to pseudos yet. */
4804 push_to_sequence (conversion_insns
);
4806 if (!COMPLETE_TYPE_P (type
)
4807 || TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
4808 /* This is a variable sized object. */
4809 copy
= gen_rtx_MEM (BLKmode
,
4810 allocate_dynamic_stack_space
4811 (expr_size (parm
), NULL_RTX
,
4812 TYPE_ALIGN (type
)));
4814 copy
= assign_stack_temp (TYPE_MODE (type
),
4815 int_size_in_bytes (type
), 1);
4816 set_mem_attributes (copy
, parm
, 1);
4818 store_expr (parm
, copy
, 0);
4819 emit_move_insn (parmreg
, XEXP (copy
, 0));
4820 if (current_function_check_memory_usage
)
4821 emit_library_call (chkr_set_right_libfunc
,
4822 LCT_CONST_MAKE_BLOCK
, VOIDmode
, 3,
4823 XEXP (copy
, 0), Pmode
,
4824 GEN_INT (int_size_in_bytes (type
)),
4825 TYPE_MODE (sizetype
),
4826 GEN_INT (MEMORY_USE_RW
),
4827 TYPE_MODE (integer_type_node
));
4828 conversion_insns
= get_insns ();
4832 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4834 /* In any case, record the parm's desired stack location
4835 in case we later discover it must live in the stack.
4837 If it is a COMPLEX value, store the stack location for both
4840 if (GET_CODE (parmreg
) == CONCAT
)
4841 regno
= MAX (REGNO (XEXP (parmreg
, 0)), REGNO (XEXP (parmreg
, 1)));
4843 regno
= REGNO (parmreg
);
4845 if (regno
>= max_parm_reg
)
4848 int old_max_parm_reg
= max_parm_reg
;
4850 /* It's slow to expand this one register at a time,
4851 but it's also rare and we need max_parm_reg to be
4852 precisely correct. */
4853 max_parm_reg
= regno
+ 1;
4854 new = (rtx
*) xrealloc (parm_reg_stack_loc
,
4855 max_parm_reg
* sizeof (rtx
));
4856 memset ((char *) (new + old_max_parm_reg
), 0,
4857 (max_parm_reg
- old_max_parm_reg
) * sizeof (rtx
));
4858 parm_reg_stack_loc
= new;
4861 if (GET_CODE (parmreg
) == CONCAT
)
4863 enum machine_mode submode
= GET_MODE (XEXP (parmreg
, 0));
4865 regnor
= REGNO (gen_realpart (submode
, parmreg
));
4866 regnoi
= REGNO (gen_imagpart (submode
, parmreg
));
4868 if (stack_parm
!= 0)
4870 parm_reg_stack_loc
[regnor
]
4871 = gen_realpart (submode
, stack_parm
);
4872 parm_reg_stack_loc
[regnoi
]
4873 = gen_imagpart (submode
, stack_parm
);
4877 parm_reg_stack_loc
[regnor
] = 0;
4878 parm_reg_stack_loc
[regnoi
] = 0;
4882 parm_reg_stack_loc
[REGNO (parmreg
)] = stack_parm
;
4884 /* Mark the register as eliminable if we did no conversion
4885 and it was copied from memory at a fixed offset,
4886 and the arg pointer was not copied to a pseudo-reg.
4887 If the arg pointer is a pseudo reg or the offset formed
4888 an invalid address, such memory-equivalences
4889 as we make here would screw up life analysis for it. */
4890 if (nominal_mode
== passed_mode
4893 && GET_CODE (stack_parm
) == MEM
4894 && stack_offset
.var
== 0
4895 && reg_mentioned_p (virtual_incoming_args_rtx
,
4896 XEXP (stack_parm
, 0)))
4898 rtx linsn
= get_last_insn ();
4901 /* Mark complex types separately. */
4902 if (GET_CODE (parmreg
) == CONCAT
)
4903 /* Scan backwards for the set of the real and
4905 for (sinsn
= linsn
; sinsn
!= 0;
4906 sinsn
= prev_nonnote_insn (sinsn
))
4908 set
= single_set (sinsn
);
4910 && SET_DEST (set
) == regno_reg_rtx
[regnoi
])
4912 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4913 parm_reg_stack_loc
[regnoi
],
4916 && SET_DEST (set
) == regno_reg_rtx
[regnor
])
4918 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4919 parm_reg_stack_loc
[regnor
],
4922 else if ((set
= single_set (linsn
)) != 0
4923 && SET_DEST (set
) == parmreg
)
4925 = gen_rtx_EXPR_LIST (REG_EQUIV
,
4926 stack_parm
, REG_NOTES (linsn
));
4929 /* For pointer data type, suggest pointer register. */
4930 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4931 mark_reg_pointer (parmreg
,
4932 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
4934 /* If something wants our address, try to use ADDRESSOF. */
4935 if (TREE_ADDRESSABLE (parm
))
4937 /* If we end up putting something into the stack,
4938 fixup_var_refs_insns will need to make a pass over
4939 all the instructions. It looks throughs the pending
4940 sequences -- but it can't see the ones in the
4941 CONVERSION_INSNS, if they're not on the sequence
4942 stack. So, we go back to that sequence, just so that
4943 the fixups will happen. */
4944 push_to_sequence (conversion_insns
);
4945 put_var_into_stack (parm
);
4946 conversion_insns
= get_insns ();
4952 /* Value must be stored in the stack slot STACK_PARM
4953 during function execution. */
4955 if (promoted_mode
!= nominal_mode
)
4957 /* Conversion is required. */
4958 rtx tempreg
= gen_reg_rtx (GET_MODE (entry_parm
));
4960 emit_move_insn (tempreg
, validize_mem (entry_parm
));
4962 push_to_sequence (conversion_insns
);
4963 entry_parm
= convert_to_mode (nominal_mode
, tempreg
,
4964 TREE_UNSIGNED (TREE_TYPE (parm
)));
4967 /* ??? This may need a big-endian conversion on sparc64. */
4968 stack_parm
= change_address (stack_parm
, nominal_mode
,
4971 conversion_insns
= get_insns ();
4976 if (entry_parm
!= stack_parm
)
4978 if (stack_parm
== 0)
4981 = assign_stack_local (GET_MODE (entry_parm
),
4982 GET_MODE_SIZE (GET_MODE (entry_parm
)), 0);
4983 set_mem_attributes (stack_parm
, parm
, 1);
4986 if (promoted_mode
!= nominal_mode
)
4988 push_to_sequence (conversion_insns
);
4989 emit_move_insn (validize_mem (stack_parm
),
4990 validize_mem (entry_parm
));
4991 conversion_insns
= get_insns ();
4995 emit_move_insn (validize_mem (stack_parm
),
4996 validize_mem (entry_parm
));
4998 if (current_function_check_memory_usage
)
5000 push_to_sequence (conversion_insns
);
5001 emit_library_call (chkr_set_right_libfunc
, LCT_CONST_MAKE_BLOCK
,
5002 VOIDmode
, 3, XEXP (stack_parm
, 0), Pmode
,
5003 GEN_INT (GET_MODE_SIZE (GET_MODE
5005 TYPE_MODE (sizetype
),
5006 GEN_INT (MEMORY_USE_RW
),
5007 TYPE_MODE (integer_type_node
));
5009 conversion_insns
= get_insns ();
5012 DECL_RTL (parm
) = stack_parm
;
5015 /* If this "parameter" was the place where we are receiving the
5016 function's incoming structure pointer, set up the result. */
5017 if (parm
== function_result_decl
)
5019 tree result
= DECL_RESULT (fndecl
);
5022 = gen_rtx_MEM (DECL_MODE (result
), DECL_RTL (parm
));
5024 set_mem_attributes (DECL_RTL (result
), result
, 1);
5028 /* Output all parameter conversion instructions (possibly including calls)
5029 now that all parameters have been copied out of hard registers. */
5030 emit_insns (conversion_insns
);
5032 last_parm_insn
= get_last_insn ();
5034 current_function_args_size
= stack_args_size
.constant
;
5036 /* Adjust function incoming argument size for alignment and
5039 #ifdef REG_PARM_STACK_SPACE
5040 #ifndef MAYBE_REG_PARM_STACK_SPACE
5041 current_function_args_size
= MAX (current_function_args_size
,
5042 REG_PARM_STACK_SPACE (fndecl
));
5046 #ifdef STACK_BOUNDARY
5047 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5049 current_function_args_size
5050 = ((current_function_args_size
+ STACK_BYTES
- 1)
5051 / STACK_BYTES
) * STACK_BYTES
;
5054 #ifdef ARGS_GROW_DOWNWARD
5055 current_function_arg_offset_rtx
5056 = (stack_args_size
.var
== 0 ? GEN_INT (-stack_args_size
.constant
)
5057 : expand_expr (size_diffop (stack_args_size
.var
,
5058 size_int (-stack_args_size
.constant
)),
5059 NULL_RTX
, VOIDmode
, EXPAND_MEMORY_USE_BAD
));
5061 current_function_arg_offset_rtx
= ARGS_SIZE_RTX (stack_args_size
);
5064 /* See how many bytes, if any, of its args a function should try to pop
5067 current_function_pops_args
= RETURN_POPS_ARGS (fndecl
, TREE_TYPE (fndecl
),
5068 current_function_args_size
);
5070 /* For stdarg.h function, save info about
5071 regs and stack space used by the named args. */
5074 current_function_args_info
= args_so_far
;
5076 /* Set the rtx used for the function return value. Put this in its
5077 own variable so any optimizers that need this information don't have
5078 to include tree.h. Do this here so it gets done when an inlined
5079 function gets output. */
5081 current_function_return_rtx
= DECL_RTL (DECL_RESULT (fndecl
));
5084 /* Indicate whether REGNO is an incoming argument to the current function
5085 that was promoted to a wider mode. If so, return the RTX for the
5086 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5087 that REGNO is promoted from and whether the promotion was signed or
5090 #ifdef PROMOTE_FUNCTION_ARGS
5093 promoted_input_arg (regno
, pmode
, punsignedp
)
5095 enum machine_mode
*pmode
;
5100 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
5101 arg
= TREE_CHAIN (arg
))
5102 if (GET_CODE (DECL_INCOMING_RTL (arg
)) == REG
5103 && REGNO (DECL_INCOMING_RTL (arg
)) == regno
5104 && TYPE_MODE (DECL_ARG_TYPE (arg
)) == TYPE_MODE (TREE_TYPE (arg
)))
5106 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (arg
));
5107 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (arg
));
5109 mode
= promote_mode (TREE_TYPE (arg
), mode
, &unsignedp
, 1);
5110 if (mode
== GET_MODE (DECL_INCOMING_RTL (arg
))
5111 && mode
!= DECL_MODE (arg
))
5113 *pmode
= DECL_MODE (arg
);
5114 *punsignedp
= unsignedp
;
5115 return DECL_INCOMING_RTL (arg
);
5124 /* Compute the size and offset from the start of the stacked arguments for a
5125 parm passed in mode PASSED_MODE and with type TYPE.
5127 INITIAL_OFFSET_PTR points to the current offset into the stacked
5130 The starting offset and size for this parm are returned in *OFFSET_PTR
5131 and *ARG_SIZE_PTR, respectively.
5133 IN_REGS is non-zero if the argument will be passed in registers. It will
5134 never be set if REG_PARM_STACK_SPACE is not defined.
5136 FNDECL is the function in which the argument was defined.
5138 There are two types of rounding that are done. The first, controlled by
5139 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5140 list to be aligned to the specific boundary (in bits). This rounding
5141 affects the initial and starting offsets, but not the argument size.
5143 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5144 optionally rounds the size of the parm to PARM_BOUNDARY. The
5145 initial offset is not affected by this rounding, while the size always
5146 is and the starting offset may be. */
5148 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5149 initial_offset_ptr is positive because locate_and_pad_parm's
5150 callers pass in the total size of args so far as
5151 initial_offset_ptr. arg_size_ptr is always positive.*/
5154 locate_and_pad_parm (passed_mode
, type
, in_regs
, fndecl
,
5155 initial_offset_ptr
, offset_ptr
, arg_size_ptr
,
5157 enum machine_mode passed_mode
;
5159 int in_regs ATTRIBUTE_UNUSED
;
5160 tree fndecl ATTRIBUTE_UNUSED
;
5161 struct args_size
*initial_offset_ptr
;
5162 struct args_size
*offset_ptr
;
5163 struct args_size
*arg_size_ptr
;
5164 struct args_size
*alignment_pad
;
5168 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
5169 enum direction where_pad
= FUNCTION_ARG_PADDING (passed_mode
, type
);
5170 int boundary
= FUNCTION_ARG_BOUNDARY (passed_mode
, type
);
5172 #ifdef REG_PARM_STACK_SPACE
5173 /* If we have found a stack parm before we reach the end of the
5174 area reserved for registers, skip that area. */
5177 int reg_parm_stack_space
= 0;
5179 #ifdef MAYBE_REG_PARM_STACK_SPACE
5180 reg_parm_stack_space
= MAYBE_REG_PARM_STACK_SPACE
;
5182 reg_parm_stack_space
= REG_PARM_STACK_SPACE (fndecl
);
5184 if (reg_parm_stack_space
> 0)
5186 if (initial_offset_ptr
->var
)
5188 initial_offset_ptr
->var
5189 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
5190 ssize_int (reg_parm_stack_space
));
5191 initial_offset_ptr
->constant
= 0;
5193 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
5194 initial_offset_ptr
->constant
= reg_parm_stack_space
;
5197 #endif /* REG_PARM_STACK_SPACE */
5199 arg_size_ptr
->var
= 0;
5200 arg_size_ptr
->constant
= 0;
5201 alignment_pad
->var
= 0;
5202 alignment_pad
->constant
= 0;
5204 #ifdef ARGS_GROW_DOWNWARD
5205 if (initial_offset_ptr
->var
)
5207 offset_ptr
->constant
= 0;
5208 offset_ptr
->var
= size_binop (MINUS_EXPR
, ssize_int (0),
5209 initial_offset_ptr
->var
);
5213 offset_ptr
->constant
= -initial_offset_ptr
->constant
;
5214 offset_ptr
->var
= 0;
5216 if (where_pad
!= none
5217 && (!host_integerp (sizetree
, 1)
5218 || (tree_low_cst (sizetree
, 1) * BITS_PER_UNIT
) % PARM_BOUNDARY
))
5219 sizetree
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5220 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
5221 if (where_pad
!= downward
)
5222 pad_to_arg_alignment (offset_ptr
, boundary
, alignment_pad
);
5223 if (initial_offset_ptr
->var
)
5224 arg_size_ptr
->var
= size_binop (MINUS_EXPR
,
5225 size_binop (MINUS_EXPR
,
5227 initial_offset_ptr
->var
),
5231 arg_size_ptr
->constant
= (-initial_offset_ptr
->constant
5232 - offset_ptr
->constant
);
5234 #else /* !ARGS_GROW_DOWNWARD */
5236 #ifdef REG_PARM_STACK_SPACE
5237 || REG_PARM_STACK_SPACE (fndecl
) > 0
5240 pad_to_arg_alignment (initial_offset_ptr
, boundary
, alignment_pad
);
5241 *offset_ptr
= *initial_offset_ptr
;
5243 #ifdef PUSH_ROUNDING
5244 if (passed_mode
!= BLKmode
)
5245 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
5248 /* Pad_below needs the pre-rounded size to know how much to pad below
5249 so this must be done before rounding up. */
5250 if (where_pad
== downward
5251 /* However, BLKmode args passed in regs have their padding done elsewhere.
5252 The stack slot must be able to hold the entire register. */
5253 && !(in_regs
&& passed_mode
== BLKmode
))
5254 pad_below (offset_ptr
, passed_mode
, sizetree
);
5256 if (where_pad
!= none
5257 && (!host_integerp (sizetree
, 1)
5258 || (tree_low_cst (sizetree
, 1) * BITS_PER_UNIT
) % PARM_BOUNDARY
))
5259 sizetree
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5261 ADD_PARM_SIZE (*arg_size_ptr
, sizetree
);
5262 #endif /* ARGS_GROW_DOWNWARD */
5265 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5266 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5269 pad_to_arg_alignment (offset_ptr
, boundary
, alignment_pad
)
5270 struct args_size
*offset_ptr
;
5272 struct args_size
*alignment_pad
;
5274 tree save_var
= NULL_TREE
;
5275 HOST_WIDE_INT save_constant
= 0;
5277 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
5279 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5281 save_var
= offset_ptr
->var
;
5282 save_constant
= offset_ptr
->constant
;
5285 alignment_pad
->var
= NULL_TREE
;
5286 alignment_pad
->constant
= 0;
5288 if (boundary
> BITS_PER_UNIT
)
5290 if (offset_ptr
->var
)
5293 #ifdef ARGS_GROW_DOWNWARD
5298 (ARGS_SIZE_TREE (*offset_ptr
),
5299 boundary
/ BITS_PER_UNIT
);
5300 offset_ptr
->constant
= 0; /*?*/
5301 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5302 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
5307 offset_ptr
->constant
=
5308 #ifdef ARGS_GROW_DOWNWARD
5309 FLOOR_ROUND (offset_ptr
->constant
, boundary_in_bytes
);
5311 CEIL_ROUND (offset_ptr
->constant
, boundary_in_bytes
);
5313 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
5314 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
5319 #ifndef ARGS_GROW_DOWNWARD
5321 pad_below (offset_ptr
, passed_mode
, sizetree
)
5322 struct args_size
*offset_ptr
;
5323 enum machine_mode passed_mode
;
5326 if (passed_mode
!= BLKmode
)
5328 if (GET_MODE_BITSIZE (passed_mode
) % PARM_BOUNDARY
)
5329 offset_ptr
->constant
5330 += (((GET_MODE_BITSIZE (passed_mode
) + PARM_BOUNDARY
- 1)
5331 / PARM_BOUNDARY
* PARM_BOUNDARY
/ BITS_PER_UNIT
)
5332 - GET_MODE_SIZE (passed_mode
));
5336 if (TREE_CODE (sizetree
) != INTEGER_CST
5337 || (TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)
5339 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5340 tree s2
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
5342 ADD_PARM_SIZE (*offset_ptr
, s2
);
5343 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
5349 /* Walk the tree of blocks describing the binding levels within a function
5350 and warn about uninitialized variables.
5351 This is done after calling flow_analysis and before global_alloc
5352 clobbers the pseudo-regs to hard regs. */
5355 uninitialized_vars_warning (block
)
5358 register tree decl
, sub
;
5359 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
5361 if (warn_uninitialized
5362 && TREE_CODE (decl
) == VAR_DECL
5363 /* These warnings are unreliable for and aggregates
5364 because assigning the fields one by one can fail to convince
5365 flow.c that the entire aggregate was initialized.
5366 Unions are troublesome because members may be shorter. */
5367 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl
))
5368 && DECL_RTL (decl
) != 0
5369 && GET_CODE (DECL_RTL (decl
)) == REG
5370 /* Global optimizations can make it difficult to determine if a
5371 particular variable has been initialized. However, a VAR_DECL
5372 with a nonzero DECL_INITIAL had an initializer, so do not
5373 claim it is potentially uninitialized.
5375 We do not care about the actual value in DECL_INITIAL, so we do
5376 not worry that it may be a dangling pointer. */
5377 && DECL_INITIAL (decl
) == NULL_TREE
5378 && regno_uninitialized (REGNO (DECL_RTL (decl
))))
5379 warning_with_decl (decl
,
5380 "`%s' might be used uninitialized in this function");
5382 && TREE_CODE (decl
) == VAR_DECL
5383 && DECL_RTL (decl
) != 0
5384 && GET_CODE (DECL_RTL (decl
)) == REG
5385 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl
))))
5386 warning_with_decl (decl
,
5387 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5389 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= TREE_CHAIN (sub
))
5390 uninitialized_vars_warning (sub
);
5393 /* Do the appropriate part of uninitialized_vars_warning
5394 but for arguments instead of local variables. */
5397 setjmp_args_warning ()
5400 for (decl
= DECL_ARGUMENTS (current_function_decl
);
5401 decl
; decl
= TREE_CHAIN (decl
))
5402 if (DECL_RTL (decl
) != 0
5403 && GET_CODE (DECL_RTL (decl
)) == REG
5404 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl
))))
5405 warning_with_decl (decl
,
5406 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5409 /* If this function call setjmp, put all vars into the stack
5410 unless they were declared `register'. */
5413 setjmp_protect (block
)
5416 register tree decl
, sub
;
5417 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
5418 if ((TREE_CODE (decl
) == VAR_DECL
5419 || TREE_CODE (decl
) == PARM_DECL
)
5420 && DECL_RTL (decl
) != 0
5421 && (GET_CODE (DECL_RTL (decl
)) == REG
5422 || (GET_CODE (DECL_RTL (decl
)) == MEM
5423 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
))
5424 /* If this variable came from an inline function, it must be
5425 that its life doesn't overlap the setjmp. If there was a
5426 setjmp in the function, it would already be in memory. We
5427 must exclude such variable because their DECL_RTL might be
5428 set to strange things such as virtual_stack_vars_rtx. */
5429 && ! DECL_FROM_INLINE (decl
)
5431 #ifdef NON_SAVING_SETJMP
5432 /* If longjmp doesn't restore the registers,
5433 don't put anything in them. */
5437 ! DECL_REGISTER (decl
)))
5438 put_var_into_stack (decl
);
5439 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= TREE_CHAIN (sub
))
5440 setjmp_protect (sub
);
5443 /* Like the previous function, but for args instead of local variables. */
5446 setjmp_protect_args ()
5449 for (decl
= DECL_ARGUMENTS (current_function_decl
);
5450 decl
; decl
= TREE_CHAIN (decl
))
5451 if ((TREE_CODE (decl
) == VAR_DECL
5452 || TREE_CODE (decl
) == PARM_DECL
)
5453 && DECL_RTL (decl
) != 0
5454 && (GET_CODE (DECL_RTL (decl
)) == REG
5455 || (GET_CODE (DECL_RTL (decl
)) == MEM
5456 && GET_CODE (XEXP (DECL_RTL (decl
), 0)) == ADDRESSOF
))
5458 /* If longjmp doesn't restore the registers,
5459 don't put anything in them. */
5460 #ifdef NON_SAVING_SETJMP
5464 ! DECL_REGISTER (decl
)))
5465 put_var_into_stack (decl
);
5468 /* Return the context-pointer register corresponding to DECL,
5469 or 0 if it does not need one. */
5472 lookup_static_chain (decl
)
5475 tree context
= decl_function_context (decl
);
5479 || (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_NO_STATIC_CHAIN (decl
)))
5482 /* We treat inline_function_decl as an alias for the current function
5483 because that is the inline function whose vars, types, etc.
5484 are being merged into the current function.
5485 See expand_inline_function. */
5486 if (context
== current_function_decl
|| context
== inline_function_decl
)
5487 return virtual_stack_vars_rtx
;
5489 for (link
= context_display
; link
; link
= TREE_CHAIN (link
))
5490 if (TREE_PURPOSE (link
) == context
)
5491 return RTL_EXPR_RTL (TREE_VALUE (link
));
5496 /* Convert a stack slot address ADDR for variable VAR
5497 (from a containing function)
5498 into an address valid in this function (using a static chain). */
5501 fix_lexical_addr (addr
, var
)
5506 HOST_WIDE_INT displacement
;
5507 tree context
= decl_function_context (var
);
5508 struct function
*fp
;
5511 /* If this is the present function, we need not do anything. */
5512 if (context
== current_function_decl
|| context
== inline_function_decl
)
5515 for (fp
= outer_function_chain
; fp
; fp
= fp
->next
)
5516 if (fp
->decl
== context
)
5522 if (GET_CODE (addr
) == ADDRESSOF
&& GET_CODE (XEXP (addr
, 0)) == MEM
)
5523 addr
= XEXP (XEXP (addr
, 0), 0);
5525 /* Decode given address as base reg plus displacement. */
5526 if (GET_CODE (addr
) == REG
)
5527 basereg
= addr
, displacement
= 0;
5528 else if (GET_CODE (addr
) == PLUS
&& GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
5529 basereg
= XEXP (addr
, 0), displacement
= INTVAL (XEXP (addr
, 1));
5533 /* We accept vars reached via the containing function's
5534 incoming arg pointer and via its stack variables pointer. */
5535 if (basereg
== fp
->internal_arg_pointer
)
5537 /* If reached via arg pointer, get the arg pointer value
5538 out of that function's stack frame.
5540 There are two cases: If a separate ap is needed, allocate a
5541 slot in the outer function for it and dereference it that way.
5542 This is correct even if the real ap is actually a pseudo.
5543 Otherwise, just adjust the offset from the frame pointer to
5546 #ifdef NEED_SEPARATE_AP
5549 if (fp
->x_arg_pointer_save_area
== 0)
5550 fp
->x_arg_pointer_save_area
5551 = assign_stack_local_1 (Pmode
, GET_MODE_SIZE (Pmode
), 0, fp
);
5553 addr
= fix_lexical_addr (XEXP (fp
->x_arg_pointer_save_area
, 0), var
);
5554 addr
= memory_address (Pmode
, addr
);
5556 base
= gen_rtx_MEM (Pmode
, addr
);
5557 MEM_ALIAS_SET (base
) = get_frame_alias_set ();
5558 base
= copy_to_reg (base
);
5560 displacement
+= (FIRST_PARM_OFFSET (context
) - STARTING_FRAME_OFFSET
);
5561 base
= lookup_static_chain (var
);
5565 else if (basereg
== virtual_stack_vars_rtx
)
5567 /* This is the same code as lookup_static_chain, duplicated here to
5568 avoid an extra call to decl_function_context. */
5571 for (link
= context_display
; link
; link
= TREE_CHAIN (link
))
5572 if (TREE_PURPOSE (link
) == context
)
5574 base
= RTL_EXPR_RTL (TREE_VALUE (link
));
5582 /* Use same offset, relative to appropriate static chain or argument
5584 return plus_constant (base
, displacement
);
5587 /* Return the address of the trampoline for entering nested fn FUNCTION.
5588 If necessary, allocate a trampoline (in the stack frame)
5589 and emit rtl to initialize its contents (at entry to this function). */
5592 trampoline_address (function
)
5598 struct function
*fp
;
5601 /* Find an existing trampoline and return it. */
5602 for (link
= trampoline_list
; link
; link
= TREE_CHAIN (link
))
5603 if (TREE_PURPOSE (link
) == function
)
5605 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link
)), 0));
5607 for (fp
= outer_function_chain
; fp
; fp
= fp
->next
)
5608 for (link
= fp
->x_trampoline_list
; link
; link
= TREE_CHAIN (link
))
5609 if (TREE_PURPOSE (link
) == function
)
5611 tramp
= fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link
)), 0),
5613 return adjust_trampoline_addr (tramp
);
5616 /* None exists; we must make one. */
5618 /* Find the `struct function' for the function containing FUNCTION. */
5620 fn_context
= decl_function_context (function
);
5621 if (fn_context
!= current_function_decl
5622 && fn_context
!= inline_function_decl
)
5623 for (fp
= outer_function_chain
; fp
; fp
= fp
->next
)
5624 if (fp
->decl
== fn_context
)
5627 /* Allocate run-time space for this trampoline
5628 (usually in the defining function's stack frame). */
5629 #ifdef ALLOCATE_TRAMPOLINE
5630 tramp
= ALLOCATE_TRAMPOLINE (fp
);
5632 /* If rounding needed, allocate extra space
5633 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5634 #ifdef TRAMPOLINE_ALIGNMENT
5635 #define TRAMPOLINE_REAL_SIZE \
5636 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5638 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5640 tramp
= assign_stack_local_1 (BLKmode
, TRAMPOLINE_REAL_SIZE
, 0,
5644 /* Record the trampoline for reuse and note it for later initialization
5645 by expand_function_end. */
5648 rtlexp
= make_node (RTL_EXPR
);
5649 RTL_EXPR_RTL (rtlexp
) = tramp
;
5650 fp
->x_trampoline_list
= tree_cons (function
, rtlexp
,
5651 fp
->x_trampoline_list
);
5655 /* Make the RTL_EXPR node temporary, not momentary, so that the
5656 trampoline_list doesn't become garbage. */
5657 rtlexp
= make_node (RTL_EXPR
);
5659 RTL_EXPR_RTL (rtlexp
) = tramp
;
5660 trampoline_list
= tree_cons (function
, rtlexp
, trampoline_list
);
5663 tramp
= fix_lexical_addr (XEXP (tramp
, 0), function
);
5664 return adjust_trampoline_addr (tramp
);
5667 /* Given a trampoline address,
5668 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5671 round_trampoline_addr (tramp
)
5674 #ifdef TRAMPOLINE_ALIGNMENT
5675 /* Round address up to desired boundary. */
5676 rtx temp
= gen_reg_rtx (Pmode
);
5677 temp
= expand_binop (Pmode
, add_optab
, tramp
,
5678 GEN_INT (TRAMPOLINE_ALIGNMENT
/ BITS_PER_UNIT
- 1),
5679 temp
, 0, OPTAB_LIB_WIDEN
);
5680 tramp
= expand_binop (Pmode
, and_optab
, temp
,
5681 GEN_INT (-TRAMPOLINE_ALIGNMENT
/ BITS_PER_UNIT
),
5682 temp
, 0, OPTAB_LIB_WIDEN
);
5687 /* Given a trampoline address, round it then apply any
5688 platform-specific adjustments so that the result can be used for a
5692 adjust_trampoline_addr (tramp
)
5695 tramp
= round_trampoline_addr (tramp
);
5696 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5697 TRAMPOLINE_ADJUST_ADDRESS (tramp
);
5702 /* Put all this function's BLOCK nodes including those that are chained
5703 onto the first block into a vector, and return it.
5704 Also store in each NOTE for the beginning or end of a block
5705 the index of that block in the vector.
5706 The arguments are BLOCK, the chain of top-level blocks of the function,
5707 and INSNS, the insn chain of the function. */
5713 tree
*block_vector
, *last_block_vector
;
5715 tree block
= DECL_INITIAL (current_function_decl
);
5720 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5721 depth-first order. */
5722 block_vector
= get_block_vector (block
, &n_blocks
);
5723 block_stack
= (tree
*) xmalloc (n_blocks
* sizeof (tree
));
5725 last_block_vector
= identify_blocks_1 (get_insns (),
5727 block_vector
+ n_blocks
,
5730 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5731 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5732 if (0 && last_block_vector
!= block_vector
+ n_blocks
)
5735 free (block_vector
);
5739 /* Subroutine of identify_blocks. Do the block substitution on the
5740 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5742 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5743 BLOCK_VECTOR is incremented for each block seen. */
5746 identify_blocks_1 (insns
, block_vector
, end_block_vector
, orig_block_stack
)
5749 tree
*end_block_vector
;
5750 tree
*orig_block_stack
;
5753 tree
*block_stack
= orig_block_stack
;
5755 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
5757 if (GET_CODE (insn
) == NOTE
)
5759 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
)
5763 /* If there are more block notes than BLOCKs, something
5765 if (block_vector
== end_block_vector
)
5768 b
= *block_vector
++;
5769 NOTE_BLOCK (insn
) = b
;
5772 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
5774 /* If there are more NOTE_INSN_BLOCK_ENDs than
5775 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5776 if (block_stack
== orig_block_stack
)
5779 NOTE_BLOCK (insn
) = *--block_stack
;
5782 else if (GET_CODE (insn
) == CALL_INSN
5783 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
5785 rtx cp
= PATTERN (insn
);
5787 block_vector
= identify_blocks_1 (XEXP (cp
, 0), block_vector
,
5788 end_block_vector
, block_stack
);
5790 block_vector
= identify_blocks_1 (XEXP (cp
, 1), block_vector
,
5791 end_block_vector
, block_stack
);
5793 block_vector
= identify_blocks_1 (XEXP (cp
, 2), block_vector
,
5794 end_block_vector
, block_stack
);
5798 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5799 something is badly wrong. */
5800 if (block_stack
!= orig_block_stack
)
5803 return block_vector
;
5806 /* Identify BLOCKs referenced by more than one
5807 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5812 tree block
= DECL_INITIAL (current_function_decl
);
5813 varray_type block_stack
;
5815 if (block
== NULL_TREE
)
5818 VARRAY_TREE_INIT (block_stack
, 10, "block_stack");
5820 /* Prune the old trees away, so that they don't get in the way. */
5821 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
5822 BLOCK_CHAIN (block
) = NULL_TREE
;
5824 reorder_blocks_0 (get_insns ());
5825 reorder_blocks_1 (get_insns (), block
, &block_stack
);
5827 BLOCK_SUBBLOCKS (block
) = blocks_nreverse (BLOCK_SUBBLOCKS (block
));
5829 VARRAY_FREE (block_stack
);
5832 /* Helper function for reorder_blocks. Process the insn chain beginning
5833 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5836 reorder_blocks_0 (insns
)
5841 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
5843 if (GET_CODE (insn
) == NOTE
)
5845 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
)
5847 tree block
= NOTE_BLOCK (insn
);
5848 TREE_ASM_WRITTEN (block
) = 0;
5851 else if (GET_CODE (insn
) == CALL_INSN
5852 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
5854 rtx cp
= PATTERN (insn
);
5855 reorder_blocks_0 (XEXP (cp
, 0));
5857 reorder_blocks_0 (XEXP (cp
, 1));
5859 reorder_blocks_0 (XEXP (cp
, 2));
5865 reorder_blocks_1 (insns
, current_block
, p_block_stack
)
5868 varray_type
*p_block_stack
;
5872 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
5874 if (GET_CODE (insn
) == NOTE
)
5876 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
)
5878 tree block
= NOTE_BLOCK (insn
);
5879 /* If we have seen this block before, copy it. */
5880 if (TREE_ASM_WRITTEN (block
))
5882 block
= copy_node (block
);
5883 NOTE_BLOCK (insn
) = block
;
5885 BLOCK_SUBBLOCKS (block
) = 0;
5886 TREE_ASM_WRITTEN (block
) = 1;
5887 BLOCK_SUPERCONTEXT (block
) = current_block
;
5888 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
5889 BLOCK_SUBBLOCKS (current_block
) = block
;
5890 current_block
= block
;
5891 VARRAY_PUSH_TREE (*p_block_stack
, block
);
5893 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
5895 NOTE_BLOCK (insn
) = VARRAY_TOP_TREE (*p_block_stack
);
5896 VARRAY_POP (*p_block_stack
);
5897 BLOCK_SUBBLOCKS (current_block
)
5898 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block
));
5899 current_block
= BLOCK_SUPERCONTEXT (current_block
);
5902 else if (GET_CODE (insn
) == CALL_INSN
5903 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
5905 rtx cp
= PATTERN (insn
);
5906 reorder_blocks_1 (XEXP (cp
, 0), current_block
, p_block_stack
);
5908 reorder_blocks_1 (XEXP (cp
, 1), current_block
, p_block_stack
);
5910 reorder_blocks_1 (XEXP (cp
, 2), current_block
, p_block_stack
);
5915 /* Reverse the order of elements in the chain T of blocks,
5916 and return the new head of the chain (old last element). */
5922 register tree prev
= 0, decl
, next
;
5923 for (decl
= t
; decl
; decl
= next
)
5925 next
= BLOCK_CHAIN (decl
);
5926 BLOCK_CHAIN (decl
) = prev
;
5932 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5933 non-NULL, list them all into VECTOR, in a depth-first preorder
5934 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5938 all_blocks (block
, vector
)
5946 TREE_ASM_WRITTEN (block
) = 0;
5948 /* Record this block. */
5950 vector
[n_blocks
] = block
;
5954 /* Record the subblocks, and their subblocks... */
5955 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
5956 vector
? vector
+ n_blocks
: 0);
5957 block
= BLOCK_CHAIN (block
);
5963 /* Return a vector containing all the blocks rooted at BLOCK. The
5964 number of elements in the vector is stored in N_BLOCKS_P. The
5965 vector is dynamically allocated; it is the caller's responsibility
5966 to call `free' on the pointer returned. */
5969 get_block_vector (block
, n_blocks_p
)
5975 *n_blocks_p
= all_blocks (block
, NULL
);
5976 block_vector
= (tree
*) xmalloc (*n_blocks_p
* sizeof (tree
));
5977 all_blocks (block
, block_vector
);
5979 return block_vector
;
5982 static int next_block_index
= 2;
5984 /* Set BLOCK_NUMBER for all the blocks in FN. */
5994 /* For SDB and XCOFF debugging output, we start numbering the blocks
5995 from 1 within each function, rather than keeping a running
5997 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5998 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
5999 next_block_index
= 1;
6002 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
6004 /* The top-level BLOCK isn't numbered at all. */
6005 for (i
= 1; i
< n_blocks
; ++i
)
6006 /* We number the blocks from two. */
6007 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
6009 free (block_vector
);
6014 /* Allocate a function structure and reset its contents to the defaults. */
6016 prepare_function_start ()
6018 cfun
= (struct function
*) xcalloc (1, sizeof (struct function
));
6020 init_stmt_for_function ();
6021 init_eh_for_function ();
6023 cse_not_expected
= ! optimize
;
6025 /* Caller save not needed yet. */
6026 caller_save_needed
= 0;
6028 /* No stack slots have been made yet. */
6029 stack_slot_list
= 0;
6031 current_function_has_nonlocal_label
= 0;
6032 current_function_has_nonlocal_goto
= 0;
6034 /* There is no stack slot for handling nonlocal gotos. */
6035 nonlocal_goto_handler_slots
= 0;
6036 nonlocal_goto_stack_level
= 0;
6038 /* No labels have been declared for nonlocal use. */
6039 nonlocal_labels
= 0;
6040 nonlocal_goto_handler_labels
= 0;
6042 /* No function calls so far in this function. */
6043 function_call_count
= 0;
6045 /* No parm regs have been allocated.
6046 (This is important for output_inline_function.) */
6047 max_parm_reg
= LAST_VIRTUAL_REGISTER
+ 1;
6049 /* Initialize the RTL mechanism. */
6052 /* Initialize the queue of pending postincrement and postdecrements,
6053 and some other info in expr.c. */
6056 /* We haven't done register allocation yet. */
6059 init_varasm_status (cfun
);
6061 /* Clear out data used for inlining. */
6062 cfun
->inlinable
= 0;
6063 cfun
->original_decl_initial
= 0;
6064 cfun
->original_arg_vector
= 0;
6066 #ifdef STACK_BOUNDARY
6067 cfun
->stack_alignment_needed
= STACK_BOUNDARY
;
6068 cfun
->preferred_stack_boundary
= STACK_BOUNDARY
;
6070 cfun
->stack_alignment_needed
= 0;
6071 cfun
->preferred_stack_boundary
= 0;
6074 /* Set if a call to setjmp is seen. */
6075 current_function_calls_setjmp
= 0;
6077 /* Set if a call to longjmp is seen. */
6078 current_function_calls_longjmp
= 0;
6080 current_function_calls_alloca
= 0;
6081 current_function_contains_functions
= 0;
6082 current_function_is_leaf
= 0;
6083 current_function_nothrow
= 0;
6084 current_function_sp_is_unchanging
= 0;
6085 current_function_uses_only_leaf_regs
= 0;
6086 current_function_has_computed_jump
= 0;
6087 current_function_is_thunk
= 0;
6089 current_function_returns_pcc_struct
= 0;
6090 current_function_returns_struct
= 0;
6091 current_function_epilogue_delay_list
= 0;
6092 current_function_uses_const_pool
= 0;
6093 current_function_uses_pic_offset_table
= 0;
6094 current_function_cannot_inline
= 0;
6096 /* We have not yet needed to make a label to jump to for tail-recursion. */
6097 tail_recursion_label
= 0;
6099 /* We haven't had a need to make a save area for ap yet. */
6100 arg_pointer_save_area
= 0;
6102 /* No stack slots allocated yet. */
6105 /* No SAVE_EXPRs in this function yet. */
6108 /* No RTL_EXPRs in this function yet. */
6111 /* Set up to allocate temporaries. */
6114 /* Indicate that we need to distinguish between the return value of the
6115 present function and the return value of a function being called. */
6116 rtx_equal_function_value_matters
= 1;
6118 /* Indicate that we have not instantiated virtual registers yet. */
6119 virtuals_instantiated
= 0;
6121 /* Indicate that we want CONCATs now. */
6122 generating_concat_p
= 1;
6124 /* Indicate we have no need of a frame pointer yet. */
6125 frame_pointer_needed
= 0;
6127 /* By default assume not varargs or stdarg. */
6128 current_function_varargs
= 0;
6129 current_function_stdarg
= 0;
6131 /* We haven't made any trampolines for this function yet. */
6132 trampoline_list
= 0;
6134 init_pending_stack_adjust ();
6135 inhibit_defer_pop
= 0;
6137 current_function_outgoing_args_size
= 0;
6139 if (init_lang_status
)
6140 (*init_lang_status
) (cfun
);
6141 if (init_machine_status
)
6142 (*init_machine_status
) (cfun
);
6145 /* Initialize the rtl expansion mechanism so that we can do simple things
6146 like generate sequences. This is used to provide a context during global
6147 initialization of some passes. */
6149 init_dummy_function_start ()
6151 prepare_function_start ();
6154 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6155 and initialize static variables for generating RTL for the statements
6159 init_function_start (subr
, filename
, line
)
6161 const char *filename
;
6164 prepare_function_start ();
6166 /* Remember this function for later. */
6167 cfun
->next_global
= all_functions
;
6168 all_functions
= cfun
;
6170 current_function_name
= (*decl_printable_name
) (subr
, 2);
6173 /* Nonzero if this is a nested function that uses a static chain. */
6175 current_function_needs_context
6176 = (decl_function_context (current_function_decl
) != 0
6177 && ! DECL_NO_STATIC_CHAIN (current_function_decl
));
6179 /* Within function body, compute a type's size as soon it is laid out. */
6180 immediate_size_expand
++;
6182 /* Prevent ever trying to delete the first instruction of a function.
6183 Also tell final how to output a linenum before the function prologue.
6184 Note linenums could be missing, e.g. when compiling a Java .class file. */
6186 emit_line_note (filename
, line
);
6188 /* Make sure first insn is a note even if we don't want linenums.
6189 This makes sure the first insn will never be deleted.
6190 Also, final expects a note to appear there. */
6191 emit_note (NULL_PTR
, NOTE_INSN_DELETED
);
6193 /* Set flags used by final.c. */
6194 if (aggregate_value_p (DECL_RESULT (subr
)))
6196 #ifdef PCC_STATIC_STRUCT_RETURN
6197 current_function_returns_pcc_struct
= 1;
6199 current_function_returns_struct
= 1;
6202 /* Warn if this value is an aggregate type,
6203 regardless of which calling convention we are using for it. */
6204 if (warn_aggregate_return
6205 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
6206 warning ("function returns an aggregate");
6208 current_function_returns_pointer
6209 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr
)));
6212 /* Make sure all values used by the optimization passes have sane
6215 init_function_for_compilation ()
6219 /* No prologue/epilogue insns yet. */
6220 VARRAY_GROW (prologue
, 0);
6221 VARRAY_GROW (epilogue
, 0);
6222 VARRAY_GROW (sibcall_epilogue
, 0);
6225 /* Indicate that the current function uses extra args
6226 not explicitly mentioned in the argument list in any fashion. */
6231 current_function_varargs
= 1;
6234 /* Expand a call to __main at the beginning of a possible main function. */
6236 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6237 #undef HAS_INIT_SECTION
6238 #define HAS_INIT_SECTION
6242 expand_main_function ()
6244 #if !defined (HAS_INIT_SECTION)
6245 emit_library_call (gen_rtx_SYMBOL_REF (Pmode
, NAME__MAIN
), 0,
6247 #endif /* not HAS_INIT_SECTION */
6250 extern struct obstack permanent_obstack
;
6252 /* Start the RTL for a new function, and set variables used for
6254 SUBR is the FUNCTION_DECL node.
6255 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6256 the function's parameters, which must be run at any return statement. */
6259 expand_function_start (subr
, parms_have_cleanups
)
6261 int parms_have_cleanups
;
6264 rtx last_ptr
= NULL_RTX
;
6266 /* Make sure volatile mem refs aren't considered
6267 valid operands of arithmetic insns. */
6268 init_recog_no_volatile ();
6270 /* Set this before generating any memory accesses. */
6271 current_function_check_memory_usage
6272 = (flag_check_memory_usage
6273 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl
));
6275 current_function_instrument_entry_exit
6276 = (flag_instrument_function_entry_exit
6277 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
6279 current_function_limit_stack
6280 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
6282 /* If function gets a static chain arg, store it in the stack frame.
6283 Do this first, so it gets the first stack slot offset. */
6284 if (current_function_needs_context
)
6286 last_ptr
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
6288 /* Delay copying static chain if it is not a register to avoid
6289 conflicts with regs used for parameters. */
6290 if (! SMALL_REGISTER_CLASSES
6291 || GET_CODE (static_chain_incoming_rtx
) == REG
)
6292 emit_move_insn (last_ptr
, static_chain_incoming_rtx
);
6295 /* If the parameters of this function need cleaning up, get a label
6296 for the beginning of the code which executes those cleanups. This must
6297 be done before doing anything with return_label. */
6298 if (parms_have_cleanups
)
6299 cleanup_label
= gen_label_rtx ();
6303 /* Make the label for return statements to jump to, if this machine
6304 does not have a one-instruction return and uses an epilogue,
6305 or if it returns a structure, or if it has parm cleanups. */
6307 if (cleanup_label
== 0 && HAVE_return
6308 && ! current_function_instrument_entry_exit
6309 && ! current_function_returns_pcc_struct
6310 && ! (current_function_returns_struct
&& ! optimize
))
6313 return_label
= gen_label_rtx ();
6315 return_label
= gen_label_rtx ();
6318 /* Initialize rtx used to return the value. */
6319 /* Do this before assign_parms so that we copy the struct value address
6320 before any library calls that assign parms might generate. */
6322 /* Decide whether to return the value in memory or in a register. */
6323 if (aggregate_value_p (DECL_RESULT (subr
)))
6325 /* Returning something that won't go in a register. */
6326 register rtx value_address
= 0;
6328 #ifdef PCC_STATIC_STRUCT_RETURN
6329 if (current_function_returns_pcc_struct
)
6331 int size
= int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr
)));
6332 value_address
= assemble_static_space (size
);
6337 /* Expect to be passed the address of a place to store the value.
6338 If it is passed as an argument, assign_parms will take care of
6340 if (struct_value_incoming_rtx
)
6342 value_address
= gen_reg_rtx (Pmode
);
6343 emit_move_insn (value_address
, struct_value_incoming_rtx
);
6348 DECL_RTL (DECL_RESULT (subr
))
6349 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr
)), value_address
);
6350 set_mem_attributes (DECL_RTL (DECL_RESULT (subr
)),
6351 DECL_RESULT (subr
), 1);
6354 else if (DECL_MODE (DECL_RESULT (subr
)) == VOIDmode
)
6355 /* If return mode is void, this decl rtl should not be used. */
6356 DECL_RTL (DECL_RESULT (subr
)) = 0;
6357 else if (parms_have_cleanups
|| current_function_instrument_entry_exit
)
6359 /* If function will end with cleanup code for parms,
6360 compute the return values into a pseudo reg,
6361 which we will copy into the true return register
6362 after the cleanups are done. */
6364 enum machine_mode mode
= DECL_MODE (DECL_RESULT (subr
));
6366 #ifdef PROMOTE_FUNCTION_RETURN
6367 tree type
= TREE_TYPE (DECL_RESULT (subr
));
6368 int unsignedp
= TREE_UNSIGNED (type
);
6370 mode
= promote_mode (type
, mode
, &unsignedp
, 1);
6373 DECL_RTL (DECL_RESULT (subr
)) = gen_reg_rtx (mode
);
6376 /* Scalar, returned in a register. */
6378 DECL_RTL (DECL_RESULT (subr
))
6379 = hard_function_value (TREE_TYPE (DECL_RESULT (subr
)), subr
, 1);
6381 /* Mark this reg as the function's return value. */
6382 if (GET_CODE (DECL_RTL (DECL_RESULT (subr
))) == REG
)
6384 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr
))) = 1;
6385 /* Needed because we may need to move this to memory
6386 in case it's a named return value whose address is taken. */
6387 DECL_REGISTER (DECL_RESULT (subr
)) = 1;
6391 /* Initialize rtx for parameters and local variables.
6392 In some cases this requires emitting insns. */
6394 assign_parms (subr
);
6396 /* Copy the static chain now if it wasn't a register. The delay is to
6397 avoid conflicts with the parameter passing registers. */
6399 if (SMALL_REGISTER_CLASSES
&& current_function_needs_context
)
6400 if (GET_CODE (static_chain_incoming_rtx
) != REG
)
6401 emit_move_insn (last_ptr
, static_chain_incoming_rtx
);
6403 /* The following was moved from init_function_start.
6404 The move is supposed to make sdb output more accurate. */
6405 /* Indicate the beginning of the function body,
6406 as opposed to parm setup. */
6407 emit_note (NULL_PTR
, NOTE_INSN_FUNCTION_BEG
);
6409 if (GET_CODE (get_last_insn ()) != NOTE
)
6410 emit_note (NULL_PTR
, NOTE_INSN_DELETED
);
6411 parm_birth_insn
= get_last_insn ();
6413 context_display
= 0;
6414 if (current_function_needs_context
)
6416 /* Fetch static chain values for containing functions. */
6417 tem
= decl_function_context (current_function_decl
);
6418 /* Copy the static chain pointer into a pseudo. If we have
6419 small register classes, copy the value from memory if
6420 static_chain_incoming_rtx is a REG. */
6423 /* If the static chain originally came in a register, put it back
6424 there, then move it out in the next insn. The reason for
6425 this peculiar code is to satisfy function integration. */
6426 if (SMALL_REGISTER_CLASSES
6427 && GET_CODE (static_chain_incoming_rtx
) == REG
)
6428 emit_move_insn (static_chain_incoming_rtx
, last_ptr
);
6429 last_ptr
= copy_to_reg (static_chain_incoming_rtx
);
6434 tree rtlexp
= make_node (RTL_EXPR
);
6436 RTL_EXPR_RTL (rtlexp
) = last_ptr
;
6437 context_display
= tree_cons (tem
, rtlexp
, context_display
);
6438 tem
= decl_function_context (tem
);
6441 /* Chain thru stack frames, assuming pointer to next lexical frame
6442 is found at the place we always store it. */
6443 #ifdef FRAME_GROWS_DOWNWARD
6444 last_ptr
= plus_constant (last_ptr
,
6445 -(HOST_WIDE_INT
) GET_MODE_SIZE (Pmode
));
6447 last_ptr
= gen_rtx_MEM (Pmode
, memory_address (Pmode
, last_ptr
));
6448 MEM_ALIAS_SET (last_ptr
) = get_frame_alias_set ();
6449 last_ptr
= copy_to_reg (last_ptr
);
6451 /* If we are not optimizing, ensure that we know that this
6452 piece of context is live over the entire function. */
6454 save_expr_regs
= gen_rtx_EXPR_LIST (VOIDmode
, last_ptr
,
6459 if (current_function_instrument_entry_exit
)
6461 rtx fun
= DECL_RTL (current_function_decl
);
6462 if (GET_CODE (fun
) == MEM
)
6463 fun
= XEXP (fun
, 0);
6466 emit_library_call (profile_function_entry_libfunc
, 0, VOIDmode
, 2,
6468 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS
,
6470 hard_frame_pointer_rtx
),
6474 /* After the display initializations is where the tail-recursion label
6475 should go, if we end up needing one. Ensure we have a NOTE here
6476 since some things (like trampolines) get placed before this. */
6477 tail_recursion_reentry
= emit_note (NULL_PTR
, NOTE_INSN_DELETED
);
6479 /* Evaluate now the sizes of any types declared among the arguments. */
6480 for (tem
= nreverse (get_pending_sizes ()); tem
; tem
= TREE_CHAIN (tem
))
6482 expand_expr (TREE_VALUE (tem
), const0_rtx
, VOIDmode
,
6483 EXPAND_MEMORY_USE_BAD
);
6484 /* Flush the queue in case this parameter declaration has
6489 /* Make sure there is a line number after the function entry setup code. */
6490 force_next_line_note ();
6493 /* Undo the effects of init_dummy_function_start. */
6495 expand_dummy_function_end ()
6497 /* End any sequences that failed to be closed due to syntax errors. */
6498 while (in_sequence_p ())
6501 /* Outside function body, can't compute type's actual size
6502 until next function's body starts. */
6504 free_after_parsing (cfun
);
6505 free_after_compilation (cfun
);
6510 /* Call DOIT for each hard register used as a return value from
6511 the current function. */
6514 diddle_return_value (doit
, arg
)
6515 void (*doit
) PARAMS ((rtx
, void *));
6518 rtx outgoing
= current_function_return_rtx
;
6524 pcc
= (current_function_returns_struct
6525 || current_function_returns_pcc_struct
);
6527 if ((GET_CODE (outgoing
) == REG
6528 && REGNO (outgoing
) >= FIRST_PSEUDO_REGISTER
)
6531 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
6533 /* A PCC-style return returns a pointer to the memory in which
6534 the structure is stored. */
6536 type
= build_pointer_type (type
);
6538 #ifdef FUNCTION_OUTGOING_VALUE
6539 outgoing
= FUNCTION_OUTGOING_VALUE (type
, current_function_decl
);
6541 outgoing
= FUNCTION_VALUE (type
, current_function_decl
);
6543 /* If this is a BLKmode structure being returned in registers, then use
6544 the mode computed in expand_return. */
6545 if (GET_MODE (outgoing
) == BLKmode
)
6546 PUT_MODE (outgoing
, GET_MODE (current_function_return_rtx
));
6547 REG_FUNCTION_VALUE_P (outgoing
) = 1;
6550 if (GET_CODE (outgoing
) == REG
)
6551 (*doit
) (outgoing
, arg
);
6552 else if (GET_CODE (outgoing
) == PARALLEL
)
6556 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
6558 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
6560 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6567 do_clobber_return_reg (reg
, arg
)
6569 void *arg ATTRIBUTE_UNUSED
;
6571 emit_insn (gen_rtx_CLOBBER (VOIDmode
, reg
));
6575 clobber_return_register ()
6577 diddle_return_value (do_clobber_return_reg
, NULL
);
6581 do_use_return_reg (reg
, arg
)
6583 void *arg ATTRIBUTE_UNUSED
;
6585 emit_insn (gen_rtx_USE (VOIDmode
, reg
));
6589 use_return_register ()
6591 diddle_return_value (do_use_return_reg
, NULL
);
6594 /* Generate RTL for the end of the current function.
6595 FILENAME and LINE are the current position in the source file.
6597 It is up to language-specific callers to do cleanups for parameters--
6598 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6601 expand_function_end (filename
, line
, end_bindings
)
6602 const char *filename
;
6608 #ifdef TRAMPOLINE_TEMPLATE
6609 static rtx initial_trampoline
;
6612 finish_expr_for_function ();
6614 #ifdef NON_SAVING_SETJMP
6615 /* Don't put any variables in registers if we call setjmp
6616 on a machine that fails to restore the registers. */
6617 if (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
6619 if (DECL_INITIAL (current_function_decl
) != error_mark_node
)
6620 setjmp_protect (DECL_INITIAL (current_function_decl
));
6622 setjmp_protect_args ();
6626 /* Save the argument pointer if a save area was made for it. */
6627 if (arg_pointer_save_area
)
6629 /* arg_pointer_save_area may not be a valid memory address, so we
6630 have to check it and fix it if necessary. */
6633 emit_move_insn (validize_mem (arg_pointer_save_area
),
6634 virtual_incoming_args_rtx
);
6635 seq
= gen_sequence ();
6637 emit_insn_before (seq
, tail_recursion_reentry
);
6640 /* Initialize any trampolines required by this function. */
6641 for (link
= trampoline_list
; link
; link
= TREE_CHAIN (link
))
6643 tree function
= TREE_PURPOSE (link
);
6644 rtx context ATTRIBUTE_UNUSED
= lookup_static_chain (function
);
6645 rtx tramp
= RTL_EXPR_RTL (TREE_VALUE (link
));
6646 #ifdef TRAMPOLINE_TEMPLATE
6651 #ifdef TRAMPOLINE_TEMPLATE
6652 /* First make sure this compilation has a template for
6653 initializing trampolines. */
6654 if (initial_trampoline
== 0)
6657 = gen_rtx_MEM (BLKmode
, assemble_trampoline_template ());
6659 ggc_add_rtx_root (&initial_trampoline
, 1);
6663 /* Generate insns to initialize the trampoline. */
6665 tramp
= round_trampoline_addr (XEXP (tramp
, 0));
6666 #ifdef TRAMPOLINE_TEMPLATE
6667 blktramp
= change_address (initial_trampoline
, BLKmode
, tramp
);
6668 emit_block_move (blktramp
, initial_trampoline
,
6669 GEN_INT (TRAMPOLINE_SIZE
),
6670 TRAMPOLINE_ALIGNMENT
);
6672 INITIALIZE_TRAMPOLINE (tramp
, XEXP (DECL_RTL (function
), 0), context
);
6676 /* Put those insns at entry to the containing function (this one). */
6677 emit_insns_before (seq
, tail_recursion_reentry
);
6680 /* If we are doing stack checking and this function makes calls,
6681 do a stack probe at the start of the function to ensure we have enough
6682 space for another stack frame. */
6683 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
6687 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
6688 if (GET_CODE (insn
) == CALL_INSN
)
6691 probe_stack_range (STACK_CHECK_PROTECT
,
6692 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
));
6695 emit_insns_before (seq
, tail_recursion_reentry
);
6700 /* Warn about unused parms if extra warnings were specified. */
6701 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6702 warning. WARN_UNUSED_PARAMETER is negative when set by
6704 if (warn_unused_parameter
> 0
6705 || (warn_unused_parameter
< 0 && extra_warnings
))
6709 for (decl
= DECL_ARGUMENTS (current_function_decl
);
6710 decl
; decl
= TREE_CHAIN (decl
))
6711 if (! TREE_USED (decl
) && TREE_CODE (decl
) == PARM_DECL
6712 && DECL_NAME (decl
) && ! DECL_ARTIFICIAL (decl
))
6713 warning_with_decl (decl
, "unused parameter `%s'");
6716 /* Delete handlers for nonlocal gotos if nothing uses them. */
6717 if (nonlocal_goto_handler_slots
!= 0
6718 && ! current_function_has_nonlocal_label
)
6721 /* End any sequences that failed to be closed due to syntax errors. */
6722 while (in_sequence_p ())
6725 /* Outside function body, can't compute type's actual size
6726 until next function's body starts. */
6727 immediate_size_expand
--;
6729 clear_pending_stack_adjust ();
6730 do_pending_stack_adjust ();
6732 /* Mark the end of the function body.
6733 If control reaches this insn, the function can drop through
6734 without returning a value. */
6735 emit_note (NULL_PTR
, NOTE_INSN_FUNCTION_END
);
6737 /* Must mark the last line number note in the function, so that the test
6738 coverage code can avoid counting the last line twice. This just tells
6739 the code to ignore the immediately following line note, since there
6740 already exists a copy of this note somewhere above. This line number
6741 note is still needed for debugging though, so we can't delete it. */
6742 if (flag_test_coverage
)
6743 emit_note (NULL_PTR
, NOTE_INSN_REPEATED_LINE_NUMBER
);
6745 /* Output a linenumber for the end of the function.
6746 SDB depends on this. */
6747 emit_line_note_force (filename
, line
);
6749 /* Output the label for the actual return from the function,
6750 if one is expected. This happens either because a function epilogue
6751 is used instead of a return instruction, or because a return was done
6752 with a goto in order to run local cleanups, or because of pcc-style
6753 structure returning. */
6759 /* Before the return label, clobber the return registers so that
6760 they are not propogated live to the rest of the function. This
6761 can only happen with functions that drop through; if there had
6762 been a return statement, there would have either been a return
6763 rtx, or a jump to the return label. */
6765 before
= get_last_insn ();
6766 clobber_return_register ();
6767 after
= get_last_insn ();
6769 if (before
!= after
)
6770 cfun
->x_clobber_return_insn
= after
;
6772 emit_label (return_label
);
6775 /* C++ uses this. */
6777 expand_end_bindings (0, 0, 0);
6779 /* Now handle any leftover exception regions that may have been
6780 created for the parameters. */
6782 rtx last
= get_last_insn ();
6785 expand_leftover_cleanups ();
6787 /* If there are any catch_clauses remaining, output them now. */
6788 emit_insns (catch_clauses
);
6789 catch_clauses
= catch_clauses_last
= NULL_RTX
;
6790 /* If the above emitted any code, may sure we jump around it. */
6791 if (last
!= get_last_insn ())
6793 label
= gen_label_rtx ();
6794 last
= emit_jump_insn_after (gen_jump (label
), last
);
6795 last
= emit_barrier_after (last
);
6800 if (current_function_instrument_entry_exit
)
6802 rtx fun
= DECL_RTL (current_function_decl
);
6803 if (GET_CODE (fun
) == MEM
)
6804 fun
= XEXP (fun
, 0);
6807 emit_library_call (profile_function_exit_libfunc
, 0, VOIDmode
, 2,
6809 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS
,
6811 hard_frame_pointer_rtx
),
6815 /* If we had calls to alloca, and this machine needs
6816 an accurate stack pointer to exit the function,
6817 insert some code to save and restore the stack pointer. */
6818 #ifdef EXIT_IGNORE_STACK
6819 if (! EXIT_IGNORE_STACK
)
6821 if (current_function_calls_alloca
)
6825 emit_stack_save (SAVE_FUNCTION
, &tem
, parm_birth_insn
);
6826 emit_stack_restore (SAVE_FUNCTION
, tem
, NULL_RTX
);
6829 /* If scalar return value was computed in a pseudo-reg, or was a named
6830 return value that got dumped to the stack, copy that to the hard
6832 if (DECL_RTL (DECL_RESULT (current_function_decl
)) != 0)
6834 tree decl_result
= DECL_RESULT (current_function_decl
);
6835 rtx decl_rtl
= DECL_RTL (decl_result
);
6837 if (REG_P (decl_rtl
)
6838 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
6839 : DECL_REGISTER (decl_result
))
6843 #ifdef FUNCTION_OUTGOING_VALUE
6844 real_decl_rtl
= FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result
),
6845 current_function_decl
);
6847 real_decl_rtl
= FUNCTION_VALUE (TREE_TYPE (decl_result
),
6848 current_function_decl
);
6850 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
6852 /* If this is a BLKmode structure being returned in registers,
6853 then use the mode computed in expand_return. Note that if
6854 decl_rtl is memory, then its mode may have been changed,
6855 but that current_function_return_rtx has not. */
6856 if (GET_MODE (real_decl_rtl
) == BLKmode
)
6857 PUT_MODE (real_decl_rtl
, GET_MODE (current_function_return_rtx
));
6859 /* If a named return value dumped decl_return to memory, then
6860 we may need to re-do the PROMOTE_MODE signed/unsigned
6862 if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
6864 int unsignedp
= TREE_UNSIGNED (TREE_TYPE (decl_result
));
6866 #ifdef PROMOTE_FUNCTION_RETURN
6867 promote_mode (TREE_TYPE (decl_result
), GET_MODE (decl_rtl
),
6871 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
6874 emit_move_insn (real_decl_rtl
, decl_rtl
);
6876 /* The delay slot scheduler assumes that current_function_return_rtx
6877 holds the hard register containing the return value, not a
6878 temporary pseudo. */
6879 current_function_return_rtx
= real_decl_rtl
;
6883 /* If returning a structure, arrange to return the address of the value
6884 in a place where debuggers expect to find it.
6886 If returning a structure PCC style,
6887 the caller also depends on this value.
6888 And current_function_returns_pcc_struct is not necessarily set. */
6889 if (current_function_returns_struct
6890 || current_function_returns_pcc_struct
)
6893 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl
)), 0);
6894 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
6895 #ifdef FUNCTION_OUTGOING_VALUE
6897 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type
),
6898 current_function_decl
);
6901 = FUNCTION_VALUE (build_pointer_type (type
), current_function_decl
);
6904 /* Mark this as a function return value so integrate will delete the
6905 assignment and USE below when inlining this function. */
6906 REG_FUNCTION_VALUE_P (outgoing
) = 1;
6908 #ifdef POINTERS_EXTEND_UNSIGNED
6909 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6910 if (GET_MODE (outgoing
) != GET_MODE (value_address
))
6911 value_address
= convert_memory_address (GET_MODE (outgoing
),
6915 emit_move_insn (outgoing
, value_address
);
6917 /* Show return register used to hold result (in this case the address
6919 current_function_return_rtx
= outgoing
;
6922 /* ??? This should no longer be necessary since stupid is no longer with
6923 us, but there are some parts of the compiler (eg reload_combine, and
6924 sh mach_dep_reorg) that still try and compute their own lifetime info
6925 instead of using the general framework. */
6926 use_return_register ();
6928 /* If this is an implementation of __throw, do what's necessary to
6929 communicate between __builtin_eh_return and the epilogue. */
6930 expand_eh_return ();
6932 /* Output a return insn if we are using one.
6933 Otherwise, let the rtl chain end here, to drop through
6934 into the epilogue. */
6939 emit_jump_insn (gen_return ());
6944 /* Fix up any gotos that jumped out to the outermost
6945 binding level of the function.
6946 Must follow emitting RETURN_LABEL. */
6948 /* If you have any cleanups to do at this point,
6949 and they need to create temporary variables,
6950 then you will lose. */
6951 expand_fixups (get_insns ());
6954 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6955 sequence or a single insn). */
6958 record_insns (insns
, vecp
)
6962 if (GET_CODE (insns
) == SEQUENCE
)
6964 int len
= XVECLEN (insns
, 0);
6965 int i
= VARRAY_SIZE (*vecp
);
6967 VARRAY_GROW (*vecp
, i
+ len
);
6970 VARRAY_INT (*vecp
, i
) = INSN_UID (XVECEXP (insns
, 0, len
));
6976 int i
= VARRAY_SIZE (*vecp
);
6977 VARRAY_GROW (*vecp
, i
+ 1);
6978 VARRAY_INT (*vecp
, i
) = INSN_UID (insns
);
6982 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6985 contains (insn
, vec
)
6991 if (GET_CODE (insn
) == INSN
6992 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
6995 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
6996 for (j
= VARRAY_SIZE (vec
) - 1; j
>= 0; --j
)
6997 if (INSN_UID (XVECEXP (PATTERN (insn
), 0, i
)) == VARRAY_INT (vec
, j
))
7003 for (j
= VARRAY_SIZE (vec
) - 1; j
>= 0; --j
)
7004 if (INSN_UID (insn
) == VARRAY_INT (vec
, j
))
7011 prologue_epilogue_contains (insn
)
7014 if (contains (insn
, prologue
))
7016 if (contains (insn
, epilogue
))
7022 sibcall_epilogue_contains (insn
)
7025 if (sibcall_epilogue
)
7026 return contains (insn
, sibcall_epilogue
);
7031 /* Insert gen_return at the end of block BB. This also means updating
7032 block_for_insn appropriately. */
7035 emit_return_into_block (bb
, line_note
)
7041 p
= NEXT_INSN (bb
->end
);
7042 end
= emit_jump_insn_after (gen_return (), bb
->end
);
7044 emit_line_note_after (NOTE_SOURCE_FILE (line_note
),
7045 NOTE_LINE_NUMBER (line_note
), bb
->end
);
7049 set_block_for_insn (p
, bb
);
7056 #endif /* HAVE_return */
7058 #ifdef HAVE_epilogue
7060 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7061 to the stack pointer. */
7064 keep_stack_depressed (seq
)
7068 rtx sp_from_reg
= 0;
7069 int sp_modified_unknown
= 0;
7071 /* If the epilogue is just a single instruction, it's OK as is */
7073 if (GET_CODE (seq
) != SEQUENCE
)
7076 /* Scan all insns in SEQ looking for ones that modified the stack
7077 pointer. Record if it modified the stack pointer by copying it
7078 from the frame pointer or if it modified it in some other way.
7079 Then modify any subsequent stack pointer references to take that
7080 into account. We start by only allowing SP to be copied from a
7081 register (presumably FP) and then be subsequently referenced. */
7083 for (i
= 0; i
< XVECLEN (seq
, 0); i
++)
7085 rtx insn
= XVECEXP (seq
, 0, i
);
7087 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
7090 if (reg_set_p (stack_pointer_rtx
, insn
))
7092 rtx set
= single_set (insn
);
7094 /* If SP is set as a side-effect, we can't support this. */
7098 if (GET_CODE (SET_SRC (set
)) == REG
)
7099 sp_from_reg
= SET_SRC (set
);
7101 sp_modified_unknown
= 1;
7103 /* Don't allow the SP modification to happen. */
7104 PUT_CODE (insn
, NOTE
);
7105 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
7106 NOTE_SOURCE_FILE (insn
) = 0;
7108 else if (reg_referenced_p (stack_pointer_rtx
, PATTERN (insn
)))
7110 if (sp_modified_unknown
)
7113 else if (sp_from_reg
!= 0)
7115 = replace_rtx (PATTERN (insn
), stack_pointer_rtx
, sp_from_reg
);
7121 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7122 this into place with notes indicating where the prologue ends and where
7123 the epilogue begins. Update the basic block information when possible. */
7126 thread_prologue_and_epilogue_insns (f
)
7127 rtx f ATTRIBUTE_UNUSED
;
7132 #ifdef HAVE_prologue
7133 rtx prologue_end
= NULL_RTX
;
7135 #if defined (HAVE_epilogue) || defined(HAVE_return)
7136 rtx epilogue_end
= NULL_RTX
;
7139 #ifdef HAVE_prologue
7143 seq
= gen_prologue ();
7146 /* Retain a map of the prologue insns. */
7147 if (GET_CODE (seq
) != SEQUENCE
)
7149 record_insns (seq
, &prologue
);
7150 prologue_end
= emit_note (NULL
, NOTE_INSN_PROLOGUE_END
);
7152 seq
= gen_sequence ();
7155 /* If optimization is off, and perhaps in an empty function,
7156 the entry block will have no successors. */
7157 if (ENTRY_BLOCK_PTR
->succ
)
7159 /* Can't deal with multiple successsors of the entry block. */
7160 if (ENTRY_BLOCK_PTR
->succ
->succ_next
)
7163 insert_insn_on_edge (seq
, ENTRY_BLOCK_PTR
->succ
);
7167 emit_insn_after (seq
, f
);
7171 /* If the exit block has no non-fake predecessors, we don't need
7173 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7174 if ((e
->flags
& EDGE_FAKE
) == 0)
7180 if (optimize
&& HAVE_return
)
7182 /* If we're allowed to generate a simple return instruction,
7183 then by definition we don't need a full epilogue. Examine
7184 the block that falls through to EXIT. If it does not
7185 contain any code, examine its predecessors and try to
7186 emit (conditional) return instructions. */
7192 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7193 if (e
->flags
& EDGE_FALLTHRU
)
7199 /* Verify that there are no active instructions in the last block. */
7201 while (label
&& GET_CODE (label
) != CODE_LABEL
)
7203 if (active_insn_p (label
))
7205 label
= PREV_INSN (label
);
7208 if (last
->head
== label
&& GET_CODE (label
) == CODE_LABEL
)
7210 rtx epilogue_line_note
= NULL_RTX
;
7212 /* Locate the line number associated with the closing brace,
7213 if we can find one. */
7214 for (seq
= get_last_insn ();
7215 seq
&& ! active_insn_p (seq
);
7216 seq
= PREV_INSN (seq
))
7217 if (GET_CODE (seq
) == NOTE
&& NOTE_LINE_NUMBER (seq
) > 0)
7219 epilogue_line_note
= seq
;
7223 for (e
= last
->pred
; e
; e
= e_next
)
7225 basic_block bb
= e
->src
;
7228 e_next
= e
->pred_next
;
7229 if (bb
== ENTRY_BLOCK_PTR
)
7233 if ((GET_CODE (jump
) != JUMP_INSN
) || JUMP_LABEL (jump
) != label
)
7236 /* If we have an unconditional jump, we can replace that
7237 with a simple return instruction. */
7238 if (simplejump_p (jump
))
7240 emit_return_into_block (bb
, epilogue_line_note
);
7241 flow_delete_insn (jump
);
7244 /* If we have a conditional jump, we can try to replace
7245 that with a conditional return instruction. */
7246 else if (condjump_p (jump
))
7250 ret
= SET_SRC (PATTERN (jump
));
7251 if (GET_CODE (XEXP (ret
, 1)) == LABEL_REF
)
7252 loc
= &XEXP (ret
, 1);
7254 loc
= &XEXP (ret
, 2);
7255 ret
= gen_rtx_RETURN (VOIDmode
);
7257 if (! validate_change (jump
, loc
, ret
, 0))
7259 if (JUMP_LABEL (jump
))
7260 LABEL_NUSES (JUMP_LABEL (jump
))--;
7262 /* If this block has only one successor, it both jumps
7263 and falls through to the fallthru block, so we can't
7265 if (bb
->succ
->succ_next
== NULL
)
7271 /* Fix up the CFG for the successful change we just made. */
7272 redirect_edge_succ (e
, EXIT_BLOCK_PTR
);
7275 /* Emit a return insn for the exit fallthru block. Whether
7276 this is still reachable will be determined later. */
7278 emit_barrier_after (last
->end
);
7279 emit_return_into_block (last
, epilogue_line_note
);
7280 epilogue_end
= last
->end
;
7285 #ifdef HAVE_epilogue
7288 /* Find the edge that falls through to EXIT. Other edges may exist
7289 due to RETURN instructions, but those don't need epilogues.
7290 There really shouldn't be a mixture -- either all should have
7291 been converted or none, however... */
7293 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7294 if (e
->flags
& EDGE_FALLTHRU
)
7300 epilogue_end
= emit_note (NULL
, NOTE_INSN_EPILOGUE_BEG
);
7302 seq
= gen_epilogue ();
7304 /* If this function returns with the stack depressed, massage
7305 the epilogue to actually do that. */
7306 if (TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
7307 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl
)))
7308 keep_stack_depressed (seq
);
7310 emit_jump_insn (seq
);
7312 /* Retain a map of the epilogue insns. */
7313 if (GET_CODE (seq
) != SEQUENCE
)
7315 record_insns (seq
, &epilogue
);
7317 seq
= gen_sequence ();
7320 insert_insn_on_edge (seq
, e
);
7327 commit_edge_insertions ();
7329 #ifdef HAVE_sibcall_epilogue
7330 /* Emit sibling epilogues before any sibling call sites. */
7331 for (e
= EXIT_BLOCK_PTR
->pred
; e
; e
= e
->pred_next
)
7333 basic_block bb
= e
->src
;
7338 if (GET_CODE (insn
) != CALL_INSN
7339 || ! SIBLING_CALL_P (insn
))
7343 seq
= gen_sibcall_epilogue ();
7346 i
= PREV_INSN (insn
);
7347 newinsn
= emit_insn_before (seq
, insn
);
7349 /* Update the UID to basic block map. */
7350 for (i
= NEXT_INSN (i
); i
!= insn
; i
= NEXT_INSN (i
))
7351 set_block_for_insn (i
, bb
);
7353 /* Retain a map of the epilogue insns. Used in life analysis to
7354 avoid getting rid of sibcall epilogue insns. */
7355 record_insns (GET_CODE (seq
) == SEQUENCE
7356 ? seq
: newinsn
, &sibcall_epilogue
);
7360 #ifdef HAVE_prologue
7365 /* GDB handles `break f' by setting a breakpoint on the first
7366 line note after the prologue. Which means (1) that if
7367 there are line number notes before where we inserted the
7368 prologue we should move them, and (2) we should generate a
7369 note before the end of the first basic block, if there isn't
7370 one already there. */
7372 for (insn
= prologue_end
; insn
; insn
= prev
)
7374 prev
= PREV_INSN (insn
);
7375 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7377 /* Note that we cannot reorder the first insn in the
7378 chain, since rest_of_compilation relies on that
7379 remaining constant. */
7382 reorder_insns (insn
, insn
, prologue_end
);
7386 /* Find the last line number note in the first block. */
7387 for (insn
= BASIC_BLOCK (0)->end
;
7388 insn
!= prologue_end
;
7389 insn
= PREV_INSN (insn
))
7390 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7393 /* If we didn't find one, make a copy of the first line number
7397 for (insn
= next_active_insn (prologue_end
);
7399 insn
= PREV_INSN (insn
))
7400 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7402 emit_line_note_after (NOTE_SOURCE_FILE (insn
),
7403 NOTE_LINE_NUMBER (insn
),
7410 #ifdef HAVE_epilogue
7415 /* Similarly, move any line notes that appear after the epilogue.
7416 There is no need, however, to be quite so anal about the existance
7418 for (insn
= epilogue_end
; insn
; insn
= next
)
7420 next
= NEXT_INSN (insn
);
7421 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
7422 reorder_insns (insn
, insn
, PREV_INSN (epilogue_end
));
7428 /* Reposition the prologue-end and epilogue-begin notes after instruction
7429 scheduling and delayed branch scheduling. */
7432 reposition_prologue_and_epilogue_notes (f
)
7433 rtx f ATTRIBUTE_UNUSED
;
7435 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7438 if ((len
= VARRAY_SIZE (prologue
)) > 0)
7440 register rtx insn
, note
= 0;
7442 /* Scan from the beginning until we reach the last prologue insn.
7443 We apparently can't depend on basic_block_{head,end} after
7445 for (insn
= f
; len
&& insn
; insn
= NEXT_INSN (insn
))
7447 if (GET_CODE (insn
) == NOTE
)
7449 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_PROLOGUE_END
)
7452 else if ((len
-= contains (insn
, prologue
)) == 0)
7455 /* Find the prologue-end note if we haven't already, and
7456 move it to just after the last prologue insn. */
7459 for (note
= insn
; (note
= NEXT_INSN (note
));)
7460 if (GET_CODE (note
) == NOTE
7461 && NOTE_LINE_NUMBER (note
) == NOTE_INSN_PROLOGUE_END
)
7465 next
= NEXT_INSN (note
);
7467 /* Whether or not we can depend on BLOCK_HEAD,
7468 attempt to keep it up-to-date. */
7469 if (BLOCK_HEAD (0) == note
)
7470 BLOCK_HEAD (0) = next
;
7473 add_insn_after (note
, insn
);
7478 if ((len
= VARRAY_SIZE (epilogue
)) > 0)
7480 register rtx insn
, note
= 0;
7482 /* Scan from the end until we reach the first epilogue insn.
7483 We apparently can't depend on basic_block_{head,end} after
7485 for (insn
= get_last_insn (); len
&& insn
; insn
= PREV_INSN (insn
))
7487 if (GET_CODE (insn
) == NOTE
)
7489 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
7492 else if ((len
-= contains (insn
, epilogue
)) == 0)
7494 /* Find the epilogue-begin note if we haven't already, and
7495 move it to just before the first epilogue insn. */
7498 for (note
= insn
; (note
= PREV_INSN (note
));)
7499 if (GET_CODE (note
) == NOTE
7500 && NOTE_LINE_NUMBER (note
) == NOTE_INSN_EPILOGUE_BEG
)
7504 /* Whether or not we can depend on BLOCK_HEAD,
7505 attempt to keep it up-to-date. */
7507 && BLOCK_HEAD (n_basic_blocks
-1) == insn
)
7508 BLOCK_HEAD (n_basic_blocks
-1) = note
;
7511 add_insn_before (note
, insn
);
7515 #endif /* HAVE_prologue or HAVE_epilogue */
7518 /* Mark T for GC. */
7522 struct temp_slot
*t
;
7526 ggc_mark_rtx (t
->slot
);
7527 ggc_mark_rtx (t
->address
);
7528 ggc_mark_tree (t
->rtl_expr
);
7529 ggc_mark_tree (t
->type
);
7535 /* Mark P for GC. */
7538 mark_function_status (p
)
7547 ggc_mark_rtx (p
->arg_offset_rtx
);
7549 if (p
->x_parm_reg_stack_loc
)
7550 for (i
= p
->x_max_parm_reg
, r
= p
->x_parm_reg_stack_loc
;
7554 ggc_mark_rtx (p
->return_rtx
);
7555 ggc_mark_rtx (p
->x_cleanup_label
);
7556 ggc_mark_rtx (p
->x_return_label
);
7557 ggc_mark_rtx (p
->x_save_expr_regs
);
7558 ggc_mark_rtx (p
->x_stack_slot_list
);
7559 ggc_mark_rtx (p
->x_parm_birth_insn
);
7560 ggc_mark_rtx (p
->x_tail_recursion_label
);
7561 ggc_mark_rtx (p
->x_tail_recursion_reentry
);
7562 ggc_mark_rtx (p
->internal_arg_pointer
);
7563 ggc_mark_rtx (p
->x_arg_pointer_save_area
);
7564 ggc_mark_tree (p
->x_rtl_expr_chain
);
7565 ggc_mark_rtx (p
->x_last_parm_insn
);
7566 ggc_mark_tree (p
->x_context_display
);
7567 ggc_mark_tree (p
->x_trampoline_list
);
7568 ggc_mark_rtx (p
->epilogue_delay_list
);
7569 ggc_mark_rtx (p
->x_clobber_return_insn
);
7571 mark_temp_slot (p
->x_temp_slots
);
7574 struct var_refs_queue
*q
= p
->fixup_var_refs_queue
;
7577 ggc_mark_rtx (q
->modified
);
7582 ggc_mark_rtx (p
->x_nonlocal_goto_handler_slots
);
7583 ggc_mark_rtx (p
->x_nonlocal_goto_handler_labels
);
7584 ggc_mark_rtx (p
->x_nonlocal_goto_stack_level
);
7585 ggc_mark_tree (p
->x_nonlocal_labels
);
7588 /* Mark the function chain ARG (which is really a struct function **)
7592 mark_function_chain (arg
)
7595 struct function
*f
= *(struct function
**) arg
;
7597 for (; f
; f
= f
->next_global
)
7599 ggc_mark_tree (f
->decl
);
7601 mark_function_status (f
);
7602 mark_eh_status (f
->eh
);
7603 mark_stmt_status (f
->stmt
);
7604 mark_expr_status (f
->expr
);
7605 mark_emit_status (f
->emit
);
7606 mark_varasm_status (f
->varasm
);
7608 if (mark_machine_status
)
7609 (*mark_machine_status
) (f
);
7610 if (mark_lang_status
)
7611 (*mark_lang_status
) (f
);
7613 if (f
->original_arg_vector
)
7614 ggc_mark_rtvec ((rtvec
) f
->original_arg_vector
);
7615 if (f
->original_decl_initial
)
7616 ggc_mark_tree (f
->original_decl_initial
);
7620 /* Called once, at initialization, to initialize function.c. */
7623 init_function_once ()
7625 ggc_add_root (&all_functions
, 1, sizeof all_functions
,
7626 mark_function_chain
);
7628 VARRAY_INT_INIT (prologue
, 0, "prologue");
7629 VARRAY_INT_INIT (epilogue
, 0, "epilogue");
7630 VARRAY_INT_INIT (sibcall_epilogue
, 0, "sibcall_epilogue");