2001-01-23 Alexandre Petit-Bianco <apbianco@cygnus.com>
[official-gcc.git] / gcc / explow.c
blobaa1e8a6927031c1e3d9400c9f0f08f4dbbd4d1f2
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "hard-reg-set.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "insn-flags.h"
36 #include "insn-codes.h"
38 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
39 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
40 #endif
42 static rtx break_out_memory_refs PARAMS ((rtx));
43 static void emit_stack_probe PARAMS ((rtx));
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 HOST_WIDE_INT
49 trunc_int_for_mode (c, mode)
50 HOST_WIDE_INT c;
51 enum machine_mode mode;
53 int width = GET_MODE_BITSIZE (mode);
55 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
56 if (mode == BImode)
57 return c & 1 ? STORE_FLAG_VALUE : 0;
59 /* We clear out all bits that don't belong in MODE, unless they and our
60 sign bit are all one. So we get either a reasonable negative
61 value or a reasonable unsigned value. */
63 if (width < HOST_BITS_PER_WIDE_INT
64 && ((c & ((HOST_WIDE_INT) (-1) << (width - 1)))
65 != ((HOST_WIDE_INT) (-1) << (width - 1))))
66 c &= ((HOST_WIDE_INT) 1 << width) - 1;
68 /* If this would be an entire word for the target, but is not for
69 the host, then sign-extend on the host so that the number will look
70 the same way on the host that it would on the target.
72 For example, when building a 64 bit alpha hosted 32 bit sparc
73 targeted compiler, then we want the 32 bit unsigned value -1 to be
74 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
75 The later confuses the sparc backend. */
77 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT
78 && BITS_PER_WORD == width
79 && (c & ((HOST_WIDE_INT) 1 << (width - 1))))
80 c |= ((HOST_WIDE_INT) (-1) << width);
82 return c;
85 /* Return an rtx for the sum of X and the integer C.
87 This function should be used via the `plus_constant' macro. */
89 rtx
90 plus_constant_wide (x, c)
91 register rtx x;
92 register HOST_WIDE_INT c;
94 register RTX_CODE code;
95 register enum machine_mode mode;
96 register rtx tem;
97 int all_constant = 0;
99 if (c == 0)
100 return x;
102 restart:
104 code = GET_CODE (x);
105 mode = GET_MODE (x);
106 switch (code)
108 case CONST_INT:
109 return GEN_INT (INTVAL (x) + c);
111 case CONST_DOUBLE:
113 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
114 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
115 unsigned HOST_WIDE_INT l2 = c;
116 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
117 unsigned HOST_WIDE_INT lv;
118 HOST_WIDE_INT hv;
120 add_double (l1, h1, l2, h2, &lv, &hv);
122 return immed_double_const (lv, hv, VOIDmode);
125 case MEM:
126 /* If this is a reference to the constant pool, try replacing it with
127 a reference to a new constant. If the resulting address isn't
128 valid, don't return it because we have no way to validize it. */
129 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
130 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
133 = force_const_mem (GET_MODE (x),
134 plus_constant (get_pool_constant (XEXP (x, 0)),
135 c));
136 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
137 return tem;
139 break;
141 case CONST:
142 /* If adding to something entirely constant, set a flag
143 so that we can add a CONST around the result. */
144 x = XEXP (x, 0);
145 all_constant = 1;
146 goto restart;
148 case SYMBOL_REF:
149 case LABEL_REF:
150 all_constant = 1;
151 break;
153 case PLUS:
154 /* The interesting case is adding the integer to a sum.
155 Look for constant term in the sum and combine
156 with C. For an integer constant term, we make a combined
157 integer. For a constant term that is not an explicit integer,
158 we cannot really combine, but group them together anyway.
160 Restart or use a recursive call in case the remaining operand is
161 something that we handle specially, such as a SYMBOL_REF.
163 We may not immediately return from the recursive call here, lest
164 all_constant gets lost. */
166 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
168 c += INTVAL (XEXP (x, 1));
170 if (GET_MODE (x) != VOIDmode)
171 c = trunc_int_for_mode (c, GET_MODE (x));
173 x = XEXP (x, 0);
174 goto restart;
176 else if (CONSTANT_P (XEXP (x, 0)))
178 x = gen_rtx_PLUS (mode,
179 plus_constant (XEXP (x, 0), c),
180 XEXP (x, 1));
181 c = 0;
183 else if (CONSTANT_P (XEXP (x, 1)))
185 x = gen_rtx_PLUS (mode,
186 XEXP (x, 0),
187 plus_constant (XEXP (x, 1), c));
188 c = 0;
190 break;
192 default:
193 break;
196 if (c != 0)
197 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
199 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
200 return x;
201 else if (all_constant)
202 return gen_rtx_CONST (mode, x);
203 else
204 return x;
207 /* This is the same as `plus_constant', except that it handles LO_SUM.
209 This function should be used via the `plus_constant_for_output' macro. */
212 plus_constant_for_output_wide (x, c)
213 register rtx x;
214 register HOST_WIDE_INT c;
216 register enum machine_mode mode = GET_MODE (x);
218 if (GET_CODE (x) == LO_SUM)
219 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
220 plus_constant_for_output (XEXP (x, 1), c));
222 else
223 return plus_constant (x, c);
226 /* If X is a sum, return a new sum like X but lacking any constant terms.
227 Add all the removed constant terms into *CONSTPTR.
228 X itself is not altered. The result != X if and only if
229 it is not isomorphic to X. */
232 eliminate_constant_term (x, constptr)
233 rtx x;
234 rtx *constptr;
236 register rtx x0, x1;
237 rtx tem;
239 if (GET_CODE (x) != PLUS)
240 return x;
242 /* First handle constants appearing at this level explicitly. */
243 if (GET_CODE (XEXP (x, 1)) == CONST_INT
244 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
245 XEXP (x, 1)))
246 && GET_CODE (tem) == CONST_INT)
248 *constptr = tem;
249 return eliminate_constant_term (XEXP (x, 0), constptr);
252 tem = const0_rtx;
253 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
254 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
255 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
256 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
257 *constptr, tem))
258 && GET_CODE (tem) == CONST_INT)
260 *constptr = tem;
261 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
264 return x;
267 /* Returns the insn that next references REG after INSN, or 0
268 if REG is clobbered before next referenced or we cannot find
269 an insn that references REG in a straight-line piece of code. */
272 find_next_ref (reg, insn)
273 rtx reg;
274 rtx insn;
276 rtx next;
278 for (insn = NEXT_INSN (insn); insn; insn = next)
280 next = NEXT_INSN (insn);
281 if (GET_CODE (insn) == NOTE)
282 continue;
283 if (GET_CODE (insn) == CODE_LABEL
284 || GET_CODE (insn) == BARRIER)
285 return 0;
286 if (GET_CODE (insn) == INSN
287 || GET_CODE (insn) == JUMP_INSN
288 || GET_CODE (insn) == CALL_INSN)
290 if (reg_set_p (reg, insn))
291 return 0;
292 if (reg_mentioned_p (reg, PATTERN (insn)))
293 return insn;
294 if (GET_CODE (insn) == JUMP_INSN)
296 if (any_uncondjump_p (insn))
297 next = JUMP_LABEL (insn);
298 else
299 return 0;
301 if (GET_CODE (insn) == CALL_INSN
302 && REGNO (reg) < FIRST_PSEUDO_REGISTER
303 && call_used_regs[REGNO (reg)])
304 return 0;
306 else
307 abort ();
309 return 0;
312 /* Return an rtx for the size in bytes of the value of EXP. */
315 expr_size (exp)
316 tree exp;
318 tree size = size_in_bytes (TREE_TYPE (exp));
320 if (TREE_CODE (size) != INTEGER_CST
321 && contains_placeholder_p (size))
322 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
324 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
325 EXPAND_MEMORY_USE_BAD);
328 /* Return a copy of X in which all memory references
329 and all constants that involve symbol refs
330 have been replaced with new temporary registers.
331 Also emit code to load the memory locations and constants
332 into those registers.
334 If X contains no such constants or memory references,
335 X itself (not a copy) is returned.
337 If a constant is found in the address that is not a legitimate constant
338 in an insn, it is left alone in the hope that it might be valid in the
339 address.
341 X may contain no arithmetic except addition, subtraction and multiplication.
342 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
344 static rtx
345 break_out_memory_refs (x)
346 register rtx x;
348 if (GET_CODE (x) == MEM
349 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
350 && GET_MODE (x) != VOIDmode))
351 x = force_reg (GET_MODE (x), x);
352 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
353 || GET_CODE (x) == MULT)
355 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
356 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
358 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
359 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
362 return x;
365 #ifdef POINTERS_EXTEND_UNSIGNED
367 /* Given X, a memory address in ptr_mode, convert it to an address
368 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
369 the fact that pointers are not allowed to overflow by commuting arithmetic
370 operations over conversions so that address arithmetic insns can be
371 used. */
374 convert_memory_address (to_mode, x)
375 enum machine_mode to_mode;
376 rtx x;
378 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
379 rtx temp;
381 /* Here we handle some special cases. If none of them apply, fall through
382 to the default case. */
383 switch (GET_CODE (x))
385 case CONST_INT:
386 case CONST_DOUBLE:
387 return x;
389 case LABEL_REF:
390 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
391 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
392 return temp;
394 case SYMBOL_REF:
395 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
396 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
397 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
398 STRING_POOL_ADDRESS_P (temp) = STRING_POOL_ADDRESS_P (x);
399 return temp;
401 case CONST:
402 return gen_rtx_CONST (to_mode,
403 convert_memory_address (to_mode, XEXP (x, 0)));
405 case PLUS:
406 case MULT:
407 /* For addition the second operand is a small constant, we can safely
408 permute the conversion and addition operation. We can always safely
409 permute them if we are making the address narrower. In addition,
410 always permute the operations if this is a constant. */
411 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
412 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
413 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
414 || CONSTANT_P (XEXP (x, 0)))))
415 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
416 convert_memory_address (to_mode, XEXP (x, 0)),
417 convert_memory_address (to_mode, XEXP (x, 1)));
418 break;
420 default:
421 break;
424 return convert_modes (to_mode, from_mode,
425 x, POINTERS_EXTEND_UNSIGNED);
427 #endif
429 /* Given a memory address or facsimile X, construct a new address,
430 currently equivalent, that is stable: future stores won't change it.
432 X must be composed of constants, register and memory references
433 combined with addition, subtraction and multiplication:
434 in other words, just what you can get from expand_expr if sum_ok is 1.
436 Works by making copies of all regs and memory locations used
437 by X and combining them the same way X does.
438 You could also stabilize the reference to this address
439 by copying the address to a register with copy_to_reg;
440 but then you wouldn't get indexed addressing in the reference. */
443 copy_all_regs (x)
444 register rtx x;
446 if (GET_CODE (x) == REG)
448 if (REGNO (x) != FRAME_POINTER_REGNUM
449 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
450 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
451 #endif
453 x = copy_to_reg (x);
455 else if (GET_CODE (x) == MEM)
456 x = copy_to_reg (x);
457 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
458 || GET_CODE (x) == MULT)
460 register rtx op0 = copy_all_regs (XEXP (x, 0));
461 register rtx op1 = copy_all_regs (XEXP (x, 1));
462 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
463 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
465 return x;
468 /* Return something equivalent to X but valid as a memory address
469 for something of mode MODE. When X is not itself valid, this
470 works by copying X or subexpressions of it into registers. */
473 memory_address (mode, x)
474 enum machine_mode mode;
475 register rtx x;
477 register rtx oldx = x;
479 if (GET_CODE (x) == ADDRESSOF)
480 return x;
482 #ifdef POINTERS_EXTEND_UNSIGNED
483 if (GET_MODE (x) == ptr_mode)
484 x = convert_memory_address (Pmode, x);
485 #endif
487 /* By passing constant addresses thru registers
488 we get a chance to cse them. */
489 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
490 x = force_reg (Pmode, x);
492 /* Accept a QUEUED that refers to a REG
493 even though that isn't a valid address.
494 On attempting to put this in an insn we will call protect_from_queue
495 which will turn it into a REG, which is valid. */
496 else if (GET_CODE (x) == QUEUED
497 && GET_CODE (QUEUED_VAR (x)) == REG)
500 /* We get better cse by rejecting indirect addressing at this stage.
501 Let the combiner create indirect addresses where appropriate.
502 For now, generate the code so that the subexpressions useful to share
503 are visible. But not if cse won't be done! */
504 else
506 if (! cse_not_expected && GET_CODE (x) != REG)
507 x = break_out_memory_refs (x);
509 /* At this point, any valid address is accepted. */
510 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
512 /* If it was valid before but breaking out memory refs invalidated it,
513 use it the old way. */
514 if (memory_address_p (mode, oldx))
515 goto win2;
517 /* Perform machine-dependent transformations on X
518 in certain cases. This is not necessary since the code
519 below can handle all possible cases, but machine-dependent
520 transformations can make better code. */
521 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
523 /* PLUS and MULT can appear in special ways
524 as the result of attempts to make an address usable for indexing.
525 Usually they are dealt with by calling force_operand, below.
526 But a sum containing constant terms is special
527 if removing them makes the sum a valid address:
528 then we generate that address in a register
529 and index off of it. We do this because it often makes
530 shorter code, and because the addresses thus generated
531 in registers often become common subexpressions. */
532 if (GET_CODE (x) == PLUS)
534 rtx constant_term = const0_rtx;
535 rtx y = eliminate_constant_term (x, &constant_term);
536 if (constant_term == const0_rtx
537 || ! memory_address_p (mode, y))
538 x = force_operand (x, NULL_RTX);
539 else
541 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
542 if (! memory_address_p (mode, y))
543 x = force_operand (x, NULL_RTX);
544 else
545 x = y;
549 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
550 x = force_operand (x, NULL_RTX);
552 /* If we have a register that's an invalid address,
553 it must be a hard reg of the wrong class. Copy it to a pseudo. */
554 else if (GET_CODE (x) == REG)
555 x = copy_to_reg (x);
557 /* Last resort: copy the value to a register, since
558 the register is a valid address. */
559 else
560 x = force_reg (Pmode, x);
562 goto done;
564 win2:
565 x = oldx;
566 win:
567 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
568 /* Don't copy an addr via a reg if it is one of our stack slots. */
569 && ! (GET_CODE (x) == PLUS
570 && (XEXP (x, 0) == virtual_stack_vars_rtx
571 || XEXP (x, 0) == virtual_incoming_args_rtx)))
573 if (general_operand (x, Pmode))
574 x = force_reg (Pmode, x);
575 else
576 x = force_operand (x, NULL_RTX);
580 done:
582 /* If we didn't change the address, we are done. Otherwise, mark
583 a reg as a pointer if we have REG or REG + CONST_INT. */
584 if (oldx == x)
585 return x;
586 else if (GET_CODE (x) == REG)
587 mark_reg_pointer (x, BITS_PER_UNIT);
588 else if (GET_CODE (x) == PLUS
589 && GET_CODE (XEXP (x, 0)) == REG
590 && GET_CODE (XEXP (x, 1)) == CONST_INT)
591 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
593 /* OLDX may have been the address on a temporary. Update the address
594 to indicate that X is now used. */
595 update_temp_slot_address (oldx, x);
597 return x;
600 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
603 memory_address_noforce (mode, x)
604 enum machine_mode mode;
605 rtx x;
607 int ambient_force_addr = flag_force_addr;
608 rtx val;
610 flag_force_addr = 0;
611 val = memory_address (mode, x);
612 flag_force_addr = ambient_force_addr;
613 return val;
616 /* Convert a mem ref into one with a valid memory address.
617 Pass through anything else unchanged. */
620 validize_mem (ref)
621 rtx ref;
623 if (GET_CODE (ref) != MEM)
624 return ref;
625 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
626 return ref;
627 /* Don't alter REF itself, since that is probably a stack slot. */
628 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
631 /* Given REF, either a MEM or a REG, and T, either the type of X or
632 the expression corresponding to REF, set RTX_UNCHANGING_P if
633 appropriate. */
635 void
636 maybe_set_unchanging (ref, t)
637 rtx ref;
638 tree t;
640 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
641 initialization is only executed once, or whose initializer always
642 has the same value. Currently we simplify this to PARM_DECLs in the
643 first case, and decls with TREE_CONSTANT initializers in the second. */
644 if ((TREE_READONLY (t) && DECL_P (t)
645 && (TREE_CODE (t) == PARM_DECL
646 || DECL_INITIAL (t) == NULL_TREE
647 || TREE_CONSTANT (DECL_INITIAL (t))))
648 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
649 RTX_UNCHANGING_P (ref) = 1;
652 /* Given REF, a MEM, and T, either the type of X or the expression
653 corresponding to REF, set the memory attributes. OBJECTP is nonzero
654 if we are making a new object of this type. */
656 void
657 set_mem_attributes (ref, t, objectp)
658 rtx ref;
659 tree t;
660 int objectp;
662 tree type;
664 /* It can happen that type_for_mode was given a mode for which there
665 is no language-level type. In which case it returns NULL, which
666 we can see here. */
667 if (t == NULL_TREE)
668 return;
670 type = TYPE_P (t) ? t : TREE_TYPE (t);
672 /* Get the alias set from the expression or type (perhaps using a
673 front-end routine) and then copy bits from the type. */
675 /* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY (type)
676 here, because, in C and C++, the fact that a location is accessed
677 through a const expression does not mean that the value there can
678 never change. */
679 MEM_ALIAS_SET (ref) = get_alias_set (t);
680 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
681 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
683 /* If we are making an object of this type, we know that it is a scalar if
684 the type is not an aggregate. */
685 if (objectp && ! AGGREGATE_TYPE_P (type))
686 MEM_SCALAR_P (ref) = 1;
688 /* If T is a type, this is all we can do. Otherwise, we may be able
689 to deduce some more information about the expression. */
690 if (TYPE_P (t))
691 return;
693 maybe_set_unchanging (ref, t);
694 if (TREE_THIS_VOLATILE (t))
695 MEM_VOLATILE_P (ref) = 1;
697 /* Now see if we can say more about whether it's an aggregate or
698 scalar. If we already know it's an aggregate, don't bother. */
699 if (MEM_IN_STRUCT_P (ref))
700 return;
702 /* Now remove any NOPs: they don't change what the underlying object is.
703 Likewise for SAVE_EXPR. */
704 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
705 || TREE_CODE (t) == NON_LVALUE_EXPR || TREE_CODE (t) == SAVE_EXPR)
706 t = TREE_OPERAND (t, 0);
708 /* Since we already know the type isn't an aggregate, if this is a decl,
709 it must be a scalar. Or if it is a reference into an aggregate,
710 this is part of an aggregate. Otherwise we don't know. */
711 if (DECL_P (t))
712 MEM_SCALAR_P (ref) = 1;
713 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
714 || TREE_CODE (t) == BIT_FIELD_REF)
715 MEM_IN_STRUCT_P (ref) = 1;
718 /* Return a modified copy of X with its memory address copied
719 into a temporary register to protect it from side effects.
720 If X is not a MEM, it is returned unchanged (and not copied).
721 Perhaps even if it is a MEM, if there is no need to change it. */
724 stabilize (x)
725 rtx x;
727 register rtx addr;
729 if (GET_CODE (x) != MEM)
730 return x;
732 addr = XEXP (x, 0);
733 if (rtx_unstable_p (addr))
735 rtx temp = force_reg (Pmode, copy_all_regs (addr));
736 rtx mem = gen_rtx_MEM (GET_MODE (x), temp);
738 MEM_COPY_ATTRIBUTES (mem, x);
739 return mem;
741 return x;
744 /* Copy the value or contents of X to a new temp reg and return that reg. */
747 copy_to_reg (x)
748 rtx x;
750 register rtx temp = gen_reg_rtx (GET_MODE (x));
752 /* If not an operand, must be an address with PLUS and MULT so
753 do the computation. */
754 if (! general_operand (x, VOIDmode))
755 x = force_operand (x, temp);
757 if (x != temp)
758 emit_move_insn (temp, x);
760 return temp;
763 /* Like copy_to_reg but always give the new register mode Pmode
764 in case X is a constant. */
767 copy_addr_to_reg (x)
768 rtx x;
770 return copy_to_mode_reg (Pmode, x);
773 /* Like copy_to_reg but always give the new register mode MODE
774 in case X is a constant. */
777 copy_to_mode_reg (mode, x)
778 enum machine_mode mode;
779 rtx x;
781 register rtx temp = gen_reg_rtx (mode);
783 /* If not an operand, must be an address with PLUS and MULT so
784 do the computation. */
785 if (! general_operand (x, VOIDmode))
786 x = force_operand (x, temp);
788 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
789 abort ();
790 if (x != temp)
791 emit_move_insn (temp, x);
792 return temp;
795 /* Load X into a register if it is not already one.
796 Use mode MODE for the register.
797 X should be valid for mode MODE, but it may be a constant which
798 is valid for all integer modes; that's why caller must specify MODE.
800 The caller must not alter the value in the register we return,
801 since we mark it as a "constant" register. */
804 force_reg (mode, x)
805 enum machine_mode mode;
806 rtx x;
808 register rtx temp, insn, set;
810 if (GET_CODE (x) == REG)
811 return x;
813 temp = gen_reg_rtx (mode);
815 if (! general_operand (x, mode))
816 x = force_operand (x, NULL_RTX);
818 insn = emit_move_insn (temp, x);
820 /* Let optimizers know that TEMP's value never changes
821 and that X can be substituted for it. Don't get confused
822 if INSN set something else (such as a SUBREG of TEMP). */
823 if (CONSTANT_P (x)
824 && (set = single_set (insn)) != 0
825 && SET_DEST (set) == temp)
827 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
829 if (note)
830 XEXP (note, 0) = x;
831 else
832 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
834 return temp;
837 /* If X is a memory ref, copy its contents to a new temp reg and return
838 that reg. Otherwise, return X. */
841 force_not_mem (x)
842 rtx x;
844 register rtx temp;
846 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
847 return x;
849 temp = gen_reg_rtx (GET_MODE (x));
850 emit_move_insn (temp, x);
851 return temp;
854 /* Copy X to TARGET (if it's nonzero and a reg)
855 or to a new temp reg and return that reg.
856 MODE is the mode to use for X in case it is a constant. */
859 copy_to_suggested_reg (x, target, mode)
860 rtx x, target;
861 enum machine_mode mode;
863 register rtx temp;
865 if (target && GET_CODE (target) == REG)
866 temp = target;
867 else
868 temp = gen_reg_rtx (mode);
870 emit_move_insn (temp, x);
871 return temp;
874 /* Return the mode to use to store a scalar of TYPE and MODE.
875 PUNSIGNEDP points to the signedness of the type and may be adjusted
876 to show what signedness to use on extension operations.
878 FOR_CALL is non-zero if this call is promoting args for a call. */
880 enum machine_mode
881 promote_mode (type, mode, punsignedp, for_call)
882 tree type;
883 enum machine_mode mode;
884 int *punsignedp;
885 int for_call ATTRIBUTE_UNUSED;
887 enum tree_code code = TREE_CODE (type);
888 int unsignedp = *punsignedp;
890 #ifdef PROMOTE_FOR_CALL_ONLY
891 if (! for_call)
892 return mode;
893 #endif
895 switch (code)
897 #ifdef PROMOTE_MODE
898 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
899 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
900 PROMOTE_MODE (mode, unsignedp, type);
901 break;
902 #endif
904 #ifdef POINTERS_EXTEND_UNSIGNED
905 case REFERENCE_TYPE:
906 case POINTER_TYPE:
907 mode = Pmode;
908 unsignedp = POINTERS_EXTEND_UNSIGNED;
909 break;
910 #endif
912 default:
913 break;
916 *punsignedp = unsignedp;
917 return mode;
920 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
921 This pops when ADJUST is positive. ADJUST need not be constant. */
923 void
924 adjust_stack (adjust)
925 rtx adjust;
927 rtx temp;
928 adjust = protect_from_queue (adjust, 0);
930 if (adjust == const0_rtx)
931 return;
933 /* We expect all variable sized adjustments to be multiple of
934 PREFERRED_STACK_BOUNDARY. */
935 if (GET_CODE (adjust) == CONST_INT)
936 stack_pointer_delta -= INTVAL (adjust);
938 temp = expand_binop (Pmode,
939 #ifdef STACK_GROWS_DOWNWARD
940 add_optab,
941 #else
942 sub_optab,
943 #endif
944 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
945 OPTAB_LIB_WIDEN);
947 if (temp != stack_pointer_rtx)
948 emit_move_insn (stack_pointer_rtx, temp);
951 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
952 This pushes when ADJUST is positive. ADJUST need not be constant. */
954 void
955 anti_adjust_stack (adjust)
956 rtx adjust;
958 rtx temp;
959 adjust = protect_from_queue (adjust, 0);
961 if (adjust == const0_rtx)
962 return;
964 /* We expect all variable sized adjustments to be multiple of
965 PREFERRED_STACK_BOUNDARY. */
966 if (GET_CODE (adjust) == CONST_INT)
967 stack_pointer_delta += INTVAL (adjust);
969 temp = expand_binop (Pmode,
970 #ifdef STACK_GROWS_DOWNWARD
971 sub_optab,
972 #else
973 add_optab,
974 #endif
975 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
976 OPTAB_LIB_WIDEN);
978 if (temp != stack_pointer_rtx)
979 emit_move_insn (stack_pointer_rtx, temp);
982 /* Round the size of a block to be pushed up to the boundary required
983 by this machine. SIZE is the desired size, which need not be constant. */
986 round_push (size)
987 rtx size;
989 #ifdef PREFERRED_STACK_BOUNDARY
990 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
991 if (align == 1)
992 return size;
993 if (GET_CODE (size) == CONST_INT)
995 int new = (INTVAL (size) + align - 1) / align * align;
996 if (INTVAL (size) != new)
997 size = GEN_INT (new);
999 else
1001 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1002 but we know it can't. So add ourselves and then do
1003 TRUNC_DIV_EXPR. */
1004 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
1005 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1006 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
1007 NULL_RTX, 1);
1008 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
1010 #endif /* PREFERRED_STACK_BOUNDARY */
1011 return size;
1014 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1015 to a previously-created save area. If no save area has been allocated,
1016 this function will allocate one. If a save area is specified, it
1017 must be of the proper mode.
1019 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
1020 are emitted at the current position. */
1022 void
1023 emit_stack_save (save_level, psave, after)
1024 enum save_level save_level;
1025 rtx *psave;
1026 rtx after;
1028 rtx sa = *psave;
1029 /* The default is that we use a move insn and save in a Pmode object. */
1030 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1031 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1033 /* See if this machine has anything special to do for this kind of save. */
1034 switch (save_level)
1036 #ifdef HAVE_save_stack_block
1037 case SAVE_BLOCK:
1038 if (HAVE_save_stack_block)
1039 fcn = gen_save_stack_block;
1040 break;
1041 #endif
1042 #ifdef HAVE_save_stack_function
1043 case SAVE_FUNCTION:
1044 if (HAVE_save_stack_function)
1045 fcn = gen_save_stack_function;
1046 break;
1047 #endif
1048 #ifdef HAVE_save_stack_nonlocal
1049 case SAVE_NONLOCAL:
1050 if (HAVE_save_stack_nonlocal)
1051 fcn = gen_save_stack_nonlocal;
1052 break;
1053 #endif
1054 default:
1055 break;
1058 /* If there is no save area and we have to allocate one, do so. Otherwise
1059 verify the save area is the proper mode. */
1061 if (sa == 0)
1063 if (mode != VOIDmode)
1065 if (save_level == SAVE_NONLOCAL)
1066 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1067 else
1068 *psave = sa = gen_reg_rtx (mode);
1071 else
1073 if (mode == VOIDmode || GET_MODE (sa) != mode)
1074 abort ();
1077 if (after)
1079 rtx seq;
1081 start_sequence ();
1082 /* We must validize inside the sequence, to ensure that any instructions
1083 created by the validize call also get moved to the right place. */
1084 if (sa != 0)
1085 sa = validize_mem (sa);
1086 emit_insn (fcn (sa, stack_pointer_rtx));
1087 seq = gen_sequence ();
1088 end_sequence ();
1089 emit_insn_after (seq, after);
1091 else
1093 if (sa != 0)
1094 sa = validize_mem (sa);
1095 emit_insn (fcn (sa, stack_pointer_rtx));
1099 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1100 area made by emit_stack_save. If it is zero, we have nothing to do.
1102 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1103 current position. */
1105 void
1106 emit_stack_restore (save_level, sa, after)
1107 enum save_level save_level;
1108 rtx after;
1109 rtx sa;
1111 /* The default is that we use a move insn. */
1112 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1114 /* See if this machine has anything special to do for this kind of save. */
1115 switch (save_level)
1117 #ifdef HAVE_restore_stack_block
1118 case SAVE_BLOCK:
1119 if (HAVE_restore_stack_block)
1120 fcn = gen_restore_stack_block;
1121 break;
1122 #endif
1123 #ifdef HAVE_restore_stack_function
1124 case SAVE_FUNCTION:
1125 if (HAVE_restore_stack_function)
1126 fcn = gen_restore_stack_function;
1127 break;
1128 #endif
1129 #ifdef HAVE_restore_stack_nonlocal
1130 case SAVE_NONLOCAL:
1131 if (HAVE_restore_stack_nonlocal)
1132 fcn = gen_restore_stack_nonlocal;
1133 break;
1134 #endif
1135 default:
1136 break;
1139 if (sa != 0)
1140 sa = validize_mem (sa);
1142 if (after)
1144 rtx seq;
1146 start_sequence ();
1147 emit_insn (fcn (stack_pointer_rtx, sa));
1148 seq = gen_sequence ();
1149 end_sequence ();
1150 emit_insn_after (seq, after);
1152 else
1153 emit_insn (fcn (stack_pointer_rtx, sa));
1156 #ifdef SETJMP_VIA_SAVE_AREA
1157 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1158 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1159 platforms, the dynamic stack space used can corrupt the original
1160 frame, thus causing a crash if a longjmp unwinds to it. */
1162 void
1163 optimize_save_area_alloca (insns)
1164 rtx insns;
1166 rtx insn;
1168 for (insn = insns; insn; insn = NEXT_INSN(insn))
1170 rtx note;
1172 if (GET_CODE (insn) != INSN)
1173 continue;
1175 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1177 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1178 continue;
1180 if (!current_function_calls_setjmp)
1182 rtx pat = PATTERN (insn);
1184 /* If we do not see the note in a pattern matching
1185 these precise characteristics, we did something
1186 entirely wrong in allocate_dynamic_stack_space.
1188 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1189 was defined on a machine where stacks grow towards higher
1190 addresses.
1192 Right now only supported port with stack that grow upward
1193 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1194 if (GET_CODE (pat) != SET
1195 || SET_DEST (pat) != stack_pointer_rtx
1196 || GET_CODE (SET_SRC (pat)) != MINUS
1197 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1198 abort ();
1200 /* This will now be transformed into a (set REG REG)
1201 so we can just blow away all the other notes. */
1202 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1203 REG_NOTES (insn) = NULL_RTX;
1205 else
1207 /* setjmp was called, we must remove the REG_SAVE_AREA
1208 note so that later passes do not get confused by its
1209 presence. */
1210 if (note == REG_NOTES (insn))
1212 REG_NOTES (insn) = XEXP (note, 1);
1214 else
1216 rtx srch;
1218 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1219 if (XEXP (srch, 1) == note)
1220 break;
1222 if (srch == NULL_RTX)
1223 abort();
1225 XEXP (srch, 1) = XEXP (note, 1);
1228 /* Once we've seen the note of interest, we need not look at
1229 the rest of them. */
1230 break;
1234 #endif /* SETJMP_VIA_SAVE_AREA */
1236 /* Return an rtx representing the address of an area of memory dynamically
1237 pushed on the stack. This region of memory is always aligned to
1238 a multiple of BIGGEST_ALIGNMENT.
1240 Any required stack pointer alignment is preserved.
1242 SIZE is an rtx representing the size of the area.
1243 TARGET is a place in which the address can be placed.
1245 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1248 allocate_dynamic_stack_space (size, target, known_align)
1249 rtx size;
1250 rtx target;
1251 int known_align;
1253 #ifdef SETJMP_VIA_SAVE_AREA
1254 rtx setjmpless_size = NULL_RTX;
1255 #endif
1257 /* If we're asking for zero bytes, it doesn't matter what we point
1258 to since we can't dereference it. But return a reasonable
1259 address anyway. */
1260 if (size == const0_rtx)
1261 return virtual_stack_dynamic_rtx;
1263 /* Otherwise, show we're calling alloca or equivalent. */
1264 current_function_calls_alloca = 1;
1266 /* Ensure the size is in the proper mode. */
1267 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1268 size = convert_to_mode (Pmode, size, 1);
1270 /* We can't attempt to minimize alignment necessary, because we don't
1271 know the final value of preferred_stack_boundary yet while executing
1272 this code. */
1273 #ifdef PREFERRED_STACK_BOUNDARY
1274 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1275 #endif
1277 /* We will need to ensure that the address we return is aligned to
1278 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1279 always know its final value at this point in the compilation (it
1280 might depend on the size of the outgoing parameter lists, for
1281 example), so we must align the value to be returned in that case.
1282 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1283 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1284 We must also do an alignment operation on the returned value if
1285 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1287 If we have to align, we must leave space in SIZE for the hole
1288 that might result from the alignment operation. */
1290 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (PREFERRED_STACK_BOUNDARY)
1291 #define MUST_ALIGN 1
1292 #else
1293 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1294 #endif
1296 if (MUST_ALIGN)
1298 if (GET_CODE (size) == CONST_INT)
1299 size = GEN_INT (INTVAL (size)
1300 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1301 else
1302 size = expand_binop (Pmode, add_optab, size,
1303 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1304 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1307 #ifdef SETJMP_VIA_SAVE_AREA
1308 /* If setjmp restores regs from a save area in the stack frame,
1309 avoid clobbering the reg save area. Note that the offset of
1310 virtual_incoming_args_rtx includes the preallocated stack args space.
1311 It would be no problem to clobber that, but it's on the wrong side
1312 of the old save area. */
1314 rtx dynamic_offset
1315 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1316 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1318 if (!current_function_calls_setjmp)
1320 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1322 /* See optimize_save_area_alloca to understand what is being
1323 set up here. */
1325 #if !defined(PREFERRED_STACK_BOUNDARY) || !defined(MUST_ALIGN) || (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1326 /* If anyone creates a target with these characteristics, let them
1327 know that our optimization cannot work correctly in such a case. */
1328 abort();
1329 #endif
1331 if (GET_CODE (size) == CONST_INT)
1333 int new = INTVAL (size) / align * align;
1335 if (INTVAL (size) != new)
1336 setjmpless_size = GEN_INT (new);
1337 else
1338 setjmpless_size = size;
1340 else
1342 /* Since we know overflow is not possible, we avoid using
1343 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1344 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1345 GEN_INT (align), NULL_RTX, 1);
1346 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1347 GEN_INT (align), NULL_RTX, 1);
1349 /* Our optimization works based upon being able to perform a simple
1350 transformation of this RTL into a (set REG REG) so make sure things
1351 did in fact end up in a REG. */
1352 if (!register_operand (setjmpless_size, Pmode))
1353 setjmpless_size = force_reg (Pmode, setjmpless_size);
1356 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1357 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1359 #endif /* SETJMP_VIA_SAVE_AREA */
1361 /* Round the size to a multiple of the required stack alignment.
1362 Since the stack if presumed to be rounded before this allocation,
1363 this will maintain the required alignment.
1365 If the stack grows downward, we could save an insn by subtracting
1366 SIZE from the stack pointer and then aligning the stack pointer.
1367 The problem with this is that the stack pointer may be unaligned
1368 between the execution of the subtraction and alignment insns and
1369 some machines do not allow this. Even on those that do, some
1370 signal handlers malfunction if a signal should occur between those
1371 insns. Since this is an extremely rare event, we have no reliable
1372 way of knowing which systems have this problem. So we avoid even
1373 momentarily mis-aligning the stack. */
1375 #ifdef PREFERRED_STACK_BOUNDARY
1376 /* If we added a variable amount to SIZE,
1377 we can no longer assume it is aligned. */
1378 #if !defined (SETJMP_VIA_SAVE_AREA)
1379 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1380 #endif
1381 size = round_push (size);
1382 #endif
1384 do_pending_stack_adjust ();
1386 /* We ought to be called always on the toplevel and stack ought to be aligned
1387 propertly. */
1388 #ifdef PREFERRED_STACK_BOUNDARY
1389 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1390 abort ();
1391 #endif
1393 /* If needed, check that we have the required amount of stack. Take into
1394 account what has already been checked. */
1395 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1396 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1398 /* Don't use a TARGET that isn't a pseudo. */
1399 if (target == 0 || GET_CODE (target) != REG
1400 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1401 target = gen_reg_rtx (Pmode);
1403 mark_reg_pointer (target, known_align);
1405 /* Perform the required allocation from the stack. Some systems do
1406 this differently than simply incrementing/decrementing from the
1407 stack pointer, such as acquiring the space by calling malloc(). */
1408 #ifdef HAVE_allocate_stack
1409 if (HAVE_allocate_stack)
1411 enum machine_mode mode = STACK_SIZE_MODE;
1412 insn_operand_predicate_fn pred;
1414 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[0].predicate;
1415 if (pred && ! ((*pred) (target, Pmode)))
1416 #ifdef POINTERS_EXTEND_UNSIGNED
1417 target = convert_memory_address (Pmode, target);
1418 #else
1419 target = copy_to_mode_reg (Pmode, target);
1420 #endif
1422 if (mode == VOIDmode)
1423 mode = Pmode;
1425 size = convert_modes (mode, ptr_mode, size, 1);
1426 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1427 if (pred && ! ((*pred) (size, mode)))
1428 size = copy_to_mode_reg (mode, size);
1430 emit_insn (gen_allocate_stack (target, size));
1432 else
1433 #endif
1435 #ifndef STACK_GROWS_DOWNWARD
1436 emit_move_insn (target, virtual_stack_dynamic_rtx);
1437 #endif
1438 size = convert_modes (Pmode, ptr_mode, size, 1);
1440 /* Check stack bounds if necessary. */
1441 if (current_function_limit_stack)
1443 rtx available;
1444 rtx space_available = gen_label_rtx ();
1445 #ifdef STACK_GROWS_DOWNWARD
1446 available = expand_binop (Pmode, sub_optab,
1447 stack_pointer_rtx, stack_limit_rtx,
1448 NULL_RTX, 1, OPTAB_WIDEN);
1449 #else
1450 available = expand_binop (Pmode, sub_optab,
1451 stack_limit_rtx, stack_pointer_rtx,
1452 NULL_RTX, 1, OPTAB_WIDEN);
1453 #endif
1454 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1455 0, space_available);
1456 #ifdef HAVE_trap
1457 if (HAVE_trap)
1458 emit_insn (gen_trap ());
1459 else
1460 #endif
1461 error ("stack limits not supported on this target");
1462 emit_barrier ();
1463 emit_label (space_available);
1466 anti_adjust_stack (size);
1467 #ifdef SETJMP_VIA_SAVE_AREA
1468 if (setjmpless_size != NULL_RTX)
1470 rtx note_target = get_last_insn ();
1472 REG_NOTES (note_target)
1473 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1474 REG_NOTES (note_target));
1476 #endif /* SETJMP_VIA_SAVE_AREA */
1477 #ifdef STACK_GROWS_DOWNWARD
1478 emit_move_insn (target, virtual_stack_dynamic_rtx);
1479 #endif
1482 if (MUST_ALIGN)
1484 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1485 but we know it can't. So add ourselves and then do
1486 TRUNC_DIV_EXPR. */
1487 target = expand_binop (Pmode, add_optab, target,
1488 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1489 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1490 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1491 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1492 NULL_RTX, 1);
1493 target = expand_mult (Pmode, target,
1494 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1495 NULL_RTX, 1);
1498 /* Some systems require a particular insn to refer to the stack
1499 to make the pages exist. */
1500 #ifdef HAVE_probe
1501 if (HAVE_probe)
1502 emit_insn (gen_probe ());
1503 #endif
1505 /* Record the new stack level for nonlocal gotos. */
1506 if (nonlocal_goto_handler_slots != 0)
1507 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1509 return target;
1512 /* A front end may want to override GCC's stack checking by providing a
1513 run-time routine to call to check the stack, so provide a mechanism for
1514 calling that routine. */
1516 static rtx stack_check_libfunc;
1518 void
1519 set_stack_check_libfunc (libfunc)
1520 rtx libfunc;
1522 stack_check_libfunc = libfunc;
1525 /* Emit one stack probe at ADDRESS, an address within the stack. */
1527 static void
1528 emit_stack_probe (address)
1529 rtx address;
1531 rtx memref = gen_rtx_MEM (word_mode, address);
1533 MEM_VOLATILE_P (memref) = 1;
1535 if (STACK_CHECK_PROBE_LOAD)
1536 emit_move_insn (gen_reg_rtx (word_mode), memref);
1537 else
1538 emit_move_insn (memref, const0_rtx);
1541 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1542 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1543 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1544 subtract from the stack. If SIZE is constant, this is done
1545 with a fixed number of probes. Otherwise, we must make a loop. */
1547 #ifdef STACK_GROWS_DOWNWARD
1548 #define STACK_GROW_OP MINUS
1549 #else
1550 #define STACK_GROW_OP PLUS
1551 #endif
1553 void
1554 probe_stack_range (first, size)
1555 HOST_WIDE_INT first;
1556 rtx size;
1558 /* First see if the front end has set up a function for us to call to
1559 check the stack. */
1560 if (stack_check_libfunc != 0)
1562 rtx addr = memory_address (QImode,
1563 gen_rtx (STACK_GROW_OP, Pmode,
1564 stack_pointer_rtx,
1565 plus_constant (size, first)));
1567 #ifdef POINTERS_EXTEND_UNSIGNED
1568 if (GET_MODE (addr) != ptr_mode)
1569 addr = convert_memory_address (ptr_mode, addr);
1570 #endif
1572 emit_library_call (stack_check_libfunc, 0, VOIDmode, 1, addr,
1573 ptr_mode);
1576 /* Next see if we have an insn to check the stack. Use it if so. */
1577 #ifdef HAVE_check_stack
1578 else if (HAVE_check_stack)
1580 insn_operand_predicate_fn pred;
1581 rtx last_addr
1582 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1583 stack_pointer_rtx,
1584 plus_constant (size, first)),
1585 NULL_RTX);
1587 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1588 if (pred && ! ((*pred) (last_addr, Pmode)))
1589 last_addr = copy_to_mode_reg (Pmode, last_addr);
1591 emit_insn (gen_check_stack (last_addr));
1593 #endif
1595 /* If we have to generate explicit probes, see if we have a constant
1596 small number of them to generate. If so, that's the easy case. */
1597 else if (GET_CODE (size) == CONST_INT
1598 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1600 HOST_WIDE_INT offset;
1602 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1603 for values of N from 1 until it exceeds LAST. If only one
1604 probe is needed, this will not generate any code. Then probe
1605 at LAST. */
1606 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1607 offset < INTVAL (size);
1608 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1609 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1610 stack_pointer_rtx,
1611 GEN_INT (offset)));
1613 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1614 stack_pointer_rtx,
1615 plus_constant (size, first)));
1618 /* In the variable case, do the same as above, but in a loop. We emit loop
1619 notes so that loop optimization can be done. */
1620 else
1622 rtx test_addr
1623 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1624 stack_pointer_rtx,
1625 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1626 NULL_RTX);
1627 rtx last_addr
1628 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1629 stack_pointer_rtx,
1630 plus_constant (size, first)),
1631 NULL_RTX);
1632 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1633 rtx loop_lab = gen_label_rtx ();
1634 rtx test_lab = gen_label_rtx ();
1635 rtx end_lab = gen_label_rtx ();
1636 rtx temp;
1638 if (GET_CODE (test_addr) != REG
1639 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1640 test_addr = force_reg (Pmode, test_addr);
1642 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1643 emit_jump (test_lab);
1645 emit_label (loop_lab);
1646 emit_stack_probe (test_addr);
1648 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1650 #ifdef STACK_GROWS_DOWNWARD
1651 #define CMP_OPCODE GTU
1652 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1653 1, OPTAB_WIDEN);
1654 #else
1655 #define CMP_OPCODE LTU
1656 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1657 1, OPTAB_WIDEN);
1658 #endif
1660 if (temp != test_addr)
1661 abort ();
1663 emit_label (test_lab);
1664 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1665 NULL_RTX, Pmode, 1, 0, loop_lab);
1666 emit_jump (end_lab);
1667 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1668 emit_label (end_lab);
1670 emit_stack_probe (last_addr);
1674 /* Return an rtx representing the register or memory location
1675 in which a scalar value of data type VALTYPE
1676 was returned by a function call to function FUNC.
1677 FUNC is a FUNCTION_DECL node if the precise function is known,
1678 otherwise 0.
1679 OUTGOING is 1 if on a machine with register windows this function
1680 should return the register in which the function will put its result
1681 and 0 otherwise. */
1684 hard_function_value (valtype, func, outgoing)
1685 tree valtype;
1686 tree func ATTRIBUTE_UNUSED;
1687 int outgoing ATTRIBUTE_UNUSED;
1689 rtx val;
1691 #ifdef FUNCTION_OUTGOING_VALUE
1692 if (outgoing)
1693 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1694 else
1695 #endif
1696 val = FUNCTION_VALUE (valtype, func);
1698 if (GET_CODE (val) == REG
1699 && GET_MODE (val) == BLKmode)
1701 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1702 enum machine_mode tmpmode;
1704 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1705 tmpmode != VOIDmode;
1706 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1708 /* Have we found a large enough mode? */
1709 if (GET_MODE_SIZE (tmpmode) >= bytes)
1710 break;
1713 /* No suitable mode found. */
1714 if (tmpmode == VOIDmode)
1715 abort ();
1717 PUT_MODE (val, tmpmode);
1719 return val;
1722 /* Return an rtx representing the register or memory location
1723 in which a scalar value of mode MODE was returned by a library call. */
1726 hard_libcall_value (mode)
1727 enum machine_mode mode;
1729 return LIBCALL_VALUE (mode);
1732 /* Look up the tree code for a given rtx code
1733 to provide the arithmetic operation for REAL_ARITHMETIC.
1734 The function returns an int because the caller may not know
1735 what `enum tree_code' means. */
1738 rtx_to_tree_code (code)
1739 enum rtx_code code;
1741 enum tree_code tcode;
1743 switch (code)
1745 case PLUS:
1746 tcode = PLUS_EXPR;
1747 break;
1748 case MINUS:
1749 tcode = MINUS_EXPR;
1750 break;
1751 case MULT:
1752 tcode = MULT_EXPR;
1753 break;
1754 case DIV:
1755 tcode = RDIV_EXPR;
1756 break;
1757 case SMIN:
1758 tcode = MIN_EXPR;
1759 break;
1760 case SMAX:
1761 tcode = MAX_EXPR;
1762 break;
1763 default:
1764 tcode = LAST_AND_UNUSED_TREE_CODE;
1765 break;
1767 return ((int) tcode);