1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
89 #include "insn-flags.h"
90 #include "insn-codes.h"
91 #include "insn-attr.h"
97 #ifndef ACCUMULATE_OUTGOING_ARGS
98 #define ACCUMULATE_OUTGOING_ARGS 0
101 /* Supply a default definition for PUSH_ARGS. */
104 #define PUSH_ARGS !ACCUMULATE_OUTGOING_ARGS
110 /* It is not safe to use ordinary gen_lowpart in combine.
111 Use gen_lowpart_for_combine instead. See comments there. */
112 #define gen_lowpart dont_use_gen_lowpart_you_dummy
114 /* Number of attempts to combine instructions in this function. */
116 static int combine_attempts
;
118 /* Number of attempts that got as far as substitution in this function. */
120 static int combine_merges
;
122 /* Number of instructions combined with added SETs in this function. */
124 static int combine_extras
;
126 /* Number of instructions combined in this function. */
128 static int combine_successes
;
130 /* Totals over entire compilation. */
132 static int total_attempts
, total_merges
, total_extras
, total_successes
;
135 /* Vector mapping INSN_UIDs to cuids.
136 The cuids are like uids but increase monotonically always.
137 Combine always uses cuids so that it can compare them.
138 But actually renumbering the uids, which we used to do,
139 proves to be a bad idea because it makes it hard to compare
140 the dumps produced by earlier passes with those from later passes. */
142 static int *uid_cuid
;
143 static int max_uid_cuid
;
145 /* Get the cuid of an insn. */
147 #define INSN_CUID(INSN) \
148 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
150 /* Maximum register number, which is the size of the tables below. */
152 static unsigned int combine_max_regno
;
154 /* Record last point of death of (hard or pseudo) register n. */
156 static rtx
*reg_last_death
;
158 /* Record last point of modification of (hard or pseudo) register n. */
160 static rtx
*reg_last_set
;
162 /* Record the cuid of the last insn that invalidated memory
163 (anything that writes memory, and subroutine calls, but not pushes). */
165 static int mem_last_set
;
167 /* Record the cuid of the last CALL_INSN
168 so we can tell whether a potential combination crosses any calls. */
170 static int last_call_cuid
;
172 /* When `subst' is called, this is the insn that is being modified
173 (by combining in a previous insn). The PATTERN of this insn
174 is still the old pattern partially modified and it should not be
175 looked at, but this may be used to examine the successors of the insn
176 to judge whether a simplification is valid. */
178 static rtx subst_insn
;
180 /* This is an insn that belongs before subst_insn, but is not currently
181 on the insn chain. */
183 static rtx subst_prev_insn
;
185 /* This is the lowest CUID that `subst' is currently dealing with.
186 get_last_value will not return a value if the register was set at or
187 after this CUID. If not for this mechanism, we could get confused if
188 I2 or I1 in try_combine were an insn that used the old value of a register
189 to obtain a new value. In that case, we might erroneously get the
190 new value of the register when we wanted the old one. */
192 static int subst_low_cuid
;
194 /* This contains any hard registers that are used in newpat; reg_dead_at_p
195 must consider all these registers to be always live. */
197 static HARD_REG_SET newpat_used_regs
;
199 /* This is an insn to which a LOG_LINKS entry has been added. If this
200 insn is the earlier than I2 or I3, combine should rescan starting at
203 static rtx added_links_insn
;
205 /* Basic block number of the block in which we are performing combines. */
206 static int this_basic_block
;
208 /* A bitmap indicating which blocks had registers go dead at entry.
209 After combine, we'll need to re-do global life analysis with
210 those blocks as starting points. */
211 static sbitmap refresh_blocks
;
212 static int need_refresh
;
214 /* The next group of arrays allows the recording of the last value assigned
215 to (hard or pseudo) register n. We use this information to see if a
216 operation being processed is redundant given a prior operation performed
217 on the register. For example, an `and' with a constant is redundant if
218 all the zero bits are already known to be turned off.
220 We use an approach similar to that used by cse, but change it in the
223 (1) We do not want to reinitialize at each label.
224 (2) It is useful, but not critical, to know the actual value assigned
225 to a register. Often just its form is helpful.
227 Therefore, we maintain the following arrays:
229 reg_last_set_value the last value assigned
230 reg_last_set_label records the value of label_tick when the
231 register was assigned
232 reg_last_set_table_tick records the value of label_tick when a
233 value using the register is assigned
234 reg_last_set_invalid set to non-zero when it is not valid
235 to use the value of this register in some
238 To understand the usage of these tables, it is important to understand
239 the distinction between the value in reg_last_set_value being valid
240 and the register being validly contained in some other expression in the
243 Entry I in reg_last_set_value is valid if it is non-zero, and either
244 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
246 Register I may validly appear in any expression returned for the value
247 of another register if reg_n_sets[i] is 1. It may also appear in the
248 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
249 reg_last_set_invalid[j] is zero.
251 If an expression is found in the table containing a register which may
252 not validly appear in an expression, the register is replaced by
253 something that won't match, (clobber (const_int 0)).
255 reg_last_set_invalid[i] is set non-zero when register I is being assigned
256 to and reg_last_set_table_tick[i] == label_tick. */
258 /* Record last value assigned to (hard or pseudo) register n. */
260 static rtx
*reg_last_set_value
;
262 /* Record the value of label_tick when the value for register n is placed in
263 reg_last_set_value[n]. */
265 static int *reg_last_set_label
;
267 /* Record the value of label_tick when an expression involving register n
268 is placed in reg_last_set_value. */
270 static int *reg_last_set_table_tick
;
272 /* Set non-zero if references to register n in expressions should not be
275 static char *reg_last_set_invalid
;
277 /* Incremented for each label. */
279 static int label_tick
;
281 /* Some registers that are set more than once and used in more than one
282 basic block are nevertheless always set in similar ways. For example,
283 a QImode register may be loaded from memory in two places on a machine
284 where byte loads zero extend.
286 We record in the following array what we know about the nonzero
287 bits of a register, specifically which bits are known to be zero.
289 If an entry is zero, it means that we don't know anything special. */
291 static unsigned HOST_WIDE_INT
*reg_nonzero_bits
;
293 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
294 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
296 static enum machine_mode nonzero_bits_mode
;
298 /* Nonzero if we know that a register has some leading bits that are always
299 equal to the sign bit. */
301 static unsigned char *reg_sign_bit_copies
;
303 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
304 It is zero while computing them and after combine has completed. This
305 former test prevents propagating values based on previously set values,
306 which can be incorrect if a variable is modified in a loop. */
308 static int nonzero_sign_valid
;
310 /* These arrays are maintained in parallel with reg_last_set_value
311 and are used to store the mode in which the register was last set,
312 the bits that were known to be zero when it was last set, and the
313 number of sign bits copies it was known to have when it was last set. */
315 static enum machine_mode
*reg_last_set_mode
;
316 static unsigned HOST_WIDE_INT
*reg_last_set_nonzero_bits
;
317 static char *reg_last_set_sign_bit_copies
;
319 /* Record one modification to rtl structure
320 to be undone by storing old_contents into *where.
321 is_int is 1 if the contents are an int. */
327 union {rtx r
; unsigned int i
;} old_contents
;
328 union {rtx
*r
; unsigned int *i
;} where
;
331 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
332 num_undo says how many are currently recorded.
334 other_insn is nonzero if we have modified some other insn in the process
335 of working on subst_insn. It must be verified too.
337 previous_undos is the value of undobuf.undos when we started processing
338 this substitution. This will prevent gen_rtx_combine from re-used a piece
339 from the previous expression. Doing so can produce circular rtl
346 struct undo
*previous_undos
;
350 static struct undobuf undobuf
;
352 /* Number of times the pseudo being substituted for
353 was found and replaced. */
355 static int n_occurrences
;
357 static void do_SUBST
PARAMS ((rtx
*, rtx
));
358 static void do_SUBST_INT
PARAMS ((unsigned int *,
360 static void init_reg_last_arrays
PARAMS ((void));
361 static void setup_incoming_promotions
PARAMS ((void));
362 static void set_nonzero_bits_and_sign_copies
PARAMS ((rtx
, rtx
, void *));
363 static int cant_combine_insn_p
PARAMS ((rtx
));
364 static int can_combine_p
PARAMS ((rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*));
365 static int sets_function_arg_p
PARAMS ((rtx
));
366 static int combinable_i3pat
PARAMS ((rtx
, rtx
*, rtx
, rtx
, int, rtx
*));
367 static int contains_muldiv
PARAMS ((rtx
));
368 static rtx try_combine
PARAMS ((rtx
, rtx
, rtx
, int *));
369 static void undo_all
PARAMS ((void));
370 static void undo_commit
PARAMS ((void));
371 static rtx
*find_split_point
PARAMS ((rtx
*, rtx
));
372 static rtx subst
PARAMS ((rtx
, rtx
, rtx
, int, int));
373 static rtx combine_simplify_rtx
PARAMS ((rtx
, enum machine_mode
, int, int));
374 static rtx simplify_if_then_else
PARAMS ((rtx
));
375 static rtx simplify_set
PARAMS ((rtx
));
376 static rtx simplify_logical
PARAMS ((rtx
, int));
377 static rtx expand_compound_operation
PARAMS ((rtx
));
378 static rtx expand_field_assignment
PARAMS ((rtx
));
379 static rtx make_extraction
PARAMS ((enum machine_mode
, rtx
, HOST_WIDE_INT
,
380 rtx
, unsigned HOST_WIDE_INT
, int,
382 static rtx extract_left_shift
PARAMS ((rtx
, int));
383 static rtx make_compound_operation
PARAMS ((rtx
, enum rtx_code
));
384 static int get_pos_from_mask
PARAMS ((unsigned HOST_WIDE_INT
,
385 unsigned HOST_WIDE_INT
*));
386 static rtx force_to_mode
PARAMS ((rtx
, enum machine_mode
,
387 unsigned HOST_WIDE_INT
, rtx
, int));
388 static rtx if_then_else_cond
PARAMS ((rtx
, rtx
*, rtx
*));
389 static rtx known_cond
PARAMS ((rtx
, enum rtx_code
, rtx
, rtx
));
390 static int rtx_equal_for_field_assignment_p
PARAMS ((rtx
, rtx
));
391 static rtx make_field_assignment
PARAMS ((rtx
));
392 static rtx apply_distributive_law
PARAMS ((rtx
));
393 static rtx simplify_and_const_int
PARAMS ((rtx
, enum machine_mode
, rtx
,
394 unsigned HOST_WIDE_INT
));
395 static unsigned HOST_WIDE_INT nonzero_bits
PARAMS ((rtx
, enum machine_mode
));
396 static unsigned int num_sign_bit_copies
PARAMS ((rtx
, enum machine_mode
));
397 static int merge_outer_ops
PARAMS ((enum rtx_code
*, HOST_WIDE_INT
*,
398 enum rtx_code
, HOST_WIDE_INT
,
399 enum machine_mode
, int *));
400 static rtx simplify_shift_const
PARAMS ((rtx
, enum rtx_code
, enum machine_mode
,
402 static int recog_for_combine
PARAMS ((rtx
*, rtx
, rtx
*));
403 static rtx gen_lowpart_for_combine
PARAMS ((enum machine_mode
, rtx
));
404 static rtx gen_rtx_combine
PARAMS ((enum rtx_code code
, enum machine_mode mode
,
406 static rtx gen_binary
PARAMS ((enum rtx_code
, enum machine_mode
,
408 static rtx gen_unary
PARAMS ((enum rtx_code
, enum machine_mode
,
409 enum machine_mode
, rtx
));
410 static enum rtx_code simplify_comparison
PARAMS ((enum rtx_code
, rtx
*, rtx
*));
411 static void update_table_tick
PARAMS ((rtx
));
412 static void record_value_for_reg
PARAMS ((rtx
, rtx
, rtx
));
413 static void check_promoted_subreg
PARAMS ((rtx
, rtx
));
414 static void record_dead_and_set_regs_1
PARAMS ((rtx
, rtx
, void *));
415 static void record_dead_and_set_regs
PARAMS ((rtx
));
416 static int get_last_value_validate
PARAMS ((rtx
*, rtx
, int, int));
417 static rtx get_last_value
PARAMS ((rtx
));
418 static int use_crosses_set_p
PARAMS ((rtx
, int));
419 static void reg_dead_at_p_1
PARAMS ((rtx
, rtx
, void *));
420 static int reg_dead_at_p
PARAMS ((rtx
, rtx
));
421 static void move_deaths
PARAMS ((rtx
, rtx
, int, rtx
, rtx
*));
422 static int reg_bitfield_target_p
PARAMS ((rtx
, rtx
));
423 static void distribute_notes
PARAMS ((rtx
, rtx
, rtx
, rtx
, rtx
, rtx
));
424 static void distribute_links
PARAMS ((rtx
));
425 static void mark_used_regs_combine
PARAMS ((rtx
));
426 static int insn_cuid
PARAMS ((rtx
));
427 static void record_promoted_value
PARAMS ((rtx
, rtx
));
428 static rtx reversed_comparison
PARAMS ((rtx
, enum machine_mode
, rtx
, rtx
));
429 static enum rtx_code combine_reversed_comparison_code
PARAMS ((rtx
));
431 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
432 insn. The substitution can be undone by undo_all. If INTO is already
433 set to NEWVAL, do not record this change. Because computing NEWVAL might
434 also call SUBST, we have to compute it before we put anything into
438 do_SUBST (into
, newval
)
444 if (oldval
== newval
)
448 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
450 buf
= (struct undo
*) xmalloc (sizeof (struct undo
));
454 buf
->old_contents
.r
= oldval
;
457 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
460 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
462 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
463 for the value of a HOST_WIDE_INT value (including CONST_INT) is
467 do_SUBST_INT (into
, newval
)
468 unsigned int *into
, newval
;
471 unsigned int oldval
= *into
;
473 if (oldval
== newval
)
477 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
479 buf
= (struct undo
*) xmalloc (sizeof (struct undo
));
483 buf
->old_contents
.i
= oldval
;
486 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
489 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
491 /* Main entry point for combiner. F is the first insn of the function.
492 NREGS is the first unused pseudo-reg number.
494 Return non-zero if the combiner has turned an indirect jump
495 instruction into a direct jump. */
497 combine_instructions (f
, nregs
)
501 register rtx insn
, next
;
506 register rtx links
, nextlinks
;
508 int new_direct_jump_p
= 0;
510 combine_attempts
= 0;
513 combine_successes
= 0;
515 combine_max_regno
= nregs
;
517 reg_nonzero_bits
= ((unsigned HOST_WIDE_INT
*)
518 xcalloc (nregs
, sizeof (unsigned HOST_WIDE_INT
)));
520 = (unsigned char *) xcalloc (nregs
, sizeof (unsigned char));
522 reg_last_death
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
523 reg_last_set
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
524 reg_last_set_value
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
525 reg_last_set_table_tick
= (int *) xmalloc (nregs
* sizeof (int));
526 reg_last_set_label
= (int *) xmalloc (nregs
* sizeof (int));
527 reg_last_set_invalid
= (char *) xmalloc (nregs
* sizeof (char));
529 = (enum machine_mode
*) xmalloc (nregs
* sizeof (enum machine_mode
));
530 reg_last_set_nonzero_bits
531 = (unsigned HOST_WIDE_INT
*) xmalloc (nregs
* sizeof (HOST_WIDE_INT
));
532 reg_last_set_sign_bit_copies
533 = (char *) xmalloc (nregs
* sizeof (char));
535 init_reg_last_arrays ();
537 init_recog_no_volatile ();
539 /* Compute maximum uid value so uid_cuid can be allocated. */
541 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
542 if (INSN_UID (insn
) > i
)
545 uid_cuid
= (int *) xmalloc ((i
+ 1) * sizeof (int));
548 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
550 /* Don't use reg_nonzero_bits when computing it. This can cause problems
551 when, for example, we have j <<= 1 in a loop. */
553 nonzero_sign_valid
= 0;
555 /* Compute the mapping from uids to cuids.
556 Cuids are numbers assigned to insns, like uids,
557 except that cuids increase monotonically through the code.
559 Scan all SETs and see if we can deduce anything about what
560 bits are known to be zero for some registers and how many copies
561 of the sign bit are known to exist for those registers.
563 Also set any known values so that we can use it while searching
564 for what bits are known to be set. */
568 /* We need to initialize it here, because record_dead_and_set_regs may call
570 subst_prev_insn
= NULL_RTX
;
572 setup_incoming_promotions ();
574 refresh_blocks
= sbitmap_alloc (n_basic_blocks
);
575 sbitmap_zero (refresh_blocks
);
578 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
580 uid_cuid
[INSN_UID (insn
)] = ++i
;
586 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
588 record_dead_and_set_regs (insn
);
591 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
592 if (REG_NOTE_KIND (links
) == REG_INC
)
593 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
598 if (GET_CODE (insn
) == CODE_LABEL
)
602 nonzero_sign_valid
= 1;
604 /* Now scan all the insns in forward order. */
606 this_basic_block
= -1;
610 init_reg_last_arrays ();
611 setup_incoming_promotions ();
613 for (insn
= f
; insn
; insn
= next
? next
: NEXT_INSN (insn
))
617 /* If INSN starts a new basic block, update our basic block number. */
618 if (this_basic_block
+ 1 < n_basic_blocks
619 && BLOCK_HEAD (this_basic_block
+ 1) == insn
)
622 if (GET_CODE (insn
) == CODE_LABEL
)
625 else if (INSN_P (insn
))
627 /* See if we know about function return values before this
628 insn based upon SUBREG flags. */
629 check_promoted_subreg (insn
, PATTERN (insn
));
631 /* Try this insn with each insn it links back to. */
633 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
634 if ((next
= try_combine (insn
, XEXP (links
, 0),
635 NULL_RTX
, &new_direct_jump_p
)) != 0)
638 /* Try each sequence of three linked insns ending with this one. */
640 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
642 rtx link
= XEXP (links
, 0);
644 /* If the linked insn has been replaced by a note, then there
645 is no point in persuing this chain any further. */
646 if (GET_CODE (link
) == NOTE
)
649 for (nextlinks
= LOG_LINKS (link
);
651 nextlinks
= XEXP (nextlinks
, 1))
652 if ((next
= try_combine (insn
, XEXP (links
, 0),
654 &new_direct_jump_p
)) != 0)
659 /* Try to combine a jump insn that uses CC0
660 with a preceding insn that sets CC0, and maybe with its
661 logical predecessor as well.
662 This is how we make decrement-and-branch insns.
663 We need this special code because data flow connections
664 via CC0 do not get entered in LOG_LINKS. */
666 if (GET_CODE (insn
) == JUMP_INSN
667 && (prev
= prev_nonnote_insn (insn
)) != 0
668 && GET_CODE (prev
) == INSN
669 && sets_cc0_p (PATTERN (prev
)))
671 if ((next
= try_combine (insn
, prev
,
672 NULL_RTX
, &new_direct_jump_p
)) != 0)
675 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
676 nextlinks
= XEXP (nextlinks
, 1))
677 if ((next
= try_combine (insn
, prev
,
679 &new_direct_jump_p
)) != 0)
683 /* Do the same for an insn that explicitly references CC0. */
684 if (GET_CODE (insn
) == INSN
685 && (prev
= prev_nonnote_insn (insn
)) != 0
686 && GET_CODE (prev
) == INSN
687 && sets_cc0_p (PATTERN (prev
))
688 && GET_CODE (PATTERN (insn
)) == SET
689 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
691 if ((next
= try_combine (insn
, prev
,
692 NULL_RTX
, &new_direct_jump_p
)) != 0)
695 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
696 nextlinks
= XEXP (nextlinks
, 1))
697 if ((next
= try_combine (insn
, prev
,
699 &new_direct_jump_p
)) != 0)
703 /* Finally, see if any of the insns that this insn links to
704 explicitly references CC0. If so, try this insn, that insn,
705 and its predecessor if it sets CC0. */
706 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
707 if (GET_CODE (XEXP (links
, 0)) == INSN
708 && GET_CODE (PATTERN (XEXP (links
, 0))) == SET
709 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (XEXP (links
, 0))))
710 && (prev
= prev_nonnote_insn (XEXP (links
, 0))) != 0
711 && GET_CODE (prev
) == INSN
712 && sets_cc0_p (PATTERN (prev
))
713 && (next
= try_combine (insn
, XEXP (links
, 0),
714 prev
, &new_direct_jump_p
)) != 0)
718 /* Try combining an insn with two different insns whose results it
720 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
721 for (nextlinks
= XEXP (links
, 1); nextlinks
;
722 nextlinks
= XEXP (nextlinks
, 1))
723 if ((next
= try_combine (insn
, XEXP (links
, 0),
725 &new_direct_jump_p
)) != 0)
728 if (GET_CODE (insn
) != NOTE
)
729 record_dead_and_set_regs (insn
);
738 compute_bb_for_insn (get_max_uid ());
739 update_life_info (refresh_blocks
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
744 sbitmap_free (refresh_blocks
);
745 free (reg_nonzero_bits
);
746 free (reg_sign_bit_copies
);
747 free (reg_last_death
);
749 free (reg_last_set_value
);
750 free (reg_last_set_table_tick
);
751 free (reg_last_set_label
);
752 free (reg_last_set_invalid
);
753 free (reg_last_set_mode
);
754 free (reg_last_set_nonzero_bits
);
755 free (reg_last_set_sign_bit_copies
);
759 struct undo
*undo
, *next
;
760 for (undo
= undobuf
.frees
; undo
; undo
= next
)
768 total_attempts
+= combine_attempts
;
769 total_merges
+= combine_merges
;
770 total_extras
+= combine_extras
;
771 total_successes
+= combine_successes
;
773 nonzero_sign_valid
= 0;
775 /* Make recognizer allow volatile MEMs again. */
778 return new_direct_jump_p
;
781 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
784 init_reg_last_arrays ()
786 unsigned int nregs
= combine_max_regno
;
788 memset ((char *) reg_last_death
, 0, nregs
* sizeof (rtx
));
789 memset ((char *) reg_last_set
, 0, nregs
* sizeof (rtx
));
790 memset ((char *) reg_last_set_value
, 0, nregs
* sizeof (rtx
));
791 memset ((char *) reg_last_set_table_tick
, 0, nregs
* sizeof (int));
792 memset ((char *) reg_last_set_label
, 0, nregs
* sizeof (int));
793 memset (reg_last_set_invalid
, 0, nregs
* sizeof (char));
794 memset ((char *) reg_last_set_mode
, 0, nregs
* sizeof (enum machine_mode
));
795 memset ((char *) reg_last_set_nonzero_bits
, 0, nregs
* sizeof (HOST_WIDE_INT
));
796 memset (reg_last_set_sign_bit_copies
, 0, nregs
* sizeof (char));
799 /* Set up any promoted values for incoming argument registers. */
802 setup_incoming_promotions ()
804 #ifdef PROMOTE_FUNCTION_ARGS
807 enum machine_mode mode
;
809 rtx first
= get_insns ();
811 #ifndef OUTGOING_REGNO
812 #define OUTGOING_REGNO(N) N
814 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
815 /* Check whether this register can hold an incoming pointer
816 argument. FUNCTION_ARG_REGNO_P tests outgoing register
817 numbers, so translate if necessary due to register windows. */
818 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno
))
819 && (reg
= promoted_input_arg (regno
, &mode
, &unsignedp
)) != 0)
822 (reg
, first
, gen_rtx_fmt_e ((unsignedp
? ZERO_EXTEND
825 gen_rtx_CLOBBER (mode
, const0_rtx
)));
830 /* Called via note_stores. If X is a pseudo that is narrower than
831 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
833 If we are setting only a portion of X and we can't figure out what
834 portion, assume all bits will be used since we don't know what will
837 Similarly, set how many bits of X are known to be copies of the sign bit
838 at all locations in the function. This is the smallest number implied
842 set_nonzero_bits_and_sign_copies (x
, set
, data
)
845 void *data ATTRIBUTE_UNUSED
;
849 if (GET_CODE (x
) == REG
850 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
851 /* If this register is undefined at the start of the file, we can't
852 say what its contents were. */
853 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, REGNO (x
))
854 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
856 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
858 reg_nonzero_bits
[REGNO (x
)] = GET_MODE_MASK (GET_MODE (x
));
859 reg_sign_bit_copies
[REGNO (x
)] = 1;
863 /* If this is a complex assignment, see if we can convert it into a
864 simple assignment. */
865 set
= expand_field_assignment (set
);
867 /* If this is a simple assignment, or we have a paradoxical SUBREG,
868 set what we know about X. */
870 if (SET_DEST (set
) == x
871 || (GET_CODE (SET_DEST (set
)) == SUBREG
872 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set
)))
873 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set
)))))
874 && SUBREG_REG (SET_DEST (set
)) == x
))
876 rtx src
= SET_SRC (set
);
878 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
879 /* If X is narrower than a word and SRC is a non-negative
880 constant that would appear negative in the mode of X,
881 sign-extend it for use in reg_nonzero_bits because some
882 machines (maybe most) will actually do the sign-extension
883 and this is the conservative approach.
885 ??? For 2.5, try to tighten up the MD files in this regard
886 instead of this kludge. */
888 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
889 && GET_CODE (src
) == CONST_INT
891 && 0 != (INTVAL (src
)
893 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
894 src
= GEN_INT (INTVAL (src
)
895 | ((HOST_WIDE_INT
) (-1)
896 << GET_MODE_BITSIZE (GET_MODE (x
))));
899 reg_nonzero_bits
[REGNO (x
)]
900 |= nonzero_bits (src
, nonzero_bits_mode
);
901 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
902 if (reg_sign_bit_copies
[REGNO (x
)] == 0
903 || reg_sign_bit_copies
[REGNO (x
)] > num
)
904 reg_sign_bit_copies
[REGNO (x
)] = num
;
908 reg_nonzero_bits
[REGNO (x
)] = GET_MODE_MASK (GET_MODE (x
));
909 reg_sign_bit_copies
[REGNO (x
)] = 1;
914 /* See if INSN can be combined into I3. PRED and SUCC are optionally
915 insns that were previously combined into I3 or that will be combined
916 into the merger of INSN and I3.
918 Return 0 if the combination is not allowed for any reason.
920 If the combination is allowed, *PDEST will be set to the single
921 destination of INSN and *PSRC to the single source, and this function
925 can_combine_p (insn
, i3
, pred
, succ
, pdest
, psrc
)
928 rtx pred ATTRIBUTE_UNUSED
;
933 rtx set
= 0, src
, dest
;
938 int all_adjacent
= (succ
? (next_active_insn (insn
) == succ
939 && next_active_insn (succ
) == i3
)
940 : next_active_insn (insn
) == i3
);
942 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
943 or a PARALLEL consisting of such a SET and CLOBBERs.
945 If INSN has CLOBBER parallel parts, ignore them for our processing.
946 By definition, these happen during the execution of the insn. When it
947 is merged with another insn, all bets are off. If they are, in fact,
948 needed and aren't also supplied in I3, they may be added by
949 recog_for_combine. Otherwise, it won't match.
951 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
954 Get the source and destination of INSN. If more than one, can't
957 if (GET_CODE (PATTERN (insn
)) == SET
)
958 set
= PATTERN (insn
);
959 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
960 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
962 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
964 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
966 switch (GET_CODE (elt
))
968 /* This is important to combine floating point insns
971 /* Combining an isolated USE doesn't make sense.
972 We depend here on combinable_i3_pat to reject them. */
973 /* The code below this loop only verifies that the inputs of
974 the SET in INSN do not change. We call reg_set_between_p
975 to verify that the REG in the USE does not change betweeen
977 If the USE in INSN was for a pseudo register, the matching
978 insn pattern will likely match any register; combining this
979 with any other USE would only be safe if we knew that the
980 used registers have identical values, or if there was
981 something to tell them apart, e.g. different modes. For
982 now, we forgo such compilcated tests and simply disallow
983 combining of USES of pseudo registers with any other USE. */
984 if (GET_CODE (XEXP (elt
, 0)) == REG
985 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
987 rtx i3pat
= PATTERN (i3
);
988 int i
= XVECLEN (i3pat
, 0) - 1;
989 unsigned int regno
= REGNO (XEXP (elt
, 0));
993 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
995 if (GET_CODE (i3elt
) == USE
996 && GET_CODE (XEXP (i3elt
, 0)) == REG
997 && (REGNO (XEXP (i3elt
, 0)) == regno
998 ? reg_set_between_p (XEXP (elt
, 0),
999 PREV_INSN (insn
), i3
)
1000 : regno
>= FIRST_PSEUDO_REGISTER
))
1007 /* We can ignore CLOBBERs. */
1012 /* Ignore SETs whose result isn't used but not those that
1013 have side-effects. */
1014 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1015 && ! side_effects_p (elt
))
1018 /* If we have already found a SET, this is a second one and
1019 so we cannot combine with this insn. */
1027 /* Anything else means we can't combine. */
1033 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1034 so don't do anything with it. */
1035 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1044 set
= expand_field_assignment (set
);
1045 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1047 /* Don't eliminate a store in the stack pointer. */
1048 if (dest
== stack_pointer_rtx
1049 /* If we couldn't eliminate a field assignment, we can't combine. */
1050 || GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == STRICT_LOW_PART
1051 /* Don't combine with an insn that sets a register to itself if it has
1052 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1053 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1054 /* Can't merge an ASM_OPERANDS. */
1055 || GET_CODE (src
) == ASM_OPERANDS
1056 /* Can't merge a function call. */
1057 || GET_CODE (src
) == CALL
1058 /* Don't eliminate a function call argument. */
1059 || (GET_CODE (i3
) == CALL_INSN
1060 && (find_reg_fusage (i3
, USE
, dest
)
1061 || (GET_CODE (dest
) == REG
1062 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1063 && global_regs
[REGNO (dest
)])))
1064 /* Don't substitute into an incremented register. */
1065 || FIND_REG_INC_NOTE (i3
, dest
)
1066 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1068 /* Don't combine the end of a libcall into anything. */
1069 /* ??? This gives worse code, and appears to be unnecessary, since no
1070 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1071 use REG_RETVAL notes for noconflict blocks, but other code here
1072 makes sure that those insns don't disappear. */
1073 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
1075 /* Make sure that DEST is not used after SUCC but before I3. */
1076 || (succ
&& ! all_adjacent
1077 && reg_used_between_p (dest
, succ
, i3
))
1078 /* Make sure that the value that is to be substituted for the register
1079 does not use any registers whose values alter in between. However,
1080 If the insns are adjacent, a use can't cross a set even though we
1081 think it might (this can happen for a sequence of insns each setting
1082 the same destination; reg_last_set of that register might point to
1083 a NOTE). If INSN has a REG_EQUIV note, the register is always
1084 equivalent to the memory so the substitution is valid even if there
1085 are intervening stores. Also, don't move a volatile asm or
1086 UNSPEC_VOLATILE across any other insns. */
1088 && (((GET_CODE (src
) != MEM
1089 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1090 && use_crosses_set_p (src
, INSN_CUID (insn
)))
1091 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1092 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1093 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1094 better register allocation by not doing the combine. */
1095 || find_reg_note (i3
, REG_NO_CONFLICT
, dest
)
1096 || (succ
&& find_reg_note (succ
, REG_NO_CONFLICT
, dest
))
1097 /* Don't combine across a CALL_INSN, because that would possibly
1098 change whether the life span of some REGs crosses calls or not,
1099 and it is a pain to update that information.
1100 Exception: if source is a constant, moving it later can't hurt.
1101 Accept that special case, because it helps -fforce-addr a lot. */
1102 || (INSN_CUID (insn
) < last_call_cuid
&& ! CONSTANT_P (src
)))
1105 /* DEST must either be a REG or CC0. */
1106 if (GET_CODE (dest
) == REG
)
1108 /* If register alignment is being enforced for multi-word items in all
1109 cases except for parameters, it is possible to have a register copy
1110 insn referencing a hard register that is not allowed to contain the
1111 mode being copied and which would not be valid as an operand of most
1112 insns. Eliminate this problem by not combining with such an insn.
1114 Also, on some machines we don't want to extend the life of a hard
1117 if (GET_CODE (src
) == REG
1118 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1119 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1120 /* Don't extend the life of a hard register unless it is
1121 user variable (if we have few registers) or it can't
1122 fit into the desired register (meaning something special
1124 Also avoid substituting a return register into I3, because
1125 reload can't handle a conflict with constraints of other
1127 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1128 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1131 else if (GET_CODE (dest
) != CC0
)
1134 /* Don't substitute for a register intended as a clobberable operand.
1135 Similarly, don't substitute an expression containing a register that
1136 will be clobbered in I3. */
1137 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1138 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1139 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
1140 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0),
1142 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0), dest
)))
1145 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1146 or not), reject, unless nothing volatile comes between it and I3 */
1148 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1150 /* Make sure succ doesn't contain a volatile reference. */
1151 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1154 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1155 if (INSN_P (p
) && p
!= succ
&& volatile_refs_p (PATTERN (p
)))
1159 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1160 to be an explicit register variable, and was chosen for a reason. */
1162 if (GET_CODE (src
) == ASM_OPERANDS
1163 && GET_CODE (dest
) == REG
&& REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1166 /* If there are any volatile insns between INSN and I3, reject, because
1167 they might affect machine state. */
1169 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1170 if (INSN_P (p
) && p
!= succ
&& volatile_insn_p (PATTERN (p
)))
1173 /* If INSN or I2 contains an autoincrement or autodecrement,
1174 make sure that register is not used between there and I3,
1175 and not already used in I3 either.
1176 Also insist that I3 not be a jump; if it were one
1177 and the incremented register were spilled, we would lose. */
1180 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1181 if (REG_NOTE_KIND (link
) == REG_INC
1182 && (GET_CODE (i3
) == JUMP_INSN
1183 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1184 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1189 /* Don't combine an insn that follows a CC0-setting insn.
1190 An insn that uses CC0 must not be separated from the one that sets it.
1191 We do, however, allow I2 to follow a CC0-setting insn if that insn
1192 is passed as I1; in that case it will be deleted also.
1193 We also allow combining in this case if all the insns are adjacent
1194 because that would leave the two CC0 insns adjacent as well.
1195 It would be more logical to test whether CC0 occurs inside I1 or I2,
1196 but that would be much slower, and this ought to be equivalent. */
1198 p
= prev_nonnote_insn (insn
);
1199 if (p
&& p
!= pred
&& GET_CODE (p
) == INSN
&& sets_cc0_p (PATTERN (p
))
1204 /* If we get here, we have passed all the tests and the combination is
1213 /* Check if PAT is an insn - or a part of it - used to set up an
1214 argument for a function in a hard register. */
1217 sets_function_arg_p (pat
)
1223 switch (GET_CODE (pat
))
1226 return sets_function_arg_p (PATTERN (pat
));
1229 for (i
= XVECLEN (pat
, 0); --i
>= 0;)
1230 if (sets_function_arg_p (XVECEXP (pat
, 0, i
)))
1236 inner_dest
= SET_DEST (pat
);
1237 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1238 || GET_CODE (inner_dest
) == SUBREG
1239 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1240 inner_dest
= XEXP (inner_dest
, 0);
1242 return (GET_CODE (inner_dest
) == REG
1243 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1244 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest
)));
1253 /* LOC is the location within I3 that contains its pattern or the component
1254 of a PARALLEL of the pattern. We validate that it is valid for combining.
1256 One problem is if I3 modifies its output, as opposed to replacing it
1257 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1258 so would produce an insn that is not equivalent to the original insns.
1262 (set (reg:DI 101) (reg:DI 100))
1263 (set (subreg:SI (reg:DI 101) 0) <foo>)
1265 This is NOT equivalent to:
1267 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1268 (set (reg:DI 101) (reg:DI 100))])
1270 Not only does this modify 100 (in which case it might still be valid
1271 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1273 We can also run into a problem if I2 sets a register that I1
1274 uses and I1 gets directly substituted into I3 (not via I2). In that
1275 case, we would be getting the wrong value of I2DEST into I3, so we
1276 must reject the combination. This case occurs when I2 and I1 both
1277 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1278 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1279 of a SET must prevent combination from occurring.
1281 Before doing the above check, we first try to expand a field assignment
1282 into a set of logical operations.
1284 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1285 we place a register that is both set and used within I3. If more than one
1286 such register is detected, we fail.
1288 Return 1 if the combination is valid, zero otherwise. */
1291 combinable_i3pat (i3
, loc
, i2dest
, i1dest
, i1_not_in_src
, pi3dest_killed
)
1297 rtx
*pi3dest_killed
;
1301 if (GET_CODE (x
) == SET
)
1303 rtx set
= expand_field_assignment (x
);
1304 rtx dest
= SET_DEST (set
);
1305 rtx src
= SET_SRC (set
);
1306 rtx inner_dest
= dest
;
1309 rtx inner_src
= src
;
1314 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1315 || GET_CODE (inner_dest
) == SUBREG
1316 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1317 inner_dest
= XEXP (inner_dest
, 0);
1319 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1322 while (GET_CODE (inner_src
) == STRICT_LOW_PART
1323 || GET_CODE (inner_src
) == SUBREG
1324 || GET_CODE (inner_src
) == ZERO_EXTRACT
)
1325 inner_src
= XEXP (inner_src
, 0);
1327 /* If it is better that two different modes keep two different pseudos,
1328 avoid combining them. This avoids producing the following pattern
1330 (set (subreg:SI (reg/v:QI 21) 0)
1331 (lshiftrt:SI (reg/v:SI 20)
1333 If that were made, reload could not handle the pair of
1334 reg 20/21, since it would try to get any GENERAL_REGS
1335 but some of them don't handle QImode. */
1337 if (rtx_equal_p (inner_src
, i2dest
)
1338 && GET_CODE (inner_dest
) == REG
1339 && ! MODES_TIEABLE_P (GET_MODE (i2dest
), GET_MODE (inner_dest
)))
1343 /* Check for the case where I3 modifies its output, as
1345 if ((inner_dest
!= dest
1346 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
1347 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))))
1349 /* This is the same test done in can_combine_p except we can't test
1350 all_adjacent; we don't have to, since this instruction will stay
1351 in place, thus we are not considering increasing the lifetime of
1354 Also, if this insn sets a function argument, combining it with
1355 something that might need a spill could clobber a previous
1356 function argument; the all_adjacent test in can_combine_p also
1357 checks this; here, we do a more specific test for this case. */
1359 || (GET_CODE (inner_dest
) == REG
1360 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1361 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
1362 GET_MODE (inner_dest
))))
1363 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
)))
1366 /* If DEST is used in I3, it is being killed in this insn,
1367 so record that for later.
1368 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1369 STACK_POINTER_REGNUM, since these are always considered to be
1370 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1371 if (pi3dest_killed
&& GET_CODE (dest
) == REG
1372 && reg_referenced_p (dest
, PATTERN (i3
))
1373 && REGNO (dest
) != FRAME_POINTER_REGNUM
1374 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1375 && REGNO (dest
) != HARD_FRAME_POINTER_REGNUM
1377 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1378 && (REGNO (dest
) != ARG_POINTER_REGNUM
1379 || ! fixed_regs
[REGNO (dest
)])
1381 && REGNO (dest
) != STACK_POINTER_REGNUM
)
1383 if (*pi3dest_killed
)
1386 *pi3dest_killed
= dest
;
1390 else if (GET_CODE (x
) == PARALLEL
)
1394 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1395 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
,
1396 i1_not_in_src
, pi3dest_killed
))
1403 /* Return 1 if X is an arithmetic expression that contains a multiplication
1404 and division. We don't count multiplications by powers of two here. */
1410 switch (GET_CODE (x
))
1412 case MOD
: case DIV
: case UMOD
: case UDIV
:
1416 return ! (GET_CODE (XEXP (x
, 1)) == CONST_INT
1417 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0);
1419 switch (GET_RTX_CLASS (GET_CODE (x
)))
1421 case 'c': case '<': case '2':
1422 return contains_muldiv (XEXP (x
, 0))
1423 || contains_muldiv (XEXP (x
, 1));
1426 return contains_muldiv (XEXP (x
, 0));
1434 /* Determine whether INSN can be used in a combination. Return nonzero if
1435 not. This is used in try_combine to detect early some cases where we
1436 can't perform combinations. */
1439 cant_combine_insn_p (insn
)
1445 /* If this isn't really an insn, we can't do anything.
1446 This can occur when flow deletes an insn that it has merged into an
1447 auto-increment address. */
1448 if (! INSN_P (insn
))
1451 /* Never combine loads and stores involving hard regs. The register
1452 allocator can usually handle such reg-reg moves by tying. If we allow
1453 the combiner to make substitutions of hard regs, we risk aborting in
1454 reload on machines that have SMALL_REGISTER_CLASSES.
1455 As an exception, we allow combinations involving fixed regs; these are
1456 not available to the register allocator so there's no risk involved. */
1458 set
= single_set (insn
);
1461 src
= SET_SRC (set
);
1462 dest
= SET_DEST (set
);
1463 if (GET_CODE (src
) == SUBREG
)
1464 src
= SUBREG_REG (src
);
1465 if (GET_CODE (dest
) == SUBREG
)
1466 dest
= SUBREG_REG (dest
);
1467 if (REG_P (src
) && REG_P (dest
)
1468 && ((REGNO (src
) < FIRST_PSEUDO_REGISTER
1469 && ! fixed_regs
[REGNO (src
)])
1470 || (REGNO (dest
) < FIRST_PSEUDO_REGISTER
1471 && ! fixed_regs
[REGNO (dest
)])))
1477 /* Try to combine the insns I1 and I2 into I3.
1478 Here I1 and I2 appear earlier than I3.
1479 I1 can be zero; then we combine just I2 into I3.
1481 It we are combining three insns and the resulting insn is not recognized,
1482 try splitting it into two insns. If that happens, I2 and I3 are retained
1483 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1486 Return 0 if the combination does not work. Then nothing is changed.
1487 If we did the combination, return the insn at which combine should
1490 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1491 new direct jump instruction. */
1494 try_combine (i3
, i2
, i1
, new_direct_jump_p
)
1495 register rtx i3
, i2
, i1
;
1496 register int *new_direct_jump_p
;
1498 /* New patterns for I3 and I2, respectively. */
1499 rtx newpat
, newi2pat
= 0;
1500 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1501 int added_sets_1
, added_sets_2
;
1502 /* Total number of SETs to put into I3. */
1504 /* Nonzero is I2's body now appears in I3. */
1506 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1507 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
1508 /* Contains I3 if the destination of I3 is used in its source, which means
1509 that the old life of I3 is being killed. If that usage is placed into
1510 I2 and not in I3, a REG_DEAD note must be made. */
1511 rtx i3dest_killed
= 0;
1512 /* SET_DEST and SET_SRC of I2 and I1. */
1513 rtx i2dest
, i2src
, i1dest
= 0, i1src
= 0;
1514 /* PATTERN (I2), or a copy of it in certain cases. */
1516 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1517 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
1518 int i1_feeds_i3
= 0;
1519 /* Notes that must be added to REG_NOTES in I3 and I2. */
1520 rtx new_i3_notes
, new_i2_notes
;
1521 /* Notes that we substituted I3 into I2 instead of the normal case. */
1522 int i3_subst_into_i2
= 0;
1523 /* Notes that I1, I2 or I3 is a MULT operation. */
1531 /* Exit early if one of the insns involved can't be used for
1533 if (cant_combine_insn_p (i3
)
1534 || cant_combine_insn_p (i2
)
1535 || (i1
&& cant_combine_insn_p (i1
))
1536 /* We also can't do anything if I3 has a
1537 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1540 /* ??? This gives worse code, and appears to be unnecessary, since no
1541 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1542 || find_reg_note (i3
, REG_LIBCALL
, NULL_RTX
)
1548 undobuf
.other_insn
= 0;
1550 /* Reset the hard register usage information. */
1551 CLEAR_HARD_REG_SET (newpat_used_regs
);
1553 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1554 code below, set I1 to be the earlier of the two insns. */
1555 if (i1
&& INSN_CUID (i1
) > INSN_CUID (i2
))
1556 temp
= i1
, i1
= i2
, i2
= temp
;
1558 added_links_insn
= 0;
1560 /* First check for one important special-case that the code below will
1561 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1562 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1563 we may be able to replace that destination with the destination of I3.
1564 This occurs in the common code where we compute both a quotient and
1565 remainder into a structure, in which case we want to do the computation
1566 directly into the structure to avoid register-register copies.
1568 Note that this case handles both multiple sets in I2 and also
1569 cases where I2 has a number of CLOBBER or PARALLELs.
1571 We make very conservative checks below and only try to handle the
1572 most common cases of this. For example, we only handle the case
1573 where I2 and I3 are adjacent to avoid making difficult register
1576 if (i1
== 0 && GET_CODE (i3
) == INSN
&& GET_CODE (PATTERN (i3
)) == SET
1577 && GET_CODE (SET_SRC (PATTERN (i3
))) == REG
1578 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
1579 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
1580 && GET_CODE (PATTERN (i2
)) == PARALLEL
1581 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
1582 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1583 below would need to check what is inside (and reg_overlap_mentioned_p
1584 doesn't support those codes anyway). Don't allow those destinations;
1585 the resulting insn isn't likely to be recognized anyway. */
1586 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
1587 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
1588 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
1589 SET_DEST (PATTERN (i3
)))
1590 && next_real_insn (i2
) == i3
)
1592 rtx p2
= PATTERN (i2
);
1594 /* Make sure that the destination of I3,
1595 which we are going to substitute into one output of I2,
1596 is not used within another output of I2. We must avoid making this:
1597 (parallel [(set (mem (reg 69)) ...)
1598 (set (reg 69) ...)])
1599 which is not well-defined as to order of actions.
1600 (Besides, reload can't handle output reloads for this.)
1602 The problem can also happen if the dest of I3 is a memory ref,
1603 if another dest in I2 is an indirect memory ref. */
1604 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1605 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1606 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1607 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
1608 SET_DEST (XVECEXP (p2
, 0, i
))))
1611 if (i
== XVECLEN (p2
, 0))
1612 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1613 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1614 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1615 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
1620 subst_low_cuid
= INSN_CUID (i2
);
1622 added_sets_2
= added_sets_1
= 0;
1623 i2dest
= SET_SRC (PATTERN (i3
));
1625 /* Replace the dest in I2 with our dest and make the resulting
1626 insn the new pattern for I3. Then skip to where we
1627 validate the pattern. Everything was set up above. */
1628 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)),
1629 SET_DEST (PATTERN (i3
)));
1632 i3_subst_into_i2
= 1;
1633 goto validate_replacement
;
1637 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1638 one of those words to another constant, merge them by making a new
1641 && (temp
= single_set (i2
)) != 0
1642 && (GET_CODE (SET_SRC (temp
)) == CONST_INT
1643 || GET_CODE (SET_SRC (temp
)) == CONST_DOUBLE
)
1644 && GET_CODE (SET_DEST (temp
)) == REG
1645 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp
))) == MODE_INT
1646 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp
))) == 2 * UNITS_PER_WORD
1647 && GET_CODE (PATTERN (i3
)) == SET
1648 && GET_CODE (SET_DEST (PATTERN (i3
))) == SUBREG
1649 && SUBREG_REG (SET_DEST (PATTERN (i3
))) == SET_DEST (temp
)
1650 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3
)))) == MODE_INT
1651 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3
)))) == UNITS_PER_WORD
1652 && GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_INT
)
1654 HOST_WIDE_INT lo
, hi
;
1656 if (GET_CODE (SET_SRC (temp
)) == CONST_INT
)
1657 lo
= INTVAL (SET_SRC (temp
)), hi
= lo
< 0 ? -1 : 0;
1660 lo
= CONST_DOUBLE_LOW (SET_SRC (temp
));
1661 hi
= CONST_DOUBLE_HIGH (SET_SRC (temp
));
1664 if (subreg_lowpart_p (SET_DEST (PATTERN (i3
))))
1665 lo
= INTVAL (SET_SRC (PATTERN (i3
)));
1667 hi
= INTVAL (SET_SRC (PATTERN (i3
)));
1671 subst_low_cuid
= INSN_CUID (i2
);
1672 added_sets_2
= added_sets_1
= 0;
1673 i2dest
= SET_DEST (temp
);
1675 SUBST (SET_SRC (temp
),
1676 immed_double_const (lo
, hi
, GET_MODE (SET_DEST (temp
))));
1678 newpat
= PATTERN (i2
);
1679 goto validate_replacement
;
1683 /* If we have no I1 and I2 looks like:
1684 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1686 make up a dummy I1 that is
1689 (set (reg:CC X) (compare:CC Y (const_int 0)))
1691 (We can ignore any trailing CLOBBERs.)
1693 This undoes a previous combination and allows us to match a branch-and-
1696 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
1697 && XVECLEN (PATTERN (i2
), 0) >= 2
1698 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
1699 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
1701 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
1702 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
1703 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
1704 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1))) == REG
1705 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
1706 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
1708 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
1709 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
1714 /* We make I1 with the same INSN_UID as I2. This gives it
1715 the same INSN_CUID for value tracking. Our fake I1 will
1716 never appear in the insn stream so giving it the same INSN_UID
1717 as I2 will not cause a problem. */
1719 subst_prev_insn
= i1
1720 = gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
1721 XVECEXP (PATTERN (i2
), 0, 1), -1, NULL_RTX
,
1724 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
1725 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
1726 SET_DEST (PATTERN (i1
)));
1731 /* Verify that I2 and I1 are valid for combining. */
1732 if (! can_combine_p (i2
, i3
, i1
, NULL_RTX
, &i2dest
, &i2src
)
1733 || (i1
&& ! can_combine_p (i1
, i3
, NULL_RTX
, i2
, &i1dest
, &i1src
)))
1739 /* Record whether I2DEST is used in I2SRC and similarly for the other
1740 cases. Knowing this will help in register status updating below. */
1741 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
1742 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
1743 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
1745 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1747 i1_feeds_i3
= i1
&& ! reg_overlap_mentioned_p (i1dest
, i2src
);
1749 /* Ensure that I3's pattern can be the destination of combines. */
1750 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
,
1751 i1
&& i2dest_in_i1src
&& i1_feeds_i3
,
1758 /* See if any of the insns is a MULT operation. Unless one is, we will
1759 reject a combination that is, since it must be slower. Be conservative
1761 if (GET_CODE (i2src
) == MULT
1762 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
1763 || (GET_CODE (PATTERN (i3
)) == SET
1764 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
1767 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1768 We used to do this EXCEPT in one case: I3 has a post-inc in an
1769 output operand. However, that exception can give rise to insns like
1771 which is a famous insn on the PDP-11 where the value of r3 used as the
1772 source was model-dependent. Avoid this sort of thing. */
1775 if (!(GET_CODE (PATTERN (i3
)) == SET
1776 && GET_CODE (SET_SRC (PATTERN (i3
))) == REG
1777 && GET_CODE (SET_DEST (PATTERN (i3
))) == MEM
1778 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
1779 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
1780 /* It's not the exception. */
1783 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
1784 if (REG_NOTE_KIND (link
) == REG_INC
1785 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
1787 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
1794 /* See if the SETs in I1 or I2 need to be kept around in the merged
1795 instruction: whenever the value set there is still needed past I3.
1796 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1798 For the SET in I1, we have two cases: If I1 and I2 independently
1799 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1800 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1801 in I1 needs to be kept around unless I1DEST dies or is set in either
1802 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1803 I1DEST. If so, we know I1 feeds into I2. */
1805 added_sets_2
= ! dead_or_set_p (i3
, i2dest
);
1808 = i1
&& ! (i1_feeds_i3
? dead_or_set_p (i3
, i1dest
)
1809 : (dead_or_set_p (i3
, i1dest
) || dead_or_set_p (i2
, i1dest
)));
1811 /* If the set in I2 needs to be kept around, we must make a copy of
1812 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1813 PATTERN (I2), we are only substituting for the original I1DEST, not into
1814 an already-substituted copy. This also prevents making self-referential
1815 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1818 i2pat
= (GET_CODE (PATTERN (i2
)) == PARALLEL
1819 ? gen_rtx_SET (VOIDmode
, i2dest
, i2src
)
1823 i2pat
= copy_rtx (i2pat
);
1827 /* Substitute in the latest insn for the regs set by the earlier ones. */
1829 maxreg
= max_reg_num ();
1833 /* It is possible that the source of I2 or I1 may be performing an
1834 unneeded operation, such as a ZERO_EXTEND of something that is known
1835 to have the high part zero. Handle that case by letting subst look at
1836 the innermost one of them.
1838 Another way to do this would be to have a function that tries to
1839 simplify a single insn instead of merging two or more insns. We don't
1840 do this because of the potential of infinite loops and because
1841 of the potential extra memory required. However, doing it the way
1842 we are is a bit of a kludge and doesn't catch all cases.
1844 But only do this if -fexpensive-optimizations since it slows things down
1845 and doesn't usually win. */
1847 if (flag_expensive_optimizations
)
1849 /* Pass pc_rtx so no substitutions are done, just simplifications.
1850 The cases that we are interested in here do not involve the few
1851 cases were is_replaced is checked. */
1854 subst_low_cuid
= INSN_CUID (i1
);
1855 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0);
1859 subst_low_cuid
= INSN_CUID (i2
);
1860 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0);
1863 undobuf
.previous_undos
= undobuf
.undos
;
1867 /* Many machines that don't use CC0 have insns that can both perform an
1868 arithmetic operation and set the condition code. These operations will
1869 be represented as a PARALLEL with the first element of the vector
1870 being a COMPARE of an arithmetic operation with the constant zero.
1871 The second element of the vector will set some pseudo to the result
1872 of the same arithmetic operation. If we simplify the COMPARE, we won't
1873 match such a pattern and so will generate an extra insn. Here we test
1874 for this case, where both the comparison and the operation result are
1875 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1876 I2SRC. Later we will make the PARALLEL that contains I2. */
1878 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
1879 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
1880 && XEXP (SET_SRC (PATTERN (i3
)), 1) == const0_rtx
1881 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
1883 #ifdef EXTRA_CC_MODES
1885 enum machine_mode compare_mode
;
1888 newpat
= PATTERN (i3
);
1889 SUBST (XEXP (SET_SRC (newpat
), 0), i2src
);
1893 #ifdef EXTRA_CC_MODES
1894 /* See if a COMPARE with the operand we substituted in should be done
1895 with the mode that is currently being used. If not, do the same
1896 processing we do in `subst' for a SET; namely, if the destination
1897 is used only once, try to replace it with a register of the proper
1898 mode and also replace the COMPARE. */
1899 if (undobuf
.other_insn
== 0
1900 && (cc_use
= find_single_use (SET_DEST (newpat
), i3
,
1901 &undobuf
.other_insn
))
1902 && ((compare_mode
= SELECT_CC_MODE (GET_CODE (*cc_use
),
1904 != GET_MODE (SET_DEST (newpat
))))
1906 unsigned int regno
= REGNO (SET_DEST (newpat
));
1907 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
1909 if (regno
< FIRST_PSEUDO_REGISTER
1910 || (REG_N_SETS (regno
) == 1 && ! added_sets_2
1911 && ! REG_USERVAR_P (SET_DEST (newpat
))))
1913 if (regno
>= FIRST_PSEUDO_REGISTER
)
1914 SUBST (regno_reg_rtx
[regno
], new_dest
);
1916 SUBST (SET_DEST (newpat
), new_dest
);
1917 SUBST (XEXP (*cc_use
, 0), new_dest
);
1918 SUBST (SET_SRC (newpat
),
1919 gen_rtx_combine (COMPARE
, compare_mode
,
1920 i2src
, const0_rtx
));
1923 undobuf
.other_insn
= 0;
1930 n_occurrences
= 0; /* `subst' counts here */
1932 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1933 need to make a unique copy of I2SRC each time we substitute it
1934 to avoid self-referential rtl. */
1936 subst_low_cuid
= INSN_CUID (i2
);
1937 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0,
1938 ! i1_feeds_i3
&& i1dest_in_i1src
);
1939 undobuf
.previous_undos
= undobuf
.undos
;
1941 /* Record whether i2's body now appears within i3's body. */
1942 i2_is_used
= n_occurrences
;
1945 /* If we already got a failure, don't try to do more. Otherwise,
1946 try to substitute in I1 if we have it. */
1948 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
1950 /* Before we can do this substitution, we must redo the test done
1951 above (see detailed comments there) that ensures that I1DEST
1952 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1954 if (! combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
,
1962 subst_low_cuid
= INSN_CUID (i1
);
1963 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0);
1964 undobuf
.previous_undos
= undobuf
.undos
;
1967 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1968 to count all the ways that I2SRC and I1SRC can be used. */
1969 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
1970 && i2_is_used
+ added_sets_2
> 1)
1971 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
1972 && (n_occurrences
+ added_sets_1
+ (added_sets_2
&& ! i1_feeds_i3
)
1974 /* Fail if we tried to make a new register (we used to abort, but there's
1975 really no reason to). */
1976 || max_reg_num () != maxreg
1977 /* Fail if we couldn't do something and have a CLOBBER. */
1978 || GET_CODE (newpat
) == CLOBBER
1979 /* Fail if this new pattern is a MULT and we didn't have one before
1980 at the outer level. */
1981 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
1988 /* If the actions of the earlier insns must be kept
1989 in addition to substituting them into the latest one,
1990 we must make a new PARALLEL for the latest insn
1991 to hold additional the SETs. */
1993 if (added_sets_1
|| added_sets_2
)
1997 if (GET_CODE (newpat
) == PARALLEL
)
1999 rtvec old
= XVEC (newpat
, 0);
2000 total_sets
= XVECLEN (newpat
, 0) + added_sets_1
+ added_sets_2
;
2001 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2002 bcopy ((char *) &old
->elem
[0], (char *) XVEC (newpat
, 0)->elem
,
2003 sizeof (old
->elem
[0]) * old
->num_elem
);
2008 total_sets
= 1 + added_sets_1
+ added_sets_2
;
2009 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2010 XVECEXP (newpat
, 0, 0) = old
;
2014 XVECEXP (newpat
, 0, --total_sets
)
2015 = (GET_CODE (PATTERN (i1
)) == PARALLEL
2016 ? gen_rtx_SET (VOIDmode
, i1dest
, i1src
) : PATTERN (i1
));
2020 /* If there is no I1, use I2's body as is. We used to also not do
2021 the subst call below if I2 was substituted into I3,
2022 but that could lose a simplification. */
2024 XVECEXP (newpat
, 0, --total_sets
) = i2pat
;
2026 /* See comment where i2pat is assigned. */
2027 XVECEXP (newpat
, 0, --total_sets
)
2028 = subst (i2pat
, i1dest
, i1src
, 0, 0);
2032 /* We come here when we are replacing a destination in I2 with the
2033 destination of I3. */
2034 validate_replacement
:
2036 /* Note which hard regs this insn has as inputs. */
2037 mark_used_regs_combine (newpat
);
2039 /* Is the result of combination a valid instruction? */
2040 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2042 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2043 the second SET's destination is a register that is unused. In that case,
2044 we just need the first SET. This can occur when simplifying a divmod
2045 insn. We *must* test for this case here because the code below that
2046 splits two independent SETs doesn't handle this case correctly when it
2047 updates the register status. Also check the case where the first
2048 SET's destination is unused. That would not cause incorrect code, but
2049 does cause an unneeded insn to remain. */
2051 if (insn_code_number
< 0 && GET_CODE (newpat
) == PARALLEL
2052 && XVECLEN (newpat
, 0) == 2
2053 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2054 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2055 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == REG
2056 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (XVECEXP (newpat
, 0, 1)))
2057 && ! side_effects_p (SET_SRC (XVECEXP (newpat
, 0, 1)))
2058 && asm_noperands (newpat
) < 0)
2060 newpat
= XVECEXP (newpat
, 0, 0);
2061 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2064 else if (insn_code_number
< 0 && GET_CODE (newpat
) == PARALLEL
2065 && XVECLEN (newpat
, 0) == 2
2066 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2067 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2068 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) == REG
2069 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (XVECEXP (newpat
, 0, 0)))
2070 && ! side_effects_p (SET_SRC (XVECEXP (newpat
, 0, 0)))
2071 && asm_noperands (newpat
) < 0)
2073 newpat
= XVECEXP (newpat
, 0, 1);
2074 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2077 /* If we were combining three insns and the result is a simple SET
2078 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2079 insns. There are two ways to do this. It can be split using a
2080 machine-specific method (like when you have an addition of a large
2081 constant) or by combine in the function find_split_point. */
2083 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
2084 && asm_noperands (newpat
) < 0)
2086 rtx m_split
, *split
;
2087 rtx ni2dest
= i2dest
;
2089 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2090 use I2DEST as a scratch register will help. In the latter case,
2091 convert I2DEST to the mode of the source of NEWPAT if we can. */
2093 m_split
= split_insns (newpat
, i3
);
2095 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2096 inputs of NEWPAT. */
2098 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2099 possible to try that as a scratch reg. This would require adding
2100 more code to make it work though. */
2102 if (m_split
== 0 && ! reg_overlap_mentioned_p (ni2dest
, newpat
))
2104 /* If I2DEST is a hard register or the only use of a pseudo,
2105 we can change its mode. */
2106 if (GET_MODE (SET_DEST (newpat
)) != GET_MODE (i2dest
)
2107 && GET_MODE (SET_DEST (newpat
)) != VOIDmode
2108 && GET_CODE (i2dest
) == REG
2109 && (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2110 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2111 && ! REG_USERVAR_P (i2dest
))))
2112 ni2dest
= gen_rtx_REG (GET_MODE (SET_DEST (newpat
)),
2115 m_split
= split_insns (gen_rtx_PARALLEL
2117 gen_rtvec (2, newpat
,
2118 gen_rtx_CLOBBER (VOIDmode
,
2123 if (m_split
&& GET_CODE (m_split
) != SEQUENCE
)
2125 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
2126 if (insn_code_number
>= 0)
2129 else if (m_split
&& GET_CODE (m_split
) == SEQUENCE
2130 && XVECLEN (m_split
, 0) == 2
2131 && (next_real_insn (i2
) == i3
2132 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split
, 0, 0)),
2136 rtx newi3pat
= PATTERN (XVECEXP (m_split
, 0, 1));
2137 newi2pat
= PATTERN (XVECEXP (m_split
, 0, 0));
2139 i3set
= single_set (XVECEXP (m_split
, 0, 1));
2140 i2set
= single_set (XVECEXP (m_split
, 0, 0));
2142 /* In case we changed the mode of I2DEST, replace it in the
2143 pseudo-register table here. We can't do it above in case this
2144 code doesn't get executed and we do a split the other way. */
2146 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2147 SUBST (regno_reg_rtx
[REGNO (i2dest
)], ni2dest
);
2149 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2151 /* If I2 or I3 has multiple SETs, we won't know how to track
2152 register status, so don't use these insns. If I2's destination
2153 is used between I2 and I3, we also can't use these insns. */
2155 if (i2_code_number
>= 0 && i2set
&& i3set
2156 && (next_real_insn (i2
) == i3
2157 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
2158 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
2160 if (insn_code_number
>= 0)
2163 /* It is possible that both insns now set the destination of I3.
2164 If so, we must show an extra use of it. */
2166 if (insn_code_number
>= 0)
2168 rtx new_i3_dest
= SET_DEST (i3set
);
2169 rtx new_i2_dest
= SET_DEST (i2set
);
2171 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
2172 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
2173 || GET_CODE (new_i3_dest
) == SUBREG
)
2174 new_i3_dest
= XEXP (new_i3_dest
, 0);
2176 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
2177 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
2178 || GET_CODE (new_i2_dest
) == SUBREG
)
2179 new_i2_dest
= XEXP (new_i2_dest
, 0);
2181 if (GET_CODE (new_i3_dest
) == REG
2182 && GET_CODE (new_i2_dest
) == REG
2183 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
2184 REG_N_SETS (REGNO (new_i2_dest
))++;
2188 /* If we can split it and use I2DEST, go ahead and see if that
2189 helps things be recognized. Verify that none of the registers
2190 are set between I2 and I3. */
2191 if (insn_code_number
< 0 && (split
= find_split_point (&newpat
, i3
)) != 0
2193 && GET_CODE (i2dest
) == REG
2195 /* We need I2DEST in the proper mode. If it is a hard register
2196 or the only use of a pseudo, we can change its mode. */
2197 && (GET_MODE (*split
) == GET_MODE (i2dest
)
2198 || GET_MODE (*split
) == VOIDmode
2199 || REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2200 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2201 && ! REG_USERVAR_P (i2dest
)))
2202 && (next_real_insn (i2
) == i3
2203 || ! use_crosses_set_p (*split
, INSN_CUID (i2
)))
2204 /* We can't overwrite I2DEST if its value is still used by
2206 && ! reg_referenced_p (i2dest
, newpat
))
2208 rtx newdest
= i2dest
;
2209 enum rtx_code split_code
= GET_CODE (*split
);
2210 enum machine_mode split_mode
= GET_MODE (*split
);
2212 /* Get NEWDEST as a register in the proper mode. We have already
2213 validated that we can do this. */
2214 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
2216 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
2218 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2219 SUBST (regno_reg_rtx
[REGNO (i2dest
)], newdest
);
2222 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2223 an ASHIFT. This can occur if it was inside a PLUS and hence
2224 appeared to be a memory address. This is a kludge. */
2225 if (split_code
== MULT
2226 && GET_CODE (XEXP (*split
, 1)) == CONST_INT
2227 && (i
= exact_log2 (INTVAL (XEXP (*split
, 1)))) >= 0)
2229 SUBST (*split
, gen_rtx_combine (ASHIFT
, split_mode
,
2230 XEXP (*split
, 0), GEN_INT (i
)));
2231 /* Update split_code because we may not have a multiply
2233 split_code
= GET_CODE (*split
);
2236 #ifdef INSN_SCHEDULING
2237 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2238 be written as a ZERO_EXTEND. */
2239 if (split_code
== SUBREG
&& GET_CODE (SUBREG_REG (*split
)) == MEM
)
2240 SUBST (*split
, gen_rtx_combine (ZERO_EXTEND
, split_mode
,
2244 newi2pat
= gen_rtx_combine (SET
, VOIDmode
, newdest
, *split
);
2245 SUBST (*split
, newdest
);
2246 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2248 /* If the split point was a MULT and we didn't have one before,
2249 don't use one now. */
2250 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
2251 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2255 /* Check for a case where we loaded from memory in a narrow mode and
2256 then sign extended it, but we need both registers. In that case,
2257 we have a PARALLEL with both loads from the same memory location.
2258 We can split this into a load from memory followed by a register-register
2259 copy. This saves at least one insn, more if register allocation can
2262 We cannot do this if the destination of the second assignment is
2263 a register that we have already assumed is zero-extended. Similarly
2264 for a SUBREG of such a register. */
2266 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2267 && GET_CODE (newpat
) == PARALLEL
2268 && XVECLEN (newpat
, 0) == 2
2269 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2270 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
2271 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2272 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2273 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
2274 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2276 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2277 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2278 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
2279 (GET_CODE (temp
) == REG
2280 && reg_nonzero_bits
[REGNO (temp
)] != 0
2281 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2282 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2283 && (reg_nonzero_bits
[REGNO (temp
)]
2284 != GET_MODE_MASK (word_mode
))))
2285 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
2286 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
2287 (GET_CODE (temp
) == REG
2288 && reg_nonzero_bits
[REGNO (temp
)] != 0
2289 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2290 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2291 && (reg_nonzero_bits
[REGNO (temp
)]
2292 != GET_MODE_MASK (word_mode
)))))
2293 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2294 SET_SRC (XVECEXP (newpat
, 0, 1)))
2295 && ! find_reg_note (i3
, REG_UNUSED
,
2296 SET_DEST (XVECEXP (newpat
, 0, 0))))
2300 newi2pat
= XVECEXP (newpat
, 0, 0);
2301 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
2302 newpat
= XVECEXP (newpat
, 0, 1);
2303 SUBST (SET_SRC (newpat
),
2304 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat
)), ni2dest
));
2305 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2307 if (i2_code_number
>= 0)
2308 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2310 if (insn_code_number
>= 0)
2315 /* If we will be able to accept this, we have made a change to the
2316 destination of I3. This can invalidate a LOG_LINKS pointing
2317 to I3. No other part of combine.c makes such a transformation.
2319 The new I3 will have a destination that was previously the
2320 destination of I1 or I2 and which was used in i2 or I3. Call
2321 distribute_links to make a LOG_LINK from the next use of
2322 that destination. */
2324 PATTERN (i3
) = newpat
;
2325 distribute_links (gen_rtx_INSN_LIST (VOIDmode
, i3
, NULL_RTX
));
2327 /* I3 now uses what used to be its destination and which is
2328 now I2's destination. That means we need a LOG_LINK from
2329 I3 to I2. But we used to have one, so we still will.
2331 However, some later insn might be using I2's dest and have
2332 a LOG_LINK pointing at I3. We must remove this link.
2333 The simplest way to remove the link is to point it at I1,
2334 which we know will be a NOTE. */
2336 for (insn
= NEXT_INSN (i3
);
2337 insn
&& (this_basic_block
== n_basic_blocks
- 1
2338 || insn
!= BLOCK_HEAD (this_basic_block
+ 1));
2339 insn
= NEXT_INSN (insn
))
2341 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
2343 for (link
= LOG_LINKS (insn
); link
;
2344 link
= XEXP (link
, 1))
2345 if (XEXP (link
, 0) == i3
)
2346 XEXP (link
, 0) = i1
;
2354 /* Similarly, check for a case where we have a PARALLEL of two independent
2355 SETs but we started with three insns. In this case, we can do the sets
2356 as two separate insns. This case occurs when some SET allows two
2357 other insns to combine, but the destination of that SET is still live. */
2359 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2360 && GET_CODE (newpat
) == PARALLEL
2361 && XVECLEN (newpat
, 0) == 2
2362 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2363 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
2364 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
2365 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2366 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2367 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2368 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2370 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2371 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != USE
2372 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != USE
2373 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2374 XVECEXP (newpat
, 0, 0))
2375 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
2376 XVECEXP (newpat
, 0, 1))
2377 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
2378 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
2380 /* Normally, it doesn't matter which of the two is done first,
2381 but it does if one references cc0. In that case, it has to
2384 if (reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0)))
2386 newi2pat
= XVECEXP (newpat
, 0, 0);
2387 newpat
= XVECEXP (newpat
, 0, 1);
2392 newi2pat
= XVECEXP (newpat
, 0, 1);
2393 newpat
= XVECEXP (newpat
, 0, 0);
2396 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2398 if (i2_code_number
>= 0)
2399 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2402 /* If it still isn't recognized, fail and change things back the way they
2404 if ((insn_code_number
< 0
2405 /* Is the result a reasonable ASM_OPERANDS? */
2406 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
2412 /* If we had to change another insn, make sure it is valid also. */
2413 if (undobuf
.other_insn
)
2415 rtx other_pat
= PATTERN (undobuf
.other_insn
);
2416 rtx new_other_notes
;
2419 CLEAR_HARD_REG_SET (newpat_used_regs
);
2421 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
2424 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
2430 PATTERN (undobuf
.other_insn
) = other_pat
;
2432 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2433 are still valid. Then add any non-duplicate notes added by
2434 recog_for_combine. */
2435 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
2437 next
= XEXP (note
, 1);
2439 if (REG_NOTE_KIND (note
) == REG_UNUSED
2440 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
2442 if (GET_CODE (XEXP (note
, 0)) == REG
)
2443 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
2445 remove_note (undobuf
.other_insn
, note
);
2449 for (note
= new_other_notes
; note
; note
= XEXP (note
, 1))
2450 if (GET_CODE (XEXP (note
, 0)) == REG
)
2451 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
2453 distribute_notes (new_other_notes
, undobuf
.other_insn
,
2454 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2457 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2458 they are adjacent to each other or not. */
2460 rtx p
= prev_nonnote_insn (i3
);
2461 if (p
&& p
!= i2
&& GET_CODE (p
) == INSN
&& newi2pat
2462 && sets_cc0_p (newi2pat
))
2470 /* We now know that we can do this combination. Merge the insns and
2471 update the status of registers and LOG_LINKS. */
2474 rtx i3notes
, i2notes
, i1notes
= 0;
2475 rtx i3links
, i2links
, i1links
= 0;
2478 /* Compute which registers we expect to eliminate. newi2pat may be setting
2479 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2480 same as i3dest, in which case newi2pat may be setting i1dest. */
2481 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
2482 || i2dest_in_i2src
|| i2dest_in_i1src
2484 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
2485 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
2488 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2490 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
2491 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
2493 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
2495 /* Ensure that we do not have something that should not be shared but
2496 occurs multiple times in the new insns. Check this by first
2497 resetting all the `used' flags and then copying anything is shared. */
2499 reset_used_flags (i3notes
);
2500 reset_used_flags (i2notes
);
2501 reset_used_flags (i1notes
);
2502 reset_used_flags (newpat
);
2503 reset_used_flags (newi2pat
);
2504 if (undobuf
.other_insn
)
2505 reset_used_flags (PATTERN (undobuf
.other_insn
));
2507 i3notes
= copy_rtx_if_shared (i3notes
);
2508 i2notes
= copy_rtx_if_shared (i2notes
);
2509 i1notes
= copy_rtx_if_shared (i1notes
);
2510 newpat
= copy_rtx_if_shared (newpat
);
2511 newi2pat
= copy_rtx_if_shared (newi2pat
);
2512 if (undobuf
.other_insn
)
2513 reset_used_flags (PATTERN (undobuf
.other_insn
));
2515 INSN_CODE (i3
) = insn_code_number
;
2516 PATTERN (i3
) = newpat
;
2517 if (undobuf
.other_insn
)
2518 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
2520 /* We had one special case above where I2 had more than one set and
2521 we replaced a destination of one of those sets with the destination
2522 of I3. In that case, we have to update LOG_LINKS of insns later
2523 in this basic block. Note that this (expensive) case is rare.
2525 Also, in this case, we must pretend that all REG_NOTEs for I2
2526 actually came from I3, so that REG_UNUSED notes from I2 will be
2527 properly handled. */
2529 if (i3_subst_into_i2
)
2531 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
2532 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != USE
2533 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))) == REG
2534 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
2535 && ! find_reg_note (i2
, REG_UNUSED
,
2536 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
2537 for (temp
= NEXT_INSN (i2
);
2538 temp
&& (this_basic_block
== n_basic_blocks
- 1
2539 || BLOCK_HEAD (this_basic_block
) != temp
);
2540 temp
= NEXT_INSN (temp
))
2541 if (temp
!= i3
&& INSN_P (temp
))
2542 for (link
= LOG_LINKS (temp
); link
; link
= XEXP (link
, 1))
2543 if (XEXP (link
, 0) == i2
)
2544 XEXP (link
, 0) = i3
;
2549 while (XEXP (link
, 1))
2550 link
= XEXP (link
, 1);
2551 XEXP (link
, 1) = i2notes
;
2565 INSN_CODE (i2
) = i2_code_number
;
2566 PATTERN (i2
) = newi2pat
;
2570 PUT_CODE (i2
, NOTE
);
2571 NOTE_LINE_NUMBER (i2
) = NOTE_INSN_DELETED
;
2572 NOTE_SOURCE_FILE (i2
) = 0;
2579 PUT_CODE (i1
, NOTE
);
2580 NOTE_LINE_NUMBER (i1
) = NOTE_INSN_DELETED
;
2581 NOTE_SOURCE_FILE (i1
) = 0;
2584 /* Get death notes for everything that is now used in either I3 or
2585 I2 and used to die in a previous insn. If we built two new
2586 patterns, move from I1 to I2 then I2 to I3 so that we get the
2587 proper movement on registers that I2 modifies. */
2591 move_deaths (newi2pat
, NULL_RTX
, INSN_CUID (i1
), i2
, &midnotes
);
2592 move_deaths (newpat
, newi2pat
, INSN_CUID (i1
), i3
, &midnotes
);
2595 move_deaths (newpat
, NULL_RTX
, i1
? INSN_CUID (i1
) : INSN_CUID (i2
),
2598 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2600 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
2603 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
2606 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
2609 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2612 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2613 know these are REG_UNUSED and want them to go to the desired insn,
2614 so we always pass it as i3. We have not counted the notes in
2615 reg_n_deaths yet, so we need to do so now. */
2617 if (newi2pat
&& new_i2_notes
)
2619 for (temp
= new_i2_notes
; temp
; temp
= XEXP (temp
, 1))
2620 if (GET_CODE (XEXP (temp
, 0)) == REG
)
2621 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2623 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2628 for (temp
= new_i3_notes
; temp
; temp
= XEXP (temp
, 1))
2629 if (GET_CODE (XEXP (temp
, 0)) == REG
)
2630 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2632 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2635 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2636 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2637 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2638 in that case, it might delete I2. Similarly for I2 and I1.
2639 Show an additional death due to the REG_DEAD note we make here. If
2640 we discard it in distribute_notes, we will decrement it again. */
2644 if (GET_CODE (i3dest_killed
) == REG
)
2645 REG_N_DEATHS (REGNO (i3dest_killed
))++;
2647 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
2648 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2650 NULL_RTX
, i2
, NULL_RTX
, elim_i2
, elim_i1
);
2652 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2654 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2658 if (i2dest_in_i2src
)
2660 if (GET_CODE (i2dest
) == REG
)
2661 REG_N_DEATHS (REGNO (i2dest
))++;
2663 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
2664 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2665 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2667 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2668 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2669 NULL_RTX
, NULL_RTX
);
2672 if (i1dest_in_i1src
)
2674 if (GET_CODE (i1dest
) == REG
)
2675 REG_N_DEATHS (REGNO (i1dest
))++;
2677 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
2678 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2679 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2681 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2682 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2683 NULL_RTX
, NULL_RTX
);
2686 distribute_links (i3links
);
2687 distribute_links (i2links
);
2688 distribute_links (i1links
);
2690 if (GET_CODE (i2dest
) == REG
)
2693 rtx i2_insn
= 0, i2_val
= 0, set
;
2695 /* The insn that used to set this register doesn't exist, and
2696 this life of the register may not exist either. See if one of
2697 I3's links points to an insn that sets I2DEST. If it does,
2698 that is now the last known value for I2DEST. If we don't update
2699 this and I2 set the register to a value that depended on its old
2700 contents, we will get confused. If this insn is used, thing
2701 will be set correctly in combine_instructions. */
2703 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2704 if ((set
= single_set (XEXP (link
, 0))) != 0
2705 && rtx_equal_p (i2dest
, SET_DEST (set
)))
2706 i2_insn
= XEXP (link
, 0), i2_val
= SET_SRC (set
);
2708 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
2710 /* If the reg formerly set in I2 died only once and that was in I3,
2711 zero its use count so it won't make `reload' do any work. */
2713 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
2714 && ! i2dest_in_i2src
)
2716 regno
= REGNO (i2dest
);
2717 REG_N_SETS (regno
)--;
2721 if (i1
&& GET_CODE (i1dest
) == REG
)
2724 rtx i1_insn
= 0, i1_val
= 0, set
;
2726 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2727 if ((set
= single_set (XEXP (link
, 0))) != 0
2728 && rtx_equal_p (i1dest
, SET_DEST (set
)))
2729 i1_insn
= XEXP (link
, 0), i1_val
= SET_SRC (set
);
2731 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
2733 regno
= REGNO (i1dest
);
2734 if (! added_sets_1
&& ! i1dest_in_i1src
)
2735 REG_N_SETS (regno
)--;
2738 /* Update reg_nonzero_bits et al for any changes that may have been made
2739 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2740 important. Because newi2pat can affect nonzero_bits of newpat */
2742 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
2743 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
2745 /* Set new_direct_jump_p if a new return or simple jump instruction
2748 If I3 is now an unconditional jump, ensure that it has a
2749 BARRIER following it since it may have initially been a
2750 conditional jump. It may also be the last nonnote insn. */
2752 if (GET_CODE (newpat
) == RETURN
|| any_uncondjump_p (i3
))
2754 *new_direct_jump_p
= 1;
2756 if ((temp
= next_nonnote_insn (i3
)) == NULL_RTX
2757 || GET_CODE (temp
) != BARRIER
)
2758 emit_barrier_after (i3
);
2762 combine_successes
++;
2765 /* Clear this here, so that subsequent get_last_value calls are not
2767 subst_prev_insn
= NULL_RTX
;
2769 if (added_links_insn
2770 && (newi2pat
== 0 || INSN_CUID (added_links_insn
) < INSN_CUID (i2
))
2771 && INSN_CUID (added_links_insn
) < INSN_CUID (i3
))
2772 return added_links_insn
;
2774 return newi2pat
? i2
: i3
;
2777 /* Undo all the modifications recorded in undobuf. */
2782 struct undo
*undo
, *next
;
2784 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2788 *undo
->where
.i
= undo
->old_contents
.i
;
2790 *undo
->where
.r
= undo
->old_contents
.r
;
2792 undo
->next
= undobuf
.frees
;
2793 undobuf
.frees
= undo
;
2796 undobuf
.undos
= undobuf
.previous_undos
= 0;
2798 /* Clear this here, so that subsequent get_last_value calls are not
2800 subst_prev_insn
= NULL_RTX
;
2803 /* We've committed to accepting the changes we made. Move all
2804 of the undos to the free list. */
2809 struct undo
*undo
, *next
;
2811 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2814 undo
->next
= undobuf
.frees
;
2815 undobuf
.frees
= undo
;
2817 undobuf
.undos
= undobuf
.previous_undos
= 0;
2821 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2822 where we have an arithmetic expression and return that point. LOC will
2825 try_combine will call this function to see if an insn can be split into
2829 find_split_point (loc
, insn
)
2834 enum rtx_code code
= GET_CODE (x
);
2836 unsigned HOST_WIDE_INT len
= 0;
2837 HOST_WIDE_INT pos
= 0;
2839 rtx inner
= NULL_RTX
;
2841 /* First special-case some codes. */
2845 #ifdef INSN_SCHEDULING
2846 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2848 if (GET_CODE (SUBREG_REG (x
)) == MEM
)
2851 return find_split_point (&SUBREG_REG (x
), insn
);
2855 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2856 using LO_SUM and HIGH. */
2857 if (GET_CODE (XEXP (x
, 0)) == CONST
2858 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2861 gen_rtx_combine (LO_SUM
, Pmode
,
2862 gen_rtx_combine (HIGH
, Pmode
, XEXP (x
, 0)),
2864 return &XEXP (XEXP (x
, 0), 0);
2868 /* If we have a PLUS whose second operand is a constant and the
2869 address is not valid, perhaps will can split it up using
2870 the machine-specific way to split large constants. We use
2871 the first pseudo-reg (one of the virtual regs) as a placeholder;
2872 it will not remain in the result. */
2873 if (GET_CODE (XEXP (x
, 0)) == PLUS
2874 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
2875 && ! memory_address_p (GET_MODE (x
), XEXP (x
, 0)))
2877 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
2878 rtx seq
= split_insns (gen_rtx_SET (VOIDmode
, reg
, XEXP (x
, 0)),
2881 /* This should have produced two insns, each of which sets our
2882 placeholder. If the source of the second is a valid address,
2883 we can make put both sources together and make a split point
2886 if (seq
&& XVECLEN (seq
, 0) == 2
2887 && GET_CODE (XVECEXP (seq
, 0, 0)) == INSN
2888 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 0))) == SET
2889 && SET_DEST (PATTERN (XVECEXP (seq
, 0, 0))) == reg
2890 && ! reg_mentioned_p (reg
,
2891 SET_SRC (PATTERN (XVECEXP (seq
, 0, 0))))
2892 && GET_CODE (XVECEXP (seq
, 0, 1)) == INSN
2893 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 1))) == SET
2894 && SET_DEST (PATTERN (XVECEXP (seq
, 0, 1))) == reg
2895 && memory_address_p (GET_MODE (x
),
2896 SET_SRC (PATTERN (XVECEXP (seq
, 0, 1)))))
2898 rtx src1
= SET_SRC (PATTERN (XVECEXP (seq
, 0, 0)));
2899 rtx src2
= SET_SRC (PATTERN (XVECEXP (seq
, 0, 1)));
2901 /* Replace the placeholder in SRC2 with SRC1. If we can
2902 find where in SRC2 it was placed, that can become our
2903 split point and we can replace this address with SRC2.
2904 Just try two obvious places. */
2906 src2
= replace_rtx (src2
, reg
, src1
);
2908 if (XEXP (src2
, 0) == src1
)
2909 split
= &XEXP (src2
, 0);
2910 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
2911 && XEXP (XEXP (src2
, 0), 0) == src1
)
2912 split
= &XEXP (XEXP (src2
, 0), 0);
2916 SUBST (XEXP (x
, 0), src2
);
2921 /* If that didn't work, perhaps the first operand is complex and
2922 needs to be computed separately, so make a split point there.
2923 This will occur on machines that just support REG + CONST
2924 and have a constant moved through some previous computation. */
2926 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x
, 0), 0))) != 'o'
2927 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
2928 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x
, 0), 0))))
2930 return &XEXP (XEXP (x
, 0), 0);
2936 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2937 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2938 we need to put the operand into a register. So split at that
2941 if (SET_DEST (x
) == cc0_rtx
2942 && GET_CODE (SET_SRC (x
)) != COMPARE
2943 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
2944 && GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) != 'o'
2945 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
2946 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x
)))) == 'o'))
2947 return &SET_SRC (x
);
2950 /* See if we can split SET_SRC as it stands. */
2951 split
= find_split_point (&SET_SRC (x
), insn
);
2952 if (split
&& split
!= &SET_SRC (x
))
2955 /* See if we can split SET_DEST as it stands. */
2956 split
= find_split_point (&SET_DEST (x
), insn
);
2957 if (split
&& split
!= &SET_DEST (x
))
2960 /* See if this is a bitfield assignment with everything constant. If
2961 so, this is an IOR of an AND, so split it into that. */
2962 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
2963 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
2964 <= HOST_BITS_PER_WIDE_INT
)
2965 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
2966 && GET_CODE (XEXP (SET_DEST (x
), 2)) == CONST_INT
2967 && GET_CODE (SET_SRC (x
)) == CONST_INT
2968 && ((INTVAL (XEXP (SET_DEST (x
), 1))
2969 + INTVAL (XEXP (SET_DEST (x
), 2)))
2970 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0))))
2971 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
2973 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
2974 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
2975 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
2976 rtx dest
= XEXP (SET_DEST (x
), 0);
2977 enum machine_mode mode
= GET_MODE (dest
);
2978 unsigned HOST_WIDE_INT mask
= ((HOST_WIDE_INT
) 1 << len
) - 1;
2980 if (BITS_BIG_ENDIAN
)
2981 pos
= GET_MODE_BITSIZE (mode
) - len
- pos
;
2985 gen_binary (IOR
, mode
, dest
, GEN_INT (src
<< pos
)));
2988 gen_binary (IOR
, mode
,
2989 gen_binary (AND
, mode
, dest
,
2990 GEN_INT (~(mask
<< pos
)
2991 & GET_MODE_MASK (mode
))),
2992 GEN_INT (src
<< pos
)));
2994 SUBST (SET_DEST (x
), dest
);
2996 split
= find_split_point (&SET_SRC (x
), insn
);
2997 if (split
&& split
!= &SET_SRC (x
))
3001 /* Otherwise, see if this is an operation that we can split into two.
3002 If so, try to split that. */
3003 code
= GET_CODE (SET_SRC (x
));
3008 /* If we are AND'ing with a large constant that is only a single
3009 bit and the result is only being used in a context where we
3010 need to know if it is zero or non-zero, replace it with a bit
3011 extraction. This will avoid the large constant, which might
3012 have taken more than one insn to make. If the constant were
3013 not a valid argument to the AND but took only one insn to make,
3014 this is no worse, but if it took more than one insn, it will
3017 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3018 && GET_CODE (XEXP (SET_SRC (x
), 0)) == REG
3019 && (pos
= exact_log2 (INTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
3020 && GET_CODE (SET_DEST (x
)) == REG
3021 && (split
= find_single_use (SET_DEST (x
), insn
, NULL_PTR
)) != 0
3022 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
3023 && XEXP (*split
, 0) == SET_DEST (x
)
3024 && XEXP (*split
, 1) == const0_rtx
)
3026 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
3027 XEXP (SET_SRC (x
), 0),
3028 pos
, NULL_RTX
, 1, 1, 0, 0);
3029 if (extraction
!= 0)
3031 SUBST (SET_SRC (x
), extraction
);
3032 return find_split_point (loc
, insn
);
3038 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3039 is known to be on, this can be converted into a NEG of a shift. */
3040 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
3041 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
3042 && 1 <= (pos
= exact_log2
3043 (nonzero_bits (XEXP (SET_SRC (x
), 0),
3044 GET_MODE (XEXP (SET_SRC (x
), 0))))))
3046 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
3049 gen_rtx_combine (NEG
, mode
,
3050 gen_rtx_combine (LSHIFTRT
, mode
,
3051 XEXP (SET_SRC (x
), 0),
3054 split
= find_split_point (&SET_SRC (x
), insn
);
3055 if (split
&& split
!= &SET_SRC (x
))
3061 inner
= XEXP (SET_SRC (x
), 0);
3063 /* We can't optimize if either mode is a partial integer
3064 mode as we don't know how many bits are significant
3066 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
3067 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
3071 len
= GET_MODE_BITSIZE (GET_MODE (inner
));
3077 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3078 && GET_CODE (XEXP (SET_SRC (x
), 2)) == CONST_INT
)
3080 inner
= XEXP (SET_SRC (x
), 0);
3081 len
= INTVAL (XEXP (SET_SRC (x
), 1));
3082 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
3084 if (BITS_BIG_ENDIAN
)
3085 pos
= GET_MODE_BITSIZE (GET_MODE (inner
)) - len
- pos
;
3086 unsignedp
= (code
== ZERO_EXTRACT
);
3094 if (len
&& pos
>= 0 && pos
+ len
<= GET_MODE_BITSIZE (GET_MODE (inner
)))
3096 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
3098 /* For unsigned, we have a choice of a shift followed by an
3099 AND or two shifts. Use two shifts for field sizes where the
3100 constant might be too large. We assume here that we can
3101 always at least get 8-bit constants in an AND insn, which is
3102 true for every current RISC. */
3104 if (unsignedp
&& len
<= 8)
3109 gen_rtx_combine (LSHIFTRT
, mode
,
3110 gen_lowpart_for_combine (mode
, inner
),
3112 GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1)));
3114 split
= find_split_point (&SET_SRC (x
), insn
);
3115 if (split
&& split
!= &SET_SRC (x
))
3122 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
3123 gen_rtx_combine (ASHIFT
, mode
,
3124 gen_lowpart_for_combine (mode
, inner
),
3125 GEN_INT (GET_MODE_BITSIZE (mode
)
3127 GEN_INT (GET_MODE_BITSIZE (mode
) - len
)));
3129 split
= find_split_point (&SET_SRC (x
), insn
);
3130 if (split
&& split
!= &SET_SRC (x
))
3135 /* See if this is a simple operation with a constant as the second
3136 operand. It might be that this constant is out of range and hence
3137 could be used as a split point. */
3138 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '2'
3139 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == 'c'
3140 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '<')
3141 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
3142 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x
), 0))) == 'o'
3143 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
3144 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x
), 0))))
3146 return &XEXP (SET_SRC (x
), 1);
3148 /* Finally, see if this is a simple operation with its first operand
3149 not in a register. The operation might require this operand in a
3150 register, so return it as a split point. We can always do this
3151 because if the first operand were another operation, we would have
3152 already found it as a split point. */
3153 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '2'
3154 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == 'c'
3155 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '<'
3156 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '1')
3157 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
3158 return &XEXP (SET_SRC (x
), 0);
3164 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3165 it is better to write this as (not (ior A B)) so we can split it.
3166 Similarly for IOR. */
3167 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
3170 gen_rtx_combine (NOT
, GET_MODE (x
),
3171 gen_rtx_combine (code
== IOR
? AND
: IOR
,
3173 XEXP (XEXP (x
, 0), 0),
3174 XEXP (XEXP (x
, 1), 0))));
3175 return find_split_point (loc
, insn
);
3178 /* Many RISC machines have a large set of logical insns. If the
3179 second operand is a NOT, put it first so we will try to split the
3180 other operand first. */
3181 if (GET_CODE (XEXP (x
, 1)) == NOT
)
3183 rtx tem
= XEXP (x
, 0);
3184 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3185 SUBST (XEXP (x
, 1), tem
);
3193 /* Otherwise, select our actions depending on our rtx class. */
3194 switch (GET_RTX_CLASS (code
))
3196 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3198 split
= find_split_point (&XEXP (x
, 2), insn
);
3201 /* ... fall through ... */
3205 split
= find_split_point (&XEXP (x
, 1), insn
);
3208 /* ... fall through ... */
3210 /* Some machines have (and (shift ...) ...) insns. If X is not
3211 an AND, but XEXP (X, 0) is, use it as our split point. */
3212 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
3213 return &XEXP (x
, 0);
3215 split
= find_split_point (&XEXP (x
, 0), insn
);
3221 /* Otherwise, we don't have a split point. */
3225 /* Throughout X, replace FROM with TO, and return the result.
3226 The result is TO if X is FROM;
3227 otherwise the result is X, but its contents may have been modified.
3228 If they were modified, a record was made in undobuf so that
3229 undo_all will (among other things) return X to its original state.
3231 If the number of changes necessary is too much to record to undo,
3232 the excess changes are not made, so the result is invalid.
3233 The changes already made can still be undone.
3234 undobuf.num_undo is incremented for such changes, so by testing that
3235 the caller can tell whether the result is valid.
3237 `n_occurrences' is incremented each time FROM is replaced.
3239 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3241 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3242 by copying if `n_occurrences' is non-zero. */
3245 subst (x
, from
, to
, in_dest
, unique_copy
)
3246 register rtx x
, from
, to
;
3250 register enum rtx_code code
= GET_CODE (x
);
3251 enum machine_mode op0_mode
= VOIDmode
;
3252 register const char *fmt
;
3253 register int len
, i
;
3256 /* Two expressions are equal if they are identical copies of a shared
3257 RTX or if they are both registers with the same register number
3260 #define COMBINE_RTX_EQUAL_P(X,Y) \
3262 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3263 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3265 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
3268 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
3271 /* If X and FROM are the same register but different modes, they will
3272 not have been seen as equal above. However, flow.c will make a
3273 LOG_LINKS entry for that case. If we do nothing, we will try to
3274 rerecognize our original insn and, when it succeeds, we will
3275 delete the feeding insn, which is incorrect.
3277 So force this insn not to match in this (rare) case. */
3278 if (! in_dest
&& code
== REG
&& GET_CODE (from
) == REG
3279 && REGNO (x
) == REGNO (from
))
3280 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
3282 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3283 of which may contain things that can be combined. */
3284 if (code
!= MEM
&& code
!= LO_SUM
&& GET_RTX_CLASS (code
) == 'o')
3287 /* It is possible to have a subexpression appear twice in the insn.
3288 Suppose that FROM is a register that appears within TO.
3289 Then, after that subexpression has been scanned once by `subst',
3290 the second time it is scanned, TO may be found. If we were
3291 to scan TO here, we would find FROM within it and create a
3292 self-referent rtl structure which is completely wrong. */
3293 if (COMBINE_RTX_EQUAL_P (x
, to
))
3296 /* Parallel asm_operands need special attention because all of the
3297 inputs are shared across the arms. Furthermore, unsharing the
3298 rtl results in recognition failures. Failure to handle this case
3299 specially can result in circular rtl.
3301 Solve this by doing a normal pass across the first entry of the
3302 parallel, and only processing the SET_DESTs of the subsequent
3305 if (code
== PARALLEL
3306 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
3307 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
3309 new = subst (XVECEXP (x
, 0, 0), from
, to
, 0, unique_copy
);
3311 /* If this substitution failed, this whole thing fails. */
3312 if (GET_CODE (new) == CLOBBER
3313 && XEXP (new, 0) == const0_rtx
)
3316 SUBST (XVECEXP (x
, 0, 0), new);
3318 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
3320 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
3322 if (GET_CODE (dest
) != REG
3323 && GET_CODE (dest
) != CC0
3324 && GET_CODE (dest
) != PC
)
3326 new = subst (dest
, from
, to
, 0, unique_copy
);
3328 /* If this substitution failed, this whole thing fails. */
3329 if (GET_CODE (new) == CLOBBER
3330 && XEXP (new, 0) == const0_rtx
)
3333 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new);
3339 len
= GET_RTX_LENGTH (code
);
3340 fmt
= GET_RTX_FORMAT (code
);
3342 /* We don't need to process a SET_DEST that is a register, CC0,
3343 or PC, so set up to skip this common case. All other cases
3344 where we want to suppress replacing something inside a
3345 SET_SRC are handled via the IN_DEST operand. */
3347 && (GET_CODE (SET_DEST (x
)) == REG
3348 || GET_CODE (SET_DEST (x
)) == CC0
3349 || GET_CODE (SET_DEST (x
)) == PC
))
3352 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3355 op0_mode
= GET_MODE (XEXP (x
, 0));
3357 for (i
= 0; i
< len
; i
++)
3362 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3364 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
3366 new = (unique_copy
&& n_occurrences
3367 ? copy_rtx (to
) : to
);
3372 new = subst (XVECEXP (x
, i
, j
), from
, to
, 0,
3375 /* If this substitution failed, this whole thing
3377 if (GET_CODE (new) == CLOBBER
3378 && XEXP (new, 0) == const0_rtx
)
3382 SUBST (XVECEXP (x
, i
, j
), new);
3385 else if (fmt
[i
] == 'e')
3387 if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
3389 /* In general, don't install a subreg involving two
3390 modes not tieable. It can worsen register
3391 allocation, and can even make invalid reload
3392 insns, since the reg inside may need to be copied
3393 from in the outside mode, and that may be invalid
3394 if it is an fp reg copied in integer mode.
3396 We allow two exceptions to this: It is valid if
3397 it is inside another SUBREG and the mode of that
3398 SUBREG and the mode of the inside of TO is
3399 tieable and it is valid if X is a SET that copies
3402 if (GET_CODE (to
) == SUBREG
3403 && ! MODES_TIEABLE_P (GET_MODE (to
),
3404 GET_MODE (SUBREG_REG (to
)))
3405 && ! (code
== SUBREG
3406 && MODES_TIEABLE_P (GET_MODE (x
),
3407 GET_MODE (SUBREG_REG (to
))))
3409 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
3412 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3414 #ifdef CLASS_CANNOT_CHANGE_MODE
3416 && GET_CODE (to
) == REG
3417 && REGNO (to
) < FIRST_PSEUDO_REGISTER
3418 && (TEST_HARD_REG_BIT
3419 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
3421 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to
),
3423 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3426 new = (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
3430 /* If we are in a SET_DEST, suppress most cases unless we
3431 have gone inside a MEM, in which case we want to
3432 simplify the address. We assume here that things that
3433 are actually part of the destination have their inner
3434 parts in the first expression. This is true for SUBREG,
3435 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3436 things aside from REG and MEM that should appear in a
3438 new = subst (XEXP (x
, i
), from
, to
,
3440 && (code
== SUBREG
|| code
== STRICT_LOW_PART
3441 || code
== ZERO_EXTRACT
))
3443 && i
== 0), unique_copy
);
3445 /* If we found that we will have to reject this combination,
3446 indicate that by returning the CLOBBER ourselves, rather than
3447 an expression containing it. This will speed things up as
3448 well as prevent accidents where two CLOBBERs are considered
3449 to be equal, thus producing an incorrect simplification. */
3451 if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx
)
3454 SUBST (XEXP (x
, i
), new);
3459 /* Try to simplify X. If the simplification changed the code, it is likely
3460 that further simplification will help, so loop, but limit the number
3461 of repetitions that will be performed. */
3463 for (i
= 0; i
< 4; i
++)
3465 /* If X is sufficiently simple, don't bother trying to do anything
3467 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
3468 x
= combine_simplify_rtx (x
, op0_mode
, i
== 3, in_dest
);
3470 if (GET_CODE (x
) == code
)
3473 code
= GET_CODE (x
);
3475 /* We no longer know the original mode of operand 0 since we
3476 have changed the form of X) */
3477 op0_mode
= VOIDmode
;
3483 /* Simplify X, a piece of RTL. We just operate on the expression at the
3484 outer level; call `subst' to simplify recursively. Return the new
3487 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3488 will be the iteration even if an expression with a code different from
3489 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3492 combine_simplify_rtx (x
, op0_mode
, last
, in_dest
)
3494 enum machine_mode op0_mode
;
3498 enum rtx_code code
= GET_CODE (x
);
3499 enum machine_mode mode
= GET_MODE (x
);
3504 /* If this is a commutative operation, put a constant last and a complex
3505 expression first. We don't need to do this for comparisons here. */
3506 if (GET_RTX_CLASS (code
) == 'c'
3507 && ((CONSTANT_P (XEXP (x
, 0)) && GET_CODE (XEXP (x
, 1)) != CONST_INT
)
3508 || (GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == 'o'
3509 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) != 'o')
3510 || (GET_CODE (XEXP (x
, 0)) == SUBREG
3511 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0)))) == 'o'
3512 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) != 'o')))
3515 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3516 SUBST (XEXP (x
, 1), temp
);
3519 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3520 sign extension of a PLUS with a constant, reverse the order of the sign
3521 extension and the addition. Note that this not the same as the original
3522 code, but overflow is undefined for signed values. Also note that the
3523 PLUS will have been partially moved "inside" the sign-extension, so that
3524 the first operand of X will really look like:
3525 (ashiftrt (plus (ashift A C4) C5) C4).
3527 (plus (ashiftrt (ashift A C4) C2) C4)
3528 and replace the first operand of X with that expression. Later parts
3529 of this function may simplify the expression further.
3531 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3532 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3533 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3535 We do this to simplify address expressions. */
3537 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
)
3538 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3539 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
3540 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == ASHIFT
3541 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1)) == CONST_INT
3542 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3543 && XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1) == XEXP (XEXP (x
, 0), 1)
3544 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
3545 && (temp
= simplify_binary_operation (ASHIFTRT
, mode
,
3546 XEXP (XEXP (XEXP (x
, 0), 0), 1),
3547 XEXP (XEXP (x
, 0), 1))) != 0)
3550 = simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
3551 XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 0),
3552 INTVAL (XEXP (XEXP (x
, 0), 1)));
3554 new = simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
, new,
3555 INTVAL (XEXP (XEXP (x
, 0), 1)));
3557 SUBST (XEXP (x
, 0), gen_binary (PLUS
, mode
, new, temp
));
3560 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3561 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3562 things. Check for cases where both arms are testing the same
3565 Don't do anything if all operands are very simple. */
3567 if (((GET_RTX_CLASS (code
) == '2' || GET_RTX_CLASS (code
) == 'c'
3568 || GET_RTX_CLASS (code
) == '<')
3569 && ((GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) != 'o'
3570 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3571 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0))))
3573 || (GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) != 'o'
3574 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
3575 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 1))))
3577 || (GET_RTX_CLASS (code
) == '1'
3578 && ((GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) != 'o'
3579 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3580 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0))))
3583 rtx cond
, true, false;
3585 cond
= if_then_else_cond (x
, &true, &false);
3587 /* If everything is a comparison, what we have is highly unlikely
3588 to be simpler, so don't use it. */
3589 && ! (GET_RTX_CLASS (code
) == '<'
3590 && (GET_RTX_CLASS (GET_CODE (true)) == '<'
3591 || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3593 rtx cop1
= const0_rtx
;
3594 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
3596 if (cond_code
== NE
&& GET_RTX_CLASS (GET_CODE (cond
)) == '<')
3599 /* Simplify the alternative arms; this may collapse the true and
3600 false arms to store-flag values. */
3601 true = subst (true, pc_rtx
, pc_rtx
, 0, 0);
3602 false = subst (false, pc_rtx
, pc_rtx
, 0, 0);
3604 /* If true and false are not general_operands, an if_then_else
3605 is unlikely to be simpler. */
3606 if (general_operand (true, VOIDmode
)
3607 && general_operand (false, VOIDmode
))
3609 /* Restarting if we generate a store-flag expression will cause
3610 us to loop. Just drop through in this case. */
3612 /* If the result values are STORE_FLAG_VALUE and zero, we can
3613 just make the comparison operation. */
3614 if (true == const_true_rtx
&& false == const0_rtx
)
3615 x
= gen_binary (cond_code
, mode
, cond
, cop1
);
3616 else if (true == const0_rtx
&& false == const_true_rtx
)
3617 x
= gen_binary (reverse_condition (cond_code
),
3620 /* Likewise, we can make the negate of a comparison operation
3621 if the result values are - STORE_FLAG_VALUE and zero. */
3622 else if (GET_CODE (true) == CONST_INT
3623 && INTVAL (true) == - STORE_FLAG_VALUE
3624 && false == const0_rtx
)
3625 x
= gen_unary (NEG
, mode
, mode
,
3626 gen_binary (cond_code
, mode
, cond
, cop1
));
3627 else if (GET_CODE (false) == CONST_INT
3628 && INTVAL (false) == - STORE_FLAG_VALUE
3629 && true == const0_rtx
)
3630 x
= gen_unary (NEG
, mode
, mode
,
3631 gen_binary (reverse_condition (cond_code
),
3634 return gen_rtx_IF_THEN_ELSE (mode
,
3635 gen_binary (cond_code
, VOIDmode
,
3639 code
= GET_CODE (x
);
3640 op0_mode
= VOIDmode
;
3645 /* Try to fold this expression in case we have constants that weren't
3648 switch (GET_RTX_CLASS (code
))
3651 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
3655 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
3656 if (cmp_mode
== VOIDmode
)
3657 cmp_mode
= GET_MODE (XEXP (x
, 1));
3658 temp
= simplify_relational_operation (code
, cmp_mode
,
3659 XEXP (x
, 0), XEXP (x
, 1));
3661 #ifdef FLOAT_STORE_FLAG_VALUE
3662 if (temp
!= 0 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3664 if (temp
== const0_rtx
)
3665 temp
= CONST0_RTX (mode
);
3667 temp
= immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode
), mode
);
3673 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
3677 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
3678 XEXP (x
, 1), XEXP (x
, 2));
3683 x
= temp
, code
= GET_CODE (temp
);
3685 /* First see if we can apply the inverse distributive law. */
3686 if (code
== PLUS
|| code
== MINUS
3687 || code
== AND
|| code
== IOR
|| code
== XOR
)
3689 x
= apply_distributive_law (x
);
3690 code
= GET_CODE (x
);
3693 /* If CODE is an associative operation not otherwise handled, see if we
3694 can associate some operands. This can win if they are constants or
3695 if they are logically related (i.e. (a & b) & a. */
3696 if ((code
== PLUS
|| code
== MINUS
3697 || code
== MULT
|| code
== AND
|| code
== IOR
|| code
== XOR
3698 || code
== DIV
|| code
== UDIV
3699 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
3700 && INTEGRAL_MODE_P (mode
))
3702 if (GET_CODE (XEXP (x
, 0)) == code
)
3704 rtx other
= XEXP (XEXP (x
, 0), 0);
3705 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
3706 rtx inner_op1
= XEXP (x
, 1);
3709 /* Make sure we pass the constant operand if any as the second
3710 one if this is a commutative operation. */
3711 if (CONSTANT_P (inner_op0
) && GET_RTX_CLASS (code
) == 'c')
3713 rtx tem
= inner_op0
;
3714 inner_op0
= inner_op1
;
3717 inner
= simplify_binary_operation (code
== MINUS
? PLUS
3718 : code
== DIV
? MULT
3719 : code
== UDIV
? MULT
3721 mode
, inner_op0
, inner_op1
);
3723 /* For commutative operations, try the other pair if that one
3725 if (inner
== 0 && GET_RTX_CLASS (code
) == 'c')
3727 other
= XEXP (XEXP (x
, 0), 1);
3728 inner
= simplify_binary_operation (code
, mode
,
3729 XEXP (XEXP (x
, 0), 0),
3734 return gen_binary (code
, mode
, other
, inner
);
3738 /* A little bit of algebraic simplification here. */
3742 /* Ensure that our address has any ASHIFTs converted to MULT in case
3743 address-recognizing predicates are called later. */
3744 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
3745 SUBST (XEXP (x
, 0), temp
);
3749 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3750 is paradoxical. If we can't do that safely, then it becomes
3751 something nonsensical so that this combination won't take place. */
3753 if (GET_CODE (SUBREG_REG (x
)) == MEM
3754 && (GET_MODE_SIZE (mode
)
3755 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
3757 rtx inner
= SUBREG_REG (x
);
3758 int endian_offset
= 0;
3759 /* Don't change the mode of the MEM
3760 if that would change the meaning of the address. */
3761 if (MEM_VOLATILE_P (SUBREG_REG (x
))
3762 || mode_dependent_address_p (XEXP (inner
, 0)))
3763 return gen_rtx_CLOBBER (mode
, const0_rtx
);
3765 if (BYTES_BIG_ENDIAN
)
3767 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
3768 endian_offset
+= UNITS_PER_WORD
- GET_MODE_SIZE (mode
);
3769 if (GET_MODE_SIZE (GET_MODE (inner
)) < UNITS_PER_WORD
)
3770 endian_offset
-= (UNITS_PER_WORD
3771 - GET_MODE_SIZE (GET_MODE (inner
)));
3773 /* Note if the plus_constant doesn't make a valid address
3774 then this combination won't be accepted. */
3775 x
= gen_rtx_MEM (mode
,
3776 plus_constant (XEXP (inner
, 0),
3777 (SUBREG_WORD (x
) * UNITS_PER_WORD
3779 MEM_COPY_ATTRIBUTES (x
, inner
);
3783 /* If we are in a SET_DEST, these other cases can't apply. */
3787 /* Changing mode twice with SUBREG => just change it once,
3788 or not at all if changing back to starting mode. */
3789 if (GET_CODE (SUBREG_REG (x
)) == SUBREG
)
3791 if (mode
== GET_MODE (SUBREG_REG (SUBREG_REG (x
)))
3792 && SUBREG_WORD (x
) == 0 && SUBREG_WORD (SUBREG_REG (x
)) == 0)
3793 return SUBREG_REG (SUBREG_REG (x
));
3795 SUBST_INT (SUBREG_WORD (x
),
3796 SUBREG_WORD (x
) + SUBREG_WORD (SUBREG_REG (x
)));
3797 SUBST (SUBREG_REG (x
), SUBREG_REG (SUBREG_REG (x
)));
3800 /* SUBREG of a hard register => just change the register number
3801 and/or mode. If the hard register is not valid in that mode,
3802 suppress this combination. If the hard register is the stack,
3803 frame, or argument pointer, leave this as a SUBREG. */
3805 if (GET_CODE (SUBREG_REG (x
)) == REG
3806 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
3807 && REGNO (SUBREG_REG (x
)) != FRAME_POINTER_REGNUM
3808 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3809 && REGNO (SUBREG_REG (x
)) != HARD_FRAME_POINTER_REGNUM
3811 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3812 && REGNO (SUBREG_REG (x
)) != ARG_POINTER_REGNUM
3814 && REGNO (SUBREG_REG (x
)) != STACK_POINTER_REGNUM
)
3816 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
),
3818 return gen_rtx_REG (mode
,
3819 REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
));
3821 return gen_rtx_CLOBBER (mode
, const0_rtx
);
3824 /* For a constant, try to pick up the part we want. Handle a full
3825 word and low-order part. Only do this if we are narrowing
3826 the constant; if it is being widened, we have no idea what
3827 the extra bits will have been set to. */
3829 if (CONSTANT_P (SUBREG_REG (x
)) && op0_mode
!= VOIDmode
3830 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
3831 && GET_MODE_SIZE (op0_mode
) > UNITS_PER_WORD
3832 && GET_MODE_CLASS (mode
) == MODE_INT
)
3834 temp
= operand_subword (SUBREG_REG (x
), SUBREG_WORD (x
),
3840 /* If we want a subreg of a constant, at offset 0,
3841 take the low bits. On a little-endian machine, that's
3842 always valid. On a big-endian machine, it's valid
3843 only if the constant's mode fits in one word. Note that we
3844 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode. */
3845 if (CONSTANT_P (SUBREG_REG (x
))
3846 && ((GET_MODE_SIZE (op0_mode
) <= UNITS_PER_WORD
3847 || ! WORDS_BIG_ENDIAN
)
3848 ? SUBREG_WORD (x
) == 0
3850 == ((GET_MODE_SIZE (op0_mode
)
3851 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
3853 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (op0_mode
)
3854 && (! WORDS_BIG_ENDIAN
3855 || GET_MODE_BITSIZE (op0_mode
) <= BITS_PER_WORD
))
3856 return gen_lowpart_for_combine (mode
, SUBREG_REG (x
));
3858 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3859 since we are saying that the high bits don't matter. */
3860 if (CONSTANT_P (SUBREG_REG (x
)) && GET_MODE (SUBREG_REG (x
)) == VOIDmode
3861 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (op0_mode
))
3863 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
3864 && (WORDS_BIG_ENDIAN
|| SUBREG_WORD (x
) != 0))
3865 return operand_subword (SUBREG_REG (x
), SUBREG_WORD (x
), 0, mode
);
3866 return SUBREG_REG (x
);
3869 /* Note that we cannot do any narrowing for non-constants since
3870 we might have been counting on using the fact that some bits were
3871 zero. We now do this in the SET. */
3876 /* (not (plus X -1)) can become (neg X). */
3877 if (GET_CODE (XEXP (x
, 0)) == PLUS
3878 && XEXP (XEXP (x
, 0), 1) == constm1_rtx
)
3879 return gen_rtx_combine (NEG
, mode
, XEXP (XEXP (x
, 0), 0));
3881 /* Similarly, (not (neg X)) is (plus X -1). */
3882 if (GET_CODE (XEXP (x
, 0)) == NEG
)
3883 return gen_rtx_combine (PLUS
, mode
, XEXP (XEXP (x
, 0), 0),
3886 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3887 if (GET_CODE (XEXP (x
, 0)) == XOR
3888 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3889 && (temp
= simplify_unary_operation (NOT
, mode
,
3890 XEXP (XEXP (x
, 0), 1),
3892 return gen_binary (XOR
, mode
, XEXP (XEXP (x
, 0), 0), temp
);
3894 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3895 other than 1, but that is not valid. We could do a similar
3896 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3897 but this doesn't seem common enough to bother with. */
3898 if (GET_CODE (XEXP (x
, 0)) == ASHIFT
3899 && XEXP (XEXP (x
, 0), 0) == const1_rtx
)
3900 return gen_rtx_ROTATE (mode
, gen_unary (NOT
, mode
, mode
, const1_rtx
),
3901 XEXP (XEXP (x
, 0), 1));
3903 if (GET_CODE (XEXP (x
, 0)) == SUBREG
3904 && subreg_lowpart_p (XEXP (x
, 0))
3905 && (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0)))
3906 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x
, 0)))))
3907 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == ASHIFT
3908 && XEXP (SUBREG_REG (XEXP (x
, 0)), 0) == const1_rtx
)
3910 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (XEXP (x
, 0)));
3912 x
= gen_rtx_ROTATE (inner_mode
,
3913 gen_unary (NOT
, inner_mode
, inner_mode
,
3915 XEXP (SUBREG_REG (XEXP (x
, 0)), 1));
3916 return gen_lowpart_for_combine (mode
, x
);
3919 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3920 reversing the comparison code if valid. */
3921 if (STORE_FLAG_VALUE
== -1
3922 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
3923 && (reversed
= reversed_comparison (x
, mode
, XEXP (XEXP (x
, 0), 0),
3924 XEXP (XEXP (x
, 0), 1))))
3927 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3928 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3929 perform the above simplification. */
3931 if (STORE_FLAG_VALUE
== -1
3932 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3933 && XEXP (x
, 1) == const1_rtx
3934 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3935 && INTVAL (XEXP (XEXP (x
, 0), 1)) == GET_MODE_BITSIZE (mode
) - 1)
3936 return gen_rtx_combine (GE
, mode
, XEXP (XEXP (x
, 0), 0), const0_rtx
);
3938 /* Apply De Morgan's laws to reduce number of patterns for machines
3939 with negating logical insns (and-not, nand, etc.). If result has
3940 only one NOT, put it first, since that is how the patterns are
3943 if (GET_CODE (XEXP (x
, 0)) == IOR
|| GET_CODE (XEXP (x
, 0)) == AND
)
3945 rtx in1
= XEXP (XEXP (x
, 0), 0), in2
= XEXP (XEXP (x
, 0), 1);
3946 enum machine_mode op_mode
;
3948 op_mode
= GET_MODE (in1
);
3949 in1
= gen_unary (NOT
, op_mode
, op_mode
, in1
);
3951 op_mode
= GET_MODE (in2
);
3952 if (op_mode
== VOIDmode
)
3954 in2
= gen_unary (NOT
, op_mode
, op_mode
, in2
);
3956 if (GET_CODE (in2
) == NOT
&& GET_CODE (in1
) != NOT
)
3959 in2
= in1
; in1
= tem
;
3962 return gen_rtx_combine (GET_CODE (XEXP (x
, 0)) == IOR
? AND
: IOR
,
3968 /* (neg (plus X 1)) can become (not X). */
3969 if (GET_CODE (XEXP (x
, 0)) == PLUS
3970 && XEXP (XEXP (x
, 0), 1) == const1_rtx
)
3971 return gen_rtx_combine (NOT
, mode
, XEXP (XEXP (x
, 0), 0));
3973 /* Similarly, (neg (not X)) is (plus X 1). */
3974 if (GET_CODE (XEXP (x
, 0)) == NOT
)
3975 return plus_constant (XEXP (XEXP (x
, 0), 0), 1);
3977 /* (neg (minus X Y)) can become (minus Y X). */
3978 if (GET_CODE (XEXP (x
, 0)) == MINUS
3979 && (! FLOAT_MODE_P (mode
)
3980 /* x-y != -(y-x) with IEEE floating point. */
3981 || TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3983 return gen_binary (MINUS
, mode
, XEXP (XEXP (x
, 0), 1),
3984 XEXP (XEXP (x
, 0), 0));
3986 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3987 if (GET_CODE (XEXP (x
, 0)) == XOR
&& XEXP (XEXP (x
, 0), 1) == const1_rtx
3988 && nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
) == 1)
3989 return gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0), constm1_rtx
);
3991 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3992 if we can then eliminate the NEG (e.g.,
3993 if the operand is a constant). */
3995 if (GET_CODE (XEXP (x
, 0)) == ASHIFT
)
3997 temp
= simplify_unary_operation (NEG
, mode
,
3998 XEXP (XEXP (x
, 0), 0), mode
);
4001 SUBST (XEXP (XEXP (x
, 0), 0), temp
);
4006 temp
= expand_compound_operation (XEXP (x
, 0));
4008 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4009 replaced by (lshiftrt X C). This will convert
4010 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4012 if (GET_CODE (temp
) == ASHIFTRT
4013 && GET_CODE (XEXP (temp
, 1)) == CONST_INT
4014 && INTVAL (XEXP (temp
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
4015 return simplify_shift_const (temp
, LSHIFTRT
, mode
, XEXP (temp
, 0),
4016 INTVAL (XEXP (temp
, 1)));
4018 /* If X has only a single bit that might be nonzero, say, bit I, convert
4019 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4020 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4021 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4022 or a SUBREG of one since we'd be making the expression more
4023 complex if it was just a register. */
4025 if (GET_CODE (temp
) != REG
4026 && ! (GET_CODE (temp
) == SUBREG
4027 && GET_CODE (SUBREG_REG (temp
)) == REG
)
4028 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
4030 rtx temp1
= simplify_shift_const
4031 (NULL_RTX
, ASHIFTRT
, mode
,
4032 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
4033 GET_MODE_BITSIZE (mode
) - 1 - i
),
4034 GET_MODE_BITSIZE (mode
) - 1 - i
);
4036 /* If all we did was surround TEMP with the two shifts, we
4037 haven't improved anything, so don't use it. Otherwise,
4038 we are better off with TEMP1. */
4039 if (GET_CODE (temp1
) != ASHIFTRT
4040 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
4041 || XEXP (XEXP (temp1
, 0), 0) != temp
)
4047 /* We can't handle truncation to a partial integer mode here
4048 because we don't know the real bitsize of the partial
4050 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
4053 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4054 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4055 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))))
4057 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
4058 GET_MODE_MASK (mode
), NULL_RTX
, 0));
4060 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4061 if ((GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
4062 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4063 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
4064 return XEXP (XEXP (x
, 0), 0);
4066 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4067 (OP:SI foo:SI) if OP is NEG or ABS. */
4068 if ((GET_CODE (XEXP (x
, 0)) == ABS
4069 || GET_CODE (XEXP (x
, 0)) == NEG
)
4070 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SIGN_EXTEND
4071 || GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
)
4072 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4073 return gen_unary (GET_CODE (XEXP (x
, 0)), mode
, mode
,
4074 XEXP (XEXP (XEXP (x
, 0), 0), 0));
4076 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4078 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4079 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == TRUNCATE
4080 && subreg_lowpart_p (XEXP (x
, 0)))
4081 return SUBREG_REG (XEXP (x
, 0));
4083 /* If we know that the value is already truncated, we can
4084 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4085 is nonzero for the corresponding modes. But don't do this
4086 for an (LSHIFTRT (MULT ...)) since this will cause problems
4087 with the umulXi3_highpart patterns. */
4088 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4089 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
4090 && num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4091 >= GET_MODE_BITSIZE (mode
) + 1
4092 && ! (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4093 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == MULT
))
4094 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4096 /* A truncate of a comparison can be replaced with a subreg if
4097 STORE_FLAG_VALUE permits. This is like the previous test,
4098 but it works even if the comparison is done in a mode larger
4099 than HOST_BITS_PER_WIDE_INT. */
4100 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4101 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
4102 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0)
4103 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4105 /* Similarly, a truncate of a register whose value is a
4106 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4108 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4109 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
4110 && (temp
= get_last_value (XEXP (x
, 0)))
4111 && GET_RTX_CLASS (GET_CODE (temp
)) == '<')
4112 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4116 case FLOAT_TRUNCATE
:
4117 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4118 if (GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
4119 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
4120 return XEXP (XEXP (x
, 0), 0);
4122 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4123 (OP:SF foo:SF) if OP is NEG or ABS. */
4124 if ((GET_CODE (XEXP (x
, 0)) == ABS
4125 || GET_CODE (XEXP (x
, 0)) == NEG
)
4126 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == FLOAT_EXTEND
4127 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4128 return gen_unary (GET_CODE (XEXP (x
, 0)), mode
, mode
,
4129 XEXP (XEXP (XEXP (x
, 0), 0), 0));
4131 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4132 is (float_truncate:SF x). */
4133 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4134 && subreg_lowpart_p (XEXP (x
, 0))
4135 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == FLOAT_TRUNCATE
)
4136 return SUBREG_REG (XEXP (x
, 0));
4141 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4142 using cc0, in which case we want to leave it as a COMPARE
4143 so we can distinguish it from a register-register-copy. */
4144 if (XEXP (x
, 1) == const0_rtx
)
4147 /* In IEEE floating point, x-0 is not the same as x. */
4148 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4149 || ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
4151 && XEXP (x
, 1) == CONST0_RTX (GET_MODE (XEXP (x
, 0))))
4157 /* (const (const X)) can become (const X). Do it this way rather than
4158 returning the inner CONST since CONST can be shared with a
4160 if (GET_CODE (XEXP (x
, 0)) == CONST
)
4161 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4166 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4167 can add in an offset. find_split_point will split this address up
4168 again if it doesn't match. */
4169 if (GET_CODE (XEXP (x
, 0)) == HIGH
4170 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
4176 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4177 outermost. That's because that's the way indexed addresses are
4178 supposed to appear. This code used to check many more cases, but
4179 they are now checked elsewhere. */
4180 if (GET_CODE (XEXP (x
, 0)) == PLUS
4181 && CONSTANT_ADDRESS_P (XEXP (XEXP (x
, 0), 1)))
4182 return gen_binary (PLUS
, mode
,
4183 gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0),
4185 XEXP (XEXP (x
, 0), 1));
4187 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4188 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4189 bit-field and can be replaced by either a sign_extend or a
4190 sign_extract. The `and' may be a zero_extend and the two
4191 <c>, -<c> constants may be reversed. */
4192 if (GET_CODE (XEXP (x
, 0)) == XOR
4193 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4194 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4195 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
4196 && ((i
= exact_log2 (INTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
4197 || (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
4198 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4199 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
4200 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
4201 && (INTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4202 == ((HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
4203 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
4204 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
4205 == (unsigned int) i
+ 1))))
4206 return simplify_shift_const
4207 (NULL_RTX
, ASHIFTRT
, mode
,
4208 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4209 XEXP (XEXP (XEXP (x
, 0), 0), 0),
4210 GET_MODE_BITSIZE (mode
) - (i
+ 1)),
4211 GET_MODE_BITSIZE (mode
) - (i
+ 1));
4213 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4214 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4215 is 1. This produces better code than the alternative immediately
4217 if (GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
4218 && ((STORE_FLAG_VALUE
== -1 && XEXP (x
, 1) == const1_rtx
)
4219 || (STORE_FLAG_VALUE
== 1 && XEXP (x
, 1) == constm1_rtx
))
4220 && (reversed
= reversed_comparison (XEXP (x
, 0), mode
,
4221 XEXP (XEXP (x
, 0), 0),
4222 XEXP (XEXP (x
, 0), 1))))
4224 gen_unary (NEG
, mode
, mode
, reversed
);
4226 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4227 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4228 the bitsize of the mode - 1. This allows simplification of
4229 "a = (b & 8) == 0;" */
4230 if (XEXP (x
, 1) == constm1_rtx
4231 && GET_CODE (XEXP (x
, 0)) != REG
4232 && ! (GET_CODE (XEXP (x
,0)) == SUBREG
4233 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == REG
)
4234 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
4235 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
4236 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4237 gen_rtx_combine (XOR
, mode
,
4238 XEXP (x
, 0), const1_rtx
),
4239 GET_MODE_BITSIZE (mode
) - 1),
4240 GET_MODE_BITSIZE (mode
) - 1);
4242 /* If we are adding two things that have no bits in common, convert
4243 the addition into an IOR. This will often be further simplified,
4244 for example in cases like ((a & 1) + (a & 2)), which can
4247 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4248 && (nonzero_bits (XEXP (x
, 0), mode
)
4249 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
4251 /* Try to simplify the expression further. */
4252 rtx tor
= gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4253 temp
= combine_simplify_rtx (tor
, mode
, last
, in_dest
);
4255 /* If we could, great. If not, do not go ahead with the IOR
4256 replacement, since PLUS appears in many special purpose
4257 address arithmetic instructions. */
4258 if (GET_CODE (temp
) != CLOBBER
&& temp
!= tor
)
4264 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4265 by reversing the comparison code if valid. */
4266 if (STORE_FLAG_VALUE
== 1
4267 && XEXP (x
, 0) == const1_rtx
4268 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) == '<'
4269 && (reversed
= reversed_comparison (XEXP (x
, 1), mode
,
4270 XEXP (XEXP (x
, 1), 0),
4271 XEXP (XEXP (x
, 1), 1))))
4274 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4275 (and <foo> (const_int pow2-1)) */
4276 if (GET_CODE (XEXP (x
, 1)) == AND
4277 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4278 && exact_log2 (-INTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
4279 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
4280 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
4281 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
4283 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4285 if (GET_CODE (XEXP (x
, 1)) == PLUS
&& INTEGRAL_MODE_P (mode
))
4286 return gen_binary (MINUS
, mode
,
4287 gen_binary (MINUS
, mode
, XEXP (x
, 0),
4288 XEXP (XEXP (x
, 1), 0)),
4289 XEXP (XEXP (x
, 1), 1));
4293 /* If we have (mult (plus A B) C), apply the distributive law and then
4294 the inverse distributive law to see if things simplify. This
4295 occurs mostly in addresses, often when unrolling loops. */
4297 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
4299 x
= apply_distributive_law
4300 (gen_binary (PLUS
, mode
,
4301 gen_binary (MULT
, mode
,
4302 XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)),
4303 gen_binary (MULT
, mode
,
4304 XEXP (XEXP (x
, 0), 1),
4305 copy_rtx (XEXP (x
, 1)))));
4307 if (GET_CODE (x
) != MULT
)
4313 /* If this is a divide by a power of two, treat it as a shift if
4314 its first operand is a shift. */
4315 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4316 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0
4317 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
4318 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4319 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
4320 || GET_CODE (XEXP (x
, 0)) == ROTATE
4321 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
4322 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
4326 case GT
: case GTU
: case GE
: case GEU
:
4327 case LT
: case LTU
: case LE
: case LEU
:
4328 case UNEQ
: case LTGT
:
4329 case UNGT
: case UNGE
:
4330 case UNLT
: case UNLE
:
4331 case UNORDERED
: case ORDERED
:
4332 /* If the first operand is a condition code, we can't do anything
4334 if (GET_CODE (XEXP (x
, 0)) == COMPARE
4335 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
4337 && XEXP (x
, 0) != cc0_rtx
4341 rtx op0
= XEXP (x
, 0);
4342 rtx op1
= XEXP (x
, 1);
4343 enum rtx_code new_code
;
4345 if (GET_CODE (op0
) == COMPARE
)
4346 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4348 /* Simplify our comparison, if possible. */
4349 new_code
= simplify_comparison (code
, &op0
, &op1
);
4351 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4352 if only the low-order bit is possibly nonzero in X (such as when
4353 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4354 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4355 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4358 Remove any ZERO_EXTRACT we made when thinking this was a
4359 comparison. It may now be simpler to use, e.g., an AND. If a
4360 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4361 the call to make_compound_operation in the SET case. */
4363 if (STORE_FLAG_VALUE
== 1
4364 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4365 && op1
== const0_rtx
4366 && mode
== GET_MODE (op0
)
4367 && nonzero_bits (op0
, mode
) == 1)
4368 return gen_lowpart_for_combine (mode
,
4369 expand_compound_operation (op0
));
4371 else if (STORE_FLAG_VALUE
== 1
4372 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4373 && op1
== const0_rtx
4374 && mode
== GET_MODE (op0
)
4375 && (num_sign_bit_copies (op0
, mode
)
4376 == GET_MODE_BITSIZE (mode
)))
4378 op0
= expand_compound_operation (op0
);
4379 return gen_unary (NEG
, mode
, mode
,
4380 gen_lowpart_for_combine (mode
, op0
));
4383 else if (STORE_FLAG_VALUE
== 1
4384 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4385 && op1
== const0_rtx
4386 && mode
== GET_MODE (op0
)
4387 && nonzero_bits (op0
, mode
) == 1)
4389 op0
= expand_compound_operation (op0
);
4390 return gen_binary (XOR
, mode
,
4391 gen_lowpart_for_combine (mode
, op0
),
4395 else if (STORE_FLAG_VALUE
== 1
4396 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4397 && op1
== const0_rtx
4398 && mode
== GET_MODE (op0
)
4399 && (num_sign_bit_copies (op0
, mode
)
4400 == GET_MODE_BITSIZE (mode
)))
4402 op0
= expand_compound_operation (op0
);
4403 return plus_constant (gen_lowpart_for_combine (mode
, op0
), 1);
4406 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4408 if (STORE_FLAG_VALUE
== -1
4409 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4410 && op1
== const0_rtx
4411 && (num_sign_bit_copies (op0
, mode
)
4412 == GET_MODE_BITSIZE (mode
)))
4413 return gen_lowpart_for_combine (mode
,
4414 expand_compound_operation (op0
));
4416 else if (STORE_FLAG_VALUE
== -1
4417 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4418 && op1
== const0_rtx
4419 && mode
== GET_MODE (op0
)
4420 && nonzero_bits (op0
, mode
) == 1)
4422 op0
= expand_compound_operation (op0
);
4423 return gen_unary (NEG
, mode
, mode
,
4424 gen_lowpart_for_combine (mode
, op0
));
4427 else if (STORE_FLAG_VALUE
== -1
4428 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4429 && op1
== const0_rtx
4430 && mode
== GET_MODE (op0
)
4431 && (num_sign_bit_copies (op0
, mode
)
4432 == GET_MODE_BITSIZE (mode
)))
4434 op0
= expand_compound_operation (op0
);
4435 return gen_unary (NOT
, mode
, mode
,
4436 gen_lowpart_for_combine (mode
, op0
));
4439 /* If X is 0/1, (eq X 0) is X-1. */
4440 else if (STORE_FLAG_VALUE
== -1
4441 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4442 && op1
== const0_rtx
4443 && mode
== GET_MODE (op0
)
4444 && nonzero_bits (op0
, mode
) == 1)
4446 op0
= expand_compound_operation (op0
);
4447 return plus_constant (gen_lowpart_for_combine (mode
, op0
), -1);
4450 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4451 one bit that might be nonzero, we can convert (ne x 0) to
4452 (ashift x c) where C puts the bit in the sign bit. Remove any
4453 AND with STORE_FLAG_VALUE when we are done, since we are only
4454 going to test the sign bit. */
4455 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4456 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4457 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
4458 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE(mode
)-1))
4459 && op1
== const0_rtx
4460 && mode
== GET_MODE (op0
)
4461 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
4463 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4464 expand_compound_operation (op0
),
4465 GET_MODE_BITSIZE (mode
) - 1 - i
);
4466 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
4472 /* If the code changed, return a whole new comparison. */
4473 if (new_code
!= code
)
4474 return gen_rtx_combine (new_code
, mode
, op0
, op1
);
4476 /* Otherwise, keep this operation, but maybe change its operands.
4477 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4478 SUBST (XEXP (x
, 0), op0
);
4479 SUBST (XEXP (x
, 1), op1
);
4484 return simplify_if_then_else (x
);
4490 /* If we are processing SET_DEST, we are done. */
4494 return expand_compound_operation (x
);
4497 return simplify_set (x
);
4502 return simplify_logical (x
, last
);
4505 /* (abs (neg <foo>)) -> (abs <foo>) */
4506 if (GET_CODE (XEXP (x
, 0)) == NEG
)
4507 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4509 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4511 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
4514 /* If operand is something known to be positive, ignore the ABS. */
4515 if (GET_CODE (XEXP (x
, 0)) == FFS
|| GET_CODE (XEXP (x
, 0)) == ABS
4516 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4517 <= HOST_BITS_PER_WIDE_INT
)
4518 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4519 & ((HOST_WIDE_INT
) 1
4520 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1)))
4524 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4525 if (num_sign_bit_copies (XEXP (x
, 0), mode
) == GET_MODE_BITSIZE (mode
))
4526 return gen_rtx_combine (NEG
, mode
, XEXP (x
, 0));
4531 /* (ffs (*_extend <X>)) = (ffs <X>) */
4532 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
4533 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4534 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4538 /* (float (sign_extend <X>)) = (float <X>). */
4539 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
4540 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4548 /* If this is a shift by a constant amount, simplify it. */
4549 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4550 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
4551 INTVAL (XEXP (x
, 1)));
4553 #ifdef SHIFT_COUNT_TRUNCATED
4554 else if (SHIFT_COUNT_TRUNCATED
&& GET_CODE (XEXP (x
, 1)) != REG
)
4556 force_to_mode (XEXP (x
, 1), GET_MODE (x
),
4558 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
4567 rtx op0
= XEXP (x
, 0);
4568 rtx op1
= XEXP (x
, 1);
4571 if (GET_CODE (op1
) != PARALLEL
)
4573 len
= XVECLEN (op1
, 0);
4575 && GET_CODE (XVECEXP (op1
, 0, 0)) == CONST_INT
4576 && GET_CODE (op0
) == VEC_CONCAT
)
4578 int offset
= INTVAL (XVECEXP (op1
, 0, 0)) * GET_MODE_SIZE (GET_MODE (x
));
4580 /* Try to find the element in the VEC_CONCAT. */
4583 if (GET_MODE (op0
) == GET_MODE (x
))
4585 if (GET_CODE (op0
) == VEC_CONCAT
)
4587 HOST_WIDE_INT op0_size
= GET_MODE_SIZE (GET_MODE (XEXP (op0
, 0)));
4588 if (op0_size
< offset
)
4589 op0
= XEXP (op0
, 0);
4593 op0
= XEXP (op0
, 1);
4611 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4614 simplify_if_then_else (x
)
4617 enum machine_mode mode
= GET_MODE (x
);
4618 rtx cond
= XEXP (x
, 0);
4619 rtx
true = XEXP (x
, 1);
4620 rtx
false = XEXP (x
, 2);
4621 enum rtx_code true_code
= GET_CODE (cond
);
4622 int comparison_p
= GET_RTX_CLASS (true_code
) == '<';
4625 enum rtx_code false_code
;
4628 /* Simplify storing of the truth value. */
4629 if (comparison_p
&& true == const_true_rtx
&& false == const0_rtx
)
4630 return gen_binary (true_code
, mode
, XEXP (cond
, 0), XEXP (cond
, 1));
4632 /* Also when the truth value has to be reversed. */
4634 && true == const0_rtx
&& false == const_true_rtx
4635 && (reversed
= reversed_comparison (cond
, mode
, XEXP (cond
, 0),
4639 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4640 in it is being compared against certain values. Get the true and false
4641 comparisons and see if that says anything about the value of each arm. */
4644 && ((false_code
= combine_reversed_comparison_code (cond
))
4646 && GET_CODE (XEXP (cond
, 0)) == REG
)
4649 rtx from
= XEXP (cond
, 0);
4650 rtx true_val
= XEXP (cond
, 1);
4651 rtx false_val
= true_val
;
4654 /* If FALSE_CODE is EQ, swap the codes and arms. */
4656 if (false_code
== EQ
)
4658 swapped
= 1, true_code
= EQ
, false_code
= NE
;
4659 temp
= true, true = false, false = temp
;
4662 /* If we are comparing against zero and the expression being tested has
4663 only a single bit that might be nonzero, that is its value when it is
4664 not equal to zero. Similarly if it is known to be -1 or 0. */
4666 if (true_code
== EQ
&& true_val
== const0_rtx
4667 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
4668 false_code
= EQ
, false_val
= GEN_INT (nzb
);
4669 else if (true_code
== EQ
&& true_val
== const0_rtx
4670 && (num_sign_bit_copies (from
, GET_MODE (from
))
4671 == GET_MODE_BITSIZE (GET_MODE (from
))))
4672 false_code
= EQ
, false_val
= constm1_rtx
;
4674 /* Now simplify an arm if we know the value of the register in the
4675 branch and it is used in the arm. Be careful due to the potential
4676 of locally-shared RTL. */
4678 if (reg_mentioned_p (from
, true))
4679 true = subst (known_cond (copy_rtx (true), true_code
, from
, true_val
),
4680 pc_rtx
, pc_rtx
, 0, 0);
4681 if (reg_mentioned_p (from
, false))
4682 false = subst (known_cond (copy_rtx (false), false_code
,
4684 pc_rtx
, pc_rtx
, 0, 0);
4686 SUBST (XEXP (x
, 1), swapped
? false : true);
4687 SUBST (XEXP (x
, 2), swapped
? true : false);
4689 true = XEXP (x
, 1), false = XEXP (x
, 2), true_code
= GET_CODE (cond
);
4692 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4693 reversed, do so to avoid needing two sets of patterns for
4694 subtract-and-branch insns. Similarly if we have a constant in the true
4695 arm, the false arm is the same as the first operand of the comparison, or
4696 the false arm is more complicated than the true arm. */
4699 && combine_reversed_comparison_code (cond
) != UNKNOWN
4701 || (CONSTANT_P (true)
4702 && GET_CODE (false) != CONST_INT
&& false != pc_rtx
)
4703 || true == const0_rtx
4704 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4705 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4706 || (GET_CODE (true) == SUBREG
4707 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4708 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4709 || reg_mentioned_p (true, false)
4710 || rtx_equal_p (false, XEXP (cond
, 0))))
4712 true_code
= reversed_comparison_code (cond
, NULL
);
4714 reversed_comparison (cond
, GET_MODE (cond
), XEXP (cond
, 0),
4717 SUBST (XEXP (x
, 1), false);
4718 SUBST (XEXP (x
, 2), true);
4720 temp
= true, true = false, false = temp
, cond
= XEXP (x
, 0);
4722 /* It is possible that the conditional has been simplified out. */
4723 true_code
= GET_CODE (cond
);
4724 comparison_p
= GET_RTX_CLASS (true_code
) == '<';
4727 /* If the two arms are identical, we don't need the comparison. */
4729 if (rtx_equal_p (true, false) && ! side_effects_p (cond
))
4732 /* Convert a == b ? b : a to "a". */
4733 if (true_code
== EQ
&& ! side_effects_p (cond
)
4734 && (! FLOAT_MODE_P (mode
) || flag_fast_math
)
4735 && rtx_equal_p (XEXP (cond
, 0), false)
4736 && rtx_equal_p (XEXP (cond
, 1), true))
4738 else if (true_code
== NE
&& ! side_effects_p (cond
)
4739 && (! FLOAT_MODE_P (mode
) || flag_fast_math
)
4740 && rtx_equal_p (XEXP (cond
, 0), true)
4741 && rtx_equal_p (XEXP (cond
, 1), false))
4744 /* Look for cases where we have (abs x) or (neg (abs X)). */
4746 if (GET_MODE_CLASS (mode
) == MODE_INT
4747 && GET_CODE (false) == NEG
4748 && rtx_equal_p (true, XEXP (false, 0))
4750 && rtx_equal_p (true, XEXP (cond
, 0))
4751 && ! side_effects_p (true))
4756 return gen_unary (ABS
, mode
, mode
, true);
4759 return gen_unary (NEG
, mode
, mode
, gen_unary (ABS
, mode
, mode
, true));
4764 /* Look for MIN or MAX. */
4766 if ((! FLOAT_MODE_P (mode
) || flag_fast_math
)
4768 && rtx_equal_p (XEXP (cond
, 0), true)
4769 && rtx_equal_p (XEXP (cond
, 1), false)
4770 && ! side_effects_p (cond
))
4775 return gen_binary (SMAX
, mode
, true, false);
4778 return gen_binary (SMIN
, mode
, true, false);
4781 return gen_binary (UMAX
, mode
, true, false);
4784 return gen_binary (UMIN
, mode
, true, false);
4789 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4790 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4791 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4792 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4793 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4794 neither 1 or -1, but it isn't worth checking for. */
4796 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
4797 && comparison_p
&& mode
!= VOIDmode
&& ! side_effects_p (x
))
4799 rtx t
= make_compound_operation (true, SET
);
4800 rtx f
= make_compound_operation (false, SET
);
4801 rtx cond_op0
= XEXP (cond
, 0);
4802 rtx cond_op1
= XEXP (cond
, 1);
4803 enum rtx_code op
= NIL
, extend_op
= NIL
;
4804 enum machine_mode m
= mode
;
4805 rtx z
= 0, c1
= NULL_RTX
;
4807 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
4808 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
4809 || GET_CODE (t
) == ASHIFT
4810 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
4811 && rtx_equal_p (XEXP (t
, 0), f
))
4812 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
4814 /* If an identity-zero op is commutative, check whether there
4815 would be a match if we swapped the operands. */
4816 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
4817 || GET_CODE (t
) == XOR
)
4818 && rtx_equal_p (XEXP (t
, 1), f
))
4819 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
4820 else if (GET_CODE (t
) == SIGN_EXTEND
4821 && (GET_CODE (XEXP (t
, 0)) == PLUS
4822 || GET_CODE (XEXP (t
, 0)) == MINUS
4823 || GET_CODE (XEXP (t
, 0)) == IOR
4824 || GET_CODE (XEXP (t
, 0)) == XOR
4825 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4826 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4827 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4828 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4829 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4830 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4831 && (num_sign_bit_copies (f
, GET_MODE (f
))
4832 > (GET_MODE_BITSIZE (mode
)
4833 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
4835 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4836 extend_op
= SIGN_EXTEND
;
4837 m
= GET_MODE (XEXP (t
, 0));
4839 else if (GET_CODE (t
) == SIGN_EXTEND
4840 && (GET_CODE (XEXP (t
, 0)) == PLUS
4841 || GET_CODE (XEXP (t
, 0)) == IOR
4842 || GET_CODE (XEXP (t
, 0)) == XOR
)
4843 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4844 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4845 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
4846 && (num_sign_bit_copies (f
, GET_MODE (f
))
4847 > (GET_MODE_BITSIZE (mode
)
4848 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
4850 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4851 extend_op
= SIGN_EXTEND
;
4852 m
= GET_MODE (XEXP (t
, 0));
4854 else if (GET_CODE (t
) == ZERO_EXTEND
4855 && (GET_CODE (XEXP (t
, 0)) == PLUS
4856 || GET_CODE (XEXP (t
, 0)) == MINUS
4857 || GET_CODE (XEXP (t
, 0)) == IOR
4858 || GET_CODE (XEXP (t
, 0)) == XOR
4859 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4860 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4861 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4862 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4863 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4864 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4865 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4866 && ((nonzero_bits (f
, GET_MODE (f
))
4867 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
4870 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4871 extend_op
= ZERO_EXTEND
;
4872 m
= GET_MODE (XEXP (t
, 0));
4874 else if (GET_CODE (t
) == ZERO_EXTEND
4875 && (GET_CODE (XEXP (t
, 0)) == PLUS
4876 || GET_CODE (XEXP (t
, 0)) == IOR
4877 || GET_CODE (XEXP (t
, 0)) == XOR
)
4878 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4879 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4880 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4881 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
4882 && ((nonzero_bits (f
, GET_MODE (f
))
4883 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
4886 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4887 extend_op
= ZERO_EXTEND
;
4888 m
= GET_MODE (XEXP (t
, 0));
4893 temp
= subst (gen_binary (true_code
, m
, cond_op0
, cond_op1
),
4894 pc_rtx
, pc_rtx
, 0, 0);
4895 temp
= gen_binary (MULT
, m
, temp
,
4896 gen_binary (MULT
, m
, c1
, const_true_rtx
));
4897 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0);
4898 temp
= gen_binary (op
, m
, gen_lowpart_for_combine (m
, z
), temp
);
4900 if (extend_op
!= NIL
)
4901 temp
= gen_unary (extend_op
, mode
, m
, temp
);
4907 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4908 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4909 negation of a single bit, we can convert this operation to a shift. We
4910 can actually do this more generally, but it doesn't seem worth it. */
4912 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
4913 && false == const0_rtx
&& GET_CODE (true) == CONST_INT
4914 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
4915 && (i
= exact_log2 (INTVAL (true))) >= 0)
4916 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
4917 == GET_MODE_BITSIZE (mode
))
4918 && (i
= exact_log2 (-INTVAL (true))) >= 0)))
4920 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4921 gen_lowpart_for_combine (mode
, XEXP (cond
, 0)), i
);
4926 /* Simplify X, a SET expression. Return the new expression. */
4932 rtx src
= SET_SRC (x
);
4933 rtx dest
= SET_DEST (x
);
4934 enum machine_mode mode
4935 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
4939 /* (set (pc) (return)) gets written as (return). */
4940 if (GET_CODE (dest
) == PC
&& GET_CODE (src
) == RETURN
)
4943 /* Now that we know for sure which bits of SRC we are using, see if we can
4944 simplify the expression for the object knowing that we only need the
4947 if (GET_MODE_CLASS (mode
) == MODE_INT
)
4949 src
= force_to_mode (src
, mode
, ~(HOST_WIDE_INT
) 0, NULL_RTX
, 0);
4950 SUBST (SET_SRC (x
), src
);
4953 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4954 the comparison result and try to simplify it unless we already have used
4955 undobuf.other_insn. */
4956 if ((GET_CODE (src
) == COMPARE
4961 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
4962 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
4963 && GET_RTX_CLASS (GET_CODE (*cc_use
)) == '<'
4964 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
4966 enum rtx_code old_code
= GET_CODE (*cc_use
);
4967 enum rtx_code new_code
;
4969 int other_changed
= 0;
4970 enum machine_mode compare_mode
= GET_MODE (dest
);
4972 if (GET_CODE (src
) == COMPARE
)
4973 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
4975 op0
= src
, op1
= const0_rtx
;
4977 /* Simplify our comparison, if possible. */
4978 new_code
= simplify_comparison (old_code
, &op0
, &op1
);
4980 #ifdef EXTRA_CC_MODES
4981 /* If this machine has CC modes other than CCmode, check to see if we
4982 need to use a different CC mode here. */
4983 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
4984 #endif /* EXTRA_CC_MODES */
4986 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4987 /* If the mode changed, we have to change SET_DEST, the mode in the
4988 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4989 a hard register, just build new versions with the proper mode. If it
4990 is a pseudo, we lose unless it is only time we set the pseudo, in
4991 which case we can safely change its mode. */
4992 if (compare_mode
!= GET_MODE (dest
))
4994 unsigned int regno
= REGNO (dest
);
4995 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
4997 if (regno
< FIRST_PSEUDO_REGISTER
4998 || (REG_N_SETS (regno
) == 1 && ! REG_USERVAR_P (dest
)))
5000 if (regno
>= FIRST_PSEUDO_REGISTER
)
5001 SUBST (regno_reg_rtx
[regno
], new_dest
);
5003 SUBST (SET_DEST (x
), new_dest
);
5004 SUBST (XEXP (*cc_use
, 0), new_dest
);
5012 /* If the code changed, we have to build a new comparison in
5013 undobuf.other_insn. */
5014 if (new_code
!= old_code
)
5016 unsigned HOST_WIDE_INT mask
;
5018 SUBST (*cc_use
, gen_rtx_combine (new_code
, GET_MODE (*cc_use
),
5021 /* If the only change we made was to change an EQ into an NE or
5022 vice versa, OP0 has only one bit that might be nonzero, and OP1
5023 is zero, check if changing the user of the condition code will
5024 produce a valid insn. If it won't, we can keep the original code
5025 in that insn by surrounding our operation with an XOR. */
5027 if (((old_code
== NE
&& new_code
== EQ
)
5028 || (old_code
== EQ
&& new_code
== NE
))
5029 && ! other_changed
&& op1
== const0_rtx
5030 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
5031 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
5033 rtx pat
= PATTERN (other_insn
), note
= 0;
5035 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
5036 && ! check_asm_operands (pat
)))
5038 PUT_CODE (*cc_use
, old_code
);
5041 op0
= gen_binary (XOR
, GET_MODE (op0
), op0
, GEN_INT (mask
));
5049 undobuf
.other_insn
= other_insn
;
5052 /* If we are now comparing against zero, change our source if
5053 needed. If we do not use cc0, we always have a COMPARE. */
5054 if (op1
== const0_rtx
&& dest
== cc0_rtx
)
5056 SUBST (SET_SRC (x
), op0
);
5062 /* Otherwise, if we didn't previously have a COMPARE in the
5063 correct mode, we need one. */
5064 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
5067 gen_rtx_combine (COMPARE
, compare_mode
, op0
, op1
));
5072 /* Otherwise, update the COMPARE if needed. */
5073 SUBST (XEXP (src
, 0), op0
);
5074 SUBST (XEXP (src
, 1), op1
);
5079 /* Get SET_SRC in a form where we have placed back any
5080 compound expressions. Then do the checks below. */
5081 src
= make_compound_operation (src
, SET
);
5082 SUBST (SET_SRC (x
), src
);
5085 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5086 and X being a REG or (subreg (reg)), we may be able to convert this to
5087 (set (subreg:m2 x) (op)).
5089 We can always do this if M1 is narrower than M2 because that means that
5090 we only care about the low bits of the result.
5092 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5093 perform a narrower operation than requested since the high-order bits will
5094 be undefined. On machine where it is defined, this transformation is safe
5095 as long as M1 and M2 have the same number of words. */
5097 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5098 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src
))) != 'o'
5099 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
5101 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5102 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
5103 #ifndef WORD_REGISTER_OPERATIONS
5104 && (GET_MODE_SIZE (GET_MODE (src
))
5105 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5107 #ifdef CLASS_CANNOT_CHANGE_MODE
5108 && ! (GET_CODE (dest
) == REG
&& REGNO (dest
) < FIRST_PSEUDO_REGISTER
5109 && (TEST_HARD_REG_BIT
5110 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
5112 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src
),
5113 GET_MODE (SUBREG_REG (src
))))
5115 && (GET_CODE (dest
) == REG
5116 || (GET_CODE (dest
) == SUBREG
5117 && GET_CODE (SUBREG_REG (dest
)) == REG
)))
5119 SUBST (SET_DEST (x
),
5120 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src
)),
5122 SUBST (SET_SRC (x
), SUBREG_REG (src
));
5124 src
= SET_SRC (x
), dest
= SET_DEST (x
);
5127 #ifdef LOAD_EXTEND_OP
5128 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5129 would require a paradoxical subreg. Replace the subreg with a
5130 zero_extend to avoid the reload that would otherwise be required. */
5132 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5133 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != NIL
5134 && SUBREG_WORD (src
) == 0
5135 && (GET_MODE_SIZE (GET_MODE (src
))
5136 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5137 && GET_CODE (SUBREG_REG (src
)) == MEM
)
5140 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
5141 GET_MODE (src
), XEXP (src
, 0)));
5147 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5148 are comparing an item known to be 0 or -1 against 0, use a logical
5149 operation instead. Check for one of the arms being an IOR of the other
5150 arm with some value. We compute three terms to be IOR'ed together. In
5151 practice, at most two will be nonzero. Then we do the IOR's. */
5153 if (GET_CODE (dest
) != PC
5154 && GET_CODE (src
) == IF_THEN_ELSE
5155 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
5156 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
5157 && XEXP (XEXP (src
, 0), 1) == const0_rtx
5158 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
5159 #ifdef HAVE_conditional_move
5160 && ! can_conditionally_move_p (GET_MODE (src
))
5162 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
5163 GET_MODE (XEXP (XEXP (src
, 0), 0)))
5164 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src
, 0), 0))))
5165 && ! side_effects_p (src
))
5167 rtx
true = (GET_CODE (XEXP (src
, 0)) == NE
5168 ? XEXP (src
, 1) : XEXP (src
, 2));
5169 rtx
false = (GET_CODE (XEXP (src
, 0)) == NE
5170 ? XEXP (src
, 2) : XEXP (src
, 1));
5171 rtx term1
= const0_rtx
, term2
, term3
;
5173 if (GET_CODE (true) == IOR
&& rtx_equal_p (XEXP (true, 0), false))
5174 term1
= false, true = XEXP (true, 1), false = const0_rtx
;
5175 else if (GET_CODE (true) == IOR
5176 && rtx_equal_p (XEXP (true, 1), false))
5177 term1
= false, true = XEXP (true, 0), false = const0_rtx
;
5178 else if (GET_CODE (false) == IOR
5179 && rtx_equal_p (XEXP (false, 0), true))
5180 term1
= true, false = XEXP (false, 1), true = const0_rtx
;
5181 else if (GET_CODE (false) == IOR
5182 && rtx_equal_p (XEXP (false, 1), true))
5183 term1
= true, false = XEXP (false, 0), true = const0_rtx
;
5185 term2
= gen_binary (AND
, GET_MODE (src
), XEXP (XEXP (src
, 0), 0), true);
5186 term3
= gen_binary (AND
, GET_MODE (src
),
5187 gen_unary (NOT
, GET_MODE (src
), GET_MODE (src
),
5188 XEXP (XEXP (src
, 0), 0)),
5192 gen_binary (IOR
, GET_MODE (src
),
5193 gen_binary (IOR
, GET_MODE (src
), term1
, term2
),
5199 #ifdef HAVE_conditional_arithmetic
5200 /* If we have conditional arithmetic and the operand of a SET is
5201 a conditional expression, replace this with an IF_THEN_ELSE.
5202 We can either have a conditional expression or a MULT of that expression
5204 if ((GET_RTX_CLASS (GET_CODE (src
)) == '1'
5205 || GET_RTX_CLASS (GET_CODE (src
)) == '2'
5206 || GET_RTX_CLASS (GET_CODE (src
)) == 'c')
5207 && (GET_RTX_CLASS (GET_CODE (XEXP (src
, 0))) == '<'
5208 || (GET_CODE (XEXP (src
, 0)) == MULT
5209 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (src
, 0), 0))) == '<'
5210 && GET_CODE (XEXP (XEXP (src
, 0), 1)) == CONST_INT
)))
5212 rtx cond
= XEXP (src
, 0);
5213 rtx true_val
= const1_rtx
;
5214 rtx false_arm
, true_arm
;
5217 if (GET_CODE (cond
) == MULT
)
5219 true_val
= XEXP (cond
, 1);
5220 cond
= XEXP (cond
, 0);
5223 if (GET_RTX_CLASS (GET_CODE (src
)) == '1')
5225 true_arm
= gen_unary (GET_CODE (src
), GET_MODE (src
),
5226 GET_MODE (XEXP (src
, 0)), true_val
);
5227 false_arm
= gen_unary (GET_CODE (src
), GET_MODE (src
),
5228 GET_MODE (XEXP (src
, 0)), const0_rtx
);
5232 true_arm
= gen_binary (GET_CODE (src
), GET_MODE (src
),
5233 true_val
, XEXP (src
, 1));
5234 false_arm
= gen_binary (GET_CODE (src
), GET_MODE (src
),
5235 const0_rtx
, XEXP (src
, 1));
5238 /* Canonicalize if true_arm is the simpler one. */
5239 if (GET_RTX_CLASS (GET_CODE (true_arm
)) == 'o'
5240 && GET_RTX_CLASS (GET_CODE (false_arm
)) != 'o'
5241 && (reversed
= reversed_comparison_code (cond
, GET_MODE (cond
),
5245 rtx temp
= true_arm
;
5247 true_arm
= false_arm
;
5253 src
= gen_rtx_combine (IF_THEN_ELSE
, GET_MODE (src
),
5254 gen_rtx_combine (GET_CODE (cond
), VOIDmode
,
5257 true_arm
, false_arm
);
5258 SUBST (SET_SRC (x
), src
);
5262 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5263 whole thing fail. */
5264 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
5266 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
5269 /* Convert this into a field assignment operation, if possible. */
5270 return make_field_assignment (x
);
5273 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5274 result. LAST is nonzero if this is the last retry. */
5277 simplify_logical (x
, last
)
5281 enum machine_mode mode
= GET_MODE (x
);
5282 rtx op0
= XEXP (x
, 0);
5283 rtx op1
= XEXP (x
, 1);
5286 switch (GET_CODE (x
))
5289 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5290 insn (and may simplify more). */
5291 if (GET_CODE (op0
) == XOR
5292 && rtx_equal_p (XEXP (op0
, 0), op1
)
5293 && ! side_effects_p (op1
))
5294 x
= gen_binary (AND
, mode
,
5295 gen_unary (NOT
, mode
, mode
, XEXP (op0
, 1)), op1
);
5297 if (GET_CODE (op0
) == XOR
5298 && rtx_equal_p (XEXP (op0
, 1), op1
)
5299 && ! side_effects_p (op1
))
5300 x
= gen_binary (AND
, mode
,
5301 gen_unary (NOT
, mode
, mode
, XEXP (op0
, 0)), op1
);
5303 /* Similarly for (~(A ^ B)) & A. */
5304 if (GET_CODE (op0
) == NOT
5305 && GET_CODE (XEXP (op0
, 0)) == XOR
5306 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), op1
)
5307 && ! side_effects_p (op1
))
5308 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 1), op1
);
5310 if (GET_CODE (op0
) == NOT
5311 && GET_CODE (XEXP (op0
, 0)) == XOR
5312 && rtx_equal_p (XEXP (XEXP (op0
, 0), 1), op1
)
5313 && ! side_effects_p (op1
))
5314 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 0), op1
);
5316 /* We can call simplify_and_const_int only if we don't lose
5317 any (sign) bits when converting INTVAL (op1) to
5318 "unsigned HOST_WIDE_INT". */
5319 if (GET_CODE (op1
) == CONST_INT
5320 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5321 || INTVAL (op1
) > 0))
5323 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
5325 /* If we have (ior (and (X C1) C2)) and the next restart would be
5326 the last, simplify this by making C1 as small as possible
5329 && GET_CODE (x
) == IOR
&& GET_CODE (op0
) == AND
5330 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5331 && GET_CODE (op1
) == CONST_INT
)
5332 return gen_binary (IOR
, mode
,
5333 gen_binary (AND
, mode
, XEXP (op0
, 0),
5334 GEN_INT (INTVAL (XEXP (op0
, 1))
5335 & ~INTVAL (op1
))), op1
);
5337 if (GET_CODE (x
) != AND
)
5340 if (GET_RTX_CLASS (GET_CODE (x
)) == 'c'
5341 || GET_RTX_CLASS (GET_CODE (x
)) == '2')
5342 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5345 /* Convert (A | B) & A to A. */
5346 if (GET_CODE (op0
) == IOR
5347 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5348 || rtx_equal_p (XEXP (op0
, 1), op1
))
5349 && ! side_effects_p (XEXP (op0
, 0))
5350 && ! side_effects_p (XEXP (op0
, 1)))
5353 /* In the following group of tests (and those in case IOR below),
5354 we start with some combination of logical operations and apply
5355 the distributive law followed by the inverse distributive law.
5356 Most of the time, this results in no change. However, if some of
5357 the operands are the same or inverses of each other, simplifications
5360 For example, (and (ior A B) (not B)) can occur as the result of
5361 expanding a bit field assignment. When we apply the distributive
5362 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5363 which then simplifies to (and (A (not B))).
5365 If we have (and (ior A B) C), apply the distributive law and then
5366 the inverse distributive law to see if things simplify. */
5368 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
5370 x
= apply_distributive_law
5371 (gen_binary (GET_CODE (op0
), mode
,
5372 gen_binary (AND
, mode
, XEXP (op0
, 0), op1
),
5373 gen_binary (AND
, mode
, XEXP (op0
, 1),
5375 if (GET_CODE (x
) != AND
)
5379 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
5380 return apply_distributive_law
5381 (gen_binary (GET_CODE (op1
), mode
,
5382 gen_binary (AND
, mode
, XEXP (op1
, 0), op0
),
5383 gen_binary (AND
, mode
, XEXP (op1
, 1),
5386 /* Similarly, taking advantage of the fact that
5387 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5389 if (GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == XOR
)
5390 return apply_distributive_law
5391 (gen_binary (XOR
, mode
,
5392 gen_binary (IOR
, mode
, XEXP (op0
, 0), XEXP (op1
, 0)),
5393 gen_binary (IOR
, mode
, copy_rtx (XEXP (op0
, 0)),
5396 else if (GET_CODE (op1
) == NOT
&& GET_CODE (op0
) == XOR
)
5397 return apply_distributive_law
5398 (gen_binary (XOR
, mode
,
5399 gen_binary (IOR
, mode
, XEXP (op1
, 0), XEXP (op0
, 0)),
5400 gen_binary (IOR
, mode
, copy_rtx (XEXP (op1
, 0)), XEXP (op0
, 1))));
5404 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5405 if (GET_CODE (op1
) == CONST_INT
5406 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5407 && (nonzero_bits (op0
, mode
) & ~INTVAL (op1
)) == 0)
5410 /* Convert (A & B) | A to A. */
5411 if (GET_CODE (op0
) == AND
5412 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5413 || rtx_equal_p (XEXP (op0
, 1), op1
))
5414 && ! side_effects_p (XEXP (op0
, 0))
5415 && ! side_effects_p (XEXP (op0
, 1)))
5418 /* If we have (ior (and A B) C), apply the distributive law and then
5419 the inverse distributive law to see if things simplify. */
5421 if (GET_CODE (op0
) == AND
)
5423 x
= apply_distributive_law
5424 (gen_binary (AND
, mode
,
5425 gen_binary (IOR
, mode
, XEXP (op0
, 0), op1
),
5426 gen_binary (IOR
, mode
, XEXP (op0
, 1),
5429 if (GET_CODE (x
) != IOR
)
5433 if (GET_CODE (op1
) == AND
)
5435 x
= apply_distributive_law
5436 (gen_binary (AND
, mode
,
5437 gen_binary (IOR
, mode
, XEXP (op1
, 0), op0
),
5438 gen_binary (IOR
, mode
, XEXP (op1
, 1),
5441 if (GET_CODE (x
) != IOR
)
5445 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5446 mode size to (rotate A CX). */
5448 if (((GET_CODE (op0
) == ASHIFT
&& GET_CODE (op1
) == LSHIFTRT
)
5449 || (GET_CODE (op1
) == ASHIFT
&& GET_CODE (op0
) == LSHIFTRT
))
5450 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
5451 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5452 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
5453 && (INTVAL (XEXP (op0
, 1)) + INTVAL (XEXP (op1
, 1))
5454 == GET_MODE_BITSIZE (mode
)))
5455 return gen_rtx_ROTATE (mode
, XEXP (op0
, 0),
5456 (GET_CODE (op0
) == ASHIFT
5457 ? XEXP (op0
, 1) : XEXP (op1
, 1)));
5459 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5460 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5461 does not affect any of the bits in OP1, it can really be done
5462 as a PLUS and we can associate. We do this by seeing if OP1
5463 can be safely shifted left C bits. */
5464 if (GET_CODE (op1
) == CONST_INT
&& GET_CODE (op0
) == ASHIFTRT
5465 && GET_CODE (XEXP (op0
, 0)) == PLUS
5466 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
5467 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5468 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
)
5470 int count
= INTVAL (XEXP (op0
, 1));
5471 HOST_WIDE_INT mask
= INTVAL (op1
) << count
;
5473 if (mask
>> count
== INTVAL (op1
)
5474 && (mask
& nonzero_bits (XEXP (op0
, 0), mode
)) == 0)
5476 SUBST (XEXP (XEXP (op0
, 0), 1),
5477 GEN_INT (INTVAL (XEXP (XEXP (op0
, 0), 1)) | mask
));
5484 /* If we are XORing two things that have no bits in common,
5485 convert them into an IOR. This helps to detect rotation encoded
5486 using those methods and possibly other simplifications. */
5488 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5489 && (nonzero_bits (op0
, mode
)
5490 & nonzero_bits (op1
, mode
)) == 0)
5491 return (gen_binary (IOR
, mode
, op0
, op1
));
5493 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5494 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5497 int num_negated
= 0;
5499 if (GET_CODE (op0
) == NOT
)
5500 num_negated
++, op0
= XEXP (op0
, 0);
5501 if (GET_CODE (op1
) == NOT
)
5502 num_negated
++, op1
= XEXP (op1
, 0);
5504 if (num_negated
== 2)
5506 SUBST (XEXP (x
, 0), op0
);
5507 SUBST (XEXP (x
, 1), op1
);
5509 else if (num_negated
== 1)
5510 return gen_unary (NOT
, mode
, mode
, gen_binary (XOR
, mode
, op0
, op1
));
5513 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5514 correspond to a machine insn or result in further simplifications
5515 if B is a constant. */
5517 if (GET_CODE (op0
) == AND
5518 && rtx_equal_p (XEXP (op0
, 1), op1
)
5519 && ! side_effects_p (op1
))
5520 return gen_binary (AND
, mode
,
5521 gen_unary (NOT
, mode
, mode
, XEXP (op0
, 0)),
5524 else if (GET_CODE (op0
) == AND
5525 && rtx_equal_p (XEXP (op0
, 0), op1
)
5526 && ! side_effects_p (op1
))
5527 return gen_binary (AND
, mode
,
5528 gen_unary (NOT
, mode
, mode
, XEXP (op0
, 1)),
5531 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5532 comparison if STORE_FLAG_VALUE is 1. */
5533 if (STORE_FLAG_VALUE
== 1
5534 && op1
== const1_rtx
5535 && GET_RTX_CLASS (GET_CODE (op0
)) == '<'
5536 && (reversed
= reversed_comparison (op0
, mode
, XEXP (op0
, 0),
5540 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5541 is (lt foo (const_int 0)), so we can perform the above
5542 simplification if STORE_FLAG_VALUE is 1. */
5544 if (STORE_FLAG_VALUE
== 1
5545 && op1
== const1_rtx
5546 && GET_CODE (op0
) == LSHIFTRT
5547 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5548 && INTVAL (XEXP (op0
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
5549 return gen_rtx_combine (GE
, mode
, XEXP (op0
, 0), const0_rtx
);
5551 /* (xor (comparison foo bar) (const_int sign-bit))
5552 when STORE_FLAG_VALUE is the sign bit. */
5553 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5554 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5555 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
5556 && op1
== const_true_rtx
5557 && GET_RTX_CLASS (GET_CODE (op0
)) == '<'
5558 && (reversed
= reversed_comparison (op0
, mode
, XEXP (op0
, 0),
5571 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5572 operations" because they can be replaced with two more basic operations.
5573 ZERO_EXTEND is also considered "compound" because it can be replaced with
5574 an AND operation, which is simpler, though only one operation.
5576 The function expand_compound_operation is called with an rtx expression
5577 and will convert it to the appropriate shifts and AND operations,
5578 simplifying at each stage.
5580 The function make_compound_operation is called to convert an expression
5581 consisting of shifts and ANDs into the equivalent compound expression.
5582 It is the inverse of this function, loosely speaking. */
5585 expand_compound_operation (x
)
5588 unsigned HOST_WIDE_INT pos
= 0, len
;
5590 unsigned int modewidth
;
5593 switch (GET_CODE (x
))
5598 /* We can't necessarily use a const_int for a multiword mode;
5599 it depends on implicitly extending the value.
5600 Since we don't know the right way to extend it,
5601 we can't tell whether the implicit way is right.
5603 Even for a mode that is no wider than a const_int,
5604 we can't win, because we need to sign extend one of its bits through
5605 the rest of it, and we don't know which bit. */
5606 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
5609 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5610 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5611 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5612 reloaded. If not for that, MEM's would very rarely be safe.
5614 Reject MODEs bigger than a word, because we might not be able
5615 to reference a two-register group starting with an arbitrary register
5616 (and currently gen_lowpart might crash for a SUBREG). */
5618 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
5621 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)));
5622 /* If the inner object has VOIDmode (the only way this can happen
5623 is if it is a ASM_OPERANDS), we can't do anything since we don't
5624 know how much masking to do. */
5633 /* If the operand is a CLOBBER, just return it. */
5634 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
5637 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
5638 || GET_CODE (XEXP (x
, 2)) != CONST_INT
5639 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
5642 len
= INTVAL (XEXP (x
, 1));
5643 pos
= INTVAL (XEXP (x
, 2));
5645 /* If this goes outside the object being extracted, replace the object
5646 with a (use (mem ...)) construct that only combine understands
5647 and is used only for this purpose. */
5648 if (len
+ pos
> GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
5649 SUBST (XEXP (x
, 0), gen_rtx_USE (GET_MODE (x
), XEXP (x
, 0)));
5651 if (BITS_BIG_ENDIAN
)
5652 pos
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - len
- pos
;
5659 /* Convert sign extension to zero extension, if we know that the high
5660 bit is not set, as this is easier to optimize. It will be converted
5661 back to cheaper alternative in make_extraction. */
5662 if (GET_CODE (x
) == SIGN_EXTEND
5663 && (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5664 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
5665 & ~(((unsigned HOST_WIDE_INT
)
5666 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
5670 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
5671 return expand_compound_operation (temp
);
5674 /* We can optimize some special cases of ZERO_EXTEND. */
5675 if (GET_CODE (x
) == ZERO_EXTEND
)
5677 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5678 know that the last value didn't have any inappropriate bits
5680 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5681 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5682 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5683 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
5684 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5685 return XEXP (XEXP (x
, 0), 0);
5687 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5688 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5689 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5690 && subreg_lowpart_p (XEXP (x
, 0))
5691 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5692 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
5693 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5694 return SUBREG_REG (XEXP (x
, 0));
5696 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5697 is a comparison and STORE_FLAG_VALUE permits. This is like
5698 the first case, but it works even when GET_MODE (x) is larger
5699 than HOST_WIDE_INT. */
5700 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5701 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5702 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x
, 0), 0))) == '<'
5703 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5704 <= HOST_BITS_PER_WIDE_INT
)
5705 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5706 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5707 return XEXP (XEXP (x
, 0), 0);
5709 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5710 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5711 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5712 && subreg_lowpart_p (XEXP (x
, 0))
5713 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0)))) == '<'
5714 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5715 <= HOST_BITS_PER_WIDE_INT
)
5716 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5717 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5718 return SUBREG_REG (XEXP (x
, 0));
5722 /* If we reach here, we want to return a pair of shifts. The inner
5723 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5724 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5725 logical depending on the value of UNSIGNEDP.
5727 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5728 converted into an AND of a shift.
5730 We must check for the case where the left shift would have a negative
5731 count. This can happen in a case like (x >> 31) & 255 on machines
5732 that can't shift by a constant. On those machines, we would first
5733 combine the shift with the AND to produce a variable-position
5734 extraction. Then the constant of 31 would be substituted in to produce
5735 a such a position. */
5737 modewidth
= GET_MODE_BITSIZE (GET_MODE (x
));
5738 if (modewidth
+ len
>= pos
)
5739 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
5741 simplify_shift_const (NULL_RTX
, ASHIFT
,
5744 modewidth
- pos
- len
),
5747 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
5748 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
5749 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
5752 ((HOST_WIDE_INT
) 1 << len
) - 1);
5754 /* Any other cases we can't handle. */
5757 /* If we couldn't do this for some reason, return the original
5759 if (GET_CODE (tem
) == CLOBBER
)
5765 /* X is a SET which contains an assignment of one object into
5766 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5767 or certain SUBREGS). If possible, convert it into a series of
5770 We half-heartedly support variable positions, but do not at all
5771 support variable lengths. */
5774 expand_field_assignment (x
)
5778 rtx pos
; /* Always counts from low bit. */
5781 enum machine_mode compute_mode
;
5783 /* Loop until we find something we can't simplify. */
5786 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
5787 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
5789 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
5790 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)));
5791 pos
= GEN_INT (BITS_PER_WORD
* SUBREG_WORD (XEXP (SET_DEST (x
), 0)));
5793 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5794 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
)
5796 inner
= XEXP (SET_DEST (x
), 0);
5797 len
= INTVAL (XEXP (SET_DEST (x
), 1));
5798 pos
= XEXP (SET_DEST (x
), 2);
5800 /* If the position is constant and spans the width of INNER,
5801 surround INNER with a USE to indicate this. */
5802 if (GET_CODE (pos
) == CONST_INT
5803 && INTVAL (pos
) + len
> GET_MODE_BITSIZE (GET_MODE (inner
)))
5804 inner
= gen_rtx_USE (GET_MODE (SET_DEST (x
)), inner
);
5806 if (BITS_BIG_ENDIAN
)
5808 if (GET_CODE (pos
) == CONST_INT
)
5809 pos
= GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
)) - len
5811 else if (GET_CODE (pos
) == MINUS
5812 && GET_CODE (XEXP (pos
, 1)) == CONST_INT
5813 && (INTVAL (XEXP (pos
, 1))
5814 == GET_MODE_BITSIZE (GET_MODE (inner
)) - len
))
5815 /* If position is ADJUST - X, new position is X. */
5816 pos
= XEXP (pos
, 0);
5818 pos
= gen_binary (MINUS
, GET_MODE (pos
),
5819 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
))
5825 /* A SUBREG between two modes that occupy the same numbers of words
5826 can be done by moving the SUBREG to the source. */
5827 else if (GET_CODE (SET_DEST (x
)) == SUBREG
5828 /* We need SUBREGs to compute nonzero_bits properly. */
5829 && nonzero_sign_valid
5830 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
5831 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
5832 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
5833 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
5835 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
5836 gen_lowpart_for_combine
5837 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
5844 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5845 inner
= SUBREG_REG (inner
);
5847 compute_mode
= GET_MODE (inner
);
5849 /* Don't attempt bitwise arithmetic on non-integral modes. */
5850 if (! INTEGRAL_MODE_P (compute_mode
))
5852 enum machine_mode imode
;
5854 /* Something is probably seriously wrong if this matches. */
5855 if (! FLOAT_MODE_P (compute_mode
))
5858 /* Try to find an integral mode to pun with. */
5859 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
5860 if (imode
== BLKmode
)
5863 compute_mode
= imode
;
5864 inner
= gen_lowpart_for_combine (imode
, inner
);
5867 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5868 if (len
< HOST_BITS_PER_WIDE_INT
)
5869 mask
= GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1);
5873 /* Now compute the equivalent expression. Make a copy of INNER
5874 for the SET_DEST in case it is a MEM into which we will substitute;
5875 we don't want shared RTL in that case. */
5877 (VOIDmode
, copy_rtx (inner
),
5878 gen_binary (IOR
, compute_mode
,
5879 gen_binary (AND
, compute_mode
,
5880 gen_unary (NOT
, compute_mode
,
5886 gen_binary (ASHIFT
, compute_mode
,
5887 gen_binary (AND
, compute_mode
,
5888 gen_lowpart_for_combine
5889 (compute_mode
, SET_SRC (x
)),
5897 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5898 it is an RTX that represents a variable starting position; otherwise,
5899 POS is the (constant) starting bit position (counted from the LSB).
5901 INNER may be a USE. This will occur when we started with a bitfield
5902 that went outside the boundary of the object in memory, which is
5903 allowed on most machines. To isolate this case, we produce a USE
5904 whose mode is wide enough and surround the MEM with it. The only
5905 code that understands the USE is this routine. If it is not removed,
5906 it will cause the resulting insn not to match.
5908 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5911 IN_DEST is non-zero if this is a reference in the destination of a
5912 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5913 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5916 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5917 ZERO_EXTRACT should be built even for bits starting at bit 0.
5919 MODE is the desired mode of the result (if IN_DEST == 0).
5921 The result is an RTX for the extraction or NULL_RTX if the target
5925 make_extraction (mode
, inner
, pos
, pos_rtx
, len
,
5926 unsignedp
, in_dest
, in_compare
)
5927 enum machine_mode mode
;
5931 unsigned HOST_WIDE_INT len
;
5933 int in_dest
, in_compare
;
5935 /* This mode describes the size of the storage area
5936 to fetch the overall value from. Within that, we
5937 ignore the POS lowest bits, etc. */
5938 enum machine_mode is_mode
= GET_MODE (inner
);
5939 enum machine_mode inner_mode
;
5940 enum machine_mode wanted_inner_mode
= byte_mode
;
5941 enum machine_mode wanted_inner_reg_mode
= word_mode
;
5942 enum machine_mode pos_mode
= word_mode
;
5943 enum machine_mode extraction_mode
= word_mode
;
5944 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
5947 rtx orig_pos_rtx
= pos_rtx
;
5948 HOST_WIDE_INT orig_pos
;
5950 /* Get some information about INNER and get the innermost object. */
5951 if (GET_CODE (inner
) == USE
)
5952 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5953 /* We don't need to adjust the position because we set up the USE
5954 to pretend that it was a full-word object. */
5955 spans_byte
= 1, inner
= XEXP (inner
, 0);
5956 else if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5958 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5959 consider just the QI as the memory to extract from.
5960 The subreg adds or removes high bits; its mode is
5961 irrelevant to the meaning of this extraction,
5962 since POS and LEN count from the lsb. */
5963 if (GET_CODE (SUBREG_REG (inner
)) == MEM
)
5964 is_mode
= GET_MODE (SUBREG_REG (inner
));
5965 inner
= SUBREG_REG (inner
);
5968 inner_mode
= GET_MODE (inner
);
5970 if (pos_rtx
&& GET_CODE (pos_rtx
) == CONST_INT
)
5971 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
5973 /* See if this can be done without an extraction. We never can if the
5974 width of the field is not the same as that of some integer mode. For
5975 registers, we can only avoid the extraction if the position is at the
5976 low-order bit and this is either not in the destination or we have the
5977 appropriate STRICT_LOW_PART operation available.
5979 For MEM, we can avoid an extract if the field starts on an appropriate
5980 boundary and we can change the mode of the memory reference. However,
5981 we cannot directly access the MEM if we have a USE and the underlying
5982 MEM is not TMODE. This combination means that MEM was being used in a
5983 context where bits outside its mode were being referenced; that is only
5984 valid in bit-field insns. */
5986 if (tmode
!= BLKmode
5987 && ! (spans_byte
&& inner_mode
!= tmode
)
5988 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
5989 && GET_CODE (inner
) != MEM
5991 || (GET_CODE (inner
) == REG
5992 && (movstrict_optab
->handlers
[(int) tmode
].insn_code
5993 != CODE_FOR_nothing
))))
5994 || (GET_CODE (inner
) == MEM
&& pos_rtx
== 0
5996 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
5997 : BITS_PER_UNIT
)) == 0
5998 /* We can't do this if we are widening INNER_MODE (it
5999 may not be aligned, for one thing). */
6000 && GET_MODE_BITSIZE (inner_mode
) >= GET_MODE_BITSIZE (tmode
)
6001 && (inner_mode
== tmode
6002 || (! mode_dependent_address_p (XEXP (inner
, 0))
6003 && ! MEM_VOLATILE_P (inner
))))))
6005 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6006 field. If the original and current mode are the same, we need not
6007 adjust the offset. Otherwise, we do if bytes big endian.
6009 If INNER is not a MEM, get a piece consisting of just the field
6010 of interest (in this case POS % BITS_PER_WORD must be 0). */
6012 if (GET_CODE (inner
) == MEM
)
6015 /* POS counts from lsb, but make OFFSET count in memory order. */
6016 if (BYTES_BIG_ENDIAN
)
6017 offset
= (GET_MODE_BITSIZE (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
6019 offset
= pos
/ BITS_PER_UNIT
;
6021 new = gen_rtx_MEM (tmode
, plus_constant (XEXP (inner
, 0), offset
));
6022 MEM_COPY_ATTRIBUTES (new, inner
);
6024 else if (GET_CODE (inner
) == REG
)
6026 /* We can't call gen_lowpart_for_combine here since we always want
6027 a SUBREG and it would sometimes return a new hard register. */
6028 if (tmode
!= inner_mode
)
6029 new = gen_rtx_SUBREG (tmode
, inner
,
6031 && (GET_MODE_SIZE (inner_mode
)
6033 ? (((GET_MODE_SIZE (inner_mode
)
6034 - GET_MODE_SIZE (tmode
))
6036 - pos
/ BITS_PER_WORD
)
6037 : pos
/ BITS_PER_WORD
));
6042 new = force_to_mode (inner
, tmode
,
6043 len
>= HOST_BITS_PER_WIDE_INT
6044 ? ~(unsigned HOST_WIDE_INT
) 0
6045 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
6048 /* If this extraction is going into the destination of a SET,
6049 make a STRICT_LOW_PART unless we made a MEM. */
6052 return (GET_CODE (new) == MEM
? new
6053 : (GET_CODE (new) != SUBREG
6054 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
6055 : gen_rtx_combine (STRICT_LOW_PART
, VOIDmode
, new)));
6060 /* If we know that no extraneous bits are set, and that the high
6061 bit is not set, convert the extraction to the cheaper of
6062 sign and zero extension, that are equivalent in these cases. */
6063 if (flag_expensive_optimizations
6064 && (GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
6065 && ((nonzero_bits (new, tmode
)
6066 & ~(((unsigned HOST_WIDE_INT
)
6067 GET_MODE_MASK (tmode
))
6071 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new);
6072 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new);
6074 /* Prefer ZERO_EXTENSION, since it gives more information to
6076 if (rtx_cost (temp
, SET
) <= rtx_cost (temp1
, SET
))
6081 /* Otherwise, sign- or zero-extend unless we already are in the
6084 return (gen_rtx_combine (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
6088 /* Unless this is a COMPARE or we have a funny memory reference,
6089 don't do anything with zero-extending field extracts starting at
6090 the low-order bit since they are simple AND operations. */
6091 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
6092 && ! in_compare
&& ! spans_byte
&& unsignedp
)
6095 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6096 we would be spanning bytes or if the position is not a constant and the
6097 length is not 1. In all other cases, we would only be going outside
6098 our object in cases when an original shift would have been
6100 if (! spans_byte
&& GET_CODE (inner
) == MEM
6101 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_BITSIZE (is_mode
))
6102 || (pos_rtx
!= 0 && len
!= 1)))
6105 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6106 and the mode for the result. */
6110 wanted_inner_reg_mode
6111 = insn_data
[(int) CODE_FOR_insv
].operand
[0].mode
;
6112 if (wanted_inner_reg_mode
== VOIDmode
)
6113 wanted_inner_reg_mode
= word_mode
;
6115 pos_mode
= insn_data
[(int) CODE_FOR_insv
].operand
[2].mode
;
6116 if (pos_mode
== VOIDmode
)
6117 pos_mode
= word_mode
;
6119 extraction_mode
= insn_data
[(int) CODE_FOR_insv
].operand
[3].mode
;
6120 if (extraction_mode
== VOIDmode
)
6121 extraction_mode
= word_mode
;
6126 if (! in_dest
&& unsignedp
)
6128 wanted_inner_reg_mode
6129 = insn_data
[(int) CODE_FOR_extzv
].operand
[1].mode
;
6130 if (wanted_inner_reg_mode
== VOIDmode
)
6131 wanted_inner_reg_mode
= word_mode
;
6133 pos_mode
= insn_data
[(int) CODE_FOR_extzv
].operand
[3].mode
;
6134 if (pos_mode
== VOIDmode
)
6135 pos_mode
= word_mode
;
6137 extraction_mode
= insn_data
[(int) CODE_FOR_extzv
].operand
[0].mode
;
6138 if (extraction_mode
== VOIDmode
)
6139 extraction_mode
= word_mode
;
6144 if (! in_dest
&& ! unsignedp
)
6146 wanted_inner_reg_mode
6147 = insn_data
[(int) CODE_FOR_extv
].operand
[1].mode
;
6148 if (wanted_inner_reg_mode
== VOIDmode
)
6149 wanted_inner_reg_mode
= word_mode
;
6151 pos_mode
= insn_data
[(int) CODE_FOR_extv
].operand
[3].mode
;
6152 if (pos_mode
== VOIDmode
)
6153 pos_mode
= word_mode
;
6155 extraction_mode
= insn_data
[(int) CODE_FOR_extv
].operand
[0].mode
;
6156 if (extraction_mode
== VOIDmode
)
6157 extraction_mode
= word_mode
;
6161 /* Never narrow an object, since that might not be safe. */
6163 if (mode
!= VOIDmode
6164 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
6165 extraction_mode
= mode
;
6167 if (pos_rtx
&& GET_MODE (pos_rtx
) != VOIDmode
6168 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6169 pos_mode
= GET_MODE (pos_rtx
);
6171 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6172 if we have to change the mode of memory and cannot, the desired mode is
6174 if (GET_CODE (inner
) != MEM
)
6175 wanted_inner_mode
= wanted_inner_reg_mode
;
6176 else if (inner_mode
!= wanted_inner_mode
6177 && (mode_dependent_address_p (XEXP (inner
, 0))
6178 || MEM_VOLATILE_P (inner
)))
6179 wanted_inner_mode
= extraction_mode
;
6183 if (BITS_BIG_ENDIAN
)
6185 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6186 BITS_BIG_ENDIAN style. If position is constant, compute new
6187 position. Otherwise, build subtraction.
6188 Note that POS is relative to the mode of the original argument.
6189 If it's a MEM we need to recompute POS relative to that.
6190 However, if we're extracting from (or inserting into) a register,
6191 we want to recompute POS relative to wanted_inner_mode. */
6192 int width
= (GET_CODE (inner
) == MEM
6193 ? GET_MODE_BITSIZE (is_mode
)
6194 : GET_MODE_BITSIZE (wanted_inner_mode
));
6197 pos
= width
- len
- pos
;
6200 = gen_rtx_combine (MINUS
, GET_MODE (pos_rtx
),
6201 GEN_INT (width
- len
), pos_rtx
);
6202 /* POS may be less than 0 now, but we check for that below.
6203 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6206 /* If INNER has a wider mode, make it smaller. If this is a constant
6207 extract, try to adjust the byte to point to the byte containing
6209 if (wanted_inner_mode
!= VOIDmode
6210 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
6211 && ((GET_CODE (inner
) == MEM
6212 && (inner_mode
== wanted_inner_mode
6213 || (! mode_dependent_address_p (XEXP (inner
, 0))
6214 && ! MEM_VOLATILE_P (inner
))))))
6218 /* The computations below will be correct if the machine is big
6219 endian in both bits and bytes or little endian in bits and bytes.
6220 If it is mixed, we must adjust. */
6222 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6223 adjust OFFSET to compensate. */
6224 if (BYTES_BIG_ENDIAN
6226 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
6227 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
6229 /* If this is a constant position, we can move to the desired byte. */
6232 offset
+= pos
/ BITS_PER_UNIT
;
6233 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
6236 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
6238 && is_mode
!= wanted_inner_mode
)
6239 offset
= (GET_MODE_SIZE (is_mode
)
6240 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
6242 if (offset
!= 0 || inner_mode
!= wanted_inner_mode
)
6244 rtx newmem
= gen_rtx_MEM (wanted_inner_mode
,
6245 plus_constant (XEXP (inner
, 0), offset
));
6247 MEM_COPY_ATTRIBUTES (newmem
, inner
);
6252 /* If INNER is not memory, we can always get it into the proper mode. If we
6253 are changing its mode, POS must be a constant and smaller than the size
6255 else if (GET_CODE (inner
) != MEM
)
6257 if (GET_MODE (inner
) != wanted_inner_mode
6259 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
6262 inner
= force_to_mode (inner
, wanted_inner_mode
,
6264 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
6265 ? ~(unsigned HOST_WIDE_INT
) 0
6266 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
6271 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6272 have to zero extend. Otherwise, we can just use a SUBREG. */
6274 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6276 rtx temp
= gen_rtx_combine (ZERO_EXTEND
, pos_mode
, pos_rtx
);
6278 /* If we know that no extraneous bits are set, and that the high
6279 bit is not set, convert extraction to cheaper one - eighter
6280 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6282 if (flag_expensive_optimizations
6283 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx
)) <= HOST_BITS_PER_WIDE_INT
6284 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
6285 & ~(((unsigned HOST_WIDE_INT
)
6286 GET_MODE_MASK (GET_MODE (pos_rtx
)))
6290 rtx temp1
= gen_rtx_SIGN_EXTEND (pos_mode
, pos_rtx
);
6292 /* Prefer ZERO_EXTENSION, since it gives more information to
6294 if (rtx_cost (temp1
, SET
) < rtx_cost (temp
, SET
))
6299 else if (pos_rtx
!= 0
6300 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6301 pos_rtx
= gen_lowpart_for_combine (pos_mode
, pos_rtx
);
6303 /* Make POS_RTX unless we already have it and it is correct. If we don't
6304 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6306 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
6307 pos_rtx
= orig_pos_rtx
;
6309 else if (pos_rtx
== 0)
6310 pos_rtx
= GEN_INT (pos
);
6312 /* Make the required operation. See if we can use existing rtx. */
6313 new = gen_rtx_combine (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
6314 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
6316 new = gen_lowpart_for_combine (mode
, new);
6321 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6322 with any other operations in X. Return X without that shift if so. */
6325 extract_left_shift (x
, count
)
6329 enum rtx_code code
= GET_CODE (x
);
6330 enum machine_mode mode
= GET_MODE (x
);
6336 /* This is the shift itself. If it is wide enough, we will return
6337 either the value being shifted if the shift count is equal to
6338 COUNT or a shift for the difference. */
6339 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6340 && INTVAL (XEXP (x
, 1)) >= count
)
6341 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
6342 INTVAL (XEXP (x
, 1)) - count
);
6346 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6347 return gen_unary (code
, mode
, mode
, tem
);
6351 case PLUS
: case IOR
: case XOR
: case AND
:
6352 /* If we can safely shift this constant and we find the inner shift,
6353 make a new operation. */
6354 if (GET_CODE (XEXP (x
,1)) == CONST_INT
6355 && (INTVAL (XEXP (x
, 1)) & ((((HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
6356 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6357 return gen_binary (code
, mode
, tem
,
6358 GEN_INT (INTVAL (XEXP (x
, 1)) >> count
));
6369 /* Look at the expression rooted at X. Look for expressions
6370 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6371 Form these expressions.
6373 Return the new rtx, usually just X.
6375 Also, for machines like the Vax that don't have logical shift insns,
6376 try to convert logical to arithmetic shift operations in cases where
6377 they are equivalent. This undoes the canonicalizations to logical
6378 shifts done elsewhere.
6380 We try, as much as possible, to re-use rtl expressions to save memory.
6382 IN_CODE says what kind of expression we are processing. Normally, it is
6383 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6384 being kludges), it is MEM. When processing the arguments of a comparison
6385 or a COMPARE against zero, it is COMPARE. */
6388 make_compound_operation (x
, in_code
)
6390 enum rtx_code in_code
;
6392 enum rtx_code code
= GET_CODE (x
);
6393 enum machine_mode mode
= GET_MODE (x
);
6394 int mode_width
= GET_MODE_BITSIZE (mode
);
6396 enum rtx_code next_code
;
6402 /* Select the code to be used in recursive calls. Once we are inside an
6403 address, we stay there. If we have a comparison, set to COMPARE,
6404 but once inside, go back to our default of SET. */
6406 next_code
= (code
== MEM
|| code
== PLUS
|| code
== MINUS
? MEM
6407 : ((code
== COMPARE
|| GET_RTX_CLASS (code
) == '<')
6408 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
6409 : in_code
== COMPARE
? SET
: in_code
);
6411 /* Process depending on the code of this operation. If NEW is set
6412 non-zero, it will be returned. */
6417 /* Convert shifts by constants into multiplications if inside
6419 if (in_code
== MEM
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6420 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6421 && INTVAL (XEXP (x
, 1)) >= 0)
6423 new = make_compound_operation (XEXP (x
, 0), next_code
);
6424 new = gen_rtx_combine (MULT
, mode
, new,
6425 GEN_INT ((HOST_WIDE_INT
) 1
6426 << INTVAL (XEXP (x
, 1))));
6431 /* If the second operand is not a constant, we can't do anything
6433 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6436 /* If the constant is a power of two minus one and the first operand
6437 is a logical right shift, make an extraction. */
6438 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6439 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6441 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6442 new = make_extraction (mode
, new, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
6443 0, in_code
== COMPARE
);
6446 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6447 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
6448 && subreg_lowpart_p (XEXP (x
, 0))
6449 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
6450 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6452 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
6454 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new, 0,
6455 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
6456 0, in_code
== COMPARE
);
6458 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6459 else if ((GET_CODE (XEXP (x
, 0)) == XOR
6460 || GET_CODE (XEXP (x
, 0)) == IOR
)
6461 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
6462 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
6463 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6465 /* Apply the distributive law, and then try to make extractions. */
6466 new = gen_rtx_combine (GET_CODE (XEXP (x
, 0)), mode
,
6467 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
6469 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
6471 new = make_compound_operation (new, in_code
);
6474 /* If we are have (and (rotate X C) M) and C is larger than the number
6475 of bits in M, this is an extraction. */
6477 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
6478 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6479 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0
6480 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
6482 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6483 new = make_extraction (mode
, new,
6484 (GET_MODE_BITSIZE (mode
)
6485 - INTVAL (XEXP (XEXP (x
, 0), 1))),
6486 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6489 /* On machines without logical shifts, if the operand of the AND is
6490 a logical shift and our mask turns off all the propagated sign
6491 bits, we can replace the logical shift with an arithmetic shift. */
6492 else if (ashr_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
6493 && (lshr_optab
->handlers
[(int) mode
].insn_code
6494 == CODE_FOR_nothing
)
6495 && GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6496 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6497 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6498 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6499 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
6501 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
6503 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
6504 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
6506 gen_rtx_combine (ASHIFTRT
, mode
,
6507 make_compound_operation (XEXP (XEXP (x
, 0), 0),
6509 XEXP (XEXP (x
, 0), 1)));
6512 /* If the constant is one less than a power of two, this might be
6513 representable by an extraction even if no shift is present.
6514 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6515 we are in a COMPARE. */
6516 else if ((i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6517 new = make_extraction (mode
,
6518 make_compound_operation (XEXP (x
, 0),
6520 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6522 /* If we are in a comparison and this is an AND with a power of two,
6523 convert this into the appropriate bit extract. */
6524 else if (in_code
== COMPARE
6525 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
6526 new = make_extraction (mode
,
6527 make_compound_operation (XEXP (x
, 0),
6529 i
, NULL_RTX
, 1, 1, 0, 1);
6534 /* If the sign bit is known to be zero, replace this with an
6535 arithmetic shift. */
6536 if (ashr_optab
->handlers
[(int) mode
].insn_code
== CODE_FOR_nothing
6537 && lshr_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
6538 && mode_width
<= HOST_BITS_PER_WIDE_INT
6539 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
6541 new = gen_rtx_combine (ASHIFTRT
, mode
,
6542 make_compound_operation (XEXP (x
, 0),
6548 /* ... fall through ... */
6554 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6555 this is a SIGN_EXTRACT. */
6556 if (GET_CODE (rhs
) == CONST_INT
6557 && GET_CODE (lhs
) == ASHIFT
6558 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
6559 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1)))
6561 new = make_compound_operation (XEXP (lhs
, 0), next_code
);
6562 new = make_extraction (mode
, new,
6563 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
6564 NULL_RTX
, mode_width
- INTVAL (rhs
),
6565 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6569 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6570 If so, try to merge the shifts into a SIGN_EXTEND. We could
6571 also do this for some cases of SIGN_EXTRACT, but it doesn't
6572 seem worth the effort; the case checked for occurs on Alpha. */
6574 if (GET_RTX_CLASS (GET_CODE (lhs
)) != 'o'
6575 && ! (GET_CODE (lhs
) == SUBREG
6576 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs
))) == 'o'))
6577 && GET_CODE (rhs
) == CONST_INT
6578 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
6579 && (new = extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
6580 new = make_extraction (mode
, make_compound_operation (new, next_code
),
6581 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
6582 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6587 /* Call ourselves recursively on the inner expression. If we are
6588 narrowing the object and it has a different RTL code from
6589 what it originally did, do this SUBREG as a force_to_mode. */
6591 tem
= make_compound_operation (SUBREG_REG (x
), in_code
);
6592 if (GET_CODE (tem
) != GET_CODE (SUBREG_REG (x
))
6593 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (tem
))
6594 && subreg_lowpart_p (x
))
6596 rtx newer
= force_to_mode (tem
, mode
, ~(HOST_WIDE_INT
) 0,
6599 /* If we have something other than a SUBREG, we might have
6600 done an expansion, so rerun outselves. */
6601 if (GET_CODE (newer
) != SUBREG
)
6602 newer
= make_compound_operation (newer
, in_code
);
6607 /* If this is a paradoxical subreg, and the new code is a sign or
6608 zero extension, omit the subreg and widen the extension. If it
6609 is a regular subreg, we can still get rid of the subreg by not
6610 widening so much, or in fact removing the extension entirely. */
6611 if ((GET_CODE (tem
) == SIGN_EXTEND
6612 || GET_CODE (tem
) == ZERO_EXTEND
)
6613 && subreg_lowpart_p (x
))
6615 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (tem
))
6616 || (GET_MODE_SIZE (mode
) >
6617 GET_MODE_SIZE (GET_MODE (XEXP (tem
, 0)))))
6618 tem
= gen_rtx_combine (GET_CODE (tem
), mode
, XEXP (tem
, 0));
6620 tem
= gen_lowpart_for_combine (mode
, XEXP (tem
, 0));
6631 x
= gen_lowpart_for_combine (mode
, new);
6632 code
= GET_CODE (x
);
6635 /* Now recursively process each operand of this operation. */
6636 fmt
= GET_RTX_FORMAT (code
);
6637 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6640 new = make_compound_operation (XEXP (x
, i
), next_code
);
6641 SUBST (XEXP (x
, i
), new);
6647 /* Given M see if it is a value that would select a field of bits
6648 within an item, but not the entire word. Return -1 if not.
6649 Otherwise, return the starting position of the field, where 0 is the
6652 *PLEN is set to the length of the field. */
6655 get_pos_from_mask (m
, plen
)
6656 unsigned HOST_WIDE_INT m
;
6657 unsigned HOST_WIDE_INT
*plen
;
6659 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6660 int pos
= exact_log2 (m
& -m
);
6666 /* Now shift off the low-order zero bits and see if we have a power of
6668 len
= exact_log2 ((m
>> pos
) + 1);
6677 /* See if X can be simplified knowing that we will only refer to it in
6678 MODE and will only refer to those bits that are nonzero in MASK.
6679 If other bits are being computed or if masking operations are done
6680 that select a superset of the bits in MASK, they can sometimes be
6683 Return a possibly simplified expression, but always convert X to
6684 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6686 Also, if REG is non-zero and X is a register equal in value to REG,
6689 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6690 are all off in X. This is used when X will be complemented, by either
6691 NOT, NEG, or XOR. */
6694 force_to_mode (x
, mode
, mask
, reg
, just_select
)
6696 enum machine_mode mode
;
6697 unsigned HOST_WIDE_INT mask
;
6701 enum rtx_code code
= GET_CODE (x
);
6702 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
6703 enum machine_mode op_mode
;
6704 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
6707 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6708 code below will do the wrong thing since the mode of such an
6709 expression is VOIDmode.
6711 Also do nothing if X is a CLOBBER; this can happen if X was
6712 the return value from a call to gen_lowpart_for_combine. */
6713 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
6716 /* We want to perform the operation is its present mode unless we know
6717 that the operation is valid in MODE, in which case we do the operation
6719 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
6720 && code_to_optab
[(int) code
] != 0
6721 && (code_to_optab
[(int) code
]->handlers
[(int) mode
].insn_code
6722 != CODE_FOR_nothing
))
6723 ? mode
: GET_MODE (x
));
6725 /* It is not valid to do a right-shift in a narrower mode
6726 than the one it came in with. */
6727 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
6728 && GET_MODE_BITSIZE (mode
) < GET_MODE_BITSIZE (GET_MODE (x
)))
6729 op_mode
= GET_MODE (x
);
6731 /* Truncate MASK to fit OP_MODE. */
6733 mask
&= GET_MODE_MASK (op_mode
);
6735 /* When we have an arithmetic operation, or a shift whose count we
6736 do not know, we need to assume that all bit the up to the highest-order
6737 bit in MASK will be needed. This is how we form such a mask. */
6739 fuller_mask
= (GET_MODE_BITSIZE (op_mode
) >= HOST_BITS_PER_WIDE_INT
6740 ? GET_MODE_MASK (op_mode
)
6741 : (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
6744 fuller_mask
= ~(HOST_WIDE_INT
) 0;
6746 /* Determine what bits of X are guaranteed to be (non)zero. */
6747 nonzero
= nonzero_bits (x
, mode
);
6749 /* If none of the bits in X are needed, return a zero. */
6750 if (! just_select
&& (nonzero
& mask
) == 0)
6753 /* If X is a CONST_INT, return a new one. Do this here since the
6754 test below will fail. */
6755 if (GET_CODE (x
) == CONST_INT
)
6757 HOST_WIDE_INT cval
= INTVAL (x
) & mask
;
6758 int width
= GET_MODE_BITSIZE (mode
);
6760 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6761 number, sign extend it. */
6762 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6763 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6764 cval
|= (HOST_WIDE_INT
) -1 << width
;
6766 return GEN_INT (cval
);
6769 /* If X is narrower than MODE and we want all the bits in X's mode, just
6770 get X in the proper mode. */
6771 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
6772 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
6773 return gen_lowpart_for_combine (mode
, x
);
6775 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6776 MASK are already known to be zero in X, we need not do anything. */
6777 if (GET_MODE (x
) == mode
&& code
!= SUBREG
&& (~mask
& nonzero
) == 0)
6783 /* If X is a (clobber (const_int)), return it since we know we are
6784 generating something that won't match. */
6788 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6789 spanned the boundary of the MEM. If we are now masking so it is
6790 within that boundary, we don't need the USE any more. */
6791 if (! BITS_BIG_ENDIAN
6792 && (mask
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6793 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
6800 x
= expand_compound_operation (x
);
6801 if (GET_CODE (x
) != code
)
6802 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6806 if (reg
!= 0 && (rtx_equal_p (get_last_value (reg
), x
)
6807 || rtx_equal_p (reg
, get_last_value (x
))))
6812 if (subreg_lowpart_p (x
)
6813 /* We can ignore the effect of this SUBREG if it narrows the mode or
6814 if the constant masks to zero all the bits the mode doesn't
6816 && ((GET_MODE_SIZE (GET_MODE (x
))
6817 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
6819 & GET_MODE_MASK (GET_MODE (x
))
6820 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
6821 return force_to_mode (SUBREG_REG (x
), mode
, mask
, reg
, next_select
);
6825 /* If this is an AND with a constant, convert it into an AND
6826 whose constant is the AND of that constant with MASK. If it
6827 remains an AND of MASK, delete it since it is redundant. */
6829 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6831 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
6832 mask
& INTVAL (XEXP (x
, 1)));
6834 /* If X is still an AND, see if it is an AND with a mask that
6835 is just some low-order bits. If so, and it is MASK, we don't
6838 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6839 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) == mask
)
6842 /* If it remains an AND, try making another AND with the bits
6843 in the mode mask that aren't in MASK turned on. If the
6844 constant in the AND is wide enough, this might make a
6845 cheaper constant. */
6847 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6848 && GET_MODE_MASK (GET_MODE (x
)) != mask
6849 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
6851 HOST_WIDE_INT cval
= (INTVAL (XEXP (x
, 1))
6852 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
));
6853 int width
= GET_MODE_BITSIZE (GET_MODE (x
));
6856 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6857 number, sign extend it. */
6858 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6859 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6860 cval
|= (HOST_WIDE_INT
) -1 << width
;
6862 y
= gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0), GEN_INT (cval
));
6863 if (rtx_cost (y
, SET
) < rtx_cost (x
, SET
))
6873 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6874 low-order bits (as in an alignment operation) and FOO is already
6875 aligned to that boundary, mask C1 to that boundary as well.
6876 This may eliminate that PLUS and, later, the AND. */
6879 unsigned int width
= GET_MODE_BITSIZE (mode
);
6880 unsigned HOST_WIDE_INT smask
= mask
;
6882 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6883 number, sign extend it. */
6885 if (width
< HOST_BITS_PER_WIDE_INT
6886 && (smask
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6887 smask
|= (HOST_WIDE_INT
) -1 << width
;
6889 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6890 && exact_log2 (- smask
) >= 0)
6894 && (XEXP (x
, 0) == stack_pointer_rtx
6895 || XEXP (x
, 0) == frame_pointer_rtx
))
6897 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
6898 unsigned HOST_WIDE_INT sp_mask
= GET_MODE_MASK (mode
);
6900 sp_mask
&= ~(sp_alignment
- 1);
6901 if ((sp_mask
& ~smask
) == 0
6902 && ((INTVAL (XEXP (x
, 1)) - STACK_BIAS
) & ~smask
) != 0)
6903 return force_to_mode (plus_constant (XEXP (x
, 0),
6904 ((INTVAL (XEXP (x
, 1)) -
6905 STACK_BIAS
) & smask
)
6907 mode
, smask
, reg
, next_select
);
6910 if ((nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
6911 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
6912 return force_to_mode (plus_constant (XEXP (x
, 0),
6913 (INTVAL (XEXP (x
, 1))
6915 mode
, smask
, reg
, next_select
);
6919 /* ... fall through ... */
6922 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6923 most significant bit in MASK since carries from those bits will
6924 affect the bits we are interested in. */
6929 /* If X is (minus C Y) where C's least set bit is larger than any bit
6930 in the mask, then we may replace with (neg Y). */
6931 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
6932 && (((unsigned HOST_WIDE_INT
) (INTVAL (XEXP (x
, 0))
6933 & -INTVAL (XEXP (x
, 0))))
6936 x
= gen_unary (NEG
, GET_MODE (x
), GET_MODE (x
), XEXP (x
, 1));
6937 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6940 /* Similarly, if C contains every bit in the mask, then we may
6941 replace with (not Y). */
6942 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
6943 && ((INTVAL (XEXP (x
, 0)) | (HOST_WIDE_INT
) mask
)
6944 == INTVAL (XEXP (x
, 0))))
6946 x
= gen_unary (NOT
, GET_MODE (x
), GET_MODE (x
), XEXP (x
, 1));
6947 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6955 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6956 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6957 operation which may be a bitfield extraction. Ensure that the
6958 constant we form is not wider than the mode of X. */
6960 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6961 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6962 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6963 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6964 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6965 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
6966 + floor_log2 (INTVAL (XEXP (x
, 1))))
6967 < GET_MODE_BITSIZE (GET_MODE (x
)))
6968 && (INTVAL (XEXP (x
, 1))
6969 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
6971 temp
= GEN_INT ((INTVAL (XEXP (x
, 1)) & mask
)
6972 << INTVAL (XEXP (XEXP (x
, 0), 1)));
6973 temp
= gen_binary (GET_CODE (x
), GET_MODE (x
),
6974 XEXP (XEXP (x
, 0), 0), temp
);
6975 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
6976 XEXP (XEXP (x
, 0), 1));
6977 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6981 /* For most binary operations, just propagate into the operation and
6982 change the mode if we have an operation of that mode. */
6984 op0
= gen_lowpart_for_combine (op_mode
,
6985 force_to_mode (XEXP (x
, 0), mode
, mask
,
6987 op1
= gen_lowpart_for_combine (op_mode
,
6988 force_to_mode (XEXP (x
, 1), mode
, mask
,
6991 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6992 MASK since OP1 might have been sign-extended but we never want
6993 to turn on extra bits, since combine might have previously relied
6994 on them being off. */
6995 if (GET_CODE (op1
) == CONST_INT
&& (code
== IOR
|| code
== XOR
)
6996 && (INTVAL (op1
) & mask
) != 0)
6997 op1
= GEN_INT (INTVAL (op1
) & mask
);
6999 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7000 x
= gen_binary (code
, op_mode
, op0
, op1
);
7004 /* For left shifts, do the same, but just for the first operand.
7005 However, we cannot do anything with shifts where we cannot
7006 guarantee that the counts are smaller than the size of the mode
7007 because such a count will have a different meaning in a
7010 if (! (GET_CODE (XEXP (x
, 1)) == CONST_INT
7011 && INTVAL (XEXP (x
, 1)) >= 0
7012 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (mode
))
7013 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
7014 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
7015 < (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
))))
7018 /* If the shift count is a constant and we can do arithmetic in
7019 the mode of the shift, refine which bits we need. Otherwise, use the
7020 conservative form of the mask. */
7021 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7022 && INTVAL (XEXP (x
, 1)) >= 0
7023 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (op_mode
)
7024 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7025 mask
>>= INTVAL (XEXP (x
, 1));
7029 op0
= gen_lowpart_for_combine (op_mode
,
7030 force_to_mode (XEXP (x
, 0), op_mode
,
7031 mask
, reg
, next_select
));
7033 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7034 x
= gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
7038 /* Here we can only do something if the shift count is a constant,
7039 this shift constant is valid for the host, and we can do arithmetic
7042 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7043 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7044 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7046 rtx inner
= XEXP (x
, 0);
7047 unsigned HOST_WIDE_INT inner_mask
;
7049 /* Select the mask of the bits we need for the shift operand. */
7050 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
7052 /* We can only change the mode of the shift if we can do arithmetic
7053 in the mode of the shift and INNER_MASK is no wider than the
7054 width of OP_MODE. */
7055 if (GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
7056 || (inner_mask
& ~GET_MODE_MASK (op_mode
)) != 0)
7057 op_mode
= GET_MODE (x
);
7059 inner
= force_to_mode (inner
, op_mode
, inner_mask
, reg
, next_select
);
7061 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
7062 x
= gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
7065 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7066 shift and AND produces only copies of the sign bit (C2 is one less
7067 than a power of two), we can do this with just a shift. */
7069 if (GET_CODE (x
) == LSHIFTRT
7070 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7071 /* The shift puts one of the sign bit copies in the least significant
7073 && ((INTVAL (XEXP (x
, 1))
7074 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
7075 >= GET_MODE_BITSIZE (GET_MODE (x
)))
7076 && exact_log2 (mask
+ 1) >= 0
7077 /* Number of bits left after the shift must be more than the mask
7079 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
7080 <= GET_MODE_BITSIZE (GET_MODE (x
)))
7081 /* Must be more sign bit copies than the mask needs. */
7082 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
7083 >= exact_log2 (mask
+ 1)))
7084 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7085 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x
))
7086 - exact_log2 (mask
+ 1)));
7091 /* If we are just looking for the sign bit, we don't need this shift at
7092 all, even if it has a variable count. */
7093 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
7094 && (mask
== ((unsigned HOST_WIDE_INT
) 1
7095 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
7096 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
7098 /* If this is a shift by a constant, get a mask that contains those bits
7099 that are not copies of the sign bit. We then have two cases: If
7100 MASK only includes those bits, this can be a logical shift, which may
7101 allow simplifications. If MASK is a single-bit field not within
7102 those bits, we are requesting a copy of the sign bit and hence can
7103 shift the sign bit to the appropriate location. */
7105 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0
7106 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
7110 /* If the considered data is wider then HOST_WIDE_INT, we can't
7111 represent a mask for all its bits in a single scalar.
7112 But we only care about the lower bits, so calculate these. */
7114 if (GET_MODE_BITSIZE (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
7116 nonzero
= ~(HOST_WIDE_INT
) 0;
7118 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7119 is the number of bits a full-width mask would have set.
7120 We need only shift if these are fewer than nonzero can
7121 hold. If not, we must keep all bits set in nonzero. */
7123 if (GET_MODE_BITSIZE (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
7124 < HOST_BITS_PER_WIDE_INT
)
7125 nonzero
>>= INTVAL (XEXP (x
, 1))
7126 + HOST_BITS_PER_WIDE_INT
7127 - GET_MODE_BITSIZE (GET_MODE (x
)) ;
7131 nonzero
= GET_MODE_MASK (GET_MODE (x
));
7132 nonzero
>>= INTVAL (XEXP (x
, 1));
7135 if ((mask
& ~nonzero
) == 0
7136 || (i
= exact_log2 (mask
)) >= 0)
7138 x
= simplify_shift_const
7139 (x
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7140 i
< 0 ? INTVAL (XEXP (x
, 1))
7141 : GET_MODE_BITSIZE (GET_MODE (x
)) - 1 - i
);
7143 if (GET_CODE (x
) != ASHIFTRT
)
7144 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7148 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7149 even if the shift count isn't a constant. */
7151 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1));
7155 /* If this is a zero- or sign-extension operation that just affects bits
7156 we don't care about, remove it. Be sure the call above returned
7157 something that is still a shift. */
7159 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
7160 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7161 && INTVAL (XEXP (x
, 1)) >= 0
7162 && (INTVAL (XEXP (x
, 1))
7163 <= GET_MODE_BITSIZE (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
7164 && GET_CODE (XEXP (x
, 0)) == ASHIFT
7165 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7166 && INTVAL (XEXP (XEXP (x
, 0), 1)) == INTVAL (XEXP (x
, 1)))
7167 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
7174 /* If the shift count is constant and we can do computations
7175 in the mode of X, compute where the bits we care about are.
7176 Otherwise, we can't do anything. Don't change the mode of
7177 the shift or propagate MODE into the shift, though. */
7178 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7179 && INTVAL (XEXP (x
, 1)) >= 0)
7181 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
7182 GET_MODE (x
), GEN_INT (mask
),
7184 if (temp
&& GET_CODE(temp
) == CONST_INT
)
7186 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
7187 INTVAL (temp
), reg
, next_select
));
7192 /* If we just want the low-order bit, the NEG isn't needed since it
7193 won't change the low-order bit. */
7195 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, just_select
);
7197 /* We need any bits less significant than the most significant bit in
7198 MASK since carries from those bits will affect the bits we are
7204 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7205 same as the XOR case above. Ensure that the constant we form is not
7206 wider than the mode of X. */
7208 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7209 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7210 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7211 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
7212 < GET_MODE_BITSIZE (GET_MODE (x
)))
7213 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
7215 temp
= GEN_INT (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)));
7216 temp
= gen_binary (XOR
, GET_MODE (x
), XEXP (XEXP (x
, 0), 0), temp
);
7217 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
, XEXP (XEXP (x
, 0), 1));
7219 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7222 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7223 use the full mask inside the NOT. */
7227 op0
= gen_lowpart_for_combine (op_mode
,
7228 force_to_mode (XEXP (x
, 0), mode
, mask
,
7230 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7231 x
= gen_unary (code
, op_mode
, op_mode
, op0
);
7235 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7236 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7237 which is equal to STORE_FLAG_VALUE. */
7238 if ((mask
& ~STORE_FLAG_VALUE
) == 0 && XEXP (x
, 1) == const0_rtx
7239 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
7240 && nonzero_bits (XEXP (x
, 0), mode
) == STORE_FLAG_VALUE
)
7241 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
7246 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7247 written in a narrower mode. We play it safe and do not do so. */
7250 gen_lowpart_for_combine (GET_MODE (x
),
7251 force_to_mode (XEXP (x
, 1), mode
,
7252 mask
, reg
, next_select
)));
7254 gen_lowpart_for_combine (GET_MODE (x
),
7255 force_to_mode (XEXP (x
, 2), mode
,
7256 mask
, reg
,next_select
)));
7263 /* Ensure we return a value of the proper mode. */
7264 return gen_lowpart_for_combine (mode
, x
);
7267 /* Return nonzero if X is an expression that has one of two values depending on
7268 whether some other value is zero or nonzero. In that case, we return the
7269 value that is being tested, *PTRUE is set to the value if the rtx being
7270 returned has a nonzero value, and *PFALSE is set to the other alternative.
7272 If we return zero, we set *PTRUE and *PFALSE to X. */
7275 if_then_else_cond (x
, ptrue
, pfalse
)
7277 rtx
*ptrue
, *pfalse
;
7279 enum machine_mode mode
= GET_MODE (x
);
7280 enum rtx_code code
= GET_CODE (x
);
7281 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
7282 unsigned HOST_WIDE_INT nz
;
7284 /* If we are comparing a value against zero, we are done. */
7285 if ((code
== NE
|| code
== EQ
)
7286 && GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) == 0)
7288 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
7289 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
7293 /* If this is a unary operation whose operand has one of two values, apply
7294 our opcode to compute those values. */
7295 else if (GET_RTX_CLASS (code
) == '1'
7296 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
7298 *ptrue
= gen_unary (code
, mode
, GET_MODE (XEXP (x
, 0)), true0
);
7299 *pfalse
= gen_unary (code
, mode
, GET_MODE (XEXP (x
, 0)), false0
);
7303 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7304 make can't possibly match and would suppress other optimizations. */
7305 else if (code
== COMPARE
)
7308 /* If this is a binary operation, see if either side has only one of two
7309 values. If either one does or if both do and they are conditional on
7310 the same value, compute the new true and false values. */
7311 else if (GET_RTX_CLASS (code
) == 'c' || GET_RTX_CLASS (code
) == '2'
7312 || GET_RTX_CLASS (code
) == '<')
7314 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
7315 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
7317 if ((cond0
!= 0 || cond1
!= 0)
7318 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
7320 /* If if_then_else_cond returned zero, then true/false are the
7321 same rtl. We must copy one of them to prevent invalid rtl
7324 true0
= copy_rtx (true0
);
7325 else if (cond1
== 0)
7326 true1
= copy_rtx (true1
);
7328 *ptrue
= gen_binary (code
, mode
, true0
, true1
);
7329 *pfalse
= gen_binary (code
, mode
, false0
, false1
);
7330 return cond0
? cond0
: cond1
;
7333 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7334 operands is zero when the other is non-zero, and vice-versa,
7335 and STORE_FLAG_VALUE is 1 or -1. */
7337 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7338 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
7340 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7342 rtx op0
= XEXP (XEXP (x
, 0), 1);
7343 rtx op1
= XEXP (XEXP (x
, 1), 1);
7345 cond0
= XEXP (XEXP (x
, 0), 0);
7346 cond1
= XEXP (XEXP (x
, 1), 0);
7348 if (GET_RTX_CLASS (GET_CODE (cond0
)) == '<'
7349 && GET_RTX_CLASS (GET_CODE (cond1
)) == '<'
7350 && ((GET_CODE (cond0
) == combine_reversed_comparison_code (cond1
)
7351 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7352 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7353 || ((swap_condition (GET_CODE (cond0
))
7354 == combine_reversed_comparison_code (cond1
))
7355 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7356 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7357 && ! side_effects_p (x
))
7359 *ptrue
= gen_binary (MULT
, mode
, op0
, const_true_rtx
);
7360 *pfalse
= gen_binary (MULT
, mode
,
7362 ? gen_unary (NEG
, mode
, mode
, op1
) : op1
),
7368 /* Similarly for MULT, AND and UMIN, execpt that for these the result
7370 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7371 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
7372 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7374 cond0
= XEXP (XEXP (x
, 0), 0);
7375 cond1
= XEXP (XEXP (x
, 1), 0);
7377 if (GET_RTX_CLASS (GET_CODE (cond0
)) == '<'
7378 && GET_RTX_CLASS (GET_CODE (cond1
)) == '<'
7379 && ((GET_CODE (cond0
) == combine_reversed_comparison_code (cond1
)
7380 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7381 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7382 || ((swap_condition (GET_CODE (cond0
))
7383 == combine_reversed_comparison_code (cond1
))
7384 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7385 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7386 && ! side_effects_p (x
))
7388 *ptrue
= *pfalse
= const0_rtx
;
7394 else if (code
== IF_THEN_ELSE
)
7396 /* If we have IF_THEN_ELSE already, extract the condition and
7397 canonicalize it if it is NE or EQ. */
7398 cond0
= XEXP (x
, 0);
7399 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
7400 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
7401 return XEXP (cond0
, 0);
7402 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
7404 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
7405 return XEXP (cond0
, 0);
7411 /* If X is a normal SUBREG with both inner and outer modes integral,
7412 we can narrow both the true and false values of the inner expression,
7413 if there is a condition. */
7414 else if (code
== SUBREG
&& GET_MODE_CLASS (mode
) == MODE_INT
7415 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_INT
7416 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
7417 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
7420 if ((GET_CODE (SUBREG_REG (x
)) == REG
7421 || GET_CODE (SUBREG_REG (x
)) == MEM
7422 || CONSTANT_P (SUBREG_REG (x
)))
7423 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
7424 && (WORDS_BIG_ENDIAN
|| SUBREG_WORD (x
) != 0))
7426 true0
= operand_subword (true0
, SUBREG_WORD (x
), 0, mode
);
7427 false0
= operand_subword (false0
, SUBREG_WORD (x
), 0, mode
);
7429 *ptrue
= force_to_mode (true0
, mode
, ~(HOST_WIDE_INT
) 0, NULL_RTX
, 0);
7431 = force_to_mode (false0
, mode
, ~(HOST_WIDE_INT
) 0, NULL_RTX
, 0);
7436 /* If X is a constant, this isn't special and will cause confusions
7437 if we treat it as such. Likewise if it is equivalent to a constant. */
7438 else if (CONSTANT_P (x
)
7439 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
7442 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7443 will be least confusing to the rest of the compiler. */
7444 else if (mode
== BImode
)
7446 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
7450 /* If X is known to be either 0 or -1, those are the true and
7451 false values when testing X. */
7452 else if (x
== constm1_rtx
|| x
== const0_rtx
7453 || (mode
!= VOIDmode
7454 && num_sign_bit_copies (x
, mode
) == GET_MODE_BITSIZE (mode
)))
7456 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
7460 /* Likewise for 0 or a single bit. */
7461 else if (mode
!= VOIDmode
7462 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7463 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
7465 *ptrue
= GEN_INT (nz
), *pfalse
= const0_rtx
;
7469 /* Otherwise fail; show no condition with true and false values the same. */
7470 *ptrue
= *pfalse
= x
;
7474 /* Return the value of expression X given the fact that condition COND
7475 is known to be true when applied to REG as its first operand and VAL
7476 as its second. X is known to not be shared and so can be modified in
7479 We only handle the simplest cases, and specifically those cases that
7480 arise with IF_THEN_ELSE expressions. */
7483 known_cond (x
, cond
, reg
, val
)
7488 enum rtx_code code
= GET_CODE (x
);
7493 if (side_effects_p (x
))
7496 if (cond
== EQ
&& rtx_equal_p (x
, reg
) && !FLOAT_MODE_P (cond
))
7498 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
7501 /* If X is (abs REG) and we know something about REG's relationship
7502 with zero, we may be able to simplify this. */
7504 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
7507 case GE
: case GT
: case EQ
:
7510 return gen_unary (NEG
, GET_MODE (XEXP (x
, 0)), GET_MODE (XEXP (x
, 0)),
7516 /* The only other cases we handle are MIN, MAX, and comparisons if the
7517 operands are the same as REG and VAL. */
7519 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == 'c')
7521 if (rtx_equal_p (XEXP (x
, 0), val
))
7522 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
7524 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
7526 if (GET_RTX_CLASS (code
) == '<')
7528 if (comparison_dominates_p (cond
, code
))
7529 return const_true_rtx
;
7531 code
= combine_reversed_comparison_code (x
);
7533 && comparison_dominates_p (cond
, code
))
7538 else if (code
== SMAX
|| code
== SMIN
7539 || code
== UMIN
|| code
== UMAX
)
7541 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
7543 if (code
== SMAX
|| code
== UMAX
)
7544 cond
= reverse_condition (cond
);
7549 return unsignedp
? x
: XEXP (x
, 1);
7551 return unsignedp
? x
: XEXP (x
, 0);
7553 return unsignedp
? XEXP (x
, 1) : x
;
7555 return unsignedp
? XEXP (x
, 0) : x
;
7563 fmt
= GET_RTX_FORMAT (code
);
7564 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7567 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
7568 else if (fmt
[i
] == 'E')
7569 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7570 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
7577 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7578 assignment as a field assignment. */
7581 rtx_equal_for_field_assignment_p (x
, y
)
7585 if (x
== y
|| rtx_equal_p (x
, y
))
7588 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
7591 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7592 Note that all SUBREGs of MEM are paradoxical; otherwise they
7593 would have been rewritten. */
7594 if (GET_CODE (x
) == MEM
&& GET_CODE (y
) == SUBREG
7595 && GET_CODE (SUBREG_REG (y
)) == MEM
7596 && rtx_equal_p (SUBREG_REG (y
),
7597 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y
)), x
)))
7600 if (GET_CODE (y
) == MEM
&& GET_CODE (x
) == SUBREG
7601 && GET_CODE (SUBREG_REG (x
)) == MEM
7602 && rtx_equal_p (SUBREG_REG (x
),
7603 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x
)), y
)))
7606 /* We used to see if get_last_value of X and Y were the same but that's
7607 not correct. In one direction, we'll cause the assignment to have
7608 the wrong destination and in the case, we'll import a register into this
7609 insn that might have already have been dead. So fail if none of the
7610 above cases are true. */
7614 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7615 Return that assignment if so.
7617 We only handle the most common cases. */
7620 make_field_assignment (x
)
7623 rtx dest
= SET_DEST (x
);
7624 rtx src
= SET_SRC (x
);
7629 unsigned HOST_WIDE_INT len
;
7631 enum machine_mode mode
;
7633 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7634 a clear of a one-bit field. We will have changed it to
7635 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7638 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
7639 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == CONST_INT
7640 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
7641 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7643 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7646 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7650 else if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
7651 && subreg_lowpart_p (XEXP (src
, 0))
7652 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
7653 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
7654 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
7655 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
7656 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7658 assign
= make_extraction (VOIDmode
, dest
, 0,
7659 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
7662 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7666 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7668 else if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
7669 && XEXP (XEXP (src
, 0), 0) == const1_rtx
7670 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7672 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7675 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
7679 /* The other case we handle is assignments into a constant-position
7680 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7681 a mask that has all one bits except for a group of zero bits and
7682 OTHER is known to have zeros where C1 has ones, this is such an
7683 assignment. Compute the position and length from C1. Shift OTHER
7684 to the appropriate position, force it to the required mode, and
7685 make the extraction. Check for the AND in both operands. */
7687 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
7690 rhs
= expand_compound_operation (XEXP (src
, 0));
7691 lhs
= expand_compound_operation (XEXP (src
, 1));
7693 if (GET_CODE (rhs
) == AND
7694 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
7695 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
7696 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
7697 else if (GET_CODE (lhs
) == AND
7698 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
7699 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
7700 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
7704 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
7705 if (pos
< 0 || pos
+ len
> GET_MODE_BITSIZE (GET_MODE (dest
))
7706 || GET_MODE_BITSIZE (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
7707 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
7710 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
7714 /* The mode to use for the source is the mode of the assignment, or of
7715 what is inside a possible STRICT_LOW_PART. */
7716 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
7717 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
7719 /* Shift OTHER right POS places and make it the source, restricting it
7720 to the proper length and mode. */
7722 src
= force_to_mode (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7723 GET_MODE (src
), other
, pos
),
7725 GET_MODE_BITSIZE (mode
) >= HOST_BITS_PER_WIDE_INT
7726 ? ~(unsigned HOST_WIDE_INT
) 0
7727 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7730 return gen_rtx_combine (SET
, VOIDmode
, assign
, src
);
7733 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7737 apply_distributive_law (x
)
7740 enum rtx_code code
= GET_CODE (x
);
7741 rtx lhs
, rhs
, other
;
7743 enum rtx_code inner_code
;
7745 /* Distributivity is not true for floating point.
7746 It can change the value. So don't do it.
7747 -- rms and moshier@world.std.com. */
7748 if (FLOAT_MODE_P (GET_MODE (x
)))
7751 /* The outer operation can only be one of the following: */
7752 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
7753 && code
!= PLUS
&& code
!= MINUS
)
7756 lhs
= XEXP (x
, 0), rhs
= XEXP (x
, 1);
7758 /* If either operand is a primitive we can't do anything, so get out
7760 if (GET_RTX_CLASS (GET_CODE (lhs
)) == 'o'
7761 || GET_RTX_CLASS (GET_CODE (rhs
)) == 'o')
7764 lhs
= expand_compound_operation (lhs
);
7765 rhs
= expand_compound_operation (rhs
);
7766 inner_code
= GET_CODE (lhs
);
7767 if (inner_code
!= GET_CODE (rhs
))
7770 /* See if the inner and outer operations distribute. */
7777 /* These all distribute except over PLUS. */
7778 if (code
== PLUS
|| code
== MINUS
)
7783 if (code
!= PLUS
&& code
!= MINUS
)
7788 /* This is also a multiply, so it distributes over everything. */
7792 /* Non-paradoxical SUBREGs distributes over all operations, provided
7793 the inner modes and word numbers are the same, this is an extraction
7794 of a low-order part, we don't convert an fp operation to int or
7795 vice versa, and we would not be converting a single-word
7796 operation into a multi-word operation. The latter test is not
7797 required, but it prevents generating unneeded multi-word operations.
7798 Some of the previous tests are redundant given the latter test, but
7799 are retained because they are required for correctness.
7801 We produce the result slightly differently in this case. */
7803 if (GET_MODE (SUBREG_REG (lhs
)) != GET_MODE (SUBREG_REG (rhs
))
7804 || SUBREG_WORD (lhs
) != SUBREG_WORD (rhs
)
7805 || ! subreg_lowpart_p (lhs
)
7806 || (GET_MODE_CLASS (GET_MODE (lhs
))
7807 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs
))))
7808 || (GET_MODE_SIZE (GET_MODE (lhs
))
7809 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))))
7810 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))) > UNITS_PER_WORD
)
7813 tem
= gen_binary (code
, GET_MODE (SUBREG_REG (lhs
)),
7814 SUBREG_REG (lhs
), SUBREG_REG (rhs
));
7815 return gen_lowpart_for_combine (GET_MODE (x
), tem
);
7821 /* Set LHS and RHS to the inner operands (A and B in the example
7822 above) and set OTHER to the common operand (C in the example).
7823 These is only one way to do this unless the inner operation is
7825 if (GET_RTX_CLASS (inner_code
) == 'c'
7826 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
7827 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
7828 else if (GET_RTX_CLASS (inner_code
) == 'c'
7829 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
7830 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
7831 else if (GET_RTX_CLASS (inner_code
) == 'c'
7832 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
7833 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
7834 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
7835 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
7839 /* Form the new inner operation, seeing if it simplifies first. */
7840 tem
= gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
7842 /* There is one exception to the general way of distributing:
7843 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7844 if (code
== XOR
&& inner_code
== IOR
)
7847 other
= gen_unary (NOT
, GET_MODE (x
), GET_MODE (x
), other
);
7850 /* We may be able to continuing distributing the result, so call
7851 ourselves recursively on the inner operation before forming the
7852 outer operation, which we return. */
7853 return gen_binary (inner_code
, GET_MODE (x
),
7854 apply_distributive_law (tem
), other
);
7857 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7860 Return an equivalent form, if different from X. Otherwise, return X. If
7861 X is zero, we are to always construct the equivalent form. */
7864 simplify_and_const_int (x
, mode
, varop
, constop
)
7866 enum machine_mode mode
;
7868 unsigned HOST_WIDE_INT constop
;
7870 unsigned HOST_WIDE_INT nonzero
;
7873 /* Simplify VAROP knowing that we will be only looking at some of the
7875 varop
= force_to_mode (varop
, mode
, constop
, NULL_RTX
, 0);
7877 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7878 CONST_INT, we are done. */
7879 if (GET_CODE (varop
) == CLOBBER
|| GET_CODE (varop
) == CONST_INT
)
7882 /* See what bits may be nonzero in VAROP. Unlike the general case of
7883 a call to nonzero_bits, here we don't care about bits outside
7886 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
7887 nonzero
= trunc_int_for_mode (nonzero
, mode
);
7889 /* Turn off all bits in the constant that are known to already be zero.
7890 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7891 which is tested below. */
7895 /* If we don't have any bits left, return zero. */
7899 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7900 a power of two, we can replace this with a ASHIFT. */
7901 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
7902 && (i
= exact_log2 (constop
)) >= 0)
7903 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
7905 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7906 or XOR, then try to apply the distributive law. This may eliminate
7907 operations if either branch can be simplified because of the AND.
7908 It may also make some cases more complex, but those cases probably
7909 won't match a pattern either with or without this. */
7911 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
7913 gen_lowpart_for_combine
7915 apply_distributive_law
7916 (gen_binary (GET_CODE (varop
), GET_MODE (varop
),
7917 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
7918 XEXP (varop
, 0), constop
),
7919 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
7920 XEXP (varop
, 1), constop
))));
7922 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7923 if we already had one (just check for the simplest cases). */
7924 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
7925 && GET_MODE (XEXP (x
, 0)) == mode
7926 && SUBREG_REG (XEXP (x
, 0)) == varop
)
7927 varop
= XEXP (x
, 0);
7929 varop
= gen_lowpart_for_combine (mode
, varop
);
7931 /* If we can't make the SUBREG, try to return what we were given. */
7932 if (GET_CODE (varop
) == CLOBBER
)
7933 return x
? x
: varop
;
7935 /* If we are only masking insignificant bits, return VAROP. */
7936 if (constop
== nonzero
)
7939 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7940 else if (x
== 0 || GET_CODE (x
) != AND
|| GET_MODE (x
) != mode
)
7941 x
= gen_binary (AND
, mode
, varop
, GEN_INT (constop
));
7945 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
7946 || (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) != constop
)
7947 SUBST (XEXP (x
, 1), GEN_INT (constop
));
7949 SUBST (XEXP (x
, 0), varop
);
7955 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7956 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7957 is less useful. We can't allow both, because that results in exponential
7958 run time recursion. There is a nullstone testcase that triggered
7959 this. This macro avoids accidental uses of num_sign_bit_copies. */
7960 #define num_sign_bit_copies()
7962 /* Given an expression, X, compute which bits in X can be non-zero.
7963 We don't care about bits outside of those defined in MODE.
7965 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7966 a shift, AND, or zero_extract, we can do better. */
7968 static unsigned HOST_WIDE_INT
7969 nonzero_bits (x
, mode
)
7971 enum machine_mode mode
;
7973 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
7974 unsigned HOST_WIDE_INT inner_nz
;
7976 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
7979 /* For floating-point values, assume all bits are needed. */
7980 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
))
7983 /* If X is wider than MODE, use its mode instead. */
7984 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
7986 mode
= GET_MODE (x
);
7987 nonzero
= GET_MODE_MASK (mode
);
7988 mode_width
= GET_MODE_BITSIZE (mode
);
7991 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
7992 /* Our only callers in this case look for single bit values. So
7993 just return the mode mask. Those tests will then be false. */
7996 #ifndef WORD_REGISTER_OPERATIONS
7997 /* If MODE is wider than X, but both are a single word for both the host
7998 and target machines, we can compute this from which bits of the
7999 object might be nonzero in its own mode, taking into account the fact
8000 that on many CISC machines, accessing an object in a wider mode
8001 causes the high-order bits to become undefined. So they are
8002 not known to be zero. */
8004 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
8005 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
8006 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
8007 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
8009 nonzero
&= nonzero_bits (x
, GET_MODE (x
));
8010 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
8015 code
= GET_CODE (x
);
8019 #ifdef POINTERS_EXTEND_UNSIGNED
8020 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8021 all the bits above ptr_mode are known to be zero. */
8022 if (POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
8024 nonzero
&= GET_MODE_MASK (ptr_mode
);
8027 #ifdef STACK_BOUNDARY
8028 /* If this is the stack pointer, we may know something about its
8029 alignment. If PUSH_ROUNDING is defined, it is possible for the
8030 stack to be momentarily aligned only to that amount, so we pick
8031 the least alignment. */
8033 /* We can't check for arg_pointer_rtx here, because it is not
8034 guaranteed to have as much alignment as the stack pointer.
8035 In particular, in the Irix6 n64 ABI, the stack has 128 bit
8036 alignment but the argument pointer has only 64 bit alignment. */
8038 if ((x
== frame_pointer_rtx
8039 || x
== stack_pointer_rtx
8040 || x
== hard_frame_pointer_rtx
8041 || (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
8042 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
))
8048 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
8050 #ifdef PUSH_ROUNDING
8051 if (REGNO (x
) == STACK_POINTER_REGNUM
&& PUSH_ARGS
)
8052 sp_alignment
= MIN (PUSH_ROUNDING (1), sp_alignment
);
8055 /* We must return here, otherwise we may get a worse result from
8056 one of the choices below. There is nothing useful below as
8057 far as the stack pointer is concerned. */
8058 return nonzero
&= ~(sp_alignment
- 1);
8062 /* If X is a register whose nonzero bits value is current, use it.
8063 Otherwise, if X is a register whose value we can find, use that
8064 value. Otherwise, use the previously-computed global nonzero bits
8065 for this register. */
8067 if (reg_last_set_value
[REGNO (x
)] != 0
8068 && reg_last_set_mode
[REGNO (x
)] == mode
8069 && (reg_last_set_label
[REGNO (x
)] == label_tick
8070 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8071 && REG_N_SETS (REGNO (x
)) == 1
8072 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
,
8074 && INSN_CUID (reg_last_set
[REGNO (x
)]) < subst_low_cuid
)
8075 return reg_last_set_nonzero_bits
[REGNO (x
)];
8077 tem
= get_last_value (x
);
8081 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8082 /* If X is narrower than MODE and TEM is a non-negative
8083 constant that would appear negative in the mode of X,
8084 sign-extend it for use in reg_nonzero_bits because some
8085 machines (maybe most) will actually do the sign-extension
8086 and this is the conservative approach.
8088 ??? For 2.5, try to tighten up the MD files in this regard
8089 instead of this kludge. */
8091 if (GET_MODE_BITSIZE (GET_MODE (x
)) < mode_width
8092 && GET_CODE (tem
) == CONST_INT
8094 && 0 != (INTVAL (tem
)
8095 & ((HOST_WIDE_INT
) 1
8096 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
8097 tem
= GEN_INT (INTVAL (tem
)
8098 | ((HOST_WIDE_INT
) (-1)
8099 << GET_MODE_BITSIZE (GET_MODE (x
))));
8101 return nonzero_bits (tem
, mode
);
8103 else if (nonzero_sign_valid
&& reg_nonzero_bits
[REGNO (x
)])
8104 return reg_nonzero_bits
[REGNO (x
)] & nonzero
;
8109 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8110 /* If X is negative in MODE, sign-extend the value. */
8111 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
8112 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
8113 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
8119 #ifdef LOAD_EXTEND_OP
8120 /* In many, if not most, RISC machines, reading a byte from memory
8121 zeros the rest of the register. Noticing that fact saves a lot
8122 of extra zero-extends. */
8123 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
8124 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
8129 case UNEQ
: case LTGT
:
8130 case GT
: case GTU
: case UNGT
:
8131 case LT
: case LTU
: case UNLT
:
8132 case GE
: case GEU
: case UNGE
:
8133 case LE
: case LEU
: case UNLE
:
8134 case UNORDERED
: case ORDERED
:
8136 /* If this produces an integer result, we know which bits are set.
8137 Code here used to clear bits outside the mode of X, but that is
8140 if (GET_MODE_CLASS (mode
) == MODE_INT
8141 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8142 nonzero
= STORE_FLAG_VALUE
;
8147 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8148 and num_sign_bit_copies. */
8149 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
8150 == GET_MODE_BITSIZE (GET_MODE (x
)))
8154 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
8155 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
8160 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8161 and num_sign_bit_copies. */
8162 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
8163 == GET_MODE_BITSIZE (GET_MODE (x
)))
8169 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
) & GET_MODE_MASK (mode
));
8173 nonzero
&= nonzero_bits (XEXP (x
, 0), mode
);
8174 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
8175 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
8179 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8180 Otherwise, show all the bits in the outer mode but not the inner
8182 inner_nz
= nonzero_bits (XEXP (x
, 0), mode
);
8183 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
8185 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
8187 & (((HOST_WIDE_INT
) 1
8188 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
8189 inner_nz
|= (GET_MODE_MASK (mode
)
8190 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
8193 nonzero
&= inner_nz
;
8197 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
)
8198 & nonzero_bits (XEXP (x
, 1), mode
));
8202 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
8203 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
)
8204 | nonzero_bits (XEXP (x
, 1), mode
));
8207 case PLUS
: case MINUS
:
8209 case DIV
: case UDIV
:
8210 case MOD
: case UMOD
:
8211 /* We can apply the rules of arithmetic to compute the number of
8212 high- and low-order zero bits of these operations. We start by
8213 computing the width (position of the highest-order non-zero bit)
8214 and the number of low-order zero bits for each value. */
8216 unsigned HOST_WIDE_INT nz0
= nonzero_bits (XEXP (x
, 0), mode
);
8217 unsigned HOST_WIDE_INT nz1
= nonzero_bits (XEXP (x
, 1), mode
);
8218 int width0
= floor_log2 (nz0
) + 1;
8219 int width1
= floor_log2 (nz1
) + 1;
8220 int low0
= floor_log2 (nz0
& -nz0
);
8221 int low1
= floor_log2 (nz1
& -nz1
);
8222 HOST_WIDE_INT op0_maybe_minusp
8223 = (nz0
& ((HOST_WIDE_INT
) 1 << (mode_width
- 1)));
8224 HOST_WIDE_INT op1_maybe_minusp
8225 = (nz1
& ((HOST_WIDE_INT
) 1 << (mode_width
- 1)));
8226 unsigned int result_width
= mode_width
;
8234 && (XEXP (x
, 0) == stack_pointer_rtx
8235 || XEXP (x
, 0) == frame_pointer_rtx
)
8236 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
8238 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
8240 nz0
= (GET_MODE_MASK (mode
) & ~(sp_alignment
- 1));
8241 nz1
= INTVAL (XEXP (x
, 1)) - STACK_BIAS
;
8242 width0
= floor_log2 (nz0
) + 1;
8243 width1
= floor_log2 (nz1
) + 1;
8244 low0
= floor_log2 (nz0
& -nz0
);
8245 low1
= floor_log2 (nz1
& -nz1
);
8248 result_width
= MAX (width0
, width1
) + 1;
8249 result_low
= MIN (low0
, low1
);
8252 result_low
= MIN (low0
, low1
);
8255 result_width
= width0
+ width1
;
8256 result_low
= low0
+ low1
;
8259 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
8260 result_width
= width0
;
8263 result_width
= width0
;
8266 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
8267 result_width
= MIN (width0
, width1
);
8268 result_low
= MIN (low0
, low1
);
8271 result_width
= MIN (width0
, width1
);
8272 result_low
= MIN (low0
, low1
);
8278 if (result_width
< mode_width
)
8279 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
8282 nonzero
&= ~(((HOST_WIDE_INT
) 1 << result_low
) - 1);
8287 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8288 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8289 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
8293 /* If this is a SUBREG formed for a promoted variable that has
8294 been zero-extended, we know that at least the high-order bits
8295 are zero, though others might be too. */
8297 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
))
8298 nonzero
= (GET_MODE_MASK (GET_MODE (x
))
8299 & nonzero_bits (SUBREG_REG (x
), GET_MODE (x
)));
8301 /* If the inner mode is a single word for both the host and target
8302 machines, we can compute this from which bits of the inner
8303 object might be nonzero. */
8304 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
8305 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
8306 <= HOST_BITS_PER_WIDE_INT
))
8308 nonzero
&= nonzero_bits (SUBREG_REG (x
), mode
);
8310 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8311 /* If this is a typical RISC machine, we only have to worry
8312 about the way loads are extended. */
8313 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
8315 & (((unsigned HOST_WIDE_INT
) 1
8316 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
8318 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
8321 /* On many CISC machines, accessing an object in a wider mode
8322 causes the high-order bits to become undefined. So they are
8323 not known to be zero. */
8324 if (GET_MODE_SIZE (GET_MODE (x
))
8325 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8326 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
8327 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
8336 /* The nonzero bits are in two classes: any bits within MODE
8337 that aren't in GET_MODE (x) are always significant. The rest of the
8338 nonzero bits are those that are significant in the operand of
8339 the shift when shifted the appropriate number of bits. This
8340 shows that high-order bits are cleared by the right shift and
8341 low-order bits by left shifts. */
8342 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8343 && INTVAL (XEXP (x
, 1)) >= 0
8344 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8346 enum machine_mode inner_mode
= GET_MODE (x
);
8347 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
8348 int count
= INTVAL (XEXP (x
, 1));
8349 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
8350 unsigned HOST_WIDE_INT op_nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8351 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
8352 unsigned HOST_WIDE_INT outer
= 0;
8354 if (mode_width
> width
)
8355 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
8357 if (code
== LSHIFTRT
)
8359 else if (code
== ASHIFTRT
)
8363 /* If the sign bit may have been nonzero before the shift, we
8364 need to mark all the places it could have been copied to
8365 by the shift as possibly nonzero. */
8366 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
8367 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
8369 else if (code
== ASHIFT
)
8372 inner
= ((inner
<< (count
% width
)
8373 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
8375 nonzero
&= (outer
| inner
);
8380 /* This is at most the number of bits in the mode. */
8381 nonzero
= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
) + 1)) - 1;
8385 nonzero
&= (nonzero_bits (XEXP (x
, 1), mode
)
8386 | nonzero_bits (XEXP (x
, 2), mode
));
8396 /* See the macro definition above. */
8397 #undef num_sign_bit_copies
8399 /* Return the number of bits at the high-order end of X that are known to
8400 be equal to the sign bit. X will be used in mode MODE; if MODE is
8401 VOIDmode, X will be used in its own mode. The returned value will always
8402 be between 1 and the number of bits in MODE. */
8405 num_sign_bit_copies (x
, mode
)
8407 enum machine_mode mode
;
8409 enum rtx_code code
= GET_CODE (x
);
8410 unsigned int bitwidth
;
8411 int num0
, num1
, result
;
8412 unsigned HOST_WIDE_INT nonzero
;
8415 /* If we weren't given a mode, use the mode of X. If the mode is still
8416 VOIDmode, we don't know anything. Likewise if one of the modes is
8419 if (mode
== VOIDmode
)
8420 mode
= GET_MODE (x
);
8422 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
)))
8425 bitwidth
= GET_MODE_BITSIZE (mode
);
8427 /* For a smaller object, just ignore the high bits. */
8428 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
8430 num0
= num_sign_bit_copies (x
, GET_MODE (x
));
8432 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
8435 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
8437 #ifndef WORD_REGISTER_OPERATIONS
8438 /* If this machine does not do all register operations on the entire
8439 register and MODE is wider than the mode of X, we can say nothing
8440 at all about the high-order bits. */
8443 /* Likewise on machines that do, if the mode of the object is smaller
8444 than a word and loads of that size don't sign extend, we can say
8445 nothing about the high order bits. */
8446 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
8447 #ifdef LOAD_EXTEND_OP
8448 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
8459 #ifdef POINTERS_EXTEND_UNSIGNED
8460 /* If pointers extend signed and this is a pointer in Pmode, say that
8461 all the bits above ptr_mode are known to be sign bit copies. */
8462 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
&& mode
== Pmode
8464 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
8467 if (reg_last_set_value
[REGNO (x
)] != 0
8468 && reg_last_set_mode
[REGNO (x
)] == mode
8469 && (reg_last_set_label
[REGNO (x
)] == label_tick
8470 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8471 && REG_N_SETS (REGNO (x
)) == 1
8472 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
,
8474 && INSN_CUID (reg_last_set
[REGNO (x
)]) < subst_low_cuid
)
8475 return reg_last_set_sign_bit_copies
[REGNO (x
)];
8477 tem
= get_last_value (x
);
8479 return num_sign_bit_copies (tem
, mode
);
8481 if (nonzero_sign_valid
&& reg_sign_bit_copies
[REGNO (x
)] != 0)
8482 return reg_sign_bit_copies
[REGNO (x
)];
8486 #ifdef LOAD_EXTEND_OP
8487 /* Some RISC machines sign-extend all loads of smaller than a word. */
8488 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
8489 return MAX (1, ((int) bitwidth
8490 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
8495 /* If the constant is negative, take its 1's complement and remask.
8496 Then see how many zero bits we have. */
8497 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
8498 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
8499 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8500 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
8502 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
8505 /* If this is a SUBREG for a promoted object that is sign-extended
8506 and we are looking at it in a wider mode, we know that at least the
8507 high-order bits are known to be sign bit copies. */
8509 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
8511 num0
= num_sign_bit_copies (SUBREG_REG (x
), mode
);
8512 return MAX ((int) bitwidth
8513 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
8517 /* For a smaller object, just ignore the high bits. */
8518 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
8520 num0
= num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
);
8521 return MAX (1, (num0
8522 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
8526 #ifdef WORD_REGISTER_OPERATIONS
8527 #ifdef LOAD_EXTEND_OP
8528 /* For paradoxical SUBREGs on machines where all register operations
8529 affect the entire register, just look inside. Note that we are
8530 passing MODE to the recursive call, so the number of sign bit copies
8531 will remain relative to that mode, not the inner mode. */
8533 /* This works only if loads sign extend. Otherwise, if we get a
8534 reload for the inner part, it may be loaded from the stack, and
8535 then we lose all sign bit copies that existed before the store
8538 if ((GET_MODE_SIZE (GET_MODE (x
))
8539 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8540 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
)
8541 return num_sign_bit_copies (SUBREG_REG (x
), mode
);
8547 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
8548 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
8552 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
8553 + num_sign_bit_copies (XEXP (x
, 0), VOIDmode
));
8556 /* For a smaller object, just ignore the high bits. */
8557 num0
= num_sign_bit_copies (XEXP (x
, 0), VOIDmode
);
8558 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
8562 return num_sign_bit_copies (XEXP (x
, 0), mode
);
8564 case ROTATE
: case ROTATERT
:
8565 /* If we are rotating left by a number of bits less than the number
8566 of sign bit copies, we can just subtract that amount from the
8568 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8569 && INTVAL (XEXP (x
, 1)) >= 0 && INTVAL (XEXP (x
, 1)) < bitwidth
)
8571 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8572 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
8573 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
8578 /* In general, this subtracts one sign bit copy. But if the value
8579 is known to be positive, the number of sign bit copies is the
8580 same as that of the input. Finally, if the input has just one bit
8581 that might be nonzero, all the bits are copies of the sign bit. */
8582 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8583 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8584 return num0
> 1 ? num0
- 1 : 1;
8586 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8591 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
8596 case IOR
: case AND
: case XOR
:
8597 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
8598 /* Logical operations will preserve the number of sign-bit copies.
8599 MIN and MAX operations always return one of the operands. */
8600 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8601 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8602 return MIN (num0
, num1
);
8604 case PLUS
: case MINUS
:
8605 /* For addition and subtraction, we can have a 1-bit carry. However,
8606 if we are subtracting 1 from a positive number, there will not
8607 be such a carry. Furthermore, if the positive number is known to
8608 be 0 or 1, we know the result is either -1 or 0. */
8610 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
8611 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
8613 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8614 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
8615 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
8616 : bitwidth
- floor_log2 (nonzero
) - 1);
8619 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8620 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8621 return MAX (1, MIN (num0
, num1
) - 1);
8624 /* The number of bits of the product is the sum of the number of
8625 bits of both terms. However, unless one of the terms if known
8626 to be positive, we must allow for an additional bit since negating
8627 a negative number can remove one sign bit copy. */
8629 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8630 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8632 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
8634 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8635 || (((nonzero_bits (XEXP (x
, 0), mode
)
8636 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8637 && ((nonzero_bits (XEXP (x
, 1), mode
)
8638 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
8641 return MAX (1, result
);
8644 /* The result must be <= the first operand. If the first operand
8645 has the high bit set, we know nothing about the number of sign
8647 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8649 else if ((nonzero_bits (XEXP (x
, 0), mode
)
8650 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8653 return num_sign_bit_copies (XEXP (x
, 0), mode
);
8656 /* The result must be <= the scond operand. */
8657 return num_sign_bit_copies (XEXP (x
, 1), mode
);
8660 /* Similar to unsigned division, except that we have to worry about
8661 the case where the divisor is negative, in which case we have
8663 result
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8665 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8666 || (nonzero_bits (XEXP (x
, 1), mode
)
8667 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
8673 result
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8675 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8676 || (nonzero_bits (XEXP (x
, 1), mode
)
8677 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
8683 /* Shifts by a constant add to the number of bits equal to the
8685 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8686 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8687 && INTVAL (XEXP (x
, 1)) > 0)
8688 num0
= MIN (bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
8693 /* Left shifts destroy copies. */
8694 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
8695 || INTVAL (XEXP (x
, 1)) < 0
8696 || INTVAL (XEXP (x
, 1)) >= bitwidth
)
8699 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8700 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
8703 num0
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8704 num1
= num_sign_bit_copies (XEXP (x
, 2), mode
);
8705 return MIN (num0
, num1
);
8707 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
8708 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
8709 case GEU
: case GTU
: case LEU
: case LTU
:
8710 case UNORDERED
: case ORDERED
:
8711 /* If the constant is negative, take its 1's complement and remask.
8712 Then see how many zero bits we have. */
8713 nonzero
= STORE_FLAG_VALUE
;
8714 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
8715 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8716 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
8718 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
8725 /* If we haven't been able to figure it out by one of the above rules,
8726 see if some of the high-order bits are known to be zero. If so,
8727 count those bits and return one less than that amount. If we can't
8728 safely compute the mask for this mode, always return BITWIDTH. */
8730 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8733 nonzero
= nonzero_bits (x
, mode
);
8734 return (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
8735 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1);
8738 /* Return the number of "extended" bits there are in X, when interpreted
8739 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8740 unsigned quantities, this is the number of high-order zero bits.
8741 For signed quantities, this is the number of copies of the sign bit
8742 minus 1. In both case, this function returns the number of "spare"
8743 bits. For example, if two quantities for which this function returns
8744 at least 1 are added, the addition is known not to overflow.
8746 This function will always return 0 unless called during combine, which
8747 implies that it must be called from a define_split. */
8750 extended_count (x
, mode
, unsignedp
)
8752 enum machine_mode mode
;
8755 if (nonzero_sign_valid
== 0)
8759 ? (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8760 ? (GET_MODE_BITSIZE (mode
) - 1
8761 - floor_log2 (nonzero_bits (x
, mode
)))
8763 : num_sign_bit_copies (x
, mode
) - 1);
8766 /* This function is called from `simplify_shift_const' to merge two
8767 outer operations. Specifically, we have already found that we need
8768 to perform operation *POP0 with constant *PCONST0 at the outermost
8769 position. We would now like to also perform OP1 with constant CONST1
8770 (with *POP0 being done last).
8772 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8773 the resulting operation. *PCOMP_P is set to 1 if we would need to
8774 complement the innermost operand, otherwise it is unchanged.
8776 MODE is the mode in which the operation will be done. No bits outside
8777 the width of this mode matter. It is assumed that the width of this mode
8778 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8780 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8781 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8782 result is simply *PCONST0.
8784 If the resulting operation cannot be expressed as one operation, we
8785 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8788 merge_outer_ops (pop0
, pconst0
, op1
, const1
, mode
, pcomp_p
)
8789 enum rtx_code
*pop0
;
8790 HOST_WIDE_INT
*pconst0
;
8792 HOST_WIDE_INT const1
;
8793 enum machine_mode mode
;
8796 enum rtx_code op0
= *pop0
;
8797 HOST_WIDE_INT const0
= *pconst0
;
8799 const0
&= GET_MODE_MASK (mode
);
8800 const1
&= GET_MODE_MASK (mode
);
8802 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8806 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8809 if (op1
== NIL
|| op0
== SET
)
8812 else if (op0
== NIL
)
8813 op0
= op1
, const0
= const1
;
8815 else if (op0
== op1
)
8839 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8840 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
8843 /* If the two constants aren't the same, we can't do anything. The
8844 remaining six cases can all be done. */
8845 else if (const0
!= const1
)
8853 /* (a & b) | b == b */
8855 else /* op1 == XOR */
8856 /* (a ^ b) | b == a | b */
8862 /* (a & b) ^ b == (~a) & b */
8863 op0
= AND
, *pcomp_p
= 1;
8864 else /* op1 == IOR */
8865 /* (a | b) ^ b == a & ~b */
8866 op0
= AND
, *pconst0
= ~const0
;
8871 /* (a | b) & b == b */
8873 else /* op1 == XOR */
8874 /* (a ^ b) & b) == (~a) & b */
8881 /* Check for NO-OP cases. */
8882 const0
&= GET_MODE_MASK (mode
);
8884 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
8886 else if (const0
== 0 && op0
== AND
)
8888 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
8892 /* ??? Slightly redundant with the above mask, but not entirely.
8893 Moving this above means we'd have to sign-extend the mode mask
8894 for the final test. */
8895 const0
= trunc_int_for_mode (const0
, mode
);
8903 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8904 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8905 that we started with.
8907 The shift is normally computed in the widest mode we find in VAROP, as
8908 long as it isn't a different number of words than RESULT_MODE. Exceptions
8909 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8912 simplify_shift_const (x
, code
, result_mode
, varop
, input_count
)
8915 enum machine_mode result_mode
;
8919 enum rtx_code orig_code
= code
;
8920 int orig_count
= input_count
;
8923 enum machine_mode mode
= result_mode
;
8924 enum machine_mode shift_mode
, tmode
;
8925 unsigned int mode_words
8926 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
8927 /* We form (outer_op (code varop count) (outer_const)). */
8928 enum rtx_code outer_op
= NIL
;
8929 HOST_WIDE_INT outer_const
= 0;
8931 int complement_p
= 0;
8934 /* If we were given an invalid count, don't do anything except exactly
8935 what was requested. */
8937 if (input_count
< 0 || input_count
> (int) GET_MODE_BITSIZE (mode
))
8942 return gen_rtx_fmt_ee (code
, mode
, varop
, GEN_INT (input_count
));
8945 count
= input_count
;
8947 /* Make sure and truncate the "natural" shift on the way in. We don't
8948 want to do this inside the loop as it makes it more difficult to
8950 #ifdef SHIFT_COUNT_TRUNCATED
8951 if (SHIFT_COUNT_TRUNCATED
)
8952 count
%= GET_MODE_BITSIZE (mode
);
8955 /* Unless one of the branches of the `if' in this loop does a `continue',
8956 we will `break' the loop after the `if'. */
8960 /* If we have an operand of (clobber (const_int 0)), just return that
8962 if (GET_CODE (varop
) == CLOBBER
)
8965 /* If we discovered we had to complement VAROP, leave. Making a NOT
8966 here would cause an infinite loop. */
8970 /* Convert ROTATERT to ROTATE. */
8971 if (code
== ROTATERT
)
8972 code
= ROTATE
, count
= GET_MODE_BITSIZE (result_mode
) - count
;
8974 /* We need to determine what mode we will do the shift in. If the
8975 shift is a right shift or a ROTATE, we must always do it in the mode
8976 it was originally done in. Otherwise, we can do it in MODE, the
8977 widest mode encountered. */
8979 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
8980 ? result_mode
: mode
);
8982 /* Handle cases where the count is greater than the size of the mode
8983 minus 1. For ASHIFT, use the size minus one as the count (this can
8984 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8985 take the count modulo the size. For other shifts, the result is
8988 Since these shifts are being produced by the compiler by combining
8989 multiple operations, each of which are defined, we know what the
8990 result is supposed to be. */
8992 if (count
> GET_MODE_BITSIZE (shift_mode
) - 1)
8994 if (code
== ASHIFTRT
)
8995 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8996 else if (code
== ROTATE
|| code
== ROTATERT
)
8997 count
%= GET_MODE_BITSIZE (shift_mode
);
9000 /* We can't simply return zero because there may be an
9008 /* An arithmetic right shift of a quantity known to be -1 or 0
9010 if (code
== ASHIFTRT
9011 && (num_sign_bit_copies (varop
, shift_mode
)
9012 == GET_MODE_BITSIZE (shift_mode
)))
9018 /* If we are doing an arithmetic right shift and discarding all but
9019 the sign bit copies, this is equivalent to doing a shift by the
9020 bitsize minus one. Convert it into that shift because it will often
9021 allow other simplifications. */
9023 if (code
== ASHIFTRT
9024 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
9025 >= GET_MODE_BITSIZE (shift_mode
)))
9026 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
9028 /* We simplify the tests below and elsewhere by converting
9029 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9030 `make_compound_operation' will convert it to a ASHIFTRT for
9031 those machines (such as Vax) that don't have a LSHIFTRT. */
9032 if (GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
9034 && ((nonzero_bits (varop
, shift_mode
)
9035 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (shift_mode
) - 1)))
9039 switch (GET_CODE (varop
))
9045 new = expand_compound_operation (varop
);
9054 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9055 minus the width of a smaller mode, we can do this with a
9056 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9057 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9058 && ! mode_dependent_address_p (XEXP (varop
, 0))
9059 && ! MEM_VOLATILE_P (varop
)
9060 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
9061 MODE_INT
, 1)) != BLKmode
)
9063 if (BYTES_BIG_ENDIAN
)
9064 new = gen_rtx_MEM (tmode
, XEXP (varop
, 0));
9066 new = gen_rtx_MEM (tmode
,
9067 plus_constant (XEXP (varop
, 0),
9068 count
/ BITS_PER_UNIT
));
9070 MEM_COPY_ATTRIBUTES (new, varop
);
9071 varop
= gen_rtx_combine (code
== ASHIFTRT
? SIGN_EXTEND
9072 : ZERO_EXTEND
, mode
, new);
9079 /* Similar to the case above, except that we can only do this if
9080 the resulting mode is the same as that of the underlying
9081 MEM and adjust the address depending on the *bits* endianness
9082 because of the way that bit-field extract insns are defined. */
9083 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9084 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
9085 MODE_INT
, 1)) != BLKmode
9086 && tmode
== GET_MODE (XEXP (varop
, 0)))
9088 if (BITS_BIG_ENDIAN
)
9089 new = XEXP (varop
, 0);
9092 new = copy_rtx (XEXP (varop
, 0));
9093 SUBST (XEXP (new, 0),
9094 plus_constant (XEXP (new, 0),
9095 count
/ BITS_PER_UNIT
));
9098 varop
= gen_rtx_combine (code
== ASHIFTRT
? SIGN_EXTEND
9099 : ZERO_EXTEND
, mode
, new);
9106 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9107 the same number of words as what we've seen so far. Then store
9108 the widest mode in MODE. */
9109 if (subreg_lowpart_p (varop
)
9110 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9111 > GET_MODE_SIZE (GET_MODE (varop
)))
9112 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9113 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
9116 varop
= SUBREG_REG (varop
);
9117 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
9118 mode
= GET_MODE (varop
);
9124 /* Some machines use MULT instead of ASHIFT because MULT
9125 is cheaper. But it is still better on those machines to
9126 merge two shifts into one. */
9127 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9128 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
9131 = gen_binary (ASHIFT
, GET_MODE (varop
), XEXP (varop
, 0),
9132 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
9138 /* Similar, for when divides are cheaper. */
9139 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9140 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
9143 = gen_binary (LSHIFTRT
, GET_MODE (varop
), XEXP (varop
, 0),
9144 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
9150 /* If we are extracting just the sign bit of an arithmetic
9151 right shift, that shift is not needed. However, the sign
9152 bit of a wider mode may be different from what would be
9153 interpreted as the sign bit in a narrower mode, so, if
9154 the result is narrower, don't discard the shift. */
9155 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1
9156 && (GET_MODE_BITSIZE (result_mode
)
9157 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
9159 varop
= XEXP (varop
, 0);
9163 /* ... fall through ... */
9168 /* Here we have two nested shifts. The result is usually the
9169 AND of a new shift with a mask. We compute the result below. */
9170 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9171 && INTVAL (XEXP (varop
, 1)) >= 0
9172 && INTVAL (XEXP (varop
, 1)) < GET_MODE_BITSIZE (GET_MODE (varop
))
9173 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9174 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
9176 enum rtx_code first_code
= GET_CODE (varop
);
9177 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
9178 unsigned HOST_WIDE_INT mask
;
9181 /* We have one common special case. We can't do any merging if
9182 the inner code is an ASHIFTRT of a smaller mode. However, if
9183 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9184 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9185 we can convert it to
9186 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9187 This simplifies certain SIGN_EXTEND operations. */
9188 if (code
== ASHIFT
&& first_code
== ASHIFTRT
9189 && (GET_MODE_BITSIZE (result_mode
)
9190 - GET_MODE_BITSIZE (GET_MODE (varop
))) == count
)
9192 /* C3 has the low-order C1 bits zero. */
9194 mask
= (GET_MODE_MASK (mode
)
9195 & ~(((HOST_WIDE_INT
) 1 << first_count
) - 1));
9197 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
9198 XEXP (varop
, 0), mask
);
9199 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
9201 count
= first_count
;
9206 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9207 than C1 high-order bits equal to the sign bit, we can convert
9208 this to either an ASHIFT or a ASHIFTRT depending on the
9211 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9213 if (code
== ASHIFTRT
&& first_code
== ASHIFT
9214 && GET_MODE (varop
) == shift_mode
9215 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
9218 varop
= XEXP (varop
, 0);
9220 signed_count
= count
- first_count
;
9221 if (signed_count
< 0)
9222 count
= -signed_count
, code
= ASHIFT
;
9224 count
= signed_count
;
9229 /* There are some cases we can't do. If CODE is ASHIFTRT,
9230 we can only do this if FIRST_CODE is also ASHIFTRT.
9232 We can't do the case when CODE is ROTATE and FIRST_CODE is
9235 If the mode of this shift is not the mode of the outer shift,
9236 we can't do this if either shift is a right shift or ROTATE.
9238 Finally, we can't do any of these if the mode is too wide
9239 unless the codes are the same.
9241 Handle the case where the shift codes are the same
9244 if (code
== first_code
)
9246 if (GET_MODE (varop
) != result_mode
9247 && (code
== ASHIFTRT
|| code
== LSHIFTRT
9251 count
+= first_count
;
9252 varop
= XEXP (varop
, 0);
9256 if (code
== ASHIFTRT
9257 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
9258 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
9259 || (GET_MODE (varop
) != result_mode
9260 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
9261 || first_code
== ROTATE
9262 || code
== ROTATE
)))
9265 /* To compute the mask to apply after the shift, shift the
9266 nonzero bits of the inner shift the same way the
9267 outer shift will. */
9269 mask_rtx
= GEN_INT (nonzero_bits (varop
, GET_MODE (varop
)));
9272 = simplify_binary_operation (code
, result_mode
, mask_rtx
,
9275 /* Give up if we can't compute an outer operation to use. */
9277 || GET_CODE (mask_rtx
) != CONST_INT
9278 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
9280 result_mode
, &complement_p
))
9283 /* If the shifts are in the same direction, we add the
9284 counts. Otherwise, we subtract them. */
9285 signed_count
= count
;
9286 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9287 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
9288 signed_count
+= first_count
;
9290 signed_count
-= first_count
;
9292 /* If COUNT is positive, the new shift is usually CODE,
9293 except for the two exceptions below, in which case it is
9294 FIRST_CODE. If the count is negative, FIRST_CODE should
9296 if (signed_count
> 0
9297 && ((first_code
== ROTATE
&& code
== ASHIFT
)
9298 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
9299 code
= first_code
, count
= signed_count
;
9300 else if (signed_count
< 0)
9301 code
= first_code
, count
= -signed_count
;
9303 count
= signed_count
;
9305 varop
= XEXP (varop
, 0);
9309 /* If we have (A << B << C) for any shift, we can convert this to
9310 (A << C << B). This wins if A is a constant. Only try this if
9311 B is not a constant. */
9313 else if (GET_CODE (varop
) == code
9314 && GET_CODE (XEXP (varop
, 1)) != CONST_INT
9316 = simplify_binary_operation (code
, mode
,
9320 varop
= gen_rtx_combine (code
, mode
, new, XEXP (varop
, 1));
9327 /* Make this fit the case below. */
9328 varop
= gen_rtx_combine (XOR
, mode
, XEXP (varop
, 0),
9329 GEN_INT (GET_MODE_MASK (mode
)));
9335 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9336 with C the size of VAROP - 1 and the shift is logical if
9337 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9338 we have an (le X 0) operation. If we have an arithmetic shift
9339 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9340 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9342 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
9343 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
9344 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9345 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9346 && count
== GET_MODE_BITSIZE (GET_MODE (varop
)) - 1
9347 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9350 varop
= gen_rtx_combine (LE
, GET_MODE (varop
), XEXP (varop
, 1),
9353 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9354 varop
= gen_rtx_combine (NEG
, GET_MODE (varop
), varop
);
9359 /* If we have (shift (logical)), move the logical to the outside
9360 to allow it to possibly combine with another logical and the
9361 shift to combine with another shift. This also canonicalizes to
9362 what a ZERO_EXTRACT looks like. Also, some machines have
9363 (and (shift)) insns. */
9365 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9366 && (new = simplify_binary_operation (code
, result_mode
,
9368 GEN_INT (count
))) != 0
9369 && GET_CODE (new) == CONST_INT
9370 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
9371 INTVAL (new), result_mode
, &complement_p
))
9373 varop
= XEXP (varop
, 0);
9377 /* If we can't do that, try to simplify the shift in each arm of the
9378 logical expression, make a new logical expression, and apply
9379 the inverse distributive law. */
9381 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
9382 XEXP (varop
, 0), count
);
9383 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
9384 XEXP (varop
, 1), count
);
9386 varop
= gen_binary (GET_CODE (varop
), shift_mode
, lhs
, rhs
);
9387 varop
= apply_distributive_law (varop
);
9394 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9395 says that the sign bit can be tested, FOO has mode MODE, C is
9396 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9397 that may be nonzero. */
9398 if (code
== LSHIFTRT
9399 && XEXP (varop
, 1) == const0_rtx
9400 && GET_MODE (XEXP (varop
, 0)) == result_mode
9401 && count
== GET_MODE_BITSIZE (result_mode
) - 1
9402 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9403 && ((STORE_FLAG_VALUE
9404 & ((HOST_WIDE_INT
) 1
9405 < (GET_MODE_BITSIZE (result_mode
) - 1))))
9406 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9407 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9408 (HOST_WIDE_INT
) 1, result_mode
,
9411 varop
= XEXP (varop
, 0);
9418 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9419 than the number of bits in the mode is equivalent to A. */
9420 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1
9421 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
9423 varop
= XEXP (varop
, 0);
9428 /* NEG commutes with ASHIFT since it is multiplication. Move the
9429 NEG outside to allow shifts to combine. */
9431 && merge_outer_ops (&outer_op
, &outer_const
, NEG
,
9432 (HOST_WIDE_INT
) 0, result_mode
,
9435 varop
= XEXP (varop
, 0);
9441 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9442 is one less than the number of bits in the mode is
9443 equivalent to (xor A 1). */
9444 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1
9445 && XEXP (varop
, 1) == constm1_rtx
9446 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9447 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9448 (HOST_WIDE_INT
) 1, result_mode
,
9452 varop
= XEXP (varop
, 0);
9456 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9457 that might be nonzero in BAR are those being shifted out and those
9458 bits are known zero in FOO, we can replace the PLUS with FOO.
9459 Similarly in the other operand order. This code occurs when
9460 we are computing the size of a variable-size array. */
9462 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9463 && count
< HOST_BITS_PER_WIDE_INT
9464 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
9465 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
9466 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
9468 varop
= XEXP (varop
, 0);
9471 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9472 && count
< HOST_BITS_PER_WIDE_INT
9473 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9474 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9476 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9477 & nonzero_bits (XEXP (varop
, 1),
9480 varop
= XEXP (varop
, 1);
9484 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9486 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9487 && (new = simplify_binary_operation (ASHIFT
, result_mode
,
9489 GEN_INT (count
))) != 0
9490 && GET_CODE (new) == CONST_INT
9491 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
9492 INTVAL (new), result_mode
, &complement_p
))
9494 varop
= XEXP (varop
, 0);
9500 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9501 with C the size of VAROP - 1 and the shift is logical if
9502 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9503 we have a (gt X 0) operation. If the shift is arithmetic with
9504 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9505 we have a (neg (gt X 0)) operation. */
9507 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9508 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
9509 && count
== GET_MODE_BITSIZE (GET_MODE (varop
)) - 1
9510 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9511 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9512 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
9513 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9516 varop
= gen_rtx_combine (GT
, GET_MODE (varop
), XEXP (varop
, 1),
9519 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9520 varop
= gen_rtx_combine (NEG
, GET_MODE (varop
), varop
);
9527 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9528 if the truncate does not affect the value. */
9529 if (code
== LSHIFTRT
9530 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
9531 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9532 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
9533 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop
, 0)))
9534 - GET_MODE_BITSIZE (GET_MODE (varop
)))))
9536 rtx varop_inner
= XEXP (varop
, 0);
9539 = gen_rtx_combine (LSHIFTRT
, GET_MODE (varop_inner
),
9540 XEXP (varop_inner
, 0),
9542 + INTVAL (XEXP (varop_inner
, 1))));
9543 varop
= gen_rtx_combine (TRUNCATE
, GET_MODE (varop
),
9557 /* We need to determine what mode to do the shift in. If the shift is
9558 a right shift or ROTATE, we must always do it in the mode it was
9559 originally done in. Otherwise, we can do it in MODE, the widest mode
9560 encountered. The code we care about is that of the shift that will
9561 actually be done, not the shift that was originally requested. */
9563 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
9564 ? result_mode
: mode
);
9566 /* We have now finished analyzing the shift. The result should be
9567 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9568 OUTER_OP is non-NIL, it is an operation that needs to be applied
9569 to the result of the shift. OUTER_CONST is the relevant constant,
9570 but we must turn off all bits turned off in the shift.
9572 If we were passed a value for X, see if we can use any pieces of
9573 it. If not, make new rtx. */
9575 if (x
&& GET_RTX_CLASS (GET_CODE (x
)) == '2'
9576 && GET_CODE (XEXP (x
, 1)) == CONST_INT
9577 && INTVAL (XEXP (x
, 1)) == count
)
9578 const_rtx
= XEXP (x
, 1);
9580 const_rtx
= GEN_INT (count
);
9582 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
9583 && GET_MODE (XEXP (x
, 0)) == shift_mode
9584 && SUBREG_REG (XEXP (x
, 0)) == varop
)
9585 varop
= XEXP (x
, 0);
9586 else if (GET_MODE (varop
) != shift_mode
)
9587 varop
= gen_lowpart_for_combine (shift_mode
, varop
);
9589 /* If we can't make the SUBREG, try to return what we were given. */
9590 if (GET_CODE (varop
) == CLOBBER
)
9591 return x
? x
: varop
;
9593 new = simplify_binary_operation (code
, shift_mode
, varop
, const_rtx
);
9598 if (x
== 0 || GET_CODE (x
) != code
|| GET_MODE (x
) != shift_mode
)
9599 x
= gen_rtx_combine (code
, shift_mode
, varop
, const_rtx
);
9601 SUBST (XEXP (x
, 0), varop
);
9602 SUBST (XEXP (x
, 1), const_rtx
);
9605 /* If we have an outer operation and we just made a shift, it is
9606 possible that we could have simplified the shift were it not
9607 for the outer operation. So try to do the simplification
9610 if (outer_op
!= NIL
&& GET_CODE (x
) == code
9611 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
9612 x
= simplify_shift_const (x
, code
, shift_mode
, XEXP (x
, 0),
9613 INTVAL (XEXP (x
, 1)));
9615 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9616 turn off all the bits that the shift would have turned off. */
9617 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
9618 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
9619 GET_MODE_MASK (result_mode
) >> orig_count
);
9621 /* Do the remainder of the processing in RESULT_MODE. */
9622 x
= gen_lowpart_for_combine (result_mode
, x
);
9624 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9627 x
= gen_unary (NOT
, result_mode
, result_mode
, x
);
9629 if (outer_op
!= NIL
)
9631 if (GET_MODE_BITSIZE (result_mode
) < HOST_BITS_PER_WIDE_INT
)
9632 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
9634 if (outer_op
== AND
)
9635 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
9636 else if (outer_op
== SET
)
9637 /* This means that we have determined that the result is
9638 equivalent to a constant. This should be rare. */
9639 x
= GEN_INT (outer_const
);
9640 else if (GET_RTX_CLASS (outer_op
) == '1')
9641 x
= gen_unary (outer_op
, result_mode
, result_mode
, x
);
9643 x
= gen_binary (outer_op
, result_mode
, x
, GEN_INT (outer_const
));
9649 /* Like recog, but we receive the address of a pointer to a new pattern.
9650 We try to match the rtx that the pointer points to.
9651 If that fails, we may try to modify or replace the pattern,
9652 storing the replacement into the same pointer object.
9654 Modifications include deletion or addition of CLOBBERs.
9656 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9657 the CLOBBERs are placed.
9659 The value is the final insn code from the pattern ultimately matched,
9663 recog_for_combine (pnewpat
, insn
, pnotes
)
9668 register rtx pat
= *pnewpat
;
9669 int insn_code_number
;
9670 int num_clobbers_to_add
= 0;
9675 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9676 we use to indicate that something didn't match. If we find such a
9677 thing, force rejection. */
9678 if (GET_CODE (pat
) == PARALLEL
)
9679 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
9680 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
9681 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
9684 /* Remove the old notes prior to trying to recognize the new pattern. */
9685 old_notes
= REG_NOTES (insn
);
9686 REG_NOTES (insn
) = 0;
9688 /* Is the result of combination a valid instruction? */
9689 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9691 /* If it isn't, there is the possibility that we previously had an insn
9692 that clobbered some register as a side effect, but the combined
9693 insn doesn't need to do that. So try once more without the clobbers
9694 unless this represents an ASM insn. */
9696 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
9697 && GET_CODE (pat
) == PARALLEL
)
9701 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
9702 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
9705 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
9709 SUBST_INT (XVECLEN (pat
, 0), pos
);
9712 pat
= XVECEXP (pat
, 0, 0);
9714 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9717 REG_NOTES (insn
) = old_notes
;
9719 /* If we had any clobbers to add, make a new pattern than contains
9720 them. Then check to make sure that all of them are dead. */
9721 if (num_clobbers_to_add
)
9723 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
9724 rtvec_alloc (GET_CODE (pat
) == PARALLEL
9726 + num_clobbers_to_add
)
9727 : num_clobbers_to_add
+ 1));
9729 if (GET_CODE (pat
) == PARALLEL
)
9730 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
9731 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
9733 XVECEXP (newpat
, 0, 0) = pat
;
9735 add_clobbers (newpat
, insn_code_number
);
9737 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
9738 i
< XVECLEN (newpat
, 0); i
++)
9740 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) == REG
9741 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
9743 notes
= gen_rtx_EXPR_LIST (REG_UNUSED
,
9744 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
9752 return insn_code_number
;
9755 /* Like gen_lowpart but for use by combine. In combine it is not possible
9756 to create any new pseudoregs. However, it is safe to create
9757 invalid memory addresses, because combine will try to recognize
9758 them and all they will do is make the combine attempt fail.
9760 If for some reason this cannot do its job, an rtx
9761 (clobber (const_int 0)) is returned.
9762 An insn containing that will not be recognized. */
9767 gen_lowpart_for_combine (mode
, x
)
9768 enum machine_mode mode
;
9773 if (GET_MODE (x
) == mode
)
9776 /* We can only support MODE being wider than a word if X is a
9777 constant integer or has a mode the same size. */
9779 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
9780 && ! ((GET_MODE (x
) == VOIDmode
9781 && (GET_CODE (x
) == CONST_INT
9782 || GET_CODE (x
) == CONST_DOUBLE
))
9783 || GET_MODE_SIZE (GET_MODE (x
)) == GET_MODE_SIZE (mode
)))
9784 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
9786 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9787 won't know what to do. So we will strip off the SUBREG here and
9788 process normally. */
9789 if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == MEM
)
9792 if (GET_MODE (x
) == mode
)
9796 result
= gen_lowpart_common (mode
, x
);
9797 #ifdef CLASS_CANNOT_CHANGE_MODE
9799 && GET_CODE (result
) == SUBREG
9800 && GET_CODE (SUBREG_REG (result
)) == REG
9801 && REGNO (SUBREG_REG (result
)) >= FIRST_PSEUDO_REGISTER
9802 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result
),
9803 GET_MODE (SUBREG_REG (result
))))
9804 REG_CHANGES_MODE (REGNO (SUBREG_REG (result
))) = 1;
9810 if (GET_CODE (x
) == MEM
)
9812 register int offset
= 0;
9815 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9817 if (MEM_VOLATILE_P (x
) || mode_dependent_address_p (XEXP (x
, 0)))
9818 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
9820 /* If we want to refer to something bigger than the original memref,
9821 generate a perverse subreg instead. That will force a reload
9822 of the original memref X. */
9823 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
))
9824 return gen_rtx_SUBREG (mode
, x
, 0);
9826 if (WORDS_BIG_ENDIAN
)
9827 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
9828 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
9830 if (BYTES_BIG_ENDIAN
)
9832 /* Adjust the address so that the address-after-the-data is
9834 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
9835 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
9837 new = gen_rtx_MEM (mode
, plus_constant (XEXP (x
, 0), offset
));
9838 MEM_COPY_ATTRIBUTES (new, x
);
9842 /* If X is a comparison operator, rewrite it in a new mode. This
9843 probably won't match, but may allow further simplifications. */
9844 else if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
9845 return gen_rtx_combine (GET_CODE (x
), mode
, XEXP (x
, 0), XEXP (x
, 1));
9847 /* If we couldn't simplify X any other way, just enclose it in a
9848 SUBREG. Normally, this SUBREG won't match, but some patterns may
9849 include an explicit SUBREG or we may simplify it further in combine. */
9854 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
)
9855 word
= ((GET_MODE_SIZE (GET_MODE (x
))
9856 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
9858 return gen_rtx_SUBREG (mode
, x
, word
);
9862 /* Make an rtx expression. This is a subset of gen_rtx and only supports
9863 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
9865 If the identical expression was previously in the insn (in the undobuf),
9866 it will be returned. Only if it is not found will a new expression
9871 gen_rtx_combine
VPARAMS ((enum rtx_code code
, enum machine_mode mode
, ...))
9873 #ifndef ANSI_PROTOTYPES
9875 enum machine_mode mode
;
9887 #ifndef ANSI_PROTOTYPES
9888 code
= va_arg (p
, enum rtx_code
);
9889 mode
= va_arg (p
, enum machine_mode
);
9892 n_args
= GET_RTX_LENGTH (code
);
9893 fmt
= GET_RTX_FORMAT (code
);
9895 if (n_args
== 0 || n_args
> 3)
9898 /* Get each arg and verify that it is supposed to be an expression. */
9899 for (j
= 0; j
< n_args
; j
++)
9904 args
[j
] = va_arg (p
, rtx
);
9909 /* See if this is in undobuf. Be sure we don't use objects that came
9910 from another insn; this could produce circular rtl structures. */
9912 for (undo
= undobuf
.undos
; undo
!= undobuf
.previous_undos
; undo
= undo
->next
)
9914 && GET_CODE (undo
->old_contents
.r
) == code
9915 && GET_MODE (undo
->old_contents
.r
) == mode
)
9917 for (j
= 0; j
< n_args
; j
++)
9918 if (XEXP (undo
->old_contents
.r
, j
) != args
[j
])
9922 return undo
->old_contents
.r
;
9925 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
9926 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
9927 rt
= rtx_alloc (code
);
9928 PUT_MODE (rt
, mode
);
9929 XEXP (rt
, 0) = args
[0];
9932 XEXP (rt
, 1) = args
[1];
9934 XEXP (rt
, 2) = args
[2];
9939 /* These routines make binary and unary operations by first seeing if they
9940 fold; if not, a new expression is allocated. */
9943 gen_binary (code
, mode
, op0
, op1
)
9945 enum machine_mode mode
;
9951 if (GET_RTX_CLASS (code
) == 'c'
9952 && (GET_CODE (op0
) == CONST_INT
9953 || (CONSTANT_P (op0
) && GET_CODE (op1
) != CONST_INT
)))
9954 tem
= op0
, op0
= op1
, op1
= tem
;
9956 if (GET_RTX_CLASS (code
) == '<')
9958 enum machine_mode op_mode
= GET_MODE (op0
);
9960 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9961 just (REL_OP X Y). */
9962 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
9964 op1
= XEXP (op0
, 1);
9965 op0
= XEXP (op0
, 0);
9966 op_mode
= GET_MODE (op0
);
9969 if (op_mode
== VOIDmode
)
9970 op_mode
= GET_MODE (op1
);
9971 result
= simplify_relational_operation (code
, op_mode
, op0
, op1
);
9974 result
= simplify_binary_operation (code
, mode
, op0
, op1
);
9979 /* Put complex operands first and constants second. */
9980 if (GET_RTX_CLASS (code
) == 'c'
9981 && ((CONSTANT_P (op0
) && GET_CODE (op1
) != CONST_INT
)
9982 || (GET_RTX_CLASS (GET_CODE (op0
)) == 'o'
9983 && GET_RTX_CLASS (GET_CODE (op1
)) != 'o')
9984 || (GET_CODE (op0
) == SUBREG
9985 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0
))) == 'o'
9986 && GET_RTX_CLASS (GET_CODE (op1
)) != 'o')))
9987 return gen_rtx_combine (code
, mode
, op1
, op0
);
9989 /* If we are turning off bits already known off in OP0, we need not do
9991 else if (code
== AND
&& GET_CODE (op1
) == CONST_INT
9992 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
9993 && (nonzero_bits (op0
, mode
) & ~INTVAL (op1
)) == 0)
9996 return gen_rtx_combine (code
, mode
, op0
, op1
);
10000 gen_unary (code
, mode
, op0_mode
, op0
)
10001 enum rtx_code code
;
10002 enum machine_mode mode
, op0_mode
;
10005 rtx result
= simplify_unary_operation (code
, mode
, op0
, op0_mode
);
10010 return gen_rtx_combine (code
, mode
, op0
);
10013 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10014 comparison code that will be tested.
10016 The result is a possibly different comparison code to use. *POP0 and
10017 *POP1 may be updated.
10019 It is possible that we might detect that a comparison is either always
10020 true or always false. However, we do not perform general constant
10021 folding in combine, so this knowledge isn't useful. Such tautologies
10022 should have been detected earlier. Hence we ignore all such cases. */
10024 static enum rtx_code
10025 simplify_comparison (code
, pop0
, pop1
)
10026 enum rtx_code code
;
10034 enum machine_mode mode
, tmode
;
10036 /* Try a few ways of applying the same transformation to both operands. */
10039 #ifndef WORD_REGISTER_OPERATIONS
10040 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10041 so check specially. */
10042 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
10043 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
10044 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10045 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
10046 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
10047 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
10048 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
10049 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
10050 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10051 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
10052 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10053 && GET_CODE (XEXP (XEXP (op1
, 0), 1)) == CONST_INT
10054 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (op1
, 1))
10055 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (XEXP (op0
, 0), 1))
10056 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (XEXP (op1
, 0), 1))
10057 && (INTVAL (XEXP (op0
, 1))
10058 == (GET_MODE_BITSIZE (GET_MODE (op0
))
10059 - (GET_MODE_BITSIZE
10060 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
10062 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
10063 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
10067 /* If both operands are the same constant shift, see if we can ignore the
10068 shift. We can if the shift is a rotate or if the bits shifted out of
10069 this shift are known to be zero for both inputs and if the type of
10070 comparison is compatible with the shift. */
10071 if (GET_CODE (op0
) == GET_CODE (op1
)
10072 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10073 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
10074 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
10075 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
10076 || (GET_CODE (op0
) == ASHIFTRT
10077 && (code
!= GTU
&& code
!= LTU
10078 && code
!= GEU
&& code
!= GEU
)))
10079 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10080 && INTVAL (XEXP (op0
, 1)) >= 0
10081 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
10082 && XEXP (op0
, 1) == XEXP (op1
, 1))
10084 enum machine_mode mode
= GET_MODE (op0
);
10085 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
10086 int shift_count
= INTVAL (XEXP (op0
, 1));
10088 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
10089 mask
&= (mask
>> shift_count
) << shift_count
;
10090 else if (GET_CODE (op0
) == ASHIFT
)
10091 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
10093 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
10094 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
10095 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
10100 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10101 SUBREGs are of the same mode, and, in both cases, the AND would
10102 be redundant if the comparison was done in the narrower mode,
10103 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10104 and the operand's possibly nonzero bits are 0xffffff01; in that case
10105 if we only care about QImode, we don't need the AND). This case
10106 occurs if the output mode of an scc insn is not SImode and
10107 STORE_FLAG_VALUE == 1 (e.g., the 386).
10109 Similarly, check for a case where the AND's are ZERO_EXTEND
10110 operations from some narrower mode even though a SUBREG is not
10113 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
10114 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10115 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
)
10117 rtx inner_op0
= XEXP (op0
, 0);
10118 rtx inner_op1
= XEXP (op1
, 0);
10119 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
10120 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
10123 if (GET_CODE (inner_op0
) == SUBREG
&& GET_CODE (inner_op1
) == SUBREG
10124 && (GET_MODE_SIZE (GET_MODE (inner_op0
))
10125 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0
))))
10126 && (GET_MODE (SUBREG_REG (inner_op0
))
10127 == GET_MODE (SUBREG_REG (inner_op1
)))
10128 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0
)))
10129 <= HOST_BITS_PER_WIDE_INT
)
10130 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
10131 GET_MODE (SUBREG_REG (inner_op0
)))))
10132 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
10133 GET_MODE (SUBREG_REG (inner_op1
))))))
10135 op0
= SUBREG_REG (inner_op0
);
10136 op1
= SUBREG_REG (inner_op1
);
10138 /* The resulting comparison is always unsigned since we masked
10139 off the original sign bit. */
10140 code
= unsigned_condition (code
);
10146 for (tmode
= GET_CLASS_NARROWEST_MODE
10147 (GET_MODE_CLASS (GET_MODE (op0
)));
10148 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
10149 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
10151 op0
= gen_lowpart_for_combine (tmode
, inner_op0
);
10152 op1
= gen_lowpart_for_combine (tmode
, inner_op1
);
10153 code
= unsigned_condition (code
);
10162 /* If both operands are NOT, we can strip off the outer operation
10163 and adjust the comparison code for swapped operands; similarly for
10164 NEG, except that this must be an equality comparison. */
10165 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
10166 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
10167 && (code
== EQ
|| code
== NE
)))
10168 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
10174 /* If the first operand is a constant, swap the operands and adjust the
10175 comparison code appropriately, but don't do this if the second operand
10176 is already a constant integer. */
10177 if (CONSTANT_P (op0
) && GET_CODE (op1
) != CONST_INT
)
10179 tem
= op0
, op0
= op1
, op1
= tem
;
10180 code
= swap_condition (code
);
10183 /* We now enter a loop during which we will try to simplify the comparison.
10184 For the most part, we only are concerned with comparisons with zero,
10185 but some things may really be comparisons with zero but not start
10186 out looking that way. */
10188 while (GET_CODE (op1
) == CONST_INT
)
10190 enum machine_mode mode
= GET_MODE (op0
);
10191 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
10192 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
10193 int equality_comparison_p
;
10194 int sign_bit_comparison_p
;
10195 int unsigned_comparison_p
;
10196 HOST_WIDE_INT const_op
;
10198 /* We only want to handle integral modes. This catches VOIDmode,
10199 CCmode, and the floating-point modes. An exception is that we
10200 can handle VOIDmode if OP0 is a COMPARE or a comparison
10203 if (GET_MODE_CLASS (mode
) != MODE_INT
10204 && ! (mode
== VOIDmode
10205 && (GET_CODE (op0
) == COMPARE
10206 || GET_RTX_CLASS (GET_CODE (op0
)) == '<')))
10209 /* Get the constant we are comparing against and turn off all bits
10210 not on in our mode. */
10211 const_op
= trunc_int_for_mode (INTVAL (op1
), mode
);
10213 /* If we are comparing against a constant power of two and the value
10214 being compared can only have that single bit nonzero (e.g., it was
10215 `and'ed with that bit), we can replace this with a comparison
10218 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
10219 || code
== LT
|| code
== LTU
)
10220 && mode_width
<= HOST_BITS_PER_WIDE_INT
10221 && exact_log2 (const_op
) >= 0
10222 && nonzero_bits (op0
, mode
) == (unsigned HOST_WIDE_INT
) const_op
)
10224 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
10225 op1
= const0_rtx
, const_op
= 0;
10228 /* Similarly, if we are comparing a value known to be either -1 or
10229 0 with -1, change it to the opposite comparison against zero. */
10232 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
10233 || code
== GEU
|| code
== LTU
)
10234 && num_sign_bit_copies (op0
, mode
) == mode_width
)
10236 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
10237 op1
= const0_rtx
, const_op
= 0;
10240 /* Do some canonicalizations based on the comparison code. We prefer
10241 comparisons against zero and then prefer equality comparisons.
10242 If we can reduce the size of a constant, we will do that too. */
10247 /* < C is equivalent to <= (C - 1) */
10251 op1
= GEN_INT (const_op
);
10253 /* ... fall through to LE case below. */
10259 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10263 op1
= GEN_INT (const_op
);
10267 /* If we are doing a <= 0 comparison on a value known to have
10268 a zero sign bit, we can replace this with == 0. */
10269 else if (const_op
== 0
10270 && mode_width
<= HOST_BITS_PER_WIDE_INT
10271 && (nonzero_bits (op0
, mode
)
10272 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
10277 /* >= C is equivalent to > (C - 1). */
10281 op1
= GEN_INT (const_op
);
10283 /* ... fall through to GT below. */
10289 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10293 op1
= GEN_INT (const_op
);
10297 /* If we are doing a > 0 comparison on a value known to have
10298 a zero sign bit, we can replace this with != 0. */
10299 else if (const_op
== 0
10300 && mode_width
<= HOST_BITS_PER_WIDE_INT
10301 && (nonzero_bits (op0
, mode
)
10302 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
10307 /* < C is equivalent to <= (C - 1). */
10311 op1
= GEN_INT (const_op
);
10313 /* ... fall through ... */
10316 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10317 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10318 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10320 const_op
= 0, op1
= const0_rtx
;
10328 /* unsigned <= 0 is equivalent to == 0 */
10332 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10333 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10334 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
10336 const_op
= 0, op1
= const0_rtx
;
10342 /* >= C is equivalent to < (C - 1). */
10346 op1
= GEN_INT (const_op
);
10348 /* ... fall through ... */
10351 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10352 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10353 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10355 const_op
= 0, op1
= const0_rtx
;
10363 /* unsigned > 0 is equivalent to != 0 */
10367 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10368 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10369 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
10371 const_op
= 0, op1
= const0_rtx
;
10380 /* Compute some predicates to simplify code below. */
10382 equality_comparison_p
= (code
== EQ
|| code
== NE
);
10383 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
10384 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
10387 /* If this is a sign bit comparison and we can do arithmetic in
10388 MODE, say that we will only be needing the sign bit of OP0. */
10389 if (sign_bit_comparison_p
10390 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10391 op0
= force_to_mode (op0
, mode
,
10393 << (GET_MODE_BITSIZE (mode
) - 1)),
10396 /* Now try cases based on the opcode of OP0. If none of the cases
10397 does a "continue", we exit this loop immediately after the
10400 switch (GET_CODE (op0
))
10403 /* If we are extracting a single bit from a variable position in
10404 a constant that has only a single bit set and are comparing it
10405 with zero, we can convert this into an equality comparison
10406 between the position and the location of the single bit. */
10408 if (GET_CODE (XEXP (op0
, 0)) == CONST_INT
10409 && XEXP (op0
, 1) == const1_rtx
10410 && equality_comparison_p
&& const_op
== 0
10411 && (i
= exact_log2 (INTVAL (XEXP (op0
, 0)))) >= 0)
10413 if (BITS_BIG_ENDIAN
)
10416 mode
= insn_data
[(int) CODE_FOR_extzv
].operand
[1].mode
;
10417 if (mode
== VOIDmode
)
10419 i
= (GET_MODE_BITSIZE (mode
) - 1 - i
);
10421 i
= BITS_PER_WORD
- 1 - i
;
10425 op0
= XEXP (op0
, 2);
10429 /* Result is nonzero iff shift count is equal to I. */
10430 code
= reverse_condition (code
);
10434 /* ... fall through ... */
10437 tem
= expand_compound_operation (op0
);
10446 /* If testing for equality, we can take the NOT of the constant. */
10447 if (equality_comparison_p
10448 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
10450 op0
= XEXP (op0
, 0);
10455 /* If just looking at the sign bit, reverse the sense of the
10457 if (sign_bit_comparison_p
)
10459 op0
= XEXP (op0
, 0);
10460 code
= (code
== GE
? LT
: GE
);
10466 /* If testing for equality, we can take the NEG of the constant. */
10467 if (equality_comparison_p
10468 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
10470 op0
= XEXP (op0
, 0);
10475 /* The remaining cases only apply to comparisons with zero. */
10479 /* When X is ABS or is known positive,
10480 (neg X) is < 0 if and only if X != 0. */
10482 if (sign_bit_comparison_p
10483 && (GET_CODE (XEXP (op0
, 0)) == ABS
10484 || (mode_width
<= HOST_BITS_PER_WIDE_INT
10485 && (nonzero_bits (XEXP (op0
, 0), mode
)
10486 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)))
10488 op0
= XEXP (op0
, 0);
10489 code
= (code
== LT
? NE
: EQ
);
10493 /* If we have NEG of something whose two high-order bits are the
10494 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10495 if (num_sign_bit_copies (op0
, mode
) >= 2)
10497 op0
= XEXP (op0
, 0);
10498 code
= swap_condition (code
);
10504 /* If we are testing equality and our count is a constant, we
10505 can perform the inverse operation on our RHS. */
10506 if (equality_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10507 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
10508 op1
, XEXP (op0
, 1))) != 0)
10510 op0
= XEXP (op0
, 0);
10515 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10516 a particular bit. Convert it to an AND of a constant of that
10517 bit. This will be converted into a ZERO_EXTRACT. */
10518 if (const_op
== 0 && sign_bit_comparison_p
10519 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10520 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10522 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10525 - INTVAL (XEXP (op0
, 1)))));
10526 code
= (code
== LT
? NE
: EQ
);
10530 /* Fall through. */
10533 /* ABS is ignorable inside an equality comparison with zero. */
10534 if (const_op
== 0 && equality_comparison_p
)
10536 op0
= XEXP (op0
, 0);
10542 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10543 to (compare FOO CONST) if CONST fits in FOO's mode and we
10544 are either testing inequality or have an unsigned comparison
10545 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10546 if (! unsigned_comparison_p
10547 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10548 <= HOST_BITS_PER_WIDE_INT
)
10549 && ((unsigned HOST_WIDE_INT
) const_op
10550 < (((unsigned HOST_WIDE_INT
) 1
10551 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))) - 1)))))
10553 op0
= XEXP (op0
, 0);
10559 /* Check for the case where we are comparing A - C1 with C2,
10560 both constants are smaller than 1/2 the maximum positive
10561 value in MODE, and the comparison is equality or unsigned.
10562 In that case, if A is either zero-extended to MODE or has
10563 sufficient sign bits so that the high-order bit in MODE
10564 is a copy of the sign in the inner mode, we can prove that it is
10565 safe to do the operation in the wider mode. This simplifies
10566 many range checks. */
10568 if (mode_width
<= HOST_BITS_PER_WIDE_INT
10569 && subreg_lowpart_p (op0
)
10570 && GET_CODE (SUBREG_REG (op0
)) == PLUS
10571 && GET_CODE (XEXP (SUBREG_REG (op0
), 1)) == CONST_INT
10572 && INTVAL (XEXP (SUBREG_REG (op0
), 1)) < 0
10573 && (-INTVAL (XEXP (SUBREG_REG (op0
), 1))
10574 < (HOST_WIDE_INT
) (GET_MODE_MASK (mode
) / 2))
10575 && (unsigned HOST_WIDE_INT
) const_op
< GET_MODE_MASK (mode
) / 2
10576 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0
), 0),
10577 GET_MODE (SUBREG_REG (op0
)))
10578 & ~GET_MODE_MASK (mode
))
10579 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0
), 0),
10580 GET_MODE (SUBREG_REG (op0
)))
10581 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10582 - GET_MODE_BITSIZE (mode
)))))
10584 op0
= SUBREG_REG (op0
);
10588 /* If the inner mode is narrower and we are extracting the low part,
10589 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10590 if (subreg_lowpart_p (op0
)
10591 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
10592 /* Fall through */ ;
10596 /* ... fall through ... */
10599 if ((unsigned_comparison_p
|| equality_comparison_p
)
10600 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10601 <= HOST_BITS_PER_WIDE_INT
)
10602 && ((unsigned HOST_WIDE_INT
) const_op
10603 < GET_MODE_MASK (GET_MODE (XEXP (op0
, 0)))))
10605 op0
= XEXP (op0
, 0);
10611 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10612 this for equality comparisons due to pathological cases involving
10614 if (equality_comparison_p
10615 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10616 op1
, XEXP (op0
, 1))))
10618 op0
= XEXP (op0
, 0);
10623 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10624 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
10625 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
10627 op0
= XEXP (XEXP (op0
, 0), 0);
10628 code
= (code
== LT
? EQ
: NE
);
10634 /* We used to optimize signed comparisons against zero, but that
10635 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10636 arrive here as equality comparisons, or (GEU, LTU) are
10637 optimized away. No need to special-case them. */
10639 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10640 (eq B (minus A C)), whichever simplifies. We can only do
10641 this for equality comparisons due to pathological cases involving
10643 if (equality_comparison_p
10644 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
10645 XEXP (op0
, 1), op1
)))
10647 op0
= XEXP (op0
, 0);
10652 if (equality_comparison_p
10653 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10654 XEXP (op0
, 0), op1
)))
10656 op0
= XEXP (op0
, 1);
10661 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10662 of bits in X minus 1, is one iff X > 0. */
10663 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
10664 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10665 && INTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
10666 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10668 op0
= XEXP (op0
, 1);
10669 code
= (code
== GE
? LE
: GT
);
10675 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10676 if C is zero or B is a constant. */
10677 if (equality_comparison_p
10678 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
10679 XEXP (op0
, 1), op1
)))
10681 op0
= XEXP (op0
, 0);
10688 case UNEQ
: case LTGT
:
10689 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
10690 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
10691 case UNORDERED
: case ORDERED
:
10692 /* We can't do anything if OP0 is a condition code value, rather
10693 than an actual data value. */
10696 || XEXP (op0
, 0) == cc0_rtx
10698 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
10701 /* Get the two operands being compared. */
10702 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
10703 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
10705 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
10707 /* Check for the cases where we simply want the result of the
10708 earlier test or the opposite of that result. */
10709 if (code
== NE
|| code
== EQ
10710 || (GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10711 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10712 && (STORE_FLAG_VALUE
10713 & (((HOST_WIDE_INT
) 1
10714 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
10715 && (code
== LT
|| code
== GE
)))
10717 enum rtx_code new_code
;
10718 if (code
== LT
|| code
== NE
)
10719 new_code
= GET_CODE (op0
);
10721 new_code
= combine_reversed_comparison_code (op0
);
10723 if (new_code
!= UNKNOWN
)
10734 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10736 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
10737 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
10738 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10740 op0
= XEXP (op0
, 1);
10741 code
= (code
== GE
? GT
: LE
);
10747 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10748 will be converted to a ZERO_EXTRACT later. */
10749 if (const_op
== 0 && equality_comparison_p
10750 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10751 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
10753 op0
= simplify_and_const_int
10754 (op0
, mode
, gen_rtx_combine (LSHIFTRT
, mode
,
10756 XEXP (XEXP (op0
, 0), 1)),
10757 (HOST_WIDE_INT
) 1);
10761 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10762 zero and X is a comparison and C1 and C2 describe only bits set
10763 in STORE_FLAG_VALUE, we can compare with X. */
10764 if (const_op
== 0 && equality_comparison_p
10765 && mode_width
<= HOST_BITS_PER_WIDE_INT
10766 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10767 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10768 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10769 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
10770 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
10772 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10773 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
10774 if ((~STORE_FLAG_VALUE
& mask
) == 0
10775 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0
, 0), 0))) == '<'
10776 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
10777 && GET_RTX_CLASS (GET_CODE (tem
)) == '<')))
10779 op0
= XEXP (XEXP (op0
, 0), 0);
10784 /* If we are doing an equality comparison of an AND of a bit equal
10785 to the sign bit, replace this with a LT or GE comparison of
10786 the underlying value. */
10787 if (equality_comparison_p
10789 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10790 && mode_width
<= HOST_BITS_PER_WIDE_INT
10791 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10792 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10794 op0
= XEXP (op0
, 0);
10795 code
= (code
== EQ
? GE
: LT
);
10799 /* If this AND operation is really a ZERO_EXTEND from a narrower
10800 mode, the constant fits within that mode, and this is either an
10801 equality or unsigned comparison, try to do this comparison in
10802 the narrower mode. */
10803 if ((equality_comparison_p
|| unsigned_comparison_p
)
10804 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10805 && (i
= exact_log2 ((INTVAL (XEXP (op0
, 1))
10806 & GET_MODE_MASK (mode
))
10808 && const_op
>> i
== 0
10809 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
)
10811 op0
= gen_lowpart_for_combine (tmode
, XEXP (op0
, 0));
10815 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10816 in both M1 and M2 and the SUBREG is either paradoxical or
10817 represents the low part, permute the SUBREG and the AND and
10819 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
10821 #ifdef WORD_REGISTER_OPERATIONS
10823 > (GET_MODE_BITSIZE
10824 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10825 && mode_width
<= BITS_PER_WORD
)
10828 <= (GET_MODE_BITSIZE
10829 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10830 && subreg_lowpart_p (XEXP (op0
, 0))))
10831 #ifndef WORD_REGISTER_OPERATIONS
10832 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10833 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10834 As originally written the upper bits have a defined value
10835 due to the AND operation. However, if we commute the AND
10836 inside the SUBREG then they no longer have defined values
10837 and the meaning of the code has been changed. */
10838 && (GET_MODE_SIZE (GET_MODE (XEXP (op0
, 0)))
10839 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0
, 0)))))
10841 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10842 && mode_width
<= HOST_BITS_PER_WIDE_INT
10843 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))
10844 <= HOST_BITS_PER_WIDE_INT
)
10845 && (INTVAL (XEXP (op0
, 1)) & ~mask
) == 0
10846 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))
10847 & INTVAL (XEXP (op0
, 1)))
10848 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1)) != mask
10849 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10850 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10854 = gen_lowpart_for_combine
10856 gen_binary (AND
, GET_MODE (SUBREG_REG (XEXP (op0
, 0))),
10857 SUBREG_REG (XEXP (op0
, 0)), XEXP (op0
, 1)));
10861 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10862 (eq (and (lshiftrt X) 1) 0). */
10863 if (const_op
== 0 && equality_comparison_p
10864 && XEXP (op0
, 1) == const1_rtx
10865 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10866 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == NOT
)
10868 op0
= simplify_and_const_int
10869 (op0
, mode
, gen_rtx_combine (LSHIFTRT
, mode
,
10870 XEXP (XEXP (XEXP (op0
, 0), 0), 0),
10871 XEXP (XEXP (op0
, 0), 1)),
10872 (HOST_WIDE_INT
) 1);
10873 code
= (code
== NE
? EQ
: NE
);
10879 /* If we have (compare (ashift FOO N) (const_int C)) and
10880 the high order N bits of FOO (N+1 if an inequality comparison)
10881 are known to be zero, we can do this by comparing FOO with C
10882 shifted right N bits so long as the low-order N bits of C are
10884 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10885 && INTVAL (XEXP (op0
, 1)) >= 0
10886 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
10887 < HOST_BITS_PER_WIDE_INT
)
10889 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0)
10890 && mode_width
<= HOST_BITS_PER_WIDE_INT
10891 && (nonzero_bits (XEXP (op0
, 0), mode
)
10892 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
10893 + ! equality_comparison_p
))) == 0)
10895 /* We must perform a logical shift, not an arithmetic one,
10896 as we want the top N bits of C to be zero. */
10897 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
10899 temp
>>= INTVAL (XEXP (op0
, 1));
10900 op1
= GEN_INT (trunc_int_for_mode (temp
, mode
));
10901 op0
= XEXP (op0
, 0);
10905 /* If we are doing a sign bit comparison, it means we are testing
10906 a particular bit. Convert it to the appropriate AND. */
10907 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10908 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10910 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10913 - INTVAL (XEXP (op0
, 1)))));
10914 code
= (code
== LT
? NE
: EQ
);
10918 /* If this an equality comparison with zero and we are shifting
10919 the low bit to the sign bit, we can convert this to an AND of the
10921 if (const_op
== 0 && equality_comparison_p
10922 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10923 && INTVAL (XEXP (op0
, 1)) == mode_width
- 1)
10925 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10926 (HOST_WIDE_INT
) 1);
10932 /* If this is an equality comparison with zero, we can do this
10933 as a logical shift, which might be much simpler. */
10934 if (equality_comparison_p
&& const_op
== 0
10935 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
)
10937 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
10939 INTVAL (XEXP (op0
, 1)));
10943 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10944 do the comparison in a narrower mode. */
10945 if (! unsigned_comparison_p
10946 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10947 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10948 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
10949 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10950 MODE_INT
, 1)) != BLKmode
10951 && ((unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (tmode
)
10952 || ((unsigned HOST_WIDE_INT
) -const_op
10953 <= GET_MODE_MASK (tmode
))))
10955 op0
= gen_lowpart_for_combine (tmode
, XEXP (XEXP (op0
, 0), 0));
10959 /* Likewise if OP0 is a PLUS of a sign extension with a
10960 constant, which is usually represented with the PLUS
10961 between the shifts. */
10962 if (! unsigned_comparison_p
10963 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10964 && GET_CODE (XEXP (op0
, 0)) == PLUS
10965 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10966 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
10967 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
10968 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10969 MODE_INT
, 1)) != BLKmode
10970 && ((unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (tmode
)
10971 || ((unsigned HOST_WIDE_INT
) -const_op
10972 <= GET_MODE_MASK (tmode
))))
10974 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
10975 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
10976 rtx new_const
= gen_binary (ASHIFTRT
, GET_MODE (op0
), add_const
,
10979 op0
= gen_binary (PLUS
, tmode
,
10980 gen_lowpart_for_combine (tmode
, inner
),
10985 /* ... fall through ... */
10987 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10988 the low order N bits of FOO are known to be zero, we can do this
10989 by comparing FOO with C shifted left N bits so long as no
10990 overflow occurs. */
10991 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10992 && INTVAL (XEXP (op0
, 1)) >= 0
10993 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
10994 && mode_width
<= HOST_BITS_PER_WIDE_INT
10995 && (nonzero_bits (XEXP (op0
, 0), mode
)
10996 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0
10998 || (floor_log2 (const_op
) + INTVAL (XEXP (op0
, 1))
11001 const_op
<<= INTVAL (XEXP (op0
, 1));
11002 op1
= GEN_INT (const_op
);
11003 op0
= XEXP (op0
, 0);
11007 /* If we are using this shift to extract just the sign bit, we
11008 can replace this with an LT or GE comparison. */
11010 && (equality_comparison_p
|| sign_bit_comparison_p
)
11011 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
11012 && INTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11014 op0
= XEXP (op0
, 0);
11015 code
= (code
== NE
|| code
== GT
? LT
: GE
);
11027 /* Now make any compound operations involved in this comparison. Then,
11028 check for an outmost SUBREG on OP0 that is not doing anything or is
11029 paradoxical. The latter case can only occur when it is known that the
11030 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
11031 We can never remove a SUBREG for a non-equality comparison because the
11032 sign bit is in a different place in the underlying object. */
11034 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
11035 op1
= make_compound_operation (op1
, SET
);
11037 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
11038 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
11039 && (code
== NE
|| code
== EQ
)
11040 && ((GET_MODE_SIZE (GET_MODE (op0
))
11041 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))))
11043 op0
= SUBREG_REG (op0
);
11044 op1
= gen_lowpart_for_combine (GET_MODE (op0
), op1
);
11047 else if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
11048 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
11049 && (code
== NE
|| code
== EQ
)
11050 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
11051 <= HOST_BITS_PER_WIDE_INT
)
11052 && (nonzero_bits (SUBREG_REG (op0
), GET_MODE (SUBREG_REG (op0
)))
11053 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0
11054 && (tem
= gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0
)),
11056 (nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
11057 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0))
11058 op0
= SUBREG_REG (op0
), op1
= tem
;
11060 /* We now do the opposite procedure: Some machines don't have compare
11061 insns in all modes. If OP0's mode is an integer mode smaller than a
11062 word and we can't do a compare in that mode, see if there is a larger
11063 mode for which we can do the compare. There are a number of cases in
11064 which we can use the wider mode. */
11066 mode
= GET_MODE (op0
);
11067 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
11068 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
11069 && cmp_optab
->handlers
[(int) mode
].insn_code
== CODE_FOR_nothing
)
11070 for (tmode
= GET_MODE_WIDER_MODE (mode
);
11072 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
);
11073 tmode
= GET_MODE_WIDER_MODE (tmode
))
11074 if (cmp_optab
->handlers
[(int) tmode
].insn_code
!= CODE_FOR_nothing
)
11076 /* If the only nonzero bits in OP0 and OP1 are those in the
11077 narrower mode and this is an equality or unsigned comparison,
11078 we can use the wider mode. Similarly for sign-extended
11079 values, in which case it is true for all comparisons. */
11080 if (((code
== EQ
|| code
== NE
11081 || code
== GEU
|| code
== GTU
|| code
== LEU
|| code
== LTU
)
11082 && (nonzero_bits (op0
, tmode
) & ~GET_MODE_MASK (mode
)) == 0
11083 && (nonzero_bits (op1
, tmode
) & ~GET_MODE_MASK (mode
)) == 0)
11084 || ((num_sign_bit_copies (op0
, tmode
)
11085 > GET_MODE_BITSIZE (tmode
) - GET_MODE_BITSIZE (mode
))
11086 && (num_sign_bit_copies (op1
, tmode
)
11087 > GET_MODE_BITSIZE (tmode
) - GET_MODE_BITSIZE (mode
))))
11089 /* If OP0 is an AND and we don't have an AND in MODE either,
11090 make a new AND in the proper mode. */
11091 if (GET_CODE (op0
) == AND
11092 && (add_optab
->handlers
[(int) mode
].insn_code
11093 == CODE_FOR_nothing
))
11094 op0
= gen_binary (AND
, tmode
,
11095 gen_lowpart_for_combine (tmode
,
11097 gen_lowpart_for_combine (tmode
,
11100 op0
= gen_lowpart_for_combine (tmode
, op0
);
11101 op1
= gen_lowpart_for_combine (tmode
, op1
);
11105 /* If this is a test for negative, we can make an explicit
11106 test of the sign bit. */
11108 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
11109 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
11111 op0
= gen_binary (AND
, tmode
,
11112 gen_lowpart_for_combine (tmode
, op0
),
11113 GEN_INT ((HOST_WIDE_INT
) 1
11114 << (GET_MODE_BITSIZE (mode
) - 1)));
11115 code
= (code
== LT
) ? NE
: EQ
;
11120 #ifdef CANONICALIZE_COMPARISON
11121 /* If this machine only supports a subset of valid comparisons, see if we
11122 can convert an unsupported one into a supported one. */
11123 CANONICALIZE_COMPARISON (code
, op0
, op1
);
11132 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11133 searching backward. */
11134 static enum rtx_code
11135 combine_reversed_comparison_code (exp
)
11138 enum rtx_code code1
= reversed_comparison_code (exp
, NULL
);
11141 if (code1
!= UNKNOWN
11142 || GET_MODE_CLASS (GET_MODE (XEXP (exp
, 0))) != MODE_CC
)
11144 /* Otherwise try and find where the condition codes were last set and
11146 x
= get_last_value (XEXP (exp
, 0));
11147 if (!x
|| GET_CODE (x
) != COMPARE
)
11149 return reversed_comparison_code_parts (GET_CODE (exp
),
11150 XEXP (x
, 0), XEXP (x
, 1), NULL
);
11152 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11153 Return NULL_RTX in case we fail to do the reversal. */
11155 reversed_comparison (exp
, mode
, op0
, op1
)
11157 enum machine_mode mode
;
11159 enum rtx_code reversed_code
= combine_reversed_comparison_code (exp
);
11160 if (reversed_code
== UNKNOWN
)
11163 return gen_binary (reversed_code
, mode
, op0
, op1
);
11166 /* Utility function for following routine. Called when X is part of a value
11167 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11168 for each register mentioned. Similar to mention_regs in cse.c */
11171 update_table_tick (x
)
11174 register enum rtx_code code
= GET_CODE (x
);
11175 register const char *fmt
= GET_RTX_FORMAT (code
);
11180 unsigned int regno
= REGNO (x
);
11181 unsigned int endregno
11182 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11183 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11186 for (r
= regno
; r
< endregno
; r
++)
11187 reg_last_set_table_tick
[r
] = label_tick
;
11192 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11193 /* Note that we can't have an "E" in values stored; see
11194 get_last_value_validate. */
11196 update_table_tick (XEXP (x
, i
));
11199 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11200 are saying that the register is clobbered and we no longer know its
11201 value. If INSN is zero, don't update reg_last_set; this is only permitted
11202 with VALUE also zero and is used to invalidate the register. */
11205 record_value_for_reg (reg
, insn
, value
)
11210 unsigned int regno
= REGNO (reg
);
11211 unsigned int endregno
11212 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11213 ? HARD_REGNO_NREGS (regno
, GET_MODE (reg
)) : 1);
11216 /* If VALUE contains REG and we have a previous value for REG, substitute
11217 the previous value. */
11218 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
11222 /* Set things up so get_last_value is allowed to see anything set up to
11224 subst_low_cuid
= INSN_CUID (insn
);
11225 tem
= get_last_value (reg
);
11227 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11228 it isn't going to be useful and will take a lot of time to process,
11229 so just use the CLOBBER. */
11233 if ((GET_RTX_CLASS (GET_CODE (tem
)) == '2'
11234 || GET_RTX_CLASS (GET_CODE (tem
)) == 'c')
11235 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
11236 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
11237 tem
= XEXP (tem
, 0);
11239 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
11243 /* For each register modified, show we don't know its value, that
11244 we don't know about its bitwise content, that its value has been
11245 updated, and that we don't know the location of the death of the
11247 for (i
= regno
; i
< endregno
; i
++)
11250 reg_last_set
[i
] = insn
;
11252 reg_last_set_value
[i
] = 0;
11253 reg_last_set_mode
[i
] = 0;
11254 reg_last_set_nonzero_bits
[i
] = 0;
11255 reg_last_set_sign_bit_copies
[i
] = 0;
11256 reg_last_death
[i
] = 0;
11259 /* Mark registers that are being referenced in this value. */
11261 update_table_tick (value
);
11263 /* Now update the status of each register being set.
11264 If someone is using this register in this block, set this register
11265 to invalid since we will get confused between the two lives in this
11266 basic block. This makes using this register always invalid. In cse, we
11267 scan the table to invalidate all entries using this register, but this
11268 is too much work for us. */
11270 for (i
= regno
; i
< endregno
; i
++)
11272 reg_last_set_label
[i
] = label_tick
;
11273 if (value
&& reg_last_set_table_tick
[i
] == label_tick
)
11274 reg_last_set_invalid
[i
] = 1;
11276 reg_last_set_invalid
[i
] = 0;
11279 /* The value being assigned might refer to X (like in "x++;"). In that
11280 case, we must replace it with (clobber (const_int 0)) to prevent
11282 if (value
&& ! get_last_value_validate (&value
, insn
,
11283 reg_last_set_label
[regno
], 0))
11285 value
= copy_rtx (value
);
11286 if (! get_last_value_validate (&value
, insn
,
11287 reg_last_set_label
[regno
], 1))
11291 /* For the main register being modified, update the value, the mode, the
11292 nonzero bits, and the number of sign bit copies. */
11294 reg_last_set_value
[regno
] = value
;
11298 subst_low_cuid
= INSN_CUID (insn
);
11299 reg_last_set_mode
[regno
] = GET_MODE (reg
);
11300 reg_last_set_nonzero_bits
[regno
] = nonzero_bits (value
, GET_MODE (reg
));
11301 reg_last_set_sign_bit_copies
[regno
]
11302 = num_sign_bit_copies (value
, GET_MODE (reg
));
11306 /* Called via note_stores from record_dead_and_set_regs to handle one
11307 SET or CLOBBER in an insn. DATA is the instruction in which the
11308 set is occurring. */
11311 record_dead_and_set_regs_1 (dest
, setter
, data
)
11315 rtx record_dead_insn
= (rtx
) data
;
11317 if (GET_CODE (dest
) == SUBREG
)
11318 dest
= SUBREG_REG (dest
);
11320 if (GET_CODE (dest
) == REG
)
11322 /* If we are setting the whole register, we know its value. Otherwise
11323 show that we don't know the value. We can handle SUBREG in
11325 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
11326 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
11327 else if (GET_CODE (setter
) == SET
11328 && GET_CODE (SET_DEST (setter
)) == SUBREG
11329 && SUBREG_REG (SET_DEST (setter
)) == dest
11330 && GET_MODE_BITSIZE (GET_MODE (dest
)) <= BITS_PER_WORD
11331 && subreg_lowpart_p (SET_DEST (setter
)))
11332 record_value_for_reg (dest
, record_dead_insn
,
11333 gen_lowpart_for_combine (GET_MODE (dest
),
11334 SET_SRC (setter
)));
11336 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
11338 else if (GET_CODE (dest
) == MEM
11339 /* Ignore pushes, they clobber nothing. */
11340 && ! push_operand (dest
, GET_MODE (dest
)))
11341 mem_last_set
= INSN_CUID (record_dead_insn
);
11344 /* Update the records of when each REG was most recently set or killed
11345 for the things done by INSN. This is the last thing done in processing
11346 INSN in the combiner loop.
11348 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11349 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11350 and also the similar information mem_last_set (which insn most recently
11351 modified memory) and last_call_cuid (which insn was the most recent
11352 subroutine call). */
11355 record_dead_and_set_regs (insn
)
11361 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
11363 if (REG_NOTE_KIND (link
) == REG_DEAD
11364 && GET_CODE (XEXP (link
, 0)) == REG
)
11366 unsigned int regno
= REGNO (XEXP (link
, 0));
11367 unsigned int endregno
11368 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11369 ? HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (link
, 0)))
11372 for (i
= regno
; i
< endregno
; i
++)
11373 reg_last_death
[i
] = insn
;
11375 else if (REG_NOTE_KIND (link
) == REG_INC
)
11376 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
11379 if (GET_CODE (insn
) == CALL_INSN
)
11381 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
11382 if (call_used_regs
[i
])
11384 reg_last_set_value
[i
] = 0;
11385 reg_last_set_mode
[i
] = 0;
11386 reg_last_set_nonzero_bits
[i
] = 0;
11387 reg_last_set_sign_bit_copies
[i
] = 0;
11388 reg_last_death
[i
] = 0;
11391 last_call_cuid
= mem_last_set
= INSN_CUID (insn
);
11394 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
11397 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11398 register present in the SUBREG, so for each such SUBREG go back and
11399 adjust nonzero and sign bit information of the registers that are
11400 known to have some zero/sign bits set.
11402 This is needed because when combine blows the SUBREGs away, the
11403 information on zero/sign bits is lost and further combines can be
11404 missed because of that. */
11407 record_promoted_value (insn
, subreg
)
11412 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
11413 enum machine_mode mode
= GET_MODE (subreg
);
11415 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
11418 for (links
= LOG_LINKS (insn
); links
;)
11420 insn
= XEXP (links
, 0);
11421 set
= single_set (insn
);
11423 if (! set
|| GET_CODE (SET_DEST (set
)) != REG
11424 || REGNO (SET_DEST (set
)) != regno
11425 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
11427 links
= XEXP (links
, 1);
11431 if (reg_last_set
[regno
] == insn
)
11433 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
11434 reg_last_set_nonzero_bits
[regno
] &= GET_MODE_MASK (mode
);
11437 if (GET_CODE (SET_SRC (set
)) == REG
)
11439 regno
= REGNO (SET_SRC (set
));
11440 links
= LOG_LINKS (insn
);
11447 /* Scan X for promoted SUBREGs. For each one found,
11448 note what it implies to the registers used in it. */
11451 check_promoted_subreg (insn
, x
)
11455 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
11456 && GET_CODE (SUBREG_REG (x
)) == REG
)
11457 record_promoted_value (insn
, x
);
11460 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
11463 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
11467 check_promoted_subreg (insn
, XEXP (x
, i
));
11471 if (XVEC (x
, i
) != 0)
11472 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11473 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
11479 /* Utility routine for the following function. Verify that all the registers
11480 mentioned in *LOC are valid when *LOC was part of a value set when
11481 label_tick == TICK. Return 0 if some are not.
11483 If REPLACE is non-zero, replace the invalid reference with
11484 (clobber (const_int 0)) and return 1. This replacement is useful because
11485 we often can get useful information about the form of a value (e.g., if
11486 it was produced by a shift that always produces -1 or 0) even though
11487 we don't know exactly what registers it was produced from. */
11490 get_last_value_validate (loc
, insn
, tick
, replace
)
11497 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
11498 int len
= GET_RTX_LENGTH (GET_CODE (x
));
11501 if (GET_CODE (x
) == REG
)
11503 unsigned int regno
= REGNO (x
);
11504 unsigned int endregno
11505 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11506 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11509 for (j
= regno
; j
< endregno
; j
++)
11510 if (reg_last_set_invalid
[j
]
11511 /* If this is a pseudo-register that was only set once and not
11512 live at the beginning of the function, it is always valid. */
11513 || (! (regno
>= FIRST_PSEUDO_REGISTER
11514 && REG_N_SETS (regno
) == 1
11515 && (! REGNO_REG_SET_P
11516 (BASIC_BLOCK (0)->global_live_at_start
, regno
)))
11517 && reg_last_set_label
[j
] > tick
))
11520 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11526 /* If this is a memory reference, make sure that there were
11527 no stores after it that might have clobbered the value. We don't
11528 have alias info, so we assume any store invalidates it. */
11529 else if (GET_CODE (x
) == MEM
&& ! RTX_UNCHANGING_P (x
)
11530 && INSN_CUID (insn
) <= mem_last_set
)
11533 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11537 for (i
= 0; i
< len
; i
++)
11539 && get_last_value_validate (&XEXP (x
, i
), insn
, tick
, replace
) == 0)
11540 /* Don't bother with these. They shouldn't occur anyway. */
11544 /* If we haven't found a reason for it to be invalid, it is valid. */
11548 /* Get the last value assigned to X, if known. Some registers
11549 in the value may be replaced with (clobber (const_int 0)) if their value
11550 is known longer known reliably. */
11556 unsigned int regno
;
11559 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11560 then convert it to the desired mode. If this is a paradoxical SUBREG,
11561 we cannot predict what values the "extra" bits might have. */
11562 if (GET_CODE (x
) == SUBREG
11563 && subreg_lowpart_p (x
)
11564 && (GET_MODE_SIZE (GET_MODE (x
))
11565 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
11566 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
11567 return gen_lowpart_for_combine (GET_MODE (x
), value
);
11569 if (GET_CODE (x
) != REG
)
11573 value
= reg_last_set_value
[regno
];
11575 /* If we don't have a value, or if it isn't for this basic block and
11576 it's either a hard register, set more than once, or it's a live
11577 at the beginning of the function, return 0.
11579 Because if it's not live at the beginnning of the function then the reg
11580 is always set before being used (is never used without being set).
11581 And, if it's set only once, and it's always set before use, then all
11582 uses must have the same last value, even if it's not from this basic
11586 || (reg_last_set_label
[regno
] != label_tick
11587 && (regno
< FIRST_PSEUDO_REGISTER
11588 || REG_N_SETS (regno
) != 1
11589 || (REGNO_REG_SET_P
11590 (BASIC_BLOCK (0)->global_live_at_start
, regno
)))))
11593 /* If the value was set in a later insn than the ones we are processing,
11594 we can't use it even if the register was only set once. */
11595 if (INSN_CUID (reg_last_set
[regno
]) >= subst_low_cuid
)
11598 /* If the value has all its registers valid, return it. */
11599 if (get_last_value_validate (&value
, reg_last_set
[regno
],
11600 reg_last_set_label
[regno
], 0))
11603 /* Otherwise, make a copy and replace any invalid register with
11604 (clobber (const_int 0)). If that fails for some reason, return 0. */
11606 value
= copy_rtx (value
);
11607 if (get_last_value_validate (&value
, reg_last_set
[regno
],
11608 reg_last_set_label
[regno
], 1))
11614 /* Return nonzero if expression X refers to a REG or to memory
11615 that is set in an instruction more recent than FROM_CUID. */
11618 use_crosses_set_p (x
, from_cuid
)
11622 register const char *fmt
;
11624 register enum rtx_code code
= GET_CODE (x
);
11628 unsigned int regno
= REGNO (x
);
11629 unsigned endreg
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11630 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11632 #ifdef PUSH_ROUNDING
11633 /* Don't allow uses of the stack pointer to be moved,
11634 because we don't know whether the move crosses a push insn. */
11635 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
11638 for (; regno
< endreg
; regno
++)
11639 if (reg_last_set
[regno
]
11640 && INSN_CUID (reg_last_set
[regno
]) > from_cuid
)
11645 if (code
== MEM
&& mem_last_set
> from_cuid
)
11648 fmt
= GET_RTX_FORMAT (code
);
11650 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11655 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11656 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_cuid
))
11659 else if (fmt
[i
] == 'e'
11660 && use_crosses_set_p (XEXP (x
, i
), from_cuid
))
11666 /* Define three variables used for communication between the following
11669 static unsigned int reg_dead_regno
, reg_dead_endregno
;
11670 static int reg_dead_flag
;
11672 /* Function called via note_stores from reg_dead_at_p.
11674 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11675 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11678 reg_dead_at_p_1 (dest
, x
, data
)
11681 void *data ATTRIBUTE_UNUSED
;
11683 unsigned int regno
, endregno
;
11685 if (GET_CODE (dest
) != REG
)
11688 regno
= REGNO (dest
);
11689 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11690 ? HARD_REGNO_NREGS (regno
, GET_MODE (dest
)) : 1);
11692 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
11693 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
11696 /* Return non-zero if REG is known to be dead at INSN.
11698 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11699 referencing REG, it is dead. If we hit a SET referencing REG, it is
11700 live. Otherwise, see if it is live or dead at the start of the basic
11701 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11702 must be assumed to be always live. */
11705 reg_dead_at_p (reg
, insn
)
11712 /* Set variables for reg_dead_at_p_1. */
11713 reg_dead_regno
= REGNO (reg
);
11714 reg_dead_endregno
= reg_dead_regno
+ (reg_dead_regno
< FIRST_PSEUDO_REGISTER
11715 ? HARD_REGNO_NREGS (reg_dead_regno
,
11721 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11722 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
11724 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11725 if (TEST_HARD_REG_BIT (newpat_used_regs
, i
))
11729 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11730 beginning of function. */
11731 for (; insn
&& GET_CODE (insn
) != CODE_LABEL
&& GET_CODE (insn
) != BARRIER
;
11732 insn
= prev_nonnote_insn (insn
))
11734 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
11736 return reg_dead_flag
== 1 ? 1 : 0;
11738 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
11742 /* Get the basic block number that we were in. */
11747 for (block
= 0; block
< n_basic_blocks
; block
++)
11748 if (insn
== BLOCK_HEAD (block
))
11751 if (block
== n_basic_blocks
)
11755 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11756 if (REGNO_REG_SET_P (BASIC_BLOCK (block
)->global_live_at_start
, i
))
11762 /* Note hard registers in X that are used. This code is similar to
11763 that in flow.c, but much simpler since we don't care about pseudos. */
11766 mark_used_regs_combine (x
)
11769 RTX_CODE code
= GET_CODE (x
);
11770 unsigned int regno
;
11782 case ADDR_DIFF_VEC
:
11785 /* CC0 must die in the insn after it is set, so we don't need to take
11786 special note of it here. */
11792 /* If we are clobbering a MEM, mark any hard registers inside the
11793 address as used. */
11794 if (GET_CODE (XEXP (x
, 0)) == MEM
)
11795 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
11800 /* A hard reg in a wide mode may really be multiple registers.
11801 If so, mark all of them just like the first. */
11802 if (regno
< FIRST_PSEUDO_REGISTER
)
11804 unsigned int endregno
, r
;
11806 /* None of this applies to the stack, frame or arg pointers */
11807 if (regno
== STACK_POINTER_REGNUM
11808 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11809 || regno
== HARD_FRAME_POINTER_REGNUM
11811 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11812 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
11814 || regno
== FRAME_POINTER_REGNUM
)
11817 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11818 for (r
= regno
; r
< endregno
; r
++)
11819 SET_HARD_REG_BIT (newpat_used_regs
, r
);
11825 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11827 register rtx testreg
= SET_DEST (x
);
11829 while (GET_CODE (testreg
) == SUBREG
11830 || GET_CODE (testreg
) == ZERO_EXTRACT
11831 || GET_CODE (testreg
) == SIGN_EXTRACT
11832 || GET_CODE (testreg
) == STRICT_LOW_PART
)
11833 testreg
= XEXP (testreg
, 0);
11835 if (GET_CODE (testreg
) == MEM
)
11836 mark_used_regs_combine (XEXP (testreg
, 0));
11838 mark_used_regs_combine (SET_SRC (x
));
11846 /* Recursively scan the operands of this expression. */
11849 register const char *fmt
= GET_RTX_FORMAT (code
);
11851 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11854 mark_used_regs_combine (XEXP (x
, i
));
11855 else if (fmt
[i
] == 'E')
11859 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11860 mark_used_regs_combine (XVECEXP (x
, i
, j
));
11866 /* Remove register number REGNO from the dead registers list of INSN.
11868 Return the note used to record the death, if there was one. */
11871 remove_death (regno
, insn
)
11872 unsigned int regno
;
11875 register rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
11879 REG_N_DEATHS (regno
)--;
11880 remove_note (insn
, note
);
11886 /* For each register (hardware or pseudo) used within expression X, if its
11887 death is in an instruction with cuid between FROM_CUID (inclusive) and
11888 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11889 list headed by PNOTES.
11891 That said, don't move registers killed by maybe_kill_insn.
11893 This is done when X is being merged by combination into TO_INSN. These
11894 notes will then be distributed as needed. */
11897 move_deaths (x
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
)
11899 rtx maybe_kill_insn
;
11904 register const char *fmt
;
11905 register int len
, i
;
11906 register enum rtx_code code
= GET_CODE (x
);
11910 unsigned int regno
= REGNO (x
);
11911 register rtx where_dead
= reg_last_death
[regno
];
11912 register rtx before_dead
, after_dead
;
11914 /* Don't move the register if it gets killed in between from and to */
11915 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
11916 && ! reg_referenced_p (x
, maybe_kill_insn
))
11919 /* WHERE_DEAD could be a USE insn made by combine, so first we
11920 make sure that we have insns with valid INSN_CUID values. */
11921 before_dead
= where_dead
;
11922 while (before_dead
&& INSN_UID (before_dead
) > max_uid_cuid
)
11923 before_dead
= PREV_INSN (before_dead
);
11925 after_dead
= where_dead
;
11926 while (after_dead
&& INSN_UID (after_dead
) > max_uid_cuid
)
11927 after_dead
= NEXT_INSN (after_dead
);
11929 if (before_dead
&& after_dead
11930 && INSN_CUID (before_dead
) >= from_cuid
11931 && (INSN_CUID (after_dead
) < INSN_CUID (to_insn
)
11932 || (where_dead
!= after_dead
11933 && INSN_CUID (after_dead
) == INSN_CUID (to_insn
))))
11935 rtx note
= remove_death (regno
, where_dead
);
11937 /* It is possible for the call above to return 0. This can occur
11938 when reg_last_death points to I2 or I1 that we combined with.
11939 In that case make a new note.
11941 We must also check for the case where X is a hard register
11942 and NOTE is a death note for a range of hard registers
11943 including X. In that case, we must put REG_DEAD notes for
11944 the remaining registers in place of NOTE. */
11946 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
11947 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11948 > GET_MODE_SIZE (GET_MODE (x
))))
11950 unsigned int deadregno
= REGNO (XEXP (note
, 0));
11951 unsigned int deadend
11952 = (deadregno
+ HARD_REGNO_NREGS (deadregno
,
11953 GET_MODE (XEXP (note
, 0))));
11954 unsigned int ourend
11955 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11958 for (i
= deadregno
; i
< deadend
; i
++)
11959 if (i
< regno
|| i
>= ourend
)
11960 REG_NOTES (where_dead
)
11961 = gen_rtx_EXPR_LIST (REG_DEAD
,
11962 gen_rtx_REG (reg_raw_mode
[i
], i
),
11963 REG_NOTES (where_dead
));
11966 /* If we didn't find any note, or if we found a REG_DEAD note that
11967 covers only part of the given reg, and we have a multi-reg hard
11968 register, then to be safe we must check for REG_DEAD notes
11969 for each register other than the first. They could have
11970 their own REG_DEAD notes lying around. */
11971 else if ((note
== 0
11973 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11974 < GET_MODE_SIZE (GET_MODE (x
)))))
11975 && regno
< FIRST_PSEUDO_REGISTER
11976 && HARD_REGNO_NREGS (regno
, GET_MODE (x
)) > 1)
11978 unsigned int ourend
11979 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11980 unsigned int i
, offset
;
11984 offset
= HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (note
, 0)));
11988 for (i
= regno
+ offset
; i
< ourend
; i
++)
11989 move_deaths (gen_rtx_REG (reg_raw_mode
[i
], i
),
11990 maybe_kill_insn
, from_cuid
, to_insn
, &oldnotes
);
11993 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
11995 XEXP (note
, 1) = *pnotes
;
11999 *pnotes
= gen_rtx_EXPR_LIST (REG_DEAD
, x
, *pnotes
);
12001 REG_N_DEATHS (regno
)++;
12007 else if (GET_CODE (x
) == SET
)
12009 rtx dest
= SET_DEST (x
);
12011 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
12013 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12014 that accesses one word of a multi-word item, some
12015 piece of everything register in the expression is used by
12016 this insn, so remove any old death. */
12018 if (GET_CODE (dest
) == ZERO_EXTRACT
12019 || GET_CODE (dest
) == STRICT_LOW_PART
12020 || (GET_CODE (dest
) == SUBREG
12021 && (((GET_MODE_SIZE (GET_MODE (dest
))
12022 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
12023 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
12024 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
12026 move_deaths (dest
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
12030 /* If this is some other SUBREG, we know it replaces the entire
12031 value, so use that as the destination. */
12032 if (GET_CODE (dest
) == SUBREG
)
12033 dest
= SUBREG_REG (dest
);
12035 /* If this is a MEM, adjust deaths of anything used in the address.
12036 For a REG (the only other possibility), the entire value is
12037 being replaced so the old value is not used in this insn. */
12039 if (GET_CODE (dest
) == MEM
)
12040 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_cuid
,
12045 else if (GET_CODE (x
) == CLOBBER
)
12048 len
= GET_RTX_LENGTH (code
);
12049 fmt
= GET_RTX_FORMAT (code
);
12051 for (i
= 0; i
< len
; i
++)
12056 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
12057 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_cuid
,
12060 else if (fmt
[i
] == 'e')
12061 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
12065 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12066 pattern of an insn. X must be a REG. */
12069 reg_bitfield_target_p (x
, body
)
12075 if (GET_CODE (body
) == SET
)
12077 rtx dest
= SET_DEST (body
);
12079 unsigned int regno
, tregno
, endregno
, endtregno
;
12081 if (GET_CODE (dest
) == ZERO_EXTRACT
)
12082 target
= XEXP (dest
, 0);
12083 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
12084 target
= SUBREG_REG (XEXP (dest
, 0));
12088 if (GET_CODE (target
) == SUBREG
)
12089 target
= SUBREG_REG (target
);
12091 if (GET_CODE (target
) != REG
)
12094 tregno
= REGNO (target
), regno
= REGNO (x
);
12095 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
12096 return target
== x
;
12098 endtregno
= tregno
+ HARD_REGNO_NREGS (tregno
, GET_MODE (target
));
12099 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
12101 return endregno
> tregno
&& regno
< endtregno
;
12104 else if (GET_CODE (body
) == PARALLEL
)
12105 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
12106 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
12112 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12113 as appropriate. I3 and I2 are the insns resulting from the combination
12114 insns including FROM (I2 may be zero).
12116 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12117 not need REG_DEAD notes because they are being substituted for. This
12118 saves searching in the most common cases.
12120 Each note in the list is either ignored or placed on some insns, depending
12121 on the type of note. */
12124 distribute_notes (notes
, from_insn
, i3
, i2
, elim_i2
, elim_i1
)
12128 rtx elim_i2
, elim_i1
;
12130 rtx note
, next_note
;
12133 for (note
= notes
; note
; note
= next_note
)
12135 rtx place
= 0, place2
= 0;
12137 /* If this NOTE references a pseudo register, ensure it references
12138 the latest copy of that register. */
12139 if (XEXP (note
, 0) && GET_CODE (XEXP (note
, 0)) == REG
12140 && REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
)
12141 XEXP (note
, 0) = regno_reg_rtx
[REGNO (XEXP (note
, 0))];
12143 next_note
= XEXP (note
, 1);
12144 switch (REG_NOTE_KIND (note
))
12147 case REG_EXEC_COUNT
:
12148 /* Doesn't matter much where we put this, as long as it's somewhere.
12149 It is preferable to keep these notes on branches, which is most
12150 likely to be i3. */
12154 case REG_NON_LOCAL_GOTO
:
12155 if (GET_CODE (i3
) == JUMP_INSN
)
12157 else if (i2
&& GET_CODE (i2
) == JUMP_INSN
)
12163 case REG_EH_REGION
:
12164 case REG_EH_RETHROW
:
12166 /* These notes must remain with the call. It should not be
12167 possible for both I2 and I3 to be a call. */
12168 if (GET_CODE (i3
) == CALL_INSN
)
12170 else if (i2
&& GET_CODE (i2
) == CALL_INSN
)
12177 /* Any clobbers for i3 may still exist, and so we must process
12178 REG_UNUSED notes from that insn.
12180 Any clobbers from i2 or i1 can only exist if they were added by
12181 recog_for_combine. In that case, recog_for_combine created the
12182 necessary REG_UNUSED notes. Trying to keep any original
12183 REG_UNUSED notes from these insns can cause incorrect output
12184 if it is for the same register as the original i3 dest.
12185 In that case, we will notice that the register is set in i3,
12186 and then add a REG_UNUSED note for the destination of i3, which
12187 is wrong. However, it is possible to have REG_UNUSED notes from
12188 i2 or i1 for register which were both used and clobbered, so
12189 we keep notes from i2 or i1 if they will turn into REG_DEAD
12192 /* If this register is set or clobbered in I3, put the note there
12193 unless there is one already. */
12194 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
12196 if (from_insn
!= i3
)
12199 if (! (GET_CODE (XEXP (note
, 0)) == REG
12200 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
12201 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
12204 /* Otherwise, if this register is used by I3, then this register
12205 now dies here, so we must put a REG_DEAD note here unless there
12207 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
12208 && ! (GET_CODE (XEXP (note
, 0)) == REG
12209 ? find_regno_note (i3
, REG_DEAD
,
12210 REGNO (XEXP (note
, 0)))
12211 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
12213 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
12221 /* These notes say something about results of an insn. We can
12222 only support them if they used to be on I3 in which case they
12223 remain on I3. Otherwise they are ignored.
12225 If the note refers to an expression that is not a constant, we
12226 must also ignore the note since we cannot tell whether the
12227 equivalence is still true. It might be possible to do
12228 slightly better than this (we only have a problem if I2DEST
12229 or I1DEST is present in the expression), but it doesn't
12230 seem worth the trouble. */
12232 if (from_insn
== i3
12233 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
12238 case REG_NO_CONFLICT
:
12239 /* These notes say something about how a register is used. They must
12240 be present on any use of the register in I2 or I3. */
12241 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
12244 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
12254 /* This can show up in several ways -- either directly in the
12255 pattern, or hidden off in the constant pool with (or without?)
12256 a REG_EQUAL note. */
12257 /* ??? Ignore the without-reg_equal-note problem for now. */
12258 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
12259 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
12260 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
12261 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
12265 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
12266 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
12267 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
12268 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
12279 /* These notes say something about the value of a register prior
12280 to the execution of an insn. It is too much trouble to see
12281 if the note is still correct in all situations. It is better
12282 to simply delete it. */
12286 /* If the insn previously containing this note still exists,
12287 put it back where it was. Otherwise move it to the previous
12288 insn. Adjust the corresponding REG_LIBCALL note. */
12289 if (GET_CODE (from_insn
) != NOTE
)
12293 tem
= find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
12294 place
= prev_real_insn (from_insn
);
12296 XEXP (tem
, 0) = place
;
12297 /* If we're deleting the last remaining instruction of a
12298 libcall sequence, don't add the notes. */
12299 else if (XEXP (note
, 0) == from_insn
)
12305 /* This is handled similarly to REG_RETVAL. */
12306 if (GET_CODE (from_insn
) != NOTE
)
12310 tem
= find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
12311 place
= next_real_insn (from_insn
);
12313 XEXP (tem
, 0) = place
;
12314 /* If we're deleting the last remaining instruction of a
12315 libcall sequence, don't add the notes. */
12316 else if (XEXP (note
, 0) == from_insn
)
12322 /* If the register is used as an input in I3, it dies there.
12323 Similarly for I2, if it is non-zero and adjacent to I3.
12325 If the register is not used as an input in either I3 or I2
12326 and it is not one of the registers we were supposed to eliminate,
12327 there are two possibilities. We might have a non-adjacent I2
12328 or we might have somehow eliminated an additional register
12329 from a computation. For example, we might have had A & B where
12330 we discover that B will always be zero. In this case we will
12331 eliminate the reference to A.
12333 In both cases, we must search to see if we can find a previous
12334 use of A and put the death note there. */
12337 && GET_CODE (from_insn
) == CALL_INSN
12338 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
12340 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
12342 else if (i2
!= 0 && next_nonnote_insn (i2
) == i3
12343 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12346 if (rtx_equal_p (XEXP (note
, 0), elim_i2
)
12347 || rtx_equal_p (XEXP (note
, 0), elim_i1
))
12352 basic_block bb
= BASIC_BLOCK (this_basic_block
);
12354 for (tem
= PREV_INSN (i3
); place
== 0; tem
= PREV_INSN (tem
))
12356 if (! INSN_P (tem
))
12358 if (tem
== bb
->head
)
12363 /* If the register is being set at TEM, see if that is all
12364 TEM is doing. If so, delete TEM. Otherwise, make this
12365 into a REG_UNUSED note instead. */
12366 if (reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
12368 rtx set
= single_set (tem
);
12369 rtx inner_dest
= 0;
12371 rtx cc0_setter
= NULL_RTX
;
12375 for (inner_dest
= SET_DEST (set
);
12376 (GET_CODE (inner_dest
) == STRICT_LOW_PART
12377 || GET_CODE (inner_dest
) == SUBREG
12378 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
12379 inner_dest
= XEXP (inner_dest
, 0))
12382 /* Verify that it was the set, and not a clobber that
12383 modified the register.
12385 CC0 targets must be careful to maintain setter/user
12386 pairs. If we cannot delete the setter due to side
12387 effects, mark the user with an UNUSED note instead
12390 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
12391 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
12393 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
12394 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
12395 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
12399 /* Move the notes and links of TEM elsewhere.
12400 This might delete other dead insns recursively.
12401 First set the pattern to something that won't use
12404 PATTERN (tem
) = pc_rtx
;
12406 distribute_notes (REG_NOTES (tem
), tem
, tem
,
12407 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12408 distribute_links (LOG_LINKS (tem
));
12410 PUT_CODE (tem
, NOTE
);
12411 NOTE_LINE_NUMBER (tem
) = NOTE_INSN_DELETED
;
12412 NOTE_SOURCE_FILE (tem
) = 0;
12415 /* Delete the setter too. */
12418 PATTERN (cc0_setter
) = pc_rtx
;
12420 distribute_notes (REG_NOTES (cc0_setter
),
12421 cc0_setter
, cc0_setter
,
12422 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12423 distribute_links (LOG_LINKS (cc0_setter
));
12425 PUT_CODE (cc0_setter
, NOTE
);
12426 NOTE_LINE_NUMBER (cc0_setter
)
12427 = NOTE_INSN_DELETED
;
12428 NOTE_SOURCE_FILE (cc0_setter
) = 0;
12432 /* If the register is both set and used here, put the
12433 REG_DEAD note here, but place a REG_UNUSED note
12434 here too unless there already is one. */
12435 else if (reg_referenced_p (XEXP (note
, 0),
12440 if (! find_regno_note (tem
, REG_UNUSED
,
12441 REGNO (XEXP (note
, 0))))
12443 = gen_rtx_EXPR_LIST (REG_UNUSED
, XEXP (note
, 0),
12448 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
12450 /* If there isn't already a REG_UNUSED note, put one
12452 if (! find_regno_note (tem
, REG_UNUSED
,
12453 REGNO (XEXP (note
, 0))))
12458 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
12459 || (GET_CODE (tem
) == CALL_INSN
12460 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
12464 /* If we are doing a 3->2 combination, and we have a
12465 register which formerly died in i3 and was not used
12466 by i2, which now no longer dies in i3 and is used in
12467 i2 but does not die in i2, and place is between i2
12468 and i3, then we may need to move a link from place to
12470 if (i2
&& INSN_UID (place
) <= max_uid_cuid
12471 && INSN_CUID (place
) > INSN_CUID (i2
)
12473 && INSN_CUID (from_insn
) > INSN_CUID (i2
)
12474 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12476 rtx links
= LOG_LINKS (place
);
12477 LOG_LINKS (place
) = 0;
12478 distribute_links (links
);
12483 if (tem
== bb
->head
)
12487 /* We haven't found an insn for the death note and it
12488 is still a REG_DEAD note, but we have hit the beginning
12489 of the block. If the existing life info says the reg
12490 was dead, there's nothing left to do. Otherwise, we'll
12491 need to do a global life update after combine. */
12492 if (REG_NOTE_KIND (note
) == REG_DEAD
&& place
== 0
12493 && REGNO_REG_SET_P (bb
->global_live_at_start
,
12494 REGNO (XEXP (note
, 0))))
12496 SET_BIT (refresh_blocks
, this_basic_block
);
12501 /* If the register is set or already dead at PLACE, we needn't do
12502 anything with this note if it is still a REG_DEAD note.
12503 We can here if it is set at all, not if is it totally replace,
12504 which is what `dead_or_set_p' checks, so also check for it being
12507 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
12509 unsigned int regno
= REGNO (XEXP (note
, 0));
12511 if (dead_or_set_p (place
, XEXP (note
, 0))
12512 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
12514 /* Unless the register previously died in PLACE, clear
12515 reg_last_death. [I no longer understand why this is
12517 if (reg_last_death
[regno
] != place
)
12518 reg_last_death
[regno
] = 0;
12522 reg_last_death
[regno
] = place
;
12524 /* If this is a death note for a hard reg that is occupying
12525 multiple registers, ensure that we are still using all
12526 parts of the object. If we find a piece of the object
12527 that is unused, we must arrange for an appropriate REG_DEAD
12528 note to be added for it. However, we can't just emit a USE
12529 and tag the note to it, since the register might actually
12530 be dead; so we recourse, and the recursive call then finds
12531 the previous insn that used this register. */
12533 if (place
&& regno
< FIRST_PSEUDO_REGISTER
12534 && HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (note
, 0))) > 1)
12536 unsigned int endregno
12537 = regno
+ HARD_REGNO_NREGS (regno
,
12538 GET_MODE (XEXP (note
, 0)));
12542 for (i
= regno
; i
< endregno
; i
++)
12543 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
12544 && ! find_regno_fusage (place
, USE
, i
))
12545 || dead_or_set_regno_p (place
, i
))
12550 /* Put only REG_DEAD notes for pieces that are
12551 not already dead or set. */
12553 for (i
= regno
; i
< endregno
;
12554 i
+= HARD_REGNO_NREGS (i
, reg_raw_mode
[i
]))
12556 rtx piece
= gen_rtx_REG (reg_raw_mode
[i
], i
);
12557 basic_block bb
= BASIC_BLOCK (this_basic_block
);
12559 if (! dead_or_set_p (place
, piece
)
12560 && ! reg_bitfield_target_p (piece
,
12564 = gen_rtx_EXPR_LIST (REG_DEAD
, piece
, NULL_RTX
);
12566 distribute_notes (new_note
, place
, place
,
12567 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12569 else if (! refers_to_regno_p (i
, i
+ 1,
12570 PATTERN (place
), 0)
12571 && ! find_regno_fusage (place
, USE
, i
))
12572 for (tem
= PREV_INSN (place
); ;
12573 tem
= PREV_INSN (tem
))
12575 if (! INSN_P (tem
))
12577 if (tem
== bb
->head
)
12579 SET_BIT (refresh_blocks
,
12586 if (dead_or_set_p (tem
, piece
)
12587 || reg_bitfield_target_p (piece
,
12591 = gen_rtx_EXPR_LIST (REG_UNUSED
, piece
,
12606 /* Any other notes should not be present at this point in the
12613 XEXP (note
, 1) = REG_NOTES (place
);
12614 REG_NOTES (place
) = note
;
12616 else if ((REG_NOTE_KIND (note
) == REG_DEAD
12617 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12618 && GET_CODE (XEXP (note
, 0)) == REG
)
12619 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
12623 if ((REG_NOTE_KIND (note
) == REG_DEAD
12624 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12625 && GET_CODE (XEXP (note
, 0)) == REG
)
12626 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
12628 REG_NOTES (place2
) = gen_rtx_fmt_ee (GET_CODE (note
),
12629 REG_NOTE_KIND (note
),
12631 REG_NOTES (place2
));
12636 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12637 I3, I2, and I1 to new locations. This is also called in one case to
12638 add a link pointing at I3 when I3's destination is changed. */
12641 distribute_links (links
)
12644 rtx link
, next_link
;
12646 for (link
= links
; link
; link
= next_link
)
12652 next_link
= XEXP (link
, 1);
12654 /* If the insn that this link points to is a NOTE or isn't a single
12655 set, ignore it. In the latter case, it isn't clear what we
12656 can do other than ignore the link, since we can't tell which
12657 register it was for. Such links wouldn't be used by combine
12660 It is not possible for the destination of the target of the link to
12661 have been changed by combine. The only potential of this is if we
12662 replace I3, I2, and I1 by I3 and I2. But in that case the
12663 destination of I2 also remains unchanged. */
12665 if (GET_CODE (XEXP (link
, 0)) == NOTE
12666 || (set
= single_set (XEXP (link
, 0))) == 0)
12669 reg
= SET_DEST (set
);
12670 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
12671 || GET_CODE (reg
) == SIGN_EXTRACT
12672 || GET_CODE (reg
) == STRICT_LOW_PART
)
12673 reg
= XEXP (reg
, 0);
12675 /* A LOG_LINK is defined as being placed on the first insn that uses
12676 a register and points to the insn that sets the register. Start
12677 searching at the next insn after the target of the link and stop
12678 when we reach a set of the register or the end of the basic block.
12680 Note that this correctly handles the link that used to point from
12681 I3 to I2. Also note that not much searching is typically done here
12682 since most links don't point very far away. */
12684 for (insn
= NEXT_INSN (XEXP (link
, 0));
12685 (insn
&& (this_basic_block
== n_basic_blocks
- 1
12686 || BLOCK_HEAD (this_basic_block
+ 1) != insn
));
12687 insn
= NEXT_INSN (insn
))
12688 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
12690 if (reg_referenced_p (reg
, PATTERN (insn
)))
12694 else if (GET_CODE (insn
) == CALL_INSN
12695 && find_reg_fusage (insn
, USE
, reg
))
12701 /* If we found a place to put the link, place it there unless there
12702 is already a link to the same insn as LINK at that point. */
12708 for (link2
= LOG_LINKS (place
); link2
; link2
= XEXP (link2
, 1))
12709 if (XEXP (link2
, 0) == XEXP (link
, 0))
12714 XEXP (link
, 1) = LOG_LINKS (place
);
12715 LOG_LINKS (place
) = link
;
12717 /* Set added_links_insn to the earliest insn we added a
12719 if (added_links_insn
== 0
12720 || INSN_CUID (added_links_insn
) > INSN_CUID (place
))
12721 added_links_insn
= place
;
12727 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12733 while (insn
!= 0 && INSN_UID (insn
) > max_uid_cuid
12734 && GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
)
12735 insn
= NEXT_INSN (insn
);
12737 if (INSN_UID (insn
) > max_uid_cuid
)
12740 return INSN_CUID (insn
);
12744 dump_combine_stats (file
)
12749 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12750 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
12754 dump_combine_total_stats (file
)
12759 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12760 total_attempts
, total_merges
, total_extras
, total_successes
);