PR debug/47106
[official-gcc.git] / gcc / tree-sra.c
blob8ed8771c8069684d2fa78b23269cbc3655013ea3
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
95 /* Enumeration of all aggregate reductions we can do. */
96 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
97 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
98 SRA_MODE_INTRA }; /* late intraprocedural SRA */
100 /* Global variable describing which aggregate reduction we are performing at
101 the moment. */
102 static enum sra_mode sra_mode;
104 struct assign_link;
106 /* ACCESS represents each access to an aggregate variable (as a whole or a
107 part). It can also represent a group of accesses that refer to exactly the
108 same fragment of an aggregate (i.e. those that have exactly the same offset
109 and size). Such representatives for a single aggregate, once determined,
110 are linked in a linked list and have the group fields set.
112 Moreover, when doing intraprocedural SRA, a tree is built from those
113 representatives (by the means of first_child and next_sibling pointers), in
114 which all items in a subtree are "within" the root, i.e. their offset is
115 greater or equal to offset of the root and offset+size is smaller or equal
116 to offset+size of the root. Children of an access are sorted by offset.
118 Note that accesses to parts of vector and complex number types always
119 represented by an access to the whole complex number or a vector. It is a
120 duty of the modifying functions to replace them appropriately. */
122 struct access
124 /* Values returned by `get_ref_base_and_extent' for each component reference
125 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
126 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
127 HOST_WIDE_INT offset;
128 HOST_WIDE_INT size;
129 tree base;
131 /* Expression. It is context dependent so do not use it to create new
132 expressions to access the original aggregate. See PR 42154 for a
133 testcase. */
134 tree expr;
135 /* Type. */
136 tree type;
138 /* The statement this access belongs to. */
139 gimple stmt;
141 /* Next group representative for this aggregate. */
142 struct access *next_grp;
144 /* Pointer to the group representative. Pointer to itself if the struct is
145 the representative. */
146 struct access *group_representative;
148 /* If this access has any children (in terms of the definition above), this
149 points to the first one. */
150 struct access *first_child;
152 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
153 described above. In IPA-SRA this is a pointer to the next access
154 belonging to the same group (having the same representative). */
155 struct access *next_sibling;
157 /* Pointers to the first and last element in the linked list of assign
158 links. */
159 struct assign_link *first_link, *last_link;
161 /* Pointer to the next access in the work queue. */
162 struct access *next_queued;
164 /* Replacement variable for this access "region." Never to be accessed
165 directly, always only by the means of get_access_replacement() and only
166 when grp_to_be_replaced flag is set. */
167 tree replacement_decl;
169 /* Is this particular access write access? */
170 unsigned write : 1;
172 /* Is this access an artificial one created to scalarize some record
173 entirely? */
174 unsigned total_scalarization : 1;
176 /* Is this access an access to a non-addressable field? */
177 unsigned non_addressable : 1;
179 /* Is this access currently in the work queue? */
180 unsigned grp_queued : 1;
182 /* Does this group contain a write access? This flag is propagated down the
183 access tree. */
184 unsigned grp_write : 1;
186 /* Does this group contain a read access? This flag is propagated down the
187 access tree. */
188 unsigned grp_read : 1;
190 /* Does this group contain a read access that comes from an assignment
191 statement? This flag is propagated down the access tree. */
192 unsigned grp_assignment_read : 1;
194 /* Does this group contain a write access that comes from an assignment
195 statement? This flag is propagated down the access tree. */
196 unsigned grp_assignment_write : 1;
198 /* Does this group contain a read access through a scalar type? This flag is
199 not propagated in the access tree in any direction. */
200 unsigned grp_scalar_read : 1;
202 /* Does this group contain a write access through a scalar type? This flag
203 is not propagated in the access tree in any direction. */
204 unsigned grp_scalar_write : 1;
206 /* Other passes of the analysis use this bit to make function
207 analyze_access_subtree create scalar replacements for this group if
208 possible. */
209 unsigned grp_hint : 1;
211 /* Is the subtree rooted in this access fully covered by scalar
212 replacements? */
213 unsigned grp_covered : 1;
215 /* If set to true, this access and all below it in an access tree must not be
216 scalarized. */
217 unsigned grp_unscalarizable_region : 1;
219 /* Whether data have been written to parts of the aggregate covered by this
220 access which is not to be scalarized. This flag is propagated up in the
221 access tree. */
222 unsigned grp_unscalarized_data : 1;
224 /* Does this access and/or group contain a write access through a
225 BIT_FIELD_REF? */
226 unsigned grp_partial_lhs : 1;
228 /* Set when a scalar replacement should be created for this variable. We do
229 the decision and creation at different places because create_tmp_var
230 cannot be called from within FOR_EACH_REFERENCED_VAR. */
231 unsigned grp_to_be_replaced : 1;
233 /* Should TREE_NO_WARNING of a replacement be set? */
234 unsigned grp_no_warning : 1;
236 /* Is it possible that the group refers to data which might be (directly or
237 otherwise) modified? */
238 unsigned grp_maybe_modified : 1;
240 /* Set when this is a representative of a pointer to scalar (i.e. by
241 reference) parameter which we consider for turning into a plain scalar
242 (i.e. a by value parameter). */
243 unsigned grp_scalar_ptr : 1;
245 /* Set when we discover that this pointer is not safe to dereference in the
246 caller. */
247 unsigned grp_not_necessarilly_dereferenced : 1;
250 typedef struct access *access_p;
252 DEF_VEC_P (access_p);
253 DEF_VEC_ALLOC_P (access_p, heap);
255 /* Alloc pool for allocating access structures. */
256 static alloc_pool access_pool;
258 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
259 are used to propagate subaccesses from rhs to lhs as long as they don't
260 conflict with what is already there. */
261 struct assign_link
263 struct access *lacc, *racc;
264 struct assign_link *next;
267 /* Alloc pool for allocating assign link structures. */
268 static alloc_pool link_pool;
270 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
271 static struct pointer_map_t *base_access_vec;
273 /* Bitmap of candidates. */
274 static bitmap candidate_bitmap;
276 /* Bitmap of candidates which we should try to entirely scalarize away and
277 those which cannot be (because they are and need be used as a whole). */
278 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
280 /* Obstack for creation of fancy names. */
281 static struct obstack name_obstack;
283 /* Head of a linked list of accesses that need to have its subaccesses
284 propagated to their assignment counterparts. */
285 static struct access *work_queue_head;
287 /* Number of parameters of the analyzed function when doing early ipa SRA. */
288 static int func_param_count;
290 /* scan_function sets the following to true if it encounters a call to
291 __builtin_apply_args. */
292 static bool encountered_apply_args;
294 /* Set by scan_function when it finds a recursive call. */
295 static bool encountered_recursive_call;
297 /* Set by scan_function when it finds a recursive call with less actual
298 arguments than formal parameters.. */
299 static bool encountered_unchangable_recursive_call;
301 /* This is a table in which for each basic block and parameter there is a
302 distance (offset + size) in that parameter which is dereferenced and
303 accessed in that BB. */
304 static HOST_WIDE_INT *bb_dereferences;
305 /* Bitmap of BBs that can cause the function to "stop" progressing by
306 returning, throwing externally, looping infinitely or calling a function
307 which might abort etc.. */
308 static bitmap final_bbs;
310 /* Representative of no accesses at all. */
311 static struct access no_accesses_representant;
313 /* Predicate to test the special value. */
315 static inline bool
316 no_accesses_p (struct access *access)
318 return access == &no_accesses_representant;
321 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
322 representative fields are dumped, otherwise those which only describe the
323 individual access are. */
325 static struct
327 /* Number of processed aggregates is readily available in
328 analyze_all_variable_accesses and so is not stored here. */
330 /* Number of created scalar replacements. */
331 int replacements;
333 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
334 expression. */
335 int exprs;
337 /* Number of statements created by generate_subtree_copies. */
338 int subtree_copies;
340 /* Number of statements created by load_assign_lhs_subreplacements. */
341 int subreplacements;
343 /* Number of times sra_modify_assign has deleted a statement. */
344 int deleted;
346 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
347 RHS reparately due to type conversions or nonexistent matching
348 references. */
349 int separate_lhs_rhs_handling;
351 /* Number of parameters that were removed because they were unused. */
352 int deleted_unused_parameters;
354 /* Number of scalars passed as parameters by reference that have been
355 converted to be passed by value. */
356 int scalar_by_ref_to_by_val;
358 /* Number of aggregate parameters that were replaced by one or more of their
359 components. */
360 int aggregate_params_reduced;
362 /* Numbber of components created when splitting aggregate parameters. */
363 int param_reductions_created;
364 } sra_stats;
366 static void
367 dump_access (FILE *f, struct access *access, bool grp)
369 fprintf (f, "access { ");
370 fprintf (f, "base = (%d)'", DECL_UID (access->base));
371 print_generic_expr (f, access->base, 0);
372 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
373 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
374 fprintf (f, ", expr = ");
375 print_generic_expr (f, access->expr, 0);
376 fprintf (f, ", type = ");
377 print_generic_expr (f, access->type, 0);
378 if (grp)
379 fprintf (f, ", total_scalarization = %d, grp_read = %d, grp_write = %d, "
380 "grp_assignment_read = %d, grp_assignment_write = %d, "
381 "grp_scalar_read = %d, grp_scalar_write = %d, "
382 "grp_hint = %d, grp_covered = %d, "
383 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
384 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
385 "grp_maybe_modified = %d, "
386 "grp_not_necessarilly_dereferenced = %d\n",
387 access->total_scalarization, access->grp_read, access->grp_write,
388 access->grp_assignment_read, access->grp_assignment_write,
389 access->grp_scalar_read, access->grp_scalar_write,
390 access->grp_hint, access->grp_covered,
391 access->grp_unscalarizable_region, access->grp_unscalarized_data,
392 access->grp_partial_lhs, access->grp_to_be_replaced,
393 access->grp_maybe_modified,
394 access->grp_not_necessarilly_dereferenced);
395 else
396 fprintf (f, ", write = %d, total_scalarization = %d, "
397 "grp_partial_lhs = %d\n",
398 access->write, access->total_scalarization,
399 access->grp_partial_lhs);
402 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
404 static void
405 dump_access_tree_1 (FILE *f, struct access *access, int level)
409 int i;
411 for (i = 0; i < level; i++)
412 fputs ("* ", dump_file);
414 dump_access (f, access, true);
416 if (access->first_child)
417 dump_access_tree_1 (f, access->first_child, level + 1);
419 access = access->next_sibling;
421 while (access);
424 /* Dump all access trees for a variable, given the pointer to the first root in
425 ACCESS. */
427 static void
428 dump_access_tree (FILE *f, struct access *access)
430 for (; access; access = access->next_grp)
431 dump_access_tree_1 (f, access, 0);
434 /* Return true iff ACC is non-NULL and has subaccesses. */
436 static inline bool
437 access_has_children_p (struct access *acc)
439 return acc && acc->first_child;
442 /* Return a vector of pointers to accesses for the variable given in BASE or
443 NULL if there is none. */
445 static VEC (access_p, heap) *
446 get_base_access_vector (tree base)
448 void **slot;
450 slot = pointer_map_contains (base_access_vec, base);
451 if (!slot)
452 return NULL;
453 else
454 return *(VEC (access_p, heap) **) slot;
457 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
458 in ACCESS. Return NULL if it cannot be found. */
460 static struct access *
461 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
462 HOST_WIDE_INT size)
464 while (access && (access->offset != offset || access->size != size))
466 struct access *child = access->first_child;
468 while (child && (child->offset + child->size <= offset))
469 child = child->next_sibling;
470 access = child;
473 return access;
476 /* Return the first group representative for DECL or NULL if none exists. */
478 static struct access *
479 get_first_repr_for_decl (tree base)
481 VEC (access_p, heap) *access_vec;
483 access_vec = get_base_access_vector (base);
484 if (!access_vec)
485 return NULL;
487 return VEC_index (access_p, access_vec, 0);
490 /* Find an access representative for the variable BASE and given OFFSET and
491 SIZE. Requires that access trees have already been built. Return NULL if
492 it cannot be found. */
494 static struct access *
495 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
496 HOST_WIDE_INT size)
498 struct access *access;
500 access = get_first_repr_for_decl (base);
501 while (access && (access->offset + access->size <= offset))
502 access = access->next_grp;
503 if (!access)
504 return NULL;
506 return find_access_in_subtree (access, offset, size);
509 /* Add LINK to the linked list of assign links of RACC. */
510 static void
511 add_link_to_rhs (struct access *racc, struct assign_link *link)
513 gcc_assert (link->racc == racc);
515 if (!racc->first_link)
517 gcc_assert (!racc->last_link);
518 racc->first_link = link;
520 else
521 racc->last_link->next = link;
523 racc->last_link = link;
524 link->next = NULL;
527 /* Move all link structures in their linked list in OLD_RACC to the linked list
528 in NEW_RACC. */
529 static void
530 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
532 if (!old_racc->first_link)
534 gcc_assert (!old_racc->last_link);
535 return;
538 if (new_racc->first_link)
540 gcc_assert (!new_racc->last_link->next);
541 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
543 new_racc->last_link->next = old_racc->first_link;
544 new_racc->last_link = old_racc->last_link;
546 else
548 gcc_assert (!new_racc->last_link);
550 new_racc->first_link = old_racc->first_link;
551 new_racc->last_link = old_racc->last_link;
553 old_racc->first_link = old_racc->last_link = NULL;
556 /* Add ACCESS to the work queue (which is actually a stack). */
558 static void
559 add_access_to_work_queue (struct access *access)
561 if (!access->grp_queued)
563 gcc_assert (!access->next_queued);
564 access->next_queued = work_queue_head;
565 access->grp_queued = 1;
566 work_queue_head = access;
570 /* Pop an access from the work queue, and return it, assuming there is one. */
572 static struct access *
573 pop_access_from_work_queue (void)
575 struct access *access = work_queue_head;
577 work_queue_head = access->next_queued;
578 access->next_queued = NULL;
579 access->grp_queued = 0;
580 return access;
584 /* Allocate necessary structures. */
586 static void
587 sra_initialize (void)
589 candidate_bitmap = BITMAP_ALLOC (NULL);
590 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
591 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
592 gcc_obstack_init (&name_obstack);
593 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
594 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
595 base_access_vec = pointer_map_create ();
596 memset (&sra_stats, 0, sizeof (sra_stats));
597 encountered_apply_args = false;
598 encountered_recursive_call = false;
599 encountered_unchangable_recursive_call = false;
602 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
604 static bool
605 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
606 void *data ATTRIBUTE_UNUSED)
608 VEC (access_p, heap) *access_vec;
609 access_vec = (VEC (access_p, heap) *) *value;
610 VEC_free (access_p, heap, access_vec);
612 return true;
615 /* Deallocate all general structures. */
617 static void
618 sra_deinitialize (void)
620 BITMAP_FREE (candidate_bitmap);
621 BITMAP_FREE (should_scalarize_away_bitmap);
622 BITMAP_FREE (cannot_scalarize_away_bitmap);
623 free_alloc_pool (access_pool);
624 free_alloc_pool (link_pool);
625 obstack_free (&name_obstack, NULL);
627 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
628 pointer_map_destroy (base_access_vec);
631 /* Remove DECL from candidates for SRA and write REASON to the dump file if
632 there is one. */
633 static void
634 disqualify_candidate (tree decl, const char *reason)
636 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
638 if (dump_file && (dump_flags & TDF_DETAILS))
640 fprintf (dump_file, "! Disqualifying ");
641 print_generic_expr (dump_file, decl, 0);
642 fprintf (dump_file, " - %s\n", reason);
646 /* Return true iff the type contains a field or an element which does not allow
647 scalarization. */
649 static bool
650 type_internals_preclude_sra_p (tree type)
652 tree fld;
653 tree et;
655 switch (TREE_CODE (type))
657 case RECORD_TYPE:
658 case UNION_TYPE:
659 case QUAL_UNION_TYPE:
660 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
661 if (TREE_CODE (fld) == FIELD_DECL)
663 tree ft = TREE_TYPE (fld);
665 if (TREE_THIS_VOLATILE (fld)
666 || !DECL_FIELD_OFFSET (fld) || !DECL_SIZE (fld)
667 || !host_integerp (DECL_FIELD_OFFSET (fld), 1)
668 || !host_integerp (DECL_SIZE (fld), 1)
669 || (AGGREGATE_TYPE_P (ft)
670 && int_bit_position (fld) % BITS_PER_UNIT != 0))
671 return true;
673 if (AGGREGATE_TYPE_P (ft)
674 && type_internals_preclude_sra_p (ft))
675 return true;
678 return false;
680 case ARRAY_TYPE:
681 et = TREE_TYPE (type);
683 if (AGGREGATE_TYPE_P (et))
684 return type_internals_preclude_sra_p (et);
685 else
686 return false;
688 default:
689 return false;
693 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
694 base variable if it is. Return T if it is not an SSA_NAME. */
696 static tree
697 get_ssa_base_param (tree t)
699 if (TREE_CODE (t) == SSA_NAME)
701 if (SSA_NAME_IS_DEFAULT_DEF (t))
702 return SSA_NAME_VAR (t);
703 else
704 return NULL_TREE;
706 return t;
709 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
710 belongs to, unless the BB has already been marked as a potentially
711 final. */
713 static void
714 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
716 basic_block bb = gimple_bb (stmt);
717 int idx, parm_index = 0;
718 tree parm;
720 if (bitmap_bit_p (final_bbs, bb->index))
721 return;
723 for (parm = DECL_ARGUMENTS (current_function_decl);
724 parm && parm != base;
725 parm = DECL_CHAIN (parm))
726 parm_index++;
728 gcc_assert (parm_index < func_param_count);
730 idx = bb->index * func_param_count + parm_index;
731 if (bb_dereferences[idx] < dist)
732 bb_dereferences[idx] = dist;
735 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
736 the three fields. Also add it to the vector of accesses corresponding to
737 the base. Finally, return the new access. */
739 static struct access *
740 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
742 VEC (access_p, heap) *vec;
743 struct access *access;
744 void **slot;
746 access = (struct access *) pool_alloc (access_pool);
747 memset (access, 0, sizeof (struct access));
748 access->base = base;
749 access->offset = offset;
750 access->size = size;
752 slot = pointer_map_contains (base_access_vec, base);
753 if (slot)
754 vec = (VEC (access_p, heap) *) *slot;
755 else
756 vec = VEC_alloc (access_p, heap, 32);
758 VEC_safe_push (access_p, heap, vec, access);
760 *((struct VEC (access_p,heap) **)
761 pointer_map_insert (base_access_vec, base)) = vec;
763 return access;
766 /* Create and insert access for EXPR. Return created access, or NULL if it is
767 not possible. */
769 static struct access *
770 create_access (tree expr, gimple stmt, bool write)
772 struct access *access;
773 HOST_WIDE_INT offset, size, max_size;
774 tree base = expr;
775 bool ptr, unscalarizable_region = false;
777 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
779 if (sra_mode == SRA_MODE_EARLY_IPA
780 && TREE_CODE (base) == MEM_REF)
782 base = get_ssa_base_param (TREE_OPERAND (base, 0));
783 if (!base)
784 return NULL;
785 ptr = true;
787 else
788 ptr = false;
790 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
791 return NULL;
793 if (sra_mode == SRA_MODE_EARLY_IPA)
795 if (size < 0 || size != max_size)
797 disqualify_candidate (base, "Encountered a variable sized access.");
798 return NULL;
800 if (TREE_CODE (expr) == COMPONENT_REF
801 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
803 disqualify_candidate (base, "Encountered a bit-field access.");
804 return NULL;
806 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
808 if (ptr)
809 mark_parm_dereference (base, offset + size, stmt);
811 else
813 if (size != max_size)
815 size = max_size;
816 unscalarizable_region = true;
818 if (size < 0)
820 disqualify_candidate (base, "Encountered an unconstrained access.");
821 return NULL;
825 access = create_access_1 (base, offset, size);
826 access->expr = expr;
827 access->type = TREE_TYPE (expr);
828 access->write = write;
829 access->grp_unscalarizable_region = unscalarizable_region;
830 access->stmt = stmt;
832 if (TREE_CODE (expr) == COMPONENT_REF
833 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
834 access->non_addressable = 1;
836 return access;
840 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
841 register types or (recursively) records with only these two kinds of fields.
842 It also returns false if any of these records contains a bit-field. */
844 static bool
845 type_consists_of_records_p (tree type)
847 tree fld;
849 if (TREE_CODE (type) != RECORD_TYPE)
850 return false;
852 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
853 if (TREE_CODE (fld) == FIELD_DECL)
855 tree ft = TREE_TYPE (fld);
857 if (DECL_BIT_FIELD (fld))
858 return false;
860 if (!is_gimple_reg_type (ft)
861 && !type_consists_of_records_p (ft))
862 return false;
865 return true;
868 /* Create total_scalarization accesses for all scalar type fields in DECL that
869 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
870 must be the top-most VAR_DECL representing the variable, OFFSET must be the
871 offset of DECL within BASE. REF must be the memory reference expression for
872 the given decl. */
874 static void
875 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
876 tree ref)
878 tree fld, decl_type = TREE_TYPE (decl);
880 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
881 if (TREE_CODE (fld) == FIELD_DECL)
883 HOST_WIDE_INT pos = offset + int_bit_position (fld);
884 tree ft = TREE_TYPE (fld);
885 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
886 NULL_TREE);
888 if (is_gimple_reg_type (ft))
890 struct access *access;
891 HOST_WIDE_INT size;
893 size = tree_low_cst (DECL_SIZE (fld), 1);
894 access = create_access_1 (base, pos, size);
895 access->expr = nref;
896 access->type = ft;
897 access->total_scalarization = 1;
898 /* Accesses for intraprocedural SRA can have their stmt NULL. */
900 else
901 completely_scalarize_record (base, fld, pos, nref);
906 /* Search the given tree for a declaration by skipping handled components and
907 exclude it from the candidates. */
909 static void
910 disqualify_base_of_expr (tree t, const char *reason)
912 t = get_base_address (t);
913 if (sra_mode == SRA_MODE_EARLY_IPA
914 && TREE_CODE (t) == MEM_REF)
915 t = get_ssa_base_param (TREE_OPERAND (t, 0));
917 if (t && DECL_P (t))
918 disqualify_candidate (t, reason);
921 /* Scan expression EXPR and create access structures for all accesses to
922 candidates for scalarization. Return the created access or NULL if none is
923 created. */
925 static struct access *
926 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
928 struct access *ret = NULL;
929 bool partial_ref;
931 if (TREE_CODE (expr) == BIT_FIELD_REF
932 || TREE_CODE (expr) == IMAGPART_EXPR
933 || TREE_CODE (expr) == REALPART_EXPR)
935 expr = TREE_OPERAND (expr, 0);
936 partial_ref = true;
938 else
939 partial_ref = false;
941 /* We need to dive through V_C_Es in order to get the size of its parameter
942 and not the result type. Ada produces such statements. We are also
943 capable of handling the topmost V_C_E but not any of those buried in other
944 handled components. */
945 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
946 expr = TREE_OPERAND (expr, 0);
948 if (contains_view_convert_expr_p (expr))
950 disqualify_base_of_expr (expr, "V_C_E under a different handled "
951 "component.");
952 return NULL;
955 switch (TREE_CODE (expr))
957 case MEM_REF:
958 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
959 && sra_mode != SRA_MODE_EARLY_IPA)
960 return NULL;
961 /* fall through */
962 case VAR_DECL:
963 case PARM_DECL:
964 case RESULT_DECL:
965 case COMPONENT_REF:
966 case ARRAY_REF:
967 case ARRAY_RANGE_REF:
968 ret = create_access (expr, stmt, write);
969 break;
971 default:
972 break;
975 if (write && partial_ref && ret)
976 ret->grp_partial_lhs = 1;
978 return ret;
981 /* Scan expression EXPR and create access structures for all accesses to
982 candidates for scalarization. Return true if any access has been inserted.
983 STMT must be the statement from which the expression is taken, WRITE must be
984 true if the expression is a store and false otherwise. */
986 static bool
987 build_access_from_expr (tree expr, gimple stmt, bool write)
989 struct access *access;
991 access = build_access_from_expr_1 (expr, stmt, write);
992 if (access)
994 /* This means the aggregate is accesses as a whole in a way other than an
995 assign statement and thus cannot be removed even if we had a scalar
996 replacement for everything. */
997 if (cannot_scalarize_away_bitmap)
998 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
999 return true;
1001 return false;
1004 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1005 modes in which it matters, return true iff they have been disqualified. RHS
1006 may be NULL, in that case ignore it. If we scalarize an aggregate in
1007 intra-SRA we may need to add statements after each statement. This is not
1008 possible if a statement unconditionally has to end the basic block. */
1009 static bool
1010 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1012 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1013 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1015 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1016 if (rhs)
1017 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1018 return true;
1020 return false;
1023 /* Scan expressions occuring in STMT, create access structures for all accesses
1024 to candidates for scalarization and remove those candidates which occur in
1025 statements or expressions that prevent them from being split apart. Return
1026 true if any access has been inserted. */
1028 static bool
1029 build_accesses_from_assign (gimple stmt)
1031 tree lhs, rhs;
1032 struct access *lacc, *racc;
1034 if (!gimple_assign_single_p (stmt))
1035 return false;
1037 lhs = gimple_assign_lhs (stmt);
1038 rhs = gimple_assign_rhs1 (stmt);
1040 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1041 return false;
1043 racc = build_access_from_expr_1 (rhs, stmt, false);
1044 lacc = build_access_from_expr_1 (lhs, stmt, true);
1046 if (lacc)
1047 lacc->grp_assignment_write = 1;
1049 if (racc)
1051 racc->grp_assignment_read = 1;
1052 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1053 && !is_gimple_reg_type (racc->type))
1054 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1057 if (lacc && racc
1058 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1059 && !lacc->grp_unscalarizable_region
1060 && !racc->grp_unscalarizable_region
1061 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1062 /* FIXME: Turn the following line into an assert after PR 40058 is
1063 fixed. */
1064 && lacc->size == racc->size
1065 && useless_type_conversion_p (lacc->type, racc->type))
1067 struct assign_link *link;
1069 link = (struct assign_link *) pool_alloc (link_pool);
1070 memset (link, 0, sizeof (struct assign_link));
1072 link->lacc = lacc;
1073 link->racc = racc;
1075 add_link_to_rhs (racc, link);
1078 return lacc || racc;
1081 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1082 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1084 static bool
1085 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1086 void *data ATTRIBUTE_UNUSED)
1088 op = get_base_address (op);
1089 if (op
1090 && DECL_P (op))
1091 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1093 return false;
1096 /* Return true iff callsite CALL has at least as many actual arguments as there
1097 are formal parameters of the function currently processed by IPA-SRA. */
1099 static inline bool
1100 callsite_has_enough_arguments_p (gimple call)
1102 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1105 /* Scan function and look for interesting expressions and create access
1106 structures for them. Return true iff any access is created. */
1108 static bool
1109 scan_function (void)
1111 basic_block bb;
1112 bool ret = false;
1114 FOR_EACH_BB (bb)
1116 gimple_stmt_iterator gsi;
1117 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1119 gimple stmt = gsi_stmt (gsi);
1120 tree t;
1121 unsigned i;
1123 if (final_bbs && stmt_can_throw_external (stmt))
1124 bitmap_set_bit (final_bbs, bb->index);
1125 switch (gimple_code (stmt))
1127 case GIMPLE_RETURN:
1128 t = gimple_return_retval (stmt);
1129 if (t != NULL_TREE)
1130 ret |= build_access_from_expr (t, stmt, false);
1131 if (final_bbs)
1132 bitmap_set_bit (final_bbs, bb->index);
1133 break;
1135 case GIMPLE_ASSIGN:
1136 ret |= build_accesses_from_assign (stmt);
1137 break;
1139 case GIMPLE_CALL:
1140 for (i = 0; i < gimple_call_num_args (stmt); i++)
1141 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1142 stmt, false);
1144 if (sra_mode == SRA_MODE_EARLY_IPA)
1146 tree dest = gimple_call_fndecl (stmt);
1147 int flags = gimple_call_flags (stmt);
1149 if (dest)
1151 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1152 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1153 encountered_apply_args = true;
1154 if (cgraph_get_node (dest)
1155 == cgraph_get_node (current_function_decl))
1157 encountered_recursive_call = true;
1158 if (!callsite_has_enough_arguments_p (stmt))
1159 encountered_unchangable_recursive_call = true;
1163 if (final_bbs
1164 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1165 bitmap_set_bit (final_bbs, bb->index);
1168 t = gimple_call_lhs (stmt);
1169 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1170 ret |= build_access_from_expr (t, stmt, true);
1171 break;
1173 case GIMPLE_ASM:
1174 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1175 asm_visit_addr);
1176 if (final_bbs)
1177 bitmap_set_bit (final_bbs, bb->index);
1179 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1181 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1182 ret |= build_access_from_expr (t, stmt, false);
1184 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1186 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1187 ret |= build_access_from_expr (t, stmt, true);
1189 break;
1191 default:
1192 break;
1197 return ret;
1200 /* Helper of QSORT function. There are pointers to accesses in the array. An
1201 access is considered smaller than another if it has smaller offset or if the
1202 offsets are the same but is size is bigger. */
1204 static int
1205 compare_access_positions (const void *a, const void *b)
1207 const access_p *fp1 = (const access_p *) a;
1208 const access_p *fp2 = (const access_p *) b;
1209 const access_p f1 = *fp1;
1210 const access_p f2 = *fp2;
1212 if (f1->offset != f2->offset)
1213 return f1->offset < f2->offset ? -1 : 1;
1215 if (f1->size == f2->size)
1217 if (f1->type == f2->type)
1218 return 0;
1219 /* Put any non-aggregate type before any aggregate type. */
1220 else if (!is_gimple_reg_type (f1->type)
1221 && is_gimple_reg_type (f2->type))
1222 return 1;
1223 else if (is_gimple_reg_type (f1->type)
1224 && !is_gimple_reg_type (f2->type))
1225 return -1;
1226 /* Put any complex or vector type before any other scalar type. */
1227 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1228 && TREE_CODE (f1->type) != VECTOR_TYPE
1229 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1230 || TREE_CODE (f2->type) == VECTOR_TYPE))
1231 return 1;
1232 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1233 || TREE_CODE (f1->type) == VECTOR_TYPE)
1234 && TREE_CODE (f2->type) != COMPLEX_TYPE
1235 && TREE_CODE (f2->type) != VECTOR_TYPE)
1236 return -1;
1237 /* Put the integral type with the bigger precision first. */
1238 else if (INTEGRAL_TYPE_P (f1->type)
1239 && INTEGRAL_TYPE_P (f2->type))
1240 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1241 /* Put any integral type with non-full precision last. */
1242 else if (INTEGRAL_TYPE_P (f1->type)
1243 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1244 != TYPE_PRECISION (f1->type)))
1245 return 1;
1246 else if (INTEGRAL_TYPE_P (f2->type)
1247 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1248 != TYPE_PRECISION (f2->type)))
1249 return -1;
1250 /* Stabilize the sort. */
1251 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1254 /* We want the bigger accesses first, thus the opposite operator in the next
1255 line: */
1256 return f1->size > f2->size ? -1 : 1;
1260 /* Append a name of the declaration to the name obstack. A helper function for
1261 make_fancy_name. */
1263 static void
1264 make_fancy_decl_name (tree decl)
1266 char buffer[32];
1268 tree name = DECL_NAME (decl);
1269 if (name)
1270 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1271 IDENTIFIER_LENGTH (name));
1272 else
1274 sprintf (buffer, "D%u", DECL_UID (decl));
1275 obstack_grow (&name_obstack, buffer, strlen (buffer));
1279 /* Helper for make_fancy_name. */
1281 static void
1282 make_fancy_name_1 (tree expr)
1284 char buffer[32];
1285 tree index;
1287 if (DECL_P (expr))
1289 make_fancy_decl_name (expr);
1290 return;
1293 switch (TREE_CODE (expr))
1295 case COMPONENT_REF:
1296 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1297 obstack_1grow (&name_obstack, '$');
1298 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1299 break;
1301 case ARRAY_REF:
1302 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1303 obstack_1grow (&name_obstack, '$');
1304 /* Arrays with only one element may not have a constant as their
1305 index. */
1306 index = TREE_OPERAND (expr, 1);
1307 if (TREE_CODE (index) != INTEGER_CST)
1308 break;
1309 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1310 obstack_grow (&name_obstack, buffer, strlen (buffer));
1311 break;
1313 case ADDR_EXPR:
1314 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1315 break;
1317 case MEM_REF:
1318 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1319 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1321 obstack_1grow (&name_obstack, '$');
1322 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1323 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1324 obstack_grow (&name_obstack, buffer, strlen (buffer));
1326 break;
1328 case BIT_FIELD_REF:
1329 case REALPART_EXPR:
1330 case IMAGPART_EXPR:
1331 gcc_unreachable (); /* we treat these as scalars. */
1332 break;
1333 default:
1334 break;
1338 /* Create a human readable name for replacement variable of ACCESS. */
1340 static char *
1341 make_fancy_name (tree expr)
1343 make_fancy_name_1 (expr);
1344 obstack_1grow (&name_obstack, '\0');
1345 return XOBFINISH (&name_obstack, char *);
1348 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1349 EXP_TYPE at the given OFFSET. If BASE is something for which
1350 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1351 to insert new statements either before or below the current one as specified
1352 by INSERT_AFTER. This function is not capable of handling bitfields. */
1354 tree
1355 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1356 tree exp_type, gimple_stmt_iterator *gsi,
1357 bool insert_after)
1359 tree prev_base = base;
1360 tree off;
1361 HOST_WIDE_INT base_offset;
1363 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1365 base = get_addr_base_and_unit_offset (base, &base_offset);
1367 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1368 offset such as array[var_index]. */
1369 if (!base)
1371 gimple stmt;
1372 tree tmp, addr;
1374 gcc_checking_assert (gsi);
1375 tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1376 add_referenced_var (tmp);
1377 tmp = make_ssa_name (tmp, NULL);
1378 addr = build_fold_addr_expr (unshare_expr (prev_base));
1379 stmt = gimple_build_assign (tmp, addr);
1380 gimple_set_location (stmt, loc);
1381 SSA_NAME_DEF_STMT (tmp) = stmt;
1382 if (insert_after)
1383 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1384 else
1385 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1386 update_stmt (stmt);
1388 off = build_int_cst (reference_alias_ptr_type (prev_base),
1389 offset / BITS_PER_UNIT);
1390 base = tmp;
1392 else if (TREE_CODE (base) == MEM_REF)
1394 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1395 base_offset + offset / BITS_PER_UNIT);
1396 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off, 0);
1397 base = unshare_expr (TREE_OPERAND (base, 0));
1399 else
1401 off = build_int_cst (reference_alias_ptr_type (base),
1402 base_offset + offset / BITS_PER_UNIT);
1403 base = build_fold_addr_expr (unshare_expr (base));
1406 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1409 /* Construct a memory reference to a part of an aggregate BASE at the given
1410 OFFSET and of the same type as MODEL. In case this is a reference to a
1411 component, the function will replicate the last COMPONENT_REF of model's
1412 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1413 build_ref_for_offset. */
1415 static tree
1416 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1417 struct access *model, gimple_stmt_iterator *gsi,
1418 bool insert_after)
1420 if (TREE_CODE (model->expr) == COMPONENT_REF)
1422 tree t, exp_type;
1423 offset -= int_bit_position (TREE_OPERAND (model->expr, 1));
1424 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1425 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1426 return fold_build3_loc (loc, COMPONENT_REF, model->type, t,
1427 TREE_OPERAND (model->expr, 1), NULL_TREE);
1429 else
1430 return build_ref_for_offset (loc, base, offset, model->type,
1431 gsi, insert_after);
1434 /* Construct a memory reference consisting of component_refs and array_refs to
1435 a part of an aggregate *RES (which is of type TYPE). The requested part
1436 should have type EXP_TYPE at be the given OFFSET. This function might not
1437 succeed, it returns true when it does and only then *RES points to something
1438 meaningful. This function should be used only to build expressions that we
1439 might need to present to user (e.g. in warnings). In all other situations,
1440 build_ref_for_model or build_ref_for_offset should be used instead. */
1442 static bool
1443 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1444 tree exp_type)
1446 while (1)
1448 tree fld;
1449 tree tr_size, index, minidx;
1450 HOST_WIDE_INT el_size;
1452 if (offset == 0 && exp_type
1453 && types_compatible_p (exp_type, type))
1454 return true;
1456 switch (TREE_CODE (type))
1458 case UNION_TYPE:
1459 case QUAL_UNION_TYPE:
1460 case RECORD_TYPE:
1461 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1463 HOST_WIDE_INT pos, size;
1464 tree expr, *expr_ptr;
1466 if (TREE_CODE (fld) != FIELD_DECL)
1467 continue;
1469 pos = int_bit_position (fld);
1470 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1471 tr_size = DECL_SIZE (fld);
1472 if (!tr_size || !host_integerp (tr_size, 1))
1473 continue;
1474 size = tree_low_cst (tr_size, 1);
1475 if (size == 0)
1477 if (pos != offset)
1478 continue;
1480 else if (pos > offset || (pos + size) <= offset)
1481 continue;
1483 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1484 NULL_TREE);
1485 expr_ptr = &expr;
1486 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1487 offset - pos, exp_type))
1489 *res = expr;
1490 return true;
1493 return false;
1495 case ARRAY_TYPE:
1496 tr_size = TYPE_SIZE (TREE_TYPE (type));
1497 if (!tr_size || !host_integerp (tr_size, 1))
1498 return false;
1499 el_size = tree_low_cst (tr_size, 1);
1501 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1502 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1503 return false;
1504 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1505 if (!integer_zerop (minidx))
1506 index = int_const_binop (PLUS_EXPR, index, minidx, 0);
1507 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1508 NULL_TREE, NULL_TREE);
1509 offset = offset % el_size;
1510 type = TREE_TYPE (type);
1511 break;
1513 default:
1514 if (offset != 0)
1515 return false;
1517 if (exp_type)
1518 return false;
1519 else
1520 return true;
1525 /* Return true iff TYPE is stdarg va_list type. */
1527 static inline bool
1528 is_va_list_type (tree type)
1530 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1533 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1534 those with type which is suitable for scalarization. */
1536 static bool
1537 find_var_candidates (void)
1539 tree var, type;
1540 referenced_var_iterator rvi;
1541 bool ret = false;
1543 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1545 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1546 continue;
1547 type = TREE_TYPE (var);
1549 if (!AGGREGATE_TYPE_P (type)
1550 || needs_to_live_in_memory (var)
1551 || TREE_THIS_VOLATILE (var)
1552 || !COMPLETE_TYPE_P (type)
1553 || !host_integerp (TYPE_SIZE (type), 1)
1554 || tree_low_cst (TYPE_SIZE (type), 1) == 0
1555 || type_internals_preclude_sra_p (type)
1556 /* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1557 we also want to schedule it rather late. Thus we ignore it in
1558 the early pass. */
1559 || (sra_mode == SRA_MODE_EARLY_INTRA
1560 && is_va_list_type (type)))
1561 continue;
1563 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1565 if (dump_file && (dump_flags & TDF_DETAILS))
1567 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1568 print_generic_expr (dump_file, var, 0);
1569 fprintf (dump_file, "\n");
1571 ret = true;
1574 return ret;
1577 /* Sort all accesses for the given variable, check for partial overlaps and
1578 return NULL if there are any. If there are none, pick a representative for
1579 each combination of offset and size and create a linked list out of them.
1580 Return the pointer to the first representative and make sure it is the first
1581 one in the vector of accesses. */
1583 static struct access *
1584 sort_and_splice_var_accesses (tree var)
1586 int i, j, access_count;
1587 struct access *res, **prev_acc_ptr = &res;
1588 VEC (access_p, heap) *access_vec;
1589 bool first = true;
1590 HOST_WIDE_INT low = -1, high = 0;
1592 access_vec = get_base_access_vector (var);
1593 if (!access_vec)
1594 return NULL;
1595 access_count = VEC_length (access_p, access_vec);
1597 /* Sort by <OFFSET, SIZE>. */
1598 VEC_qsort (access_p, access_vec, compare_access_positions);
1600 i = 0;
1601 while (i < access_count)
1603 struct access *access = VEC_index (access_p, access_vec, i);
1604 bool grp_write = access->write;
1605 bool grp_read = !access->write;
1606 bool grp_scalar_write = access->write
1607 && is_gimple_reg_type (access->type);
1608 bool grp_scalar_read = !access->write
1609 && is_gimple_reg_type (access->type);
1610 bool grp_assignment_read = access->grp_assignment_read;
1611 bool grp_assignment_write = access->grp_assignment_write;
1612 bool multiple_scalar_reads = false;
1613 bool total_scalarization = access->total_scalarization;
1614 bool grp_partial_lhs = access->grp_partial_lhs;
1615 bool first_scalar = is_gimple_reg_type (access->type);
1616 bool unscalarizable_region = access->grp_unscalarizable_region;
1618 if (first || access->offset >= high)
1620 first = false;
1621 low = access->offset;
1622 high = access->offset + access->size;
1624 else if (access->offset > low && access->offset + access->size > high)
1625 return NULL;
1626 else
1627 gcc_assert (access->offset >= low
1628 && access->offset + access->size <= high);
1630 j = i + 1;
1631 while (j < access_count)
1633 struct access *ac2 = VEC_index (access_p, access_vec, j);
1634 if (ac2->offset != access->offset || ac2->size != access->size)
1635 break;
1636 if (ac2->write)
1638 grp_write = true;
1639 grp_scalar_write = (grp_scalar_write
1640 || is_gimple_reg_type (ac2->type));
1642 else
1644 grp_read = true;
1645 if (is_gimple_reg_type (ac2->type))
1647 if (grp_scalar_read)
1648 multiple_scalar_reads = true;
1649 else
1650 grp_scalar_read = true;
1653 grp_assignment_read |= ac2->grp_assignment_read;
1654 grp_assignment_write |= ac2->grp_assignment_write;
1655 grp_partial_lhs |= ac2->grp_partial_lhs;
1656 unscalarizable_region |= ac2->grp_unscalarizable_region;
1657 total_scalarization |= ac2->total_scalarization;
1658 relink_to_new_repr (access, ac2);
1660 /* If there are both aggregate-type and scalar-type accesses with
1661 this combination of size and offset, the comparison function
1662 should have put the scalars first. */
1663 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1664 ac2->group_representative = access;
1665 j++;
1668 i = j;
1670 access->group_representative = access;
1671 access->grp_write = grp_write;
1672 access->grp_read = grp_read;
1673 access->grp_scalar_read = grp_scalar_read;
1674 access->grp_scalar_write = grp_scalar_write;
1675 access->grp_assignment_read = grp_assignment_read;
1676 access->grp_assignment_write = grp_assignment_write;
1677 access->grp_hint = multiple_scalar_reads || total_scalarization;
1678 access->grp_partial_lhs = grp_partial_lhs;
1679 access->grp_unscalarizable_region = unscalarizable_region;
1680 if (access->first_link)
1681 add_access_to_work_queue (access);
1683 *prev_acc_ptr = access;
1684 prev_acc_ptr = &access->next_grp;
1687 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1688 return res;
1691 /* Create a variable for the given ACCESS which determines the type, name and a
1692 few other properties. Return the variable declaration and store it also to
1693 ACCESS->replacement. */
1695 static tree
1696 create_access_replacement (struct access *access, bool rename)
1698 tree repl;
1700 repl = create_tmp_var (access->type, "SR");
1701 get_var_ann (repl);
1702 add_referenced_var (repl);
1703 if (rename)
1704 mark_sym_for_renaming (repl);
1706 if (!access->grp_partial_lhs
1707 && (TREE_CODE (access->type) == COMPLEX_TYPE
1708 || TREE_CODE (access->type) == VECTOR_TYPE))
1709 DECL_GIMPLE_REG_P (repl) = 1;
1711 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1712 DECL_ARTIFICIAL (repl) = 1;
1713 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1715 if (DECL_NAME (access->base)
1716 && !DECL_IGNORED_P (access->base)
1717 && !DECL_ARTIFICIAL (access->base))
1719 char *pretty_name = make_fancy_name (access->expr);
1720 tree debug_expr = unshare_expr (access->expr), d;
1722 DECL_NAME (repl) = get_identifier (pretty_name);
1723 obstack_free (&name_obstack, pretty_name);
1725 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1726 as DECL_DEBUG_EXPR isn't considered when looking for still
1727 used SSA_NAMEs and thus they could be freed. All debug info
1728 generation cares is whether something is constant or variable
1729 and that get_ref_base_and_extent works properly on the
1730 expression. */
1731 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1732 switch (TREE_CODE (d))
1734 case ARRAY_REF:
1735 case ARRAY_RANGE_REF:
1736 if (TREE_OPERAND (d, 1)
1737 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1738 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1739 if (TREE_OPERAND (d, 3)
1740 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1741 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1742 /* FALLTHRU */
1743 case COMPONENT_REF:
1744 if (TREE_OPERAND (d, 2)
1745 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1746 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1747 break;
1748 default:
1749 break;
1751 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1752 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1753 if (access->grp_no_warning)
1754 TREE_NO_WARNING (repl) = 1;
1755 else
1756 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1758 else
1759 TREE_NO_WARNING (repl) = 1;
1761 if (dump_file)
1763 fprintf (dump_file, "Created a replacement for ");
1764 print_generic_expr (dump_file, access->base, 0);
1765 fprintf (dump_file, " offset: %u, size: %u: ",
1766 (unsigned) access->offset, (unsigned) access->size);
1767 print_generic_expr (dump_file, repl, 0);
1768 fprintf (dump_file, "\n");
1770 sra_stats.replacements++;
1772 return repl;
1775 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1777 static inline tree
1778 get_access_replacement (struct access *access)
1780 gcc_assert (access->grp_to_be_replaced);
1782 if (!access->replacement_decl)
1783 access->replacement_decl = create_access_replacement (access, true);
1784 return access->replacement_decl;
1787 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
1788 not mark it for renaming. */
1790 static inline tree
1791 get_unrenamed_access_replacement (struct access *access)
1793 gcc_assert (!access->grp_to_be_replaced);
1795 if (!access->replacement_decl)
1796 access->replacement_decl = create_access_replacement (access, false);
1797 return access->replacement_decl;
1801 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1802 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1803 to it is not "within" the root. Return false iff some accesses partially
1804 overlap. */
1806 static bool
1807 build_access_subtree (struct access **access)
1809 struct access *root = *access, *last_child = NULL;
1810 HOST_WIDE_INT limit = root->offset + root->size;
1812 *access = (*access)->next_grp;
1813 while (*access && (*access)->offset + (*access)->size <= limit)
1815 if (!last_child)
1816 root->first_child = *access;
1817 else
1818 last_child->next_sibling = *access;
1819 last_child = *access;
1821 if (!build_access_subtree (access))
1822 return false;
1825 if (*access && (*access)->offset < limit)
1826 return false;
1828 return true;
1831 /* Build a tree of access representatives, ACCESS is the pointer to the first
1832 one, others are linked in a list by the next_grp field. Return false iff
1833 some accesses partially overlap. */
1835 static bool
1836 build_access_trees (struct access *access)
1838 while (access)
1840 struct access *root = access;
1842 if (!build_access_subtree (&access))
1843 return false;
1844 root->next_grp = access;
1846 return true;
1849 /* Return true if expr contains some ARRAY_REFs into a variable bounded
1850 array. */
1852 static bool
1853 expr_with_var_bounded_array_refs_p (tree expr)
1855 while (handled_component_p (expr))
1857 if (TREE_CODE (expr) == ARRAY_REF
1858 && !host_integerp (array_ref_low_bound (expr), 0))
1859 return true;
1860 expr = TREE_OPERAND (expr, 0);
1862 return false;
1865 enum mark_rw_status { SRA_MRRW_NOTHING, SRA_MRRW_DIRECT, SRA_MRRW_ASSIGN};
1867 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
1868 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
1869 sorts of access flags appropriately along the way, notably always set
1870 grp_read and grp_assign_read according to MARK_READ and grp_write when
1871 MARK_WRITE is true.
1873 Creating a replacement for a scalar access is considered beneficial if its
1874 grp_hint is set (this means we are either attempting total scalarization or
1875 there is more than one direct read access) or according to the following
1876 table:
1878 Access written to through a scalar type (once or more times)
1880 | Written to in an assignment statement
1882 | | Access read as scalar _once_
1883 | | |
1884 | | | Read in an assignment statement
1885 | | | |
1886 | | | | Scalarize Comment
1887 -----------------------------------------------------------------------------
1888 0 0 0 0 No access for the scalar
1889 0 0 0 1 No access for the scalar
1890 0 0 1 0 No Single read - won't help
1891 0 0 1 1 No The same case
1892 0 1 0 0 No access for the scalar
1893 0 1 0 1 No access for the scalar
1894 0 1 1 0 Yes s = *g; return s.i;
1895 0 1 1 1 Yes The same case as above
1896 1 0 0 0 No Won't help
1897 1 0 0 1 Yes s.i = 1; *g = s;
1898 1 0 1 0 Yes s.i = 5; g = s.i;
1899 1 0 1 1 Yes The same case as above
1900 1 1 0 0 No Won't help.
1901 1 1 0 1 Yes s.i = 1; *g = s;
1902 1 1 1 0 Yes s = *g; return s.i;
1903 1 1 1 1 Yes Any of the above yeses */
1905 static bool
1906 analyze_access_subtree (struct access *root, bool allow_replacements,
1907 enum mark_rw_status mark_read,
1908 enum mark_rw_status mark_write)
1910 struct access *child;
1911 HOST_WIDE_INT limit = root->offset + root->size;
1912 HOST_WIDE_INT covered_to = root->offset;
1913 bool scalar = is_gimple_reg_type (root->type);
1914 bool hole = false, sth_created = false;
1916 if (root->grp_assignment_read)
1917 mark_read = SRA_MRRW_ASSIGN;
1918 else if (mark_read == SRA_MRRW_ASSIGN)
1920 root->grp_read = 1;
1921 root->grp_assignment_read = 1;
1923 else if (mark_read == SRA_MRRW_DIRECT)
1924 root->grp_read = 1;
1925 else if (root->grp_read)
1926 mark_read = SRA_MRRW_DIRECT;
1928 if (root->grp_assignment_write)
1929 mark_write = SRA_MRRW_ASSIGN;
1930 else if (mark_write == SRA_MRRW_ASSIGN)
1932 root->grp_write = 1;
1933 root->grp_assignment_write = 1;
1935 else if (mark_write == SRA_MRRW_DIRECT)
1936 root->grp_write = 1;
1937 else if (root->grp_write)
1938 mark_write = SRA_MRRW_DIRECT;
1940 if (root->grp_unscalarizable_region)
1941 allow_replacements = false;
1943 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
1944 allow_replacements = false;
1946 for (child = root->first_child; child; child = child->next_sibling)
1948 if (!hole && child->offset < covered_to)
1949 hole = true;
1950 else
1951 covered_to += child->size;
1953 sth_created |= analyze_access_subtree (child,
1954 allow_replacements && !scalar,
1955 mark_read, mark_write);
1957 root->grp_unscalarized_data |= child->grp_unscalarized_data;
1958 hole |= !child->grp_covered;
1961 if (allow_replacements && scalar && !root->first_child
1962 && (root->grp_hint
1963 || ((root->grp_scalar_read || root->grp_assignment_read)
1964 && (root->grp_scalar_write || root->grp_assignment_write))))
1966 if (dump_file && (dump_flags & TDF_DETAILS))
1968 fprintf (dump_file, "Marking ");
1969 print_generic_expr (dump_file, root->base, 0);
1970 fprintf (dump_file, " offset: %u, size: %u: ",
1971 (unsigned) root->offset, (unsigned) root->size);
1972 fprintf (dump_file, " to be replaced.\n");
1975 root->grp_to_be_replaced = 1;
1976 sth_created = true;
1977 hole = false;
1979 else if (covered_to < limit)
1980 hole = true;
1982 if (sth_created && !hole)
1984 root->grp_covered = 1;
1985 return true;
1987 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
1988 root->grp_unscalarized_data = 1; /* not covered and written to */
1989 if (sth_created)
1990 return true;
1991 return false;
1994 /* Analyze all access trees linked by next_grp by the means of
1995 analyze_access_subtree. */
1996 static bool
1997 analyze_access_trees (struct access *access)
1999 bool ret = false;
2001 while (access)
2003 if (analyze_access_subtree (access, true,
2004 SRA_MRRW_NOTHING, SRA_MRRW_NOTHING))
2005 ret = true;
2006 access = access->next_grp;
2009 return ret;
2012 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2013 SIZE would conflict with an already existing one. If exactly such a child
2014 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2016 static bool
2017 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2018 HOST_WIDE_INT size, struct access **exact_match)
2020 struct access *child;
2022 for (child = lacc->first_child; child; child = child->next_sibling)
2024 if (child->offset == norm_offset && child->size == size)
2026 *exact_match = child;
2027 return true;
2030 if (child->offset < norm_offset + size
2031 && child->offset + child->size > norm_offset)
2032 return true;
2035 return false;
2038 /* Create a new child access of PARENT, with all properties just like MODEL
2039 except for its offset and with its grp_write false and grp_read true.
2040 Return the new access or NULL if it cannot be created. Note that this access
2041 is created long after all splicing and sorting, it's not located in any
2042 access vector and is automatically a representative of its group. */
2044 static struct access *
2045 create_artificial_child_access (struct access *parent, struct access *model,
2046 HOST_WIDE_INT new_offset)
2048 struct access *access;
2049 struct access **child;
2050 tree expr = parent->base;
2052 gcc_assert (!model->grp_unscalarizable_region);
2054 access = (struct access *) pool_alloc (access_pool);
2055 memset (access, 0, sizeof (struct access));
2056 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2057 model->type))
2059 access->grp_no_warning = true;
2060 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2061 new_offset, model, NULL, false);
2064 access->base = parent->base;
2065 access->expr = expr;
2066 access->offset = new_offset;
2067 access->size = model->size;
2068 access->type = model->type;
2069 access->grp_write = true;
2070 access->grp_read = false;
2072 child = &parent->first_child;
2073 while (*child && (*child)->offset < new_offset)
2074 child = &(*child)->next_sibling;
2076 access->next_sibling = *child;
2077 *child = access;
2079 return access;
2083 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2084 true if any new subaccess was created. Additionally, if RACC is a scalar
2085 access but LACC is not, change the type of the latter, if possible. */
2087 static bool
2088 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2090 struct access *rchild;
2091 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2092 bool ret = false;
2094 if (is_gimple_reg_type (lacc->type)
2095 || lacc->grp_unscalarizable_region
2096 || racc->grp_unscalarizable_region)
2097 return false;
2099 if (!lacc->first_child && !racc->first_child
2100 && is_gimple_reg_type (racc->type))
2102 tree t = lacc->base;
2104 lacc->type = racc->type;
2105 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t), lacc->offset,
2106 racc->type))
2107 lacc->expr = t;
2108 else
2110 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2111 lacc->base, lacc->offset,
2112 racc, NULL, false);
2113 lacc->grp_no_warning = true;
2115 return false;
2118 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2120 struct access *new_acc = NULL;
2121 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2123 if (rchild->grp_unscalarizable_region)
2124 continue;
2126 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2127 &new_acc))
2129 if (new_acc)
2131 rchild->grp_hint = 1;
2132 new_acc->grp_hint |= new_acc->grp_read;
2133 if (rchild->first_child)
2134 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2136 continue;
2139 rchild->grp_hint = 1;
2140 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2141 if (new_acc)
2143 ret = true;
2144 if (racc->first_child)
2145 propagate_subaccesses_across_link (new_acc, rchild);
2149 return ret;
2152 /* Propagate all subaccesses across assignment links. */
2154 static void
2155 propagate_all_subaccesses (void)
2157 while (work_queue_head)
2159 struct access *racc = pop_access_from_work_queue ();
2160 struct assign_link *link;
2162 gcc_assert (racc->first_link);
2164 for (link = racc->first_link; link; link = link->next)
2166 struct access *lacc = link->lacc;
2168 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2169 continue;
2170 lacc = lacc->group_representative;
2171 if (propagate_subaccesses_across_link (lacc, racc)
2172 && lacc->first_link)
2173 add_access_to_work_queue (lacc);
2178 /* Go through all accesses collected throughout the (intraprocedural) analysis
2179 stage, exclude overlapping ones, identify representatives and build trees
2180 out of them, making decisions about scalarization on the way. Return true
2181 iff there are any to-be-scalarized variables after this stage. */
2183 static bool
2184 analyze_all_variable_accesses (void)
2186 int res = 0;
2187 bitmap tmp = BITMAP_ALLOC (NULL);
2188 bitmap_iterator bi;
2189 unsigned i, max_total_scalarization_size;
2191 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2192 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2194 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2195 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2196 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2198 tree var = referenced_var (i);
2200 if (TREE_CODE (var) == VAR_DECL
2201 && ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2202 <= max_total_scalarization_size)
2203 && type_consists_of_records_p (TREE_TYPE (var)))
2205 completely_scalarize_record (var, var, 0, var);
2206 if (dump_file && (dump_flags & TDF_DETAILS))
2208 fprintf (dump_file, "Will attempt to totally scalarize ");
2209 print_generic_expr (dump_file, var, 0);
2210 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2215 bitmap_copy (tmp, candidate_bitmap);
2216 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2218 tree var = referenced_var (i);
2219 struct access *access;
2221 access = sort_and_splice_var_accesses (var);
2222 if (!access || !build_access_trees (access))
2223 disqualify_candidate (var,
2224 "No or inhibitingly overlapping accesses.");
2227 propagate_all_subaccesses ();
2229 bitmap_copy (tmp, candidate_bitmap);
2230 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2232 tree var = referenced_var (i);
2233 struct access *access = get_first_repr_for_decl (var);
2235 if (analyze_access_trees (access))
2237 res++;
2238 if (dump_file && (dump_flags & TDF_DETAILS))
2240 fprintf (dump_file, "\nAccess trees for ");
2241 print_generic_expr (dump_file, var, 0);
2242 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2243 dump_access_tree (dump_file, access);
2244 fprintf (dump_file, "\n");
2247 else
2248 disqualify_candidate (var, "No scalar replacements to be created.");
2251 BITMAP_FREE (tmp);
2253 if (res)
2255 statistics_counter_event (cfun, "Scalarized aggregates", res);
2256 return true;
2258 else
2259 return false;
2262 /* Generate statements copying scalar replacements of accesses within a subtree
2263 into or out of AGG. ACCESS, all its children, siblings and their children
2264 are to be processed. AGG is an aggregate type expression (can be a
2265 declaration but does not have to be, it can for example also be a mem_ref or
2266 a series of handled components). TOP_OFFSET is the offset of the processed
2267 subtree which has to be subtracted from offsets of individual accesses to
2268 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2269 replacements in the interval <start_offset, start_offset + chunk_size>,
2270 otherwise copy all. GSI is a statement iterator used to place the new
2271 statements. WRITE should be true when the statements should write from AGG
2272 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2273 statements will be added after the current statement in GSI, they will be
2274 added before the statement otherwise. */
2276 static void
2277 generate_subtree_copies (struct access *access, tree agg,
2278 HOST_WIDE_INT top_offset,
2279 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2280 gimple_stmt_iterator *gsi, bool write,
2281 bool insert_after, location_t loc)
2285 if (chunk_size && access->offset >= start_offset + chunk_size)
2286 return;
2288 if (access->grp_to_be_replaced
2289 && (chunk_size == 0
2290 || access->offset + access->size > start_offset))
2292 tree expr, repl = get_access_replacement (access);
2293 gimple stmt;
2295 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2296 access, gsi, insert_after);
2298 if (write)
2300 if (access->grp_partial_lhs)
2301 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2302 !insert_after,
2303 insert_after ? GSI_NEW_STMT
2304 : GSI_SAME_STMT);
2305 stmt = gimple_build_assign (repl, expr);
2307 else
2309 TREE_NO_WARNING (repl) = 1;
2310 if (access->grp_partial_lhs)
2311 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2312 !insert_after,
2313 insert_after ? GSI_NEW_STMT
2314 : GSI_SAME_STMT);
2315 stmt = gimple_build_assign (expr, repl);
2317 gimple_set_location (stmt, loc);
2319 if (insert_after)
2320 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2321 else
2322 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2323 update_stmt (stmt);
2324 sra_stats.subtree_copies++;
2327 if (access->first_child)
2328 generate_subtree_copies (access->first_child, agg, top_offset,
2329 start_offset, chunk_size, gsi,
2330 write, insert_after, loc);
2332 access = access->next_sibling;
2334 while (access);
2337 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2338 the root of the subtree to be processed. GSI is the statement iterator used
2339 for inserting statements which are added after the current statement if
2340 INSERT_AFTER is true or before it otherwise. */
2342 static void
2343 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2344 bool insert_after, location_t loc)
2347 struct access *child;
2349 if (access->grp_to_be_replaced)
2351 gimple stmt;
2353 stmt = gimple_build_assign (get_access_replacement (access),
2354 build_zero_cst (access->type));
2355 if (insert_after)
2356 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2357 else
2358 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2359 update_stmt (stmt);
2360 gimple_set_location (stmt, loc);
2363 for (child = access->first_child; child; child = child->next_sibling)
2364 init_subtree_with_zero (child, gsi, insert_after, loc);
2367 /* Search for an access representative for the given expression EXPR and
2368 return it or NULL if it cannot be found. */
2370 static struct access *
2371 get_access_for_expr (tree expr)
2373 HOST_WIDE_INT offset, size, max_size;
2374 tree base;
2376 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2377 a different size than the size of its argument and we need the latter
2378 one. */
2379 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2380 expr = TREE_OPERAND (expr, 0);
2382 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2383 if (max_size == -1 || !DECL_P (base))
2384 return NULL;
2386 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2387 return NULL;
2389 return get_var_base_offset_size_access (base, offset, max_size);
2392 /* Replace the expression EXPR with a scalar replacement if there is one and
2393 generate other statements to do type conversion or subtree copying if
2394 necessary. GSI is used to place newly created statements, WRITE is true if
2395 the expression is being written to (it is on a LHS of a statement or output
2396 in an assembly statement). */
2398 static bool
2399 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2401 location_t loc;
2402 struct access *access;
2403 tree type, bfr;
2405 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2407 bfr = *expr;
2408 expr = &TREE_OPERAND (*expr, 0);
2410 else
2411 bfr = NULL_TREE;
2413 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2414 expr = &TREE_OPERAND (*expr, 0);
2415 access = get_access_for_expr (*expr);
2416 if (!access)
2417 return false;
2418 type = TREE_TYPE (*expr);
2420 loc = gimple_location (gsi_stmt (*gsi));
2421 if (access->grp_to_be_replaced)
2423 tree repl = get_access_replacement (access);
2424 /* If we replace a non-register typed access simply use the original
2425 access expression to extract the scalar component afterwards.
2426 This happens if scalarizing a function return value or parameter
2427 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2428 gcc.c-torture/compile/20011217-1.c.
2430 We also want to use this when accessing a complex or vector which can
2431 be accessed as a different type too, potentially creating a need for
2432 type conversion (see PR42196) and when scalarized unions are involved
2433 in assembler statements (see PR42398). */
2434 if (!useless_type_conversion_p (type, access->type))
2436 tree ref;
2438 ref = build_ref_for_model (loc, access->base, access->offset, access,
2439 NULL, false);
2441 if (write)
2443 gimple stmt;
2445 if (access->grp_partial_lhs)
2446 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2447 false, GSI_NEW_STMT);
2448 stmt = gimple_build_assign (repl, ref);
2449 gimple_set_location (stmt, loc);
2450 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2452 else
2454 gimple stmt;
2456 if (access->grp_partial_lhs)
2457 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2458 true, GSI_SAME_STMT);
2459 stmt = gimple_build_assign (ref, repl);
2460 gimple_set_location (stmt, loc);
2461 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2464 else
2465 *expr = repl;
2466 sra_stats.exprs++;
2469 if (access->first_child)
2471 HOST_WIDE_INT start_offset, chunk_size;
2472 if (bfr
2473 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2474 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2476 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2477 start_offset = access->offset
2478 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2480 else
2481 start_offset = chunk_size = 0;
2483 generate_subtree_copies (access->first_child, access->base, 0,
2484 start_offset, chunk_size, gsi, write, write,
2485 loc);
2487 return true;
2490 /* Where scalar replacements of the RHS have been written to when a replacement
2491 of a LHS of an assigments cannot be direclty loaded from a replacement of
2492 the RHS. */
2493 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2494 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2495 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2497 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2498 base aggregate if there are unscalarized data or directly to LHS of the
2499 statement that is pointed to by GSI otherwise. */
2501 static enum unscalarized_data_handling
2502 handle_unscalarized_data_in_subtree (struct access *top_racc,
2503 gimple_stmt_iterator *gsi)
2505 if (top_racc->grp_unscalarized_data)
2507 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2508 gsi, false, false,
2509 gimple_location (gsi_stmt (*gsi)));
2510 return SRA_UDH_RIGHT;
2512 else
2514 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2515 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2516 0, 0, gsi, false, false,
2517 gimple_location (gsi_stmt (*gsi)));
2518 return SRA_UDH_LEFT;
2523 /* Try to generate statements to load all sub-replacements in an access subtree
2524 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2525 If that is not possible, refresh the TOP_RACC base aggregate and load the
2526 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2527 copied. NEW_GSI is stmt iterator used for statement insertions after the
2528 original assignment, OLD_GSI is used to insert statements before the
2529 assignment. *REFRESHED keeps the information whether we have needed to
2530 refresh replacements of the LHS and from which side of the assignments this
2531 takes place. */
2533 static void
2534 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2535 HOST_WIDE_INT left_offset,
2536 gimple_stmt_iterator *old_gsi,
2537 gimple_stmt_iterator *new_gsi,
2538 enum unscalarized_data_handling *refreshed)
2540 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2541 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2543 if (lacc->grp_to_be_replaced)
2545 struct access *racc;
2546 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2547 gimple stmt;
2548 tree rhs;
2550 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2551 if (racc && racc->grp_to_be_replaced)
2553 rhs = get_access_replacement (racc);
2554 if (!useless_type_conversion_p (lacc->type, racc->type))
2555 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2557 else
2559 /* No suitable access on the right hand side, need to load from
2560 the aggregate. See if we have to update it first... */
2561 if (*refreshed == SRA_UDH_NONE)
2562 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2563 old_gsi);
2565 if (*refreshed == SRA_UDH_LEFT)
2566 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2567 new_gsi, true);
2568 else
2569 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2570 new_gsi, true);
2573 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2574 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2575 gimple_set_location (stmt, loc);
2576 update_stmt (stmt);
2577 sra_stats.subreplacements++;
2579 else if (*refreshed == SRA_UDH_NONE
2580 && lacc->grp_read && !lacc->grp_covered)
2581 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2582 old_gsi);
2584 if (lacc->first_child)
2585 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2586 old_gsi, new_gsi, refreshed);
2590 /* Result code for SRA assignment modification. */
2591 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2592 SRA_AM_MODIFIED, /* stmt changed but not
2593 removed */
2594 SRA_AM_REMOVED }; /* stmt eliminated */
2596 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2597 to the assignment and GSI is the statement iterator pointing at it. Returns
2598 the same values as sra_modify_assign. */
2600 static enum assignment_mod_result
2601 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2603 tree lhs = gimple_assign_lhs (*stmt);
2604 struct access *acc;
2605 location_t loc;
2607 acc = get_access_for_expr (lhs);
2608 if (!acc)
2609 return SRA_AM_NONE;
2611 loc = gimple_location (*stmt);
2612 if (VEC_length (constructor_elt,
2613 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2615 /* I have never seen this code path trigger but if it can happen the
2616 following should handle it gracefully. */
2617 if (access_has_children_p (acc))
2618 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2619 true, true, loc);
2620 return SRA_AM_MODIFIED;
2623 if (acc->grp_covered)
2625 init_subtree_with_zero (acc, gsi, false, loc);
2626 unlink_stmt_vdef (*stmt);
2627 gsi_remove (gsi, true);
2628 return SRA_AM_REMOVED;
2630 else
2632 init_subtree_with_zero (acc, gsi, true, loc);
2633 return SRA_AM_MODIFIED;
2637 /* Create and return a new suitable default definition SSA_NAME for RACC which
2638 is an access describing an uninitialized part of an aggregate that is being
2639 loaded. */
2641 static tree
2642 get_repl_default_def_ssa_name (struct access *racc)
2644 tree repl, decl;
2646 decl = get_unrenamed_access_replacement (racc);
2648 repl = gimple_default_def (cfun, decl);
2649 if (!repl)
2651 repl = make_ssa_name (decl, gimple_build_nop ());
2652 set_default_def (decl, repl);
2655 return repl;
2658 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2659 somewhere in it. */
2661 static inline bool
2662 contains_bitfld_comp_ref_p (const_tree ref)
2664 while (handled_component_p (ref))
2666 if (TREE_CODE (ref) == COMPONENT_REF
2667 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2668 return true;
2669 ref = TREE_OPERAND (ref, 0);
2672 return false;
2675 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2676 bit-field field declaration somewhere in it. */
2678 static inline bool
2679 contains_vce_or_bfcref_p (const_tree ref)
2681 while (handled_component_p (ref))
2683 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2684 || (TREE_CODE (ref) == COMPONENT_REF
2685 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2686 return true;
2687 ref = TREE_OPERAND (ref, 0);
2690 return false;
2693 /* Examine both sides of the assignment statement pointed to by STMT, replace
2694 them with a scalare replacement if there is one and generate copying of
2695 replacements if scalarized aggregates have been used in the assignment. GSI
2696 is used to hold generated statements for type conversions and subtree
2697 copying. */
2699 static enum assignment_mod_result
2700 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2702 struct access *lacc, *racc;
2703 tree lhs, rhs;
2704 bool modify_this_stmt = false;
2705 bool force_gimple_rhs = false;
2706 location_t loc;
2707 gimple_stmt_iterator orig_gsi = *gsi;
2709 if (!gimple_assign_single_p (*stmt))
2710 return SRA_AM_NONE;
2711 lhs = gimple_assign_lhs (*stmt);
2712 rhs = gimple_assign_rhs1 (*stmt);
2714 if (TREE_CODE (rhs) == CONSTRUCTOR)
2715 return sra_modify_constructor_assign (stmt, gsi);
2717 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2718 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2719 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2721 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2722 gsi, false);
2723 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2724 gsi, true);
2725 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2728 lacc = get_access_for_expr (lhs);
2729 racc = get_access_for_expr (rhs);
2730 if (!lacc && !racc)
2731 return SRA_AM_NONE;
2733 loc = gimple_location (*stmt);
2734 if (lacc && lacc->grp_to_be_replaced)
2736 lhs = get_access_replacement (lacc);
2737 gimple_assign_set_lhs (*stmt, lhs);
2738 modify_this_stmt = true;
2739 if (lacc->grp_partial_lhs)
2740 force_gimple_rhs = true;
2741 sra_stats.exprs++;
2744 if (racc && racc->grp_to_be_replaced)
2746 rhs = get_access_replacement (racc);
2747 modify_this_stmt = true;
2748 if (racc->grp_partial_lhs)
2749 force_gimple_rhs = true;
2750 sra_stats.exprs++;
2753 if (modify_this_stmt)
2755 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2757 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2758 ??? This should move to fold_stmt which we simply should
2759 call after building a VIEW_CONVERT_EXPR here. */
2760 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2761 && !contains_bitfld_comp_ref_p (lhs)
2762 && !access_has_children_p (lacc))
2764 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
2765 gimple_assign_set_lhs (*stmt, lhs);
2767 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2768 && !contains_vce_or_bfcref_p (rhs)
2769 && !access_has_children_p (racc))
2770 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
2772 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2774 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
2775 rhs);
2776 if (is_gimple_reg_type (TREE_TYPE (lhs))
2777 && TREE_CODE (lhs) != SSA_NAME)
2778 force_gimple_rhs = true;
2783 /* From this point on, the function deals with assignments in between
2784 aggregates when at least one has scalar reductions of some of its
2785 components. There are three possible scenarios: Both the LHS and RHS have
2786 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2788 In the first case, we would like to load the LHS components from RHS
2789 components whenever possible. If that is not possible, we would like to
2790 read it directly from the RHS (after updating it by storing in it its own
2791 components). If there are some necessary unscalarized data in the LHS,
2792 those will be loaded by the original assignment too. If neither of these
2793 cases happen, the original statement can be removed. Most of this is done
2794 by load_assign_lhs_subreplacements.
2796 In the second case, we would like to store all RHS scalarized components
2797 directly into LHS and if they cover the aggregate completely, remove the
2798 statement too. In the third case, we want the LHS components to be loaded
2799 directly from the RHS (DSE will remove the original statement if it
2800 becomes redundant).
2802 This is a bit complex but manageable when types match and when unions do
2803 not cause confusion in a way that we cannot really load a component of LHS
2804 from the RHS or vice versa (the access representing this level can have
2805 subaccesses that are accessible only through a different union field at a
2806 higher level - different from the one used in the examined expression).
2807 Unions are fun.
2809 Therefore, I specially handle a fourth case, happening when there is a
2810 specific type cast or it is impossible to locate a scalarized subaccess on
2811 the other side of the expression. If that happens, I simply "refresh" the
2812 RHS by storing in it is scalarized components leave the original statement
2813 there to do the copying and then load the scalar replacements of the LHS.
2814 This is what the first branch does. */
2816 if (gimple_has_volatile_ops (*stmt)
2817 || contains_vce_or_bfcref_p (rhs)
2818 || contains_vce_or_bfcref_p (lhs))
2820 if (access_has_children_p (racc))
2821 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
2822 gsi, false, false, loc);
2823 if (access_has_children_p (lacc))
2824 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
2825 gsi, true, true, loc);
2826 sra_stats.separate_lhs_rhs_handling++;
2828 else
2830 if (access_has_children_p (lacc) && access_has_children_p (racc))
2832 gimple_stmt_iterator orig_gsi = *gsi;
2833 enum unscalarized_data_handling refreshed;
2835 if (lacc->grp_read && !lacc->grp_covered)
2836 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
2837 else
2838 refreshed = SRA_UDH_NONE;
2840 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
2841 &orig_gsi, gsi, &refreshed);
2842 if (refreshed != SRA_UDH_RIGHT)
2844 gsi_next (gsi);
2845 unlink_stmt_vdef (*stmt);
2846 gsi_remove (&orig_gsi, true);
2847 sra_stats.deleted++;
2848 return SRA_AM_REMOVED;
2851 else
2853 if (racc)
2855 if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data)
2857 if (dump_file)
2859 fprintf (dump_file, "Removing load: ");
2860 print_gimple_stmt (dump_file, *stmt, 0, 0);
2863 if (TREE_CODE (lhs) == SSA_NAME)
2865 rhs = get_repl_default_def_ssa_name (racc);
2866 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2867 TREE_TYPE (rhs)))
2868 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
2869 TREE_TYPE (lhs), rhs);
2871 else
2873 if (racc->first_child)
2874 generate_subtree_copies (racc->first_child, lhs,
2875 racc->offset, 0, 0, gsi,
2876 false, false, loc);
2878 gcc_assert (*stmt == gsi_stmt (*gsi));
2879 unlink_stmt_vdef (*stmt);
2880 gsi_remove (gsi, true);
2881 sra_stats.deleted++;
2882 return SRA_AM_REMOVED;
2885 else if (racc->first_child)
2886 generate_subtree_copies (racc->first_child, lhs, racc->offset,
2887 0, 0, gsi, false, true, loc);
2889 if (access_has_children_p (lacc))
2890 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
2891 0, 0, gsi, true, true, loc);
2895 /* This gimplification must be done after generate_subtree_copies, lest we
2896 insert the subtree copies in the middle of the gimplified sequence. */
2897 if (force_gimple_rhs)
2898 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
2899 true, GSI_SAME_STMT);
2900 if (gimple_assign_rhs1 (*stmt) != rhs)
2902 modify_this_stmt = true;
2903 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
2904 gcc_assert (*stmt == gsi_stmt (orig_gsi));
2907 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2910 /* Traverse the function body and all modifications as decided in
2911 analyze_all_variable_accesses. Return true iff the CFG has been
2912 changed. */
2914 static bool
2915 sra_modify_function_body (void)
2917 bool cfg_changed = false;
2918 basic_block bb;
2920 FOR_EACH_BB (bb)
2922 gimple_stmt_iterator gsi = gsi_start_bb (bb);
2923 while (!gsi_end_p (gsi))
2925 gimple stmt = gsi_stmt (gsi);
2926 enum assignment_mod_result assign_result;
2927 bool modified = false, deleted = false;
2928 tree *t;
2929 unsigned i;
2931 switch (gimple_code (stmt))
2933 case GIMPLE_RETURN:
2934 t = gimple_return_retval_ptr (stmt);
2935 if (*t != NULL_TREE)
2936 modified |= sra_modify_expr (t, &gsi, false);
2937 break;
2939 case GIMPLE_ASSIGN:
2940 assign_result = sra_modify_assign (&stmt, &gsi);
2941 modified |= assign_result == SRA_AM_MODIFIED;
2942 deleted = assign_result == SRA_AM_REMOVED;
2943 break;
2945 case GIMPLE_CALL:
2946 /* Operands must be processed before the lhs. */
2947 for (i = 0; i < gimple_call_num_args (stmt); i++)
2949 t = gimple_call_arg_ptr (stmt, i);
2950 modified |= sra_modify_expr (t, &gsi, false);
2953 if (gimple_call_lhs (stmt))
2955 t = gimple_call_lhs_ptr (stmt);
2956 modified |= sra_modify_expr (t, &gsi, true);
2958 break;
2960 case GIMPLE_ASM:
2961 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
2963 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
2964 modified |= sra_modify_expr (t, &gsi, false);
2966 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
2968 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
2969 modified |= sra_modify_expr (t, &gsi, true);
2971 break;
2973 default:
2974 break;
2977 if (modified)
2979 update_stmt (stmt);
2980 if (maybe_clean_eh_stmt (stmt)
2981 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
2982 cfg_changed = true;
2984 if (!deleted)
2985 gsi_next (&gsi);
2989 return cfg_changed;
2992 /* Generate statements initializing scalar replacements of parts of function
2993 parameters. */
2995 static void
2996 initialize_parameter_reductions (void)
2998 gimple_stmt_iterator gsi;
2999 gimple_seq seq = NULL;
3000 tree parm;
3002 for (parm = DECL_ARGUMENTS (current_function_decl);
3003 parm;
3004 parm = DECL_CHAIN (parm))
3006 VEC (access_p, heap) *access_vec;
3007 struct access *access;
3009 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3010 continue;
3011 access_vec = get_base_access_vector (parm);
3012 if (!access_vec)
3013 continue;
3015 if (!seq)
3017 seq = gimple_seq_alloc ();
3018 gsi = gsi_start (seq);
3021 for (access = VEC_index (access_p, access_vec, 0);
3022 access;
3023 access = access->next_grp)
3024 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3025 EXPR_LOCATION (parm));
3028 if (seq)
3029 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3032 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3033 it reveals there are components of some aggregates to be scalarized, it runs
3034 the required transformations. */
3035 static unsigned int
3036 perform_intra_sra (void)
3038 int ret = 0;
3039 sra_initialize ();
3041 if (!find_var_candidates ())
3042 goto out;
3044 if (!scan_function ())
3045 goto out;
3047 if (!analyze_all_variable_accesses ())
3048 goto out;
3050 if (sra_modify_function_body ())
3051 ret = TODO_update_ssa | TODO_cleanup_cfg;
3052 else
3053 ret = TODO_update_ssa;
3054 initialize_parameter_reductions ();
3056 statistics_counter_event (cfun, "Scalar replacements created",
3057 sra_stats.replacements);
3058 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3059 statistics_counter_event (cfun, "Subtree copy stmts",
3060 sra_stats.subtree_copies);
3061 statistics_counter_event (cfun, "Subreplacement stmts",
3062 sra_stats.subreplacements);
3063 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3064 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3065 sra_stats.separate_lhs_rhs_handling);
3067 out:
3068 sra_deinitialize ();
3069 return ret;
3072 /* Perform early intraprocedural SRA. */
3073 static unsigned int
3074 early_intra_sra (void)
3076 sra_mode = SRA_MODE_EARLY_INTRA;
3077 return perform_intra_sra ();
3080 /* Perform "late" intraprocedural SRA. */
3081 static unsigned int
3082 late_intra_sra (void)
3084 sra_mode = SRA_MODE_INTRA;
3085 return perform_intra_sra ();
3089 static bool
3090 gate_intra_sra (void)
3092 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3096 struct gimple_opt_pass pass_sra_early =
3099 GIMPLE_PASS,
3100 "esra", /* name */
3101 gate_intra_sra, /* gate */
3102 early_intra_sra, /* execute */
3103 NULL, /* sub */
3104 NULL, /* next */
3105 0, /* static_pass_number */
3106 TV_TREE_SRA, /* tv_id */
3107 PROP_cfg | PROP_ssa, /* properties_required */
3108 0, /* properties_provided */
3109 0, /* properties_destroyed */
3110 0, /* todo_flags_start */
3111 TODO_dump_func
3112 | TODO_update_ssa
3113 | TODO_ggc_collect
3114 | TODO_verify_ssa /* todo_flags_finish */
3118 struct gimple_opt_pass pass_sra =
3121 GIMPLE_PASS,
3122 "sra", /* name */
3123 gate_intra_sra, /* gate */
3124 late_intra_sra, /* execute */
3125 NULL, /* sub */
3126 NULL, /* next */
3127 0, /* static_pass_number */
3128 TV_TREE_SRA, /* tv_id */
3129 PROP_cfg | PROP_ssa, /* properties_required */
3130 0, /* properties_provided */
3131 0, /* properties_destroyed */
3132 TODO_update_address_taken, /* todo_flags_start */
3133 TODO_dump_func
3134 | TODO_update_ssa
3135 | TODO_ggc_collect
3136 | TODO_verify_ssa /* todo_flags_finish */
3141 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3142 parameter. */
3144 static bool
3145 is_unused_scalar_param (tree parm)
3147 tree name;
3148 return (is_gimple_reg (parm)
3149 && (!(name = gimple_default_def (cfun, parm))
3150 || has_zero_uses (name)));
3153 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3154 examine whether there are any direct or otherwise infeasible ones. If so,
3155 return true, otherwise return false. PARM must be a gimple register with a
3156 non-NULL default definition. */
3158 static bool
3159 ptr_parm_has_direct_uses (tree parm)
3161 imm_use_iterator ui;
3162 gimple stmt;
3163 tree name = gimple_default_def (cfun, parm);
3164 bool ret = false;
3166 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3168 int uses_ok = 0;
3169 use_operand_p use_p;
3171 if (is_gimple_debug (stmt))
3172 continue;
3174 /* Valid uses include dereferences on the lhs and the rhs. */
3175 if (gimple_has_lhs (stmt))
3177 tree lhs = gimple_get_lhs (stmt);
3178 while (handled_component_p (lhs))
3179 lhs = TREE_OPERAND (lhs, 0);
3180 if (TREE_CODE (lhs) == MEM_REF
3181 && TREE_OPERAND (lhs, 0) == name
3182 && integer_zerop (TREE_OPERAND (lhs, 1))
3183 && types_compatible_p (TREE_TYPE (lhs),
3184 TREE_TYPE (TREE_TYPE (name))))
3185 uses_ok++;
3187 if (gimple_assign_single_p (stmt))
3189 tree rhs = gimple_assign_rhs1 (stmt);
3190 while (handled_component_p (rhs))
3191 rhs = TREE_OPERAND (rhs, 0);
3192 if (TREE_CODE (rhs) == MEM_REF
3193 && TREE_OPERAND (rhs, 0) == name
3194 && integer_zerop (TREE_OPERAND (rhs, 1))
3195 && types_compatible_p (TREE_TYPE (rhs),
3196 TREE_TYPE (TREE_TYPE (name))))
3197 uses_ok++;
3199 else if (is_gimple_call (stmt))
3201 unsigned i;
3202 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3204 tree arg = gimple_call_arg (stmt, i);
3205 while (handled_component_p (arg))
3206 arg = TREE_OPERAND (arg, 0);
3207 if (TREE_CODE (arg) == MEM_REF
3208 && TREE_OPERAND (arg, 0) == name
3209 && integer_zerop (TREE_OPERAND (arg, 1))
3210 && types_compatible_p (TREE_TYPE (arg),
3211 TREE_TYPE (TREE_TYPE (name))))
3212 uses_ok++;
3216 /* If the number of valid uses does not match the number of
3217 uses in this stmt there is an unhandled use. */
3218 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3219 --uses_ok;
3221 if (uses_ok != 0)
3222 ret = true;
3224 if (ret)
3225 BREAK_FROM_IMM_USE_STMT (ui);
3228 return ret;
3231 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3232 them in candidate_bitmap. Note that these do not necessarily include
3233 parameter which are unused and thus can be removed. Return true iff any
3234 such candidate has been found. */
3236 static bool
3237 find_param_candidates (void)
3239 tree parm;
3240 int count = 0;
3241 bool ret = false;
3243 for (parm = DECL_ARGUMENTS (current_function_decl);
3244 parm;
3245 parm = DECL_CHAIN (parm))
3247 tree type = TREE_TYPE (parm);
3249 count++;
3251 if (TREE_THIS_VOLATILE (parm)
3252 || TREE_ADDRESSABLE (parm)
3253 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3254 continue;
3256 if (is_unused_scalar_param (parm))
3258 ret = true;
3259 continue;
3262 if (POINTER_TYPE_P (type))
3264 type = TREE_TYPE (type);
3266 if (TREE_CODE (type) == FUNCTION_TYPE
3267 || TYPE_VOLATILE (type)
3268 || (TREE_CODE (type) == ARRAY_TYPE
3269 && TYPE_NONALIASED_COMPONENT (type))
3270 || !is_gimple_reg (parm)
3271 || is_va_list_type (type)
3272 || ptr_parm_has_direct_uses (parm))
3273 continue;
3275 else if (!AGGREGATE_TYPE_P (type))
3276 continue;
3278 if (!COMPLETE_TYPE_P (type)
3279 || !host_integerp (TYPE_SIZE (type), 1)
3280 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3281 || (AGGREGATE_TYPE_P (type)
3282 && type_internals_preclude_sra_p (type)))
3283 continue;
3285 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3286 ret = true;
3287 if (dump_file && (dump_flags & TDF_DETAILS))
3289 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3290 print_generic_expr (dump_file, parm, 0);
3291 fprintf (dump_file, "\n");
3295 func_param_count = count;
3296 return ret;
3299 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3300 maybe_modified. */
3302 static bool
3303 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3304 void *data)
3306 struct access *repr = (struct access *) data;
3308 repr->grp_maybe_modified = 1;
3309 return true;
3312 /* Analyze what representatives (in linked lists accessible from
3313 REPRESENTATIVES) can be modified by side effects of statements in the
3314 current function. */
3316 static void
3317 analyze_modified_params (VEC (access_p, heap) *representatives)
3319 int i;
3321 for (i = 0; i < func_param_count; i++)
3323 struct access *repr;
3325 for (repr = VEC_index (access_p, representatives, i);
3326 repr;
3327 repr = repr->next_grp)
3329 struct access *access;
3330 bitmap visited;
3331 ao_ref ar;
3333 if (no_accesses_p (repr))
3334 continue;
3335 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3336 || repr->grp_maybe_modified)
3337 continue;
3339 ao_ref_init (&ar, repr->expr);
3340 visited = BITMAP_ALLOC (NULL);
3341 for (access = repr; access; access = access->next_sibling)
3343 /* All accesses are read ones, otherwise grp_maybe_modified would
3344 be trivially set. */
3345 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3346 mark_maybe_modified, repr, &visited);
3347 if (repr->grp_maybe_modified)
3348 break;
3350 BITMAP_FREE (visited);
3355 /* Propagate distances in bb_dereferences in the opposite direction than the
3356 control flow edges, in each step storing the maximum of the current value
3357 and the minimum of all successors. These steps are repeated until the table
3358 stabilizes. Note that BBs which might terminate the functions (according to
3359 final_bbs bitmap) never updated in this way. */
3361 static void
3362 propagate_dereference_distances (void)
3364 VEC (basic_block, heap) *queue;
3365 basic_block bb;
3367 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3368 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3369 FOR_EACH_BB (bb)
3371 VEC_quick_push (basic_block, queue, bb);
3372 bb->aux = bb;
3375 while (!VEC_empty (basic_block, queue))
3377 edge_iterator ei;
3378 edge e;
3379 bool change = false;
3380 int i;
3382 bb = VEC_pop (basic_block, queue);
3383 bb->aux = NULL;
3385 if (bitmap_bit_p (final_bbs, bb->index))
3386 continue;
3388 for (i = 0; i < func_param_count; i++)
3390 int idx = bb->index * func_param_count + i;
3391 bool first = true;
3392 HOST_WIDE_INT inh = 0;
3394 FOR_EACH_EDGE (e, ei, bb->succs)
3396 int succ_idx = e->dest->index * func_param_count + i;
3398 if (e->src == EXIT_BLOCK_PTR)
3399 continue;
3401 if (first)
3403 first = false;
3404 inh = bb_dereferences [succ_idx];
3406 else if (bb_dereferences [succ_idx] < inh)
3407 inh = bb_dereferences [succ_idx];
3410 if (!first && bb_dereferences[idx] < inh)
3412 bb_dereferences[idx] = inh;
3413 change = true;
3417 if (change && !bitmap_bit_p (final_bbs, bb->index))
3418 FOR_EACH_EDGE (e, ei, bb->preds)
3420 if (e->src->aux)
3421 continue;
3423 e->src->aux = e->src;
3424 VEC_quick_push (basic_block, queue, e->src);
3428 VEC_free (basic_block, heap, queue);
3431 /* Dump a dereferences TABLE with heading STR to file F. */
3433 static void
3434 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3436 basic_block bb;
3438 fprintf (dump_file, str);
3439 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3441 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3442 if (bb != EXIT_BLOCK_PTR)
3444 int i;
3445 for (i = 0; i < func_param_count; i++)
3447 int idx = bb->index * func_param_count + i;
3448 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3451 fprintf (f, "\n");
3453 fprintf (dump_file, "\n");
3456 /* Determine what (parts of) parameters passed by reference that are not
3457 assigned to are not certainly dereferenced in this function and thus the
3458 dereferencing cannot be safely moved to the caller without potentially
3459 introducing a segfault. Mark such REPRESENTATIVES as
3460 grp_not_necessarilly_dereferenced.
3462 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3463 part is calculated rather than simple booleans are calculated for each
3464 pointer parameter to handle cases when only a fraction of the whole
3465 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3466 an example).
3468 The maximum dereference distances for each pointer parameter and BB are
3469 already stored in bb_dereference. This routine simply propagates these
3470 values upwards by propagate_dereference_distances and then compares the
3471 distances of individual parameters in the ENTRY BB to the equivalent
3472 distances of each representative of a (fraction of a) parameter. */
3474 static void
3475 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3477 int i;
3479 if (dump_file && (dump_flags & TDF_DETAILS))
3480 dump_dereferences_table (dump_file,
3481 "Dereference table before propagation:\n",
3482 bb_dereferences);
3484 propagate_dereference_distances ();
3486 if (dump_file && (dump_flags & TDF_DETAILS))
3487 dump_dereferences_table (dump_file,
3488 "Dereference table after propagation:\n",
3489 bb_dereferences);
3491 for (i = 0; i < func_param_count; i++)
3493 struct access *repr = VEC_index (access_p, representatives, i);
3494 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3496 if (!repr || no_accesses_p (repr))
3497 continue;
3501 if ((repr->offset + repr->size) > bb_dereferences[idx])
3502 repr->grp_not_necessarilly_dereferenced = 1;
3503 repr = repr->next_grp;
3505 while (repr);
3509 /* Return the representative access for the parameter declaration PARM if it is
3510 a scalar passed by reference which is not written to and the pointer value
3511 is not used directly. Thus, if it is legal to dereference it in the caller
3512 and we can rule out modifications through aliases, such parameter should be
3513 turned into one passed by value. Return NULL otherwise. */
3515 static struct access *
3516 unmodified_by_ref_scalar_representative (tree parm)
3518 int i, access_count;
3519 struct access *repr;
3520 VEC (access_p, heap) *access_vec;
3522 access_vec = get_base_access_vector (parm);
3523 gcc_assert (access_vec);
3524 repr = VEC_index (access_p, access_vec, 0);
3525 if (repr->write)
3526 return NULL;
3527 repr->group_representative = repr;
3529 access_count = VEC_length (access_p, access_vec);
3530 for (i = 1; i < access_count; i++)
3532 struct access *access = VEC_index (access_p, access_vec, i);
3533 if (access->write)
3534 return NULL;
3535 access->group_representative = repr;
3536 access->next_sibling = repr->next_sibling;
3537 repr->next_sibling = access;
3540 repr->grp_read = 1;
3541 repr->grp_scalar_ptr = 1;
3542 return repr;
3545 /* Return true iff this access precludes IPA-SRA of the parameter it is
3546 associated with. */
3548 static bool
3549 access_precludes_ipa_sra_p (struct access *access)
3551 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3552 is incompatible assign in a call statement (and possibly even in asm
3553 statements). This can be relaxed by using a new temporary but only for
3554 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3555 intraprocedural SRA we deal with this by keeping the old aggregate around,
3556 something we cannot do in IPA-SRA.) */
3557 if (access->write
3558 && (is_gimple_call (access->stmt)
3559 || gimple_code (access->stmt) == GIMPLE_ASM))
3560 return true;
3562 return false;
3566 /* Sort collected accesses for parameter PARM, identify representatives for
3567 each accessed region and link them together. Return NULL if there are
3568 different but overlapping accesses, return the special ptr value meaning
3569 there are no accesses for this parameter if that is the case and return the
3570 first representative otherwise. Set *RO_GRP if there is a group of accesses
3571 with only read (i.e. no write) accesses. */
3573 static struct access *
3574 splice_param_accesses (tree parm, bool *ro_grp)
3576 int i, j, access_count, group_count;
3577 int agg_size, total_size = 0;
3578 struct access *access, *res, **prev_acc_ptr = &res;
3579 VEC (access_p, heap) *access_vec;
3581 access_vec = get_base_access_vector (parm);
3582 if (!access_vec)
3583 return &no_accesses_representant;
3584 access_count = VEC_length (access_p, access_vec);
3586 VEC_qsort (access_p, access_vec, compare_access_positions);
3588 i = 0;
3589 total_size = 0;
3590 group_count = 0;
3591 while (i < access_count)
3593 bool modification;
3594 tree a1_alias_type;
3595 access = VEC_index (access_p, access_vec, i);
3596 modification = access->write;
3597 if (access_precludes_ipa_sra_p (access))
3598 return NULL;
3599 a1_alias_type = reference_alias_ptr_type (access->expr);
3601 /* Access is about to become group representative unless we find some
3602 nasty overlap which would preclude us from breaking this parameter
3603 apart. */
3605 j = i + 1;
3606 while (j < access_count)
3608 struct access *ac2 = VEC_index (access_p, access_vec, j);
3609 if (ac2->offset != access->offset)
3611 /* All or nothing law for parameters. */
3612 if (access->offset + access->size > ac2->offset)
3613 return NULL;
3614 else
3615 break;
3617 else if (ac2->size != access->size)
3618 return NULL;
3620 if (access_precludes_ipa_sra_p (ac2)
3621 || (ac2->type != access->type
3622 && (TREE_ADDRESSABLE (ac2->type)
3623 || TREE_ADDRESSABLE (access->type)))
3624 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
3625 return NULL;
3627 modification |= ac2->write;
3628 ac2->group_representative = access;
3629 ac2->next_sibling = access->next_sibling;
3630 access->next_sibling = ac2;
3631 j++;
3634 group_count++;
3635 access->grp_maybe_modified = modification;
3636 if (!modification)
3637 *ro_grp = true;
3638 *prev_acc_ptr = access;
3639 prev_acc_ptr = &access->next_grp;
3640 total_size += access->size;
3641 i = j;
3644 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3645 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3646 else
3647 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3648 if (total_size >= agg_size)
3649 return NULL;
3651 gcc_assert (group_count > 0);
3652 return res;
3655 /* Decide whether parameters with representative accesses given by REPR should
3656 be reduced into components. */
3658 static int
3659 decide_one_param_reduction (struct access *repr)
3661 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3662 bool by_ref;
3663 tree parm;
3665 parm = repr->base;
3666 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3667 gcc_assert (cur_parm_size > 0);
3669 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3671 by_ref = true;
3672 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3674 else
3676 by_ref = false;
3677 agg_size = cur_parm_size;
3680 if (dump_file)
3682 struct access *acc;
3683 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3684 print_generic_expr (dump_file, parm, 0);
3685 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3686 for (acc = repr; acc; acc = acc->next_grp)
3687 dump_access (dump_file, acc, true);
3690 total_size = 0;
3691 new_param_count = 0;
3693 for (; repr; repr = repr->next_grp)
3695 gcc_assert (parm == repr->base);
3697 /* Taking the address of a non-addressable field is verboten. */
3698 if (by_ref && repr->non_addressable)
3699 return 0;
3701 if (!by_ref || (!repr->grp_maybe_modified
3702 && !repr->grp_not_necessarilly_dereferenced))
3703 total_size += repr->size;
3704 else
3705 total_size += cur_parm_size;
3707 new_param_count++;
3710 gcc_assert (new_param_count > 0);
3712 if (optimize_function_for_size_p (cfun))
3713 parm_size_limit = cur_parm_size;
3714 else
3715 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3716 * cur_parm_size);
3718 if (total_size < agg_size
3719 && total_size <= parm_size_limit)
3721 if (dump_file)
3722 fprintf (dump_file, " ....will be split into %i components\n",
3723 new_param_count);
3724 return new_param_count;
3726 else
3727 return 0;
3730 /* The order of the following enums is important, we need to do extra work for
3731 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3732 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3733 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3735 /* Identify representatives of all accesses to all candidate parameters for
3736 IPA-SRA. Return result based on what representatives have been found. */
3738 static enum ipa_splicing_result
3739 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3741 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3742 tree parm;
3743 struct access *repr;
3745 *representatives = VEC_alloc (access_p, heap, func_param_count);
3747 for (parm = DECL_ARGUMENTS (current_function_decl);
3748 parm;
3749 parm = DECL_CHAIN (parm))
3751 if (is_unused_scalar_param (parm))
3753 VEC_quick_push (access_p, *representatives,
3754 &no_accesses_representant);
3755 if (result == NO_GOOD_ACCESS)
3756 result = UNUSED_PARAMS;
3758 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3759 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3760 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3762 repr = unmodified_by_ref_scalar_representative (parm);
3763 VEC_quick_push (access_p, *representatives, repr);
3764 if (repr)
3765 result = UNMODIF_BY_REF_ACCESSES;
3767 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3769 bool ro_grp = false;
3770 repr = splice_param_accesses (parm, &ro_grp);
3771 VEC_quick_push (access_p, *representatives, repr);
3773 if (repr && !no_accesses_p (repr))
3775 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3777 if (ro_grp)
3778 result = UNMODIF_BY_REF_ACCESSES;
3779 else if (result < MODIF_BY_REF_ACCESSES)
3780 result = MODIF_BY_REF_ACCESSES;
3782 else if (result < BY_VAL_ACCESSES)
3783 result = BY_VAL_ACCESSES;
3785 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3786 result = UNUSED_PARAMS;
3788 else
3789 VEC_quick_push (access_p, *representatives, NULL);
3792 if (result == NO_GOOD_ACCESS)
3794 VEC_free (access_p, heap, *representatives);
3795 *representatives = NULL;
3796 return NO_GOOD_ACCESS;
3799 return result;
3802 /* Return the index of BASE in PARMS. Abort if it is not found. */
3804 static inline int
3805 get_param_index (tree base, VEC(tree, heap) *parms)
3807 int i, len;
3809 len = VEC_length (tree, parms);
3810 for (i = 0; i < len; i++)
3811 if (VEC_index (tree, parms, i) == base)
3812 return i;
3813 gcc_unreachable ();
3816 /* Convert the decisions made at the representative level into compact
3817 parameter adjustments. REPRESENTATIVES are pointers to first
3818 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
3819 final number of adjustments. */
3821 static ipa_parm_adjustment_vec
3822 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
3823 int adjustments_count)
3825 VEC (tree, heap) *parms;
3826 ipa_parm_adjustment_vec adjustments;
3827 tree parm;
3828 int i;
3830 gcc_assert (adjustments_count > 0);
3831 parms = ipa_get_vector_of_formal_parms (current_function_decl);
3832 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
3833 parm = DECL_ARGUMENTS (current_function_decl);
3834 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
3836 struct access *repr = VEC_index (access_p, representatives, i);
3838 if (!repr || no_accesses_p (repr))
3840 struct ipa_parm_adjustment *adj;
3842 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3843 memset (adj, 0, sizeof (*adj));
3844 adj->base_index = get_param_index (parm, parms);
3845 adj->base = parm;
3846 if (!repr)
3847 adj->copy_param = 1;
3848 else
3849 adj->remove_param = 1;
3851 else
3853 struct ipa_parm_adjustment *adj;
3854 int index = get_param_index (parm, parms);
3856 for (; repr; repr = repr->next_grp)
3858 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3859 memset (adj, 0, sizeof (*adj));
3860 gcc_assert (repr->base == parm);
3861 adj->base_index = index;
3862 adj->base = repr->base;
3863 adj->type = repr->type;
3864 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
3865 adj->offset = repr->offset;
3866 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
3867 && (repr->grp_maybe_modified
3868 || repr->grp_not_necessarilly_dereferenced));
3873 VEC_free (tree, heap, parms);
3874 return adjustments;
3877 /* Analyze the collected accesses and produce a plan what to do with the
3878 parameters in the form of adjustments, NULL meaning nothing. */
3880 static ipa_parm_adjustment_vec
3881 analyze_all_param_acesses (void)
3883 enum ipa_splicing_result repr_state;
3884 bool proceed = false;
3885 int i, adjustments_count = 0;
3886 VEC (access_p, heap) *representatives;
3887 ipa_parm_adjustment_vec adjustments;
3889 repr_state = splice_all_param_accesses (&representatives);
3890 if (repr_state == NO_GOOD_ACCESS)
3891 return NULL;
3893 /* If there are any parameters passed by reference which are not modified
3894 directly, we need to check whether they can be modified indirectly. */
3895 if (repr_state == UNMODIF_BY_REF_ACCESSES)
3897 analyze_caller_dereference_legality (representatives);
3898 analyze_modified_params (representatives);
3901 for (i = 0; i < func_param_count; i++)
3903 struct access *repr = VEC_index (access_p, representatives, i);
3905 if (repr && !no_accesses_p (repr))
3907 if (repr->grp_scalar_ptr)
3909 adjustments_count++;
3910 if (repr->grp_not_necessarilly_dereferenced
3911 || repr->grp_maybe_modified)
3912 VEC_replace (access_p, representatives, i, NULL);
3913 else
3915 proceed = true;
3916 sra_stats.scalar_by_ref_to_by_val++;
3919 else
3921 int new_components = decide_one_param_reduction (repr);
3923 if (new_components == 0)
3925 VEC_replace (access_p, representatives, i, NULL);
3926 adjustments_count++;
3928 else
3930 adjustments_count += new_components;
3931 sra_stats.aggregate_params_reduced++;
3932 sra_stats.param_reductions_created += new_components;
3933 proceed = true;
3937 else
3939 if (no_accesses_p (repr))
3941 proceed = true;
3942 sra_stats.deleted_unused_parameters++;
3944 adjustments_count++;
3948 if (!proceed && dump_file)
3949 fprintf (dump_file, "NOT proceeding to change params.\n");
3951 if (proceed)
3952 adjustments = turn_representatives_into_adjustments (representatives,
3953 adjustments_count);
3954 else
3955 adjustments = NULL;
3957 VEC_free (access_p, heap, representatives);
3958 return adjustments;
3961 /* If a parameter replacement identified by ADJ does not yet exist in the form
3962 of declaration, create it and record it, otherwise return the previously
3963 created one. */
3965 static tree
3966 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
3968 tree repl;
3969 if (!adj->new_ssa_base)
3971 char *pretty_name = make_fancy_name (adj->base);
3973 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
3974 DECL_NAME (repl) = get_identifier (pretty_name);
3975 obstack_free (&name_obstack, pretty_name);
3977 get_var_ann (repl);
3978 add_referenced_var (repl);
3979 adj->new_ssa_base = repl;
3981 else
3982 repl = adj->new_ssa_base;
3983 return repl;
3986 /* Find the first adjustment for a particular parameter BASE in a vector of
3987 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
3988 adjustment. */
3990 static struct ipa_parm_adjustment *
3991 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
3993 int i, len;
3995 len = VEC_length (ipa_parm_adjustment_t, adjustments);
3996 for (i = 0; i < len; i++)
3998 struct ipa_parm_adjustment *adj;
4000 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4001 if (!adj->copy_param && adj->base == base)
4002 return adj;
4005 return NULL;
4008 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4009 removed because its value is not used, replace the SSA_NAME with a one
4010 relating to a created VAR_DECL together all of its uses and return true.
4011 ADJUSTMENTS is a pointer to an adjustments vector. */
4013 static bool
4014 replace_removed_params_ssa_names (gimple stmt,
4015 ipa_parm_adjustment_vec adjustments)
4017 struct ipa_parm_adjustment *adj;
4018 tree lhs, decl, repl, name;
4020 if (gimple_code (stmt) == GIMPLE_PHI)
4021 lhs = gimple_phi_result (stmt);
4022 else if (is_gimple_assign (stmt))
4023 lhs = gimple_assign_lhs (stmt);
4024 else if (is_gimple_call (stmt))
4025 lhs = gimple_call_lhs (stmt);
4026 else
4027 gcc_unreachable ();
4029 if (TREE_CODE (lhs) != SSA_NAME)
4030 return false;
4031 decl = SSA_NAME_VAR (lhs);
4032 if (TREE_CODE (decl) != PARM_DECL)
4033 return false;
4035 adj = get_adjustment_for_base (adjustments, decl);
4036 if (!adj)
4037 return false;
4039 repl = get_replaced_param_substitute (adj);
4040 name = make_ssa_name (repl, stmt);
4042 if (dump_file)
4044 fprintf (dump_file, "replacing an SSA name of a removed param ");
4045 print_generic_expr (dump_file, lhs, 0);
4046 fprintf (dump_file, " with ");
4047 print_generic_expr (dump_file, name, 0);
4048 fprintf (dump_file, "\n");
4051 if (is_gimple_assign (stmt))
4052 gimple_assign_set_lhs (stmt, name);
4053 else if (is_gimple_call (stmt))
4054 gimple_call_set_lhs (stmt, name);
4055 else
4056 gimple_phi_set_result (stmt, name);
4058 replace_uses_by (lhs, name);
4059 release_ssa_name (lhs);
4060 return true;
4063 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4064 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4065 specifies whether the function should care about type incompatibility the
4066 current and new expressions. If it is false, the function will leave
4067 incompatibility issues to the caller. Return true iff the expression
4068 was modified. */
4070 static bool
4071 sra_ipa_modify_expr (tree *expr, bool convert,
4072 ipa_parm_adjustment_vec adjustments)
4074 int i, len;
4075 struct ipa_parm_adjustment *adj, *cand = NULL;
4076 HOST_WIDE_INT offset, size, max_size;
4077 tree base, src;
4079 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4081 if (TREE_CODE (*expr) == BIT_FIELD_REF
4082 || TREE_CODE (*expr) == IMAGPART_EXPR
4083 || TREE_CODE (*expr) == REALPART_EXPR)
4085 expr = &TREE_OPERAND (*expr, 0);
4086 convert = true;
4089 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4090 if (!base || size == -1 || max_size == -1)
4091 return false;
4093 if (TREE_CODE (base) == MEM_REF)
4095 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4096 base = TREE_OPERAND (base, 0);
4099 base = get_ssa_base_param (base);
4100 if (!base || TREE_CODE (base) != PARM_DECL)
4101 return false;
4103 for (i = 0; i < len; i++)
4105 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4107 if (adj->base == base &&
4108 (adj->offset == offset || adj->remove_param))
4110 cand = adj;
4111 break;
4114 if (!cand || cand->copy_param || cand->remove_param)
4115 return false;
4117 if (cand->by_ref)
4118 src = build_simple_mem_ref (cand->reduction);
4119 else
4120 src = cand->reduction;
4122 if (dump_file && (dump_flags & TDF_DETAILS))
4124 fprintf (dump_file, "About to replace expr ");
4125 print_generic_expr (dump_file, *expr, 0);
4126 fprintf (dump_file, " with ");
4127 print_generic_expr (dump_file, src, 0);
4128 fprintf (dump_file, "\n");
4131 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4133 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4134 *expr = vce;
4136 else
4137 *expr = src;
4138 return true;
4141 /* If the statement pointed to by STMT_PTR contains any expressions that need
4142 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4143 potential type incompatibilities (GSI is used to accommodate conversion
4144 statements and must point to the statement). Return true iff the statement
4145 was modified. */
4147 static bool
4148 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4149 ipa_parm_adjustment_vec adjustments)
4151 gimple stmt = *stmt_ptr;
4152 tree *lhs_p, *rhs_p;
4153 bool any;
4155 if (!gimple_assign_single_p (stmt))
4156 return false;
4158 rhs_p = gimple_assign_rhs1_ptr (stmt);
4159 lhs_p = gimple_assign_lhs_ptr (stmt);
4161 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4162 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4163 if (any)
4165 tree new_rhs = NULL_TREE;
4167 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4169 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4171 /* V_C_Es of constructors can cause trouble (PR 42714). */
4172 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4173 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4174 else
4175 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4177 else
4178 new_rhs = fold_build1_loc (gimple_location (stmt),
4179 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4180 *rhs_p);
4182 else if (REFERENCE_CLASS_P (*rhs_p)
4183 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4184 && !is_gimple_reg (*lhs_p))
4185 /* This can happen when an assignment in between two single field
4186 structures is turned into an assignment in between two pointers to
4187 scalars (PR 42237). */
4188 new_rhs = *rhs_p;
4190 if (new_rhs)
4192 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4193 true, GSI_SAME_STMT);
4195 gimple_assign_set_rhs_from_tree (gsi, tmp);
4198 return true;
4201 return false;
4204 /* Traverse the function body and all modifications as described in
4205 ADJUSTMENTS. Return true iff the CFG has been changed. */
4207 static bool
4208 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4210 bool cfg_changed = false;
4211 basic_block bb;
4213 FOR_EACH_BB (bb)
4215 gimple_stmt_iterator gsi;
4217 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4218 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4220 gsi = gsi_start_bb (bb);
4221 while (!gsi_end_p (gsi))
4223 gimple stmt = gsi_stmt (gsi);
4224 bool modified = false;
4225 tree *t;
4226 unsigned i;
4228 switch (gimple_code (stmt))
4230 case GIMPLE_RETURN:
4231 t = gimple_return_retval_ptr (stmt);
4232 if (*t != NULL_TREE)
4233 modified |= sra_ipa_modify_expr (t, true, adjustments);
4234 break;
4236 case GIMPLE_ASSIGN:
4237 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4238 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4239 break;
4241 case GIMPLE_CALL:
4242 /* Operands must be processed before the lhs. */
4243 for (i = 0; i < gimple_call_num_args (stmt); i++)
4245 t = gimple_call_arg_ptr (stmt, i);
4246 modified |= sra_ipa_modify_expr (t, true, adjustments);
4249 if (gimple_call_lhs (stmt))
4251 t = gimple_call_lhs_ptr (stmt);
4252 modified |= sra_ipa_modify_expr (t, false, adjustments);
4253 modified |= replace_removed_params_ssa_names (stmt,
4254 adjustments);
4256 break;
4258 case GIMPLE_ASM:
4259 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4261 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4262 modified |= sra_ipa_modify_expr (t, true, adjustments);
4264 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4266 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4267 modified |= sra_ipa_modify_expr (t, false, adjustments);
4269 break;
4271 default:
4272 break;
4275 if (modified)
4277 update_stmt (stmt);
4278 if (maybe_clean_eh_stmt (stmt)
4279 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4280 cfg_changed = true;
4282 gsi_next (&gsi);
4286 return cfg_changed;
4289 /* Call gimple_debug_bind_reset_value on all debug statements describing
4290 gimple register parameters that are being removed or replaced. */
4292 static void
4293 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4295 int i, len;
4297 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4298 for (i = 0; i < len; i++)
4300 struct ipa_parm_adjustment *adj;
4301 imm_use_iterator ui;
4302 gimple stmt;
4303 tree name;
4305 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4306 if (adj->copy_param || !is_gimple_reg (adj->base))
4307 continue;
4308 name = gimple_default_def (cfun, adj->base);
4309 if (!name)
4310 continue;
4311 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4313 /* All other users must have been removed by
4314 ipa_sra_modify_function_body. */
4315 gcc_assert (is_gimple_debug (stmt));
4316 gimple_debug_bind_reset_value (stmt);
4317 update_stmt (stmt);
4322 /* Return true iff all callers have at least as many actual arguments as there
4323 are formal parameters in the current function. */
4325 static bool
4326 all_callers_have_enough_arguments_p (struct cgraph_node *node)
4328 struct cgraph_edge *cs;
4329 for (cs = node->callers; cs; cs = cs->next_caller)
4330 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4331 return false;
4333 return true;
4337 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4339 static void
4340 convert_callers (struct cgraph_node *node, tree old_decl,
4341 ipa_parm_adjustment_vec adjustments)
4343 tree old_cur_fndecl = current_function_decl;
4344 struct cgraph_edge *cs;
4345 basic_block this_block;
4346 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4348 for (cs = node->callers; cs; cs = cs->next_caller)
4350 current_function_decl = cs->caller->decl;
4351 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4353 if (dump_file)
4354 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4355 cs->caller->uid, cs->callee->uid,
4356 cgraph_node_name (cs->caller),
4357 cgraph_node_name (cs->callee));
4359 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4361 pop_cfun ();
4364 for (cs = node->callers; cs; cs = cs->next_caller)
4365 if (bitmap_set_bit (recomputed_callers, cs->caller->uid))
4366 compute_inline_parameters (cs->caller);
4367 BITMAP_FREE (recomputed_callers);
4369 current_function_decl = old_cur_fndecl;
4371 if (!encountered_recursive_call)
4372 return;
4374 FOR_EACH_BB (this_block)
4376 gimple_stmt_iterator gsi;
4378 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4380 gimple stmt = gsi_stmt (gsi);
4381 tree call_fndecl;
4382 if (gimple_code (stmt) != GIMPLE_CALL)
4383 continue;
4384 call_fndecl = gimple_call_fndecl (stmt);
4385 if (call_fndecl == old_decl)
4387 if (dump_file)
4388 fprintf (dump_file, "Adjusting recursive call");
4389 gimple_call_set_fndecl (stmt, node->decl);
4390 ipa_modify_call_arguments (NULL, stmt, adjustments);
4395 return;
4398 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4399 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4401 static bool
4402 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4404 struct cgraph_node *new_node;
4405 struct cgraph_edge *cs;
4406 bool cfg_changed;
4407 VEC (cgraph_edge_p, heap) * redirect_callers;
4408 int node_callers;
4410 node_callers = 0;
4411 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
4412 node_callers++;
4413 redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
4414 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
4415 VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
4417 rebuild_cgraph_edges ();
4418 pop_cfun ();
4419 current_function_decl = NULL_TREE;
4421 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4422 NULL, NULL, "isra");
4423 current_function_decl = new_node->decl;
4424 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4426 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4427 cfg_changed = ipa_sra_modify_function_body (adjustments);
4428 sra_ipa_reset_debug_stmts (adjustments);
4429 convert_callers (new_node, node->decl, adjustments);
4430 cgraph_make_node_local (new_node);
4431 return cfg_changed;
4434 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4435 attributes, return true otherwise. NODE is the cgraph node of the current
4436 function. */
4438 static bool
4439 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4441 if (!cgraph_node_can_be_local_p (node))
4443 if (dump_file)
4444 fprintf (dump_file, "Function not local to this compilation unit.\n");
4445 return false;
4448 if (!node->local.can_change_signature)
4450 if (dump_file)
4451 fprintf (dump_file, "Function can not change signature.\n");
4452 return false;
4455 if (!tree_versionable_function_p (node->decl))
4457 if (dump_file)
4458 fprintf (dump_file, "Function is not versionable.\n");
4459 return false;
4462 if (DECL_VIRTUAL_P (current_function_decl))
4464 if (dump_file)
4465 fprintf (dump_file, "Function is a virtual method.\n");
4466 return false;
4469 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4470 && node->global.size >= MAX_INLINE_INSNS_AUTO)
4472 if (dump_file)
4473 fprintf (dump_file, "Function too big to be made truly local.\n");
4474 return false;
4477 if (!node->callers)
4479 if (dump_file)
4480 fprintf (dump_file,
4481 "Function has no callers in this compilation unit.\n");
4482 return false;
4485 if (cfun->stdarg)
4487 if (dump_file)
4488 fprintf (dump_file, "Function uses stdarg. \n");
4489 return false;
4492 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4493 return false;
4495 return true;
4498 /* Perform early interprocedural SRA. */
4500 static unsigned int
4501 ipa_early_sra (void)
4503 struct cgraph_node *node = cgraph_node (current_function_decl);
4504 ipa_parm_adjustment_vec adjustments;
4505 int ret = 0;
4507 if (!ipa_sra_preliminary_function_checks (node))
4508 return 0;
4510 sra_initialize ();
4511 sra_mode = SRA_MODE_EARLY_IPA;
4513 if (!find_param_candidates ())
4515 if (dump_file)
4516 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4517 goto simple_out;
4520 if (!all_callers_have_enough_arguments_p (node))
4522 if (dump_file)
4523 fprintf (dump_file, "There are callers with insufficient number of "
4524 "arguments.\n");
4525 goto simple_out;
4528 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4529 func_param_count
4530 * last_basic_block_for_function (cfun));
4531 final_bbs = BITMAP_ALLOC (NULL);
4533 scan_function ();
4534 if (encountered_apply_args)
4536 if (dump_file)
4537 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4538 goto out;
4541 if (encountered_unchangable_recursive_call)
4543 if (dump_file)
4544 fprintf (dump_file, "Function calls itself with insufficient "
4545 "number of arguments.\n");
4546 goto out;
4549 adjustments = analyze_all_param_acesses ();
4550 if (!adjustments)
4551 goto out;
4552 if (dump_file)
4553 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4555 if (modify_function (node, adjustments))
4556 ret = TODO_update_ssa | TODO_cleanup_cfg;
4557 else
4558 ret = TODO_update_ssa;
4559 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4561 statistics_counter_event (cfun, "Unused parameters deleted",
4562 sra_stats.deleted_unused_parameters);
4563 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4564 sra_stats.scalar_by_ref_to_by_val);
4565 statistics_counter_event (cfun, "Aggregate parameters broken up",
4566 sra_stats.aggregate_params_reduced);
4567 statistics_counter_event (cfun, "Aggregate parameter components created",
4568 sra_stats.param_reductions_created);
4570 out:
4571 BITMAP_FREE (final_bbs);
4572 free (bb_dereferences);
4573 simple_out:
4574 sra_deinitialize ();
4575 return ret;
4578 /* Return if early ipa sra shall be performed. */
4579 static bool
4580 ipa_early_sra_gate (void)
4582 return flag_ipa_sra && dbg_cnt (eipa_sra);
4585 struct gimple_opt_pass pass_early_ipa_sra =
4588 GIMPLE_PASS,
4589 "eipa_sra", /* name */
4590 ipa_early_sra_gate, /* gate */
4591 ipa_early_sra, /* execute */
4592 NULL, /* sub */
4593 NULL, /* next */
4594 0, /* static_pass_number */
4595 TV_IPA_SRA, /* tv_id */
4596 0, /* properties_required */
4597 0, /* properties_provided */
4598 0, /* properties_destroyed */
4599 0, /* todo_flags_start */
4600 TODO_dump_func | TODO_dump_cgraph /* todo_flags_finish */