1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
36 #include "langhooks.h"
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set
;
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list
;
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab
[(int) TYPE_KIND_LAST
];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment
;
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment
= 0;
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal
= 0;
62 static void finalize_record_size (record_layout_info
);
63 static void finalize_type_size (tree
);
64 static void place_union_field (record_layout_info
, tree
);
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
69 static unsigned int update_alignment_for_field (record_layout_info
, tree
,
71 extern void debug_rli (record_layout_info
);
73 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
75 static GTY(()) tree pending_sizes
;
77 /* Nonzero means cannot safely call expand_expr now,
78 so put variable sizes onto `pending_sizes' instead. */
80 int immediate_size_expand
;
82 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
86 internal_reference_types (void)
88 reference_types_internal
= 1;
91 /* Get a list of all the objects put on the pending sizes list. */
94 get_pending_sizes (void)
96 tree chain
= pending_sizes
;
99 /* Put each SAVE_EXPR into the current function. */
100 for (t
= chain
; t
; t
= TREE_CHAIN (t
))
101 SAVE_EXPR_CONTEXT (TREE_VALUE (t
)) = current_function_decl
;
107 /* Return nonzero if EXPR is present on the pending sizes list. */
110 is_pending_size (tree expr
)
114 for (t
= pending_sizes
; t
; t
= TREE_CHAIN (t
))
115 if (TREE_VALUE (t
) == expr
)
120 /* Add EXPR to the pending sizes list. */
123 put_pending_size (tree expr
)
125 /* Strip any simple arithmetic from EXPR to see if it has an underlying
127 expr
= skip_simple_arithmetic (expr
);
129 if (TREE_CODE (expr
) == SAVE_EXPR
)
130 pending_sizes
= tree_cons (NULL_TREE
, expr
, pending_sizes
);
133 /* Put a chain of objects into the pending sizes list, which must be
137 put_pending_sizes (tree chain
)
142 pending_sizes
= chain
;
145 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
146 to serve as the actual size-expression for a type or decl. */
149 variable_size (tree size
)
153 /* If the language-processor is to take responsibility for variable-sized
154 items (e.g., languages which have elaboration procedures like Ada),
155 just return SIZE unchanged. Likewise for self-referential sizes and
157 if (TREE_CONSTANT (size
)
158 || (*lang_hooks
.decls
.global_bindings_p
) () < 0
159 || CONTAINS_PLACEHOLDER_P (size
))
162 if (TREE_CODE (size
) == MINUS_EXPR
&& integer_onep (TREE_OPERAND (size
, 1)))
163 /* If this is the upper bound of a C array, leave the minus 1 outside
164 the SAVE_EXPR so it can be folded away. */
165 TREE_OPERAND (size
, 0) = save
= save_expr (TREE_OPERAND (size
, 0));
167 size
= save
= save_expr (size
);
169 /* If an array with a variable number of elements is declared, and
170 the elements require destruction, we will emit a cleanup for the
171 array. That cleanup is run both on normal exit from the block
172 and in the exception-handler for the block. Normally, when code
173 is used in both ordinary code and in an exception handler it is
174 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
175 not wish to do that here; the array-size is the same in both
177 if (TREE_CODE (save
) == SAVE_EXPR
)
178 SAVE_EXPR_PERSISTENT_P (save
) = 1;
180 if ((*lang_hooks
.decls
.global_bindings_p
) ())
182 if (TREE_CONSTANT (size
))
183 error ("type size can't be explicitly evaluated");
185 error ("variable-size type declared outside of any function");
187 return size_one_node
;
190 if (immediate_size_expand
)
191 expand_expr (save
, const0_rtx
, VOIDmode
, 0);
192 else if (cfun
!= 0 && cfun
->x_dont_save_pending_sizes_p
)
193 /* The front-end doesn't want us to keep a list of the expressions
194 that determine sizes for variable size objects. */
197 put_pending_size (save
);
202 #ifndef MAX_FIXED_MODE_SIZE
203 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
206 /* Return the machine mode to use for a nonscalar of SIZE bits. The
207 mode must be in class CLASS, and have exactly that many value bits;
208 it may have padding as well. If LIMIT is nonzero, modes of wider
209 than MAX_FIXED_MODE_SIZE will not be used. */
212 mode_for_size (unsigned int size
, enum mode_class
class, int limit
)
214 enum machine_mode mode
;
216 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
219 /* Get the first mode which has this size, in the specified class. */
220 for (mode
= GET_CLASS_NARROWEST_MODE (class); mode
!= VOIDmode
;
221 mode
= GET_MODE_WIDER_MODE (mode
))
222 if (GET_MODE_PRECISION (mode
) == size
)
228 /* Similar, except passed a tree node. */
231 mode_for_size_tree (tree size
, enum mode_class
class, int limit
)
233 if (TREE_CODE (size
) != INTEGER_CST
234 || TREE_OVERFLOW (size
)
235 /* What we really want to say here is that the size can fit in a
236 host integer, but we know there's no way we'd find a mode for
237 this many bits, so there's no point in doing the precise test. */
238 || compare_tree_int (size
, 1000) > 0)
241 return mode_for_size (tree_low_cst (size
, 1), class, limit
);
244 /* Similar, but never return BLKmode; return the narrowest mode that
245 contains at least the requested number of value bits. */
248 smallest_mode_for_size (unsigned int size
, enum mode_class
class)
250 enum machine_mode mode
;
252 /* Get the first mode which has at least this size, in the
254 for (mode
= GET_CLASS_NARROWEST_MODE (class); mode
!= VOIDmode
;
255 mode
= GET_MODE_WIDER_MODE (mode
))
256 if (GET_MODE_PRECISION (mode
) >= size
)
262 /* Find an integer mode of the exact same size, or BLKmode on failure. */
265 int_mode_for_mode (enum machine_mode mode
)
267 switch (GET_MODE_CLASS (mode
))
270 case MODE_PARTIAL_INT
:
273 case MODE_COMPLEX_INT
:
274 case MODE_COMPLEX_FLOAT
:
276 case MODE_VECTOR_INT
:
277 case MODE_VECTOR_FLOAT
:
278 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
285 /* ... fall through ... */
295 /* Return the alignment of MODE. This will be bounded by 1 and
296 BIGGEST_ALIGNMENT. */
299 get_mode_alignment (enum machine_mode mode
)
301 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
304 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
305 This can only be applied to objects of a sizetype. */
308 round_up (tree value
, int divisor
)
310 tree arg
= size_int_type (divisor
, TREE_TYPE (value
));
312 return size_binop (MULT_EXPR
, size_binop (CEIL_DIV_EXPR
, value
, arg
), arg
);
315 /* Likewise, but round down. */
318 round_down (tree value
, int divisor
)
320 tree arg
= size_int_type (divisor
, TREE_TYPE (value
));
322 return size_binop (MULT_EXPR
, size_binop (FLOOR_DIV_EXPR
, value
, arg
), arg
);
325 /* Subroutine of layout_decl: Force alignment required for the data type.
326 But if the decl itself wants greater alignment, don't override that. */
329 do_type_align (tree type
, tree decl
)
331 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
333 DECL_ALIGN (decl
) = TYPE_ALIGN (type
);
334 if (TREE_CODE (decl
) == FIELD_DECL
)
335 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
339 /* Set the size, mode and alignment of a ..._DECL node.
340 TYPE_DECL does need this for C++.
341 Note that LABEL_DECL and CONST_DECL nodes do not need this,
342 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
343 Don't call layout_decl for them.
345 KNOWN_ALIGN is the amount of alignment we can assume this
346 decl has with no special effort. It is relevant only for FIELD_DECLs
347 and depends on the previous fields.
348 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
349 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
350 the record will be aligned to suit. */
353 layout_decl (tree decl
, unsigned int known_align
)
355 tree type
= TREE_TYPE (decl
);
356 enum tree_code code
= TREE_CODE (decl
);
359 if (code
== CONST_DECL
)
361 else if (code
!= VAR_DECL
&& code
!= PARM_DECL
&& code
!= RESULT_DECL
362 && code
!= TYPE_DECL
&& code
!= FIELD_DECL
)
365 rtl
= DECL_RTL_IF_SET (decl
);
367 if (type
== error_mark_node
)
368 type
= void_type_node
;
370 /* Usually the size and mode come from the data type without change,
371 however, the front-end may set the explicit width of the field, so its
372 size may not be the same as the size of its type. This happens with
373 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
374 also happens with other fields. For example, the C++ front-end creates
375 zero-sized fields corresponding to empty base classes, and depends on
376 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
377 size in bytes from the size in bits. If we have already set the mode,
378 don't set it again since we can be called twice for FIELD_DECLs. */
380 TREE_UNSIGNED (decl
) = TREE_UNSIGNED (type
);
381 if (DECL_MODE (decl
) == VOIDmode
)
382 DECL_MODE (decl
) = TYPE_MODE (type
);
384 if (DECL_SIZE (decl
) == 0)
386 DECL_SIZE (decl
) = TYPE_SIZE (type
);
387 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
389 else if (DECL_SIZE_UNIT (decl
) == 0)
390 DECL_SIZE_UNIT (decl
)
391 = convert (sizetype
, size_binop (CEIL_DIV_EXPR
, DECL_SIZE (decl
),
394 if (code
!= FIELD_DECL
)
395 /* For non-fields, update the alignment from the type. */
396 do_type_align (type
, decl
);
398 /* For fields, it's a bit more complicated... */
400 bool old_user_align
= DECL_USER_ALIGN (decl
);
402 if (DECL_BIT_FIELD (decl
))
404 DECL_BIT_FIELD_TYPE (decl
) = type
;
406 /* A zero-length bit-field affects the alignment of the next
408 if (integer_zerop (DECL_SIZE (decl
))
409 && ! DECL_PACKED (decl
)
410 && ! (*targetm
.ms_bitfield_layout_p
) (DECL_FIELD_CONTEXT (decl
)))
412 #ifdef PCC_BITFIELD_TYPE_MATTERS
413 if (PCC_BITFIELD_TYPE_MATTERS
)
414 do_type_align (type
, decl
);
418 #ifdef EMPTY_FIELD_BOUNDARY
419 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
421 DECL_ALIGN (decl
) = EMPTY_FIELD_BOUNDARY
;
422 DECL_USER_ALIGN (decl
) = 0;
428 /* See if we can use an ordinary integer mode for a bit-field.
429 Conditions are: a fixed size that is correct for another mode
430 and occupying a complete byte or bytes on proper boundary. */
431 if (TYPE_SIZE (type
) != 0
432 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
433 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
435 enum machine_mode xmode
436 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
440 || known_align
>= GET_MODE_ALIGNMENT (xmode
)))
442 DECL_ALIGN (decl
) = MAX (GET_MODE_ALIGNMENT (xmode
),
444 DECL_MODE (decl
) = xmode
;
445 DECL_BIT_FIELD (decl
) = 0;
449 /* Turn off DECL_BIT_FIELD if we won't need it set. */
450 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
451 && known_align
>= TYPE_ALIGN (type
)
452 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
453 DECL_BIT_FIELD (decl
) = 0;
455 else if (DECL_PACKED (decl
) && DECL_USER_ALIGN (decl
))
456 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
457 round up; we'll reduce it again below. We want packing to
458 supersede USER_ALIGN inherited from the type, but defer to
459 alignment explicitly specified on the field decl. */;
461 do_type_align (type
, decl
);
463 /* If the field is of variable size, we can't misalign it since we
464 have no way to make a temporary to align the result. But this
465 isn't an issue if the decl is not addressable. Likewise if it
468 Note that do_type_align may set DECL_USER_ALIGN, so we need to
469 check old_user_align instead. */
470 if (DECL_PACKED (decl
)
472 && (DECL_NONADDRESSABLE_P (decl
)
473 || DECL_SIZE_UNIT (decl
) == 0
474 || TREE_CODE (DECL_SIZE_UNIT (decl
)) == INTEGER_CST
))
475 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
);
477 /* Should this be controlled by DECL_USER_ALIGN, too? */
478 if (maximum_field_alignment
!= 0)
479 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), maximum_field_alignment
);
480 if (! DECL_USER_ALIGN (decl
))
482 /* Some targets (i.e. i386, VMS) limit struct field alignment
483 to a lower boundary than alignment of variables unless
484 it was overridden by attribute aligned. */
485 #ifdef BIGGEST_FIELD_ALIGNMENT
487 = MIN (DECL_ALIGN (decl
), (unsigned) BIGGEST_FIELD_ALIGNMENT
);
489 #ifdef ADJUST_FIELD_ALIGN
490 DECL_ALIGN (decl
) = ADJUST_FIELD_ALIGN (decl
, DECL_ALIGN (decl
));
495 /* Evaluate nonconstant size only once, either now or as soon as safe. */
496 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
497 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
498 if (DECL_SIZE_UNIT (decl
) != 0
499 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
500 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
502 /* If requested, warn about definitions of large data objects. */
504 && (code
== VAR_DECL
|| code
== PARM_DECL
)
505 && ! DECL_EXTERNAL (decl
))
507 tree size
= DECL_SIZE_UNIT (decl
);
509 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
510 && compare_tree_int (size
, larger_than_size
) > 0)
512 int size_as_int
= TREE_INT_CST_LOW (size
);
514 if (compare_tree_int (size
, size_as_int
) == 0)
515 warning ("%Jsize of '%D' is %d bytes", decl
, decl
, size_as_int
);
517 warning ("%Jsize of '%D' is larger than %d bytes",
518 decl
, decl
, larger_than_size
);
522 /* If the RTL was already set, update its mode and mem attributes. */
525 PUT_MODE (rtl
, DECL_MODE (decl
));
526 SET_DECL_RTL (decl
, 0);
527 set_mem_attributes (rtl
, decl
, 1);
528 SET_DECL_RTL (decl
, rtl
);
532 /* Hook for a front-end function that can modify the record layout as needed
533 immediately before it is finalized. */
535 void (*lang_adjust_rli
) (record_layout_info
) = 0;
538 set_lang_adjust_rli (void (*f
) (record_layout_info
))
543 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
544 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
545 is to be passed to all other layout functions for this record. It is the
546 responsibility of the caller to call `free' for the storage returned.
547 Note that garbage collection is not permitted until we finish laying
551 start_record_layout (tree t
)
553 record_layout_info rli
= xmalloc (sizeof (struct record_layout_info_s
));
557 /* If the type has a minimum specified alignment (via an attribute
558 declaration, for example) use it -- otherwise, start with a
559 one-byte alignment. */
560 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
561 rli
->unpacked_align
= rli
->record_align
;
562 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
564 #ifdef STRUCTURE_SIZE_BOUNDARY
565 /* Packed structures don't need to have minimum size. */
566 if (! TYPE_PACKED (t
))
567 rli
->record_align
= MAX (rli
->record_align
, (unsigned) STRUCTURE_SIZE_BOUNDARY
);
570 rli
->offset
= size_zero_node
;
571 rli
->bitpos
= bitsize_zero_node
;
573 rli
->pending_statics
= 0;
574 rli
->packed_maybe_necessary
= 0;
579 /* These four routines perform computations that convert between
580 the offset/bitpos forms and byte and bit offsets. */
583 bit_from_pos (tree offset
, tree bitpos
)
585 return size_binop (PLUS_EXPR
, bitpos
,
586 size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
591 byte_from_pos (tree offset
, tree bitpos
)
593 return size_binop (PLUS_EXPR
, offset
,
595 size_binop (TRUNC_DIV_EXPR
, bitpos
,
596 bitsize_unit_node
)));
600 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
603 *poffset
= size_binop (MULT_EXPR
,
605 size_binop (FLOOR_DIV_EXPR
, pos
,
606 bitsize_int (off_align
))),
607 size_int (off_align
/ BITS_PER_UNIT
));
608 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, bitsize_int (off_align
));
611 /* Given a pointer to bit and byte offsets and an offset alignment,
612 normalize the offsets so they are within the alignment. */
615 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
617 /* If the bit position is now larger than it should be, adjust it
619 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
621 tree extra_aligns
= size_binop (FLOOR_DIV_EXPR
, *pbitpos
,
622 bitsize_int (off_align
));
625 = size_binop (PLUS_EXPR
, *poffset
,
626 size_binop (MULT_EXPR
, convert (sizetype
, extra_aligns
),
627 size_int (off_align
/ BITS_PER_UNIT
)));
630 = size_binop (FLOOR_MOD_EXPR
, *pbitpos
, bitsize_int (off_align
));
634 /* Print debugging information about the information in RLI. */
637 debug_rli (record_layout_info rli
)
639 print_node_brief (stderr
, "type", rli
->t
, 0);
640 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
641 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
643 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
644 rli
->record_align
, rli
->unpacked_align
,
646 if (rli
->packed_maybe_necessary
)
647 fprintf (stderr
, "packed may be necessary\n");
649 if (rli
->pending_statics
)
651 fprintf (stderr
, "pending statics:\n");
652 debug_tree (rli
->pending_statics
);
656 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
657 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
660 normalize_rli (record_layout_info rli
)
662 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
665 /* Returns the size in bytes allocated so far. */
668 rli_size_unit_so_far (record_layout_info rli
)
670 return byte_from_pos (rli
->offset
, rli
->bitpos
);
673 /* Returns the size in bits allocated so far. */
676 rli_size_so_far (record_layout_info rli
)
678 return bit_from_pos (rli
->offset
, rli
->bitpos
);
681 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
682 the next available location is given by KNOWN_ALIGN. Update the
683 variable alignment fields in RLI, and return the alignment to give
687 update_alignment_for_field (record_layout_info rli
, tree field
,
688 unsigned int known_align
)
690 /* The alignment required for FIELD. */
691 unsigned int desired_align
;
692 /* The type of this field. */
693 tree type
= TREE_TYPE (field
);
694 /* True if the field was explicitly aligned by the user. */
698 /* Lay out the field so we know what alignment it needs. */
699 layout_decl (field
, known_align
);
700 desired_align
= DECL_ALIGN (field
);
701 user_align
= DECL_USER_ALIGN (field
);
703 is_bitfield
= (type
!= error_mark_node
704 && DECL_BIT_FIELD_TYPE (field
)
705 && ! integer_zerop (TYPE_SIZE (type
)));
707 /* Record must have at least as much alignment as any field.
708 Otherwise, the alignment of the field within the record is
710 if (is_bitfield
&& (* targetm
.ms_bitfield_layout_p
) (rli
->t
))
712 /* Here, the alignment of the underlying type of a bitfield can
713 affect the alignment of a record; even a zero-sized field
714 can do this. The alignment should be to the alignment of
715 the type, except that for zero-size bitfields this only
716 applies if there was an immediately prior, nonzero-size
717 bitfield. (That's the way it is, experimentally.) */
718 if (! integer_zerop (DECL_SIZE (field
))
719 ? ! DECL_PACKED (field
)
721 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
722 && ! integer_zerop (DECL_SIZE (rli
->prev_field
))))
724 unsigned int type_align
= TYPE_ALIGN (type
);
725 type_align
= MAX (type_align
, desired_align
);
726 if (maximum_field_alignment
!= 0)
727 type_align
= MIN (type_align
, maximum_field_alignment
);
728 rli
->record_align
= MAX (rli
->record_align
, type_align
);
729 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
732 #ifdef PCC_BITFIELD_TYPE_MATTERS
733 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
735 /* Named bit-fields cause the entire structure to have the
736 alignment implied by their type. */
737 if (DECL_NAME (field
) != 0)
739 unsigned int type_align
= TYPE_ALIGN (type
);
741 #ifdef ADJUST_FIELD_ALIGN
742 if (! TYPE_USER_ALIGN (type
))
743 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
746 if (maximum_field_alignment
!= 0)
747 type_align
= MIN (type_align
, maximum_field_alignment
);
748 else if (DECL_PACKED (field
))
749 type_align
= MIN (type_align
, BITS_PER_UNIT
);
751 /* The alignment of the record is increased to the maximum
752 of the current alignment, the alignment indicated on the
753 field (i.e., the alignment specified by an __aligned__
754 attribute), and the alignment indicated by the type of
756 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
757 rli
->record_align
= MAX (rli
->record_align
, type_align
);
760 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
761 user_align
|= TYPE_USER_ALIGN (type
);
767 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
768 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
771 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
773 return desired_align
;
776 /* Called from place_field to handle unions. */
779 place_union_field (record_layout_info rli
, tree field
)
781 update_alignment_for_field (rli
, field
, /*known_align=*/0);
783 DECL_FIELD_OFFSET (field
) = size_zero_node
;
784 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
785 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
787 /* We assume the union's size will be a multiple of a byte so we don't
788 bother with BITPOS. */
789 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
790 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
791 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
792 rli
->offset
= fold (build (COND_EXPR
, sizetype
,
793 DECL_QUALIFIER (field
),
794 DECL_SIZE_UNIT (field
), rli
->offset
));
797 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
798 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
799 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
800 units of alignment than the underlying TYPE. */
802 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
803 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
805 /* Note that the calculation of OFFSET might overflow; we calculate it so
806 that we still get the right result as long as ALIGN is a power of two. */
807 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
809 offset
= offset
% align
;
810 return ((offset
+ size
+ align
- 1) / align
811 > ((unsigned HOST_WIDE_INT
) tree_low_cst (TYPE_SIZE (type
), 1)
816 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
817 is a FIELD_DECL to be added after those fields already present in
818 T. (FIELD is not actually added to the TYPE_FIELDS list here;
819 callers that desire that behavior must manually perform that step.) */
822 place_field (record_layout_info rli
, tree field
)
824 /* The alignment required for FIELD. */
825 unsigned int desired_align
;
826 /* The alignment FIELD would have if we just dropped it into the
827 record as it presently stands. */
828 unsigned int known_align
;
829 unsigned int actual_align
;
830 /* The type of this field. */
831 tree type
= TREE_TYPE (field
);
833 if (TREE_CODE (field
) == ERROR_MARK
|| TREE_CODE (type
) == ERROR_MARK
)
836 /* If FIELD is static, then treat it like a separate variable, not
837 really like a structure field. If it is a FUNCTION_DECL, it's a
838 method. In both cases, all we do is lay out the decl, and we do
839 it *after* the record is laid out. */
840 if (TREE_CODE (field
) == VAR_DECL
)
842 rli
->pending_statics
= tree_cons (NULL_TREE
, field
,
843 rli
->pending_statics
);
847 /* Enumerators and enum types which are local to this class need not
848 be laid out. Likewise for initialized constant fields. */
849 else if (TREE_CODE (field
) != FIELD_DECL
)
852 /* Unions are laid out very differently than records, so split
853 that code off to another function. */
854 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
856 place_union_field (rli
, field
);
860 /* Work out the known alignment so far. Note that A & (-A) is the
861 value of the least-significant bit in A that is one. */
862 if (! integer_zerop (rli
->bitpos
))
863 known_align
= (tree_low_cst (rli
->bitpos
, 1)
864 & - tree_low_cst (rli
->bitpos
, 1));
865 else if (integer_zerop (rli
->offset
))
866 known_align
= BIGGEST_ALIGNMENT
;
867 else if (host_integerp (rli
->offset
, 1))
868 known_align
= (BITS_PER_UNIT
869 * (tree_low_cst (rli
->offset
, 1)
870 & - tree_low_cst (rli
->offset
, 1)));
872 known_align
= rli
->offset_align
;
874 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
876 if (warn_packed
&& DECL_PACKED (field
))
878 if (known_align
>= TYPE_ALIGN (type
))
880 if (TYPE_ALIGN (type
) > desired_align
)
882 if (STRICT_ALIGNMENT
)
883 warning ("%Jpacked attribute causes inefficient alignment "
884 "for '%D'", field
, field
);
886 warning ("%Jpacked attribute is unnecessary for '%D'",
891 rli
->packed_maybe_necessary
= 1;
894 /* Does this field automatically have alignment it needs by virtue
895 of the fields that precede it and the record's own alignment? */
896 if (known_align
< desired_align
)
898 /* No, we need to skip space before this field.
899 Bump the cumulative size to multiple of field alignment. */
902 warning ("%Jpadding struct to align '%D'", field
, field
);
904 /* If the alignment is still within offset_align, just align
906 if (desired_align
< rli
->offset_align
)
907 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
910 /* First adjust OFFSET by the partial bits, then align. */
912 = size_binop (PLUS_EXPR
, rli
->offset
,
914 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
915 bitsize_unit_node
)));
916 rli
->bitpos
= bitsize_zero_node
;
918 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
921 if (! TREE_CONSTANT (rli
->offset
))
922 rli
->offset_align
= desired_align
;
926 /* Handle compatibility with PCC. Note that if the record has any
927 variable-sized fields, we need not worry about compatibility. */
928 #ifdef PCC_BITFIELD_TYPE_MATTERS
929 if (PCC_BITFIELD_TYPE_MATTERS
930 && ! (* targetm
.ms_bitfield_layout_p
) (rli
->t
)
931 && TREE_CODE (field
) == FIELD_DECL
932 && type
!= error_mark_node
933 && DECL_BIT_FIELD (field
)
934 && ! DECL_PACKED (field
)
935 && maximum_field_alignment
== 0
936 && ! integer_zerop (DECL_SIZE (field
))
937 && host_integerp (DECL_SIZE (field
), 1)
938 && host_integerp (rli
->offset
, 1)
939 && host_integerp (TYPE_SIZE (type
), 1))
941 unsigned int type_align
= TYPE_ALIGN (type
);
942 tree dsize
= DECL_SIZE (field
);
943 HOST_WIDE_INT field_size
= tree_low_cst (dsize
, 1);
944 HOST_WIDE_INT offset
= tree_low_cst (rli
->offset
, 0);
945 HOST_WIDE_INT bit_offset
= tree_low_cst (rli
->bitpos
, 0);
947 #ifdef ADJUST_FIELD_ALIGN
948 if (! TYPE_USER_ALIGN (type
))
949 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
952 /* A bit field may not span more units of alignment of its type
953 than its type itself. Advance to next boundary if necessary. */
954 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
955 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
957 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
961 #ifdef BITFIELD_NBYTES_LIMITED
962 if (BITFIELD_NBYTES_LIMITED
963 && ! (* targetm
.ms_bitfield_layout_p
) (rli
->t
)
964 && TREE_CODE (field
) == FIELD_DECL
965 && type
!= error_mark_node
966 && DECL_BIT_FIELD_TYPE (field
)
967 && ! DECL_PACKED (field
)
968 && ! integer_zerop (DECL_SIZE (field
))
969 && host_integerp (DECL_SIZE (field
), 1)
970 && host_integerp (rli
->offset
, 1)
971 && host_integerp (TYPE_SIZE (type
), 1))
973 unsigned int type_align
= TYPE_ALIGN (type
);
974 tree dsize
= DECL_SIZE (field
);
975 HOST_WIDE_INT field_size
= tree_low_cst (dsize
, 1);
976 HOST_WIDE_INT offset
= tree_low_cst (rli
->offset
, 0);
977 HOST_WIDE_INT bit_offset
= tree_low_cst (rli
->bitpos
, 0);
979 #ifdef ADJUST_FIELD_ALIGN
980 if (! TYPE_USER_ALIGN (type
))
981 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
984 if (maximum_field_alignment
!= 0)
985 type_align
= MIN (type_align
, maximum_field_alignment
);
986 /* ??? This test is opposite the test in the containing if
987 statement, so this code is unreachable currently. */
988 else if (DECL_PACKED (field
))
989 type_align
= MIN (type_align
, BITS_PER_UNIT
);
991 /* A bit field may not span the unit of alignment of its type.
992 Advance to next boundary if necessary. */
993 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
994 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
996 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1000 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1002 When a bit field is inserted into a packed record, the whole
1003 size of the underlying type is used by one or more same-size
1004 adjacent bitfields. (That is, if its long:3, 32 bits is
1005 used in the record, and any additional adjacent long bitfields are
1006 packed into the same chunk of 32 bits. However, if the size
1007 changes, a new field of that size is allocated.) In an unpacked
1008 record, this is the same as using alignment, but not equivalent
1011 Note: for compatibility, we use the type size, not the type alignment
1012 to determine alignment, since that matches the documentation */
1014 if ((* targetm
.ms_bitfield_layout_p
) (rli
->t
)
1015 && ((DECL_BIT_FIELD_TYPE (field
) && ! DECL_PACKED (field
))
1016 || (rli
->prev_field
&& ! DECL_PACKED (rli
->prev_field
))))
1018 /* At this point, either the prior or current are bitfields,
1019 (possibly both), and we're dealing with MS packing. */
1020 tree prev_saved
= rli
->prev_field
;
1022 /* Is the prior field a bitfield? If so, handle "runs" of same
1023 type size fields. */
1024 if (rli
->prev_field
/* necessarily a bitfield if it exists. */)
1026 /* If both are bitfields, nonzero, and the same size, this is
1027 the middle of a run. Zero declared size fields are special
1028 and handled as "end of run". (Note: it's nonzero declared
1029 size, but equal type sizes!) (Since we know that both
1030 the current and previous fields are bitfields by the
1031 time we check it, DECL_SIZE must be present for both.) */
1032 if (DECL_BIT_FIELD_TYPE (field
)
1033 && !integer_zerop (DECL_SIZE (field
))
1034 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1035 && host_integerp (DECL_SIZE (rli
->prev_field
), 0)
1036 && host_integerp (TYPE_SIZE (type
), 0)
1037 && simple_cst_equal (TYPE_SIZE (type
),
1038 TYPE_SIZE (TREE_TYPE (rli
->prev_field
))))
1040 /* We're in the middle of a run of equal type size fields; make
1041 sure we realign if we run out of bits. (Not decl size,
1043 HOST_WIDE_INT bitsize
= tree_low_cst (DECL_SIZE (field
), 0);
1045 if (rli
->remaining_in_alignment
< bitsize
)
1047 /* out of bits; bump up to next 'word'. */
1048 rli
->offset
= DECL_FIELD_OFFSET (rli
->prev_field
);
1050 = size_binop (PLUS_EXPR
, TYPE_SIZE (type
),
1051 DECL_FIELD_BIT_OFFSET (rli
->prev_field
));
1052 rli
->prev_field
= field
;
1053 rli
->remaining_in_alignment
1054 = tree_low_cst (TYPE_SIZE (type
), 0);
1057 rli
->remaining_in_alignment
-= bitsize
;
1061 /* End of a run: if leaving a run of bitfields of the same type
1062 size, we have to "use up" the rest of the bits of the type
1065 Compute the new position as the sum of the size for the prior
1066 type and where we first started working on that type.
1067 Note: since the beginning of the field was aligned then
1068 of course the end will be too. No round needed. */
1070 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1072 tree type_size
= TYPE_SIZE (TREE_TYPE (rli
->prev_field
));
1075 = size_binop (PLUS_EXPR
, type_size
,
1076 DECL_FIELD_BIT_OFFSET (rli
->prev_field
));
1079 /* We "use up" size zero fields; the code below should behave
1080 as if the prior field was not a bitfield. */
1083 /* Cause a new bitfield to be captured, either this time (if
1084 currently a bitfield) or next time we see one. */
1085 if (!DECL_BIT_FIELD_TYPE(field
)
1086 || integer_zerop (DECL_SIZE (field
)))
1087 rli
->prev_field
= NULL
;
1090 rli
->offset_align
= tree_low_cst (TYPE_SIZE (type
), 0);
1091 normalize_rli (rli
);
1094 /* If we're starting a new run of same size type bitfields
1095 (or a run of non-bitfields), set up the "first of the run"
1098 That is, if the current field is not a bitfield, or if there
1099 was a prior bitfield the type sizes differ, or if there wasn't
1100 a prior bitfield the size of the current field is nonzero.
1102 Note: we must be sure to test ONLY the type size if there was
1103 a prior bitfield and ONLY for the current field being zero if
1106 if (!DECL_BIT_FIELD_TYPE (field
)
1107 || ( prev_saved
!= NULL
1108 ? !simple_cst_equal (TYPE_SIZE (type
),
1109 TYPE_SIZE (TREE_TYPE (prev_saved
)))
1110 : !integer_zerop (DECL_SIZE (field
)) ))
1112 /* Never smaller than a byte for compatibility. */
1113 unsigned int type_align
= BITS_PER_UNIT
;
1115 /* (When not a bitfield), we could be seeing a flex array (with
1116 no DECL_SIZE). Since we won't be using remaining_in_alignment
1117 until we see a bitfield (and come by here again) we just skip
1119 if (DECL_SIZE (field
) != NULL
1120 && host_integerp (TYPE_SIZE (TREE_TYPE (field
)), 0)
1121 && host_integerp (DECL_SIZE (field
), 0))
1122 rli
->remaining_in_alignment
1123 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field
)), 0)
1124 - tree_low_cst (DECL_SIZE (field
), 0);
1126 /* Now align (conventionally) for the new type. */
1127 if (!DECL_PACKED(field
))
1128 type_align
= MAX(TYPE_ALIGN (type
), type_align
);
1131 && DECL_BIT_FIELD_TYPE (prev_saved
)
1132 /* If the previous bit-field is zero-sized, we've already
1133 accounted for its alignment needs (or ignored it, if
1134 appropriate) while placing it. */
1135 && ! integer_zerop (DECL_SIZE (prev_saved
)))
1136 type_align
= MAX (type_align
,
1137 TYPE_ALIGN (TREE_TYPE (prev_saved
)));
1139 if (maximum_field_alignment
!= 0)
1140 type_align
= MIN (type_align
, maximum_field_alignment
);
1142 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1144 /* If we really aligned, don't allow subsequent bitfields
1146 rli
->prev_field
= NULL
;
1150 /* Offset so far becomes the position of this field after normalizing. */
1151 normalize_rli (rli
);
1152 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1153 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1154 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1156 /* If this field ended up more aligned than we thought it would be (we
1157 approximate this by seeing if its position changed), lay out the field
1158 again; perhaps we can use an integral mode for it now. */
1159 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1160 actual_align
= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1161 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1));
1162 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1163 actual_align
= BIGGEST_ALIGNMENT
;
1164 else if (host_integerp (DECL_FIELD_OFFSET (field
), 1))
1165 actual_align
= (BITS_PER_UNIT
1166 * (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1167 & - tree_low_cst (DECL_FIELD_OFFSET (field
), 1)));
1169 actual_align
= DECL_OFFSET_ALIGN (field
);
1171 if (known_align
!= actual_align
)
1172 layout_decl (field
, actual_align
);
1174 /* Only the MS bitfields use this. */
1175 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE(field
))
1176 rli
->prev_field
= field
;
1178 /* Now add size of this field to the size of the record. If the size is
1179 not constant, treat the field as being a multiple of bytes and just
1180 adjust the offset, resetting the bit position. Otherwise, apportion the
1181 size amongst the bit position and offset. First handle the case of an
1182 unspecified size, which can happen when we have an invalid nested struct
1183 definition, such as struct j { struct j { int i; } }. The error message
1184 is printed in finish_struct. */
1185 if (DECL_SIZE (field
) == 0)
1187 else if (TREE_CODE (DECL_SIZE_UNIT (field
)) != INTEGER_CST
1188 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field
)))
1191 = size_binop (PLUS_EXPR
, rli
->offset
,
1193 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1194 bitsize_unit_node
)));
1196 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1197 rli
->bitpos
= bitsize_zero_node
;
1198 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1202 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1203 normalize_rli (rli
);
1207 /* Assuming that all the fields have been laid out, this function uses
1208 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1209 indicated by RLI. */
1212 finalize_record_size (record_layout_info rli
)
1214 tree unpadded_size
, unpadded_size_unit
;
1216 /* Now we want just byte and bit offsets, so set the offset alignment
1217 to be a byte and then normalize. */
1218 rli
->offset_align
= BITS_PER_UNIT
;
1219 normalize_rli (rli
);
1221 /* Determine the desired alignment. */
1222 #ifdef ROUND_TYPE_ALIGN
1223 TYPE_ALIGN (rli
->t
) = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1226 TYPE_ALIGN (rli
->t
) = MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
);
1229 /* Compute the size so far. Be sure to allow for extra bits in the
1230 size in bytes. We have guaranteed above that it will be no more
1231 than a single byte. */
1232 unpadded_size
= rli_size_so_far (rli
);
1233 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1234 if (! integer_zerop (rli
->bitpos
))
1236 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1238 /* Round the size up to be a multiple of the required alignment. */
1239 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1240 TYPE_SIZE_UNIT (rli
->t
) = round_up (unpadded_size_unit
,
1241 TYPE_ALIGN (rli
->t
) / BITS_PER_UNIT
);
1243 if (warn_padded
&& TREE_CONSTANT (unpadded_size
)
1244 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0)
1245 warning ("padding struct size to alignment boundary");
1247 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1248 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1249 && TREE_CONSTANT (unpadded_size
))
1253 #ifdef ROUND_TYPE_ALIGN
1255 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1257 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1260 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1261 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1263 TYPE_PACKED (rli
->t
) = 0;
1265 if (TYPE_NAME (rli
->t
))
1269 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1270 name
= IDENTIFIER_POINTER (TYPE_NAME (rli
->t
));
1272 name
= IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli
->t
)));
1274 if (STRICT_ALIGNMENT
)
1275 warning ("packed attribute causes inefficient alignment for `%s'", name
);
1277 warning ("packed attribute is unnecessary for `%s'", name
);
1281 if (STRICT_ALIGNMENT
)
1282 warning ("packed attribute causes inefficient alignment");
1284 warning ("packed attribute is unnecessary");
1290 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1293 compute_record_mode (tree type
)
1296 enum machine_mode mode
= VOIDmode
;
1298 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1299 However, if possible, we use a mode that fits in a register
1300 instead, in order to allow for better optimization down the
1302 TYPE_MODE (type
) = BLKmode
;
1304 if (! host_integerp (TYPE_SIZE (type
), 1))
1307 /* A record which has any BLKmode members must itself be
1308 BLKmode; it can't go in a register. Unless the member is
1309 BLKmode only because it isn't aligned. */
1310 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1312 if (TREE_CODE (field
) != FIELD_DECL
)
1315 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1316 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1317 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1318 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1319 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1320 || ! host_integerp (bit_position (field
), 1)
1321 || DECL_SIZE (field
) == 0
1322 || ! host_integerp (DECL_SIZE (field
), 1))
1325 /* If this field is the whole struct, remember its mode so
1326 that, say, we can put a double in a class into a DF
1327 register instead of forcing it to live in the stack. */
1328 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1329 mode
= DECL_MODE (field
);
1331 #ifdef MEMBER_TYPE_FORCES_BLK
1332 /* With some targets, eg. c4x, it is sub-optimal
1333 to access an aligned BLKmode structure as a scalar. */
1335 if (MEMBER_TYPE_FORCES_BLK (field
, mode
))
1337 #endif /* MEMBER_TYPE_FORCES_BLK */
1340 /* If we only have one real field; use its mode. This only applies to
1341 RECORD_TYPE. This does not apply to unions. */
1342 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
)
1343 TYPE_MODE (type
) = mode
;
1345 TYPE_MODE (type
) = mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1);
1347 /* If structure's known alignment is less than what the scalar
1348 mode would need, and it matters, then stick with BLKmode. */
1349 if (TYPE_MODE (type
) != BLKmode
1351 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1352 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1354 /* If this is the only reason this type is BLKmode, then
1355 don't force containing types to be BLKmode. */
1356 TYPE_NO_FORCE_BLK (type
) = 1;
1357 TYPE_MODE (type
) = BLKmode
;
1361 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1365 finalize_type_size (tree type
)
1367 /* Normally, use the alignment corresponding to the mode chosen.
1368 However, where strict alignment is not required, avoid
1369 over-aligning structures, since most compilers do not do this
1372 if (TYPE_MODE (type
) != BLKmode
&& TYPE_MODE (type
) != VOIDmode
1373 && (STRICT_ALIGNMENT
1374 || (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
1375 && TREE_CODE (type
) != QUAL_UNION_TYPE
1376 && TREE_CODE (type
) != ARRAY_TYPE
)))
1378 TYPE_ALIGN (type
) = GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1379 TYPE_USER_ALIGN (type
) = 0;
1382 /* Do machine-dependent extra alignment. */
1383 #ifdef ROUND_TYPE_ALIGN
1385 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
);
1388 /* If we failed to find a simple way to calculate the unit size
1389 of the type, find it by division. */
1390 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1391 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1392 result will fit in sizetype. We will get more efficient code using
1393 sizetype, so we force a conversion. */
1394 TYPE_SIZE_UNIT (type
)
1395 = convert (sizetype
,
1396 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1397 bitsize_unit_node
));
1399 if (TYPE_SIZE (type
) != 0)
1401 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1402 TYPE_SIZE_UNIT (type
)
1403 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN (type
) / BITS_PER_UNIT
);
1406 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1407 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1408 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1409 if (TYPE_SIZE_UNIT (type
) != 0
1410 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1411 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1413 /* Also layout any other variants of the type. */
1414 if (TYPE_NEXT_VARIANT (type
)
1415 || type
!= TYPE_MAIN_VARIANT (type
))
1418 /* Record layout info of this variant. */
1419 tree size
= TYPE_SIZE (type
);
1420 tree size_unit
= TYPE_SIZE_UNIT (type
);
1421 unsigned int align
= TYPE_ALIGN (type
);
1422 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1423 enum machine_mode mode
= TYPE_MODE (type
);
1425 /* Copy it into all variants. */
1426 for (variant
= TYPE_MAIN_VARIANT (type
);
1428 variant
= TYPE_NEXT_VARIANT (variant
))
1430 TYPE_SIZE (variant
) = size
;
1431 TYPE_SIZE_UNIT (variant
) = size_unit
;
1432 TYPE_ALIGN (variant
) = align
;
1433 TYPE_USER_ALIGN (variant
) = user_align
;
1434 TYPE_MODE (variant
) = mode
;
1439 /* Do all of the work required to layout the type indicated by RLI,
1440 once the fields have been laid out. This function will call `free'
1441 for RLI, unless FREE_P is false. Passing a value other than false
1442 for FREE_P is bad practice; this option only exists to support the
1446 finish_record_layout (record_layout_info rli
, int free_p
)
1448 /* Compute the final size. */
1449 finalize_record_size (rli
);
1451 /* Compute the TYPE_MODE for the record. */
1452 compute_record_mode (rli
->t
);
1454 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1455 finalize_type_size (rli
->t
);
1457 /* Lay out any static members. This is done now because their type
1458 may use the record's type. */
1459 while (rli
->pending_statics
)
1461 layout_decl (TREE_VALUE (rli
->pending_statics
), 0);
1462 rli
->pending_statics
= TREE_CHAIN (rli
->pending_statics
);
1471 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1472 NAME, its fields are chained in reverse on FIELDS.
1474 If ALIGN_TYPE is non-null, it is given the same alignment as
1478 finish_builtin_struct (tree type
, const char *name
, tree fields
,
1483 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
1485 DECL_FIELD_CONTEXT (fields
) = type
;
1486 next
= TREE_CHAIN (fields
);
1487 TREE_CHAIN (fields
) = tail
;
1489 TYPE_FIELDS (type
) = tail
;
1493 TYPE_ALIGN (type
) = TYPE_ALIGN (align_type
);
1494 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
1498 #if 0 /* not yet, should get fixed properly later */
1499 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
1501 TYPE_NAME (type
) = build_decl (TYPE_DECL
, get_identifier (name
), type
);
1503 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
1504 layout_decl (TYPE_NAME (type
), 0);
1507 /* Calculate the mode, size, and alignment for TYPE.
1508 For an array type, calculate the element separation as well.
1509 Record TYPE on the chain of permanent or temporary types
1510 so that dbxout will find out about it.
1512 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1513 layout_type does nothing on such a type.
1515 If the type is incomplete, its TYPE_SIZE remains zero. */
1518 layout_type (tree type
)
1523 /* Do nothing if type has been laid out before. */
1524 if (TYPE_SIZE (type
))
1527 switch (TREE_CODE (type
))
1530 /* This kind of type is the responsibility
1531 of the language-specific code. */
1534 case BOOLEAN_TYPE
: /* Used for Java, Pascal, and Chill. */
1535 if (TYPE_PRECISION (type
) == 0)
1536 TYPE_PRECISION (type
) = 1; /* default to one byte/boolean. */
1538 /* ... fall through ... */
1543 if (TREE_CODE (TYPE_MIN_VALUE (type
)) == INTEGER_CST
1544 && tree_int_cst_sgn (TYPE_MIN_VALUE (type
)) >= 0)
1545 TREE_UNSIGNED (type
) = 1;
1547 TYPE_MODE (type
) = smallest_mode_for_size (TYPE_PRECISION (type
),
1549 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1550 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1554 TYPE_MODE (type
) = mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0);
1555 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1556 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1560 TREE_UNSIGNED (type
) = TREE_UNSIGNED (TREE_TYPE (type
));
1562 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
1563 (TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
1564 ? MODE_COMPLEX_INT
: MODE_COMPLEX_FLOAT
),
1566 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1567 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1574 subtype
= TREE_TYPE (type
);
1575 TREE_UNSIGNED (type
) = TREE_UNSIGNED (subtype
);
1576 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1577 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1582 /* This is an incomplete type and so doesn't have a size. */
1583 TYPE_ALIGN (type
) = 1;
1584 TYPE_USER_ALIGN (type
) = 0;
1585 TYPE_MODE (type
) = VOIDmode
;
1589 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
1590 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE
/ BITS_PER_UNIT
);
1591 /* A pointer might be MODE_PARTIAL_INT,
1592 but ptrdiff_t must be integral. */
1593 TYPE_MODE (type
) = mode_for_size (POINTER_SIZE
, MODE_INT
, 0);
1598 TYPE_MODE (type
) = mode_for_size (2 * POINTER_SIZE
, MODE_INT
, 0);
1599 TYPE_SIZE (type
) = bitsize_int (2 * POINTER_SIZE
);
1600 TYPE_SIZE_UNIT (type
) = size_int ((2 * POINTER_SIZE
) / BITS_PER_UNIT
);
1604 case REFERENCE_TYPE
:
1607 enum machine_mode mode
= ((TREE_CODE (type
) == REFERENCE_TYPE
1608 && reference_types_internal
)
1609 ? Pmode
: TYPE_MODE (type
));
1611 int nbits
= GET_MODE_BITSIZE (mode
);
1613 TYPE_SIZE (type
) = bitsize_int (nbits
);
1614 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
1615 TREE_UNSIGNED (type
) = 1;
1616 TYPE_PRECISION (type
) = nbits
;
1622 tree index
= TYPE_DOMAIN (type
);
1623 tree element
= TREE_TYPE (type
);
1625 build_pointer_type (element
);
1627 /* We need to know both bounds in order to compute the size. */
1628 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
1629 && TYPE_SIZE (element
))
1631 tree ub
= TYPE_MAX_VALUE (index
);
1632 tree lb
= TYPE_MIN_VALUE (index
);
1636 /* The initial subtraction should happen in the original type so
1637 that (possible) negative values are handled appropriately. */
1638 length
= size_binop (PLUS_EXPR
, size_one_node
,
1640 fold (build (MINUS_EXPR
,
1644 /* Special handling for arrays of bits (for Chill). */
1645 element_size
= TYPE_SIZE (element
);
1646 if (TYPE_PACKED (type
) && INTEGRAL_TYPE_P (element
)
1647 && (integer_zerop (TYPE_MAX_VALUE (element
))
1648 || integer_onep (TYPE_MAX_VALUE (element
)))
1649 && host_integerp (TYPE_MIN_VALUE (element
), 1))
1651 HOST_WIDE_INT maxvalue
1652 = tree_low_cst (TYPE_MAX_VALUE (element
), 1);
1653 HOST_WIDE_INT minvalue
1654 = tree_low_cst (TYPE_MIN_VALUE (element
), 1);
1656 if (maxvalue
- minvalue
== 1
1657 && (maxvalue
== 1 || maxvalue
== 0))
1658 element_size
= integer_one_node
;
1661 /* If neither bound is a constant and sizetype is signed, make
1662 sure the size is never negative. We should really do this
1663 if *either* bound is non-constant, but this is the best
1664 compromise between C and Ada. */
1665 if (! TREE_UNSIGNED (sizetype
)
1666 && TREE_CODE (TYPE_MIN_VALUE (index
)) != INTEGER_CST
1667 && TREE_CODE (TYPE_MAX_VALUE (index
)) != INTEGER_CST
)
1668 length
= size_binop (MAX_EXPR
, length
, size_zero_node
);
1670 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
1671 convert (bitsizetype
, length
));
1673 /* If we know the size of the element, calculate the total
1674 size directly, rather than do some division thing below.
1675 This optimization helps Fortran assumed-size arrays
1676 (where the size of the array is determined at runtime)
1678 Note that we can't do this in the case where the size of
1679 the elements is one bit since TYPE_SIZE_UNIT cannot be
1680 set correctly in that case. */
1681 if (TYPE_SIZE_UNIT (element
) != 0 && ! integer_onep (element_size
))
1682 TYPE_SIZE_UNIT (type
)
1683 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
1686 /* Now round the alignment and size,
1687 using machine-dependent criteria if any. */
1689 #ifdef ROUND_TYPE_ALIGN
1691 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (element
), BITS_PER_UNIT
);
1693 TYPE_ALIGN (type
) = MAX (TYPE_ALIGN (element
), BITS_PER_UNIT
);
1695 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
1696 TYPE_MODE (type
) = BLKmode
;
1697 if (TYPE_SIZE (type
) != 0
1698 #ifdef MEMBER_TYPE_FORCES_BLK
1699 && ! MEMBER_TYPE_FORCES_BLK (type
, VOIDmode
)
1701 /* BLKmode elements force BLKmode aggregate;
1702 else extract/store fields may lose. */
1703 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
1704 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
1706 /* One-element arrays get the component type's mode. */
1707 if (simple_cst_equal (TYPE_SIZE (type
),
1708 TYPE_SIZE (TREE_TYPE (type
))))
1709 TYPE_MODE (type
) = TYPE_MODE (TREE_TYPE (type
));
1712 = mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1);
1714 if (TYPE_MODE (type
) != BLKmode
1715 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
1716 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
))
1717 && TYPE_MODE (type
) != BLKmode
)
1719 TYPE_NO_FORCE_BLK (type
) = 1;
1720 TYPE_MODE (type
) = BLKmode
;
1728 case QUAL_UNION_TYPE
:
1731 record_layout_info rli
;
1733 /* Initialize the layout information. */
1734 rli
= start_record_layout (type
);
1736 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1737 in the reverse order in building the COND_EXPR that denotes
1738 its size. We reverse them again later. */
1739 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
1740 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
1742 /* Place all the fields. */
1743 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1744 place_field (rli
, field
);
1746 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
1747 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
1749 if (lang_adjust_rli
)
1750 (*lang_adjust_rli
) (rli
);
1752 /* Finish laying out the record. */
1753 finish_record_layout (rli
, /*free_p=*/true);
1757 case SET_TYPE
: /* Used by Chill and Pascal. */
1758 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type
))) != INTEGER_CST
1759 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type
))) != INTEGER_CST
)
1763 #ifndef SET_WORD_SIZE
1764 #define SET_WORD_SIZE BITS_PER_WORD
1766 unsigned int alignment
1767 = set_alignment
? set_alignment
: SET_WORD_SIZE
;
1768 HOST_WIDE_INT size_in_bits
1769 = (tree_low_cst (TYPE_MAX_VALUE (TYPE_DOMAIN (type
)), 0)
1770 - tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type
)), 0) + 1);
1771 HOST_WIDE_INT rounded_size
1772 = ((size_in_bits
+ alignment
- 1) / alignment
) * alignment
;
1774 if (rounded_size
> (int) alignment
)
1775 TYPE_MODE (type
) = BLKmode
;
1777 TYPE_MODE (type
) = mode_for_size (alignment
, MODE_INT
, 1);
1779 TYPE_SIZE (type
) = bitsize_int (rounded_size
);
1780 TYPE_SIZE_UNIT (type
) = size_int (rounded_size
/ BITS_PER_UNIT
);
1781 TYPE_ALIGN (type
) = alignment
;
1782 TYPE_USER_ALIGN (type
) = 0;
1783 TYPE_PRECISION (type
) = size_in_bits
;
1788 /* The size may vary in different languages, so the language front end
1789 should fill in the size. */
1790 TYPE_ALIGN (type
) = BIGGEST_ALIGNMENT
;
1791 TYPE_USER_ALIGN (type
) = 0;
1792 TYPE_MODE (type
) = BLKmode
;
1799 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1800 records and unions, finish_record_layout already called this
1802 if (TREE_CODE (type
) != RECORD_TYPE
1803 && TREE_CODE (type
) != UNION_TYPE
1804 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
1805 finalize_type_size (type
);
1807 /* If this type is created before sizetype has been permanently set,
1808 record it so set_sizetype can fix it up. */
1810 early_type_list
= tree_cons (NULL_TREE
, type
, early_type_list
);
1812 /* If an alias set has been set for this aggregate when it was incomplete,
1813 force it into alias set 0.
1814 This is too conservative, but we cannot call record_component_aliases
1815 here because some frontends still change the aggregates after
1817 if (AGGREGATE_TYPE_P (type
) && TYPE_ALIAS_SET_KNOWN_P (type
))
1818 TYPE_ALIAS_SET (type
) = 0;
1821 /* Create and return a type for signed integers of PRECISION bits. */
1824 make_signed_type (int precision
)
1826 tree type
= make_node (INTEGER_TYPE
);
1828 TYPE_PRECISION (type
) = precision
;
1830 fixup_signed_type (type
);
1834 /* Create and return a type for unsigned integers of PRECISION bits. */
1837 make_unsigned_type (int precision
)
1839 tree type
= make_node (INTEGER_TYPE
);
1841 TYPE_PRECISION (type
) = precision
;
1843 fixup_unsigned_type (type
);
1847 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1848 value to enable integer types to be created. */
1851 initialize_sizetypes (void)
1853 tree t
= make_node (INTEGER_TYPE
);
1855 /* Set this so we do something reasonable for the build_int_2 calls
1857 integer_type_node
= t
;
1859 TYPE_MODE (t
) = SImode
;
1860 TYPE_ALIGN (t
) = GET_MODE_ALIGNMENT (SImode
);
1861 TYPE_USER_ALIGN (t
) = 0;
1862 TYPE_SIZE (t
) = build_int_2 (GET_MODE_BITSIZE (SImode
), 0);
1863 TYPE_SIZE_UNIT (t
) = build_int_2 (GET_MODE_SIZE (SImode
), 0);
1864 TREE_UNSIGNED (t
) = 1;
1865 TYPE_PRECISION (t
) = GET_MODE_BITSIZE (SImode
);
1866 TYPE_MIN_VALUE (t
) = build_int_2 (0, 0);
1867 TYPE_IS_SIZETYPE (t
) = 1;
1869 /* 1000 avoids problems with possible overflow and is certainly
1870 larger than any size value we'd want to be storing. */
1871 TYPE_MAX_VALUE (t
) = build_int_2 (1000, 0);
1873 /* These two must be different nodes because of the caching done in
1876 bitsizetype
= copy_node (t
);
1877 integer_type_node
= 0;
1880 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1881 Also update the type of any standard type's sizes made so far. */
1884 set_sizetype (tree type
)
1886 int oprecision
= TYPE_PRECISION (type
);
1887 /* The *bitsizetype types use a precision that avoids overflows when
1888 calculating signed sizes / offsets in bits. However, when
1889 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1891 int precision
= MIN (oprecision
+ BITS_PER_UNIT_LOG
+ 1,
1892 2 * HOST_BITS_PER_WIDE_INT
);
1899 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1900 sizetype
= copy_node (type
);
1901 TYPE_DOMAIN (sizetype
) = type
;
1902 TYPE_IS_SIZETYPE (sizetype
) = 1;
1903 bitsizetype
= make_node (INTEGER_TYPE
);
1904 TYPE_NAME (bitsizetype
) = TYPE_NAME (type
);
1905 TYPE_PRECISION (bitsizetype
) = precision
;
1906 TYPE_IS_SIZETYPE (bitsizetype
) = 1;
1908 if (TREE_UNSIGNED (type
))
1909 fixup_unsigned_type (bitsizetype
);
1911 fixup_signed_type (bitsizetype
);
1913 layout_type (bitsizetype
);
1915 if (TREE_UNSIGNED (type
))
1917 usizetype
= sizetype
;
1918 ubitsizetype
= bitsizetype
;
1919 ssizetype
= copy_node (make_signed_type (oprecision
));
1920 sbitsizetype
= copy_node (make_signed_type (precision
));
1924 ssizetype
= sizetype
;
1925 sbitsizetype
= bitsizetype
;
1926 usizetype
= copy_node (make_unsigned_type (oprecision
));
1927 ubitsizetype
= copy_node (make_unsigned_type (precision
));
1930 TYPE_NAME (bitsizetype
) = get_identifier ("bit_size_type");
1932 /* Show is a sizetype, is a main type, and has no pointers to it. */
1933 for (i
= 0; i
< ARRAY_SIZE (sizetype_tab
); i
++)
1935 TYPE_IS_SIZETYPE (sizetype_tab
[i
]) = 1;
1936 TYPE_MAIN_VARIANT (sizetype_tab
[i
]) = sizetype_tab
[i
];
1937 TYPE_NEXT_VARIANT (sizetype_tab
[i
]) = 0;
1938 TYPE_POINTER_TO (sizetype_tab
[i
]) = 0;
1939 TYPE_REFERENCE_TO (sizetype_tab
[i
]) = 0;
1942 /* Go down each of the types we already made and set the proper type
1943 for the sizes in them. */
1944 for (t
= early_type_list
; t
!= 0; t
= TREE_CHAIN (t
))
1946 if (TREE_CODE (TREE_VALUE (t
)) != INTEGER_TYPE
1947 && TREE_CODE (TREE_VALUE (t
)) != BOOLEAN_TYPE
)
1950 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t
))) = bitsizetype
;
1951 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t
))) = sizetype
;
1954 early_type_list
= 0;
1958 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
1959 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
1960 for TYPE, based on the PRECISION and whether or not the TYPE
1961 IS_UNSIGNED. PRECISION need not correspond to a width supported
1962 natively by the hardware; for example, on a machine with 8-bit,
1963 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
1967 set_min_and_max_values_for_integral_type (tree type
,
1976 min_value
= build_int_2 (0, 0);
1978 = build_int_2 (precision
- HOST_BITS_PER_WIDE_INT
>= 0
1979 ? -1 : ((HOST_WIDE_INT
) 1 << precision
) - 1,
1980 precision
- HOST_BITS_PER_WIDE_INT
> 0
1981 ? ((unsigned HOST_WIDE_INT
) ~0
1982 >> (HOST_BITS_PER_WIDE_INT
1983 - (precision
- HOST_BITS_PER_WIDE_INT
)))
1989 = build_int_2 ((precision
- HOST_BITS_PER_WIDE_INT
> 0
1990 ? 0 : (HOST_WIDE_INT
) (-1) << (precision
- 1)),
1991 (((HOST_WIDE_INT
) (-1)
1992 << (precision
- HOST_BITS_PER_WIDE_INT
- 1 > 0
1993 ? precision
- HOST_BITS_PER_WIDE_INT
- 1
1996 = build_int_2 ((precision
- HOST_BITS_PER_WIDE_INT
> 0
1997 ? -1 : ((HOST_WIDE_INT
) 1 << (precision
- 1)) - 1),
1998 (precision
- HOST_BITS_PER_WIDE_INT
- 1 > 0
1999 ? (((HOST_WIDE_INT
) 1
2000 << (precision
- HOST_BITS_PER_WIDE_INT
- 1))) - 1
2004 TREE_TYPE (min_value
) = type
;
2005 TREE_TYPE (max_value
) = type
;
2006 TYPE_MIN_VALUE (type
) = min_value
;
2007 TYPE_MAX_VALUE (type
) = max_value
;
2010 /* Set the extreme values of TYPE based on its precision in bits,
2011 then lay it out. Used when make_signed_type won't do
2012 because the tree code is not INTEGER_TYPE.
2013 E.g. for Pascal, when the -fsigned-char option is given. */
2016 fixup_signed_type (tree type
)
2018 int precision
= TYPE_PRECISION (type
);
2020 /* We can not represent properly constants greater then
2021 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2022 as they are used by i386 vector extensions and friends. */
2023 if (precision
> HOST_BITS_PER_WIDE_INT
* 2)
2024 precision
= HOST_BITS_PER_WIDE_INT
* 2;
2026 set_min_and_max_values_for_integral_type (type
, precision
,
2027 /*is_unsigned=*/false);
2029 /* Lay out the type: set its alignment, size, etc. */
2033 /* Set the extreme values of TYPE based on its precision in bits,
2034 then lay it out. This is used both in `make_unsigned_type'
2035 and for enumeral types. */
2038 fixup_unsigned_type (tree type
)
2040 int precision
= TYPE_PRECISION (type
);
2042 /* We can not represent properly constants greater then
2043 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2044 as they are used by i386 vector extensions and friends. */
2045 if (precision
> HOST_BITS_PER_WIDE_INT
* 2)
2046 precision
= HOST_BITS_PER_WIDE_INT
* 2;
2048 set_min_and_max_values_for_integral_type (type
, precision
,
2049 /*is_unsigned=*/true);
2051 /* Lay out the type: set its alignment, size, etc. */
2055 /* Find the best machine mode to use when referencing a bit field of length
2056 BITSIZE bits starting at BITPOS.
2058 The underlying object is known to be aligned to a boundary of ALIGN bits.
2059 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2060 larger than LARGEST_MODE (usually SImode).
2062 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2063 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2064 mode meeting these conditions.
2066 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2067 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2068 all the conditions. */
2071 get_best_mode (int bitsize
, int bitpos
, unsigned int align
,
2072 enum machine_mode largest_mode
, int volatilep
)
2074 enum machine_mode mode
;
2075 unsigned int unit
= 0;
2077 /* Find the narrowest integer mode that contains the bit field. */
2078 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2079 mode
= GET_MODE_WIDER_MODE (mode
))
2081 unit
= GET_MODE_BITSIZE (mode
);
2082 if ((bitpos
% unit
) + bitsize
<= unit
)
2086 if (mode
== VOIDmode
2087 /* It is tempting to omit the following line
2088 if STRICT_ALIGNMENT is true.
2089 But that is incorrect, since if the bitfield uses part of 3 bytes
2090 and we use a 4-byte mode, we could get a spurious segv
2091 if the extra 4th byte is past the end of memory.
2092 (Though at least one Unix compiler ignores this problem:
2093 that on the Sequent 386 machine. */
2094 || MIN (unit
, BIGGEST_ALIGNMENT
) > align
2095 || (largest_mode
!= VOIDmode
&& unit
> GET_MODE_BITSIZE (largest_mode
)))
2098 if (SLOW_BYTE_ACCESS
&& ! volatilep
)
2100 enum machine_mode wide_mode
= VOIDmode
, tmode
;
2102 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); tmode
!= VOIDmode
;
2103 tmode
= GET_MODE_WIDER_MODE (tmode
))
2105 unit
= GET_MODE_BITSIZE (tmode
);
2106 if (bitpos
/ unit
== (bitpos
+ bitsize
- 1) / unit
2107 && unit
<= BITS_PER_WORD
2108 && unit
<= MIN (align
, BIGGEST_ALIGNMENT
)
2109 && (largest_mode
== VOIDmode
2110 || unit
<= GET_MODE_BITSIZE (largest_mode
)))
2114 if (wide_mode
!= VOIDmode
)
2121 #include "gt-stor-layout.h"