* config/arm/arm.h (REG_CLASS_NAMES): Add missing comma.
[official-gcc.git] / gcc / reload1.c
blobc24f4ac7be0c3408a2f2c2a6d7fc508f2279037f
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "tree.h"
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 /* During reload_as_needed, element N contains a REG rtx for the hard reg
82 into which reg N has been reloaded (perhaps for a previous insn). */
83 static rtx *reg_last_reload_reg;
85 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87 static char *reg_has_output_reload;
89 /* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91 static HARD_REG_SET reg_is_output_reload;
93 /* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97 rtx *reg_equiv_constant;
99 /* Element N is a memory location to which pseudo reg N is equivalent,
100 prior to any register elimination (such as frame pointer to stack
101 pointer). Depending on whether or not it is a valid address, this value
102 is transferred to either reg_equiv_address or reg_equiv_mem. */
103 rtx *reg_equiv_memory_loc;
105 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
106 This is used when the address is not valid as a memory address
107 (because its displacement is too big for the machine.) */
108 rtx *reg_equiv_address;
110 /* Element N is the memory slot to which pseudo reg N is equivalent,
111 or zero if pseudo reg N is not equivalent to a memory slot. */
112 rtx *reg_equiv_mem;
114 /* Widest width in which each pseudo reg is referred to (via subreg). */
115 static unsigned int *reg_max_ref_width;
117 /* Element N is the list of insns that initialized reg N from its equivalent
118 constant or memory slot. */
119 static rtx *reg_equiv_init;
121 /* Vector to remember old contents of reg_renumber before spilling. */
122 static short *reg_old_renumber;
124 /* During reload_as_needed, element N contains the last pseudo regno reloaded
125 into hard register N. If that pseudo reg occupied more than one register,
126 reg_reloaded_contents points to that pseudo for each spill register in
127 use; all of these must remain set for an inheritance to occur. */
128 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
130 /* During reload_as_needed, element N contains the insn for which
131 hard register N was last used. Its contents are significant only
132 when reg_reloaded_valid is set for this register. */
133 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
135 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
136 static HARD_REG_SET reg_reloaded_valid;
137 /* Indicate if the register was dead at the end of the reload.
138 This is only valid if reg_reloaded_contents is set and valid. */
139 static HARD_REG_SET reg_reloaded_dead;
141 /* Indicate whether the register's current value is one that is not
142 safe to retain across a call, even for registers that are normally
143 call-saved. */
144 static HARD_REG_SET reg_reloaded_call_part_clobbered;
146 /* Number of spill-regs so far; number of valid elements of spill_regs. */
147 static int n_spills;
149 /* In parallel with spill_regs, contains REG rtx's for those regs.
150 Holds the last rtx used for any given reg, or 0 if it has never
151 been used for spilling yet. This rtx is reused, provided it has
152 the proper mode. */
153 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
155 /* In parallel with spill_regs, contains nonzero for a spill reg
156 that was stored after the last time it was used.
157 The precise value is the insn generated to do the store. */
158 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
160 /* This is the register that was stored with spill_reg_store. This is a
161 copy of reload_out / reload_out_reg when the value was stored; if
162 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
163 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
165 /* This table is the inverse mapping of spill_regs:
166 indexed by hard reg number,
167 it contains the position of that reg in spill_regs,
168 or -1 for something that is not in spill_regs.
170 ?!? This is no longer accurate. */
171 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
173 /* This reg set indicates registers that can't be used as spill registers for
174 the currently processed insn. These are the hard registers which are live
175 during the insn, but not allocated to pseudos, as well as fixed
176 registers. */
177 static HARD_REG_SET bad_spill_regs;
179 /* These are the hard registers that can't be used as spill register for any
180 insn. This includes registers used for user variables and registers that
181 we can't eliminate. A register that appears in this set also can't be used
182 to retry register allocation. */
183 static HARD_REG_SET bad_spill_regs_global;
185 /* Describes order of use of registers for reloading
186 of spilled pseudo-registers. `n_spills' is the number of
187 elements that are actually valid; new ones are added at the end.
189 Both spill_regs and spill_reg_order are used on two occasions:
190 once during find_reload_regs, where they keep track of the spill registers
191 for a single insn, but also during reload_as_needed where they show all
192 the registers ever used by reload. For the latter case, the information
193 is calculated during finish_spills. */
194 static short spill_regs[FIRST_PSEUDO_REGISTER];
196 /* This vector of reg sets indicates, for each pseudo, which hard registers
197 may not be used for retrying global allocation because the register was
198 formerly spilled from one of them. If we allowed reallocating a pseudo to
199 a register that it was already allocated to, reload might not
200 terminate. */
201 static HARD_REG_SET *pseudo_previous_regs;
203 /* This vector of reg sets indicates, for each pseudo, which hard
204 registers may not be used for retrying global allocation because they
205 are used as spill registers during one of the insns in which the
206 pseudo is live. */
207 static HARD_REG_SET *pseudo_forbidden_regs;
209 /* All hard regs that have been used as spill registers for any insn are
210 marked in this set. */
211 static HARD_REG_SET used_spill_regs;
213 /* Index of last register assigned as a spill register. We allocate in
214 a round-robin fashion. */
215 static int last_spill_reg;
217 /* Nonzero if indirect addressing is supported on the machine; this means
218 that spilling (REG n) does not require reloading it into a register in
219 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
220 value indicates the level of indirect addressing supported, e.g., two
221 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
222 a hard register. */
223 static char spill_indirect_levels;
225 /* Nonzero if indirect addressing is supported when the innermost MEM is
226 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
227 which these are valid is the same as spill_indirect_levels, above. */
228 char indirect_symref_ok;
230 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
231 char double_reg_address_ok;
233 /* Record the stack slot for each spilled hard register. */
234 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
236 /* Width allocated so far for that stack slot. */
237 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
239 /* Record which pseudos needed to be spilled. */
240 static regset_head spilled_pseudos;
242 /* Used for communication between order_regs_for_reload and count_pseudo.
243 Used to avoid counting one pseudo twice. */
244 static regset_head pseudos_counted;
246 /* First uid used by insns created by reload in this function.
247 Used in find_equiv_reg. */
248 int reload_first_uid;
250 /* Flag set by local-alloc or global-alloc if anything is live in
251 a call-clobbered reg across calls. */
252 int caller_save_needed;
254 /* Set to 1 while reload_as_needed is operating.
255 Required by some machines to handle any generated moves differently. */
256 int reload_in_progress = 0;
258 /* These arrays record the insn_code of insns that may be needed to
259 perform input and output reloads of special objects. They provide a
260 place to pass a scratch register. */
261 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
262 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
264 /* This obstack is used for allocation of rtl during register elimination.
265 The allocated storage can be freed once find_reloads has processed the
266 insn. */
267 struct obstack reload_obstack;
269 /* Points to the beginning of the reload_obstack. All insn_chain structures
270 are allocated first. */
271 char *reload_startobj;
273 /* The point after all insn_chain structures. Used to quickly deallocate
274 memory allocated in copy_reloads during calculate_needs_all_insns. */
275 char *reload_firstobj;
277 /* This points before all local rtl generated by register elimination.
278 Used to quickly free all memory after processing one insn. */
279 static char *reload_insn_firstobj;
281 /* List of insn_chain instructions, one for every insn that reload needs to
282 examine. */
283 struct insn_chain *reload_insn_chain;
285 /* List of all insns needing reloads. */
286 static struct insn_chain *insns_need_reload;
288 /* This structure is used to record information about register eliminations.
289 Each array entry describes one possible way of eliminating a register
290 in favor of another. If there is more than one way of eliminating a
291 particular register, the most preferred should be specified first. */
293 struct elim_table
295 int from; /* Register number to be eliminated. */
296 int to; /* Register number used as replacement. */
297 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
298 int can_eliminate; /* Nonzero if this elimination can be done. */
299 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
300 insns made by reload. */
301 HOST_WIDE_INT offset; /* Current offset between the two regs. */
302 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
303 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
304 rtx from_rtx; /* REG rtx for the register to be eliminated.
305 We cannot simply compare the number since
306 we might then spuriously replace a hard
307 register corresponding to a pseudo
308 assigned to the reg to be eliminated. */
309 rtx to_rtx; /* REG rtx for the replacement. */
312 static struct elim_table *reg_eliminate = 0;
314 /* This is an intermediate structure to initialize the table. It has
315 exactly the members provided by ELIMINABLE_REGS. */
316 static const struct elim_table_1
318 const int from;
319 const int to;
320 } reg_eliminate_1[] =
322 /* If a set of eliminable registers was specified, define the table from it.
323 Otherwise, default to the normal case of the frame pointer being
324 replaced by the stack pointer. */
326 #ifdef ELIMINABLE_REGS
327 ELIMINABLE_REGS;
328 #else
329 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
330 #endif
332 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
334 /* Record the number of pending eliminations that have an offset not equal
335 to their initial offset. If nonzero, we use a new copy of each
336 replacement result in any insns encountered. */
337 int num_not_at_initial_offset;
339 /* Count the number of registers that we may be able to eliminate. */
340 static int num_eliminable;
341 /* And the number of registers that are equivalent to a constant that
342 can be eliminated to frame_pointer / arg_pointer + constant. */
343 static int num_eliminable_invariants;
345 /* For each label, we record the offset of each elimination. If we reach
346 a label by more than one path and an offset differs, we cannot do the
347 elimination. This information is indexed by the difference of the
348 number of the label and the first label number. We can't offset the
349 pointer itself as this can cause problems on machines with segmented
350 memory. The first table is an array of flags that records whether we
351 have yet encountered a label and the second table is an array of arrays,
352 one entry in the latter array for each elimination. */
354 static int first_label_num;
355 static char *offsets_known_at;
356 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
358 /* Number of labels in the current function. */
360 static int num_labels;
362 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
363 static void maybe_fix_stack_asms (void);
364 static void copy_reloads (struct insn_chain *);
365 static void calculate_needs_all_insns (int);
366 static int find_reg (struct insn_chain *, int);
367 static void find_reload_regs (struct insn_chain *);
368 static void select_reload_regs (void);
369 static void delete_caller_save_insns (void);
371 static void spill_failure (rtx, enum reg_class);
372 static void count_spilled_pseudo (int, int, int);
373 static void delete_dead_insn (rtx);
374 static void alter_reg (int, int);
375 static void set_label_offsets (rtx, rtx, int);
376 static void check_eliminable_occurrences (rtx);
377 static void elimination_effects (rtx, enum machine_mode);
378 static int eliminate_regs_in_insn (rtx, int);
379 static void update_eliminable_offsets (void);
380 static void mark_not_eliminable (rtx, rtx, void *);
381 static void set_initial_elim_offsets (void);
382 static void verify_initial_elim_offsets (void);
383 static void set_initial_label_offsets (void);
384 static void set_offsets_for_label (rtx);
385 static void init_elim_table (void);
386 static void update_eliminables (HARD_REG_SET *);
387 static void spill_hard_reg (unsigned int, int);
388 static int finish_spills (int);
389 static void ior_hard_reg_set (HARD_REG_SET *, HARD_REG_SET *);
390 static void scan_paradoxical_subregs (rtx);
391 static void count_pseudo (int);
392 static void order_regs_for_reload (struct insn_chain *);
393 static void reload_as_needed (int);
394 static void forget_old_reloads_1 (rtx, rtx, void *);
395 static int reload_reg_class_lower (const void *, const void *);
396 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
397 enum machine_mode);
398 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
399 enum machine_mode);
400 static int reload_reg_free_p (unsigned int, int, enum reload_type);
401 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
402 rtx, rtx, int, int);
403 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
404 rtx, rtx, int, int);
405 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
406 static int allocate_reload_reg (struct insn_chain *, int, int);
407 static int conflicts_with_override (rtx);
408 static void failed_reload (rtx, int);
409 static int set_reload_reg (int, int);
410 static void choose_reload_regs_init (struct insn_chain *, rtx *);
411 static void choose_reload_regs (struct insn_chain *);
412 static void merge_assigned_reloads (rtx);
413 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
414 rtx, int);
415 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
416 int);
417 static void do_input_reload (struct insn_chain *, struct reload *, int);
418 static void do_output_reload (struct insn_chain *, struct reload *, int);
419 static void emit_reload_insns (struct insn_chain *);
420 static void delete_output_reload (rtx, int, int);
421 static void delete_address_reloads (rtx, rtx);
422 static void delete_address_reloads_1 (rtx, rtx, rtx);
423 static rtx inc_for_reload (rtx, rtx, rtx, int);
424 #ifdef AUTO_INC_DEC
425 static void add_auto_inc_notes (rtx, rtx);
426 #endif
427 static void copy_eh_notes (rtx, rtx);
429 /* Initialize the reload pass once per compilation. */
431 void
432 init_reload (void)
434 int i;
436 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
437 Set spill_indirect_levels to the number of levels such addressing is
438 permitted, zero if it is not permitted at all. */
440 rtx tem
441 = gen_rtx_MEM (Pmode,
442 gen_rtx_PLUS (Pmode,
443 gen_rtx_REG (Pmode,
444 LAST_VIRTUAL_REGISTER + 1),
445 GEN_INT (4)));
446 spill_indirect_levels = 0;
448 while (memory_address_p (QImode, tem))
450 spill_indirect_levels++;
451 tem = gen_rtx_MEM (Pmode, tem);
454 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
456 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
457 indirect_symref_ok = memory_address_p (QImode, tem);
459 /* See if reg+reg is a valid (and offsettable) address. */
461 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
463 tem = gen_rtx_PLUS (Pmode,
464 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
465 gen_rtx_REG (Pmode, i));
467 /* This way, we make sure that reg+reg is an offsettable address. */
468 tem = plus_constant (tem, 4);
470 if (memory_address_p (QImode, tem))
472 double_reg_address_ok = 1;
473 break;
477 /* Initialize obstack for our rtl allocation. */
478 gcc_obstack_init (&reload_obstack);
479 reload_startobj = obstack_alloc (&reload_obstack, 0);
481 INIT_REG_SET (&spilled_pseudos);
482 INIT_REG_SET (&pseudos_counted);
485 /* List of insn chains that are currently unused. */
486 static struct insn_chain *unused_insn_chains = 0;
488 /* Allocate an empty insn_chain structure. */
489 struct insn_chain *
490 new_insn_chain (void)
492 struct insn_chain *c;
494 if (unused_insn_chains == 0)
496 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
497 INIT_REG_SET (&c->live_throughout);
498 INIT_REG_SET (&c->dead_or_set);
500 else
502 c = unused_insn_chains;
503 unused_insn_chains = c->next;
505 c->is_caller_save_insn = 0;
506 c->need_operand_change = 0;
507 c->need_reload = 0;
508 c->need_elim = 0;
509 return c;
512 /* Small utility function to set all regs in hard reg set TO which are
513 allocated to pseudos in regset FROM. */
515 void
516 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
518 unsigned int regno;
520 EXECUTE_IF_SET_IN_REG_SET
521 (from, FIRST_PSEUDO_REGISTER, regno,
523 int r = reg_renumber[regno];
524 int nregs;
526 if (r < 0)
528 /* reload_combine uses the information from
529 BASIC_BLOCK->global_live_at_start, which might still
530 contain registers that have not actually been allocated
531 since they have an equivalence. */
532 if (! reload_completed)
533 abort ();
535 else
537 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
538 while (nregs-- > 0)
539 SET_HARD_REG_BIT (*to, r + nregs);
544 /* Replace all pseudos found in LOC with their corresponding
545 equivalences. */
547 static void
548 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
550 rtx x = *loc;
551 enum rtx_code code;
552 const char *fmt;
553 int i, j;
555 if (! x)
556 return;
558 code = GET_CODE (x);
559 if (code == REG)
561 unsigned int regno = REGNO (x);
563 if (regno < FIRST_PSEUDO_REGISTER)
564 return;
566 x = eliminate_regs (x, mem_mode, usage);
567 if (x != *loc)
569 *loc = x;
570 replace_pseudos_in (loc, mem_mode, usage);
571 return;
574 if (reg_equiv_constant[regno])
575 *loc = reg_equiv_constant[regno];
576 else if (reg_equiv_mem[regno])
577 *loc = reg_equiv_mem[regno];
578 else if (reg_equiv_address[regno])
579 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
580 else if (GET_CODE (regno_reg_rtx[regno]) != REG
581 || REGNO (regno_reg_rtx[regno]) != regno)
582 *loc = regno_reg_rtx[regno];
583 else
584 abort ();
586 return;
588 else if (code == MEM)
590 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
591 return;
594 /* Process each of our operands recursively. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
597 if (*fmt == 'e')
598 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
599 else if (*fmt == 'E')
600 for (j = 0; j < XVECLEN (x, i); j++)
601 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
605 /* Global variables used by reload and its subroutines. */
607 /* Set during calculate_needs if an insn needs register elimination. */
608 static int something_needs_elimination;
609 /* Set during calculate_needs if an insn needs an operand changed. */
610 int something_needs_operands_changed;
612 /* Nonzero means we couldn't get enough spill regs. */
613 static int failure;
615 /* Main entry point for the reload pass.
617 FIRST is the first insn of the function being compiled.
619 GLOBAL nonzero means we were called from global_alloc
620 and should attempt to reallocate any pseudoregs that we
621 displace from hard regs we will use for reloads.
622 If GLOBAL is zero, we do not have enough information to do that,
623 so any pseudo reg that is spilled must go to the stack.
625 Return value is nonzero if reload failed
626 and we must not do any more for this function. */
629 reload (rtx first, int global)
631 int i;
632 rtx insn;
633 struct elim_table *ep;
634 basic_block bb;
636 /* Make sure even insns with volatile mem refs are recognizable. */
637 init_recog ();
639 failure = 0;
641 reload_firstobj = obstack_alloc (&reload_obstack, 0);
643 /* Make sure that the last insn in the chain
644 is not something that needs reloading. */
645 emit_note (NOTE_INSN_DELETED);
647 /* Enable find_equiv_reg to distinguish insns made by reload. */
648 reload_first_uid = get_max_uid ();
650 #ifdef SECONDARY_MEMORY_NEEDED
651 /* Initialize the secondary memory table. */
652 clear_secondary_mem ();
653 #endif
655 /* We don't have a stack slot for any spill reg yet. */
656 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
657 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
659 /* Initialize the save area information for caller-save, in case some
660 are needed. */
661 init_save_areas ();
663 /* Compute which hard registers are now in use
664 as homes for pseudo registers.
665 This is done here rather than (eg) in global_alloc
666 because this point is reached even if not optimizing. */
667 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
668 mark_home_live (i);
670 /* A function that receives a nonlocal goto must save all call-saved
671 registers. */
672 if (current_function_has_nonlocal_label)
673 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
674 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
675 regs_ever_live[i] = 1;
677 #ifdef NON_SAVING_SETJMP
678 /* A function that calls setjmp should save and restore all the
679 call-saved registers on a system where longjmp clobbers them. */
680 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
682 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
683 if (! call_used_regs[i])
684 regs_ever_live[i] = 1;
686 #endif
688 /* Find all the pseudo registers that didn't get hard regs
689 but do have known equivalent constants or memory slots.
690 These include parameters (known equivalent to parameter slots)
691 and cse'd or loop-moved constant memory addresses.
693 Record constant equivalents in reg_equiv_constant
694 so they will be substituted by find_reloads.
695 Record memory equivalents in reg_mem_equiv so they can
696 be substituted eventually by altering the REG-rtx's. */
698 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
699 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
700 reg_equiv_init = xcalloc (max_regno, sizeof (rtx));
701 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
702 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
703 reg_old_renumber = xcalloc (max_regno, sizeof (short));
704 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
705 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
706 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
708 CLEAR_HARD_REG_SET (bad_spill_regs_global);
710 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
711 Also find all paradoxical subregs and find largest such for each pseudo.
712 On machines with small register classes, record hard registers that
713 are used for user variables. These can never be used for spills. */
715 num_eliminable_invariants = 0;
716 for (insn = first; insn; insn = NEXT_INSN (insn))
718 rtx set = single_set (insn);
720 /* We may introduce USEs that we want to remove at the end, so
721 we'll mark them with QImode. Make sure there are no
722 previously-marked insns left by say regmove. */
723 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
724 && GET_MODE (insn) != VOIDmode)
725 PUT_MODE (insn, VOIDmode);
727 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
729 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
730 if (note
731 #ifdef LEGITIMATE_PIC_OPERAND_P
732 && (! function_invariant_p (XEXP (note, 0))
733 || ! flag_pic
734 /* A function invariant is often CONSTANT_P but may
735 include a register. We promise to only pass
736 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
737 || (CONSTANT_P (XEXP (note, 0))
738 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
739 #endif
742 rtx x = XEXP (note, 0);
743 i = REGNO (SET_DEST (set));
744 if (i > LAST_VIRTUAL_REGISTER)
746 /* It can happen that a REG_EQUIV note contains a MEM
747 that is not a legitimate memory operand. As later
748 stages of reload assume that all addresses found
749 in the reg_equiv_* arrays were originally legitimate,
750 we ignore such REG_EQUIV notes. */
751 if (memory_operand (x, VOIDmode))
753 /* Always unshare the equivalence, so we can
754 substitute into this insn without touching the
755 equivalence. */
756 reg_equiv_memory_loc[i] = copy_rtx (x);
758 else if (function_invariant_p (x))
760 if (GET_CODE (x) == PLUS)
762 /* This is PLUS of frame pointer and a constant,
763 and might be shared. Unshare it. */
764 reg_equiv_constant[i] = copy_rtx (x);
765 num_eliminable_invariants++;
767 else if (x == frame_pointer_rtx
768 || x == arg_pointer_rtx)
770 reg_equiv_constant[i] = x;
771 num_eliminable_invariants++;
773 else if (LEGITIMATE_CONSTANT_P (x))
774 reg_equiv_constant[i] = x;
775 else
777 reg_equiv_memory_loc[i]
778 = force_const_mem (GET_MODE (SET_DEST (set)), x);
779 if (!reg_equiv_memory_loc[i])
780 continue;
783 else
784 continue;
786 /* If this register is being made equivalent to a MEM
787 and the MEM is not SET_SRC, the equivalencing insn
788 is one with the MEM as a SET_DEST and it occurs later.
789 So don't mark this insn now. */
790 if (GET_CODE (x) != MEM
791 || rtx_equal_p (SET_SRC (set), x))
792 reg_equiv_init[i]
793 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
798 /* If this insn is setting a MEM from a register equivalent to it,
799 this is the equivalencing insn. */
800 else if (set && GET_CODE (SET_DEST (set)) == MEM
801 && GET_CODE (SET_SRC (set)) == REG
802 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
803 && rtx_equal_p (SET_DEST (set),
804 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
805 reg_equiv_init[REGNO (SET_SRC (set))]
806 = gen_rtx_INSN_LIST (VOIDmode, insn,
807 reg_equiv_init[REGNO (SET_SRC (set))]);
809 if (INSN_P (insn))
810 scan_paradoxical_subregs (PATTERN (insn));
813 init_elim_table ();
815 first_label_num = get_first_label_num ();
816 num_labels = max_label_num () - first_label_num;
818 /* Allocate the tables used to store offset information at labels. */
819 /* We used to use alloca here, but the size of what it would try to
820 allocate would occasionally cause it to exceed the stack limit and
821 cause a core dump. */
822 offsets_known_at = xmalloc (num_labels);
823 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
825 /* Alter each pseudo-reg rtx to contain its hard reg number.
826 Assign stack slots to the pseudos that lack hard regs or equivalents.
827 Do not touch virtual registers. */
829 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 alter_reg (i, -1);
832 /* If we have some registers we think can be eliminated, scan all insns to
833 see if there is an insn that sets one of these registers to something
834 other than itself plus a constant. If so, the register cannot be
835 eliminated. Doing this scan here eliminates an extra pass through the
836 main reload loop in the most common case where register elimination
837 cannot be done. */
838 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
839 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
840 || GET_CODE (insn) == CALL_INSN)
841 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
843 maybe_fix_stack_asms ();
845 insns_need_reload = 0;
846 something_needs_elimination = 0;
848 /* Initialize to -1, which means take the first spill register. */
849 last_spill_reg = -1;
851 /* Spill any hard regs that we know we can't eliminate. */
852 CLEAR_HARD_REG_SET (used_spill_regs);
853 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
854 if (! ep->can_eliminate)
855 spill_hard_reg (ep->from, 1);
857 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
858 if (frame_pointer_needed)
859 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
860 #endif
861 finish_spills (global);
863 /* From now on, we may need to generate moves differently. We may also
864 allow modifications of insns which cause them to not be recognized.
865 Any such modifications will be cleaned up during reload itself. */
866 reload_in_progress = 1;
868 /* This loop scans the entire function each go-round
869 and repeats until one repetition spills no additional hard regs. */
870 for (;;)
872 int something_changed;
873 int did_spill;
875 HOST_WIDE_INT starting_frame_size;
877 /* Round size of stack frame to stack_alignment_needed. This must be done
878 here because the stack size may be a part of the offset computation
879 for register elimination, and there might have been new stack slots
880 created in the last iteration of this loop. */
881 if (cfun->stack_alignment_needed)
882 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
884 starting_frame_size = get_frame_size ();
886 set_initial_elim_offsets ();
887 set_initial_label_offsets ();
889 /* For each pseudo register that has an equivalent location defined,
890 try to eliminate any eliminable registers (such as the frame pointer)
891 assuming initial offsets for the replacement register, which
892 is the normal case.
894 If the resulting location is directly addressable, substitute
895 the MEM we just got directly for the old REG.
897 If it is not addressable but is a constant or the sum of a hard reg
898 and constant, it is probably not addressable because the constant is
899 out of range, in that case record the address; we will generate
900 hairy code to compute the address in a register each time it is
901 needed. Similarly if it is a hard register, but one that is not
902 valid as an address register.
904 If the location is not addressable, but does not have one of the
905 above forms, assign a stack slot. We have to do this to avoid the
906 potential of producing lots of reloads if, e.g., a location involves
907 a pseudo that didn't get a hard register and has an equivalent memory
908 location that also involves a pseudo that didn't get a hard register.
910 Perhaps at some point we will improve reload_when_needed handling
911 so this problem goes away. But that's very hairy. */
913 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
914 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
916 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
918 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
919 XEXP (x, 0)))
920 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
921 else if (CONSTANT_P (XEXP (x, 0))
922 || (GET_CODE (XEXP (x, 0)) == REG
923 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
924 || (GET_CODE (XEXP (x, 0)) == PLUS
925 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
926 && (REGNO (XEXP (XEXP (x, 0), 0))
927 < FIRST_PSEUDO_REGISTER)
928 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
929 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
930 else
932 /* Make a new stack slot. Then indicate that something
933 changed so we go back and recompute offsets for
934 eliminable registers because the allocation of memory
935 below might change some offset. reg_equiv_{mem,address}
936 will be set up for this pseudo on the next pass around
937 the loop. */
938 reg_equiv_memory_loc[i] = 0;
939 reg_equiv_init[i] = 0;
940 alter_reg (i, -1);
944 if (caller_save_needed)
945 setup_save_areas ();
947 /* If we allocated another stack slot, redo elimination bookkeeping. */
948 if (starting_frame_size != get_frame_size ())
949 continue;
951 if (caller_save_needed)
953 save_call_clobbered_regs ();
954 /* That might have allocated new insn_chain structures. */
955 reload_firstobj = obstack_alloc (&reload_obstack, 0);
958 calculate_needs_all_insns (global);
960 CLEAR_REG_SET (&spilled_pseudos);
961 did_spill = 0;
963 something_changed = 0;
965 /* If we allocated any new memory locations, make another pass
966 since it might have changed elimination offsets. */
967 if (starting_frame_size != get_frame_size ())
968 something_changed = 1;
971 HARD_REG_SET to_spill;
972 CLEAR_HARD_REG_SET (to_spill);
973 update_eliminables (&to_spill);
974 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
975 if (TEST_HARD_REG_BIT (to_spill, i))
977 spill_hard_reg (i, 1);
978 did_spill = 1;
980 /* Regardless of the state of spills, if we previously had
981 a register that we thought we could eliminate, but now can
982 not eliminate, we must run another pass.
984 Consider pseudos which have an entry in reg_equiv_* which
985 reference an eliminable register. We must make another pass
986 to update reg_equiv_* so that we do not substitute in the
987 old value from when we thought the elimination could be
988 performed. */
989 something_changed = 1;
993 select_reload_regs ();
994 if (failure)
995 goto failed;
997 if (insns_need_reload != 0 || did_spill)
998 something_changed |= finish_spills (global);
1000 if (! something_changed)
1001 break;
1003 if (caller_save_needed)
1004 delete_caller_save_insns ();
1006 obstack_free (&reload_obstack, reload_firstobj);
1009 /* If global-alloc was run, notify it of any register eliminations we have
1010 done. */
1011 if (global)
1012 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1013 if (ep->can_eliminate)
1014 mark_elimination (ep->from, ep->to);
1016 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1017 If that insn didn't set the register (i.e., it copied the register to
1018 memory), just delete that insn instead of the equivalencing insn plus
1019 anything now dead. If we call delete_dead_insn on that insn, we may
1020 delete the insn that actually sets the register if the register dies
1021 there and that is incorrect. */
1023 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1025 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1027 rtx list;
1028 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1030 rtx equiv_insn = XEXP (list, 0);
1032 /* If we already deleted the insn or if it may trap, we can't
1033 delete it. The latter case shouldn't happen, but can
1034 if an insn has a variable address, gets a REG_EH_REGION
1035 note added to it, and then gets converted into an load
1036 from a constant address. */
1037 if (GET_CODE (equiv_insn) == NOTE
1038 || can_throw_internal (equiv_insn))
1040 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1041 delete_dead_insn (equiv_insn);
1042 else
1044 PUT_CODE (equiv_insn, NOTE);
1045 NOTE_SOURCE_FILE (equiv_insn) = 0;
1046 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1052 /* Use the reload registers where necessary
1053 by generating move instructions to move the must-be-register
1054 values into or out of the reload registers. */
1056 if (insns_need_reload != 0 || something_needs_elimination
1057 || something_needs_operands_changed)
1059 HOST_WIDE_INT old_frame_size = get_frame_size ();
1061 reload_as_needed (global);
1063 if (old_frame_size != get_frame_size ())
1064 abort ();
1066 if (num_eliminable)
1067 verify_initial_elim_offsets ();
1070 /* If we were able to eliminate the frame pointer, show that it is no
1071 longer live at the start of any basic block. If it ls live by
1072 virtue of being in a pseudo, that pseudo will be marked live
1073 and hence the frame pointer will be known to be live via that
1074 pseudo. */
1076 if (! frame_pointer_needed)
1077 FOR_EACH_BB (bb)
1078 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1079 HARD_FRAME_POINTER_REGNUM);
1081 /* Come here (with failure set nonzero) if we can't get enough spill regs
1082 and we decide not to abort about it. */
1083 failed:
1085 CLEAR_REG_SET (&spilled_pseudos);
1086 reload_in_progress = 0;
1088 /* Now eliminate all pseudo regs by modifying them into
1089 their equivalent memory references.
1090 The REG-rtx's for the pseudos are modified in place,
1091 so all insns that used to refer to them now refer to memory.
1093 For a reg that has a reg_equiv_address, all those insns
1094 were changed by reloading so that no insns refer to it any longer;
1095 but the DECL_RTL of a variable decl may refer to it,
1096 and if so this causes the debugging info to mention the variable. */
1098 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1100 rtx addr = 0;
1102 if (reg_equiv_mem[i])
1103 addr = XEXP (reg_equiv_mem[i], 0);
1105 if (reg_equiv_address[i])
1106 addr = reg_equiv_address[i];
1108 if (addr)
1110 if (reg_renumber[i] < 0)
1112 rtx reg = regno_reg_rtx[i];
1114 REG_USERVAR_P (reg) = 0;
1115 PUT_CODE (reg, MEM);
1116 XEXP (reg, 0) = addr;
1117 if (reg_equiv_memory_loc[i])
1118 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1119 else
1121 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1122 = MEM_SCALAR_P (reg) = 0;
1123 MEM_ATTRS (reg) = 0;
1126 else if (reg_equiv_mem[i])
1127 XEXP (reg_equiv_mem[i], 0) = addr;
1131 /* We must set reload_completed now since the cleanup_subreg_operands call
1132 below will re-recognize each insn and reload may have generated insns
1133 which are only valid during and after reload. */
1134 reload_completed = 1;
1136 /* Make a pass over all the insns and delete all USEs which we inserted
1137 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1138 notes. Delete all CLOBBER insns, except those that refer to the return
1139 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1140 from misarranging variable-array code, and simplify (subreg (reg))
1141 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1142 are no longer useful or accurate. Strip and regenerate REG_INC notes
1143 that may have been moved around. */
1145 for (insn = first; insn; insn = NEXT_INSN (insn))
1146 if (INSN_P (insn))
1148 rtx *pnote;
1150 if (GET_CODE (insn) == CALL_INSN)
1151 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1152 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1154 if ((GET_CODE (PATTERN (insn)) == USE
1155 /* We mark with QImode USEs introduced by reload itself. */
1156 && (GET_MODE (insn) == QImode
1157 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1158 || (GET_CODE (PATTERN (insn)) == CLOBBER
1159 && (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
1160 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1161 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1162 && XEXP (XEXP (PATTERN (insn), 0), 0)
1163 != stack_pointer_rtx))
1164 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1165 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1167 delete_insn (insn);
1168 continue;
1171 /* Some CLOBBERs may survive until here and still reference unassigned
1172 pseudos with const equivalent, which may in turn cause ICE in later
1173 passes if the reference remains in place. */
1174 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1175 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1176 VOIDmode, PATTERN (insn));
1178 pnote = &REG_NOTES (insn);
1179 while (*pnote != 0)
1181 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1182 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1183 || REG_NOTE_KIND (*pnote) == REG_INC
1184 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1185 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1186 *pnote = XEXP (*pnote, 1);
1187 else
1188 pnote = &XEXP (*pnote, 1);
1191 #ifdef AUTO_INC_DEC
1192 add_auto_inc_notes (insn, PATTERN (insn));
1193 #endif
1195 /* And simplify (subreg (reg)) if it appears as an operand. */
1196 cleanup_subreg_operands (insn);
1199 /* If we are doing stack checking, give a warning if this function's
1200 frame size is larger than we expect. */
1201 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1203 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1204 static int verbose_warned = 0;
1206 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1207 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1208 size += UNITS_PER_WORD;
1210 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1212 warning ("frame size too large for reliable stack checking");
1213 if (! verbose_warned)
1215 warning ("try reducing the number of local variables");
1216 verbose_warned = 1;
1221 /* Indicate that we no longer have known memory locations or constants. */
1222 if (reg_equiv_constant)
1223 free (reg_equiv_constant);
1224 reg_equiv_constant = 0;
1225 if (reg_equiv_memory_loc)
1226 free (reg_equiv_memory_loc);
1227 reg_equiv_memory_loc = 0;
1229 if (offsets_known_at)
1230 free (offsets_known_at);
1231 if (offsets_at)
1232 free (offsets_at);
1234 free (reg_equiv_mem);
1235 free (reg_equiv_init);
1236 free (reg_equiv_address);
1237 free (reg_max_ref_width);
1238 free (reg_old_renumber);
1239 free (pseudo_previous_regs);
1240 free (pseudo_forbidden_regs);
1242 CLEAR_HARD_REG_SET (used_spill_regs);
1243 for (i = 0; i < n_spills; i++)
1244 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1246 /* Free all the insn_chain structures at once. */
1247 obstack_free (&reload_obstack, reload_startobj);
1248 unused_insn_chains = 0;
1249 fixup_abnormal_edges ();
1251 /* Replacing pseudos with their memory equivalents might have
1252 created shared rtx. Subsequent passes would get confused
1253 by this, so unshare everything here. */
1254 unshare_all_rtl_again (first);
1256 #ifdef STACK_BOUNDARY
1257 /* init_emit has set the alignment of the hard frame pointer
1258 to STACK_BOUNDARY. It is very likely no longer valid if
1259 the hard frame pointer was used for register allocation. */
1260 if (!frame_pointer_needed)
1261 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1262 #endif
1264 return failure;
1267 /* Yet another special case. Unfortunately, reg-stack forces people to
1268 write incorrect clobbers in asm statements. These clobbers must not
1269 cause the register to appear in bad_spill_regs, otherwise we'll call
1270 fatal_insn later. We clear the corresponding regnos in the live
1271 register sets to avoid this.
1272 The whole thing is rather sick, I'm afraid. */
1274 static void
1275 maybe_fix_stack_asms (void)
1277 #ifdef STACK_REGS
1278 const char *constraints[MAX_RECOG_OPERANDS];
1279 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1280 struct insn_chain *chain;
1282 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1284 int i, noperands;
1285 HARD_REG_SET clobbered, allowed;
1286 rtx pat;
1288 if (! INSN_P (chain->insn)
1289 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1290 continue;
1291 pat = PATTERN (chain->insn);
1292 if (GET_CODE (pat) != PARALLEL)
1293 continue;
1295 CLEAR_HARD_REG_SET (clobbered);
1296 CLEAR_HARD_REG_SET (allowed);
1298 /* First, make a mask of all stack regs that are clobbered. */
1299 for (i = 0; i < XVECLEN (pat, 0); i++)
1301 rtx t = XVECEXP (pat, 0, i);
1302 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1303 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1306 /* Get the operand values and constraints out of the insn. */
1307 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1308 constraints, operand_mode);
1310 /* For every operand, see what registers are allowed. */
1311 for (i = 0; i < noperands; i++)
1313 const char *p = constraints[i];
1314 /* For every alternative, we compute the class of registers allowed
1315 for reloading in CLS, and merge its contents into the reg set
1316 ALLOWED. */
1317 int cls = (int) NO_REGS;
1319 for (;;)
1321 char c = *p;
1323 if (c == '\0' || c == ',' || c == '#')
1325 /* End of one alternative - mark the regs in the current
1326 class, and reset the class. */
1327 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1328 cls = NO_REGS;
1329 p++;
1330 if (c == '#')
1331 do {
1332 c = *p++;
1333 } while (c != '\0' && c != ',');
1334 if (c == '\0')
1335 break;
1336 continue;
1339 switch (c)
1341 case '=': case '+': case '*': case '%': case '?': case '!':
1342 case '0': case '1': case '2': case '3': case '4': case 'm':
1343 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1344 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1345 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1346 case 'P':
1347 break;
1349 case 'p':
1350 cls = (int) reg_class_subunion[cls]
1351 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1352 break;
1354 case 'g':
1355 case 'r':
1356 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1357 break;
1359 default:
1360 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1361 cls = (int) reg_class_subunion[cls]
1362 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1363 else
1364 cls = (int) reg_class_subunion[cls]
1365 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1367 p += CONSTRAINT_LEN (c, p);
1370 /* Those of the registers which are clobbered, but allowed by the
1371 constraints, must be usable as reload registers. So clear them
1372 out of the life information. */
1373 AND_HARD_REG_SET (allowed, clobbered);
1374 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1375 if (TEST_HARD_REG_BIT (allowed, i))
1377 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1378 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1382 #endif
1385 /* Copy the global variables n_reloads and rld into the corresponding elts
1386 of CHAIN. */
1387 static void
1388 copy_reloads (struct insn_chain *chain)
1390 chain->n_reloads = n_reloads;
1391 chain->rld = obstack_alloc (&reload_obstack,
1392 n_reloads * sizeof (struct reload));
1393 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1394 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1397 /* Walk the chain of insns, and determine for each whether it needs reloads
1398 and/or eliminations. Build the corresponding insns_need_reload list, and
1399 set something_needs_elimination as appropriate. */
1400 static void
1401 calculate_needs_all_insns (int global)
1403 struct insn_chain **pprev_reload = &insns_need_reload;
1404 struct insn_chain *chain, *next = 0;
1406 something_needs_elimination = 0;
1408 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1409 for (chain = reload_insn_chain; chain != 0; chain = next)
1411 rtx insn = chain->insn;
1413 next = chain->next;
1415 /* Clear out the shortcuts. */
1416 chain->n_reloads = 0;
1417 chain->need_elim = 0;
1418 chain->need_reload = 0;
1419 chain->need_operand_change = 0;
1421 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1422 include REG_LABEL), we need to see what effects this has on the
1423 known offsets at labels. */
1425 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1426 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1427 set_label_offsets (insn, insn, 0);
1429 if (INSN_P (insn))
1431 rtx old_body = PATTERN (insn);
1432 int old_code = INSN_CODE (insn);
1433 rtx old_notes = REG_NOTES (insn);
1434 int did_elimination = 0;
1435 int operands_changed = 0;
1436 rtx set = single_set (insn);
1438 /* Skip insns that only set an equivalence. */
1439 if (set && GET_CODE (SET_DEST (set)) == REG
1440 && reg_renumber[REGNO (SET_DEST (set))] < 0
1441 && reg_equiv_constant[REGNO (SET_DEST (set))])
1442 continue;
1444 /* If needed, eliminate any eliminable registers. */
1445 if (num_eliminable || num_eliminable_invariants)
1446 did_elimination = eliminate_regs_in_insn (insn, 0);
1448 /* Analyze the instruction. */
1449 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1450 global, spill_reg_order);
1452 /* If a no-op set needs more than one reload, this is likely
1453 to be something that needs input address reloads. We
1454 can't get rid of this cleanly later, and it is of no use
1455 anyway, so discard it now.
1456 We only do this when expensive_optimizations is enabled,
1457 since this complements reload inheritance / output
1458 reload deletion, and it can make debugging harder. */
1459 if (flag_expensive_optimizations && n_reloads > 1)
1461 rtx set = single_set (insn);
1462 if (set
1463 && SET_SRC (set) == SET_DEST (set)
1464 && GET_CODE (SET_SRC (set)) == REG
1465 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1467 delete_insn (insn);
1468 /* Delete it from the reload chain. */
1469 if (chain->prev)
1470 chain->prev->next = next;
1471 else
1472 reload_insn_chain = next;
1473 if (next)
1474 next->prev = chain->prev;
1475 chain->next = unused_insn_chains;
1476 unused_insn_chains = chain;
1477 continue;
1480 if (num_eliminable)
1481 update_eliminable_offsets ();
1483 /* Remember for later shortcuts which insns had any reloads or
1484 register eliminations. */
1485 chain->need_elim = did_elimination;
1486 chain->need_reload = n_reloads > 0;
1487 chain->need_operand_change = operands_changed;
1489 /* Discard any register replacements done. */
1490 if (did_elimination)
1492 obstack_free (&reload_obstack, reload_insn_firstobj);
1493 PATTERN (insn) = old_body;
1494 INSN_CODE (insn) = old_code;
1495 REG_NOTES (insn) = old_notes;
1496 something_needs_elimination = 1;
1499 something_needs_operands_changed |= operands_changed;
1501 if (n_reloads != 0)
1503 copy_reloads (chain);
1504 *pprev_reload = chain;
1505 pprev_reload = &chain->next_need_reload;
1509 *pprev_reload = 0;
1512 /* Comparison function for qsort to decide which of two reloads
1513 should be handled first. *P1 and *P2 are the reload numbers. */
1515 static int
1516 reload_reg_class_lower (const void *r1p, const void *r2p)
1518 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1519 int t;
1521 /* Consider required reloads before optional ones. */
1522 t = rld[r1].optional - rld[r2].optional;
1523 if (t != 0)
1524 return t;
1526 /* Count all solitary classes before non-solitary ones. */
1527 t = ((reg_class_size[(int) rld[r2].class] == 1)
1528 - (reg_class_size[(int) rld[r1].class] == 1));
1529 if (t != 0)
1530 return t;
1532 /* Aside from solitaires, consider all multi-reg groups first. */
1533 t = rld[r2].nregs - rld[r1].nregs;
1534 if (t != 0)
1535 return t;
1537 /* Consider reloads in order of increasing reg-class number. */
1538 t = (int) rld[r1].class - (int) rld[r2].class;
1539 if (t != 0)
1540 return t;
1542 /* If reloads are equally urgent, sort by reload number,
1543 so that the results of qsort leave nothing to chance. */
1544 return r1 - r2;
1547 /* The cost of spilling each hard reg. */
1548 static int spill_cost[FIRST_PSEUDO_REGISTER];
1550 /* When spilling multiple hard registers, we use SPILL_COST for the first
1551 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1552 only the first hard reg for a multi-reg pseudo. */
1553 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1555 /* Update the spill cost arrays, considering that pseudo REG is live. */
1557 static void
1558 count_pseudo (int reg)
1560 int freq = REG_FREQ (reg);
1561 int r = reg_renumber[reg];
1562 int nregs;
1564 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1565 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1566 return;
1568 SET_REGNO_REG_SET (&pseudos_counted, reg);
1570 if (r < 0)
1571 abort ();
1573 spill_add_cost[r] += freq;
1575 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1576 while (nregs-- > 0)
1577 spill_cost[r + nregs] += freq;
1580 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1581 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1583 static void
1584 order_regs_for_reload (struct insn_chain *chain)
1586 int i;
1587 HARD_REG_SET used_by_pseudos;
1588 HARD_REG_SET used_by_pseudos2;
1590 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1592 memset (spill_cost, 0, sizeof spill_cost);
1593 memset (spill_add_cost, 0, sizeof spill_add_cost);
1595 /* Count number of uses of each hard reg by pseudo regs allocated to it
1596 and then order them by decreasing use. First exclude hard registers
1597 that are live in or across this insn. */
1599 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1600 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1601 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1602 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1604 /* Now find out which pseudos are allocated to it, and update
1605 hard_reg_n_uses. */
1606 CLEAR_REG_SET (&pseudos_counted);
1608 EXECUTE_IF_SET_IN_REG_SET
1609 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1611 count_pseudo (i);
1613 EXECUTE_IF_SET_IN_REG_SET
1614 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1616 count_pseudo (i);
1618 CLEAR_REG_SET (&pseudos_counted);
1621 /* Vector of reload-numbers showing the order in which the reloads should
1622 be processed. */
1623 static short reload_order[MAX_RELOADS];
1625 /* This is used to keep track of the spill regs used in one insn. */
1626 static HARD_REG_SET used_spill_regs_local;
1628 /* We decided to spill hard register SPILLED, which has a size of
1629 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1630 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1631 update SPILL_COST/SPILL_ADD_COST. */
1633 static void
1634 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1636 int r = reg_renumber[reg];
1637 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1639 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1640 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1641 return;
1643 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1645 spill_add_cost[r] -= REG_FREQ (reg);
1646 while (nregs-- > 0)
1647 spill_cost[r + nregs] -= REG_FREQ (reg);
1650 /* Find reload register to use for reload number ORDER. */
1652 static int
1653 find_reg (struct insn_chain *chain, int order)
1655 int rnum = reload_order[order];
1656 struct reload *rl = rld + rnum;
1657 int best_cost = INT_MAX;
1658 int best_reg = -1;
1659 unsigned int i, j;
1660 int k;
1661 HARD_REG_SET not_usable;
1662 HARD_REG_SET used_by_other_reload;
1664 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1665 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1666 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1668 CLEAR_HARD_REG_SET (used_by_other_reload);
1669 for (k = 0; k < order; k++)
1671 int other = reload_order[k];
1673 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1674 for (j = 0; j < rld[other].nregs; j++)
1675 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1678 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1680 unsigned int regno = i;
1682 if (! TEST_HARD_REG_BIT (not_usable, regno)
1683 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1684 && HARD_REGNO_MODE_OK (regno, rl->mode))
1686 int this_cost = spill_cost[regno];
1687 int ok = 1;
1688 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1690 for (j = 1; j < this_nregs; j++)
1692 this_cost += spill_add_cost[regno + j];
1693 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1694 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1695 ok = 0;
1697 if (! ok)
1698 continue;
1699 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1700 this_cost--;
1701 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1702 this_cost--;
1703 if (this_cost < best_cost
1704 /* Among registers with equal cost, prefer caller-saved ones, or
1705 use REG_ALLOC_ORDER if it is defined. */
1706 || (this_cost == best_cost
1707 #ifdef REG_ALLOC_ORDER
1708 && (inv_reg_alloc_order[regno]
1709 < inv_reg_alloc_order[best_reg])
1710 #else
1711 && call_used_regs[regno]
1712 && ! call_used_regs[best_reg]
1713 #endif
1716 best_reg = regno;
1717 best_cost = this_cost;
1721 if (best_reg == -1)
1722 return 0;
1724 if (rtl_dump_file)
1725 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1727 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1728 rl->regno = best_reg;
1730 EXECUTE_IF_SET_IN_REG_SET
1731 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1733 count_spilled_pseudo (best_reg, rl->nregs, j);
1736 EXECUTE_IF_SET_IN_REG_SET
1737 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1739 count_spilled_pseudo (best_reg, rl->nregs, j);
1742 for (i = 0; i < rl->nregs; i++)
1744 if (spill_cost[best_reg + i] != 0
1745 || spill_add_cost[best_reg + i] != 0)
1746 abort ();
1747 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1749 return 1;
1752 /* Find more reload regs to satisfy the remaining need of an insn, which
1753 is given by CHAIN.
1754 Do it by ascending class number, since otherwise a reg
1755 might be spilled for a big class and might fail to count
1756 for a smaller class even though it belongs to that class. */
1758 static void
1759 find_reload_regs (struct insn_chain *chain)
1761 int i;
1763 /* In order to be certain of getting the registers we need,
1764 we must sort the reloads into order of increasing register class.
1765 Then our grabbing of reload registers will parallel the process
1766 that provided the reload registers. */
1767 for (i = 0; i < chain->n_reloads; i++)
1769 /* Show whether this reload already has a hard reg. */
1770 if (chain->rld[i].reg_rtx)
1772 int regno = REGNO (chain->rld[i].reg_rtx);
1773 chain->rld[i].regno = regno;
1774 chain->rld[i].nregs
1775 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1777 else
1778 chain->rld[i].regno = -1;
1779 reload_order[i] = i;
1782 n_reloads = chain->n_reloads;
1783 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1785 CLEAR_HARD_REG_SET (used_spill_regs_local);
1787 if (rtl_dump_file)
1788 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1790 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1792 /* Compute the order of preference for hard registers to spill. */
1794 order_regs_for_reload (chain);
1796 for (i = 0; i < n_reloads; i++)
1798 int r = reload_order[i];
1800 /* Ignore reloads that got marked inoperative. */
1801 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1802 && ! rld[r].optional
1803 && rld[r].regno == -1)
1804 if (! find_reg (chain, i))
1806 spill_failure (chain->insn, rld[r].class);
1807 failure = 1;
1808 return;
1812 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1813 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1815 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1818 static void
1819 select_reload_regs (void)
1821 struct insn_chain *chain;
1823 /* Try to satisfy the needs for each insn. */
1824 for (chain = insns_need_reload; chain != 0;
1825 chain = chain->next_need_reload)
1826 find_reload_regs (chain);
1829 /* Delete all insns that were inserted by emit_caller_save_insns during
1830 this iteration. */
1831 static void
1832 delete_caller_save_insns (void)
1834 struct insn_chain *c = reload_insn_chain;
1836 while (c != 0)
1838 while (c != 0 && c->is_caller_save_insn)
1840 struct insn_chain *next = c->next;
1841 rtx insn = c->insn;
1843 if (c == reload_insn_chain)
1844 reload_insn_chain = next;
1845 delete_insn (insn);
1847 if (next)
1848 next->prev = c->prev;
1849 if (c->prev)
1850 c->prev->next = next;
1851 c->next = unused_insn_chains;
1852 unused_insn_chains = c;
1853 c = next;
1855 if (c != 0)
1856 c = c->next;
1860 /* Handle the failure to find a register to spill.
1861 INSN should be one of the insns which needed this particular spill reg. */
1863 static void
1864 spill_failure (rtx insn, enum reg_class class)
1866 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1867 if (asm_noperands (PATTERN (insn)) >= 0)
1868 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1869 reg_class_names[class]);
1870 else
1872 error ("unable to find a register to spill in class `%s'",
1873 reg_class_names[class]);
1874 fatal_insn ("this is the insn:", insn);
1878 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1879 data that is dead in INSN. */
1881 static void
1882 delete_dead_insn (rtx insn)
1884 rtx prev = prev_real_insn (insn);
1885 rtx prev_dest;
1887 /* If the previous insn sets a register that dies in our insn, delete it
1888 too. */
1889 if (prev && GET_CODE (PATTERN (prev)) == SET
1890 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1891 && reg_mentioned_p (prev_dest, PATTERN (insn))
1892 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1893 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1894 delete_dead_insn (prev);
1896 PUT_CODE (insn, NOTE);
1897 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1898 NOTE_SOURCE_FILE (insn) = 0;
1901 /* Modify the home of pseudo-reg I.
1902 The new home is present in reg_renumber[I].
1904 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1905 or it may be -1, meaning there is none or it is not relevant.
1906 This is used so that all pseudos spilled from a given hard reg
1907 can share one stack slot. */
1909 static void
1910 alter_reg (int i, int from_reg)
1912 /* When outputting an inline function, this can happen
1913 for a reg that isn't actually used. */
1914 if (regno_reg_rtx[i] == 0)
1915 return;
1917 /* If the reg got changed to a MEM at rtl-generation time,
1918 ignore it. */
1919 if (GET_CODE (regno_reg_rtx[i]) != REG)
1920 return;
1922 /* Modify the reg-rtx to contain the new hard reg
1923 number or else to contain its pseudo reg number. */
1924 REGNO (regno_reg_rtx[i])
1925 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1927 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1928 allocate a stack slot for it. */
1930 if (reg_renumber[i] < 0
1931 && REG_N_REFS (i) > 0
1932 && reg_equiv_constant[i] == 0
1933 && reg_equiv_memory_loc[i] == 0)
1935 rtx x;
1936 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1937 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1938 int adjust = 0;
1940 /* Each pseudo reg has an inherent size which comes from its own mode,
1941 and a total size which provides room for paradoxical subregs
1942 which refer to the pseudo reg in wider modes.
1944 We can use a slot already allocated if it provides both
1945 enough inherent space and enough total space.
1946 Otherwise, we allocate a new slot, making sure that it has no less
1947 inherent space, and no less total space, then the previous slot. */
1948 if (from_reg == -1)
1950 /* No known place to spill from => no slot to reuse. */
1951 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1952 inherent_size == total_size ? 0 : -1);
1953 if (BYTES_BIG_ENDIAN)
1954 /* Cancel the big-endian correction done in assign_stack_local.
1955 Get the address of the beginning of the slot.
1956 This is so we can do a big-endian correction unconditionally
1957 below. */
1958 adjust = inherent_size - total_size;
1960 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1962 /* Nothing can alias this slot except this pseudo. */
1963 set_mem_alias_set (x, new_alias_set ());
1966 /* Reuse a stack slot if possible. */
1967 else if (spill_stack_slot[from_reg] != 0
1968 && spill_stack_slot_width[from_reg] >= total_size
1969 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1970 >= inherent_size))
1971 x = spill_stack_slot[from_reg];
1973 /* Allocate a bigger slot. */
1974 else
1976 /* Compute maximum size needed, both for inherent size
1977 and for total size. */
1978 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1979 rtx stack_slot;
1981 if (spill_stack_slot[from_reg])
1983 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1984 > inherent_size)
1985 mode = GET_MODE (spill_stack_slot[from_reg]);
1986 if (spill_stack_slot_width[from_reg] > total_size)
1987 total_size = spill_stack_slot_width[from_reg];
1990 /* Make a slot with that size. */
1991 x = assign_stack_local (mode, total_size,
1992 inherent_size == total_size ? 0 : -1);
1993 stack_slot = x;
1995 /* All pseudos mapped to this slot can alias each other. */
1996 if (spill_stack_slot[from_reg])
1997 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
1998 else
1999 set_mem_alias_set (x, new_alias_set ());
2001 if (BYTES_BIG_ENDIAN)
2003 /* Cancel the big-endian correction done in assign_stack_local.
2004 Get the address of the beginning of the slot.
2005 This is so we can do a big-endian correction unconditionally
2006 below. */
2007 adjust = GET_MODE_SIZE (mode) - total_size;
2008 if (adjust)
2009 stack_slot
2010 = adjust_address_nv (x, mode_for_size (total_size
2011 * BITS_PER_UNIT,
2012 MODE_INT, 1),
2013 adjust);
2016 spill_stack_slot[from_reg] = stack_slot;
2017 spill_stack_slot_width[from_reg] = total_size;
2020 /* On a big endian machine, the "address" of the slot
2021 is the address of the low part that fits its inherent mode. */
2022 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2023 adjust += (total_size - inherent_size);
2025 /* If we have any adjustment to make, or if the stack slot is the
2026 wrong mode, make a new stack slot. */
2027 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2029 /* If we have a decl for the original register, set it for the
2030 memory. If this is a shared MEM, make a copy. */
2031 if (REG_EXPR (regno_reg_rtx[i])
2032 && TREE_CODE_CLASS (TREE_CODE (REG_EXPR (regno_reg_rtx[i]))) == 'd')
2034 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2036 /* We can do this only for the DECLs home pseudo, not for
2037 any copies of it, since otherwise when the stack slot
2038 is reused, nonoverlapping_memrefs_p might think they
2039 cannot overlap. */
2040 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2042 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2043 x = copy_rtx (x);
2045 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2049 /* Save the stack slot for later. */
2050 reg_equiv_memory_loc[i] = x;
2054 /* Mark the slots in regs_ever_live for the hard regs
2055 used by pseudo-reg number REGNO. */
2057 void
2058 mark_home_live (int regno)
2060 int i, lim;
2062 i = reg_renumber[regno];
2063 if (i < 0)
2064 return;
2065 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2066 while (i < lim)
2067 regs_ever_live[i++] = 1;
2070 /* This function handles the tracking of elimination offsets around branches.
2072 X is a piece of RTL being scanned.
2074 INSN is the insn that it came from, if any.
2076 INITIAL_P is nonzero if we are to set the offset to be the initial
2077 offset and zero if we are setting the offset of the label to be the
2078 current offset. */
2080 static void
2081 set_label_offsets (rtx x, rtx insn, int initial_p)
2083 enum rtx_code code = GET_CODE (x);
2084 rtx tem;
2085 unsigned int i;
2086 struct elim_table *p;
2088 switch (code)
2090 case LABEL_REF:
2091 if (LABEL_REF_NONLOCAL_P (x))
2092 return;
2094 x = XEXP (x, 0);
2096 /* ... fall through ... */
2098 case CODE_LABEL:
2099 /* If we know nothing about this label, set the desired offsets. Note
2100 that this sets the offset at a label to be the offset before a label
2101 if we don't know anything about the label. This is not correct for
2102 the label after a BARRIER, but is the best guess we can make. If
2103 we guessed wrong, we will suppress an elimination that might have
2104 been possible had we been able to guess correctly. */
2106 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2108 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2109 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2110 = (initial_p ? reg_eliminate[i].initial_offset
2111 : reg_eliminate[i].offset);
2112 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2115 /* Otherwise, if this is the definition of a label and it is
2116 preceded by a BARRIER, set our offsets to the known offset of
2117 that label. */
2119 else if (x == insn
2120 && (tem = prev_nonnote_insn (insn)) != 0
2121 && GET_CODE (tem) == BARRIER)
2122 set_offsets_for_label (insn);
2123 else
2124 /* If neither of the above cases is true, compare each offset
2125 with those previously recorded and suppress any eliminations
2126 where the offsets disagree. */
2128 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2129 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2130 != (initial_p ? reg_eliminate[i].initial_offset
2131 : reg_eliminate[i].offset))
2132 reg_eliminate[i].can_eliminate = 0;
2134 return;
2136 case JUMP_INSN:
2137 set_label_offsets (PATTERN (insn), insn, initial_p);
2139 /* ... fall through ... */
2141 case INSN:
2142 case CALL_INSN:
2143 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2144 and hence must have all eliminations at their initial offsets. */
2145 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2146 if (REG_NOTE_KIND (tem) == REG_LABEL)
2147 set_label_offsets (XEXP (tem, 0), insn, 1);
2148 return;
2150 case PARALLEL:
2151 case ADDR_VEC:
2152 case ADDR_DIFF_VEC:
2153 /* Each of the labels in the parallel or address vector must be
2154 at their initial offsets. We want the first field for PARALLEL
2155 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2157 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2158 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2159 insn, initial_p);
2160 return;
2162 case SET:
2163 /* We only care about setting PC. If the source is not RETURN,
2164 IF_THEN_ELSE, or a label, disable any eliminations not at
2165 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2166 isn't one of those possibilities. For branches to a label,
2167 call ourselves recursively.
2169 Note that this can disable elimination unnecessarily when we have
2170 a non-local goto since it will look like a non-constant jump to
2171 someplace in the current function. This isn't a significant
2172 problem since such jumps will normally be when all elimination
2173 pairs are back to their initial offsets. */
2175 if (SET_DEST (x) != pc_rtx)
2176 return;
2178 switch (GET_CODE (SET_SRC (x)))
2180 case PC:
2181 case RETURN:
2182 return;
2184 case LABEL_REF:
2185 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2186 return;
2188 case IF_THEN_ELSE:
2189 tem = XEXP (SET_SRC (x), 1);
2190 if (GET_CODE (tem) == LABEL_REF)
2191 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2192 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2193 break;
2195 tem = XEXP (SET_SRC (x), 2);
2196 if (GET_CODE (tem) == LABEL_REF)
2197 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2198 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2199 break;
2200 return;
2202 default:
2203 break;
2206 /* If we reach here, all eliminations must be at their initial
2207 offset because we are doing a jump to a variable address. */
2208 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2209 if (p->offset != p->initial_offset)
2210 p->can_eliminate = 0;
2211 break;
2213 default:
2214 break;
2218 /* Scan X and replace any eliminable registers (such as fp) with a
2219 replacement (such as sp), plus an offset.
2221 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2222 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2223 MEM, we are allowed to replace a sum of a register and the constant zero
2224 with the register, which we cannot do outside a MEM. In addition, we need
2225 to record the fact that a register is referenced outside a MEM.
2227 If INSN is an insn, it is the insn containing X. If we replace a REG
2228 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2229 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2230 the REG is being modified.
2232 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2233 That's used when we eliminate in expressions stored in notes.
2234 This means, do not set ref_outside_mem even if the reference
2235 is outside of MEMs.
2237 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2238 replacements done assuming all offsets are at their initial values. If
2239 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2240 encounter, return the actual location so that find_reloads will do
2241 the proper thing. */
2244 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2246 enum rtx_code code = GET_CODE (x);
2247 struct elim_table *ep;
2248 int regno;
2249 rtx new;
2250 int i, j;
2251 const char *fmt;
2252 int copied = 0;
2254 if (! current_function_decl)
2255 return x;
2257 switch (code)
2259 case CONST_INT:
2260 case CONST_DOUBLE:
2261 case CONST_VECTOR:
2262 case CONST:
2263 case SYMBOL_REF:
2264 case CODE_LABEL:
2265 case PC:
2266 case CC0:
2267 case ASM_INPUT:
2268 case ADDR_VEC:
2269 case ADDR_DIFF_VEC:
2270 case RETURN:
2271 return x;
2273 case ADDRESSOF:
2274 /* This is only for the benefit of the debugging backends, which call
2275 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2276 removed after CSE. */
2277 new = eliminate_regs (XEXP (x, 0), 0, insn);
2278 if (GET_CODE (new) == MEM)
2279 return XEXP (new, 0);
2280 return x;
2282 case REG:
2283 regno = REGNO (x);
2285 /* First handle the case where we encounter a bare register that
2286 is eliminable. Replace it with a PLUS. */
2287 if (regno < FIRST_PSEUDO_REGISTER)
2289 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2290 ep++)
2291 if (ep->from_rtx == x && ep->can_eliminate)
2292 return plus_constant (ep->to_rtx, ep->previous_offset);
2295 else if (reg_renumber && reg_renumber[regno] < 0
2296 && reg_equiv_constant && reg_equiv_constant[regno]
2297 && ! CONSTANT_P (reg_equiv_constant[regno]))
2298 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2299 mem_mode, insn);
2300 return x;
2302 /* You might think handling MINUS in a manner similar to PLUS is a
2303 good idea. It is not. It has been tried multiple times and every
2304 time the change has had to have been reverted.
2306 Other parts of reload know a PLUS is special (gen_reload for example)
2307 and require special code to handle code a reloaded PLUS operand.
2309 Also consider backends where the flags register is clobbered by a
2310 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2311 lea instruction comes to mind). If we try to reload a MINUS, we
2312 may kill the flags register that was holding a useful value.
2314 So, please before trying to handle MINUS, consider reload as a
2315 whole instead of this little section as well as the backend issues. */
2316 case PLUS:
2317 /* If this is the sum of an eliminable register and a constant, rework
2318 the sum. */
2319 if (GET_CODE (XEXP (x, 0)) == REG
2320 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2321 && CONSTANT_P (XEXP (x, 1)))
2323 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2324 ep++)
2325 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2327 /* The only time we want to replace a PLUS with a REG (this
2328 occurs when the constant operand of the PLUS is the negative
2329 of the offset) is when we are inside a MEM. We won't want
2330 to do so at other times because that would change the
2331 structure of the insn in a way that reload can't handle.
2332 We special-case the commonest situation in
2333 eliminate_regs_in_insn, so just replace a PLUS with a
2334 PLUS here, unless inside a MEM. */
2335 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2336 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2337 return ep->to_rtx;
2338 else
2339 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2340 plus_constant (XEXP (x, 1),
2341 ep->previous_offset));
2344 /* If the register is not eliminable, we are done since the other
2345 operand is a constant. */
2346 return x;
2349 /* If this is part of an address, we want to bring any constant to the
2350 outermost PLUS. We will do this by doing register replacement in
2351 our operands and seeing if a constant shows up in one of them.
2353 Note that there is no risk of modifying the structure of the insn,
2354 since we only get called for its operands, thus we are either
2355 modifying the address inside a MEM, or something like an address
2356 operand of a load-address insn. */
2359 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2360 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2362 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2364 /* If one side is a PLUS and the other side is a pseudo that
2365 didn't get a hard register but has a reg_equiv_constant,
2366 we must replace the constant here since it may no longer
2367 be in the position of any operand. */
2368 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2369 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2370 && reg_renumber[REGNO (new1)] < 0
2371 && reg_equiv_constant != 0
2372 && reg_equiv_constant[REGNO (new1)] != 0)
2373 new1 = reg_equiv_constant[REGNO (new1)];
2374 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2375 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2376 && reg_renumber[REGNO (new0)] < 0
2377 && reg_equiv_constant[REGNO (new0)] != 0)
2378 new0 = reg_equiv_constant[REGNO (new0)];
2380 new = form_sum (new0, new1);
2382 /* As above, if we are not inside a MEM we do not want to
2383 turn a PLUS into something else. We might try to do so here
2384 for an addition of 0 if we aren't optimizing. */
2385 if (! mem_mode && GET_CODE (new) != PLUS)
2386 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2387 else
2388 return new;
2391 return x;
2393 case MULT:
2394 /* If this is the product of an eliminable register and a
2395 constant, apply the distribute law and move the constant out
2396 so that we have (plus (mult ..) ..). This is needed in order
2397 to keep load-address insns valid. This case is pathological.
2398 We ignore the possibility of overflow here. */
2399 if (GET_CODE (XEXP (x, 0)) == REG
2400 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2401 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2402 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2403 ep++)
2404 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2406 if (! mem_mode
2407 /* Refs inside notes don't count for this purpose. */
2408 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2409 || GET_CODE (insn) == INSN_LIST)))
2410 ep->ref_outside_mem = 1;
2412 return
2413 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2414 ep->previous_offset * INTVAL (XEXP (x, 1)));
2417 /* ... fall through ... */
2419 case CALL:
2420 case COMPARE:
2421 /* See comments before PLUS about handling MINUS. */
2422 case MINUS:
2423 case DIV: case UDIV:
2424 case MOD: case UMOD:
2425 case AND: case IOR: case XOR:
2426 case ROTATERT: case ROTATE:
2427 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2428 case NE: case EQ:
2429 case GE: case GT: case GEU: case GTU:
2430 case LE: case LT: case LEU: case LTU:
2432 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2433 rtx new1
2434 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2436 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2437 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2439 return x;
2441 case EXPR_LIST:
2442 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2443 if (XEXP (x, 0))
2445 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2446 if (new != XEXP (x, 0))
2448 /* If this is a REG_DEAD note, it is not valid anymore.
2449 Using the eliminated version could result in creating a
2450 REG_DEAD note for the stack or frame pointer. */
2451 if (GET_MODE (x) == REG_DEAD)
2452 return (XEXP (x, 1)
2453 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2454 : NULL_RTX);
2456 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2460 /* ... fall through ... */
2462 case INSN_LIST:
2463 /* Now do eliminations in the rest of the chain. If this was
2464 an EXPR_LIST, this might result in allocating more memory than is
2465 strictly needed, but it simplifies the code. */
2466 if (XEXP (x, 1))
2468 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2469 if (new != XEXP (x, 1))
2470 return
2471 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2473 return x;
2475 case PRE_INC:
2476 case POST_INC:
2477 case PRE_DEC:
2478 case POST_DEC:
2479 case STRICT_LOW_PART:
2480 case NEG: case NOT:
2481 case SIGN_EXTEND: case ZERO_EXTEND:
2482 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2483 case FLOAT: case FIX:
2484 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2485 case ABS:
2486 case SQRT:
2487 case FFS:
2488 case CLZ:
2489 case CTZ:
2490 case POPCOUNT:
2491 case PARITY:
2492 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2493 if (new != XEXP (x, 0))
2494 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2495 return x;
2497 case SUBREG:
2498 /* Similar to above processing, but preserve SUBREG_BYTE.
2499 Convert (subreg (mem)) to (mem) if not paradoxical.
2500 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2501 pseudo didn't get a hard reg, we must replace this with the
2502 eliminated version of the memory location because push_reload
2503 may do the replacement in certain circumstances. */
2504 if (GET_CODE (SUBREG_REG (x)) == REG
2505 && (GET_MODE_SIZE (GET_MODE (x))
2506 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2507 && reg_equiv_memory_loc != 0
2508 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2510 new = SUBREG_REG (x);
2512 else
2513 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2515 if (new != SUBREG_REG (x))
2517 int x_size = GET_MODE_SIZE (GET_MODE (x));
2518 int new_size = GET_MODE_SIZE (GET_MODE (new));
2520 if (GET_CODE (new) == MEM
2521 && ((x_size < new_size
2522 #ifdef WORD_REGISTER_OPERATIONS
2523 /* On these machines, combine can create rtl of the form
2524 (set (subreg:m1 (reg:m2 R) 0) ...)
2525 where m1 < m2, and expects something interesting to
2526 happen to the entire word. Moreover, it will use the
2527 (reg:m2 R) later, expecting all bits to be preserved.
2528 So if the number of words is the same, preserve the
2529 subreg so that push_reload can see it. */
2530 && ! ((x_size - 1) / UNITS_PER_WORD
2531 == (new_size -1 ) / UNITS_PER_WORD)
2532 #endif
2534 || x_size == new_size)
2536 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2537 else
2538 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2541 return x;
2543 case MEM:
2544 /* This is only for the benefit of the debugging backends, which call
2545 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2546 removed after CSE. */
2547 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2548 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2550 /* Our only special processing is to pass the mode of the MEM to our
2551 recursive call and copy the flags. While we are here, handle this
2552 case more efficiently. */
2553 return
2554 replace_equiv_address_nv (x,
2555 eliminate_regs (XEXP (x, 0),
2556 GET_MODE (x), insn));
2558 case USE:
2559 /* Handle insn_list USE that a call to a pure function may generate. */
2560 new = eliminate_regs (XEXP (x, 0), 0, insn);
2561 if (new != XEXP (x, 0))
2562 return gen_rtx_USE (GET_MODE (x), new);
2563 return x;
2565 case CLOBBER:
2566 case ASM_OPERANDS:
2567 case SET:
2568 abort ();
2570 default:
2571 break;
2574 /* Process each of our operands recursively. If any have changed, make a
2575 copy of the rtx. */
2576 fmt = GET_RTX_FORMAT (code);
2577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2579 if (*fmt == 'e')
2581 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2582 if (new != XEXP (x, i) && ! copied)
2584 rtx new_x = rtx_alloc (code);
2585 memcpy (new_x, x, RTX_SIZE (code));
2586 x = new_x;
2587 copied = 1;
2589 XEXP (x, i) = new;
2591 else if (*fmt == 'E')
2593 int copied_vec = 0;
2594 for (j = 0; j < XVECLEN (x, i); j++)
2596 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2597 if (new != XVECEXP (x, i, j) && ! copied_vec)
2599 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2600 XVEC (x, i)->elem);
2601 if (! copied)
2603 rtx new_x = rtx_alloc (code);
2604 memcpy (new_x, x, RTX_SIZE (code));
2605 x = new_x;
2606 copied = 1;
2608 XVEC (x, i) = new_v;
2609 copied_vec = 1;
2611 XVECEXP (x, i, j) = new;
2616 return x;
2619 /* Scan rtx X for modifications of elimination target registers. Update
2620 the table of eliminables to reflect the changed state. MEM_MODE is
2621 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2623 static void
2624 elimination_effects (rtx x, enum machine_mode mem_mode)
2626 enum rtx_code code = GET_CODE (x);
2627 struct elim_table *ep;
2628 int regno;
2629 int i, j;
2630 const char *fmt;
2632 switch (code)
2634 case CONST_INT:
2635 case CONST_DOUBLE:
2636 case CONST_VECTOR:
2637 case CONST:
2638 case SYMBOL_REF:
2639 case CODE_LABEL:
2640 case PC:
2641 case CC0:
2642 case ASM_INPUT:
2643 case ADDR_VEC:
2644 case ADDR_DIFF_VEC:
2645 case RETURN:
2646 return;
2648 case ADDRESSOF:
2649 abort ();
2651 case REG:
2652 regno = REGNO (x);
2654 /* First handle the case where we encounter a bare register that
2655 is eliminable. Replace it with a PLUS. */
2656 if (regno < FIRST_PSEUDO_REGISTER)
2658 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2659 ep++)
2660 if (ep->from_rtx == x && ep->can_eliminate)
2662 if (! mem_mode)
2663 ep->ref_outside_mem = 1;
2664 return;
2668 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2669 && reg_equiv_constant[regno]
2670 && ! function_invariant_p (reg_equiv_constant[regno]))
2671 elimination_effects (reg_equiv_constant[regno], mem_mode);
2672 return;
2674 case PRE_INC:
2675 case POST_INC:
2676 case PRE_DEC:
2677 case POST_DEC:
2678 case POST_MODIFY:
2679 case PRE_MODIFY:
2680 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2681 if (ep->to_rtx == XEXP (x, 0))
2683 int size = GET_MODE_SIZE (mem_mode);
2685 /* If more bytes than MEM_MODE are pushed, account for them. */
2686 #ifdef PUSH_ROUNDING
2687 if (ep->to_rtx == stack_pointer_rtx)
2688 size = PUSH_ROUNDING (size);
2689 #endif
2690 if (code == PRE_DEC || code == POST_DEC)
2691 ep->offset += size;
2692 else if (code == PRE_INC || code == POST_INC)
2693 ep->offset -= size;
2694 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2695 && GET_CODE (XEXP (x, 1)) == PLUS
2696 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2697 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2698 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2701 /* These two aren't unary operators. */
2702 if (code == POST_MODIFY || code == PRE_MODIFY)
2703 break;
2705 /* Fall through to generic unary operation case. */
2706 case STRICT_LOW_PART:
2707 case NEG: case NOT:
2708 case SIGN_EXTEND: case ZERO_EXTEND:
2709 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2710 case FLOAT: case FIX:
2711 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2712 case ABS:
2713 case SQRT:
2714 case FFS:
2715 case CLZ:
2716 case CTZ:
2717 case POPCOUNT:
2718 case PARITY:
2719 elimination_effects (XEXP (x, 0), mem_mode);
2720 return;
2722 case SUBREG:
2723 if (GET_CODE (SUBREG_REG (x)) == REG
2724 && (GET_MODE_SIZE (GET_MODE (x))
2725 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2726 && reg_equiv_memory_loc != 0
2727 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2728 return;
2730 elimination_effects (SUBREG_REG (x), mem_mode);
2731 return;
2733 case USE:
2734 /* If using a register that is the source of an eliminate we still
2735 think can be performed, note it cannot be performed since we don't
2736 know how this register is used. */
2737 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2738 if (ep->from_rtx == XEXP (x, 0))
2739 ep->can_eliminate = 0;
2741 elimination_effects (XEXP (x, 0), mem_mode);
2742 return;
2744 case CLOBBER:
2745 /* If clobbering a register that is the replacement register for an
2746 elimination we still think can be performed, note that it cannot
2747 be performed. Otherwise, we need not be concerned about it. */
2748 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2749 if (ep->to_rtx == XEXP (x, 0))
2750 ep->can_eliminate = 0;
2752 elimination_effects (XEXP (x, 0), mem_mode);
2753 return;
2755 case SET:
2756 /* Check for setting a register that we know about. */
2757 if (GET_CODE (SET_DEST (x)) == REG)
2759 /* See if this is setting the replacement register for an
2760 elimination.
2762 If DEST is the hard frame pointer, we do nothing because we
2763 assume that all assignments to the frame pointer are for
2764 non-local gotos and are being done at a time when they are valid
2765 and do not disturb anything else. Some machines want to
2766 eliminate a fake argument pointer (or even a fake frame pointer)
2767 with either the real frame or the stack pointer. Assignments to
2768 the hard frame pointer must not prevent this elimination. */
2770 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2771 ep++)
2772 if (ep->to_rtx == SET_DEST (x)
2773 && SET_DEST (x) != hard_frame_pointer_rtx)
2775 /* If it is being incremented, adjust the offset. Otherwise,
2776 this elimination can't be done. */
2777 rtx src = SET_SRC (x);
2779 if (GET_CODE (src) == PLUS
2780 && XEXP (src, 0) == SET_DEST (x)
2781 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2782 ep->offset -= INTVAL (XEXP (src, 1));
2783 else
2784 ep->can_eliminate = 0;
2788 elimination_effects (SET_DEST (x), 0);
2789 elimination_effects (SET_SRC (x), 0);
2790 return;
2792 case MEM:
2793 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2794 abort ();
2796 /* Our only special processing is to pass the mode of the MEM to our
2797 recursive call. */
2798 elimination_effects (XEXP (x, 0), GET_MODE (x));
2799 return;
2801 default:
2802 break;
2805 fmt = GET_RTX_FORMAT (code);
2806 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2808 if (*fmt == 'e')
2809 elimination_effects (XEXP (x, i), mem_mode);
2810 else if (*fmt == 'E')
2811 for (j = 0; j < XVECLEN (x, i); j++)
2812 elimination_effects (XVECEXP (x, i, j), mem_mode);
2816 /* Descend through rtx X and verify that no references to eliminable registers
2817 remain. If any do remain, mark the involved register as not
2818 eliminable. */
2820 static void
2821 check_eliminable_occurrences (rtx x)
2823 const char *fmt;
2824 int i;
2825 enum rtx_code code;
2827 if (x == 0)
2828 return;
2830 code = GET_CODE (x);
2832 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2834 struct elim_table *ep;
2836 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2837 if (ep->from_rtx == x && ep->can_eliminate)
2838 ep->can_eliminate = 0;
2839 return;
2842 fmt = GET_RTX_FORMAT (code);
2843 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2845 if (*fmt == 'e')
2846 check_eliminable_occurrences (XEXP (x, i));
2847 else if (*fmt == 'E')
2849 int j;
2850 for (j = 0; j < XVECLEN (x, i); j++)
2851 check_eliminable_occurrences (XVECEXP (x, i, j));
2856 /* Scan INSN and eliminate all eliminable registers in it.
2858 If REPLACE is nonzero, do the replacement destructively. Also
2859 delete the insn as dead it if it is setting an eliminable register.
2861 If REPLACE is zero, do all our allocations in reload_obstack.
2863 If no eliminations were done and this insn doesn't require any elimination
2864 processing (these are not identical conditions: it might be updating sp,
2865 but not referencing fp; this needs to be seen during reload_as_needed so
2866 that the offset between fp and sp can be taken into consideration), zero
2867 is returned. Otherwise, 1 is returned. */
2869 static int
2870 eliminate_regs_in_insn (rtx insn, int replace)
2872 int icode = recog_memoized (insn);
2873 rtx old_body = PATTERN (insn);
2874 int insn_is_asm = asm_noperands (old_body) >= 0;
2875 rtx old_set = single_set (insn);
2876 rtx new_body;
2877 int val = 0;
2878 int i;
2879 rtx substed_operand[MAX_RECOG_OPERANDS];
2880 rtx orig_operand[MAX_RECOG_OPERANDS];
2881 struct elim_table *ep;
2883 if (! insn_is_asm && icode < 0)
2885 if (GET_CODE (PATTERN (insn)) == USE
2886 || GET_CODE (PATTERN (insn)) == CLOBBER
2887 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2888 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2889 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2890 return 0;
2891 abort ();
2894 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2895 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2897 /* Check for setting an eliminable register. */
2898 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2899 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2901 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2902 /* If this is setting the frame pointer register to the
2903 hardware frame pointer register and this is an elimination
2904 that will be done (tested above), this insn is really
2905 adjusting the frame pointer downward to compensate for
2906 the adjustment done before a nonlocal goto. */
2907 if (ep->from == FRAME_POINTER_REGNUM
2908 && ep->to == HARD_FRAME_POINTER_REGNUM)
2910 rtx base = SET_SRC (old_set);
2911 rtx base_insn = insn;
2912 HOST_WIDE_INT offset = 0;
2914 while (base != ep->to_rtx)
2916 rtx prev_insn, prev_set;
2918 if (GET_CODE (base) == PLUS
2919 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2921 offset += INTVAL (XEXP (base, 1));
2922 base = XEXP (base, 0);
2924 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2925 && (prev_set = single_set (prev_insn)) != 0
2926 && rtx_equal_p (SET_DEST (prev_set), base))
2928 base = SET_SRC (prev_set);
2929 base_insn = prev_insn;
2931 else
2932 break;
2935 if (base == ep->to_rtx)
2937 rtx src
2938 = plus_constant (ep->to_rtx, offset - ep->offset);
2940 new_body = old_body;
2941 if (! replace)
2943 new_body = copy_insn (old_body);
2944 if (REG_NOTES (insn))
2945 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2947 PATTERN (insn) = new_body;
2948 old_set = single_set (insn);
2950 /* First see if this insn remains valid when we
2951 make the change. If not, keep the INSN_CODE
2952 the same and let reload fit it up. */
2953 validate_change (insn, &SET_SRC (old_set), src, 1);
2954 validate_change (insn, &SET_DEST (old_set),
2955 ep->to_rtx, 1);
2956 if (! apply_change_group ())
2958 SET_SRC (old_set) = src;
2959 SET_DEST (old_set) = ep->to_rtx;
2962 val = 1;
2963 goto done;
2966 #endif
2968 /* In this case this insn isn't serving a useful purpose. We
2969 will delete it in reload_as_needed once we know that this
2970 elimination is, in fact, being done.
2972 If REPLACE isn't set, we can't delete this insn, but needn't
2973 process it since it won't be used unless something changes. */
2974 if (replace)
2976 delete_dead_insn (insn);
2977 return 1;
2979 val = 1;
2980 goto done;
2984 /* We allow one special case which happens to work on all machines we
2985 currently support: a single set with the source being a PLUS of an
2986 eliminable register and a constant. */
2987 if (old_set
2988 && GET_CODE (SET_DEST (old_set)) == REG
2989 && GET_CODE (SET_SRC (old_set)) == PLUS
2990 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
2991 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2992 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2994 rtx reg = XEXP (SET_SRC (old_set), 0);
2995 HOST_WIDE_INT offset = INTVAL (XEXP (SET_SRC (old_set), 1));
2997 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2998 if (ep->from_rtx == reg && ep->can_eliminate)
3000 offset += ep->offset;
3002 if (offset == 0)
3004 int num_clobbers;
3005 /* We assume here that if we need a PARALLEL with
3006 CLOBBERs for this assignment, we can do with the
3007 MATCH_SCRATCHes that add_clobbers allocates.
3008 There's not much we can do if that doesn't work. */
3009 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3010 SET_DEST (old_set),
3011 ep->to_rtx);
3012 num_clobbers = 0;
3013 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3014 if (num_clobbers)
3016 rtvec vec = rtvec_alloc (num_clobbers + 1);
3018 vec->elem[0] = PATTERN (insn);
3019 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3020 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3022 if (INSN_CODE (insn) < 0)
3023 abort ();
3025 else
3027 new_body = old_body;
3028 if (! replace)
3030 new_body = copy_insn (old_body);
3031 if (REG_NOTES (insn))
3032 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3034 PATTERN (insn) = new_body;
3035 old_set = single_set (insn);
3037 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3038 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3040 val = 1;
3041 /* This can't have an effect on elimination offsets, so skip right
3042 to the end. */
3043 goto done;
3047 /* Determine the effects of this insn on elimination offsets. */
3048 elimination_effects (old_body, 0);
3050 /* Eliminate all eliminable registers occurring in operands that
3051 can be handled by reload. */
3052 extract_insn (insn);
3053 for (i = 0; i < recog_data.n_operands; i++)
3055 orig_operand[i] = recog_data.operand[i];
3056 substed_operand[i] = recog_data.operand[i];
3058 /* For an asm statement, every operand is eliminable. */
3059 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3061 /* Check for setting a register that we know about. */
3062 if (recog_data.operand_type[i] != OP_IN
3063 && GET_CODE (orig_operand[i]) == REG)
3065 /* If we are assigning to a register that can be eliminated, it
3066 must be as part of a PARALLEL, since the code above handles
3067 single SETs. We must indicate that we can no longer
3068 eliminate this reg. */
3069 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3070 ep++)
3071 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3072 ep->can_eliminate = 0;
3075 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3076 replace ? insn : NULL_RTX);
3077 if (substed_operand[i] != orig_operand[i])
3078 val = 1;
3079 /* Terminate the search in check_eliminable_occurrences at
3080 this point. */
3081 *recog_data.operand_loc[i] = 0;
3083 /* If an output operand changed from a REG to a MEM and INSN is an
3084 insn, write a CLOBBER insn. */
3085 if (recog_data.operand_type[i] != OP_IN
3086 && GET_CODE (orig_operand[i]) == REG
3087 && GET_CODE (substed_operand[i]) == MEM
3088 && replace)
3089 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3090 insn);
3094 for (i = 0; i < recog_data.n_dups; i++)
3095 *recog_data.dup_loc[i]
3096 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3098 /* If any eliminable remain, they aren't eliminable anymore. */
3099 check_eliminable_occurrences (old_body);
3101 /* Substitute the operands; the new values are in the substed_operand
3102 array. */
3103 for (i = 0; i < recog_data.n_operands; i++)
3104 *recog_data.operand_loc[i] = substed_operand[i];
3105 for (i = 0; i < recog_data.n_dups; i++)
3106 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3108 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3109 re-recognize the insn. We do this in case we had a simple addition
3110 but now can do this as a load-address. This saves an insn in this
3111 common case.
3112 If re-recognition fails, the old insn code number will still be used,
3113 and some register operands may have changed into PLUS expressions.
3114 These will be handled by find_reloads by loading them into a register
3115 again. */
3117 if (val)
3119 /* If we aren't replacing things permanently and we changed something,
3120 make another copy to ensure that all the RTL is new. Otherwise
3121 things can go wrong if find_reload swaps commutative operands
3122 and one is inside RTL that has been copied while the other is not. */
3123 new_body = old_body;
3124 if (! replace)
3126 new_body = copy_insn (old_body);
3127 if (REG_NOTES (insn))
3128 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3130 PATTERN (insn) = new_body;
3132 /* If we had a move insn but now we don't, rerecognize it. This will
3133 cause spurious re-recognition if the old move had a PARALLEL since
3134 the new one still will, but we can't call single_set without
3135 having put NEW_BODY into the insn and the re-recognition won't
3136 hurt in this rare case. */
3137 /* ??? Why this huge if statement - why don't we just rerecognize the
3138 thing always? */
3139 if (! insn_is_asm
3140 && old_set != 0
3141 && ((GET_CODE (SET_SRC (old_set)) == REG
3142 && (GET_CODE (new_body) != SET
3143 || GET_CODE (SET_SRC (new_body)) != REG))
3144 /* If this was a load from or store to memory, compare
3145 the MEM in recog_data.operand to the one in the insn.
3146 If they are not equal, then rerecognize the insn. */
3147 || (old_set != 0
3148 && ((GET_CODE (SET_SRC (old_set)) == MEM
3149 && SET_SRC (old_set) != recog_data.operand[1])
3150 || (GET_CODE (SET_DEST (old_set)) == MEM
3151 && SET_DEST (old_set) != recog_data.operand[0])))
3152 /* If this was an add insn before, rerecognize. */
3153 || GET_CODE (SET_SRC (old_set)) == PLUS))
3155 int new_icode = recog (PATTERN (insn), insn, 0);
3156 if (new_icode < 0)
3157 INSN_CODE (insn) = icode;
3161 /* Restore the old body. If there were any changes to it, we made a copy
3162 of it while the changes were still in place, so we'll correctly return
3163 a modified insn below. */
3164 if (! replace)
3166 /* Restore the old body. */
3167 for (i = 0; i < recog_data.n_operands; i++)
3168 *recog_data.operand_loc[i] = orig_operand[i];
3169 for (i = 0; i < recog_data.n_dups; i++)
3170 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3173 /* Update all elimination pairs to reflect the status after the current
3174 insn. The changes we make were determined by the earlier call to
3175 elimination_effects.
3177 We also detect cases where register elimination cannot be done,
3178 namely, if a register would be both changed and referenced outside a MEM
3179 in the resulting insn since such an insn is often undefined and, even if
3180 not, we cannot know what meaning will be given to it. Note that it is
3181 valid to have a register used in an address in an insn that changes it
3182 (presumably with a pre- or post-increment or decrement).
3184 If anything changes, return nonzero. */
3186 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3188 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3189 ep->can_eliminate = 0;
3191 ep->ref_outside_mem = 0;
3193 if (ep->previous_offset != ep->offset)
3194 val = 1;
3197 done:
3198 /* If we changed something, perform elimination in REG_NOTES. This is
3199 needed even when REPLACE is zero because a REG_DEAD note might refer
3200 to a register that we eliminate and could cause a different number
3201 of spill registers to be needed in the final reload pass than in
3202 the pre-passes. */
3203 if (val && REG_NOTES (insn) != 0)
3204 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3206 return val;
3209 /* Loop through all elimination pairs.
3210 Recalculate the number not at initial offset.
3212 Compute the maximum offset (minimum offset if the stack does not
3213 grow downward) for each elimination pair. */
3215 static void
3216 update_eliminable_offsets (void)
3218 struct elim_table *ep;
3220 num_not_at_initial_offset = 0;
3221 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3223 ep->previous_offset = ep->offset;
3224 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3225 num_not_at_initial_offset++;
3229 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3230 replacement we currently believe is valid, mark it as not eliminable if X
3231 modifies DEST in any way other than by adding a constant integer to it.
3233 If DEST is the frame pointer, we do nothing because we assume that
3234 all assignments to the hard frame pointer are nonlocal gotos and are being
3235 done at a time when they are valid and do not disturb anything else.
3236 Some machines want to eliminate a fake argument pointer with either the
3237 frame or stack pointer. Assignments to the hard frame pointer must not
3238 prevent this elimination.
3240 Called via note_stores from reload before starting its passes to scan
3241 the insns of the function. */
3243 static void
3244 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3246 unsigned int i;
3248 /* A SUBREG of a hard register here is just changing its mode. We should
3249 not see a SUBREG of an eliminable hard register, but check just in
3250 case. */
3251 if (GET_CODE (dest) == SUBREG)
3252 dest = SUBREG_REG (dest);
3254 if (dest == hard_frame_pointer_rtx)
3255 return;
3257 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3258 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3259 && (GET_CODE (x) != SET
3260 || GET_CODE (SET_SRC (x)) != PLUS
3261 || XEXP (SET_SRC (x), 0) != dest
3262 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3264 reg_eliminate[i].can_eliminate_previous
3265 = reg_eliminate[i].can_eliminate = 0;
3266 num_eliminable--;
3270 /* Verify that the initial elimination offsets did not change since the
3271 last call to set_initial_elim_offsets. This is used to catch cases
3272 where something illegal happened during reload_as_needed that could
3273 cause incorrect code to be generated if we did not check for it. */
3275 static void
3276 verify_initial_elim_offsets (void)
3278 HOST_WIDE_INT t;
3280 #ifdef ELIMINABLE_REGS
3281 struct elim_table *ep;
3283 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3285 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3286 if (t != ep->initial_offset)
3287 abort ();
3289 #else
3290 INITIAL_FRAME_POINTER_OFFSET (t);
3291 if (t != reg_eliminate[0].initial_offset)
3292 abort ();
3293 #endif
3296 /* Reset all offsets on eliminable registers to their initial values. */
3298 static void
3299 set_initial_elim_offsets (void)
3301 struct elim_table *ep = reg_eliminate;
3303 #ifdef ELIMINABLE_REGS
3304 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3306 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3307 ep->previous_offset = ep->offset = ep->initial_offset;
3309 #else
3310 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3311 ep->previous_offset = ep->offset = ep->initial_offset;
3312 #endif
3314 num_not_at_initial_offset = 0;
3317 /* Initialize the known label offsets.
3318 Set a known offset for each forced label to be at the initial offset
3319 of each elimination. We do this because we assume that all
3320 computed jumps occur from a location where each elimination is
3321 at its initial offset.
3322 For all other labels, show that we don't know the offsets. */
3324 static void
3325 set_initial_label_offsets (void)
3327 rtx x;
3328 memset (offsets_known_at, 0, num_labels);
3330 for (x = forced_labels; x; x = XEXP (x, 1))
3331 if (XEXP (x, 0))
3332 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3335 /* Set all elimination offsets to the known values for the code label given
3336 by INSN. */
3338 static void
3339 set_offsets_for_label (rtx insn)
3341 unsigned int i;
3342 int label_nr = CODE_LABEL_NUMBER (insn);
3343 struct elim_table *ep;
3345 num_not_at_initial_offset = 0;
3346 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3348 ep->offset = ep->previous_offset
3349 = offsets_at[label_nr - first_label_num][i];
3350 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3351 num_not_at_initial_offset++;
3355 /* See if anything that happened changes which eliminations are valid.
3356 For example, on the SPARC, whether or not the frame pointer can
3357 be eliminated can depend on what registers have been used. We need
3358 not check some conditions again (such as flag_omit_frame_pointer)
3359 since they can't have changed. */
3361 static void
3362 update_eliminables (HARD_REG_SET *pset)
3364 int previous_frame_pointer_needed = frame_pointer_needed;
3365 struct elim_table *ep;
3367 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3368 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3369 #ifdef ELIMINABLE_REGS
3370 || ! CAN_ELIMINATE (ep->from, ep->to)
3371 #endif
3373 ep->can_eliminate = 0;
3375 /* Look for the case where we have discovered that we can't replace
3376 register A with register B and that means that we will now be
3377 trying to replace register A with register C. This means we can
3378 no longer replace register C with register B and we need to disable
3379 such an elimination, if it exists. This occurs often with A == ap,
3380 B == sp, and C == fp. */
3382 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3384 struct elim_table *op;
3385 int new_to = -1;
3387 if (! ep->can_eliminate && ep->can_eliminate_previous)
3389 /* Find the current elimination for ep->from, if there is a
3390 new one. */
3391 for (op = reg_eliminate;
3392 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3393 if (op->from == ep->from && op->can_eliminate)
3395 new_to = op->to;
3396 break;
3399 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3400 disable it. */
3401 for (op = reg_eliminate;
3402 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3403 if (op->from == new_to && op->to == ep->to)
3404 op->can_eliminate = 0;
3408 /* See if any registers that we thought we could eliminate the previous
3409 time are no longer eliminable. If so, something has changed and we
3410 must spill the register. Also, recompute the number of eliminable
3411 registers and see if the frame pointer is needed; it is if there is
3412 no elimination of the frame pointer that we can perform. */
3414 frame_pointer_needed = 1;
3415 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3417 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3418 && ep->to != HARD_FRAME_POINTER_REGNUM)
3419 frame_pointer_needed = 0;
3421 if (! ep->can_eliminate && ep->can_eliminate_previous)
3423 ep->can_eliminate_previous = 0;
3424 SET_HARD_REG_BIT (*pset, ep->from);
3425 num_eliminable--;
3429 /* If we didn't need a frame pointer last time, but we do now, spill
3430 the hard frame pointer. */
3431 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3432 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3435 /* Initialize the table of registers to eliminate. */
3437 static void
3438 init_elim_table (void)
3440 struct elim_table *ep;
3441 #ifdef ELIMINABLE_REGS
3442 const struct elim_table_1 *ep1;
3443 #endif
3445 if (!reg_eliminate)
3446 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3448 /* Does this function require a frame pointer? */
3450 frame_pointer_needed = (! flag_omit_frame_pointer
3451 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3452 and restore sp for alloca. So we can't eliminate
3453 the frame pointer in that case. At some point,
3454 we should improve this by emitting the
3455 sp-adjusting insns for this case. */
3456 || (current_function_calls_alloca
3457 && EXIT_IGNORE_STACK)
3458 || FRAME_POINTER_REQUIRED);
3460 num_eliminable = 0;
3462 #ifdef ELIMINABLE_REGS
3463 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3464 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3466 ep->from = ep1->from;
3467 ep->to = ep1->to;
3468 ep->can_eliminate = ep->can_eliminate_previous
3469 = (CAN_ELIMINATE (ep->from, ep->to)
3470 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3472 #else
3473 reg_eliminate[0].from = reg_eliminate_1[0].from;
3474 reg_eliminate[0].to = reg_eliminate_1[0].to;
3475 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3476 = ! frame_pointer_needed;
3477 #endif
3479 /* Count the number of eliminable registers and build the FROM and TO
3480 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3481 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3482 We depend on this. */
3483 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3485 num_eliminable += ep->can_eliminate;
3486 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3487 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3491 /* Kick all pseudos out of hard register REGNO.
3493 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3494 because we found we can't eliminate some register. In the case, no pseudos
3495 are allowed to be in the register, even if they are only in a block that
3496 doesn't require spill registers, unlike the case when we are spilling this
3497 hard reg to produce another spill register.
3499 Return nonzero if any pseudos needed to be kicked out. */
3501 static void
3502 spill_hard_reg (unsigned int regno, int cant_eliminate)
3504 int i;
3506 if (cant_eliminate)
3508 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3509 regs_ever_live[regno] = 1;
3512 /* Spill every pseudo reg that was allocated to this reg
3513 or to something that overlaps this reg. */
3515 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3516 if (reg_renumber[i] >= 0
3517 && (unsigned int) reg_renumber[i] <= regno
3518 && ((unsigned int) reg_renumber[i]
3519 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3520 [PSEUDO_REGNO_MODE (i)]
3521 > regno))
3522 SET_REGNO_REG_SET (&spilled_pseudos, i);
3525 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3526 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3528 static void
3529 ior_hard_reg_set (HARD_REG_SET *set1, HARD_REG_SET *set2)
3531 IOR_HARD_REG_SET (*set1, *set2);
3534 /* After find_reload_regs has been run for all insn that need reloads,
3535 and/or spill_hard_regs was called, this function is used to actually
3536 spill pseudo registers and try to reallocate them. It also sets up the
3537 spill_regs array for use by choose_reload_regs. */
3539 static int
3540 finish_spills (int global)
3542 struct insn_chain *chain;
3543 int something_changed = 0;
3544 int i;
3546 /* Build the spill_regs array for the function. */
3547 /* If there are some registers still to eliminate and one of the spill regs
3548 wasn't ever used before, additional stack space may have to be
3549 allocated to store this register. Thus, we may have changed the offset
3550 between the stack and frame pointers, so mark that something has changed.
3552 One might think that we need only set VAL to 1 if this is a call-used
3553 register. However, the set of registers that must be saved by the
3554 prologue is not identical to the call-used set. For example, the
3555 register used by the call insn for the return PC is a call-used register,
3556 but must be saved by the prologue. */
3558 n_spills = 0;
3559 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3560 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3562 spill_reg_order[i] = n_spills;
3563 spill_regs[n_spills++] = i;
3564 if (num_eliminable && ! regs_ever_live[i])
3565 something_changed = 1;
3566 regs_ever_live[i] = 1;
3568 else
3569 spill_reg_order[i] = -1;
3571 EXECUTE_IF_SET_IN_REG_SET
3572 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3574 /* Record the current hard register the pseudo is allocated to in
3575 pseudo_previous_regs so we avoid reallocating it to the same
3576 hard reg in a later pass. */
3577 if (reg_renumber[i] < 0)
3578 abort ();
3580 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3581 /* Mark it as no longer having a hard register home. */
3582 reg_renumber[i] = -1;
3583 /* We will need to scan everything again. */
3584 something_changed = 1;
3587 /* Retry global register allocation if possible. */
3588 if (global)
3590 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3591 /* For every insn that needs reloads, set the registers used as spill
3592 regs in pseudo_forbidden_regs for every pseudo live across the
3593 insn. */
3594 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3596 EXECUTE_IF_SET_IN_REG_SET
3597 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3599 ior_hard_reg_set (pseudo_forbidden_regs + i,
3600 &chain->used_spill_regs);
3602 EXECUTE_IF_SET_IN_REG_SET
3603 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3605 ior_hard_reg_set (pseudo_forbidden_regs + i,
3606 &chain->used_spill_regs);
3610 /* Retry allocating the spilled pseudos. For each reg, merge the
3611 various reg sets that indicate which hard regs can't be used,
3612 and call retry_global_alloc.
3613 We change spill_pseudos here to only contain pseudos that did not
3614 get a new hard register. */
3615 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3616 if (reg_old_renumber[i] != reg_renumber[i])
3618 HARD_REG_SET forbidden;
3619 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3620 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3621 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3622 retry_global_alloc (i, forbidden);
3623 if (reg_renumber[i] >= 0)
3624 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3628 /* Fix up the register information in the insn chain.
3629 This involves deleting those of the spilled pseudos which did not get
3630 a new hard register home from the live_{before,after} sets. */
3631 for (chain = reload_insn_chain; chain; chain = chain->next)
3633 HARD_REG_SET used_by_pseudos;
3634 HARD_REG_SET used_by_pseudos2;
3636 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3637 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3639 /* Mark any unallocated hard regs as available for spills. That
3640 makes inheritance work somewhat better. */
3641 if (chain->need_reload)
3643 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3644 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3645 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3647 /* Save the old value for the sanity test below. */
3648 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3650 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3651 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3652 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3653 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3655 /* Make sure we only enlarge the set. */
3656 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3657 abort ();
3658 ok:;
3662 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3663 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3665 int regno = reg_renumber[i];
3666 if (reg_old_renumber[i] == regno)
3667 continue;
3669 alter_reg (i, reg_old_renumber[i]);
3670 reg_old_renumber[i] = regno;
3671 if (rtl_dump_file)
3673 if (regno == -1)
3674 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3675 else
3676 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3677 i, reg_renumber[i]);
3681 return something_changed;
3684 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3685 Also mark any hard registers used to store user variables as
3686 forbidden from being used for spill registers. */
3688 static void
3689 scan_paradoxical_subregs (rtx x)
3691 int i;
3692 const char *fmt;
3693 enum rtx_code code = GET_CODE (x);
3695 switch (code)
3697 case REG:
3698 #if 0
3699 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3700 && REG_USERVAR_P (x))
3701 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3702 #endif
3703 return;
3705 case CONST_INT:
3706 case CONST:
3707 case SYMBOL_REF:
3708 case LABEL_REF:
3709 case CONST_DOUBLE:
3710 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3711 case CC0:
3712 case PC:
3713 case USE:
3714 case CLOBBER:
3715 return;
3717 case SUBREG:
3718 if (GET_CODE (SUBREG_REG (x)) == REG
3719 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3720 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3721 = GET_MODE_SIZE (GET_MODE (x));
3722 return;
3724 default:
3725 break;
3728 fmt = GET_RTX_FORMAT (code);
3729 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3731 if (fmt[i] == 'e')
3732 scan_paradoxical_subregs (XEXP (x, i));
3733 else if (fmt[i] == 'E')
3735 int j;
3736 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3737 scan_paradoxical_subregs (XVECEXP (x, i, j));
3742 /* Reload pseudo-registers into hard regs around each insn as needed.
3743 Additional register load insns are output before the insn that needs it
3744 and perhaps store insns after insns that modify the reloaded pseudo reg.
3746 reg_last_reload_reg and reg_reloaded_contents keep track of
3747 which registers are already available in reload registers.
3748 We update these for the reloads that we perform,
3749 as the insns are scanned. */
3751 static void
3752 reload_as_needed (int live_known)
3754 struct insn_chain *chain;
3755 #if defined (AUTO_INC_DEC)
3756 int i;
3757 #endif
3758 rtx x;
3760 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3761 memset (spill_reg_store, 0, sizeof spill_reg_store);
3762 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3763 reg_has_output_reload = xmalloc (max_regno);
3764 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3765 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3767 set_initial_elim_offsets ();
3769 for (chain = reload_insn_chain; chain; chain = chain->next)
3771 rtx prev = 0;
3772 rtx insn = chain->insn;
3773 rtx old_next = NEXT_INSN (insn);
3775 /* If we pass a label, copy the offsets from the label information
3776 into the current offsets of each elimination. */
3777 if (GET_CODE (insn) == CODE_LABEL)
3778 set_offsets_for_label (insn);
3780 else if (INSN_P (insn))
3782 rtx oldpat = copy_rtx (PATTERN (insn));
3784 /* If this is a USE and CLOBBER of a MEM, ensure that any
3785 references to eliminable registers have been removed. */
3787 if ((GET_CODE (PATTERN (insn)) == USE
3788 || GET_CODE (PATTERN (insn)) == CLOBBER)
3789 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3790 XEXP (XEXP (PATTERN (insn), 0), 0)
3791 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3792 GET_MODE (XEXP (PATTERN (insn), 0)),
3793 NULL_RTX);
3795 /* If we need to do register elimination processing, do so.
3796 This might delete the insn, in which case we are done. */
3797 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3799 eliminate_regs_in_insn (insn, 1);
3800 if (GET_CODE (insn) == NOTE)
3802 update_eliminable_offsets ();
3803 continue;
3807 /* If need_elim is nonzero but need_reload is zero, one might think
3808 that we could simply set n_reloads to 0. However, find_reloads
3809 could have done some manipulation of the insn (such as swapping
3810 commutative operands), and these manipulations are lost during
3811 the first pass for every insn that needs register elimination.
3812 So the actions of find_reloads must be redone here. */
3814 if (! chain->need_elim && ! chain->need_reload
3815 && ! chain->need_operand_change)
3816 n_reloads = 0;
3817 /* First find the pseudo regs that must be reloaded for this insn.
3818 This info is returned in the tables reload_... (see reload.h).
3819 Also modify the body of INSN by substituting RELOAD
3820 rtx's for those pseudo regs. */
3821 else
3823 memset (reg_has_output_reload, 0, max_regno);
3824 CLEAR_HARD_REG_SET (reg_is_output_reload);
3826 find_reloads (insn, 1, spill_indirect_levels, live_known,
3827 spill_reg_order);
3830 if (n_reloads > 0)
3832 rtx next = NEXT_INSN (insn);
3833 rtx p;
3835 prev = PREV_INSN (insn);
3837 /* Now compute which reload regs to reload them into. Perhaps
3838 reusing reload regs from previous insns, or else output
3839 load insns to reload them. Maybe output store insns too.
3840 Record the choices of reload reg in reload_reg_rtx. */
3841 choose_reload_regs (chain);
3843 /* Merge any reloads that we didn't combine for fear of
3844 increasing the number of spill registers needed but now
3845 discover can be safely merged. */
3846 if (SMALL_REGISTER_CLASSES)
3847 merge_assigned_reloads (insn);
3849 /* Generate the insns to reload operands into or out of
3850 their reload regs. */
3851 emit_reload_insns (chain);
3853 /* Substitute the chosen reload regs from reload_reg_rtx
3854 into the insn's body (or perhaps into the bodies of other
3855 load and store insn that we just made for reloading
3856 and that we moved the structure into). */
3857 subst_reloads (insn);
3859 /* If this was an ASM, make sure that all the reload insns
3860 we have generated are valid. If not, give an error
3861 and delete them. */
3863 if (asm_noperands (PATTERN (insn)) >= 0)
3864 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3865 if (p != insn && INSN_P (p)
3866 && GET_CODE (PATTERN (p)) != USE
3867 && (recog_memoized (p) < 0
3868 || (extract_insn (p), ! constrain_operands (1))))
3870 error_for_asm (insn,
3871 "`asm' operand requires impossible reload");
3872 delete_insn (p);
3876 if (num_eliminable && chain->need_elim)
3877 update_eliminable_offsets ();
3879 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3880 is no longer validly lying around to save a future reload.
3881 Note that this does not detect pseudos that were reloaded
3882 for this insn in order to be stored in
3883 (obeying register constraints). That is correct; such reload
3884 registers ARE still valid. */
3885 note_stores (oldpat, forget_old_reloads_1, NULL);
3887 /* There may have been CLOBBER insns placed after INSN. So scan
3888 between INSN and NEXT and use them to forget old reloads. */
3889 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3890 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3891 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3893 #ifdef AUTO_INC_DEC
3894 /* Likewise for regs altered by auto-increment in this insn.
3895 REG_INC notes have been changed by reloading:
3896 find_reloads_address_1 records substitutions for them,
3897 which have been performed by subst_reloads above. */
3898 for (i = n_reloads - 1; i >= 0; i--)
3900 rtx in_reg = rld[i].in_reg;
3901 if (in_reg)
3903 enum rtx_code code = GET_CODE (in_reg);
3904 /* PRE_INC / PRE_DEC will have the reload register ending up
3905 with the same value as the stack slot, but that doesn't
3906 hold true for POST_INC / POST_DEC. Either we have to
3907 convert the memory access to a true POST_INC / POST_DEC,
3908 or we can't use the reload register for inheritance. */
3909 if ((code == POST_INC || code == POST_DEC)
3910 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3911 REGNO (rld[i].reg_rtx))
3912 /* Make sure it is the inc/dec pseudo, and not
3913 some other (e.g. output operand) pseudo. */
3914 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3915 == REGNO (XEXP (in_reg, 0))))
3918 rtx reload_reg = rld[i].reg_rtx;
3919 enum machine_mode mode = GET_MODE (reload_reg);
3920 int n = 0;
3921 rtx p;
3923 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3925 /* We really want to ignore REG_INC notes here, so
3926 use PATTERN (p) as argument to reg_set_p . */
3927 if (reg_set_p (reload_reg, PATTERN (p)))
3928 break;
3929 n = count_occurrences (PATTERN (p), reload_reg, 0);
3930 if (! n)
3931 continue;
3932 if (n == 1)
3934 n = validate_replace_rtx (reload_reg,
3935 gen_rtx_fmt_e (code,
3936 mode,
3937 reload_reg),
3940 /* We must also verify that the constraints
3941 are met after the replacement. */
3942 extract_insn (p);
3943 if (n)
3944 n = constrain_operands (1);
3945 else
3946 break;
3948 /* If the constraints were not met, then
3949 undo the replacement. */
3950 if (!n)
3952 validate_replace_rtx (gen_rtx_fmt_e (code,
3953 mode,
3954 reload_reg),
3955 reload_reg, p);
3956 break;
3960 break;
3962 if (n == 1)
3964 REG_NOTES (p)
3965 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3966 REG_NOTES (p));
3967 /* Mark this as having an output reload so that the
3968 REG_INC processing code below won't invalidate
3969 the reload for inheritance. */
3970 SET_HARD_REG_BIT (reg_is_output_reload,
3971 REGNO (reload_reg));
3972 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3974 else
3975 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3976 NULL);
3978 else if ((code == PRE_INC || code == PRE_DEC)
3979 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3980 REGNO (rld[i].reg_rtx))
3981 /* Make sure it is the inc/dec pseudo, and not
3982 some other (e.g. output operand) pseudo. */
3983 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3984 == REGNO (XEXP (in_reg, 0))))
3986 SET_HARD_REG_BIT (reg_is_output_reload,
3987 REGNO (rld[i].reg_rtx));
3988 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3992 /* If a pseudo that got a hard register is auto-incremented,
3993 we must purge records of copying it into pseudos without
3994 hard registers. */
3995 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3996 if (REG_NOTE_KIND (x) == REG_INC)
3998 /* See if this pseudo reg was reloaded in this insn.
3999 If so, its last-reload info is still valid
4000 because it is based on this insn's reload. */
4001 for (i = 0; i < n_reloads; i++)
4002 if (rld[i].out == XEXP (x, 0))
4003 break;
4005 if (i == n_reloads)
4006 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4008 #endif
4010 /* A reload reg's contents are unknown after a label. */
4011 if (GET_CODE (insn) == CODE_LABEL)
4012 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4014 /* Don't assume a reload reg is still good after a call insn
4015 if it is a call-used reg, or if it contains a value that will
4016 be partially clobbered by the call. */
4017 else if (GET_CODE (insn) == CALL_INSN)
4019 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4020 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4024 /* Clean up. */
4025 free (reg_last_reload_reg);
4026 free (reg_has_output_reload);
4029 /* Discard all record of any value reloaded from X,
4030 or reloaded in X from someplace else;
4031 unless X is an output reload reg of the current insn.
4033 X may be a hard reg (the reload reg)
4034 or it may be a pseudo reg that was reloaded from. */
4036 static void
4037 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4038 void *data ATTRIBUTE_UNUSED)
4040 unsigned int regno;
4041 unsigned int nr;
4043 /* note_stores does give us subregs of hard regs,
4044 subreg_regno_offset will abort if it is not a hard reg. */
4045 while (GET_CODE (x) == SUBREG)
4047 /* We ignore the subreg offset when calculating the regno,
4048 because we are using the entire underlying hard register
4049 below. */
4050 x = SUBREG_REG (x);
4053 if (GET_CODE (x) != REG)
4054 return;
4056 regno = REGNO (x);
4058 if (regno >= FIRST_PSEUDO_REGISTER)
4059 nr = 1;
4060 else
4062 unsigned int i;
4064 nr = hard_regno_nregs[regno][GET_MODE (x)];
4065 /* Storing into a spilled-reg invalidates its contents.
4066 This can happen if a block-local pseudo is allocated to that reg
4067 and it wasn't spilled because this block's total need is 0.
4068 Then some insn might have an optional reload and use this reg. */
4069 for (i = 0; i < nr; i++)
4070 /* But don't do this if the reg actually serves as an output
4071 reload reg in the current instruction. */
4072 if (n_reloads == 0
4073 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4075 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4076 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4077 spill_reg_store[regno + i] = 0;
4081 /* Since value of X has changed,
4082 forget any value previously copied from it. */
4084 while (nr-- > 0)
4085 /* But don't forget a copy if this is the output reload
4086 that establishes the copy's validity. */
4087 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4088 reg_last_reload_reg[regno + nr] = 0;
4091 /* The following HARD_REG_SETs indicate when each hard register is
4092 used for a reload of various parts of the current insn. */
4094 /* If reg is unavailable for all reloads. */
4095 static HARD_REG_SET reload_reg_unavailable;
4096 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4097 static HARD_REG_SET reload_reg_used;
4098 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4099 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4100 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4101 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4102 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4103 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4104 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4105 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4106 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4107 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4108 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4109 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4110 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4111 static HARD_REG_SET reload_reg_used_in_op_addr;
4112 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4113 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4114 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4115 static HARD_REG_SET reload_reg_used_in_insn;
4116 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4117 static HARD_REG_SET reload_reg_used_in_other_addr;
4119 /* If reg is in use as a reload reg for any sort of reload. */
4120 static HARD_REG_SET reload_reg_used_at_all;
4122 /* If reg is use as an inherited reload. We just mark the first register
4123 in the group. */
4124 static HARD_REG_SET reload_reg_used_for_inherit;
4126 /* Records which hard regs are used in any way, either as explicit use or
4127 by being allocated to a pseudo during any point of the current insn. */
4128 static HARD_REG_SET reg_used_in_insn;
4130 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4131 TYPE. MODE is used to indicate how many consecutive regs are
4132 actually used. */
4134 static void
4135 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4136 enum machine_mode mode)
4138 unsigned int nregs = hard_regno_nregs[regno][mode];
4139 unsigned int i;
4141 for (i = regno; i < nregs + regno; i++)
4143 switch (type)
4145 case RELOAD_OTHER:
4146 SET_HARD_REG_BIT (reload_reg_used, i);
4147 break;
4149 case RELOAD_FOR_INPUT_ADDRESS:
4150 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4151 break;
4153 case RELOAD_FOR_INPADDR_ADDRESS:
4154 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4155 break;
4157 case RELOAD_FOR_OUTPUT_ADDRESS:
4158 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4159 break;
4161 case RELOAD_FOR_OUTADDR_ADDRESS:
4162 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4163 break;
4165 case RELOAD_FOR_OPERAND_ADDRESS:
4166 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4167 break;
4169 case RELOAD_FOR_OPADDR_ADDR:
4170 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4171 break;
4173 case RELOAD_FOR_OTHER_ADDRESS:
4174 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4175 break;
4177 case RELOAD_FOR_INPUT:
4178 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4179 break;
4181 case RELOAD_FOR_OUTPUT:
4182 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4183 break;
4185 case RELOAD_FOR_INSN:
4186 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4187 break;
4190 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4194 /* Similarly, but show REGNO is no longer in use for a reload. */
4196 static void
4197 clear_reload_reg_in_use (unsigned int regno, int opnum,
4198 enum reload_type type, enum machine_mode mode)
4200 unsigned int nregs = hard_regno_nregs[regno][mode];
4201 unsigned int start_regno, end_regno, r;
4202 int i;
4203 /* A complication is that for some reload types, inheritance might
4204 allow multiple reloads of the same types to share a reload register.
4205 We set check_opnum if we have to check only reloads with the same
4206 operand number, and check_any if we have to check all reloads. */
4207 int check_opnum = 0;
4208 int check_any = 0;
4209 HARD_REG_SET *used_in_set;
4211 switch (type)
4213 case RELOAD_OTHER:
4214 used_in_set = &reload_reg_used;
4215 break;
4217 case RELOAD_FOR_INPUT_ADDRESS:
4218 used_in_set = &reload_reg_used_in_input_addr[opnum];
4219 break;
4221 case RELOAD_FOR_INPADDR_ADDRESS:
4222 check_opnum = 1;
4223 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4224 break;
4226 case RELOAD_FOR_OUTPUT_ADDRESS:
4227 used_in_set = &reload_reg_used_in_output_addr[opnum];
4228 break;
4230 case RELOAD_FOR_OUTADDR_ADDRESS:
4231 check_opnum = 1;
4232 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4233 break;
4235 case RELOAD_FOR_OPERAND_ADDRESS:
4236 used_in_set = &reload_reg_used_in_op_addr;
4237 break;
4239 case RELOAD_FOR_OPADDR_ADDR:
4240 check_any = 1;
4241 used_in_set = &reload_reg_used_in_op_addr_reload;
4242 break;
4244 case RELOAD_FOR_OTHER_ADDRESS:
4245 used_in_set = &reload_reg_used_in_other_addr;
4246 check_any = 1;
4247 break;
4249 case RELOAD_FOR_INPUT:
4250 used_in_set = &reload_reg_used_in_input[opnum];
4251 break;
4253 case RELOAD_FOR_OUTPUT:
4254 used_in_set = &reload_reg_used_in_output[opnum];
4255 break;
4257 case RELOAD_FOR_INSN:
4258 used_in_set = &reload_reg_used_in_insn;
4259 break;
4260 default:
4261 abort ();
4263 /* We resolve conflicts with remaining reloads of the same type by
4264 excluding the intervals of reload registers by them from the
4265 interval of freed reload registers. Since we only keep track of
4266 one set of interval bounds, we might have to exclude somewhat
4267 more than what would be necessary if we used a HARD_REG_SET here.
4268 But this should only happen very infrequently, so there should
4269 be no reason to worry about it. */
4271 start_regno = regno;
4272 end_regno = regno + nregs;
4273 if (check_opnum || check_any)
4275 for (i = n_reloads - 1; i >= 0; i--)
4277 if (rld[i].when_needed == type
4278 && (check_any || rld[i].opnum == opnum)
4279 && rld[i].reg_rtx)
4281 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4282 unsigned int conflict_end
4283 = (conflict_start
4284 + hard_regno_nregs[conflict_start][rld[i].mode]);
4286 /* If there is an overlap with the first to-be-freed register,
4287 adjust the interval start. */
4288 if (conflict_start <= start_regno && conflict_end > start_regno)
4289 start_regno = conflict_end;
4290 /* Otherwise, if there is a conflict with one of the other
4291 to-be-freed registers, adjust the interval end. */
4292 if (conflict_start > start_regno && conflict_start < end_regno)
4293 end_regno = conflict_start;
4298 for (r = start_regno; r < end_regno; r++)
4299 CLEAR_HARD_REG_BIT (*used_in_set, r);
4302 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4303 specified by OPNUM and TYPE. */
4305 static int
4306 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4308 int i;
4310 /* In use for a RELOAD_OTHER means it's not available for anything. */
4311 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4312 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4313 return 0;
4315 switch (type)
4317 case RELOAD_OTHER:
4318 /* In use for anything means we can't use it for RELOAD_OTHER. */
4319 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4320 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4321 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4322 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4323 return 0;
4325 for (i = 0; i < reload_n_operands; i++)
4326 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4327 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4328 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4329 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4330 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4331 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4332 return 0;
4334 return 1;
4336 case RELOAD_FOR_INPUT:
4337 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4338 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4339 return 0;
4341 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4342 return 0;
4344 /* If it is used for some other input, can't use it. */
4345 for (i = 0; i < reload_n_operands; i++)
4346 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4347 return 0;
4349 /* If it is used in a later operand's address, can't use it. */
4350 for (i = opnum + 1; i < reload_n_operands; i++)
4351 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4352 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4353 return 0;
4355 return 1;
4357 case RELOAD_FOR_INPUT_ADDRESS:
4358 /* Can't use a register if it is used for an input address for this
4359 operand or used as an input in an earlier one. */
4360 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4361 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4362 return 0;
4364 for (i = 0; i < opnum; i++)
4365 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4366 return 0;
4368 return 1;
4370 case RELOAD_FOR_INPADDR_ADDRESS:
4371 /* Can't use a register if it is used for an input address
4372 for this operand or used as an input in an earlier
4373 one. */
4374 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4375 return 0;
4377 for (i = 0; i < opnum; i++)
4378 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4379 return 0;
4381 return 1;
4383 case RELOAD_FOR_OUTPUT_ADDRESS:
4384 /* Can't use a register if it is used for an output address for this
4385 operand or used as an output in this or a later operand. Note
4386 that multiple output operands are emitted in reverse order, so
4387 the conflicting ones are those with lower indices. */
4388 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4389 return 0;
4391 for (i = 0; i <= opnum; i++)
4392 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4393 return 0;
4395 return 1;
4397 case RELOAD_FOR_OUTADDR_ADDRESS:
4398 /* Can't use a register if it is used for an output address
4399 for this operand or used as an output in this or a
4400 later operand. Note that multiple output operands are
4401 emitted in reverse order, so the conflicting ones are
4402 those with lower indices. */
4403 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4404 return 0;
4406 for (i = 0; i <= opnum; i++)
4407 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4408 return 0;
4410 return 1;
4412 case RELOAD_FOR_OPERAND_ADDRESS:
4413 for (i = 0; i < reload_n_operands; i++)
4414 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4415 return 0;
4417 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4418 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4420 case RELOAD_FOR_OPADDR_ADDR:
4421 for (i = 0; i < reload_n_operands; i++)
4422 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4423 return 0;
4425 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4427 case RELOAD_FOR_OUTPUT:
4428 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4429 outputs, or an operand address for this or an earlier output.
4430 Note that multiple output operands are emitted in reverse order,
4431 so the conflicting ones are those with higher indices. */
4432 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4433 return 0;
4435 for (i = 0; i < reload_n_operands; i++)
4436 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4437 return 0;
4439 for (i = opnum; i < reload_n_operands; i++)
4440 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4441 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4442 return 0;
4444 return 1;
4446 case RELOAD_FOR_INSN:
4447 for (i = 0; i < reload_n_operands; i++)
4448 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4449 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4450 return 0;
4452 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4453 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4455 case RELOAD_FOR_OTHER_ADDRESS:
4456 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4458 abort ();
4461 /* Return 1 if the value in reload reg REGNO, as used by a reload
4462 needed for the part of the insn specified by OPNUM and TYPE,
4463 is still available in REGNO at the end of the insn.
4465 We can assume that the reload reg was already tested for availability
4466 at the time it is needed, and we should not check this again,
4467 in case the reg has already been marked in use. */
4469 static int
4470 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4472 int i;
4474 switch (type)
4476 case RELOAD_OTHER:
4477 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4478 its value must reach the end. */
4479 return 1;
4481 /* If this use is for part of the insn,
4482 its value reaches if no subsequent part uses the same register.
4483 Just like the above function, don't try to do this with lots
4484 of fallthroughs. */
4486 case RELOAD_FOR_OTHER_ADDRESS:
4487 /* Here we check for everything else, since these don't conflict
4488 with anything else and everything comes later. */
4490 for (i = 0; i < reload_n_operands; i++)
4491 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4492 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4493 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4494 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4495 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4496 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4497 return 0;
4499 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4500 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4501 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4502 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4504 case RELOAD_FOR_INPUT_ADDRESS:
4505 case RELOAD_FOR_INPADDR_ADDRESS:
4506 /* Similar, except that we check only for this and subsequent inputs
4507 and the address of only subsequent inputs and we do not need
4508 to check for RELOAD_OTHER objects since they are known not to
4509 conflict. */
4511 for (i = opnum; i < reload_n_operands; i++)
4512 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4513 return 0;
4515 for (i = opnum + 1; i < reload_n_operands; i++)
4516 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4517 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4518 return 0;
4520 for (i = 0; i < reload_n_operands; i++)
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4522 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4523 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4524 return 0;
4526 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4527 return 0;
4529 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4530 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4531 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4533 case RELOAD_FOR_INPUT:
4534 /* Similar to input address, except we start at the next operand for
4535 both input and input address and we do not check for
4536 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4537 would conflict. */
4539 for (i = opnum + 1; i < reload_n_operands; i++)
4540 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4541 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4542 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4543 return 0;
4545 /* ... fall through ... */
4547 case RELOAD_FOR_OPERAND_ADDRESS:
4548 /* Check outputs and their addresses. */
4550 for (i = 0; i < reload_n_operands; i++)
4551 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4552 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4553 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4554 return 0;
4556 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4558 case RELOAD_FOR_OPADDR_ADDR:
4559 for (i = 0; i < reload_n_operands; i++)
4560 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4561 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4562 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4563 return 0;
4565 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4566 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4567 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4569 case RELOAD_FOR_INSN:
4570 /* These conflict with other outputs with RELOAD_OTHER. So
4571 we need only check for output addresses. */
4573 opnum = reload_n_operands;
4575 /* ... fall through ... */
4577 case RELOAD_FOR_OUTPUT:
4578 case RELOAD_FOR_OUTPUT_ADDRESS:
4579 case RELOAD_FOR_OUTADDR_ADDRESS:
4580 /* We already know these can't conflict with a later output. So the
4581 only thing to check are later output addresses.
4582 Note that multiple output operands are emitted in reverse order,
4583 so the conflicting ones are those with lower indices. */
4584 for (i = 0; i < opnum; i++)
4585 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4586 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4587 return 0;
4589 return 1;
4592 abort ();
4595 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4596 Return 0 otherwise.
4598 This function uses the same algorithm as reload_reg_free_p above. */
4601 reloads_conflict (int r1, int r2)
4603 enum reload_type r1_type = rld[r1].when_needed;
4604 enum reload_type r2_type = rld[r2].when_needed;
4605 int r1_opnum = rld[r1].opnum;
4606 int r2_opnum = rld[r2].opnum;
4608 /* RELOAD_OTHER conflicts with everything. */
4609 if (r2_type == RELOAD_OTHER)
4610 return 1;
4612 /* Otherwise, check conflicts differently for each type. */
4614 switch (r1_type)
4616 case RELOAD_FOR_INPUT:
4617 return (r2_type == RELOAD_FOR_INSN
4618 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4619 || r2_type == RELOAD_FOR_OPADDR_ADDR
4620 || r2_type == RELOAD_FOR_INPUT
4621 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4622 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4623 && r2_opnum > r1_opnum));
4625 case RELOAD_FOR_INPUT_ADDRESS:
4626 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4627 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4629 case RELOAD_FOR_INPADDR_ADDRESS:
4630 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4631 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4633 case RELOAD_FOR_OUTPUT_ADDRESS:
4634 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4635 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4637 case RELOAD_FOR_OUTADDR_ADDRESS:
4638 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4639 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4641 case RELOAD_FOR_OPERAND_ADDRESS:
4642 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4643 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4645 case RELOAD_FOR_OPADDR_ADDR:
4646 return (r2_type == RELOAD_FOR_INPUT
4647 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4649 case RELOAD_FOR_OUTPUT:
4650 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4651 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4652 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4653 && r2_opnum >= r1_opnum));
4655 case RELOAD_FOR_INSN:
4656 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4657 || r2_type == RELOAD_FOR_INSN
4658 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4660 case RELOAD_FOR_OTHER_ADDRESS:
4661 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4663 case RELOAD_OTHER:
4664 return 1;
4666 default:
4667 abort ();
4671 /* Indexed by reload number, 1 if incoming value
4672 inherited from previous insns. */
4673 char reload_inherited[MAX_RELOADS];
4675 /* For an inherited reload, this is the insn the reload was inherited from,
4676 if we know it. Otherwise, this is 0. */
4677 rtx reload_inheritance_insn[MAX_RELOADS];
4679 /* If nonzero, this is a place to get the value of the reload,
4680 rather than using reload_in. */
4681 rtx reload_override_in[MAX_RELOADS];
4683 /* For each reload, the hard register number of the register used,
4684 or -1 if we did not need a register for this reload. */
4685 int reload_spill_index[MAX_RELOADS];
4687 /* Subroutine of free_for_value_p, used to check a single register.
4688 START_REGNO is the starting regno of the full reload register
4689 (possibly comprising multiple hard registers) that we are considering. */
4691 static int
4692 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4693 enum reload_type type, rtx value, rtx out,
4694 int reloadnum, int ignore_address_reloads)
4696 int time1;
4697 /* Set if we see an input reload that must not share its reload register
4698 with any new earlyclobber, but might otherwise share the reload
4699 register with an output or input-output reload. */
4700 int check_earlyclobber = 0;
4701 int i;
4702 int copy = 0;
4704 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4705 return 0;
4707 if (out == const0_rtx)
4709 copy = 1;
4710 out = NULL_RTX;
4713 /* We use some pseudo 'time' value to check if the lifetimes of the
4714 new register use would overlap with the one of a previous reload
4715 that is not read-only or uses a different value.
4716 The 'time' used doesn't have to be linear in any shape or form, just
4717 monotonic.
4718 Some reload types use different 'buckets' for each operand.
4719 So there are MAX_RECOG_OPERANDS different time values for each
4720 such reload type.
4721 We compute TIME1 as the time when the register for the prospective
4722 new reload ceases to be live, and TIME2 for each existing
4723 reload as the time when that the reload register of that reload
4724 becomes live.
4725 Where there is little to be gained by exact lifetime calculations,
4726 we just make conservative assumptions, i.e. a longer lifetime;
4727 this is done in the 'default:' cases. */
4728 switch (type)
4730 case RELOAD_FOR_OTHER_ADDRESS:
4731 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4732 time1 = copy ? 0 : 1;
4733 break;
4734 case RELOAD_OTHER:
4735 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4736 break;
4737 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4738 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4739 respectively, to the time values for these, we get distinct time
4740 values. To get distinct time values for each operand, we have to
4741 multiply opnum by at least three. We round that up to four because
4742 multiply by four is often cheaper. */
4743 case RELOAD_FOR_INPADDR_ADDRESS:
4744 time1 = opnum * 4 + 2;
4745 break;
4746 case RELOAD_FOR_INPUT_ADDRESS:
4747 time1 = opnum * 4 + 3;
4748 break;
4749 case RELOAD_FOR_INPUT:
4750 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4751 executes (inclusive). */
4752 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4753 break;
4754 case RELOAD_FOR_OPADDR_ADDR:
4755 /* opnum * 4 + 4
4756 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4757 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4758 break;
4759 case RELOAD_FOR_OPERAND_ADDRESS:
4760 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4761 is executed. */
4762 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4763 break;
4764 case RELOAD_FOR_OUTADDR_ADDRESS:
4765 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4766 break;
4767 case RELOAD_FOR_OUTPUT_ADDRESS:
4768 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4769 break;
4770 default:
4771 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4774 for (i = 0; i < n_reloads; i++)
4776 rtx reg = rld[i].reg_rtx;
4777 if (reg && GET_CODE (reg) == REG
4778 && ((unsigned) regno - true_regnum (reg)
4779 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4780 && i != reloadnum)
4782 rtx other_input = rld[i].in;
4784 /* If the other reload loads the same input value, that
4785 will not cause a conflict only if it's loading it into
4786 the same register. */
4787 if (true_regnum (reg) != start_regno)
4788 other_input = NULL_RTX;
4789 if (! other_input || ! rtx_equal_p (other_input, value)
4790 || rld[i].out || out)
4792 int time2;
4793 switch (rld[i].when_needed)
4795 case RELOAD_FOR_OTHER_ADDRESS:
4796 time2 = 0;
4797 break;
4798 case RELOAD_FOR_INPADDR_ADDRESS:
4799 /* find_reloads makes sure that a
4800 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4801 by at most one - the first -
4802 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4803 address reload is inherited, the address address reload
4804 goes away, so we can ignore this conflict. */
4805 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4806 && ignore_address_reloads
4807 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4808 Then the address address is still needed to store
4809 back the new address. */
4810 && ! rld[reloadnum].out)
4811 continue;
4812 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4813 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4814 reloads go away. */
4815 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4816 && ignore_address_reloads
4817 /* Unless we are reloading an auto_inc expression. */
4818 && ! rld[reloadnum].out)
4819 continue;
4820 time2 = rld[i].opnum * 4 + 2;
4821 break;
4822 case RELOAD_FOR_INPUT_ADDRESS:
4823 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4824 && ignore_address_reloads
4825 && ! rld[reloadnum].out)
4826 continue;
4827 time2 = rld[i].opnum * 4 + 3;
4828 break;
4829 case RELOAD_FOR_INPUT:
4830 time2 = rld[i].opnum * 4 + 4;
4831 check_earlyclobber = 1;
4832 break;
4833 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4834 == MAX_RECOG_OPERAND * 4 */
4835 case RELOAD_FOR_OPADDR_ADDR:
4836 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4837 && ignore_address_reloads
4838 && ! rld[reloadnum].out)
4839 continue;
4840 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4841 break;
4842 case RELOAD_FOR_OPERAND_ADDRESS:
4843 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4844 check_earlyclobber = 1;
4845 break;
4846 case RELOAD_FOR_INSN:
4847 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4848 break;
4849 case RELOAD_FOR_OUTPUT:
4850 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4851 instruction is executed. */
4852 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4853 break;
4854 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4855 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4856 value. */
4857 case RELOAD_FOR_OUTADDR_ADDRESS:
4858 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4859 && ignore_address_reloads
4860 && ! rld[reloadnum].out)
4861 continue;
4862 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4863 break;
4864 case RELOAD_FOR_OUTPUT_ADDRESS:
4865 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4866 break;
4867 case RELOAD_OTHER:
4868 /* If there is no conflict in the input part, handle this
4869 like an output reload. */
4870 if (! rld[i].in || rtx_equal_p (other_input, value))
4872 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4873 /* Earlyclobbered outputs must conflict with inputs. */
4874 if (earlyclobber_operand_p (rld[i].out))
4875 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4877 break;
4879 time2 = 1;
4880 /* RELOAD_OTHER might be live beyond instruction execution,
4881 but this is not obvious when we set time2 = 1. So check
4882 here if there might be a problem with the new reload
4883 clobbering the register used by the RELOAD_OTHER. */
4884 if (out)
4885 return 0;
4886 break;
4887 default:
4888 return 0;
4890 if ((time1 >= time2
4891 && (! rld[i].in || rld[i].out
4892 || ! rtx_equal_p (other_input, value)))
4893 || (out && rld[reloadnum].out_reg
4894 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4895 return 0;
4900 /* Earlyclobbered outputs must conflict with inputs. */
4901 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4902 return 0;
4904 return 1;
4907 /* Return 1 if the value in reload reg REGNO, as used by a reload
4908 needed for the part of the insn specified by OPNUM and TYPE,
4909 may be used to load VALUE into it.
4911 MODE is the mode in which the register is used, this is needed to
4912 determine how many hard regs to test.
4914 Other read-only reloads with the same value do not conflict
4915 unless OUT is nonzero and these other reloads have to live while
4916 output reloads live.
4917 If OUT is CONST0_RTX, this is a special case: it means that the
4918 test should not be for using register REGNO as reload register, but
4919 for copying from register REGNO into the reload register.
4921 RELOADNUM is the number of the reload we want to load this value for;
4922 a reload does not conflict with itself.
4924 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4925 reloads that load an address for the very reload we are considering.
4927 The caller has to make sure that there is no conflict with the return
4928 register. */
4930 static int
4931 free_for_value_p (int regno, enum machine_mode mode, int opnum,
4932 enum reload_type type, rtx value, rtx out, int reloadnum,
4933 int ignore_address_reloads)
4935 int nregs = hard_regno_nregs[regno][mode];
4936 while (nregs-- > 0)
4937 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4938 value, out, reloadnum,
4939 ignore_address_reloads))
4940 return 0;
4941 return 1;
4944 /* Determine whether the reload reg X overlaps any rtx'es used for
4945 overriding inheritance. Return nonzero if so. */
4947 static int
4948 conflicts_with_override (rtx x)
4950 int i;
4951 for (i = 0; i < n_reloads; i++)
4952 if (reload_override_in[i]
4953 && reg_overlap_mentioned_p (x, reload_override_in[i]))
4954 return 1;
4955 return 0;
4958 /* Give an error message saying we failed to find a reload for INSN,
4959 and clear out reload R. */
4960 static void
4961 failed_reload (rtx insn, int r)
4963 if (asm_noperands (PATTERN (insn)) < 0)
4964 /* It's the compiler's fault. */
4965 fatal_insn ("could not find a spill register", insn);
4967 /* It's the user's fault; the operand's mode and constraint
4968 don't match. Disable this reload so we don't crash in final. */
4969 error_for_asm (insn,
4970 "`asm' operand constraint incompatible with operand size");
4971 rld[r].in = 0;
4972 rld[r].out = 0;
4973 rld[r].reg_rtx = 0;
4974 rld[r].optional = 1;
4975 rld[r].secondary_p = 1;
4978 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4979 for reload R. If it's valid, get an rtx for it. Return nonzero if
4980 successful. */
4981 static int
4982 set_reload_reg (int i, int r)
4984 int regno;
4985 rtx reg = spill_reg_rtx[i];
4987 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
4988 spill_reg_rtx[i] = reg
4989 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
4991 regno = true_regnum (reg);
4993 /* Detect when the reload reg can't hold the reload mode.
4994 This used to be one `if', but Sequent compiler can't handle that. */
4995 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
4997 enum machine_mode test_mode = VOIDmode;
4998 if (rld[r].in)
4999 test_mode = GET_MODE (rld[r].in);
5000 /* If rld[r].in has VOIDmode, it means we will load it
5001 in whatever mode the reload reg has: to wit, rld[r].mode.
5002 We have already tested that for validity. */
5003 /* Aside from that, we need to test that the expressions
5004 to reload from or into have modes which are valid for this
5005 reload register. Otherwise the reload insns would be invalid. */
5006 if (! (rld[r].in != 0 && test_mode != VOIDmode
5007 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5008 if (! (rld[r].out != 0
5009 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5011 /* The reg is OK. */
5012 last_spill_reg = i;
5014 /* Mark as in use for this insn the reload regs we use
5015 for this. */
5016 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5017 rld[r].when_needed, rld[r].mode);
5019 rld[r].reg_rtx = reg;
5020 reload_spill_index[r] = spill_regs[i];
5021 return 1;
5024 return 0;
5027 /* Find a spill register to use as a reload register for reload R.
5028 LAST_RELOAD is nonzero if this is the last reload for the insn being
5029 processed.
5031 Set rld[R].reg_rtx to the register allocated.
5033 We return 1 if successful, or 0 if we couldn't find a spill reg and
5034 we didn't change anything. */
5036 static int
5037 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5038 int last_reload)
5040 int i, pass, count;
5042 /* If we put this reload ahead, thinking it is a group,
5043 then insist on finding a group. Otherwise we can grab a
5044 reg that some other reload needs.
5045 (That can happen when we have a 68000 DATA_OR_FP_REG
5046 which is a group of data regs or one fp reg.)
5047 We need not be so restrictive if there are no more reloads
5048 for this insn.
5050 ??? Really it would be nicer to have smarter handling
5051 for that kind of reg class, where a problem like this is normal.
5052 Perhaps those classes should be avoided for reloading
5053 by use of more alternatives. */
5055 int force_group = rld[r].nregs > 1 && ! last_reload;
5057 /* If we want a single register and haven't yet found one,
5058 take any reg in the right class and not in use.
5059 If we want a consecutive group, here is where we look for it.
5061 We use two passes so we can first look for reload regs to
5062 reuse, which are already in use for other reloads in this insn,
5063 and only then use additional registers.
5064 I think that maximizing reuse is needed to make sure we don't
5065 run out of reload regs. Suppose we have three reloads, and
5066 reloads A and B can share regs. These need two regs.
5067 Suppose A and B are given different regs.
5068 That leaves none for C. */
5069 for (pass = 0; pass < 2; pass++)
5071 /* I is the index in spill_regs.
5072 We advance it round-robin between insns to use all spill regs
5073 equally, so that inherited reloads have a chance
5074 of leapfrogging each other. */
5076 i = last_spill_reg;
5078 for (count = 0; count < n_spills; count++)
5080 int class = (int) rld[r].class;
5081 int regnum;
5083 i++;
5084 if (i >= n_spills)
5085 i -= n_spills;
5086 regnum = spill_regs[i];
5088 if ((reload_reg_free_p (regnum, rld[r].opnum,
5089 rld[r].when_needed)
5090 || (rld[r].in
5091 /* We check reload_reg_used to make sure we
5092 don't clobber the return register. */
5093 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5094 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5095 rld[r].when_needed, rld[r].in,
5096 rld[r].out, r, 1)))
5097 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5098 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5099 /* Look first for regs to share, then for unshared. But
5100 don't share regs used for inherited reloads; they are
5101 the ones we want to preserve. */
5102 && (pass
5103 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5104 regnum)
5105 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5106 regnum))))
5108 int nr = hard_regno_nregs[regnum][rld[r].mode];
5109 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5110 (on 68000) got us two FP regs. If NR is 1,
5111 we would reject both of them. */
5112 if (force_group)
5113 nr = rld[r].nregs;
5114 /* If we need only one reg, we have already won. */
5115 if (nr == 1)
5117 /* But reject a single reg if we demand a group. */
5118 if (force_group)
5119 continue;
5120 break;
5122 /* Otherwise check that as many consecutive regs as we need
5123 are available here. */
5124 while (nr > 1)
5126 int regno = regnum + nr - 1;
5127 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5128 && spill_reg_order[regno] >= 0
5129 && reload_reg_free_p (regno, rld[r].opnum,
5130 rld[r].when_needed)))
5131 break;
5132 nr--;
5134 if (nr == 1)
5135 break;
5139 /* If we found something on pass 1, omit pass 2. */
5140 if (count < n_spills)
5141 break;
5144 /* We should have found a spill register by now. */
5145 if (count >= n_spills)
5146 return 0;
5148 /* I is the index in SPILL_REG_RTX of the reload register we are to
5149 allocate. Get an rtx for it and find its register number. */
5151 return set_reload_reg (i, r);
5154 /* Initialize all the tables needed to allocate reload registers.
5155 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5156 is the array we use to restore the reg_rtx field for every reload. */
5158 static void
5159 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5161 int i;
5163 for (i = 0; i < n_reloads; i++)
5164 rld[i].reg_rtx = save_reload_reg_rtx[i];
5166 memset (reload_inherited, 0, MAX_RELOADS);
5167 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5168 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5170 CLEAR_HARD_REG_SET (reload_reg_used);
5171 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5172 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5173 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5174 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5175 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5177 CLEAR_HARD_REG_SET (reg_used_in_insn);
5179 HARD_REG_SET tmp;
5180 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5181 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5182 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5183 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5184 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5185 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5188 for (i = 0; i < reload_n_operands; i++)
5190 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5191 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5192 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5193 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5194 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5195 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5198 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5200 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5202 for (i = 0; i < n_reloads; i++)
5203 /* If we have already decided to use a certain register,
5204 don't use it in another way. */
5205 if (rld[i].reg_rtx)
5206 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5207 rld[i].when_needed, rld[i].mode);
5210 /* Assign hard reg targets for the pseudo-registers we must reload
5211 into hard regs for this insn.
5212 Also output the instructions to copy them in and out of the hard regs.
5214 For machines with register classes, we are responsible for
5215 finding a reload reg in the proper class. */
5217 static void
5218 choose_reload_regs (struct insn_chain *chain)
5220 rtx insn = chain->insn;
5221 int i, j;
5222 unsigned int max_group_size = 1;
5223 enum reg_class group_class = NO_REGS;
5224 int pass, win, inheritance;
5226 rtx save_reload_reg_rtx[MAX_RELOADS];
5228 /* In order to be certain of getting the registers we need,
5229 we must sort the reloads into order of increasing register class.
5230 Then our grabbing of reload registers will parallel the process
5231 that provided the reload registers.
5233 Also note whether any of the reloads wants a consecutive group of regs.
5234 If so, record the maximum size of the group desired and what
5235 register class contains all the groups needed by this insn. */
5237 for (j = 0; j < n_reloads; j++)
5239 reload_order[j] = j;
5240 reload_spill_index[j] = -1;
5242 if (rld[j].nregs > 1)
5244 max_group_size = MAX (rld[j].nregs, max_group_size);
5245 group_class
5246 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5249 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5252 if (n_reloads > 1)
5253 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5255 /* If -O, try first with inheritance, then turning it off.
5256 If not -O, don't do inheritance.
5257 Using inheritance when not optimizing leads to paradoxes
5258 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5259 because one side of the comparison might be inherited. */
5260 win = 0;
5261 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5263 choose_reload_regs_init (chain, save_reload_reg_rtx);
5265 /* Process the reloads in order of preference just found.
5266 Beyond this point, subregs can be found in reload_reg_rtx.
5268 This used to look for an existing reloaded home for all of the
5269 reloads, and only then perform any new reloads. But that could lose
5270 if the reloads were done out of reg-class order because a later
5271 reload with a looser constraint might have an old home in a register
5272 needed by an earlier reload with a tighter constraint.
5274 To solve this, we make two passes over the reloads, in the order
5275 described above. In the first pass we try to inherit a reload
5276 from a previous insn. If there is a later reload that needs a
5277 class that is a proper subset of the class being processed, we must
5278 also allocate a spill register during the first pass.
5280 Then make a second pass over the reloads to allocate any reloads
5281 that haven't been given registers yet. */
5283 for (j = 0; j < n_reloads; j++)
5285 int r = reload_order[j];
5286 rtx search_equiv = NULL_RTX;
5288 /* Ignore reloads that got marked inoperative. */
5289 if (rld[r].out == 0 && rld[r].in == 0
5290 && ! rld[r].secondary_p)
5291 continue;
5293 /* If find_reloads chose to use reload_in or reload_out as a reload
5294 register, we don't need to chose one. Otherwise, try even if it
5295 found one since we might save an insn if we find the value lying
5296 around.
5297 Try also when reload_in is a pseudo without a hard reg. */
5298 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5299 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5300 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5301 && GET_CODE (rld[r].in) != MEM
5302 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5303 continue;
5305 #if 0 /* No longer needed for correct operation.
5306 It might give better code, or might not; worth an experiment? */
5307 /* If this is an optional reload, we can't inherit from earlier insns
5308 until we are sure that any non-optional reloads have been allocated.
5309 The following code takes advantage of the fact that optional reloads
5310 are at the end of reload_order. */
5311 if (rld[r].optional != 0)
5312 for (i = 0; i < j; i++)
5313 if ((rld[reload_order[i]].out != 0
5314 || rld[reload_order[i]].in != 0
5315 || rld[reload_order[i]].secondary_p)
5316 && ! rld[reload_order[i]].optional
5317 && rld[reload_order[i]].reg_rtx == 0)
5318 allocate_reload_reg (chain, reload_order[i], 0);
5319 #endif
5321 /* First see if this pseudo is already available as reloaded
5322 for a previous insn. We cannot try to inherit for reloads
5323 that are smaller than the maximum number of registers needed
5324 for groups unless the register we would allocate cannot be used
5325 for the groups.
5327 We could check here to see if this is a secondary reload for
5328 an object that is already in a register of the desired class.
5329 This would avoid the need for the secondary reload register.
5330 But this is complex because we can't easily determine what
5331 objects might want to be loaded via this reload. So let a
5332 register be allocated here. In `emit_reload_insns' we suppress
5333 one of the loads in the case described above. */
5335 if (inheritance)
5337 int byte = 0;
5338 int regno = -1;
5339 enum machine_mode mode = VOIDmode;
5341 if (rld[r].in == 0)
5343 else if (GET_CODE (rld[r].in) == REG)
5345 regno = REGNO (rld[r].in);
5346 mode = GET_MODE (rld[r].in);
5348 else if (GET_CODE (rld[r].in_reg) == REG)
5350 regno = REGNO (rld[r].in_reg);
5351 mode = GET_MODE (rld[r].in_reg);
5353 else if (GET_CODE (rld[r].in_reg) == SUBREG
5354 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5356 byte = SUBREG_BYTE (rld[r].in_reg);
5357 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5358 if (regno < FIRST_PSEUDO_REGISTER)
5359 regno = subreg_regno (rld[r].in_reg);
5360 mode = GET_MODE (rld[r].in_reg);
5362 #ifdef AUTO_INC_DEC
5363 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5364 || GET_CODE (rld[r].in_reg) == PRE_DEC
5365 || GET_CODE (rld[r].in_reg) == POST_INC
5366 || GET_CODE (rld[r].in_reg) == POST_DEC)
5367 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5369 regno = REGNO (XEXP (rld[r].in_reg, 0));
5370 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5371 rld[r].out = rld[r].in;
5373 #endif
5374 #if 0
5375 /* This won't work, since REGNO can be a pseudo reg number.
5376 Also, it takes much more hair to keep track of all the things
5377 that can invalidate an inherited reload of part of a pseudoreg. */
5378 else if (GET_CODE (rld[r].in) == SUBREG
5379 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5380 regno = subreg_regno (rld[r].in);
5381 #endif
5383 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5385 enum reg_class class = rld[r].class, last_class;
5386 rtx last_reg = reg_last_reload_reg[regno];
5387 enum machine_mode need_mode;
5389 i = REGNO (last_reg);
5390 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5391 last_class = REGNO_REG_CLASS (i);
5393 if (byte == 0)
5394 need_mode = mode;
5395 else
5396 need_mode
5397 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5398 GET_MODE_CLASS (mode));
5400 if (
5401 #ifdef CANNOT_CHANGE_MODE_CLASS
5402 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5403 need_mode)
5405 #endif
5406 (GET_MODE_SIZE (GET_MODE (last_reg))
5407 >= GET_MODE_SIZE (need_mode))
5408 #ifdef CANNOT_CHANGE_MODE_CLASS
5410 #endif
5411 && reg_reloaded_contents[i] == regno
5412 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5413 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5414 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5415 /* Even if we can't use this register as a reload
5416 register, we might use it for reload_override_in,
5417 if copying it to the desired class is cheap
5418 enough. */
5419 || ((REGISTER_MOVE_COST (mode, last_class, class)
5420 < MEMORY_MOVE_COST (mode, class, 1))
5421 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5422 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5423 last_reg)
5424 == NO_REGS)
5425 #endif
5426 #ifdef SECONDARY_MEMORY_NEEDED
5427 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5428 mode)
5429 #endif
5432 && (rld[r].nregs == max_group_size
5433 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5435 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5436 rld[r].when_needed, rld[r].in,
5437 const0_rtx, r, 1))
5439 /* If a group is needed, verify that all the subsequent
5440 registers still have their values intact. */
5441 int nr = hard_regno_nregs[i][rld[r].mode];
5442 int k;
5444 for (k = 1; k < nr; k++)
5445 if (reg_reloaded_contents[i + k] != regno
5446 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5447 break;
5449 if (k == nr)
5451 int i1;
5452 int bad_for_class;
5454 last_reg = (GET_MODE (last_reg) == mode
5455 ? last_reg : gen_rtx_REG (mode, i));
5457 bad_for_class = 0;
5458 for (k = 0; k < nr; k++)
5459 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5460 i+k);
5462 /* We found a register that contains the
5463 value we need. If this register is the
5464 same as an `earlyclobber' operand of the
5465 current insn, just mark it as a place to
5466 reload from since we can't use it as the
5467 reload register itself. */
5469 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5470 if (reg_overlap_mentioned_for_reload_p
5471 (reg_last_reload_reg[regno],
5472 reload_earlyclobbers[i1]))
5473 break;
5475 if (i1 != n_earlyclobbers
5476 || ! (free_for_value_p (i, rld[r].mode,
5477 rld[r].opnum,
5478 rld[r].when_needed, rld[r].in,
5479 rld[r].out, r, 1))
5480 /* Don't use it if we'd clobber a pseudo reg. */
5481 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5482 && rld[r].out
5483 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5484 /* Don't clobber the frame pointer. */
5485 || (i == HARD_FRAME_POINTER_REGNUM
5486 && frame_pointer_needed
5487 && rld[r].out)
5488 /* Don't really use the inherited spill reg
5489 if we need it wider than we've got it. */
5490 || (GET_MODE_SIZE (rld[r].mode)
5491 > GET_MODE_SIZE (mode))
5492 || bad_for_class
5494 /* If find_reloads chose reload_out as reload
5495 register, stay with it - that leaves the
5496 inherited register for subsequent reloads. */
5497 || (rld[r].out && rld[r].reg_rtx
5498 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5500 if (! rld[r].optional)
5502 reload_override_in[r] = last_reg;
5503 reload_inheritance_insn[r]
5504 = reg_reloaded_insn[i];
5507 else
5509 int k;
5510 /* We can use this as a reload reg. */
5511 /* Mark the register as in use for this part of
5512 the insn. */
5513 mark_reload_reg_in_use (i,
5514 rld[r].opnum,
5515 rld[r].when_needed,
5516 rld[r].mode);
5517 rld[r].reg_rtx = last_reg;
5518 reload_inherited[r] = 1;
5519 reload_inheritance_insn[r]
5520 = reg_reloaded_insn[i];
5521 reload_spill_index[r] = i;
5522 for (k = 0; k < nr; k++)
5523 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5524 i + k);
5531 /* Here's another way to see if the value is already lying around. */
5532 if (inheritance
5533 && rld[r].in != 0
5534 && ! reload_inherited[r]
5535 && rld[r].out == 0
5536 && (CONSTANT_P (rld[r].in)
5537 || GET_CODE (rld[r].in) == PLUS
5538 || GET_CODE (rld[r].in) == REG
5539 || GET_CODE (rld[r].in) == MEM)
5540 && (rld[r].nregs == max_group_size
5541 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5542 search_equiv = rld[r].in;
5543 /* If this is an output reload from a simple move insn, look
5544 if an equivalence for the input is available. */
5545 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5547 rtx set = single_set (insn);
5549 if (set
5550 && rtx_equal_p (rld[r].out, SET_DEST (set))
5551 && CONSTANT_P (SET_SRC (set)))
5552 search_equiv = SET_SRC (set);
5555 if (search_equiv)
5557 rtx equiv
5558 = find_equiv_reg (search_equiv, insn, rld[r].class,
5559 -1, NULL, 0, rld[r].mode);
5560 int regno = 0;
5562 if (equiv != 0)
5564 if (GET_CODE (equiv) == REG)
5565 regno = REGNO (equiv);
5566 else if (GET_CODE (equiv) == SUBREG)
5568 /* This must be a SUBREG of a hard register.
5569 Make a new REG since this might be used in an
5570 address and not all machines support SUBREGs
5571 there. */
5572 regno = subreg_regno (equiv);
5573 equiv = gen_rtx_REG (rld[r].mode, regno);
5575 else
5576 abort ();
5579 /* If we found a spill reg, reject it unless it is free
5580 and of the desired class. */
5581 if (equiv != 0)
5583 int regs_used = 0;
5584 int bad_for_class = 0;
5585 int max_regno = regno + rld[r].nregs;
5587 for (i = regno; i < max_regno; i++)
5589 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5591 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5595 if ((regs_used
5596 && ! free_for_value_p (regno, rld[r].mode,
5597 rld[r].opnum, rld[r].when_needed,
5598 rld[r].in, rld[r].out, r, 1))
5599 || bad_for_class)
5600 equiv = 0;
5603 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5604 equiv = 0;
5606 /* We found a register that contains the value we need.
5607 If this register is the same as an `earlyclobber' operand
5608 of the current insn, just mark it as a place to reload from
5609 since we can't use it as the reload register itself. */
5611 if (equiv != 0)
5612 for (i = 0; i < n_earlyclobbers; i++)
5613 if (reg_overlap_mentioned_for_reload_p (equiv,
5614 reload_earlyclobbers[i]))
5616 if (! rld[r].optional)
5617 reload_override_in[r] = equiv;
5618 equiv = 0;
5619 break;
5622 /* If the equiv register we have found is explicitly clobbered
5623 in the current insn, it depends on the reload type if we
5624 can use it, use it for reload_override_in, or not at all.
5625 In particular, we then can't use EQUIV for a
5626 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5628 if (equiv != 0)
5630 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5631 switch (rld[r].when_needed)
5633 case RELOAD_FOR_OTHER_ADDRESS:
5634 case RELOAD_FOR_INPADDR_ADDRESS:
5635 case RELOAD_FOR_INPUT_ADDRESS:
5636 case RELOAD_FOR_OPADDR_ADDR:
5637 break;
5638 case RELOAD_OTHER:
5639 case RELOAD_FOR_INPUT:
5640 case RELOAD_FOR_OPERAND_ADDRESS:
5641 if (! rld[r].optional)
5642 reload_override_in[r] = equiv;
5643 /* Fall through. */
5644 default:
5645 equiv = 0;
5646 break;
5648 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5649 switch (rld[r].when_needed)
5651 case RELOAD_FOR_OTHER_ADDRESS:
5652 case RELOAD_FOR_INPADDR_ADDRESS:
5653 case RELOAD_FOR_INPUT_ADDRESS:
5654 case RELOAD_FOR_OPADDR_ADDR:
5655 case RELOAD_FOR_OPERAND_ADDRESS:
5656 case RELOAD_FOR_INPUT:
5657 break;
5658 case RELOAD_OTHER:
5659 if (! rld[r].optional)
5660 reload_override_in[r] = equiv;
5661 /* Fall through. */
5662 default:
5663 equiv = 0;
5664 break;
5668 /* If we found an equivalent reg, say no code need be generated
5669 to load it, and use it as our reload reg. */
5670 if (equiv != 0
5671 && (regno != HARD_FRAME_POINTER_REGNUM
5672 || !frame_pointer_needed))
5674 int nr = hard_regno_nregs[regno][rld[r].mode];
5675 int k;
5676 rld[r].reg_rtx = equiv;
5677 reload_inherited[r] = 1;
5679 /* If reg_reloaded_valid is not set for this register,
5680 there might be a stale spill_reg_store lying around.
5681 We must clear it, since otherwise emit_reload_insns
5682 might delete the store. */
5683 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5684 spill_reg_store[regno] = NULL_RTX;
5685 /* If any of the hard registers in EQUIV are spill
5686 registers, mark them as in use for this insn. */
5687 for (k = 0; k < nr; k++)
5689 i = spill_reg_order[regno + k];
5690 if (i >= 0)
5692 mark_reload_reg_in_use (regno, rld[r].opnum,
5693 rld[r].when_needed,
5694 rld[r].mode);
5695 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5696 regno + k);
5702 /* If we found a register to use already, or if this is an optional
5703 reload, we are done. */
5704 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5705 continue;
5707 #if 0
5708 /* No longer needed for correct operation. Might or might
5709 not give better code on the average. Want to experiment? */
5711 /* See if there is a later reload that has a class different from our
5712 class that intersects our class or that requires less register
5713 than our reload. If so, we must allocate a register to this
5714 reload now, since that reload might inherit a previous reload
5715 and take the only available register in our class. Don't do this
5716 for optional reloads since they will force all previous reloads
5717 to be allocated. Also don't do this for reloads that have been
5718 turned off. */
5720 for (i = j + 1; i < n_reloads; i++)
5722 int s = reload_order[i];
5724 if ((rld[s].in == 0 && rld[s].out == 0
5725 && ! rld[s].secondary_p)
5726 || rld[s].optional)
5727 continue;
5729 if ((rld[s].class != rld[r].class
5730 && reg_classes_intersect_p (rld[r].class,
5731 rld[s].class))
5732 || rld[s].nregs < rld[r].nregs)
5733 break;
5736 if (i == n_reloads)
5737 continue;
5739 allocate_reload_reg (chain, r, j == n_reloads - 1);
5740 #endif
5743 /* Now allocate reload registers for anything non-optional that
5744 didn't get one yet. */
5745 for (j = 0; j < n_reloads; j++)
5747 int r = reload_order[j];
5749 /* Ignore reloads that got marked inoperative. */
5750 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5751 continue;
5753 /* Skip reloads that already have a register allocated or are
5754 optional. */
5755 if (rld[r].reg_rtx != 0 || rld[r].optional)
5756 continue;
5758 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5759 break;
5762 /* If that loop got all the way, we have won. */
5763 if (j == n_reloads)
5765 win = 1;
5766 break;
5769 /* Loop around and try without any inheritance. */
5772 if (! win)
5774 /* First undo everything done by the failed attempt
5775 to allocate with inheritance. */
5776 choose_reload_regs_init (chain, save_reload_reg_rtx);
5778 /* Some sanity tests to verify that the reloads found in the first
5779 pass are identical to the ones we have now. */
5780 if (chain->n_reloads != n_reloads)
5781 abort ();
5783 for (i = 0; i < n_reloads; i++)
5785 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5786 continue;
5787 if (chain->rld[i].when_needed != rld[i].when_needed)
5788 abort ();
5789 for (j = 0; j < n_spills; j++)
5790 if (spill_regs[j] == chain->rld[i].regno)
5791 if (! set_reload_reg (j, i))
5792 failed_reload (chain->insn, i);
5796 /* If we thought we could inherit a reload, because it seemed that
5797 nothing else wanted the same reload register earlier in the insn,
5798 verify that assumption, now that all reloads have been assigned.
5799 Likewise for reloads where reload_override_in has been set. */
5801 /* If doing expensive optimizations, do one preliminary pass that doesn't
5802 cancel any inheritance, but removes reloads that have been needed only
5803 for reloads that we know can be inherited. */
5804 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5806 for (j = 0; j < n_reloads; j++)
5808 int r = reload_order[j];
5809 rtx check_reg;
5810 if (reload_inherited[r] && rld[r].reg_rtx)
5811 check_reg = rld[r].reg_rtx;
5812 else if (reload_override_in[r]
5813 && (GET_CODE (reload_override_in[r]) == REG
5814 || GET_CODE (reload_override_in[r]) == SUBREG))
5815 check_reg = reload_override_in[r];
5816 else
5817 continue;
5818 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5819 rld[r].opnum, rld[r].when_needed, rld[r].in,
5820 (reload_inherited[r]
5821 ? rld[r].out : const0_rtx),
5822 r, 1))
5824 if (pass)
5825 continue;
5826 reload_inherited[r] = 0;
5827 reload_override_in[r] = 0;
5829 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5830 reload_override_in, then we do not need its related
5831 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5832 likewise for other reload types.
5833 We handle this by removing a reload when its only replacement
5834 is mentioned in reload_in of the reload we are going to inherit.
5835 A special case are auto_inc expressions; even if the input is
5836 inherited, we still need the address for the output. We can
5837 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5838 If we succeeded removing some reload and we are doing a preliminary
5839 pass just to remove such reloads, make another pass, since the
5840 removal of one reload might allow us to inherit another one. */
5841 else if (rld[r].in
5842 && rld[r].out != rld[r].in
5843 && remove_address_replacements (rld[r].in) && pass)
5844 pass = 2;
5848 /* Now that reload_override_in is known valid,
5849 actually override reload_in. */
5850 for (j = 0; j < n_reloads; j++)
5851 if (reload_override_in[j])
5852 rld[j].in = reload_override_in[j];
5854 /* If this reload won't be done because it has been canceled or is
5855 optional and not inherited, clear reload_reg_rtx so other
5856 routines (such as subst_reloads) don't get confused. */
5857 for (j = 0; j < n_reloads; j++)
5858 if (rld[j].reg_rtx != 0
5859 && ((rld[j].optional && ! reload_inherited[j])
5860 || (rld[j].in == 0 && rld[j].out == 0
5861 && ! rld[j].secondary_p)))
5863 int regno = true_regnum (rld[j].reg_rtx);
5865 if (spill_reg_order[regno] >= 0)
5866 clear_reload_reg_in_use (regno, rld[j].opnum,
5867 rld[j].when_needed, rld[j].mode);
5868 rld[j].reg_rtx = 0;
5869 reload_spill_index[j] = -1;
5872 /* Record which pseudos and which spill regs have output reloads. */
5873 for (j = 0; j < n_reloads; j++)
5875 int r = reload_order[j];
5877 i = reload_spill_index[r];
5879 /* I is nonneg if this reload uses a register.
5880 If rld[r].reg_rtx is 0, this is an optional reload
5881 that we opted to ignore. */
5882 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5883 && rld[r].reg_rtx != 0)
5885 int nregno = REGNO (rld[r].out_reg);
5886 int nr = 1;
5888 if (nregno < FIRST_PSEUDO_REGISTER)
5889 nr = hard_regno_nregs[nregno][rld[r].mode];
5891 while (--nr >= 0)
5892 reg_has_output_reload[nregno + nr] = 1;
5894 if (i >= 0)
5896 nr = hard_regno_nregs[i][rld[r].mode];
5897 while (--nr >= 0)
5898 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5901 if (rld[r].when_needed != RELOAD_OTHER
5902 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5903 && rld[r].when_needed != RELOAD_FOR_INSN)
5904 abort ();
5909 /* Deallocate the reload register for reload R. This is called from
5910 remove_address_replacements. */
5912 void
5913 deallocate_reload_reg (int r)
5915 int regno;
5917 if (! rld[r].reg_rtx)
5918 return;
5919 regno = true_regnum (rld[r].reg_rtx);
5920 rld[r].reg_rtx = 0;
5921 if (spill_reg_order[regno] >= 0)
5922 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5923 rld[r].mode);
5924 reload_spill_index[r] = -1;
5927 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
5928 reloads of the same item for fear that we might not have enough reload
5929 registers. However, normally they will get the same reload register
5930 and hence actually need not be loaded twice.
5932 Here we check for the most common case of this phenomenon: when we have
5933 a number of reloads for the same object, each of which were allocated
5934 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5935 reload, and is not modified in the insn itself. If we find such,
5936 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5937 This will not increase the number of spill registers needed and will
5938 prevent redundant code. */
5940 static void
5941 merge_assigned_reloads (rtx insn)
5943 int i, j;
5945 /* Scan all the reloads looking for ones that only load values and
5946 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5947 assigned and not modified by INSN. */
5949 for (i = 0; i < n_reloads; i++)
5951 int conflicting_input = 0;
5952 int max_input_address_opnum = -1;
5953 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5955 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5956 || rld[i].out != 0 || rld[i].reg_rtx == 0
5957 || reg_set_p (rld[i].reg_rtx, insn))
5958 continue;
5960 /* Look at all other reloads. Ensure that the only use of this
5961 reload_reg_rtx is in a reload that just loads the same value
5962 as we do. Note that any secondary reloads must be of the identical
5963 class since the values, modes, and result registers are the
5964 same, so we need not do anything with any secondary reloads. */
5966 for (j = 0; j < n_reloads; j++)
5968 if (i == j || rld[j].reg_rtx == 0
5969 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5970 rld[i].reg_rtx))
5971 continue;
5973 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5974 && rld[j].opnum > max_input_address_opnum)
5975 max_input_address_opnum = rld[j].opnum;
5977 /* If the reload regs aren't exactly the same (e.g, different modes)
5978 or if the values are different, we can't merge this reload.
5979 But if it is an input reload, we might still merge
5980 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
5982 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5983 || rld[j].out != 0 || rld[j].in == 0
5984 || ! rtx_equal_p (rld[i].in, rld[j].in))
5986 if (rld[j].when_needed != RELOAD_FOR_INPUT
5987 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
5988 || rld[i].opnum > rld[j].opnum)
5989 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
5990 break;
5991 conflicting_input = 1;
5992 if (min_conflicting_input_opnum > rld[j].opnum)
5993 min_conflicting_input_opnum = rld[j].opnum;
5997 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
5998 we, in fact, found any matching reloads. */
6000 if (j == n_reloads
6001 && max_input_address_opnum <= min_conflicting_input_opnum)
6003 for (j = 0; j < n_reloads; j++)
6004 if (i != j && rld[j].reg_rtx != 0
6005 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6006 && (! conflicting_input
6007 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6008 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6010 rld[i].when_needed = RELOAD_OTHER;
6011 rld[j].in = 0;
6012 reload_spill_index[j] = -1;
6013 transfer_replacements (i, j);
6016 /* If this is now RELOAD_OTHER, look for any reloads that load
6017 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6018 if they were for inputs, RELOAD_OTHER for outputs. Note that
6019 this test is equivalent to looking for reloads for this operand
6020 number. */
6021 /* We must take special care when there are two or more reloads to
6022 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6023 same value or a part of it; we must not change its type if there
6024 is a conflicting input. */
6026 if (rld[i].when_needed == RELOAD_OTHER)
6027 for (j = 0; j < n_reloads; j++)
6028 if (rld[j].in != 0
6029 && rld[j].when_needed != RELOAD_OTHER
6030 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6031 && (! conflicting_input
6032 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6033 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6034 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6035 rld[i].in))
6037 int k;
6039 rld[j].when_needed
6040 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6041 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6042 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6044 /* Check to see if we accidentally converted two reloads
6045 that use the same reload register with different inputs
6046 to the same type. If so, the resulting code won't work,
6047 so abort. */
6048 if (rld[j].reg_rtx)
6049 for (k = 0; k < j; k++)
6050 if (rld[k].in != 0 && rld[k].reg_rtx != 0
6051 && rld[k].when_needed == rld[j].when_needed
6052 && rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx)
6053 && ! rtx_equal_p (rld[k].in, rld[j].in))
6054 abort ();
6060 /* These arrays are filled by emit_reload_insns and its subroutines. */
6061 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6062 static rtx other_input_address_reload_insns = 0;
6063 static rtx other_input_reload_insns = 0;
6064 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6065 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6066 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6067 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6068 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6069 static rtx operand_reload_insns = 0;
6070 static rtx other_operand_reload_insns = 0;
6071 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6073 /* Values to be put in spill_reg_store are put here first. */
6074 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6075 static HARD_REG_SET reg_reloaded_died;
6077 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6078 has the number J. OLD contains the value to be used as input. */
6080 static void
6081 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6082 rtx old, int j)
6084 rtx insn = chain->insn;
6085 rtx reloadreg = rl->reg_rtx;
6086 rtx oldequiv_reg = 0;
6087 rtx oldequiv = 0;
6088 int special = 0;
6089 enum machine_mode mode;
6090 rtx *where;
6092 /* Determine the mode to reload in.
6093 This is very tricky because we have three to choose from.
6094 There is the mode the insn operand wants (rl->inmode).
6095 There is the mode of the reload register RELOADREG.
6096 There is the intrinsic mode of the operand, which we could find
6097 by stripping some SUBREGs.
6098 It turns out that RELOADREG's mode is irrelevant:
6099 we can change that arbitrarily.
6101 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6102 then the reload reg may not support QImode moves, so use SImode.
6103 If foo is in memory due to spilling a pseudo reg, this is safe,
6104 because the QImode value is in the least significant part of a
6105 slot big enough for a SImode. If foo is some other sort of
6106 memory reference, then it is impossible to reload this case,
6107 so previous passes had better make sure this never happens.
6109 Then consider a one-word union which has SImode and one of its
6110 members is a float, being fetched as (SUBREG:SF union:SI).
6111 We must fetch that as SFmode because we could be loading into
6112 a float-only register. In this case OLD's mode is correct.
6114 Consider an immediate integer: it has VOIDmode. Here we need
6115 to get a mode from something else.
6117 In some cases, there is a fourth mode, the operand's
6118 containing mode. If the insn specifies a containing mode for
6119 this operand, it overrides all others.
6121 I am not sure whether the algorithm here is always right,
6122 but it does the right things in those cases. */
6124 mode = GET_MODE (old);
6125 if (mode == VOIDmode)
6126 mode = rl->inmode;
6128 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6129 /* If we need a secondary register for this operation, see if
6130 the value is already in a register in that class. Don't
6131 do this if the secondary register will be used as a scratch
6132 register. */
6134 if (rl->secondary_in_reload >= 0
6135 && rl->secondary_in_icode == CODE_FOR_nothing
6136 && optimize)
6137 oldequiv
6138 = find_equiv_reg (old, insn,
6139 rld[rl->secondary_in_reload].class,
6140 -1, NULL, 0, mode);
6141 #endif
6143 /* If reloading from memory, see if there is a register
6144 that already holds the same value. If so, reload from there.
6145 We can pass 0 as the reload_reg_p argument because
6146 any other reload has either already been emitted,
6147 in which case find_equiv_reg will see the reload-insn,
6148 or has yet to be emitted, in which case it doesn't matter
6149 because we will use this equiv reg right away. */
6151 if (oldequiv == 0 && optimize
6152 && (GET_CODE (old) == MEM
6153 || (GET_CODE (old) == REG
6154 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6155 && reg_renumber[REGNO (old)] < 0)))
6156 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6158 if (oldequiv)
6160 unsigned int regno = true_regnum (oldequiv);
6162 /* Don't use OLDEQUIV if any other reload changes it at an
6163 earlier stage of this insn or at this stage. */
6164 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6165 rl->in, const0_rtx, j, 0))
6166 oldequiv = 0;
6168 /* If it is no cheaper to copy from OLDEQUIV into the
6169 reload register than it would be to move from memory,
6170 don't use it. Likewise, if we need a secondary register
6171 or memory. */
6173 if (oldequiv != 0
6174 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6175 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6176 rl->class)
6177 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6178 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6179 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6180 mode, oldequiv)
6181 != NO_REGS)
6182 #endif
6183 #ifdef SECONDARY_MEMORY_NEEDED
6184 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6185 rl->class,
6186 mode)
6187 #endif
6189 oldequiv = 0;
6192 /* delete_output_reload is only invoked properly if old contains
6193 the original pseudo register. Since this is replaced with a
6194 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6195 find the pseudo in RELOAD_IN_REG. */
6196 if (oldequiv == 0
6197 && reload_override_in[j]
6198 && GET_CODE (rl->in_reg) == REG)
6200 oldequiv = old;
6201 old = rl->in_reg;
6203 if (oldequiv == 0)
6204 oldequiv = old;
6205 else if (GET_CODE (oldequiv) == REG)
6206 oldequiv_reg = oldequiv;
6207 else if (GET_CODE (oldequiv) == SUBREG)
6208 oldequiv_reg = SUBREG_REG (oldequiv);
6210 /* If we are reloading from a register that was recently stored in
6211 with an output-reload, see if we can prove there was
6212 actually no need to store the old value in it. */
6214 if (optimize && GET_CODE (oldequiv) == REG
6215 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6216 && spill_reg_store[REGNO (oldequiv)]
6217 && GET_CODE (old) == REG
6218 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6219 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6220 rl->out_reg)))
6221 delete_output_reload (insn, j, REGNO (oldequiv));
6223 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6224 then load RELOADREG from OLDEQUIV. Note that we cannot use
6225 gen_lowpart_common since it can do the wrong thing when
6226 RELOADREG has a multi-word mode. Note that RELOADREG
6227 must always be a REG here. */
6229 if (GET_MODE (reloadreg) != mode)
6230 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6231 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6232 oldequiv = SUBREG_REG (oldequiv);
6233 if (GET_MODE (oldequiv) != VOIDmode
6234 && mode != GET_MODE (oldequiv))
6235 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6237 /* Switch to the right place to emit the reload insns. */
6238 switch (rl->when_needed)
6240 case RELOAD_OTHER:
6241 where = &other_input_reload_insns;
6242 break;
6243 case RELOAD_FOR_INPUT:
6244 where = &input_reload_insns[rl->opnum];
6245 break;
6246 case RELOAD_FOR_INPUT_ADDRESS:
6247 where = &input_address_reload_insns[rl->opnum];
6248 break;
6249 case RELOAD_FOR_INPADDR_ADDRESS:
6250 where = &inpaddr_address_reload_insns[rl->opnum];
6251 break;
6252 case RELOAD_FOR_OUTPUT_ADDRESS:
6253 where = &output_address_reload_insns[rl->opnum];
6254 break;
6255 case RELOAD_FOR_OUTADDR_ADDRESS:
6256 where = &outaddr_address_reload_insns[rl->opnum];
6257 break;
6258 case RELOAD_FOR_OPERAND_ADDRESS:
6259 where = &operand_reload_insns;
6260 break;
6261 case RELOAD_FOR_OPADDR_ADDR:
6262 where = &other_operand_reload_insns;
6263 break;
6264 case RELOAD_FOR_OTHER_ADDRESS:
6265 where = &other_input_address_reload_insns;
6266 break;
6267 default:
6268 abort ();
6271 push_to_sequence (*where);
6273 /* Auto-increment addresses must be reloaded in a special way. */
6274 if (rl->out && ! rl->out_reg)
6276 /* We are not going to bother supporting the case where a
6277 incremented register can't be copied directly from
6278 OLDEQUIV since this seems highly unlikely. */
6279 if (rl->secondary_in_reload >= 0)
6280 abort ();
6282 if (reload_inherited[j])
6283 oldequiv = reloadreg;
6285 old = XEXP (rl->in_reg, 0);
6287 if (optimize && GET_CODE (oldequiv) == REG
6288 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6289 && spill_reg_store[REGNO (oldequiv)]
6290 && GET_CODE (old) == REG
6291 && (dead_or_set_p (insn,
6292 spill_reg_stored_to[REGNO (oldequiv)])
6293 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6294 old)))
6295 delete_output_reload (insn, j, REGNO (oldequiv));
6297 /* Prevent normal processing of this reload. */
6298 special = 1;
6299 /* Output a special code sequence for this case. */
6300 new_spill_reg_store[REGNO (reloadreg)]
6301 = inc_for_reload (reloadreg, oldequiv, rl->out,
6302 rl->inc);
6305 /* If we are reloading a pseudo-register that was set by the previous
6306 insn, see if we can get rid of that pseudo-register entirely
6307 by redirecting the previous insn into our reload register. */
6309 else if (optimize && GET_CODE (old) == REG
6310 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6311 && dead_or_set_p (insn, old)
6312 /* This is unsafe if some other reload
6313 uses the same reg first. */
6314 && ! conflicts_with_override (reloadreg)
6315 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6316 rl->when_needed, old, rl->out, j, 0))
6318 rtx temp = PREV_INSN (insn);
6319 while (temp && GET_CODE (temp) == NOTE)
6320 temp = PREV_INSN (temp);
6321 if (temp
6322 && GET_CODE (temp) == INSN
6323 && GET_CODE (PATTERN (temp)) == SET
6324 && SET_DEST (PATTERN (temp)) == old
6325 /* Make sure we can access insn_operand_constraint. */
6326 && asm_noperands (PATTERN (temp)) < 0
6327 /* This is unsafe if operand occurs more than once in current
6328 insn. Perhaps some occurrences aren't reloaded. */
6329 && count_occurrences (PATTERN (insn), old, 0) == 1)
6331 rtx old = SET_DEST (PATTERN (temp));
6332 /* Store into the reload register instead of the pseudo. */
6333 SET_DEST (PATTERN (temp)) = reloadreg;
6335 /* Verify that resulting insn is valid. */
6336 extract_insn (temp);
6337 if (constrain_operands (1))
6339 /* If the previous insn is an output reload, the source is
6340 a reload register, and its spill_reg_store entry will
6341 contain the previous destination. This is now
6342 invalid. */
6343 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6344 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6346 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6347 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6350 /* If these are the only uses of the pseudo reg,
6351 pretend for GDB it lives in the reload reg we used. */
6352 if (REG_N_DEATHS (REGNO (old)) == 1
6353 && REG_N_SETS (REGNO (old)) == 1)
6355 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6356 alter_reg (REGNO (old), -1);
6358 special = 1;
6360 else
6362 SET_DEST (PATTERN (temp)) = old;
6367 /* We can't do that, so output an insn to load RELOADREG. */
6369 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6370 /* If we have a secondary reload, pick up the secondary register
6371 and icode, if any. If OLDEQUIV and OLD are different or
6372 if this is an in-out reload, recompute whether or not we
6373 still need a secondary register and what the icode should
6374 be. If we still need a secondary register and the class or
6375 icode is different, go back to reloading from OLD if using
6376 OLDEQUIV means that we got the wrong type of register. We
6377 cannot have different class or icode due to an in-out reload
6378 because we don't make such reloads when both the input and
6379 output need secondary reload registers. */
6381 if (! special && rl->secondary_in_reload >= 0)
6383 rtx second_reload_reg = 0;
6384 int secondary_reload = rl->secondary_in_reload;
6385 rtx real_oldequiv = oldequiv;
6386 rtx real_old = old;
6387 rtx tmp;
6388 enum insn_code icode;
6390 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6391 and similarly for OLD.
6392 See comments in get_secondary_reload in reload.c. */
6393 /* If it is a pseudo that cannot be replaced with its
6394 equivalent MEM, we must fall back to reload_in, which
6395 will have all the necessary substitutions registered.
6396 Likewise for a pseudo that can't be replaced with its
6397 equivalent constant.
6399 Take extra care for subregs of such pseudos. Note that
6400 we cannot use reg_equiv_mem in this case because it is
6401 not in the right mode. */
6403 tmp = oldequiv;
6404 if (GET_CODE (tmp) == SUBREG)
6405 tmp = SUBREG_REG (tmp);
6406 if (GET_CODE (tmp) == REG
6407 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6408 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6409 || reg_equiv_constant[REGNO (tmp)] != 0))
6411 if (! reg_equiv_mem[REGNO (tmp)]
6412 || num_not_at_initial_offset
6413 || GET_CODE (oldequiv) == SUBREG)
6414 real_oldequiv = rl->in;
6415 else
6416 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6419 tmp = old;
6420 if (GET_CODE (tmp) == SUBREG)
6421 tmp = SUBREG_REG (tmp);
6422 if (GET_CODE (tmp) == REG
6423 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6424 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6425 || reg_equiv_constant[REGNO (tmp)] != 0))
6427 if (! reg_equiv_mem[REGNO (tmp)]
6428 || num_not_at_initial_offset
6429 || GET_CODE (old) == SUBREG)
6430 real_old = rl->in;
6431 else
6432 real_old = reg_equiv_mem[REGNO (tmp)];
6435 second_reload_reg = rld[secondary_reload].reg_rtx;
6436 icode = rl->secondary_in_icode;
6438 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6439 || (rl->in != 0 && rl->out != 0))
6441 enum reg_class new_class
6442 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6443 mode, real_oldequiv);
6445 if (new_class == NO_REGS)
6446 second_reload_reg = 0;
6447 else
6449 enum insn_code new_icode;
6450 enum machine_mode new_mode;
6452 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6453 REGNO (second_reload_reg)))
6454 oldequiv = old, real_oldequiv = real_old;
6455 else
6457 new_icode = reload_in_optab[(int) mode];
6458 if (new_icode != CODE_FOR_nothing
6459 && ((insn_data[(int) new_icode].operand[0].predicate
6460 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6461 (reloadreg, mode)))
6462 || (insn_data[(int) new_icode].operand[1].predicate
6463 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6464 (real_oldequiv, mode)))))
6465 new_icode = CODE_FOR_nothing;
6467 if (new_icode == CODE_FOR_nothing)
6468 new_mode = mode;
6469 else
6470 new_mode = insn_data[(int) new_icode].operand[2].mode;
6472 if (GET_MODE (second_reload_reg) != new_mode)
6474 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6475 new_mode))
6476 oldequiv = old, real_oldequiv = real_old;
6477 else
6478 second_reload_reg
6479 = reload_adjust_reg_for_mode (second_reload_reg,
6480 new_mode);
6486 /* If we still need a secondary reload register, check
6487 to see if it is being used as a scratch or intermediate
6488 register and generate code appropriately. If we need
6489 a scratch register, use REAL_OLDEQUIV since the form of
6490 the insn may depend on the actual address if it is
6491 a MEM. */
6493 if (second_reload_reg)
6495 if (icode != CODE_FOR_nothing)
6497 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6498 second_reload_reg));
6499 special = 1;
6501 else
6503 /* See if we need a scratch register to load the
6504 intermediate register (a tertiary reload). */
6505 enum insn_code tertiary_icode
6506 = rld[secondary_reload].secondary_in_icode;
6508 if (tertiary_icode != CODE_FOR_nothing)
6510 rtx third_reload_reg
6511 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6513 emit_insn ((GEN_FCN (tertiary_icode)
6514 (second_reload_reg, real_oldequiv,
6515 third_reload_reg)));
6517 else
6518 gen_reload (second_reload_reg, real_oldequiv,
6519 rl->opnum,
6520 rl->when_needed);
6522 oldequiv = second_reload_reg;
6526 #endif
6528 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6530 rtx real_oldequiv = oldequiv;
6532 if ((GET_CODE (oldequiv) == REG
6533 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6534 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6535 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6536 || (GET_CODE (oldequiv) == SUBREG
6537 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6538 && (REGNO (SUBREG_REG (oldequiv))
6539 >= FIRST_PSEUDO_REGISTER)
6540 && ((reg_equiv_memory_loc
6541 [REGNO (SUBREG_REG (oldequiv))] != 0)
6542 || (reg_equiv_constant
6543 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6544 || (CONSTANT_P (oldequiv)
6545 && (PREFERRED_RELOAD_CLASS (oldequiv,
6546 REGNO_REG_CLASS (REGNO (reloadreg)))
6547 == NO_REGS)))
6548 real_oldequiv = rl->in;
6549 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6550 rl->when_needed);
6553 if (flag_non_call_exceptions)
6554 copy_eh_notes (insn, get_insns ());
6556 /* End this sequence. */
6557 *where = get_insns ();
6558 end_sequence ();
6560 /* Update reload_override_in so that delete_address_reloads_1
6561 can see the actual register usage. */
6562 if (oldequiv_reg)
6563 reload_override_in[j] = oldequiv;
6566 /* Generate insns to for the output reload RL, which is for the insn described
6567 by CHAIN and has the number J. */
6568 static void
6569 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6570 int j)
6572 rtx reloadreg = rl->reg_rtx;
6573 rtx insn = chain->insn;
6574 int special = 0;
6575 rtx old = rl->out;
6576 enum machine_mode mode = GET_MODE (old);
6577 rtx p;
6579 if (rl->when_needed == RELOAD_OTHER)
6580 start_sequence ();
6581 else
6582 push_to_sequence (output_reload_insns[rl->opnum]);
6584 /* Determine the mode to reload in.
6585 See comments above (for input reloading). */
6587 if (mode == VOIDmode)
6589 /* VOIDmode should never happen for an output. */
6590 if (asm_noperands (PATTERN (insn)) < 0)
6591 /* It's the compiler's fault. */
6592 fatal_insn ("VOIDmode on an output", insn);
6593 error_for_asm (insn, "output operand is constant in `asm'");
6594 /* Prevent crash--use something we know is valid. */
6595 mode = word_mode;
6596 old = gen_rtx_REG (mode, REGNO (reloadreg));
6599 if (GET_MODE (reloadreg) != mode)
6600 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6602 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6604 /* If we need two reload regs, set RELOADREG to the intermediate
6605 one, since it will be stored into OLD. We might need a secondary
6606 register only for an input reload, so check again here. */
6608 if (rl->secondary_out_reload >= 0)
6610 rtx real_old = old;
6612 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6613 && reg_equiv_mem[REGNO (old)] != 0)
6614 real_old = reg_equiv_mem[REGNO (old)];
6616 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6617 mode, real_old)
6618 != NO_REGS))
6620 rtx second_reloadreg = reloadreg;
6621 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6623 /* See if RELOADREG is to be used as a scratch register
6624 or as an intermediate register. */
6625 if (rl->secondary_out_icode != CODE_FOR_nothing)
6627 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6628 (real_old, second_reloadreg, reloadreg)));
6629 special = 1;
6631 else
6633 /* See if we need both a scratch and intermediate reload
6634 register. */
6636 int secondary_reload = rl->secondary_out_reload;
6637 enum insn_code tertiary_icode
6638 = rld[secondary_reload].secondary_out_icode;
6640 if (GET_MODE (reloadreg) != mode)
6641 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6643 if (tertiary_icode != CODE_FOR_nothing)
6645 rtx third_reloadreg
6646 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6647 rtx tem;
6649 /* Copy primary reload reg to secondary reload reg.
6650 (Note that these have been swapped above, then
6651 secondary reload reg to OLD using our insn.) */
6653 /* If REAL_OLD is a paradoxical SUBREG, remove it
6654 and try to put the opposite SUBREG on
6655 RELOADREG. */
6656 if (GET_CODE (real_old) == SUBREG
6657 && (GET_MODE_SIZE (GET_MODE (real_old))
6658 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6659 && 0 != (tem = gen_lowpart_common
6660 (GET_MODE (SUBREG_REG (real_old)),
6661 reloadreg)))
6662 real_old = SUBREG_REG (real_old), reloadreg = tem;
6664 gen_reload (reloadreg, second_reloadreg,
6665 rl->opnum, rl->when_needed);
6666 emit_insn ((GEN_FCN (tertiary_icode)
6667 (real_old, reloadreg, third_reloadreg)));
6668 special = 1;
6671 else
6672 /* Copy between the reload regs here and then to
6673 OUT later. */
6675 gen_reload (reloadreg, second_reloadreg,
6676 rl->opnum, rl->when_needed);
6680 #endif
6682 /* Output the last reload insn. */
6683 if (! special)
6685 rtx set;
6687 /* Don't output the last reload if OLD is not the dest of
6688 INSN and is in the src and is clobbered by INSN. */
6689 if (! flag_expensive_optimizations
6690 || GET_CODE (old) != REG
6691 || !(set = single_set (insn))
6692 || rtx_equal_p (old, SET_DEST (set))
6693 || !reg_mentioned_p (old, SET_SRC (set))
6694 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6695 gen_reload (old, reloadreg, rl->opnum,
6696 rl->when_needed);
6699 /* Look at all insns we emitted, just to be safe. */
6700 for (p = get_insns (); p; p = NEXT_INSN (p))
6701 if (INSN_P (p))
6703 rtx pat = PATTERN (p);
6705 /* If this output reload doesn't come from a spill reg,
6706 clear any memory of reloaded copies of the pseudo reg.
6707 If this output reload comes from a spill reg,
6708 reg_has_output_reload will make this do nothing. */
6709 note_stores (pat, forget_old_reloads_1, NULL);
6711 if (reg_mentioned_p (rl->reg_rtx, pat))
6713 rtx set = single_set (insn);
6714 if (reload_spill_index[j] < 0
6715 && set
6716 && SET_SRC (set) == rl->reg_rtx)
6718 int src = REGNO (SET_SRC (set));
6720 reload_spill_index[j] = src;
6721 SET_HARD_REG_BIT (reg_is_output_reload, src);
6722 if (find_regno_note (insn, REG_DEAD, src))
6723 SET_HARD_REG_BIT (reg_reloaded_died, src);
6725 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6727 int s = rl->secondary_out_reload;
6728 set = single_set (p);
6729 /* If this reload copies only to the secondary reload
6730 register, the secondary reload does the actual
6731 store. */
6732 if (s >= 0 && set == NULL_RTX)
6733 /* We can't tell what function the secondary reload
6734 has and where the actual store to the pseudo is
6735 made; leave new_spill_reg_store alone. */
6737 else if (s >= 0
6738 && SET_SRC (set) == rl->reg_rtx
6739 && SET_DEST (set) == rld[s].reg_rtx)
6741 /* Usually the next instruction will be the
6742 secondary reload insn; if we can confirm
6743 that it is, setting new_spill_reg_store to
6744 that insn will allow an extra optimization. */
6745 rtx s_reg = rld[s].reg_rtx;
6746 rtx next = NEXT_INSN (p);
6747 rld[s].out = rl->out;
6748 rld[s].out_reg = rl->out_reg;
6749 set = single_set (next);
6750 if (set && SET_SRC (set) == s_reg
6751 && ! new_spill_reg_store[REGNO (s_reg)])
6753 SET_HARD_REG_BIT (reg_is_output_reload,
6754 REGNO (s_reg));
6755 new_spill_reg_store[REGNO (s_reg)] = next;
6758 else
6759 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6764 if (rl->when_needed == RELOAD_OTHER)
6766 emit_insn (other_output_reload_insns[rl->opnum]);
6767 other_output_reload_insns[rl->opnum] = get_insns ();
6769 else
6770 output_reload_insns[rl->opnum] = get_insns ();
6772 if (flag_non_call_exceptions)
6773 copy_eh_notes (insn, get_insns ());
6775 end_sequence ();
6778 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6779 and has the number J. */
6780 static void
6781 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6783 rtx insn = chain->insn;
6784 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6785 ? rl->in_reg : rl->in);
6787 if (old != 0
6788 /* AUTO_INC reloads need to be handled even if inherited. We got an
6789 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6790 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6791 && ! rtx_equal_p (rl->reg_rtx, old)
6792 && rl->reg_rtx != 0)
6793 emit_input_reload_insns (chain, rld + j, old, j);
6795 /* When inheriting a wider reload, we have a MEM in rl->in,
6796 e.g. inheriting a SImode output reload for
6797 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6798 if (optimize && reload_inherited[j] && rl->in
6799 && GET_CODE (rl->in) == MEM
6800 && GET_CODE (rl->in_reg) == MEM
6801 && reload_spill_index[j] >= 0
6802 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6803 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6805 /* If we are reloading a register that was recently stored in with an
6806 output-reload, see if we can prove there was
6807 actually no need to store the old value in it. */
6809 if (optimize
6810 && (reload_inherited[j] || reload_override_in[j])
6811 && rl->reg_rtx
6812 && GET_CODE (rl->reg_rtx) == REG
6813 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6814 #if 0
6815 /* There doesn't seem to be any reason to restrict this to pseudos
6816 and doing so loses in the case where we are copying from a
6817 register of the wrong class. */
6818 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6819 >= FIRST_PSEUDO_REGISTER)
6820 #endif
6821 /* The insn might have already some references to stackslots
6822 replaced by MEMs, while reload_out_reg still names the
6823 original pseudo. */
6824 && (dead_or_set_p (insn,
6825 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6826 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6827 rl->out_reg)))
6828 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6831 /* Do output reloading for reload RL, which is for the insn described by
6832 CHAIN and has the number J.
6833 ??? At some point we need to support handling output reloads of
6834 JUMP_INSNs or insns that set cc0. */
6835 static void
6836 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
6838 rtx note, old;
6839 rtx insn = chain->insn;
6840 /* If this is an output reload that stores something that is
6841 not loaded in this same reload, see if we can eliminate a previous
6842 store. */
6843 rtx pseudo = rl->out_reg;
6845 if (pseudo
6846 && optimize
6847 && GET_CODE (pseudo) == REG
6848 && ! rtx_equal_p (rl->in_reg, pseudo)
6849 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6850 && reg_last_reload_reg[REGNO (pseudo)])
6852 int pseudo_no = REGNO (pseudo);
6853 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6855 /* We don't need to test full validity of last_regno for
6856 inherit here; we only want to know if the store actually
6857 matches the pseudo. */
6858 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6859 && reg_reloaded_contents[last_regno] == pseudo_no
6860 && spill_reg_store[last_regno]
6861 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6862 delete_output_reload (insn, j, last_regno);
6865 old = rl->out_reg;
6866 if (old == 0
6867 || rl->reg_rtx == old
6868 || rl->reg_rtx == 0)
6869 return;
6871 /* An output operand that dies right away does need a reload,
6872 but need not be copied from it. Show the new location in the
6873 REG_UNUSED note. */
6874 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6875 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6877 XEXP (note, 0) = rl->reg_rtx;
6878 return;
6880 /* Likewise for a SUBREG of an operand that dies. */
6881 else if (GET_CODE (old) == SUBREG
6882 && GET_CODE (SUBREG_REG (old)) == REG
6883 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6884 SUBREG_REG (old))))
6886 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6887 rl->reg_rtx);
6888 return;
6890 else if (GET_CODE (old) == SCRATCH)
6891 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6892 but we don't want to make an output reload. */
6893 return;
6895 /* If is a JUMP_INSN, we can't support output reloads yet. */
6896 if (GET_CODE (insn) == JUMP_INSN)
6897 abort ();
6899 emit_output_reload_insns (chain, rld + j, j);
6902 /* Output insns to reload values in and out of the chosen reload regs. */
6904 static void
6905 emit_reload_insns (struct insn_chain *chain)
6907 rtx insn = chain->insn;
6909 int j;
6911 CLEAR_HARD_REG_SET (reg_reloaded_died);
6913 for (j = 0; j < reload_n_operands; j++)
6914 input_reload_insns[j] = input_address_reload_insns[j]
6915 = inpaddr_address_reload_insns[j]
6916 = output_reload_insns[j] = output_address_reload_insns[j]
6917 = outaddr_address_reload_insns[j]
6918 = other_output_reload_insns[j] = 0;
6919 other_input_address_reload_insns = 0;
6920 other_input_reload_insns = 0;
6921 operand_reload_insns = 0;
6922 other_operand_reload_insns = 0;
6924 /* Dump reloads into the dump file. */
6925 if (rtl_dump_file)
6927 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6928 debug_reload_to_stream (rtl_dump_file);
6931 /* Now output the instructions to copy the data into and out of the
6932 reload registers. Do these in the order that the reloads were reported,
6933 since reloads of base and index registers precede reloads of operands
6934 and the operands may need the base and index registers reloaded. */
6936 for (j = 0; j < n_reloads; j++)
6938 if (rld[j].reg_rtx
6939 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6940 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6942 do_input_reload (chain, rld + j, j);
6943 do_output_reload (chain, rld + j, j);
6946 /* Now write all the insns we made for reloads in the order expected by
6947 the allocation functions. Prior to the insn being reloaded, we write
6948 the following reloads:
6950 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6952 RELOAD_OTHER reloads.
6954 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6955 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6956 RELOAD_FOR_INPUT reload for the operand.
6958 RELOAD_FOR_OPADDR_ADDRS reloads.
6960 RELOAD_FOR_OPERAND_ADDRESS reloads.
6962 After the insn being reloaded, we write the following:
6964 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6965 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6966 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6967 reloads for the operand. The RELOAD_OTHER output reloads are
6968 output in descending order by reload number. */
6970 emit_insn_before_sameloc (other_input_address_reload_insns, insn);
6971 emit_insn_before_sameloc (other_input_reload_insns, insn);
6973 for (j = 0; j < reload_n_operands; j++)
6975 emit_insn_before_sameloc (inpaddr_address_reload_insns[j], insn);
6976 emit_insn_before_sameloc (input_address_reload_insns[j], insn);
6977 emit_insn_before_sameloc (input_reload_insns[j], insn);
6980 emit_insn_before_sameloc (other_operand_reload_insns, insn);
6981 emit_insn_before_sameloc (operand_reload_insns, insn);
6983 for (j = 0; j < reload_n_operands; j++)
6985 rtx x = emit_insn_after_sameloc (outaddr_address_reload_insns[j], insn);
6986 x = emit_insn_after_sameloc (output_address_reload_insns[j], x);
6987 x = emit_insn_after_sameloc (output_reload_insns[j], x);
6988 emit_insn_after_sameloc (other_output_reload_insns[j], x);
6991 /* For all the spill regs newly reloaded in this instruction,
6992 record what they were reloaded from, so subsequent instructions
6993 can inherit the reloads.
6995 Update spill_reg_store for the reloads of this insn.
6996 Copy the elements that were updated in the loop above. */
6998 for (j = 0; j < n_reloads; j++)
7000 int r = reload_order[j];
7001 int i = reload_spill_index[r];
7003 /* If this is a non-inherited input reload from a pseudo, we must
7004 clear any memory of a previous store to the same pseudo. Only do
7005 something if there will not be an output reload for the pseudo
7006 being reloaded. */
7007 if (rld[r].in_reg != 0
7008 && ! (reload_inherited[r] || reload_override_in[r]))
7010 rtx reg = rld[r].in_reg;
7012 if (GET_CODE (reg) == SUBREG)
7013 reg = SUBREG_REG (reg);
7015 if (GET_CODE (reg) == REG
7016 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7017 && ! reg_has_output_reload[REGNO (reg)])
7019 int nregno = REGNO (reg);
7021 if (reg_last_reload_reg[nregno])
7023 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7025 if (reg_reloaded_contents[last_regno] == nregno)
7026 spill_reg_store[last_regno] = 0;
7031 /* I is nonneg if this reload used a register.
7032 If rld[r].reg_rtx is 0, this is an optional reload
7033 that we opted to ignore. */
7035 if (i >= 0 && rld[r].reg_rtx != 0)
7037 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7038 int k;
7039 int part_reaches_end = 0;
7040 int all_reaches_end = 1;
7042 /* For a multi register reload, we need to check if all or part
7043 of the value lives to the end. */
7044 for (k = 0; k < nr; k++)
7046 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7047 rld[r].when_needed))
7048 part_reaches_end = 1;
7049 else
7050 all_reaches_end = 0;
7053 /* Ignore reloads that don't reach the end of the insn in
7054 entirety. */
7055 if (all_reaches_end)
7057 /* First, clear out memory of what used to be in this spill reg.
7058 If consecutive registers are used, clear them all. */
7060 for (k = 0; k < nr; k++)
7062 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7063 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7066 /* Maybe the spill reg contains a copy of reload_out. */
7067 if (rld[r].out != 0
7068 && (GET_CODE (rld[r].out) == REG
7069 #ifdef AUTO_INC_DEC
7070 || ! rld[r].out_reg
7071 #endif
7072 || GET_CODE (rld[r].out_reg) == REG))
7074 rtx out = (GET_CODE (rld[r].out) == REG
7075 ? rld[r].out
7076 : rld[r].out_reg
7077 ? rld[r].out_reg
7078 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7079 int nregno = REGNO (out);
7080 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7081 : hard_regno_nregs[nregno]
7082 [GET_MODE (rld[r].reg_rtx)]);
7084 spill_reg_store[i] = new_spill_reg_store[i];
7085 spill_reg_stored_to[i] = out;
7086 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7088 /* If NREGNO is a hard register, it may occupy more than
7089 one register. If it does, say what is in the
7090 rest of the registers assuming that both registers
7091 agree on how many words the object takes. If not,
7092 invalidate the subsequent registers. */
7094 if (nregno < FIRST_PSEUDO_REGISTER)
7095 for (k = 1; k < nnr; k++)
7096 reg_last_reload_reg[nregno + k]
7097 = (nr == nnr
7098 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7099 : 0);
7101 /* Now do the inverse operation. */
7102 for (k = 0; k < nr; k++)
7104 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7105 reg_reloaded_contents[i + k]
7106 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7107 ? nregno
7108 : nregno + k);
7109 reg_reloaded_insn[i + k] = insn;
7110 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7111 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7112 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7116 /* Maybe the spill reg contains a copy of reload_in. Only do
7117 something if there will not be an output reload for
7118 the register being reloaded. */
7119 else if (rld[r].out_reg == 0
7120 && rld[r].in != 0
7121 && ((GET_CODE (rld[r].in) == REG
7122 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7123 && ! reg_has_output_reload[REGNO (rld[r].in)])
7124 || (GET_CODE (rld[r].in_reg) == REG
7125 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7126 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7128 int nregno;
7129 int nnr;
7130 rtx in;
7132 if (GET_CODE (rld[r].in) == REG
7133 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7134 in = rld[r].in;
7135 else if (GET_CODE (rld[r].in_reg) == REG)
7136 in = rld[r].in_reg;
7137 else
7138 in = XEXP (rld[r].in_reg, 0);
7139 nregno = REGNO (in);
7141 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7142 : hard_regno_nregs[nregno]
7143 [GET_MODE (rld[r].reg_rtx)]);
7145 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7147 if (nregno < FIRST_PSEUDO_REGISTER)
7148 for (k = 1; k < nnr; k++)
7149 reg_last_reload_reg[nregno + k]
7150 = (nr == nnr
7151 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7152 : 0);
7154 /* Unless we inherited this reload, show we haven't
7155 recently done a store.
7156 Previous stores of inherited auto_inc expressions
7157 also have to be discarded. */
7158 if (! reload_inherited[r]
7159 || (rld[r].out && ! rld[r].out_reg))
7160 spill_reg_store[i] = 0;
7162 for (k = 0; k < nr; k++)
7164 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7165 reg_reloaded_contents[i + k]
7166 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7167 ? nregno
7168 : nregno + k);
7169 reg_reloaded_insn[i + k] = insn;
7170 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7171 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7172 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7177 /* However, if part of the reload reaches the end, then we must
7178 invalidate the old info for the part that survives to the end. */
7179 else if (part_reaches_end)
7181 for (k = 0; k < nr; k++)
7182 if (reload_reg_reaches_end_p (i + k,
7183 rld[r].opnum,
7184 rld[r].when_needed))
7185 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7189 /* The following if-statement was #if 0'd in 1.34 (or before...).
7190 It's reenabled in 1.35 because supposedly nothing else
7191 deals with this problem. */
7193 /* If a register gets output-reloaded from a non-spill register,
7194 that invalidates any previous reloaded copy of it.
7195 But forget_old_reloads_1 won't get to see it, because
7196 it thinks only about the original insn. So invalidate it here. */
7197 if (i < 0 && rld[r].out != 0
7198 && (GET_CODE (rld[r].out) == REG
7199 || (GET_CODE (rld[r].out) == MEM
7200 && GET_CODE (rld[r].out_reg) == REG)))
7202 rtx out = (GET_CODE (rld[r].out) == REG
7203 ? rld[r].out : rld[r].out_reg);
7204 int nregno = REGNO (out);
7205 if (nregno >= FIRST_PSEUDO_REGISTER)
7207 rtx src_reg, store_insn = NULL_RTX;
7209 reg_last_reload_reg[nregno] = 0;
7211 /* If we can find a hard register that is stored, record
7212 the storing insn so that we may delete this insn with
7213 delete_output_reload. */
7214 src_reg = rld[r].reg_rtx;
7216 /* If this is an optional reload, try to find the source reg
7217 from an input reload. */
7218 if (! src_reg)
7220 rtx set = single_set (insn);
7221 if (set && SET_DEST (set) == rld[r].out)
7223 int k;
7225 src_reg = SET_SRC (set);
7226 store_insn = insn;
7227 for (k = 0; k < n_reloads; k++)
7229 if (rld[k].in == src_reg)
7231 src_reg = rld[k].reg_rtx;
7232 break;
7237 else
7238 store_insn = new_spill_reg_store[REGNO (src_reg)];
7239 if (src_reg && GET_CODE (src_reg) == REG
7240 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7242 int src_regno = REGNO (src_reg);
7243 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7244 /* The place where to find a death note varies with
7245 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7246 necessarily checked exactly in the code that moves
7247 notes, so just check both locations. */
7248 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7249 if (! note && store_insn)
7250 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7251 while (nr-- > 0)
7253 spill_reg_store[src_regno + nr] = store_insn;
7254 spill_reg_stored_to[src_regno + nr] = out;
7255 reg_reloaded_contents[src_regno + nr] = nregno;
7256 reg_reloaded_insn[src_regno + nr] = store_insn;
7257 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7258 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7259 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7260 GET_MODE (src_reg)))
7261 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7262 src_regno + nr);
7263 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7264 if (note)
7265 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7266 else
7267 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7269 reg_last_reload_reg[nregno] = src_reg;
7272 else
7274 int num_regs = hard_regno_nregs[nregno][GET_MODE (rld[r].out)];
7276 while (num_regs-- > 0)
7277 reg_last_reload_reg[nregno + num_regs] = 0;
7281 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7284 /* Emit code to perform a reload from IN (which may be a reload register) to
7285 OUT (which may also be a reload register). IN or OUT is from operand
7286 OPNUM with reload type TYPE.
7288 Returns first insn emitted. */
7291 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7293 rtx last = get_last_insn ();
7294 rtx tem;
7296 /* If IN is a paradoxical SUBREG, remove it and try to put the
7297 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7298 if (GET_CODE (in) == SUBREG
7299 && (GET_MODE_SIZE (GET_MODE (in))
7300 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7301 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7302 in = SUBREG_REG (in), out = tem;
7303 else if (GET_CODE (out) == SUBREG
7304 && (GET_MODE_SIZE (GET_MODE (out))
7305 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7306 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7307 out = SUBREG_REG (out), in = tem;
7309 /* How to do this reload can get quite tricky. Normally, we are being
7310 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7311 register that didn't get a hard register. In that case we can just
7312 call emit_move_insn.
7314 We can also be asked to reload a PLUS that adds a register or a MEM to
7315 another register, constant or MEM. This can occur during frame pointer
7316 elimination and while reloading addresses. This case is handled by
7317 trying to emit a single insn to perform the add. If it is not valid,
7318 we use a two insn sequence.
7320 Finally, we could be called to handle an 'o' constraint by putting
7321 an address into a register. In that case, we first try to do this
7322 with a named pattern of "reload_load_address". If no such pattern
7323 exists, we just emit a SET insn and hope for the best (it will normally
7324 be valid on machines that use 'o').
7326 This entire process is made complex because reload will never
7327 process the insns we generate here and so we must ensure that
7328 they will fit their constraints and also by the fact that parts of
7329 IN might be being reloaded separately and replaced with spill registers.
7330 Because of this, we are, in some sense, just guessing the right approach
7331 here. The one listed above seems to work.
7333 ??? At some point, this whole thing needs to be rethought. */
7335 if (GET_CODE (in) == PLUS
7336 && (GET_CODE (XEXP (in, 0)) == REG
7337 || GET_CODE (XEXP (in, 0)) == SUBREG
7338 || GET_CODE (XEXP (in, 0)) == MEM)
7339 && (GET_CODE (XEXP (in, 1)) == REG
7340 || GET_CODE (XEXP (in, 1)) == SUBREG
7341 || CONSTANT_P (XEXP (in, 1))
7342 || GET_CODE (XEXP (in, 1)) == MEM))
7344 /* We need to compute the sum of a register or a MEM and another
7345 register, constant, or MEM, and put it into the reload
7346 register. The best possible way of doing this is if the machine
7347 has a three-operand ADD insn that accepts the required operands.
7349 The simplest approach is to try to generate such an insn and see if it
7350 is recognized and matches its constraints. If so, it can be used.
7352 It might be better not to actually emit the insn unless it is valid,
7353 but we need to pass the insn as an operand to `recog' and
7354 `extract_insn' and it is simpler to emit and then delete the insn if
7355 not valid than to dummy things up. */
7357 rtx op0, op1, tem, insn;
7358 int code;
7360 op0 = find_replacement (&XEXP (in, 0));
7361 op1 = find_replacement (&XEXP (in, 1));
7363 /* Since constraint checking is strict, commutativity won't be
7364 checked, so we need to do that here to avoid spurious failure
7365 if the add instruction is two-address and the second operand
7366 of the add is the same as the reload reg, which is frequently
7367 the case. If the insn would be A = B + A, rearrange it so
7368 it will be A = A + B as constrain_operands expects. */
7370 if (GET_CODE (XEXP (in, 1)) == REG
7371 && REGNO (out) == REGNO (XEXP (in, 1)))
7372 tem = op0, op0 = op1, op1 = tem;
7374 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7375 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7377 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7378 code = recog_memoized (insn);
7380 if (code >= 0)
7382 extract_insn (insn);
7383 /* We want constrain operands to treat this insn strictly in
7384 its validity determination, i.e., the way it would after reload
7385 has completed. */
7386 if (constrain_operands (1))
7387 return insn;
7390 delete_insns_since (last);
7392 /* If that failed, we must use a conservative two-insn sequence.
7394 Use a move to copy one operand into the reload register. Prefer
7395 to reload a constant, MEM or pseudo since the move patterns can
7396 handle an arbitrary operand. If OP1 is not a constant, MEM or
7397 pseudo and OP1 is not a valid operand for an add instruction, then
7398 reload OP1.
7400 After reloading one of the operands into the reload register, add
7401 the reload register to the output register.
7403 If there is another way to do this for a specific machine, a
7404 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7405 we emit below. */
7407 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7409 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7410 || (GET_CODE (op1) == REG
7411 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7412 || (code != CODE_FOR_nothing
7413 && ! ((*insn_data[code].operand[2].predicate)
7414 (op1, insn_data[code].operand[2].mode))))
7415 tem = op0, op0 = op1, op1 = tem;
7417 gen_reload (out, op0, opnum, type);
7419 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7420 This fixes a problem on the 32K where the stack pointer cannot
7421 be used as an operand of an add insn. */
7423 if (rtx_equal_p (op0, op1))
7424 op1 = out;
7426 insn = emit_insn (gen_add2_insn (out, op1));
7428 /* If that failed, copy the address register to the reload register.
7429 Then add the constant to the reload register. */
7431 code = recog_memoized (insn);
7433 if (code >= 0)
7435 extract_insn (insn);
7436 /* We want constrain operands to treat this insn strictly in
7437 its validity determination, i.e., the way it would after reload
7438 has completed. */
7439 if (constrain_operands (1))
7441 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7442 REG_NOTES (insn)
7443 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7444 return insn;
7448 delete_insns_since (last);
7450 gen_reload (out, op1, opnum, type);
7451 insn = emit_insn (gen_add2_insn (out, op0));
7452 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7455 #ifdef SECONDARY_MEMORY_NEEDED
7456 /* If we need a memory location to do the move, do it that way. */
7457 else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
7458 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7459 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
7460 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7461 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7462 REGNO_REG_CLASS (reg_or_subregno (out)),
7463 GET_MODE (out)))
7465 /* Get the memory to use and rewrite both registers to its mode. */
7466 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7468 if (GET_MODE (loc) != GET_MODE (out))
7469 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7471 if (GET_MODE (loc) != GET_MODE (in))
7472 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7474 gen_reload (loc, in, opnum, type);
7475 gen_reload (out, loc, opnum, type);
7477 #endif
7479 /* If IN is a simple operand, use gen_move_insn. */
7480 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7481 emit_insn (gen_move_insn (out, in));
7483 #ifdef HAVE_reload_load_address
7484 else if (HAVE_reload_load_address)
7485 emit_insn (gen_reload_load_address (out, in));
7486 #endif
7488 /* Otherwise, just write (set OUT IN) and hope for the best. */
7489 else
7490 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7492 /* Return the first insn emitted.
7493 We can not just return get_last_insn, because there may have
7494 been multiple instructions emitted. Also note that gen_move_insn may
7495 emit more than one insn itself, so we can not assume that there is one
7496 insn emitted per emit_insn_before call. */
7498 return last ? NEXT_INSN (last) : get_insns ();
7501 /* Delete a previously made output-reload whose result we now believe
7502 is not needed. First we double-check.
7504 INSN is the insn now being processed.
7505 LAST_RELOAD_REG is the hard register number for which we want to delete
7506 the last output reload.
7507 J is the reload-number that originally used REG. The caller has made
7508 certain that reload J doesn't use REG any longer for input. */
7510 static void
7511 delete_output_reload (rtx insn, int j, int last_reload_reg)
7513 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7514 rtx reg = spill_reg_stored_to[last_reload_reg];
7515 int k;
7516 int n_occurrences;
7517 int n_inherited = 0;
7518 rtx i1;
7519 rtx substed;
7521 /* It is possible that this reload has been only used to set another reload
7522 we eliminated earlier and thus deleted this instruction too. */
7523 if (INSN_DELETED_P (output_reload_insn))
7524 return;
7526 /* Get the raw pseudo-register referred to. */
7528 while (GET_CODE (reg) == SUBREG)
7529 reg = SUBREG_REG (reg);
7530 substed = reg_equiv_memory_loc[REGNO (reg)];
7532 /* This is unsafe if the operand occurs more often in the current
7533 insn than it is inherited. */
7534 for (k = n_reloads - 1; k >= 0; k--)
7536 rtx reg2 = rld[k].in;
7537 if (! reg2)
7538 continue;
7539 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7540 reg2 = rld[k].in_reg;
7541 #ifdef AUTO_INC_DEC
7542 if (rld[k].out && ! rld[k].out_reg)
7543 reg2 = XEXP (rld[k].in_reg, 0);
7544 #endif
7545 while (GET_CODE (reg2) == SUBREG)
7546 reg2 = SUBREG_REG (reg2);
7547 if (rtx_equal_p (reg2, reg))
7549 if (reload_inherited[k] || reload_override_in[k] || k == j)
7551 n_inherited++;
7552 reg2 = rld[k].out_reg;
7553 if (! reg2)
7554 continue;
7555 while (GET_CODE (reg2) == SUBREG)
7556 reg2 = XEXP (reg2, 0);
7557 if (rtx_equal_p (reg2, reg))
7558 n_inherited++;
7560 else
7561 return;
7564 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7565 if (substed)
7566 n_occurrences += count_occurrences (PATTERN (insn),
7567 eliminate_regs (substed, 0,
7568 NULL_RTX), 0);
7569 if (n_occurrences > n_inherited)
7570 return;
7572 /* If the pseudo-reg we are reloading is no longer referenced
7573 anywhere between the store into it and here,
7574 and no jumps or labels intervene, then the value can get
7575 here through the reload reg alone.
7576 Otherwise, give up--return. */
7577 for (i1 = NEXT_INSN (output_reload_insn);
7578 i1 != insn; i1 = NEXT_INSN (i1))
7580 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7581 return;
7582 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7583 && reg_mentioned_p (reg, PATTERN (i1)))
7585 /* If this is USE in front of INSN, we only have to check that
7586 there are no more references than accounted for by inheritance. */
7587 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7589 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7590 i1 = NEXT_INSN (i1);
7592 if (n_occurrences <= n_inherited && i1 == insn)
7593 break;
7594 return;
7598 /* We will be deleting the insn. Remove the spill reg information. */
7599 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7601 spill_reg_store[last_reload_reg + k] = 0;
7602 spill_reg_stored_to[last_reload_reg + k] = 0;
7605 /* The caller has already checked that REG dies or is set in INSN.
7606 It has also checked that we are optimizing, and thus some
7607 inaccuracies in the debugging information are acceptable.
7608 So we could just delete output_reload_insn. But in some cases
7609 we can improve the debugging information without sacrificing
7610 optimization - maybe even improving the code: See if the pseudo
7611 reg has been completely replaced with reload regs. If so, delete
7612 the store insn and forget we had a stack slot for the pseudo. */
7613 if (rld[j].out != rld[j].in
7614 && REG_N_DEATHS (REGNO (reg)) == 1
7615 && REG_N_SETS (REGNO (reg)) == 1
7616 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7617 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7619 rtx i2;
7621 /* We know that it was used only between here and the beginning of
7622 the current basic block. (We also know that the last use before
7623 INSN was the output reload we are thinking of deleting, but never
7624 mind that.) Search that range; see if any ref remains. */
7625 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7627 rtx set = single_set (i2);
7629 /* Uses which just store in the pseudo don't count,
7630 since if they are the only uses, they are dead. */
7631 if (set != 0 && SET_DEST (set) == reg)
7632 continue;
7633 if (GET_CODE (i2) == CODE_LABEL
7634 || GET_CODE (i2) == JUMP_INSN)
7635 break;
7636 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7637 && reg_mentioned_p (reg, PATTERN (i2)))
7639 /* Some other ref remains; just delete the output reload we
7640 know to be dead. */
7641 delete_address_reloads (output_reload_insn, insn);
7642 delete_insn (output_reload_insn);
7643 return;
7647 /* Delete the now-dead stores into this pseudo. Note that this
7648 loop also takes care of deleting output_reload_insn. */
7649 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7651 rtx set = single_set (i2);
7653 if (set != 0 && SET_DEST (set) == reg)
7655 delete_address_reloads (i2, insn);
7656 delete_insn (i2);
7658 if (GET_CODE (i2) == CODE_LABEL
7659 || GET_CODE (i2) == JUMP_INSN)
7660 break;
7663 /* For the debugging info, say the pseudo lives in this reload reg. */
7664 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7665 alter_reg (REGNO (reg), -1);
7667 else
7669 delete_address_reloads (output_reload_insn, insn);
7670 delete_insn (output_reload_insn);
7674 /* We are going to delete DEAD_INSN. Recursively delete loads of
7675 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7676 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7677 static void
7678 delete_address_reloads (rtx dead_insn, rtx current_insn)
7680 rtx set = single_set (dead_insn);
7681 rtx set2, dst, prev, next;
7682 if (set)
7684 rtx dst = SET_DEST (set);
7685 if (GET_CODE (dst) == MEM)
7686 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7688 /* If we deleted the store from a reloaded post_{in,de}c expression,
7689 we can delete the matching adds. */
7690 prev = PREV_INSN (dead_insn);
7691 next = NEXT_INSN (dead_insn);
7692 if (! prev || ! next)
7693 return;
7694 set = single_set (next);
7695 set2 = single_set (prev);
7696 if (! set || ! set2
7697 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7698 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7699 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7700 return;
7701 dst = SET_DEST (set);
7702 if (! rtx_equal_p (dst, SET_DEST (set2))
7703 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7704 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7705 || (INTVAL (XEXP (SET_SRC (set), 1))
7706 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7707 return;
7708 delete_related_insns (prev);
7709 delete_related_insns (next);
7712 /* Subfunction of delete_address_reloads: process registers found in X. */
7713 static void
7714 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7716 rtx prev, set, dst, i2;
7717 int i, j;
7718 enum rtx_code code = GET_CODE (x);
7720 if (code != REG)
7722 const char *fmt = GET_RTX_FORMAT (code);
7723 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7725 if (fmt[i] == 'e')
7726 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7727 else if (fmt[i] == 'E')
7729 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7730 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7731 current_insn);
7734 return;
7737 if (spill_reg_order[REGNO (x)] < 0)
7738 return;
7740 /* Scan backwards for the insn that sets x. This might be a way back due
7741 to inheritance. */
7742 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7744 code = GET_CODE (prev);
7745 if (code == CODE_LABEL || code == JUMP_INSN)
7746 return;
7747 if (GET_RTX_CLASS (code) != 'i')
7748 continue;
7749 if (reg_set_p (x, PATTERN (prev)))
7750 break;
7751 if (reg_referenced_p (x, PATTERN (prev)))
7752 return;
7754 if (! prev || INSN_UID (prev) < reload_first_uid)
7755 return;
7756 /* Check that PREV only sets the reload register. */
7757 set = single_set (prev);
7758 if (! set)
7759 return;
7760 dst = SET_DEST (set);
7761 if (GET_CODE (dst) != REG
7762 || ! rtx_equal_p (dst, x))
7763 return;
7764 if (! reg_set_p (dst, PATTERN (dead_insn)))
7766 /* Check if DST was used in a later insn -
7767 it might have been inherited. */
7768 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7770 if (GET_CODE (i2) == CODE_LABEL)
7771 break;
7772 if (! INSN_P (i2))
7773 continue;
7774 if (reg_referenced_p (dst, PATTERN (i2)))
7776 /* If there is a reference to the register in the current insn,
7777 it might be loaded in a non-inherited reload. If no other
7778 reload uses it, that means the register is set before
7779 referenced. */
7780 if (i2 == current_insn)
7782 for (j = n_reloads - 1; j >= 0; j--)
7783 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7784 || reload_override_in[j] == dst)
7785 return;
7786 for (j = n_reloads - 1; j >= 0; j--)
7787 if (rld[j].in && rld[j].reg_rtx == dst)
7788 break;
7789 if (j >= 0)
7790 break;
7792 return;
7794 if (GET_CODE (i2) == JUMP_INSN)
7795 break;
7796 /* If DST is still live at CURRENT_INSN, check if it is used for
7797 any reload. Note that even if CURRENT_INSN sets DST, we still
7798 have to check the reloads. */
7799 if (i2 == current_insn)
7801 for (j = n_reloads - 1; j >= 0; j--)
7802 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7803 || reload_override_in[j] == dst)
7804 return;
7805 /* ??? We can't finish the loop here, because dst might be
7806 allocated to a pseudo in this block if no reload in this
7807 block needs any of the classes containing DST - see
7808 spill_hard_reg. There is no easy way to tell this, so we
7809 have to scan till the end of the basic block. */
7811 if (reg_set_p (dst, PATTERN (i2)))
7812 break;
7815 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7816 reg_reloaded_contents[REGNO (dst)] = -1;
7817 delete_insn (prev);
7820 /* Output reload-insns to reload VALUE into RELOADREG.
7821 VALUE is an autoincrement or autodecrement RTX whose operand
7822 is a register or memory location;
7823 so reloading involves incrementing that location.
7824 IN is either identical to VALUE, or some cheaper place to reload from.
7826 INC_AMOUNT is the number to increment or decrement by (always positive).
7827 This cannot be deduced from VALUE.
7829 Return the instruction that stores into RELOADREG. */
7831 static rtx
7832 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
7834 /* REG or MEM to be copied and incremented. */
7835 rtx incloc = XEXP (value, 0);
7836 /* Nonzero if increment after copying. */
7837 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7838 rtx last;
7839 rtx inc;
7840 rtx add_insn;
7841 int code;
7842 rtx store;
7843 rtx real_in = in == value ? XEXP (in, 0) : in;
7845 /* No hard register is equivalent to this register after
7846 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7847 we could inc/dec that register as well (maybe even using it for
7848 the source), but I'm not sure it's worth worrying about. */
7849 if (GET_CODE (incloc) == REG)
7850 reg_last_reload_reg[REGNO (incloc)] = 0;
7852 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7853 inc_amount = -inc_amount;
7855 inc = GEN_INT (inc_amount);
7857 /* If this is post-increment, first copy the location to the reload reg. */
7858 if (post && real_in != reloadreg)
7859 emit_insn (gen_move_insn (reloadreg, real_in));
7861 if (in == value)
7863 /* See if we can directly increment INCLOC. Use a method similar to
7864 that in gen_reload. */
7866 last = get_last_insn ();
7867 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7868 gen_rtx_PLUS (GET_MODE (incloc),
7869 incloc, inc)));
7871 code = recog_memoized (add_insn);
7872 if (code >= 0)
7874 extract_insn (add_insn);
7875 if (constrain_operands (1))
7877 /* If this is a pre-increment and we have incremented the value
7878 where it lives, copy the incremented value to RELOADREG to
7879 be used as an address. */
7881 if (! post)
7882 emit_insn (gen_move_insn (reloadreg, incloc));
7884 return add_insn;
7887 delete_insns_since (last);
7890 /* If couldn't do the increment directly, must increment in RELOADREG.
7891 The way we do this depends on whether this is pre- or post-increment.
7892 For pre-increment, copy INCLOC to the reload register, increment it
7893 there, then save back. */
7895 if (! post)
7897 if (in != reloadreg)
7898 emit_insn (gen_move_insn (reloadreg, real_in));
7899 emit_insn (gen_add2_insn (reloadreg, inc));
7900 store = emit_insn (gen_move_insn (incloc, reloadreg));
7902 else
7904 /* Postincrement.
7905 Because this might be a jump insn or a compare, and because RELOADREG
7906 may not be available after the insn in an input reload, we must do
7907 the incrementation before the insn being reloaded for.
7909 We have already copied IN to RELOADREG. Increment the copy in
7910 RELOADREG, save that back, then decrement RELOADREG so it has
7911 the original value. */
7913 emit_insn (gen_add2_insn (reloadreg, inc));
7914 store = emit_insn (gen_move_insn (incloc, reloadreg));
7915 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7918 return store;
7921 #ifdef AUTO_INC_DEC
7922 static void
7923 add_auto_inc_notes (rtx insn, rtx x)
7925 enum rtx_code code = GET_CODE (x);
7926 const char *fmt;
7927 int i, j;
7929 if (code == MEM && auto_inc_p (XEXP (x, 0)))
7931 REG_NOTES (insn)
7932 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
7933 return;
7936 /* Scan all the operand sub-expressions. */
7937 fmt = GET_RTX_FORMAT (code);
7938 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7940 if (fmt[i] == 'e')
7941 add_auto_inc_notes (insn, XEXP (x, i));
7942 else if (fmt[i] == 'E')
7943 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7944 add_auto_inc_notes (insn, XVECEXP (x, i, j));
7947 #endif
7949 /* Copy EH notes from an insn to its reloads. */
7950 static void
7951 copy_eh_notes (rtx insn, rtx x)
7953 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
7954 if (eh_note)
7956 for (; x != 0; x = NEXT_INSN (x))
7958 if (may_trap_p (PATTERN (x)))
7959 REG_NOTES (x)
7960 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
7961 REG_NOTES (x));
7966 /* This is used by reload pass, that does emit some instructions after
7967 abnormal calls moving basic block end, but in fact it wants to emit
7968 them on the edge. Looks for abnormal call edges, find backward the
7969 proper call and fix the damage.
7971 Similar handle instructions throwing exceptions internally. */
7972 void
7973 fixup_abnormal_edges (void)
7975 bool inserted = false;
7976 basic_block bb;
7978 FOR_EACH_BB (bb)
7980 edge e;
7982 /* Look for cases we are interested in - calls or instructions causing
7983 exceptions. */
7984 for (e = bb->succ; e; e = e->succ_next)
7986 if (e->flags & EDGE_ABNORMAL_CALL)
7987 break;
7988 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
7989 == (EDGE_ABNORMAL | EDGE_EH))
7990 break;
7992 if (e && GET_CODE (BB_END (bb)) != CALL_INSN
7993 && !can_throw_internal (BB_END (bb)))
7995 rtx insn = BB_END (bb), stop = NEXT_INSN (BB_END (bb));
7996 rtx next;
7997 for (e = bb->succ; e; e = e->succ_next)
7998 if (e->flags & EDGE_FALLTHRU)
7999 break;
8000 /* Get past the new insns generated. Allow notes, as the insns may
8001 be already deleted. */
8002 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
8003 && !can_throw_internal (insn)
8004 && insn != BB_HEAD (bb))
8005 insn = PREV_INSN (insn);
8006 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
8007 abort ();
8008 BB_END (bb) = insn;
8009 inserted = true;
8010 insn = NEXT_INSN (insn);
8011 while (insn && insn != stop)
8013 next = NEXT_INSN (insn);
8014 if (INSN_P (insn))
8016 delete_insn (insn);
8018 /* Sometimes there's still the return value USE.
8019 If it's placed after a trapping call (i.e. that
8020 call is the last insn anyway), we have no fallthru
8021 edge. Simply delete this use and don't try to insert
8022 on the non-existent edge. */
8023 if (GET_CODE (PATTERN (insn)) != USE)
8025 /* We're not deleting it, we're moving it. */
8026 INSN_DELETED_P (insn) = 0;
8027 PREV_INSN (insn) = NULL_RTX;
8028 NEXT_INSN (insn) = NULL_RTX;
8030 insert_insn_on_edge (insn, e);
8033 insn = next;
8037 /* We've possibly turned single trapping insn into multiple ones. */
8038 if (flag_non_call_exceptions)
8040 sbitmap blocks;
8041 blocks = sbitmap_alloc (last_basic_block);
8042 sbitmap_ones (blocks);
8043 find_many_sub_basic_blocks (blocks);
8045 if (inserted)
8046 commit_edge_insertions ();