* config/arm/arm.h (REG_CLASS_NAMES): Add missing comma.
[official-gcc.git] / gcc / flow.c
blob1ed469f8f488be367637261a936b6ae7535ac567
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
164 #endif
165 #endif
167 /* Nonzero if the second flow pass has completed. */
168 int flow2_completed;
170 /* Maximum register number used in this function, plus one. */
172 int max_regno;
174 /* Indexed by n, giving various register information */
176 varray_type reg_n_info;
178 /* Size of a regset for the current function,
179 in (1) bytes and (2) elements. */
181 int regset_bytes;
182 int regset_size;
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187 regset regs_live_at_setjmp;
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
195 /* Callback that determines if it's ok for a function to have no
196 noreturn attribute. */
197 int (*lang_missing_noreturn_ok_p) (tree);
199 /* Set of registers that may be eliminable. These are handled specially
200 in updating regs_ever_live. */
202 static HARD_REG_SET elim_reg_set;
204 /* Holds information for tracking conditional register life information. */
205 struct reg_cond_life_info
207 /* A boolean expression of conditions under which a register is dead. */
208 rtx condition;
209 /* Conditions under which a register is dead at the basic block end. */
210 rtx orig_condition;
212 /* A boolean expression of conditions under which a register has been
213 stored into. */
214 rtx stores;
216 /* ??? Could store mask of bytes that are dead, so that we could finally
217 track lifetimes of multi-word registers accessed via subregs. */
220 /* For use in communicating between propagate_block and its subroutines.
221 Holds all information needed to compute life and def-use information. */
223 struct propagate_block_info
225 /* The basic block we're considering. */
226 basic_block bb;
228 /* Bit N is set if register N is conditionally or unconditionally live. */
229 regset reg_live;
231 /* Bit N is set if register N is set this insn. */
232 regset new_set;
234 /* Element N is the next insn that uses (hard or pseudo) register N
235 within the current basic block; or zero, if there is no such insn. */
236 rtx *reg_next_use;
238 /* Contains a list of all the MEMs we are tracking for dead store
239 elimination. */
240 rtx mem_set_list;
242 /* If non-null, record the set of registers set unconditionally in the
243 basic block. */
244 regset local_set;
246 /* If non-null, record the set of registers set conditionally in the
247 basic block. */
248 regset cond_local_set;
250 #ifdef HAVE_conditional_execution
251 /* Indexed by register number, holds a reg_cond_life_info for each
252 register that is not unconditionally live or dead. */
253 splay_tree reg_cond_dead;
255 /* Bit N is set if register N is in an expression in reg_cond_dead. */
256 regset reg_cond_reg;
257 #endif
259 /* The length of mem_set_list. */
260 int mem_set_list_len;
262 /* Nonzero if the value of CC0 is live. */
263 int cc0_live;
265 /* Flags controlling the set of information propagate_block collects. */
266 int flags;
269 /* Number of dead insns removed. */
270 static int ndead;
272 /* Maximum length of pbi->mem_set_list before we start dropping
273 new elements on the floor. */
274 #define MAX_MEM_SET_LIST_LEN 100
276 /* Forward declarations */
277 static int verify_wide_reg_1 (rtx *, void *);
278 static void verify_wide_reg (int, basic_block);
279 static void verify_local_live_at_start (regset, basic_block);
280 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
281 static void notice_stack_pointer_modification (rtx);
282 static void mark_reg (rtx, void *);
283 static void mark_regs_live_at_end (regset);
284 static void calculate_global_regs_live (sbitmap, sbitmap, int);
285 static void propagate_block_delete_insn (rtx);
286 static rtx propagate_block_delete_libcall (rtx, rtx);
287 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
288 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
289 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
290 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
291 rtx, rtx, int);
292 static int find_regno_partial (rtx *, void *);
294 #ifdef HAVE_conditional_execution
295 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
296 static void free_reg_cond_life_info (splay_tree_value);
297 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
298 static void flush_reg_cond_reg (struct propagate_block_info *, int);
299 static rtx elim_reg_cond (rtx, unsigned int);
300 static rtx ior_reg_cond (rtx, rtx, int);
301 static rtx not_reg_cond (rtx);
302 static rtx and_reg_cond (rtx, rtx, int);
303 #endif
304 #ifdef AUTO_INC_DEC
305 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
306 rtx, rtx);
307 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
308 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
309 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
310 #endif
311 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
312 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
313 void debug_flow_info (void);
314 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
315 static int invalidate_mems_from_autoinc (rtx *, void *);
316 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
317 static void clear_log_links (sbitmap);
318 static int count_or_remove_death_notes_bb (basic_block, int);
321 void
322 check_function_return_warnings (void)
324 if (warn_missing_noreturn
325 && !TREE_THIS_VOLATILE (cfun->decl)
326 && EXIT_BLOCK_PTR->pred == NULL
327 && (lang_missing_noreturn_ok_p
328 && !lang_missing_noreturn_ok_p (cfun->decl)))
329 warning ("function might be possible candidate for attribute `noreturn'");
331 /* If we have a path to EXIT, then we do return. */
332 if (TREE_THIS_VOLATILE (cfun->decl)
333 && EXIT_BLOCK_PTR->pred != NULL)
334 warning ("`noreturn' function does return");
336 /* If the clobber_return_insn appears in some basic block, then we
337 do reach the end without returning a value. */
338 else if (warn_return_type
339 && cfun->x_clobber_return_insn != NULL
340 && EXIT_BLOCK_PTR->pred != NULL)
342 int max_uid = get_max_uid ();
344 /* If clobber_return_insn was excised by jump1, then renumber_insns
345 can make max_uid smaller than the number still recorded in our rtx.
346 That's fine, since this is a quick way of verifying that the insn
347 is no longer in the chain. */
348 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
350 rtx insn;
352 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
353 if (insn == cfun->x_clobber_return_insn)
355 warning ("control reaches end of non-void function");
356 break;
362 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
363 note associated with the BLOCK. */
366 first_insn_after_basic_block_note (basic_block block)
368 rtx insn;
370 /* Get the first instruction in the block. */
371 insn = BB_HEAD (block);
373 if (insn == NULL_RTX)
374 return NULL_RTX;
375 if (GET_CODE (insn) == CODE_LABEL)
376 insn = NEXT_INSN (insn);
377 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
378 abort ();
380 return NEXT_INSN (insn);
383 /* Perform data flow analysis.
384 F is the first insn of the function; FLAGS is a set of PROP_* flags
385 to be used in accumulating flow info. */
387 void
388 life_analysis (rtx f, FILE *file, int flags)
390 #ifdef ELIMINABLE_REGS
391 int i;
392 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
393 #endif
395 /* Record which registers will be eliminated. We use this in
396 mark_used_regs. */
398 CLEAR_HARD_REG_SET (elim_reg_set);
400 #ifdef ELIMINABLE_REGS
401 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
402 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
403 #else
404 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
405 #endif
408 #ifdef CANNOT_CHANGE_MODE_CLASS
409 if (flags & PROP_REG_INFO)
410 bitmap_initialize (&subregs_of_mode, 1);
411 #endif
413 if (! optimize)
414 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
416 /* The post-reload life analysis have (on a global basis) the same
417 registers live as was computed by reload itself. elimination
418 Otherwise offsets and such may be incorrect.
420 Reload will make some registers as live even though they do not
421 appear in the rtl.
423 We don't want to create new auto-incs after reload, since they
424 are unlikely to be useful and can cause problems with shared
425 stack slots. */
426 if (reload_completed)
427 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
429 /* We want alias analysis information for local dead store elimination. */
430 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
431 init_alias_analysis ();
433 /* Always remove no-op moves. Do this before other processing so
434 that we don't have to keep re-scanning them. */
435 delete_noop_moves (f);
437 /* Some targets can emit simpler epilogues if they know that sp was
438 not ever modified during the function. After reload, of course,
439 we've already emitted the epilogue so there's no sense searching. */
440 if (! reload_completed)
441 notice_stack_pointer_modification (f);
443 /* Allocate and zero out data structures that will record the
444 data from lifetime analysis. */
445 allocate_reg_life_data ();
446 allocate_bb_life_data ();
448 /* Find the set of registers live on function exit. */
449 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
451 /* "Update" life info from zero. It'd be nice to begin the
452 relaxation with just the exit and noreturn blocks, but that set
453 is not immediately handy. */
455 if (flags & PROP_REG_INFO)
457 memset (regs_ever_live, 0, sizeof (regs_ever_live));
458 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
460 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
462 /* Clean up. */
463 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
464 end_alias_analysis ();
466 if (file)
467 dump_flow_info (file);
469 free_basic_block_vars (1);
471 /* Removing dead insns should have made jumptables really dead. */
472 delete_dead_jumptables ();
475 /* A subroutine of verify_wide_reg, called through for_each_rtx.
476 Search for REGNO. If found, return 2 if it is not wider than
477 word_mode. */
479 static int
480 verify_wide_reg_1 (rtx *px, void *pregno)
482 rtx x = *px;
483 unsigned int regno = *(int *) pregno;
485 if (GET_CODE (x) == REG && REGNO (x) == regno)
487 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
488 return 2;
489 return 1;
491 return 0;
494 /* A subroutine of verify_local_live_at_start. Search through insns
495 of BB looking for register REGNO. */
497 static void
498 verify_wide_reg (int regno, basic_block bb)
500 rtx head = BB_HEAD (bb), end = BB_END (bb);
502 while (1)
504 if (INSN_P (head))
506 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
507 if (r == 1)
508 return;
509 if (r == 2)
510 break;
512 if (head == end)
513 break;
514 head = NEXT_INSN (head);
517 if (rtl_dump_file)
519 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
520 dump_bb (bb, rtl_dump_file, 0);
522 abort ();
525 /* A subroutine of update_life_info. Verify that there are no untoward
526 changes in live_at_start during a local update. */
528 static void
529 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
531 if (reload_completed)
533 /* After reload, there are no pseudos, nor subregs of multi-word
534 registers. The regsets should exactly match. */
535 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
537 if (rtl_dump_file)
539 fprintf (rtl_dump_file,
540 "live_at_start mismatch in bb %d, aborting\nNew:\n",
541 bb->index);
542 debug_bitmap_file (rtl_dump_file, new_live_at_start);
543 fputs ("Old:\n", rtl_dump_file);
544 dump_bb (bb, rtl_dump_file, 0);
546 abort ();
549 else
551 int i;
553 /* Find the set of changed registers. */
554 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
556 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
558 /* No registers should die. */
559 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
561 if (rtl_dump_file)
563 fprintf (rtl_dump_file,
564 "Register %d died unexpectedly.\n", i);
565 dump_bb (bb, rtl_dump_file, 0);
567 abort ();
570 /* Verify that the now-live register is wider than word_mode. */
571 verify_wide_reg (i, bb);
576 /* Updates life information starting with the basic blocks set in BLOCKS.
577 If BLOCKS is null, consider it to be the universal set.
579 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
580 we are only expecting local modifications to basic blocks. If we find
581 extra registers live at the beginning of a block, then we either killed
582 useful data, or we have a broken split that wants data not provided.
583 If we find registers removed from live_at_start, that means we have
584 a broken peephole that is killing a register it shouldn't.
586 ??? This is not true in one situation -- when a pre-reload splitter
587 generates subregs of a multi-word pseudo, current life analysis will
588 lose the kill. So we _can_ have a pseudo go live. How irritating.
590 It is also not true when a peephole decides that it doesn't need one
591 or more of the inputs.
593 Including PROP_REG_INFO does not properly refresh regs_ever_live
594 unless the caller resets it to zero. */
597 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
599 regset tmp;
600 regset_head tmp_head;
601 int i;
602 int stabilized_prop_flags = prop_flags;
603 basic_block bb;
605 tmp = INITIALIZE_REG_SET (tmp_head);
606 ndead = 0;
608 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
609 ? TV_LIFE_UPDATE : TV_LIFE);
611 /* Changes to the CFG are only allowed when
612 doing a global update for the entire CFG. */
613 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
614 && (extent == UPDATE_LIFE_LOCAL || blocks))
615 abort ();
617 /* For a global update, we go through the relaxation process again. */
618 if (extent != UPDATE_LIFE_LOCAL)
620 for ( ; ; )
622 int changed = 0;
624 calculate_global_regs_live (blocks, blocks,
625 prop_flags & (PROP_SCAN_DEAD_CODE
626 | PROP_SCAN_DEAD_STORES
627 | PROP_ALLOW_CFG_CHANGES));
629 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
630 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
631 break;
633 /* Removing dead code may allow the CFG to be simplified which
634 in turn may allow for further dead code detection / removal. */
635 FOR_EACH_BB_REVERSE (bb)
637 COPY_REG_SET (tmp, bb->global_live_at_end);
638 changed |= propagate_block (bb, tmp, NULL, NULL,
639 prop_flags & (PROP_SCAN_DEAD_CODE
640 | PROP_SCAN_DEAD_STORES
641 | PROP_KILL_DEAD_CODE));
644 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
645 subsequent propagate_block calls, since removing or acting as
646 removing dead code can affect global register liveness, which
647 is supposed to be finalized for this call after this loop. */
648 stabilized_prop_flags
649 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
650 | PROP_KILL_DEAD_CODE);
652 if (! changed)
653 break;
655 /* We repeat regardless of what cleanup_cfg says. If there were
656 instructions deleted above, that might have been only a
657 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
658 Further improvement may be possible. */
659 cleanup_cfg (CLEANUP_EXPENSIVE);
661 /* Zap the life information from the last round. If we don't
662 do this, we can wind up with registers that no longer appear
663 in the code being marked live at entry, which twiggs bogus
664 warnings from regno_uninitialized. */
665 FOR_EACH_BB (bb)
667 CLEAR_REG_SET (bb->global_live_at_start);
668 CLEAR_REG_SET (bb->global_live_at_end);
672 /* If asked, remove notes from the blocks we'll update. */
673 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
674 count_or_remove_death_notes (blocks, 1);
677 /* Clear log links in case we are asked to (re)compute them. */
678 if (prop_flags & PROP_LOG_LINKS)
679 clear_log_links (blocks);
681 if (blocks)
683 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
685 bb = BASIC_BLOCK (i);
687 COPY_REG_SET (tmp, bb->global_live_at_end);
688 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
690 if (extent == UPDATE_LIFE_LOCAL)
691 verify_local_live_at_start (tmp, bb);
694 else
696 FOR_EACH_BB_REVERSE (bb)
698 COPY_REG_SET (tmp, bb->global_live_at_end);
700 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
702 if (extent == UPDATE_LIFE_LOCAL)
703 verify_local_live_at_start (tmp, bb);
707 FREE_REG_SET (tmp);
709 if (prop_flags & PROP_REG_INFO)
711 /* The only pseudos that are live at the beginning of the function
712 are those that were not set anywhere in the function. local-alloc
713 doesn't know how to handle these correctly, so mark them as not
714 local to any one basic block. */
715 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
716 FIRST_PSEUDO_REGISTER, i,
717 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
719 /* We have a problem with any pseudoreg that lives across the setjmp.
720 ANSI says that if a user variable does not change in value between
721 the setjmp and the longjmp, then the longjmp preserves it. This
722 includes longjmp from a place where the pseudo appears dead.
723 (In principle, the value still exists if it is in scope.)
724 If the pseudo goes in a hard reg, some other value may occupy
725 that hard reg where this pseudo is dead, thus clobbering the pseudo.
726 Conclusion: such a pseudo must not go in a hard reg. */
727 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
728 FIRST_PSEUDO_REGISTER, i,
730 if (regno_reg_rtx[i] != 0)
732 REG_LIVE_LENGTH (i) = -1;
733 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
737 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
738 ? TV_LIFE_UPDATE : TV_LIFE);
739 if (ndead && rtl_dump_file)
740 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
741 return ndead;
744 /* Update life information in all blocks where BB_DIRTY is set. */
747 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
749 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
750 int n = 0;
751 basic_block bb;
752 int retval = 0;
754 sbitmap_zero (update_life_blocks);
755 FOR_EACH_BB (bb)
757 if (extent == UPDATE_LIFE_LOCAL)
759 if (bb->flags & BB_DIRTY)
761 SET_BIT (update_life_blocks, bb->index);
762 n++;
765 else
767 /* ??? Bootstrap with -march=pentium4 fails to terminate
768 with only a partial life update. */
769 SET_BIT (update_life_blocks, bb->index);
770 if (bb->flags & BB_DIRTY)
771 n++;
775 if (n)
776 retval = update_life_info (update_life_blocks, extent, prop_flags);
778 sbitmap_free (update_life_blocks);
779 return retval;
782 /* Free the variables allocated by find_basic_blocks.
784 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
786 void
787 free_basic_block_vars (int keep_head_end_p)
789 if (! keep_head_end_p)
791 if (basic_block_info)
793 clear_edges ();
794 VARRAY_FREE (basic_block_info);
796 n_basic_blocks = 0;
797 last_basic_block = 0;
799 ENTRY_BLOCK_PTR->aux = NULL;
800 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
801 EXIT_BLOCK_PTR->aux = NULL;
802 EXIT_BLOCK_PTR->global_live_at_start = NULL;
806 /* Delete any insns that copy a register to itself. */
809 delete_noop_moves (rtx f ATTRIBUTE_UNUSED)
811 rtx insn, next;
812 basic_block bb;
813 int nnoops = 0;
815 FOR_EACH_BB (bb)
817 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
819 next = NEXT_INSN (insn);
820 if (INSN_P (insn) && noop_move_p (insn))
822 rtx note;
824 /* If we're about to remove the first insn of a libcall
825 then move the libcall note to the next real insn and
826 update the retval note. */
827 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
828 && XEXP (note, 0) != insn)
830 rtx new_libcall_insn = next_real_insn (insn);
831 rtx retval_note = find_reg_note (XEXP (note, 0),
832 REG_RETVAL, NULL_RTX);
833 REG_NOTES (new_libcall_insn)
834 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
835 REG_NOTES (new_libcall_insn));
836 XEXP (retval_note, 0) = new_libcall_insn;
839 delete_insn_and_edges (insn);
840 nnoops++;
844 if (nnoops && rtl_dump_file)
845 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
846 return nnoops;
849 /* Delete any jump tables never referenced. We can't delete them at the
850 time of removing tablejump insn as they are referenced by the preceding
851 insns computing the destination, so we delay deleting and garbagecollect
852 them once life information is computed. */
853 void
854 delete_dead_jumptables (void)
856 rtx insn, next;
857 for (insn = get_insns (); insn; insn = next)
859 next = NEXT_INSN (insn);
860 if (GET_CODE (insn) == CODE_LABEL
861 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
862 && GET_CODE (next) == JUMP_INSN
863 && (GET_CODE (PATTERN (next)) == ADDR_VEC
864 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
866 if (rtl_dump_file)
867 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
868 delete_insn (NEXT_INSN (insn));
869 delete_insn (insn);
870 next = NEXT_INSN (next);
875 /* Determine if the stack pointer is constant over the life of the function.
876 Only useful before prologues have been emitted. */
878 static void
879 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
880 void *data ATTRIBUTE_UNUSED)
882 if (x == stack_pointer_rtx
883 /* The stack pointer is only modified indirectly as the result
884 of a push until later in flow. See the comments in rtl.texi
885 regarding Embedded Side-Effects on Addresses. */
886 || (GET_CODE (x) == MEM
887 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
888 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
889 current_function_sp_is_unchanging = 0;
892 static void
893 notice_stack_pointer_modification (rtx f)
895 rtx insn;
897 /* Assume that the stack pointer is unchanging if alloca hasn't
898 been used. */
899 current_function_sp_is_unchanging = !current_function_calls_alloca;
900 if (! current_function_sp_is_unchanging)
901 return;
903 for (insn = f; insn; insn = NEXT_INSN (insn))
905 if (INSN_P (insn))
907 /* Check if insn modifies the stack pointer. */
908 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
909 NULL);
910 if (! current_function_sp_is_unchanging)
911 return;
916 /* Mark a register in SET. Hard registers in large modes get all
917 of their component registers set as well. */
919 static void
920 mark_reg (rtx reg, void *xset)
922 regset set = (regset) xset;
923 int regno = REGNO (reg);
925 if (GET_MODE (reg) == BLKmode)
926 abort ();
928 SET_REGNO_REG_SET (set, regno);
929 if (regno < FIRST_PSEUDO_REGISTER)
931 int n = hard_regno_nregs[regno][GET_MODE (reg)];
932 while (--n > 0)
933 SET_REGNO_REG_SET (set, regno + n);
937 /* Mark those regs which are needed at the end of the function as live
938 at the end of the last basic block. */
940 static void
941 mark_regs_live_at_end (regset set)
943 unsigned int i;
945 /* If exiting needs the right stack value, consider the stack pointer
946 live at the end of the function. */
947 if ((HAVE_epilogue && epilogue_completed)
948 || ! EXIT_IGNORE_STACK
949 || (! FRAME_POINTER_REQUIRED
950 && ! current_function_calls_alloca
951 && flag_omit_frame_pointer)
952 || current_function_sp_is_unchanging)
954 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
957 /* Mark the frame pointer if needed at the end of the function. If
958 we end up eliminating it, it will be removed from the live list
959 of each basic block by reload. */
961 if (! reload_completed || frame_pointer_needed)
963 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
964 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
965 /* If they are different, also mark the hard frame pointer as live. */
966 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
967 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
968 #endif
971 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
972 /* Many architectures have a GP register even without flag_pic.
973 Assume the pic register is not in use, or will be handled by
974 other means, if it is not fixed. */
975 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
976 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
977 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
978 #endif
980 /* Mark all global registers, and all registers used by the epilogue
981 as being live at the end of the function since they may be
982 referenced by our caller. */
983 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
984 if (global_regs[i] || EPILOGUE_USES (i))
985 SET_REGNO_REG_SET (set, i);
987 if (HAVE_epilogue && epilogue_completed)
989 /* Mark all call-saved registers that we actually used. */
990 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
991 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
992 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
993 SET_REGNO_REG_SET (set, i);
996 #ifdef EH_RETURN_DATA_REGNO
997 /* Mark the registers that will contain data for the handler. */
998 if (reload_completed && current_function_calls_eh_return)
999 for (i = 0; ; ++i)
1001 unsigned regno = EH_RETURN_DATA_REGNO(i);
1002 if (regno == INVALID_REGNUM)
1003 break;
1004 SET_REGNO_REG_SET (set, regno);
1006 #endif
1007 #ifdef EH_RETURN_STACKADJ_RTX
1008 if ((! HAVE_epilogue || ! epilogue_completed)
1009 && current_function_calls_eh_return)
1011 rtx tmp = EH_RETURN_STACKADJ_RTX;
1012 if (tmp && REG_P (tmp))
1013 mark_reg (tmp, set);
1015 #endif
1016 #ifdef EH_RETURN_HANDLER_RTX
1017 if ((! HAVE_epilogue || ! epilogue_completed)
1018 && current_function_calls_eh_return)
1020 rtx tmp = EH_RETURN_HANDLER_RTX;
1021 if (tmp && REG_P (tmp))
1022 mark_reg (tmp, set);
1024 #endif
1026 /* Mark function return value. */
1027 diddle_return_value (mark_reg, set);
1030 /* Propagate global life info around the graph of basic blocks. Begin
1031 considering blocks with their corresponding bit set in BLOCKS_IN.
1032 If BLOCKS_IN is null, consider it the universal set.
1034 BLOCKS_OUT is set for every block that was changed. */
1036 static void
1037 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1039 basic_block *queue, *qhead, *qtail, *qend, bb;
1040 regset tmp, new_live_at_end, invalidated_by_call;
1041 regset_head tmp_head, invalidated_by_call_head;
1042 regset_head new_live_at_end_head;
1043 int i;
1045 /* Some passes used to forget clear aux field of basic block causing
1046 sick behavior here. */
1047 #ifdef ENABLE_CHECKING
1048 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1049 if (bb->aux)
1050 abort ();
1051 #endif
1053 tmp = INITIALIZE_REG_SET (tmp_head);
1054 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1055 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1057 /* Inconveniently, this is only readily available in hard reg set form. */
1058 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1059 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1060 SET_REGNO_REG_SET (invalidated_by_call, i);
1062 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1063 because the `head == tail' style test for an empty queue doesn't
1064 work with a full queue. */
1065 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1066 qtail = queue;
1067 qhead = qend = queue + n_basic_blocks + 2;
1069 /* Queue the blocks set in the initial mask. Do this in reverse block
1070 number order so that we are more likely for the first round to do
1071 useful work. We use AUX non-null to flag that the block is queued. */
1072 if (blocks_in)
1074 FOR_EACH_BB (bb)
1075 if (TEST_BIT (blocks_in, bb->index))
1077 *--qhead = bb;
1078 bb->aux = bb;
1081 else
1083 FOR_EACH_BB (bb)
1085 *--qhead = bb;
1086 bb->aux = bb;
1090 /* We clean aux when we remove the initially-enqueued bbs, but we
1091 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1092 unconditionally. */
1093 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1095 if (blocks_out)
1096 sbitmap_zero (blocks_out);
1098 /* We work through the queue until there are no more blocks. What
1099 is live at the end of this block is precisely the union of what
1100 is live at the beginning of all its successors. So, we set its
1101 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1102 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1103 this block by walking through the instructions in this block in
1104 reverse order and updating as we go. If that changed
1105 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1106 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1108 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1109 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1110 must either be live at the end of the block, or used within the
1111 block. In the latter case, it will certainly never disappear
1112 from GLOBAL_LIVE_AT_START. In the former case, the register
1113 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1114 for one of the successor blocks. By induction, that cannot
1115 occur. */
1116 while (qhead != qtail)
1118 int rescan, changed;
1119 basic_block bb;
1120 edge e;
1122 bb = *qhead++;
1123 if (qhead == qend)
1124 qhead = queue;
1125 bb->aux = NULL;
1127 /* Begin by propagating live_at_start from the successor blocks. */
1128 CLEAR_REG_SET (new_live_at_end);
1130 if (bb->succ)
1131 for (e = bb->succ; e; e = e->succ_next)
1133 basic_block sb = e->dest;
1135 /* Call-clobbered registers die across exception and
1136 call edges. */
1137 /* ??? Abnormal call edges ignored for the moment, as this gets
1138 confused by sibling call edges, which crashes reg-stack. */
1139 if (e->flags & EDGE_EH)
1141 bitmap_operation (tmp, sb->global_live_at_start,
1142 invalidated_by_call, BITMAP_AND_COMPL);
1143 IOR_REG_SET (new_live_at_end, tmp);
1145 else
1146 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1148 /* If a target saves one register in another (instead of on
1149 the stack) the save register will need to be live for EH. */
1150 if (e->flags & EDGE_EH)
1151 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1152 if (EH_USES (i))
1153 SET_REGNO_REG_SET (new_live_at_end, i);
1155 else
1157 /* This might be a noreturn function that throws. And
1158 even if it isn't, getting the unwind info right helps
1159 debugging. */
1160 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1161 if (EH_USES (i))
1162 SET_REGNO_REG_SET (new_live_at_end, i);
1165 /* The all-important stack pointer must always be live. */
1166 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1168 /* Before reload, there are a few registers that must be forced
1169 live everywhere -- which might not already be the case for
1170 blocks within infinite loops. */
1171 if (! reload_completed)
1173 /* Any reference to any pseudo before reload is a potential
1174 reference of the frame pointer. */
1175 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1177 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1178 /* Pseudos with argument area equivalences may require
1179 reloading via the argument pointer. */
1180 if (fixed_regs[ARG_POINTER_REGNUM])
1181 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1182 #endif
1184 /* Any constant, or pseudo with constant equivalences, may
1185 require reloading from memory using the pic register. */
1186 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1187 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1188 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1191 if (bb == ENTRY_BLOCK_PTR)
1193 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1194 continue;
1197 /* On our first pass through this block, we'll go ahead and continue.
1198 Recognize first pass by local_set NULL. On subsequent passes, we
1199 get to skip out early if live_at_end wouldn't have changed. */
1201 if (bb->local_set == NULL)
1203 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1204 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1205 rescan = 1;
1207 else
1209 /* If any bits were removed from live_at_end, we'll have to
1210 rescan the block. This wouldn't be necessary if we had
1211 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1212 local_live is really dependent on live_at_end. */
1213 CLEAR_REG_SET (tmp);
1214 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1215 new_live_at_end, BITMAP_AND_COMPL);
1217 if (! rescan)
1219 /* If any of the registers in the new live_at_end set are
1220 conditionally set in this basic block, we must rescan.
1221 This is because conditional lifetimes at the end of the
1222 block do not just take the live_at_end set into account,
1223 but also the liveness at the start of each successor
1224 block. We can miss changes in those sets if we only
1225 compare the new live_at_end against the previous one. */
1226 CLEAR_REG_SET (tmp);
1227 rescan = bitmap_operation (tmp, new_live_at_end,
1228 bb->cond_local_set, BITMAP_AND);
1231 if (! rescan)
1233 /* Find the set of changed bits. Take this opportunity
1234 to notice that this set is empty and early out. */
1235 CLEAR_REG_SET (tmp);
1236 changed = bitmap_operation (tmp, bb->global_live_at_end,
1237 new_live_at_end, BITMAP_XOR);
1238 if (! changed)
1239 continue;
1241 /* If any of the changed bits overlap with local_set,
1242 we'll have to rescan the block. Detect overlap by
1243 the AND with ~local_set turning off bits. */
1244 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1245 BITMAP_AND_COMPL);
1249 /* Let our caller know that BB changed enough to require its
1250 death notes updated. */
1251 if (blocks_out)
1252 SET_BIT (blocks_out, bb->index);
1254 if (! rescan)
1256 /* Add to live_at_start the set of all registers in
1257 new_live_at_end that aren't in the old live_at_end. */
1259 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1260 BITMAP_AND_COMPL);
1261 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1263 changed = bitmap_operation (bb->global_live_at_start,
1264 bb->global_live_at_start,
1265 tmp, BITMAP_IOR);
1266 if (! changed)
1267 continue;
1269 else
1271 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1273 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1274 into live_at_start. */
1275 propagate_block (bb, new_live_at_end, bb->local_set,
1276 bb->cond_local_set, flags);
1278 /* If live_at start didn't change, no need to go farther. */
1279 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1280 continue;
1282 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1285 /* Queue all predecessors of BB so that we may re-examine
1286 their live_at_end. */
1287 for (e = bb->pred; e; e = e->pred_next)
1289 basic_block pb = e->src;
1290 if (pb->aux == NULL)
1292 *qtail++ = pb;
1293 if (qtail == qend)
1294 qtail = queue;
1295 pb->aux = pb;
1300 FREE_REG_SET (tmp);
1301 FREE_REG_SET (new_live_at_end);
1302 FREE_REG_SET (invalidated_by_call);
1304 if (blocks_out)
1306 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1308 basic_block bb = BASIC_BLOCK (i);
1309 FREE_REG_SET (bb->local_set);
1310 FREE_REG_SET (bb->cond_local_set);
1313 else
1315 FOR_EACH_BB (bb)
1317 FREE_REG_SET (bb->local_set);
1318 FREE_REG_SET (bb->cond_local_set);
1322 free (queue);
1326 /* This structure is used to pass parameters to and from the
1327 the function find_regno_partial(). It is used to pass in the
1328 register number we are looking, as well as to return any rtx
1329 we find. */
1331 typedef struct {
1332 unsigned regno_to_find;
1333 rtx retval;
1334 } find_regno_partial_param;
1337 /* Find the rtx for the reg numbers specified in 'data' if it is
1338 part of an expression which only uses part of the register. Return
1339 it in the structure passed in. */
1340 static int
1341 find_regno_partial (rtx *ptr, void *data)
1343 find_regno_partial_param *param = (find_regno_partial_param *)data;
1344 unsigned reg = param->regno_to_find;
1345 param->retval = NULL_RTX;
1347 if (*ptr == NULL_RTX)
1348 return 0;
1350 switch (GET_CODE (*ptr))
1352 case ZERO_EXTRACT:
1353 case SIGN_EXTRACT:
1354 case STRICT_LOW_PART:
1355 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1357 param->retval = XEXP (*ptr, 0);
1358 return 1;
1360 break;
1362 case SUBREG:
1363 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1364 && REGNO (SUBREG_REG (*ptr)) == reg)
1366 param->retval = SUBREG_REG (*ptr);
1367 return 1;
1369 break;
1371 default:
1372 break;
1375 return 0;
1378 /* Process all immediate successors of the entry block looking for pseudo
1379 registers which are live on entry. Find all of those whose first
1380 instance is a partial register reference of some kind, and initialize
1381 them to 0 after the entry block. This will prevent bit sets within
1382 registers whose value is unknown, and may contain some kind of sticky
1383 bits we don't want. */
1386 initialize_uninitialized_subregs (void)
1388 rtx insn;
1389 edge e;
1390 int reg, did_something = 0;
1391 find_regno_partial_param param;
1393 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1395 basic_block bb = e->dest;
1396 regset map = bb->global_live_at_start;
1397 EXECUTE_IF_SET_IN_REG_SET (map,
1398 FIRST_PSEUDO_REGISTER, reg,
1400 int uid = REGNO_FIRST_UID (reg);
1401 rtx i;
1403 /* Find an insn which mentions the register we are looking for.
1404 Its preferable to have an instance of the register's rtl since
1405 there may be various flags set which we need to duplicate.
1406 If we can't find it, its probably an automatic whose initial
1407 value doesn't matter, or hopefully something we don't care about. */
1408 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1410 if (i != NULL_RTX)
1412 /* Found the insn, now get the REG rtx, if we can. */
1413 param.regno_to_find = reg;
1414 for_each_rtx (&i, find_regno_partial, &param);
1415 if (param.retval != NULL_RTX)
1417 start_sequence ();
1418 emit_move_insn (param.retval,
1419 CONST0_RTX (GET_MODE (param.retval)));
1420 insn = get_insns ();
1421 end_sequence ();
1422 insert_insn_on_edge (insn, e);
1423 did_something = 1;
1429 if (did_something)
1430 commit_edge_insertions ();
1431 return did_something;
1435 /* Subroutines of life analysis. */
1437 /* Allocate the permanent data structures that represent the results
1438 of life analysis. Not static since used also for stupid life analysis. */
1440 void
1441 allocate_bb_life_data (void)
1443 basic_block bb;
1445 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1447 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1448 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1451 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1454 void
1455 allocate_reg_life_data (void)
1457 int i;
1459 max_regno = max_reg_num ();
1461 /* Recalculate the register space, in case it has grown. Old style
1462 vector oriented regsets would set regset_{size,bytes} here also. */
1463 allocate_reg_info (max_regno, FALSE, FALSE);
1465 /* Reset all the data we'll collect in propagate_block and its
1466 subroutines. */
1467 for (i = 0; i < max_regno; i++)
1469 REG_N_SETS (i) = 0;
1470 REG_N_REFS (i) = 0;
1471 REG_N_DEATHS (i) = 0;
1472 REG_N_CALLS_CROSSED (i) = 0;
1473 REG_LIVE_LENGTH (i) = 0;
1474 REG_FREQ (i) = 0;
1475 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1479 /* Delete dead instructions for propagate_block. */
1481 static void
1482 propagate_block_delete_insn (rtx insn)
1484 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1486 /* If the insn referred to a label, and that label was attached to
1487 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1488 pretty much mandatory to delete it, because the ADDR_VEC may be
1489 referencing labels that no longer exist.
1491 INSN may reference a deleted label, particularly when a jump
1492 table has been optimized into a direct jump. There's no
1493 real good way to fix up the reference to the deleted label
1494 when the label is deleted, so we just allow it here. */
1496 if (inote && GET_CODE (inote) == CODE_LABEL)
1498 rtx label = XEXP (inote, 0);
1499 rtx next;
1501 /* The label may be forced if it has been put in the constant
1502 pool. If that is the only use we must discard the table
1503 jump following it, but not the label itself. */
1504 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1505 && (next = next_nonnote_insn (label)) != NULL
1506 && GET_CODE (next) == JUMP_INSN
1507 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1508 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1510 rtx pat = PATTERN (next);
1511 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1512 int len = XVECLEN (pat, diff_vec_p);
1513 int i;
1515 for (i = 0; i < len; i++)
1516 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1518 delete_insn_and_edges (next);
1519 ndead++;
1523 delete_insn_and_edges (insn);
1524 ndead++;
1527 /* Delete dead libcalls for propagate_block. Return the insn
1528 before the libcall. */
1530 static rtx
1531 propagate_block_delete_libcall (rtx insn, rtx note)
1533 rtx first = XEXP (note, 0);
1534 rtx before = PREV_INSN (first);
1536 delete_insn_chain_and_edges (first, insn);
1537 ndead++;
1538 return before;
1541 /* Update the life-status of regs for one insn. Return the previous insn. */
1544 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1546 rtx prev = PREV_INSN (insn);
1547 int flags = pbi->flags;
1548 int insn_is_dead = 0;
1549 int libcall_is_dead = 0;
1550 rtx note;
1551 int i;
1553 if (! INSN_P (insn))
1554 return prev;
1556 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1557 if (flags & PROP_SCAN_DEAD_CODE)
1559 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1560 libcall_is_dead = (insn_is_dead && note != 0
1561 && libcall_dead_p (pbi, note, insn));
1564 /* If an instruction consists of just dead store(s) on final pass,
1565 delete it. */
1566 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1568 /* If we're trying to delete a prologue or epilogue instruction
1569 that isn't flagged as possibly being dead, something is wrong.
1570 But if we are keeping the stack pointer depressed, we might well
1571 be deleting insns that are used to compute the amount to update
1572 it by, so they are fine. */
1573 if (reload_completed
1574 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1575 && (TYPE_RETURNS_STACK_DEPRESSED
1576 (TREE_TYPE (current_function_decl))))
1577 && (((HAVE_epilogue || HAVE_prologue)
1578 && prologue_epilogue_contains (insn))
1579 || (HAVE_sibcall_epilogue
1580 && sibcall_epilogue_contains (insn)))
1581 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1582 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1584 /* Record sets. Do this even for dead instructions, since they
1585 would have killed the values if they hadn't been deleted. */
1586 mark_set_regs (pbi, PATTERN (insn), insn);
1588 /* CC0 is now known to be dead. Either this insn used it,
1589 in which case it doesn't anymore, or clobbered it,
1590 so the next insn can't use it. */
1591 pbi->cc0_live = 0;
1593 if (libcall_is_dead)
1594 prev = propagate_block_delete_libcall ( insn, note);
1595 else
1598 /* If INSN contains a RETVAL note and is dead, but the libcall
1599 as a whole is not dead, then we want to remove INSN, but
1600 not the whole libcall sequence.
1602 However, we need to also remove the dangling REG_LIBCALL
1603 note so that we do not have mis-matched LIBCALL/RETVAL
1604 notes. In theory we could find a new location for the
1605 REG_RETVAL note, but it hardly seems worth the effort.
1607 NOTE at this point will be the RETVAL note if it exists. */
1608 if (note)
1610 rtx libcall_note;
1612 libcall_note
1613 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1614 remove_note (XEXP (note, 0), libcall_note);
1617 /* Similarly if INSN contains a LIBCALL note, remove the
1618 dangling REG_RETVAL note. */
1619 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1620 if (note)
1622 rtx retval_note;
1624 retval_note
1625 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1626 remove_note (XEXP (note, 0), retval_note);
1629 /* Now delete INSN. */
1630 propagate_block_delete_insn (insn);
1633 return prev;
1636 /* See if this is an increment or decrement that can be merged into
1637 a following memory address. */
1638 #ifdef AUTO_INC_DEC
1640 rtx x = single_set (insn);
1642 /* Does this instruction increment or decrement a register? */
1643 if ((flags & PROP_AUTOINC)
1644 && x != 0
1645 && GET_CODE (SET_DEST (x)) == REG
1646 && (GET_CODE (SET_SRC (x)) == PLUS
1647 || GET_CODE (SET_SRC (x)) == MINUS)
1648 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1649 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1650 /* Ok, look for a following memory ref we can combine with.
1651 If one is found, change the memory ref to a PRE_INC
1652 or PRE_DEC, cancel this insn, and return 1.
1653 Return 0 if nothing has been done. */
1654 && try_pre_increment_1 (pbi, insn))
1655 return prev;
1657 #endif /* AUTO_INC_DEC */
1659 CLEAR_REG_SET (pbi->new_set);
1661 /* If this is not the final pass, and this insn is copying the value of
1662 a library call and it's dead, don't scan the insns that perform the
1663 library call, so that the call's arguments are not marked live. */
1664 if (libcall_is_dead)
1666 /* Record the death of the dest reg. */
1667 mark_set_regs (pbi, PATTERN (insn), insn);
1669 insn = XEXP (note, 0);
1670 return PREV_INSN (insn);
1672 else if (GET_CODE (PATTERN (insn)) == SET
1673 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1674 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1675 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1676 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1677 /* We have an insn to pop a constant amount off the stack.
1678 (Such insns use PLUS regardless of the direction of the stack,
1679 and any insn to adjust the stack by a constant is always a pop.)
1680 These insns, if not dead stores, have no effect on life, though
1681 they do have an effect on the memory stores we are tracking. */
1682 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1683 else
1685 rtx note;
1686 /* Any regs live at the time of a call instruction must not go
1687 in a register clobbered by calls. Find all regs now live and
1688 record this for them. */
1690 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1691 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1692 { REG_N_CALLS_CROSSED (i)++; });
1694 /* Record sets. Do this even for dead instructions, since they
1695 would have killed the values if they hadn't been deleted. */
1696 mark_set_regs (pbi, PATTERN (insn), insn);
1698 if (GET_CODE (insn) == CALL_INSN)
1700 regset live_at_end;
1701 bool sibcall_p;
1702 rtx note, cond;
1703 int i;
1705 cond = NULL_RTX;
1706 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1707 cond = COND_EXEC_TEST (PATTERN (insn));
1709 /* Non-constant calls clobber memory, constant calls do not
1710 clobber memory, though they may clobber outgoing arguments
1711 on the stack. */
1712 if (! CONST_OR_PURE_CALL_P (insn))
1714 free_EXPR_LIST_list (&pbi->mem_set_list);
1715 pbi->mem_set_list_len = 0;
1717 else
1718 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1720 /* There may be extra registers to be clobbered. */
1721 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1722 note;
1723 note = XEXP (note, 1))
1724 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1725 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1726 cond, insn, pbi->flags);
1728 /* Calls change all call-used and global registers; sibcalls do not
1729 clobber anything that must be preserved at end-of-function,
1730 except for return values. */
1732 sibcall_p = SIBLING_CALL_P (insn);
1733 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1734 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1735 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1736 && ! (sibcall_p
1737 && REGNO_REG_SET_P (live_at_end, i)
1738 && ! refers_to_regno_p (i, i+1,
1739 current_function_return_rtx,
1740 (rtx *) 0)))
1742 /* We do not want REG_UNUSED notes for these registers. */
1743 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1744 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1748 /* If an insn doesn't use CC0, it becomes dead since we assume
1749 that every insn clobbers it. So show it dead here;
1750 mark_used_regs will set it live if it is referenced. */
1751 pbi->cc0_live = 0;
1753 /* Record uses. */
1754 if (! insn_is_dead)
1755 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1756 if ((flags & PROP_EQUAL_NOTES)
1757 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1758 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1759 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1761 /* Sometimes we may have inserted something before INSN (such as a move)
1762 when we make an auto-inc. So ensure we will scan those insns. */
1763 #ifdef AUTO_INC_DEC
1764 prev = PREV_INSN (insn);
1765 #endif
1767 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1769 int i;
1770 rtx note, cond;
1772 cond = NULL_RTX;
1773 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1774 cond = COND_EXEC_TEST (PATTERN (insn));
1776 /* Calls use their arguments, and may clobber memory which
1777 address involves some register. */
1778 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1779 note;
1780 note = XEXP (note, 1))
1781 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1782 of which mark_used_regs knows how to handle. */
1783 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1785 /* The stack ptr is used (honorarily) by a CALL insn. */
1786 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1788 /* Calls may also reference any of the global registers,
1789 so they are made live. */
1790 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1791 if (global_regs[i])
1792 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1796 /* On final pass, update counts of how many insns in which each reg
1797 is live. */
1798 if (flags & PROP_REG_INFO)
1799 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1800 { REG_LIVE_LENGTH (i)++; });
1802 return prev;
1805 /* Initialize a propagate_block_info struct for public consumption.
1806 Note that the structure itself is opaque to this file, but that
1807 the user can use the regsets provided here. */
1809 struct propagate_block_info *
1810 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1811 regset cond_local_set, int flags)
1813 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1815 pbi->bb = bb;
1816 pbi->reg_live = live;
1817 pbi->mem_set_list = NULL_RTX;
1818 pbi->mem_set_list_len = 0;
1819 pbi->local_set = local_set;
1820 pbi->cond_local_set = cond_local_set;
1821 pbi->cc0_live = 0;
1822 pbi->flags = flags;
1824 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1825 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1826 else
1827 pbi->reg_next_use = NULL;
1829 pbi->new_set = BITMAP_XMALLOC ();
1831 #ifdef HAVE_conditional_execution
1832 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1833 free_reg_cond_life_info);
1834 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1836 /* If this block ends in a conditional branch, for each register
1837 live from one side of the branch and not the other, record the
1838 register as conditionally dead. */
1839 if (GET_CODE (BB_END (bb)) == JUMP_INSN
1840 && any_condjump_p (BB_END (bb)))
1842 regset_head diff_head;
1843 regset diff = INITIALIZE_REG_SET (diff_head);
1844 basic_block bb_true, bb_false;
1845 int i;
1847 /* Identify the successor blocks. */
1848 bb_true = bb->succ->dest;
1849 if (bb->succ->succ_next != NULL)
1851 bb_false = bb->succ->succ_next->dest;
1853 if (bb->succ->flags & EDGE_FALLTHRU)
1855 basic_block t = bb_false;
1856 bb_false = bb_true;
1857 bb_true = t;
1859 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1860 abort ();
1862 else
1864 /* This can happen with a conditional jump to the next insn. */
1865 if (JUMP_LABEL (BB_END (bb)) != BB_HEAD (bb_true))
1866 abort ();
1868 /* Simplest way to do nothing. */
1869 bb_false = bb_true;
1872 /* Compute which register lead different lives in the successors. */
1873 if (bitmap_operation (diff, bb_true->global_live_at_start,
1874 bb_false->global_live_at_start, BITMAP_XOR))
1876 /* Extract the condition from the branch. */
1877 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1878 rtx cond_true = XEXP (set_src, 0);
1879 rtx reg = XEXP (cond_true, 0);
1881 if (GET_CODE (reg) == SUBREG)
1882 reg = SUBREG_REG (reg);
1884 /* We can only track conditional lifetimes if the condition is
1885 in the form of a comparison of a register against zero.
1886 If the condition is more complex than that, then it is safe
1887 not to record any information. */
1888 if (GET_CODE (reg) == REG
1889 && XEXP (cond_true, 1) == const0_rtx)
1891 rtx cond_false
1892 = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1893 GET_MODE (cond_true), XEXP (cond_true, 0),
1894 XEXP (cond_true, 1));
1895 if (GET_CODE (XEXP (set_src, 1)) == PC)
1897 rtx t = cond_false;
1898 cond_false = cond_true;
1899 cond_true = t;
1902 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1904 /* For each such register, mark it conditionally dead. */
1905 EXECUTE_IF_SET_IN_REG_SET
1906 (diff, 0, i,
1908 struct reg_cond_life_info *rcli;
1909 rtx cond;
1911 rcli = xmalloc (sizeof (*rcli));
1913 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1914 cond = cond_false;
1915 else
1916 cond = cond_true;
1917 rcli->condition = cond;
1918 rcli->stores = const0_rtx;
1919 rcli->orig_condition = cond;
1921 splay_tree_insert (pbi->reg_cond_dead, i,
1922 (splay_tree_value) rcli);
1927 FREE_REG_SET (diff);
1929 #endif
1931 /* If this block has no successors, any stores to the frame that aren't
1932 used later in the block are dead. So make a pass over the block
1933 recording any such that are made and show them dead at the end. We do
1934 a very conservative and simple job here. */
1935 if (optimize
1936 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1937 && (TYPE_RETURNS_STACK_DEPRESSED
1938 (TREE_TYPE (current_function_decl))))
1939 && (flags & PROP_SCAN_DEAD_STORES)
1940 && (bb->succ == NULL
1941 || (bb->succ->succ_next == NULL
1942 && bb->succ->dest == EXIT_BLOCK_PTR
1943 && ! current_function_calls_eh_return)))
1945 rtx insn, set;
1946 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1947 if (GET_CODE (insn) == INSN
1948 && (set = single_set (insn))
1949 && GET_CODE (SET_DEST (set)) == MEM)
1951 rtx mem = SET_DEST (set);
1952 rtx canon_mem = canon_rtx (mem);
1954 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1955 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1956 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1957 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1958 add_to_mem_set_list (pbi, canon_mem);
1962 return pbi;
1965 /* Release a propagate_block_info struct. */
1967 void
1968 free_propagate_block_info (struct propagate_block_info *pbi)
1970 free_EXPR_LIST_list (&pbi->mem_set_list);
1972 BITMAP_XFREE (pbi->new_set);
1974 #ifdef HAVE_conditional_execution
1975 splay_tree_delete (pbi->reg_cond_dead);
1976 BITMAP_XFREE (pbi->reg_cond_reg);
1977 #endif
1979 if (pbi->reg_next_use)
1980 free (pbi->reg_next_use);
1982 free (pbi);
1985 /* Compute the registers live at the beginning of a basic block BB from
1986 those live at the end.
1988 When called, REG_LIVE contains those live at the end. On return, it
1989 contains those live at the beginning.
1991 LOCAL_SET, if non-null, will be set with all registers killed
1992 unconditionally by this basic block.
1993 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1994 killed conditionally by this basic block. If there is any unconditional
1995 set of a register, then the corresponding bit will be set in LOCAL_SET
1996 and cleared in COND_LOCAL_SET.
1997 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1998 case, the resulting set will be equal to the union of the two sets that
1999 would otherwise be computed.
2001 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2004 propagate_block (basic_block bb, regset live, regset local_set,
2005 regset cond_local_set, int flags)
2007 struct propagate_block_info *pbi;
2008 rtx insn, prev;
2009 int changed;
2011 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2013 if (flags & PROP_REG_INFO)
2015 int i;
2017 /* Process the regs live at the end of the block.
2018 Mark them as not local to any one basic block. */
2019 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2020 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2023 /* Scan the block an insn at a time from end to beginning. */
2025 changed = 0;
2026 for (insn = BB_END (bb); ; insn = prev)
2028 /* If this is a call to `setjmp' et al, warn if any
2029 non-volatile datum is live. */
2030 if ((flags & PROP_REG_INFO)
2031 && GET_CODE (insn) == CALL_INSN
2032 && find_reg_note (insn, REG_SETJMP, NULL))
2033 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2035 prev = propagate_one_insn (pbi, insn);
2036 if (!prev)
2037 changed |= insn != get_insns ();
2038 else
2039 changed |= NEXT_INSN (prev) != insn;
2041 if (insn == BB_HEAD (bb))
2042 break;
2045 free_propagate_block_info (pbi);
2047 return changed;
2050 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2051 (SET expressions whose destinations are registers dead after the insn).
2052 NEEDED is the regset that says which regs are alive after the insn.
2054 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2056 If X is the entire body of an insn, NOTES contains the reg notes
2057 pertaining to the insn. */
2059 static int
2060 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2061 rtx notes ATTRIBUTE_UNUSED)
2063 enum rtx_code code = GET_CODE (x);
2065 /* Don't eliminate insns that may trap. */
2066 if (flag_non_call_exceptions && may_trap_p (x))
2067 return 0;
2069 #ifdef AUTO_INC_DEC
2070 /* As flow is invoked after combine, we must take existing AUTO_INC
2071 expressions into account. */
2072 for (; notes; notes = XEXP (notes, 1))
2074 if (REG_NOTE_KIND (notes) == REG_INC)
2076 int regno = REGNO (XEXP (notes, 0));
2078 /* Don't delete insns to set global regs. */
2079 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2080 || REGNO_REG_SET_P (pbi->reg_live, regno))
2081 return 0;
2084 #endif
2086 /* If setting something that's a reg or part of one,
2087 see if that register's altered value will be live. */
2089 if (code == SET)
2091 rtx r = SET_DEST (x);
2093 #ifdef HAVE_cc0
2094 if (GET_CODE (r) == CC0)
2095 return ! pbi->cc0_live;
2096 #endif
2098 /* A SET that is a subroutine call cannot be dead. */
2099 if (GET_CODE (SET_SRC (x)) == CALL)
2101 if (! call_ok)
2102 return 0;
2105 /* Don't eliminate loads from volatile memory or volatile asms. */
2106 else if (volatile_refs_p (SET_SRC (x)))
2107 return 0;
2109 if (GET_CODE (r) == MEM)
2111 rtx temp, canon_r;
2113 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2114 return 0;
2116 canon_r = canon_rtx (r);
2118 /* Walk the set of memory locations we are currently tracking
2119 and see if one is an identical match to this memory location.
2120 If so, this memory write is dead (remember, we're walking
2121 backwards from the end of the block to the start). Since
2122 rtx_equal_p does not check the alias set or flags, we also
2123 must have the potential for them to conflict (anti_dependence). */
2124 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2125 if (unchanging_anti_dependence (r, XEXP (temp, 0)))
2127 rtx mem = XEXP (temp, 0);
2129 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2130 && (GET_MODE_SIZE (GET_MODE (canon_r))
2131 <= GET_MODE_SIZE (GET_MODE (mem))))
2132 return 1;
2134 #ifdef AUTO_INC_DEC
2135 /* Check if memory reference matches an auto increment. Only
2136 post increment/decrement or modify are valid. */
2137 if (GET_MODE (mem) == GET_MODE (r)
2138 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2139 || GET_CODE (XEXP (mem, 0)) == POST_INC
2140 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2141 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2142 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2143 return 1;
2144 #endif
2147 else
2149 while (GET_CODE (r) == SUBREG
2150 || GET_CODE (r) == STRICT_LOW_PART
2151 || GET_CODE (r) == ZERO_EXTRACT)
2152 r = XEXP (r, 0);
2154 if (GET_CODE (r) == REG)
2156 int regno = REGNO (r);
2158 /* Obvious. */
2159 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2160 return 0;
2162 /* If this is a hard register, verify that subsequent
2163 words are not needed. */
2164 if (regno < FIRST_PSEUDO_REGISTER)
2166 int n = hard_regno_nregs[regno][GET_MODE (r)];
2168 while (--n > 0)
2169 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2170 return 0;
2173 /* Don't delete insns to set global regs. */
2174 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2175 return 0;
2177 /* Make sure insns to set the stack pointer aren't deleted. */
2178 if (regno == STACK_POINTER_REGNUM)
2179 return 0;
2181 /* ??? These bits might be redundant with the force live bits
2182 in calculate_global_regs_live. We would delete from
2183 sequential sets; whether this actually affects real code
2184 for anything but the stack pointer I don't know. */
2185 /* Make sure insns to set the frame pointer aren't deleted. */
2186 if (regno == FRAME_POINTER_REGNUM
2187 && (! reload_completed || frame_pointer_needed))
2188 return 0;
2189 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2190 if (regno == HARD_FRAME_POINTER_REGNUM
2191 && (! reload_completed || frame_pointer_needed))
2192 return 0;
2193 #endif
2195 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2196 /* Make sure insns to set arg pointer are never deleted
2197 (if the arg pointer isn't fixed, there will be a USE
2198 for it, so we can treat it normally). */
2199 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2200 return 0;
2201 #endif
2203 /* Otherwise, the set is dead. */
2204 return 1;
2209 /* If performing several activities, insn is dead if each activity
2210 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2211 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2212 worth keeping. */
2213 else if (code == PARALLEL)
2215 int i = XVECLEN (x, 0);
2217 for (i--; i >= 0; i--)
2218 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2219 && GET_CODE (XVECEXP (x, 0, i)) != USE
2220 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2221 return 0;
2223 return 1;
2226 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2227 is not necessarily true for hard registers. */
2228 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2229 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2230 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2231 return 1;
2233 /* We do not check other CLOBBER or USE here. An insn consisting of just
2234 a CLOBBER or just a USE should not be deleted. */
2235 return 0;
2238 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2239 return 1 if the entire library call is dead.
2240 This is true if INSN copies a register (hard or pseudo)
2241 and if the hard return reg of the call insn is dead.
2242 (The caller should have tested the destination of the SET inside
2243 INSN already for death.)
2245 If this insn doesn't just copy a register, then we don't
2246 have an ordinary libcall. In that case, cse could not have
2247 managed to substitute the source for the dest later on,
2248 so we can assume the libcall is dead.
2250 PBI is the block info giving pseudoregs live before this insn.
2251 NOTE is the REG_RETVAL note of the insn. */
2253 static int
2254 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2256 rtx x = single_set (insn);
2258 if (x)
2260 rtx r = SET_SRC (x);
2262 if (GET_CODE (r) == REG)
2264 rtx call = XEXP (note, 0);
2265 rtx call_pat;
2266 int i;
2268 /* Find the call insn. */
2269 while (call != insn && GET_CODE (call) != CALL_INSN)
2270 call = NEXT_INSN (call);
2272 /* If there is none, do nothing special,
2273 since ordinary death handling can understand these insns. */
2274 if (call == insn)
2275 return 0;
2277 /* See if the hard reg holding the value is dead.
2278 If this is a PARALLEL, find the call within it. */
2279 call_pat = PATTERN (call);
2280 if (GET_CODE (call_pat) == PARALLEL)
2282 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2283 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2284 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2285 break;
2287 /* This may be a library call that is returning a value
2288 via invisible pointer. Do nothing special, since
2289 ordinary death handling can understand these insns. */
2290 if (i < 0)
2291 return 0;
2293 call_pat = XVECEXP (call_pat, 0, i);
2296 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2299 return 1;
2302 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2303 live at function entry. Don't count global register variables, variables
2304 in registers that can be used for function arg passing, or variables in
2305 fixed hard registers. */
2308 regno_uninitialized (unsigned int regno)
2310 if (n_basic_blocks == 0
2311 || (regno < FIRST_PSEUDO_REGISTER
2312 && (global_regs[regno]
2313 || fixed_regs[regno]
2314 || FUNCTION_ARG_REGNO_P (regno))))
2315 return 0;
2317 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2320 /* 1 if register REGNO was alive at a place where `setjmp' was called
2321 and was set more than once or is an argument.
2322 Such regs may be clobbered by `longjmp'. */
2325 regno_clobbered_at_setjmp (int regno)
2327 if (n_basic_blocks == 0)
2328 return 0;
2330 return ((REG_N_SETS (regno) > 1
2331 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2332 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2335 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2336 maximal list size; look for overlaps in mode and select the largest. */
2337 static void
2338 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2340 rtx i;
2342 /* We don't know how large a BLKmode store is, so we must not
2343 take them into consideration. */
2344 if (GET_MODE (mem) == BLKmode)
2345 return;
2347 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2349 rtx e = XEXP (i, 0);
2350 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2352 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2354 #ifdef AUTO_INC_DEC
2355 /* If we must store a copy of the mem, we can just modify
2356 the mode of the stored copy. */
2357 if (pbi->flags & PROP_AUTOINC)
2358 PUT_MODE (e, GET_MODE (mem));
2359 else
2360 #endif
2361 XEXP (i, 0) = mem;
2363 return;
2367 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2369 #ifdef AUTO_INC_DEC
2370 /* Store a copy of mem, otherwise the address may be
2371 scrogged by find_auto_inc. */
2372 if (pbi->flags & PROP_AUTOINC)
2373 mem = shallow_copy_rtx (mem);
2374 #endif
2375 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2376 pbi->mem_set_list_len++;
2380 /* INSN references memory, possibly using autoincrement addressing modes.
2381 Find any entries on the mem_set_list that need to be invalidated due
2382 to an address change. */
2384 static int
2385 invalidate_mems_from_autoinc (rtx *px, void *data)
2387 rtx x = *px;
2388 struct propagate_block_info *pbi = data;
2390 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2392 invalidate_mems_from_set (pbi, XEXP (x, 0));
2393 return -1;
2396 return 0;
2399 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2401 static void
2402 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2404 rtx temp = pbi->mem_set_list;
2405 rtx prev = NULL_RTX;
2406 rtx next;
2408 while (temp)
2410 next = XEXP (temp, 1);
2411 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2413 /* Splice this entry out of the list. */
2414 if (prev)
2415 XEXP (prev, 1) = next;
2416 else
2417 pbi->mem_set_list = next;
2418 free_EXPR_LIST_node (temp);
2419 pbi->mem_set_list_len--;
2421 else
2422 prev = temp;
2423 temp = next;
2427 /* Process the registers that are set within X. Their bits are set to
2428 1 in the regset DEAD, because they are dead prior to this insn.
2430 If INSN is nonzero, it is the insn being processed.
2432 FLAGS is the set of operations to perform. */
2434 static void
2435 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2437 rtx cond = NULL_RTX;
2438 rtx link;
2439 enum rtx_code code;
2440 int flags = pbi->flags;
2442 if (insn)
2443 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2445 if (REG_NOTE_KIND (link) == REG_INC)
2446 mark_set_1 (pbi, SET, XEXP (link, 0),
2447 (GET_CODE (x) == COND_EXEC
2448 ? COND_EXEC_TEST (x) : NULL_RTX),
2449 insn, flags);
2451 retry:
2452 switch (code = GET_CODE (x))
2454 case SET:
2455 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2456 flags |= PROP_ASM_SCAN;
2457 /* Fall through */
2458 case CLOBBER:
2459 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2460 return;
2462 case COND_EXEC:
2463 cond = COND_EXEC_TEST (x);
2464 x = COND_EXEC_CODE (x);
2465 goto retry;
2467 case PARALLEL:
2469 int i;
2471 /* We must scan forwards. If we have an asm, we need to set
2472 the PROP_ASM_SCAN flag before scanning the clobbers. */
2473 for (i = 0; i < XVECLEN (x, 0); i++)
2475 rtx sub = XVECEXP (x, 0, i);
2476 switch (code = GET_CODE (sub))
2478 case COND_EXEC:
2479 if (cond != NULL_RTX)
2480 abort ();
2482 cond = COND_EXEC_TEST (sub);
2483 sub = COND_EXEC_CODE (sub);
2484 if (GET_CODE (sub) == SET)
2485 goto mark_set;
2486 if (GET_CODE (sub) == CLOBBER)
2487 goto mark_clob;
2488 break;
2490 case SET:
2491 mark_set:
2492 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2493 flags |= PROP_ASM_SCAN;
2494 /* Fall through */
2495 case CLOBBER:
2496 mark_clob:
2497 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2498 break;
2500 case ASM_OPERANDS:
2501 flags |= PROP_ASM_SCAN;
2502 break;
2504 default:
2505 break;
2508 break;
2511 default:
2512 break;
2516 /* Process a single set, which appears in INSN. REG (which may not
2517 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2518 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2519 If the set is conditional (because it appear in a COND_EXEC), COND
2520 will be the condition. */
2522 static void
2523 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2525 int regno_first = -1, regno_last = -1;
2526 unsigned long not_dead = 0;
2527 int i;
2529 /* Modifying just one hardware register of a multi-reg value or just a
2530 byte field of a register does not mean the value from before this insn
2531 is now dead. Of course, if it was dead after it's unused now. */
2533 switch (GET_CODE (reg))
2535 case PARALLEL:
2536 /* Some targets place small structures in registers for return values of
2537 functions. We have to detect this case specially here to get correct
2538 flow information. */
2539 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2540 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2541 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2542 flags);
2543 return;
2545 case ZERO_EXTRACT:
2546 case SIGN_EXTRACT:
2547 case STRICT_LOW_PART:
2548 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2550 reg = XEXP (reg, 0);
2551 while (GET_CODE (reg) == SUBREG
2552 || GET_CODE (reg) == ZERO_EXTRACT
2553 || GET_CODE (reg) == SIGN_EXTRACT
2554 || GET_CODE (reg) == STRICT_LOW_PART);
2555 if (GET_CODE (reg) == MEM)
2556 break;
2557 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2558 /* Fall through. */
2560 case REG:
2561 regno_last = regno_first = REGNO (reg);
2562 if (regno_first < FIRST_PSEUDO_REGISTER)
2563 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2564 break;
2566 case SUBREG:
2567 if (GET_CODE (SUBREG_REG (reg)) == REG)
2569 enum machine_mode outer_mode = GET_MODE (reg);
2570 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2572 /* Identify the range of registers affected. This is moderately
2573 tricky for hard registers. See alter_subreg. */
2575 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2576 if (regno_first < FIRST_PSEUDO_REGISTER)
2578 regno_first += subreg_regno_offset (regno_first, inner_mode,
2579 SUBREG_BYTE (reg),
2580 outer_mode);
2581 regno_last = (regno_first
2582 + hard_regno_nregs[regno_first][outer_mode] - 1);
2584 /* Since we've just adjusted the register number ranges, make
2585 sure REG matches. Otherwise some_was_live will be clear
2586 when it shouldn't have been, and we'll create incorrect
2587 REG_UNUSED notes. */
2588 reg = gen_rtx_REG (outer_mode, regno_first);
2590 else
2592 /* If the number of words in the subreg is less than the number
2593 of words in the full register, we have a well-defined partial
2594 set. Otherwise the high bits are undefined.
2596 This is only really applicable to pseudos, since we just took
2597 care of multi-word hard registers. */
2598 if (((GET_MODE_SIZE (outer_mode)
2599 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2600 < ((GET_MODE_SIZE (inner_mode)
2601 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2602 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2603 regno_first);
2605 reg = SUBREG_REG (reg);
2608 else
2609 reg = SUBREG_REG (reg);
2610 break;
2612 default:
2613 break;
2616 /* If this set is a MEM, then it kills any aliased writes.
2617 If this set is a REG, then it kills any MEMs which use the reg. */
2618 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2620 if (GET_CODE (reg) == REG)
2621 invalidate_mems_from_set (pbi, reg);
2623 /* If the memory reference had embedded side effects (autoincrement
2624 address modes. Then we may need to kill some entries on the
2625 memory set list. */
2626 if (insn && GET_CODE (reg) == MEM)
2627 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2629 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2630 /* ??? With more effort we could track conditional memory life. */
2631 && ! cond)
2632 add_to_mem_set_list (pbi, canon_rtx (reg));
2635 if (GET_CODE (reg) == REG
2636 && ! (regno_first == FRAME_POINTER_REGNUM
2637 && (! reload_completed || frame_pointer_needed))
2638 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2639 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2640 && (! reload_completed || frame_pointer_needed))
2641 #endif
2642 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2643 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2644 #endif
2647 int some_was_live = 0, some_was_dead = 0;
2649 for (i = regno_first; i <= regno_last; ++i)
2651 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2652 if (pbi->local_set)
2654 /* Order of the set operation matters here since both
2655 sets may be the same. */
2656 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2657 if (cond != NULL_RTX
2658 && ! REGNO_REG_SET_P (pbi->local_set, i))
2659 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2660 else
2661 SET_REGNO_REG_SET (pbi->local_set, i);
2663 if (code != CLOBBER)
2664 SET_REGNO_REG_SET (pbi->new_set, i);
2666 some_was_live |= needed_regno;
2667 some_was_dead |= ! needed_regno;
2670 #ifdef HAVE_conditional_execution
2671 /* Consider conditional death in deciding that the register needs
2672 a death note. */
2673 if (some_was_live && ! not_dead
2674 /* The stack pointer is never dead. Well, not strictly true,
2675 but it's very difficult to tell from here. Hopefully
2676 combine_stack_adjustments will fix up the most egregious
2677 errors. */
2678 && regno_first != STACK_POINTER_REGNUM)
2680 for (i = regno_first; i <= regno_last; ++i)
2681 if (! mark_regno_cond_dead (pbi, i, cond))
2682 not_dead |= ((unsigned long) 1) << (i - regno_first);
2684 #endif
2686 /* Additional data to record if this is the final pass. */
2687 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2688 | PROP_DEATH_NOTES | PROP_AUTOINC))
2690 rtx y;
2691 int blocknum = pbi->bb->index;
2693 y = NULL_RTX;
2694 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2696 y = pbi->reg_next_use[regno_first];
2698 /* The next use is no longer next, since a store intervenes. */
2699 for (i = regno_first; i <= regno_last; ++i)
2700 pbi->reg_next_use[i] = 0;
2703 if (flags & PROP_REG_INFO)
2705 for (i = regno_first; i <= regno_last; ++i)
2707 /* Count (weighted) references, stores, etc. This counts a
2708 register twice if it is modified, but that is correct. */
2709 REG_N_SETS (i) += 1;
2710 REG_N_REFS (i) += 1;
2711 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2713 /* The insns where a reg is live are normally counted
2714 elsewhere, but we want the count to include the insn
2715 where the reg is set, and the normal counting mechanism
2716 would not count it. */
2717 REG_LIVE_LENGTH (i) += 1;
2720 /* If this is a hard reg, record this function uses the reg. */
2721 if (regno_first < FIRST_PSEUDO_REGISTER)
2723 for (i = regno_first; i <= regno_last; i++)
2724 regs_ever_live[i] = 1;
2725 if (flags & PROP_ASM_SCAN)
2726 for (i = regno_first; i <= regno_last; i++)
2727 regs_asm_clobbered[i] = 1;
2729 else
2731 /* Keep track of which basic blocks each reg appears in. */
2732 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2733 REG_BASIC_BLOCK (regno_first) = blocknum;
2734 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2735 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2739 if (! some_was_dead)
2741 if (flags & PROP_LOG_LINKS)
2743 /* Make a logical link from the next following insn
2744 that uses this register, back to this insn.
2745 The following insns have already been processed.
2747 We don't build a LOG_LINK for hard registers containing
2748 in ASM_OPERANDs. If these registers get replaced,
2749 we might wind up changing the semantics of the insn,
2750 even if reload can make what appear to be valid
2751 assignments later. */
2752 if (y && (BLOCK_NUM (y) == blocknum)
2753 && (regno_first >= FIRST_PSEUDO_REGISTER
2754 || asm_noperands (PATTERN (y)) < 0))
2755 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2758 else if (not_dead)
2760 else if (! some_was_live)
2762 if (flags & PROP_REG_INFO)
2763 REG_N_DEATHS (regno_first) += 1;
2765 if (flags & PROP_DEATH_NOTES)
2767 /* Note that dead stores have already been deleted
2768 when possible. If we get here, we have found a
2769 dead store that cannot be eliminated (because the
2770 same insn does something useful). Indicate this
2771 by marking the reg being set as dying here. */
2772 REG_NOTES (insn)
2773 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2776 else
2778 if (flags & PROP_DEATH_NOTES)
2780 /* This is a case where we have a multi-word hard register
2781 and some, but not all, of the words of the register are
2782 needed in subsequent insns. Write REG_UNUSED notes
2783 for those parts that were not needed. This case should
2784 be rare. */
2786 for (i = regno_first; i <= regno_last; ++i)
2787 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2788 REG_NOTES (insn)
2789 = alloc_EXPR_LIST (REG_UNUSED,
2790 regno_reg_rtx[i],
2791 REG_NOTES (insn));
2796 /* Mark the register as being dead. */
2797 if (some_was_live
2798 /* The stack pointer is never dead. Well, not strictly true,
2799 but it's very difficult to tell from here. Hopefully
2800 combine_stack_adjustments will fix up the most egregious
2801 errors. */
2802 && regno_first != STACK_POINTER_REGNUM)
2804 for (i = regno_first; i <= regno_last; ++i)
2805 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2806 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2809 else if (GET_CODE (reg) == REG)
2811 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2812 pbi->reg_next_use[regno_first] = 0;
2814 if ((flags & PROP_REG_INFO) != 0
2815 && (flags & PROP_ASM_SCAN) != 0
2816 && regno_first < FIRST_PSEUDO_REGISTER)
2818 for (i = regno_first; i <= regno_last; i++)
2819 regs_asm_clobbered[i] = 1;
2823 /* If this is the last pass and this is a SCRATCH, show it will be dying
2824 here and count it. */
2825 else if (GET_CODE (reg) == SCRATCH)
2827 if (flags & PROP_DEATH_NOTES)
2828 REG_NOTES (insn)
2829 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2833 #ifdef HAVE_conditional_execution
2834 /* Mark REGNO conditionally dead.
2835 Return true if the register is now unconditionally dead. */
2837 static int
2838 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2840 /* If this is a store to a predicate register, the value of the
2841 predicate is changing, we don't know that the predicate as seen
2842 before is the same as that seen after. Flush all dependent
2843 conditions from reg_cond_dead. This will make all such
2844 conditionally live registers unconditionally live. */
2845 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2846 flush_reg_cond_reg (pbi, regno);
2848 /* If this is an unconditional store, remove any conditional
2849 life that may have existed. */
2850 if (cond == NULL_RTX)
2851 splay_tree_remove (pbi->reg_cond_dead, regno);
2852 else
2854 splay_tree_node node;
2855 struct reg_cond_life_info *rcli;
2856 rtx ncond;
2858 /* Otherwise this is a conditional set. Record that fact.
2859 It may have been conditionally used, or there may be a
2860 subsequent set with a complimentary condition. */
2862 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2863 if (node == NULL)
2865 /* The register was unconditionally live previously.
2866 Record the current condition as the condition under
2867 which it is dead. */
2868 rcli = xmalloc (sizeof (*rcli));
2869 rcli->condition = cond;
2870 rcli->stores = cond;
2871 rcli->orig_condition = const0_rtx;
2872 splay_tree_insert (pbi->reg_cond_dead, regno,
2873 (splay_tree_value) rcli);
2875 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2877 /* Not unconditionally dead. */
2878 return 0;
2880 else
2882 /* The register was conditionally live previously.
2883 Add the new condition to the old. */
2884 rcli = (struct reg_cond_life_info *) node->value;
2885 ncond = rcli->condition;
2886 ncond = ior_reg_cond (ncond, cond, 1);
2887 if (rcli->stores == const0_rtx)
2888 rcli->stores = cond;
2889 else if (rcli->stores != const1_rtx)
2890 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2892 /* If the register is now unconditionally dead, remove the entry
2893 in the splay_tree. A register is unconditionally dead if the
2894 dead condition ncond is true. A register is also unconditionally
2895 dead if the sum of all conditional stores is an unconditional
2896 store (stores is true), and the dead condition is identically the
2897 same as the original dead condition initialized at the end of
2898 the block. This is a pointer compare, not an rtx_equal_p
2899 compare. */
2900 if (ncond == const1_rtx
2901 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2902 splay_tree_remove (pbi->reg_cond_dead, regno);
2903 else
2905 rcli->condition = ncond;
2907 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2909 /* Not unconditionally dead. */
2910 return 0;
2915 return 1;
2918 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2920 static void
2921 free_reg_cond_life_info (splay_tree_value value)
2923 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2924 free (rcli);
2927 /* Helper function for flush_reg_cond_reg. */
2929 static int
2930 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2932 struct reg_cond_life_info *rcli;
2933 int *xdata = (int *) data;
2934 unsigned int regno = xdata[0];
2936 /* Don't need to search if last flushed value was farther on in
2937 the in-order traversal. */
2938 if (xdata[1] >= (int) node->key)
2939 return 0;
2941 /* Splice out portions of the expression that refer to regno. */
2942 rcli = (struct reg_cond_life_info *) node->value;
2943 rcli->condition = elim_reg_cond (rcli->condition, regno);
2944 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2945 rcli->stores = elim_reg_cond (rcli->stores, regno);
2947 /* If the entire condition is now false, signal the node to be removed. */
2948 if (rcli->condition == const0_rtx)
2950 xdata[1] = node->key;
2951 return -1;
2953 else if (rcli->condition == const1_rtx)
2954 abort ();
2956 return 0;
2959 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2961 static void
2962 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2964 int pair[2];
2966 pair[0] = regno;
2967 pair[1] = -1;
2968 while (splay_tree_foreach (pbi->reg_cond_dead,
2969 flush_reg_cond_reg_1, pair) == -1)
2970 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2972 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2975 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2976 For ior/and, the ADD flag determines whether we want to add the new
2977 condition X to the old one unconditionally. If it is zero, we will
2978 only return a new expression if X allows us to simplify part of
2979 OLD, otherwise we return NULL to the caller.
2980 If ADD is nonzero, we will return a new condition in all cases. The
2981 toplevel caller of one of these functions should always pass 1 for
2982 ADD. */
2984 static rtx
2985 ior_reg_cond (rtx old, rtx x, int add)
2987 rtx op0, op1;
2989 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2991 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2992 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2993 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2994 return const1_rtx;
2995 if (GET_CODE (x) == GET_CODE (old)
2996 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2997 return old;
2998 if (! add)
2999 return NULL;
3000 return gen_rtx_IOR (0, old, x);
3003 switch (GET_CODE (old))
3005 case IOR:
3006 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3007 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3008 if (op0 != NULL || op1 != NULL)
3010 if (op0 == const0_rtx)
3011 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3012 if (op1 == const0_rtx)
3013 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3014 if (op0 == const1_rtx || op1 == const1_rtx)
3015 return const1_rtx;
3016 if (op0 == NULL)
3017 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3018 else if (rtx_equal_p (x, op0))
3019 /* (x | A) | x ~ (x | A). */
3020 return old;
3021 if (op1 == NULL)
3022 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3023 else if (rtx_equal_p (x, op1))
3024 /* (A | x) | x ~ (A | x). */
3025 return old;
3026 return gen_rtx_IOR (0, op0, op1);
3028 if (! add)
3029 return NULL;
3030 return gen_rtx_IOR (0, old, x);
3032 case AND:
3033 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3034 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3035 if (op0 != NULL || op1 != NULL)
3037 if (op0 == const1_rtx)
3038 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3039 if (op1 == const1_rtx)
3040 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3041 if (op0 == const0_rtx || op1 == const0_rtx)
3042 return const0_rtx;
3043 if (op0 == NULL)
3044 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3045 else if (rtx_equal_p (x, op0))
3046 /* (x & A) | x ~ x. */
3047 return op0;
3048 if (op1 == NULL)
3049 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3050 else if (rtx_equal_p (x, op1))
3051 /* (A & x) | x ~ x. */
3052 return op1;
3053 return gen_rtx_AND (0, op0, op1);
3055 if (! add)
3056 return NULL;
3057 return gen_rtx_IOR (0, old, x);
3059 case NOT:
3060 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3061 if (op0 != NULL)
3062 return not_reg_cond (op0);
3063 if (! add)
3064 return NULL;
3065 return gen_rtx_IOR (0, old, x);
3067 default:
3068 abort ();
3072 static rtx
3073 not_reg_cond (rtx x)
3075 enum rtx_code x_code;
3077 if (x == const0_rtx)
3078 return const1_rtx;
3079 else if (x == const1_rtx)
3080 return const0_rtx;
3081 x_code = GET_CODE (x);
3082 if (x_code == NOT)
3083 return XEXP (x, 0);
3084 if (GET_RTX_CLASS (x_code) == '<'
3085 && GET_CODE (XEXP (x, 0)) == REG)
3087 if (XEXP (x, 1) != const0_rtx)
3088 abort ();
3090 return gen_rtx_fmt_ee (reverse_condition (x_code),
3091 VOIDmode, XEXP (x, 0), const0_rtx);
3093 return gen_rtx_NOT (0, x);
3096 static rtx
3097 and_reg_cond (rtx old, rtx x, int add)
3099 rtx op0, op1;
3101 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3103 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3104 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3105 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3106 return const0_rtx;
3107 if (GET_CODE (x) == GET_CODE (old)
3108 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3109 return old;
3110 if (! add)
3111 return NULL;
3112 return gen_rtx_AND (0, old, x);
3115 switch (GET_CODE (old))
3117 case IOR:
3118 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3119 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3120 if (op0 != NULL || op1 != NULL)
3122 if (op0 == const0_rtx)
3123 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3124 if (op1 == const0_rtx)
3125 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3126 if (op0 == const1_rtx || op1 == const1_rtx)
3127 return const1_rtx;
3128 if (op0 == NULL)
3129 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3130 else if (rtx_equal_p (x, op0))
3131 /* (x | A) & x ~ x. */
3132 return op0;
3133 if (op1 == NULL)
3134 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3135 else if (rtx_equal_p (x, op1))
3136 /* (A | x) & x ~ x. */
3137 return op1;
3138 return gen_rtx_IOR (0, op0, op1);
3140 if (! add)
3141 return NULL;
3142 return gen_rtx_AND (0, old, x);
3144 case AND:
3145 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3146 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3147 if (op0 != NULL || op1 != NULL)
3149 if (op0 == const1_rtx)
3150 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3151 if (op1 == const1_rtx)
3152 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3153 if (op0 == const0_rtx || op1 == const0_rtx)
3154 return const0_rtx;
3155 if (op0 == NULL)
3156 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3157 else if (rtx_equal_p (x, op0))
3158 /* (x & A) & x ~ (x & A). */
3159 return old;
3160 if (op1 == NULL)
3161 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3162 else if (rtx_equal_p (x, op1))
3163 /* (A & x) & x ~ (A & x). */
3164 return old;
3165 return gen_rtx_AND (0, op0, op1);
3167 if (! add)
3168 return NULL;
3169 return gen_rtx_AND (0, old, x);
3171 case NOT:
3172 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3173 if (op0 != NULL)
3174 return not_reg_cond (op0);
3175 if (! add)
3176 return NULL;
3177 return gen_rtx_AND (0, old, x);
3179 default:
3180 abort ();
3184 /* Given a condition X, remove references to reg REGNO and return the
3185 new condition. The removal will be done so that all conditions
3186 involving REGNO are considered to evaluate to false. This function
3187 is used when the value of REGNO changes. */
3189 static rtx
3190 elim_reg_cond (rtx x, unsigned int regno)
3192 rtx op0, op1;
3194 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3196 if (REGNO (XEXP (x, 0)) == regno)
3197 return const0_rtx;
3198 return x;
3201 switch (GET_CODE (x))
3203 case AND:
3204 op0 = elim_reg_cond (XEXP (x, 0), regno);
3205 op1 = elim_reg_cond (XEXP (x, 1), regno);
3206 if (op0 == const0_rtx || op1 == const0_rtx)
3207 return const0_rtx;
3208 if (op0 == const1_rtx)
3209 return op1;
3210 if (op1 == const1_rtx)
3211 return op0;
3212 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3213 return x;
3214 return gen_rtx_AND (0, op0, op1);
3216 case IOR:
3217 op0 = elim_reg_cond (XEXP (x, 0), regno);
3218 op1 = elim_reg_cond (XEXP (x, 1), regno);
3219 if (op0 == const1_rtx || op1 == const1_rtx)
3220 return const1_rtx;
3221 if (op0 == const0_rtx)
3222 return op1;
3223 if (op1 == const0_rtx)
3224 return op0;
3225 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3226 return x;
3227 return gen_rtx_IOR (0, op0, op1);
3229 case NOT:
3230 op0 = elim_reg_cond (XEXP (x, 0), regno);
3231 if (op0 == const0_rtx)
3232 return const1_rtx;
3233 if (op0 == const1_rtx)
3234 return const0_rtx;
3235 if (op0 != XEXP (x, 0))
3236 return not_reg_cond (op0);
3237 return x;
3239 default:
3240 abort ();
3243 #endif /* HAVE_conditional_execution */
3245 #ifdef AUTO_INC_DEC
3247 /* Try to substitute the auto-inc expression INC as the address inside
3248 MEM which occurs in INSN. Currently, the address of MEM is an expression
3249 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3250 that has a single set whose source is a PLUS of INCR_REG and something
3251 else. */
3253 static void
3254 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3255 rtx mem, rtx incr, rtx incr_reg)
3257 int regno = REGNO (incr_reg);
3258 rtx set = single_set (incr);
3259 rtx q = SET_DEST (set);
3260 rtx y = SET_SRC (set);
3261 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3263 /* Make sure this reg appears only once in this insn. */
3264 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3265 return;
3267 if (dead_or_set_p (incr, incr_reg)
3268 /* Mustn't autoinc an eliminable register. */
3269 && (regno >= FIRST_PSEUDO_REGISTER
3270 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3272 /* This is the simple case. Try to make the auto-inc. If
3273 we can't, we are done. Otherwise, we will do any
3274 needed updates below. */
3275 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3276 return;
3278 else if (GET_CODE (q) == REG
3279 /* PREV_INSN used here to check the semi-open interval
3280 [insn,incr). */
3281 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3282 /* We must also check for sets of q as q may be
3283 a call clobbered hard register and there may
3284 be a call between PREV_INSN (insn) and incr. */
3285 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3287 /* We have *p followed sometime later by q = p+size.
3288 Both p and q must be live afterward,
3289 and q is not used between INSN and its assignment.
3290 Change it to q = p, ...*q..., q = q+size.
3291 Then fall into the usual case. */
3292 rtx insns, temp;
3294 start_sequence ();
3295 emit_move_insn (q, incr_reg);
3296 insns = get_insns ();
3297 end_sequence ();
3299 /* If we can't make the auto-inc, or can't make the
3300 replacement into Y, exit. There's no point in making
3301 the change below if we can't do the auto-inc and doing
3302 so is not correct in the pre-inc case. */
3304 XEXP (inc, 0) = q;
3305 validate_change (insn, &XEXP (mem, 0), inc, 1);
3306 validate_change (incr, &XEXP (y, opnum), q, 1);
3307 if (! apply_change_group ())
3308 return;
3310 /* We now know we'll be doing this change, so emit the
3311 new insn(s) and do the updates. */
3312 emit_insn_before (insns, insn);
3314 if (BB_HEAD (pbi->bb) == insn)
3315 BB_HEAD (pbi->bb) = insns;
3317 /* INCR will become a NOTE and INSN won't contain a
3318 use of INCR_REG. If a use of INCR_REG was just placed in
3319 the insn before INSN, make that the next use.
3320 Otherwise, invalidate it. */
3321 if (GET_CODE (PREV_INSN (insn)) == INSN
3322 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3323 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3324 pbi->reg_next_use[regno] = PREV_INSN (insn);
3325 else
3326 pbi->reg_next_use[regno] = 0;
3328 incr_reg = q;
3329 regno = REGNO (q);
3331 /* REGNO is now used in INCR which is below INSN, but
3332 it previously wasn't live here. If we don't mark
3333 it as live, we'll put a REG_DEAD note for it
3334 on this insn, which is incorrect. */
3335 SET_REGNO_REG_SET (pbi->reg_live, regno);
3337 /* If there are any calls between INSN and INCR, show
3338 that REGNO now crosses them. */
3339 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3340 if (GET_CODE (temp) == CALL_INSN)
3341 REG_N_CALLS_CROSSED (regno)++;
3343 /* Invalidate alias info for Q since we just changed its value. */
3344 clear_reg_alias_info (q);
3346 else
3347 return;
3349 /* If we haven't returned, it means we were able to make the
3350 auto-inc, so update the status. First, record that this insn
3351 has an implicit side effect. */
3353 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3355 /* Modify the old increment-insn to simply copy
3356 the already-incremented value of our register. */
3357 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3358 abort ();
3360 /* If that makes it a no-op (copying the register into itself) delete
3361 it so it won't appear to be a "use" and a "set" of this
3362 register. */
3363 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3365 /* If the original source was dead, it's dead now. */
3366 rtx note;
3368 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3370 remove_note (incr, note);
3371 if (XEXP (note, 0) != incr_reg)
3372 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3375 PUT_CODE (incr, NOTE);
3376 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3377 NOTE_SOURCE_FILE (incr) = 0;
3380 if (regno >= FIRST_PSEUDO_REGISTER)
3382 /* Count an extra reference to the reg. When a reg is
3383 incremented, spilling it is worse, so we want to make
3384 that less likely. */
3385 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3387 /* Count the increment as a setting of the register,
3388 even though it isn't a SET in rtl. */
3389 REG_N_SETS (regno)++;
3393 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3394 reference. */
3396 static void
3397 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3399 rtx addr = XEXP (x, 0);
3400 HOST_WIDE_INT offset = 0;
3401 rtx set, y, incr, inc_val;
3402 int regno;
3403 int size = GET_MODE_SIZE (GET_MODE (x));
3405 if (GET_CODE (insn) == JUMP_INSN)
3406 return;
3408 /* Here we detect use of an index register which might be good for
3409 postincrement, postdecrement, preincrement, or predecrement. */
3411 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3412 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3414 if (GET_CODE (addr) != REG)
3415 return;
3417 regno = REGNO (addr);
3419 /* Is the next use an increment that might make auto-increment? */
3420 incr = pbi->reg_next_use[regno];
3421 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3422 return;
3423 set = single_set (incr);
3424 if (set == 0 || GET_CODE (set) != SET)
3425 return;
3426 y = SET_SRC (set);
3428 if (GET_CODE (y) != PLUS)
3429 return;
3431 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3432 inc_val = XEXP (y, 1);
3433 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3434 inc_val = XEXP (y, 0);
3435 else
3436 return;
3438 if (GET_CODE (inc_val) == CONST_INT)
3440 if (HAVE_POST_INCREMENT
3441 && (INTVAL (inc_val) == size && offset == 0))
3442 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3443 incr, addr);
3444 else if (HAVE_POST_DECREMENT
3445 && (INTVAL (inc_val) == -size && offset == 0))
3446 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3447 incr, addr);
3448 else if (HAVE_PRE_INCREMENT
3449 && (INTVAL (inc_val) == size && offset == size))
3450 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3451 incr, addr);
3452 else if (HAVE_PRE_DECREMENT
3453 && (INTVAL (inc_val) == -size && offset == -size))
3454 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3455 incr, addr);
3456 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3457 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3458 gen_rtx_PLUS (Pmode,
3459 addr,
3460 inc_val)),
3461 insn, x, incr, addr);
3462 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3463 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3464 gen_rtx_PLUS (Pmode,
3465 addr,
3466 inc_val)),
3467 insn, x, incr, addr);
3469 else if (GET_CODE (inc_val) == REG
3470 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3471 NEXT_INSN (incr)))
3474 if (HAVE_POST_MODIFY_REG && offset == 0)
3475 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3476 gen_rtx_PLUS (Pmode,
3477 addr,
3478 inc_val)),
3479 insn, x, incr, addr);
3483 #endif /* AUTO_INC_DEC */
3485 static void
3486 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3487 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3489 unsigned int regno_first, regno_last, i;
3490 int some_was_live, some_was_dead, some_not_set;
3492 regno_last = regno_first = REGNO (reg);
3493 if (regno_first < FIRST_PSEUDO_REGISTER)
3494 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3496 /* Find out if any of this register is live after this instruction. */
3497 some_was_live = some_was_dead = 0;
3498 for (i = regno_first; i <= regno_last; ++i)
3500 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3501 some_was_live |= needed_regno;
3502 some_was_dead |= ! needed_regno;
3505 /* Find out if any of the register was set this insn. */
3506 some_not_set = 0;
3507 for (i = regno_first; i <= regno_last; ++i)
3508 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3510 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3512 /* Record where each reg is used, so when the reg is set we know
3513 the next insn that uses it. */
3514 pbi->reg_next_use[regno_first] = insn;
3517 if (pbi->flags & PROP_REG_INFO)
3519 if (regno_first < FIRST_PSEUDO_REGISTER)
3521 /* If this is a register we are going to try to eliminate,
3522 don't mark it live here. If we are successful in
3523 eliminating it, it need not be live unless it is used for
3524 pseudos, in which case it will have been set live when it
3525 was allocated to the pseudos. If the register will not
3526 be eliminated, reload will set it live at that point.
3528 Otherwise, record that this function uses this register. */
3529 /* ??? The PPC backend tries to "eliminate" on the pic
3530 register to itself. This should be fixed. In the mean
3531 time, hack around it. */
3533 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3534 && (regno_first == FRAME_POINTER_REGNUM
3535 || regno_first == ARG_POINTER_REGNUM)))
3536 for (i = regno_first; i <= regno_last; ++i)
3537 regs_ever_live[i] = 1;
3539 else
3541 /* Keep track of which basic block each reg appears in. */
3543 int blocknum = pbi->bb->index;
3544 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3545 REG_BASIC_BLOCK (regno_first) = blocknum;
3546 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3547 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3549 /* Count (weighted) number of uses of each reg. */
3550 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3551 REG_N_REFS (regno_first)++;
3555 /* Record and count the insns in which a reg dies. If it is used in
3556 this insn and was dead below the insn then it dies in this insn.
3557 If it was set in this insn, we do not make a REG_DEAD note;
3558 likewise if we already made such a note. */
3559 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3560 && some_was_dead
3561 && some_not_set)
3563 /* Check for the case where the register dying partially
3564 overlaps the register set by this insn. */
3565 if (regno_first != regno_last)
3566 for (i = regno_first; i <= regno_last; ++i)
3567 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3569 /* If none of the words in X is needed, make a REG_DEAD note.
3570 Otherwise, we must make partial REG_DEAD notes. */
3571 if (! some_was_live)
3573 if ((pbi->flags & PROP_DEATH_NOTES)
3574 && ! find_regno_note (insn, REG_DEAD, regno_first))
3575 REG_NOTES (insn)
3576 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3578 if (pbi->flags & PROP_REG_INFO)
3579 REG_N_DEATHS (regno_first)++;
3581 else
3583 /* Don't make a REG_DEAD note for a part of a register
3584 that is set in the insn. */
3585 for (i = regno_first; i <= regno_last; ++i)
3586 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3587 && ! dead_or_set_regno_p (insn, i))
3588 REG_NOTES (insn)
3589 = alloc_EXPR_LIST (REG_DEAD,
3590 regno_reg_rtx[i],
3591 REG_NOTES (insn));
3595 /* Mark the register as being live. */
3596 for (i = regno_first; i <= regno_last; ++i)
3598 #ifdef HAVE_conditional_execution
3599 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3600 #endif
3602 SET_REGNO_REG_SET (pbi->reg_live, i);
3604 #ifdef HAVE_conditional_execution
3605 /* If this is a conditional use, record that fact. If it is later
3606 conditionally set, we'll know to kill the register. */
3607 if (cond != NULL_RTX)
3609 splay_tree_node node;
3610 struct reg_cond_life_info *rcli;
3611 rtx ncond;
3613 if (this_was_live)
3615 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3616 if (node == NULL)
3618 /* The register was unconditionally live previously.
3619 No need to do anything. */
3621 else
3623 /* The register was conditionally live previously.
3624 Subtract the new life cond from the old death cond. */
3625 rcli = (struct reg_cond_life_info *) node->value;
3626 ncond = rcli->condition;
3627 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3629 /* If the register is now unconditionally live,
3630 remove the entry in the splay_tree. */
3631 if (ncond == const0_rtx)
3632 splay_tree_remove (pbi->reg_cond_dead, i);
3633 else
3635 rcli->condition = ncond;
3636 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3637 REGNO (XEXP (cond, 0)));
3641 else
3643 /* The register was not previously live at all. Record
3644 the condition under which it is still dead. */
3645 rcli = xmalloc (sizeof (*rcli));
3646 rcli->condition = not_reg_cond (cond);
3647 rcli->stores = const0_rtx;
3648 rcli->orig_condition = const0_rtx;
3649 splay_tree_insert (pbi->reg_cond_dead, i,
3650 (splay_tree_value) rcli);
3652 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3655 else if (this_was_live)
3657 /* The register may have been conditionally live previously, but
3658 is now unconditionally live. Remove it from the conditionally
3659 dead list, so that a conditional set won't cause us to think
3660 it dead. */
3661 splay_tree_remove (pbi->reg_cond_dead, i);
3663 #endif
3667 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3668 This is done assuming the registers needed from X are those that
3669 have 1-bits in PBI->REG_LIVE.
3671 INSN is the containing instruction. If INSN is dead, this function
3672 is not called. */
3674 static void
3675 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3677 RTX_CODE code;
3678 int regno;
3679 int flags = pbi->flags;
3681 retry:
3682 if (!x)
3683 return;
3684 code = GET_CODE (x);
3685 switch (code)
3687 case LABEL_REF:
3688 case SYMBOL_REF:
3689 case CONST_INT:
3690 case CONST:
3691 case CONST_DOUBLE:
3692 case CONST_VECTOR:
3693 case PC:
3694 case ADDR_VEC:
3695 case ADDR_DIFF_VEC:
3696 return;
3698 #ifdef HAVE_cc0
3699 case CC0:
3700 pbi->cc0_live = 1;
3701 return;
3702 #endif
3704 case CLOBBER:
3705 /* If we are clobbering a MEM, mark any registers inside the address
3706 as being used. */
3707 if (GET_CODE (XEXP (x, 0)) == MEM)
3708 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3709 return;
3711 case MEM:
3712 /* Don't bother watching stores to mems if this is not the
3713 final pass. We'll not be deleting dead stores this round. */
3714 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3716 /* Invalidate the data for the last MEM stored, but only if MEM is
3717 something that can be stored into. */
3718 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3719 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3720 /* Needn't clear the memory set list. */
3722 else
3724 rtx temp = pbi->mem_set_list;
3725 rtx prev = NULL_RTX;
3726 rtx next;
3728 while (temp)
3730 next = XEXP (temp, 1);
3731 if (unchanging_anti_dependence (XEXP (temp, 0), x))
3733 /* Splice temp out of the list. */
3734 if (prev)
3735 XEXP (prev, 1) = next;
3736 else
3737 pbi->mem_set_list = next;
3738 free_EXPR_LIST_node (temp);
3739 pbi->mem_set_list_len--;
3741 else
3742 prev = temp;
3743 temp = next;
3747 /* If the memory reference had embedded side effects (autoincrement
3748 address modes. Then we may need to kill some entries on the
3749 memory set list. */
3750 if (insn)
3751 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3754 #ifdef AUTO_INC_DEC
3755 if (flags & PROP_AUTOINC)
3756 find_auto_inc (pbi, x, insn);
3757 #endif
3758 break;
3760 case SUBREG:
3761 #ifdef CANNOT_CHANGE_MODE_CLASS
3762 if ((flags & PROP_REG_INFO)
3763 && GET_CODE (SUBREG_REG (x)) == REG
3764 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3765 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3766 * MAX_MACHINE_MODE
3767 + GET_MODE (x));
3768 #endif
3770 /* While we're here, optimize this case. */
3771 x = SUBREG_REG (x);
3772 if (GET_CODE (x) != REG)
3773 goto retry;
3774 /* Fall through. */
3776 case REG:
3777 /* See a register other than being set => mark it as needed. */
3778 mark_used_reg (pbi, x, cond, insn);
3779 return;
3781 case SET:
3783 rtx testreg = SET_DEST (x);
3784 int mark_dest = 0;
3786 /* If storing into MEM, don't show it as being used. But do
3787 show the address as being used. */
3788 if (GET_CODE (testreg) == MEM)
3790 #ifdef AUTO_INC_DEC
3791 if (flags & PROP_AUTOINC)
3792 find_auto_inc (pbi, testreg, insn);
3793 #endif
3794 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3795 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3796 return;
3799 /* Storing in STRICT_LOW_PART is like storing in a reg
3800 in that this SET might be dead, so ignore it in TESTREG.
3801 but in some other ways it is like using the reg.
3803 Storing in a SUBREG or a bit field is like storing the entire
3804 register in that if the register's value is not used
3805 then this SET is not needed. */
3806 while (GET_CODE (testreg) == STRICT_LOW_PART
3807 || GET_CODE (testreg) == ZERO_EXTRACT
3808 || GET_CODE (testreg) == SIGN_EXTRACT
3809 || GET_CODE (testreg) == SUBREG)
3811 #ifdef CANNOT_CHANGE_MODE_CLASS
3812 if ((flags & PROP_REG_INFO)
3813 && GET_CODE (testreg) == SUBREG
3814 && GET_CODE (SUBREG_REG (testreg)) == REG
3815 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3816 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3817 * MAX_MACHINE_MODE
3818 + GET_MODE (testreg));
3819 #endif
3821 /* Modifying a single register in an alternate mode
3822 does not use any of the old value. But these other
3823 ways of storing in a register do use the old value. */
3824 if (GET_CODE (testreg) == SUBREG
3825 && !((REG_BYTES (SUBREG_REG (testreg))
3826 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3827 > (REG_BYTES (testreg)
3828 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3830 else
3831 mark_dest = 1;
3833 testreg = XEXP (testreg, 0);
3836 /* If this is a store into a register or group of registers,
3837 recursively scan the value being stored. */
3839 if ((GET_CODE (testreg) == PARALLEL
3840 && GET_MODE (testreg) == BLKmode)
3841 || (GET_CODE (testreg) == REG
3842 && (regno = REGNO (testreg),
3843 ! (regno == FRAME_POINTER_REGNUM
3844 && (! reload_completed || frame_pointer_needed)))
3845 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3846 && ! (regno == HARD_FRAME_POINTER_REGNUM
3847 && (! reload_completed || frame_pointer_needed))
3848 #endif
3849 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3850 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3851 #endif
3854 if (mark_dest)
3855 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3856 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3857 return;
3860 break;
3862 case ASM_OPERANDS:
3863 case UNSPEC_VOLATILE:
3864 case TRAP_IF:
3865 case ASM_INPUT:
3867 /* Traditional and volatile asm instructions must be considered to use
3868 and clobber all hard registers, all pseudo-registers and all of
3869 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3871 Consider for instance a volatile asm that changes the fpu rounding
3872 mode. An insn should not be moved across this even if it only uses
3873 pseudo-regs because it might give an incorrectly rounded result.
3875 ?!? Unfortunately, marking all hard registers as live causes massive
3876 problems for the register allocator and marking all pseudos as live
3877 creates mountains of uninitialized variable warnings.
3879 So for now, just clear the memory set list and mark any regs
3880 we can find in ASM_OPERANDS as used. */
3881 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3883 free_EXPR_LIST_list (&pbi->mem_set_list);
3884 pbi->mem_set_list_len = 0;
3887 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3888 We can not just fall through here since then we would be confused
3889 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3890 traditional asms unlike their normal usage. */
3891 if (code == ASM_OPERANDS)
3893 int j;
3895 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3896 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3898 break;
3901 case COND_EXEC:
3902 if (cond != NULL_RTX)
3903 abort ();
3905 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3907 cond = COND_EXEC_TEST (x);
3908 x = COND_EXEC_CODE (x);
3909 goto retry;
3911 default:
3912 break;
3915 /* Recursively scan the operands of this expression. */
3918 const char * const fmt = GET_RTX_FORMAT (code);
3919 int i;
3921 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3923 if (fmt[i] == 'e')
3925 /* Tail recursive case: save a function call level. */
3926 if (i == 0)
3928 x = XEXP (x, 0);
3929 goto retry;
3931 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3933 else if (fmt[i] == 'E')
3935 int j;
3936 for (j = 0; j < XVECLEN (x, i); j++)
3937 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3943 #ifdef AUTO_INC_DEC
3945 static int
3946 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3948 /* Find the next use of this reg. If in same basic block,
3949 make it do pre-increment or pre-decrement if appropriate. */
3950 rtx x = single_set (insn);
3951 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3952 * INTVAL (XEXP (SET_SRC (x), 1)));
3953 int regno = REGNO (SET_DEST (x));
3954 rtx y = pbi->reg_next_use[regno];
3955 if (y != 0
3956 && SET_DEST (x) != stack_pointer_rtx
3957 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3958 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3959 mode would be better. */
3960 && ! dead_or_set_p (y, SET_DEST (x))
3961 && try_pre_increment (y, SET_DEST (x), amount))
3963 /* We have found a suitable auto-increment and already changed
3964 insn Y to do it. So flush this increment instruction. */
3965 propagate_block_delete_insn (insn);
3967 /* Count a reference to this reg for the increment insn we are
3968 deleting. When a reg is incremented, spilling it is worse,
3969 so we want to make that less likely. */
3970 if (regno >= FIRST_PSEUDO_REGISTER)
3972 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3973 REG_N_SETS (regno)++;
3976 /* Flush any remembered memories depending on the value of
3977 the incremented register. */
3978 invalidate_mems_from_set (pbi, SET_DEST (x));
3980 return 1;
3982 return 0;
3985 /* Try to change INSN so that it does pre-increment or pre-decrement
3986 addressing on register REG in order to add AMOUNT to REG.
3987 AMOUNT is negative for pre-decrement.
3988 Returns 1 if the change could be made.
3989 This checks all about the validity of the result of modifying INSN. */
3991 static int
3992 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
3994 rtx use;
3996 /* Nonzero if we can try to make a pre-increment or pre-decrement.
3997 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
3998 int pre_ok = 0;
3999 /* Nonzero if we can try to make a post-increment or post-decrement.
4000 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4001 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4002 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4003 int post_ok = 0;
4005 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4006 int do_post = 0;
4008 /* From the sign of increment, see which possibilities are conceivable
4009 on this target machine. */
4010 if (HAVE_PRE_INCREMENT && amount > 0)
4011 pre_ok = 1;
4012 if (HAVE_POST_INCREMENT && amount > 0)
4013 post_ok = 1;
4015 if (HAVE_PRE_DECREMENT && amount < 0)
4016 pre_ok = 1;
4017 if (HAVE_POST_DECREMENT && amount < 0)
4018 post_ok = 1;
4020 if (! (pre_ok || post_ok))
4021 return 0;
4023 /* It is not safe to add a side effect to a jump insn
4024 because if the incremented register is spilled and must be reloaded
4025 there would be no way to store the incremented value back in memory. */
4027 if (GET_CODE (insn) == JUMP_INSN)
4028 return 0;
4030 use = 0;
4031 if (pre_ok)
4032 use = find_use_as_address (PATTERN (insn), reg, 0);
4033 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4035 use = find_use_as_address (PATTERN (insn), reg, -amount);
4036 do_post = 1;
4039 if (use == 0 || use == (rtx) (size_t) 1)
4040 return 0;
4042 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4043 return 0;
4045 /* See if this combination of instruction and addressing mode exists. */
4046 if (! validate_change (insn, &XEXP (use, 0),
4047 gen_rtx_fmt_e (amount > 0
4048 ? (do_post ? POST_INC : PRE_INC)
4049 : (do_post ? POST_DEC : PRE_DEC),
4050 Pmode, reg), 0))
4051 return 0;
4053 /* Record that this insn now has an implicit side effect on X. */
4054 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4055 return 1;
4058 #endif /* AUTO_INC_DEC */
4060 /* Find the place in the rtx X where REG is used as a memory address.
4061 Return the MEM rtx that so uses it.
4062 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4063 (plus REG (const_int PLUSCONST)).
4065 If such an address does not appear, return 0.
4066 If REG appears more than once, or is used other than in such an address,
4067 return (rtx) 1. */
4070 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4072 enum rtx_code code = GET_CODE (x);
4073 const char * const fmt = GET_RTX_FORMAT (code);
4074 int i;
4075 rtx value = 0;
4076 rtx tem;
4078 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4079 return x;
4081 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4082 && XEXP (XEXP (x, 0), 0) == reg
4083 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4084 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4085 return x;
4087 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4089 /* If REG occurs inside a MEM used in a bit-field reference,
4090 that is unacceptable. */
4091 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4092 return (rtx) (size_t) 1;
4095 if (x == reg)
4096 return (rtx) (size_t) 1;
4098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4100 if (fmt[i] == 'e')
4102 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4103 if (value == 0)
4104 value = tem;
4105 else if (tem != 0)
4106 return (rtx) (size_t) 1;
4108 else if (fmt[i] == 'E')
4110 int j;
4111 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4113 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4114 if (value == 0)
4115 value = tem;
4116 else if (tem != 0)
4117 return (rtx) (size_t) 1;
4122 return value;
4125 /* Write information about registers and basic blocks into FILE.
4126 This is part of making a debugging dump. */
4128 void
4129 dump_regset (regset r, FILE *outf)
4131 int i;
4132 if (r == NULL)
4134 fputs (" (nil)", outf);
4135 return;
4138 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4140 fprintf (outf, " %d", i);
4141 if (i < FIRST_PSEUDO_REGISTER)
4142 fprintf (outf, " [%s]",
4143 reg_names[i]);
4147 /* Print a human-readable representation of R on the standard error
4148 stream. This function is designed to be used from within the
4149 debugger. */
4151 void
4152 debug_regset (regset r)
4154 dump_regset (r, stderr);
4155 putc ('\n', stderr);
4158 /* Recompute register set/reference counts immediately prior to register
4159 allocation.
4161 This avoids problems with set/reference counts changing to/from values
4162 which have special meanings to the register allocators.
4164 Additionally, the reference counts are the primary component used by the
4165 register allocators to prioritize pseudos for allocation to hard regs.
4166 More accurate reference counts generally lead to better register allocation.
4168 F is the first insn to be scanned.
4170 LOOP_STEP denotes how much loop_depth should be incremented per
4171 loop nesting level in order to increase the ref count more for
4172 references in a loop.
4174 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4175 possibly other information which is used by the register allocators. */
4177 void
4178 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4180 allocate_reg_life_data ();
4181 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4184 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4185 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4186 of the number of registers that died. */
4189 count_or_remove_death_notes (sbitmap blocks, int kill)
4191 int count = 0;
4192 int i;
4193 basic_block bb;
4196 /* This used to be a loop over all the blocks with a membership test
4197 inside the loop. That can be amazingly expensive on a large CFG
4198 when only a small number of bits are set in BLOCKs (for example,
4199 the calls from the scheduler typically have very few bits set).
4201 For extra credit, someone should convert BLOCKS to a bitmap rather
4202 than an sbitmap. */
4203 if (blocks)
4205 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4207 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4210 else
4212 FOR_EACH_BB (bb)
4214 count += count_or_remove_death_notes_bb (bb, kill);
4218 return count;
4221 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4222 block BB. Returns a count of the number of registers that died. */
4224 static int
4225 count_or_remove_death_notes_bb (basic_block bb, int kill)
4227 int count = 0;
4228 rtx insn;
4230 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4232 if (INSN_P (insn))
4234 rtx *pprev = &REG_NOTES (insn);
4235 rtx link = *pprev;
4237 while (link)
4239 switch (REG_NOTE_KIND (link))
4241 case REG_DEAD:
4242 if (GET_CODE (XEXP (link, 0)) == REG)
4244 rtx reg = XEXP (link, 0);
4245 int n;
4247 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4248 n = 1;
4249 else
4250 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4251 count += n;
4254 /* Fall through. */
4256 case REG_UNUSED:
4257 if (kill)
4259 rtx next = XEXP (link, 1);
4260 free_EXPR_LIST_node (link);
4261 *pprev = link = next;
4262 break;
4264 /* Fall through. */
4266 default:
4267 pprev = &XEXP (link, 1);
4268 link = *pprev;
4269 break;
4274 if (insn == BB_END (bb))
4275 break;
4278 return count;
4281 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4282 if blocks is NULL. */
4284 static void
4285 clear_log_links (sbitmap blocks)
4287 rtx insn;
4288 int i;
4290 if (!blocks)
4292 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4293 if (INSN_P (insn))
4294 free_INSN_LIST_list (&LOG_LINKS (insn));
4296 else
4297 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4299 basic_block bb = BASIC_BLOCK (i);
4301 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4302 insn = NEXT_INSN (insn))
4303 if (INSN_P (insn))
4304 free_INSN_LIST_list (&LOG_LINKS (insn));
4308 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4309 correspond to the hard registers, if any, set in that map. This
4310 could be done far more efficiently by having all sorts of special-cases
4311 with moving single words, but probably isn't worth the trouble. */
4313 void
4314 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4316 int i;
4318 EXECUTE_IF_SET_IN_BITMAP
4319 (from, 0, i,
4321 if (i >= FIRST_PSEUDO_REGISTER)
4322 return;
4323 SET_HARD_REG_BIT (*to, i);