* cpplib.pot: Regenerate.
[official-gcc.git] / gcc / cfg.c
blob667e0977b4f74bd8d938dd309d9d73b78af3b27b
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "regs.h"
56 #include "flags.h"
57 #include "function.h"
58 #include "except.h"
59 #include "diagnostic-core.h"
60 #include "tm_p.h"
61 #include "obstack.h"
62 #include "timevar.h"
63 #include "tree-pass.h"
64 #include "ggc.h"
65 #include "hashtab.h"
66 #include "alloc-pool.h"
67 #include "df.h"
68 #include "cfgloop.h"
69 #include "tree-flow.h"
71 /* The obstack on which the flow graph components are allocated. */
73 struct bitmap_obstack reg_obstack;
75 void debug_flow_info (void);
76 static void free_edge (edge);
78 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
80 /* Called once at initialization time. */
82 void
83 init_flow (struct function *the_fun)
85 if (!the_fun->cfg)
86 the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
87 n_edges_for_function (the_fun) = 0;
88 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
89 = ggc_alloc_cleared_basic_block_def ();
90 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
91 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
92 = ggc_alloc_cleared_basic_block_def ();
93 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
94 ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
95 = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
96 EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
97 = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
100 /* Helper function for remove_edge and clear_edges. Frees edge structure
101 without actually unlinking it from the pred/succ lists. */
103 static void
104 free_edge (edge e ATTRIBUTE_UNUSED)
106 n_edges--;
107 ggc_free (e);
110 /* Free the memory associated with the edge structures. */
112 void
113 clear_edges (void)
115 basic_block bb;
116 edge e;
117 edge_iterator ei;
119 FOR_EACH_BB (bb)
121 FOR_EACH_EDGE (e, ei, bb->succs)
122 free_edge (e);
123 VEC_truncate (edge, bb->succs, 0);
124 VEC_truncate (edge, bb->preds, 0);
127 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
128 free_edge (e);
129 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
130 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
132 gcc_assert (!n_edges);
135 /* Allocate memory for basic_block. */
137 basic_block
138 alloc_block (void)
140 basic_block bb;
141 bb = ggc_alloc_cleared_basic_block_def ();
142 return bb;
145 /* Link block B to chain after AFTER. */
146 void
147 link_block (basic_block b, basic_block after)
149 b->next_bb = after->next_bb;
150 b->prev_bb = after;
151 after->next_bb = b;
152 b->next_bb->prev_bb = b;
155 /* Unlink block B from chain. */
156 void
157 unlink_block (basic_block b)
159 b->next_bb->prev_bb = b->prev_bb;
160 b->prev_bb->next_bb = b->next_bb;
161 b->prev_bb = NULL;
162 b->next_bb = NULL;
165 /* Sequentially order blocks and compact the arrays. */
166 void
167 compact_blocks (void)
169 int i;
171 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
172 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
174 if (df)
175 df_compact_blocks ();
176 else
178 basic_block bb;
180 i = NUM_FIXED_BLOCKS;
181 FOR_EACH_BB (bb)
183 SET_BASIC_BLOCK (i, bb);
184 bb->index = i;
185 i++;
187 gcc_assert (i == n_basic_blocks);
189 for (; i < last_basic_block; i++)
190 SET_BASIC_BLOCK (i, NULL);
192 last_basic_block = n_basic_blocks;
195 /* Remove block B from the basic block array. */
197 void
198 expunge_block (basic_block b)
200 unlink_block (b);
201 SET_BASIC_BLOCK (b->index, NULL);
202 n_basic_blocks--;
203 /* We should be able to ggc_free here, but we are not.
204 The dead SSA_NAMES are left pointing to dead statements that are pointing
205 to dead basic blocks making garbage collector to die.
206 We should be able to release all dead SSA_NAMES and at the same time we should
207 clear out BB pointer of dead statements consistently. */
210 /* Connect E to E->src. */
212 static inline void
213 connect_src (edge e)
215 VEC_safe_push (edge, gc, e->src->succs, e);
216 df_mark_solutions_dirty ();
219 /* Connect E to E->dest. */
221 static inline void
222 connect_dest (edge e)
224 basic_block dest = e->dest;
225 VEC_safe_push (edge, gc, dest->preds, e);
226 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
227 df_mark_solutions_dirty ();
230 /* Disconnect edge E from E->src. */
232 static inline void
233 disconnect_src (edge e)
235 basic_block src = e->src;
236 edge_iterator ei;
237 edge tmp;
239 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
241 if (tmp == e)
243 VEC_unordered_remove (edge, src->succs, ei.index);
244 df_mark_solutions_dirty ();
245 return;
247 else
248 ei_next (&ei);
251 gcc_unreachable ();
254 /* Disconnect edge E from E->dest. */
256 static inline void
257 disconnect_dest (edge e)
259 basic_block dest = e->dest;
260 unsigned int dest_idx = e->dest_idx;
262 VEC_unordered_remove (edge, dest->preds, dest_idx);
264 /* If we removed an edge in the middle of the edge vector, we need
265 to update dest_idx of the edge that moved into the "hole". */
266 if (dest_idx < EDGE_COUNT (dest->preds))
267 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
268 df_mark_solutions_dirty ();
271 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
272 created edge. Use this only if you are sure that this edge can't
273 possibly already exist. */
275 edge
276 unchecked_make_edge (basic_block src, basic_block dst, int flags)
278 edge e;
279 e = ggc_alloc_cleared_edge_def ();
280 n_edges++;
282 e->src = src;
283 e->dest = dst;
284 e->flags = flags;
286 connect_src (e);
287 connect_dest (e);
289 execute_on_growing_pred (e);
290 return e;
293 /* Create an edge connecting SRC and DST with FLAGS optionally using
294 edge cache CACHE. Return the new edge, NULL if already exist. */
296 edge
297 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
299 if (edge_cache == NULL
300 || src == ENTRY_BLOCK_PTR
301 || dst == EXIT_BLOCK_PTR)
302 return make_edge (src, dst, flags);
304 /* Does the requested edge already exist? */
305 if (! TEST_BIT (edge_cache, dst->index))
307 /* The edge does not exist. Create one and update the
308 cache. */
309 SET_BIT (edge_cache, dst->index);
310 return unchecked_make_edge (src, dst, flags);
313 /* At this point, we know that the requested edge exists. Adjust
314 flags if necessary. */
315 if (flags)
317 edge e = find_edge (src, dst);
318 e->flags |= flags;
321 return NULL;
324 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
325 created edge or NULL if already exist. */
327 edge
328 make_edge (basic_block src, basic_block dest, int flags)
330 edge e = find_edge (src, dest);
332 /* Make sure we don't add duplicate edges. */
333 if (e)
335 e->flags |= flags;
336 return NULL;
339 return unchecked_make_edge (src, dest, flags);
342 /* Create an edge connecting SRC to DEST and set probability by knowing
343 that it is the single edge leaving SRC. */
345 edge
346 make_single_succ_edge (basic_block src, basic_block dest, int flags)
348 edge e = make_edge (src, dest, flags);
350 e->probability = REG_BR_PROB_BASE;
351 e->count = src->count;
352 return e;
355 /* This function will remove an edge from the flow graph. */
357 void
358 remove_edge_raw (edge e)
360 remove_predictions_associated_with_edge (e);
361 execute_on_shrinking_pred (e);
363 disconnect_src (e);
364 disconnect_dest (e);
366 /* This is probably not needed, but it doesn't hurt. */
367 redirect_edge_var_map_clear (e);
369 free_edge (e);
372 /* Redirect an edge's successor from one block to another. */
374 void
375 redirect_edge_succ (edge e, basic_block new_succ)
377 execute_on_shrinking_pred (e);
379 disconnect_dest (e);
381 e->dest = new_succ;
383 /* Reconnect the edge to the new successor block. */
384 connect_dest (e);
386 execute_on_growing_pred (e);
389 /* Like previous but avoid possible duplicate edge. */
391 edge
392 redirect_edge_succ_nodup (edge e, basic_block new_succ)
394 edge s;
396 s = find_edge (e->src, new_succ);
397 if (s && s != e)
399 s->flags |= e->flags;
400 s->probability += e->probability;
401 if (s->probability > REG_BR_PROB_BASE)
402 s->probability = REG_BR_PROB_BASE;
403 s->count += e->count;
404 redirect_edge_var_map_dup (s, e);
405 remove_edge (e);
406 e = s;
408 else
409 redirect_edge_succ (e, new_succ);
411 return e;
414 /* Redirect an edge's predecessor from one block to another. */
416 void
417 redirect_edge_pred (edge e, basic_block new_pred)
419 disconnect_src (e);
421 e->src = new_pred;
423 /* Reconnect the edge to the new predecessor block. */
424 connect_src (e);
427 /* Clear all basic block flags, with the exception of partitioning and
428 setjmp_target. */
429 void
430 clear_bb_flags (void)
432 basic_block bb;
434 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
435 bb->flags = (BB_PARTITION (bb)
436 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
439 /* Check the consistency of profile information. We can't do that
440 in verify_flow_info, as the counts may get invalid for incompletely
441 solved graphs, later eliminating of conditionals or roundoff errors.
442 It is still practical to have them reported for debugging of simple
443 testcases. */
444 void
445 check_bb_profile (basic_block bb, FILE * file)
447 edge e;
448 int sum = 0;
449 gcov_type lsum;
450 edge_iterator ei;
452 if (profile_status == PROFILE_ABSENT)
453 return;
455 if (bb != EXIT_BLOCK_PTR)
457 FOR_EACH_EDGE (e, ei, bb->succs)
458 sum += e->probability;
459 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
460 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
461 sum * 100.0 / REG_BR_PROB_BASE);
462 lsum = 0;
463 FOR_EACH_EDGE (e, ei, bb->succs)
464 lsum += e->count;
465 if (EDGE_COUNT (bb->succs)
466 && (lsum - bb->count > 100 || lsum - bb->count < -100))
467 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
468 (int) lsum, (int) bb->count);
470 if (bb != ENTRY_BLOCK_PTR)
472 sum = 0;
473 FOR_EACH_EDGE (e, ei, bb->preds)
474 sum += EDGE_FREQUENCY (e);
475 if (abs (sum - bb->frequency) > 100)
476 fprintf (file,
477 "Invalid sum of incoming frequencies %i, should be %i\n",
478 sum, bb->frequency);
479 lsum = 0;
480 FOR_EACH_EDGE (e, ei, bb->preds)
481 lsum += e->count;
482 if (lsum - bb->count > 100 || lsum - bb->count < -100)
483 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
484 (int) lsum, (int) bb->count);
488 /* Write information about registers and basic blocks into FILE.
489 This is part of making a debugging dump. */
491 void
492 dump_regset (regset r, FILE *outf)
494 unsigned i;
495 reg_set_iterator rsi;
497 if (r == NULL)
499 fputs (" (nil)", outf);
500 return;
503 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
505 fprintf (outf, " %d", i);
506 if (i < FIRST_PSEUDO_REGISTER)
507 fprintf (outf, " [%s]",
508 reg_names[i]);
512 /* Print a human-readable representation of R on the standard error
513 stream. This function is designed to be used from within the
514 debugger. */
516 DEBUG_FUNCTION void
517 debug_regset (regset r)
519 dump_regset (r, stderr);
520 putc ('\n', stderr);
523 /* Emit basic block information for BB. HEADER is true if the user wants
524 the generic information and the predecessors, FOOTER is true if they want
525 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
526 global register liveness information. PREFIX is put in front of every
527 line. The output is emitted to FILE. */
528 void
529 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
530 const char *prefix, FILE *file)
532 edge e;
533 edge_iterator ei;
535 if (header)
537 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
538 if (bb->prev_bb)
539 fprintf (file, ", prev %d", bb->prev_bb->index);
540 if (bb->next_bb)
541 fprintf (file, ", next %d", bb->next_bb->index);
542 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
543 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
544 fprintf (file, ", freq %i", bb->frequency);
545 /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
546 crash without cfun. */
547 if (cfun && maybe_hot_bb_p (bb))
548 fputs (", maybe hot", file);
549 if (cfun && probably_never_executed_bb_p (bb))
550 fputs (", probably never executed", file);
551 if (bb->flags)
553 static const char * const bits[] = {
554 "new", "reachable", "irr_loop", "superblock", "disable_sched",
555 "hot_partition", "cold_partition", "duplicated",
556 "non_local_goto_target", "rtl", "forwarder", "nonthreadable",
557 "modified"
559 unsigned int flags;
561 fputs (", flags:", file);
562 for (flags = bb->flags; flags ; flags &= flags - 1)
564 unsigned i = ctz_hwi (flags);
565 if (i < ARRAY_SIZE (bits))
566 fprintf (file, " %s", bits[i]);
567 else
568 fprintf (file, " <%d>", i);
571 fputs (".\n", file);
573 fprintf (file, "%sPredecessors: ", prefix);
574 FOR_EACH_EDGE (e, ei, bb->preds)
575 dump_edge_info (file, e, 0);
577 if ((flags & TDF_DETAILS)
578 && (bb->flags & BB_RTL)
579 && df)
581 putc ('\n', file);
582 df_dump_top (bb, file);
586 if (footer)
588 fprintf (file, "\n%sSuccessors: ", prefix);
589 FOR_EACH_EDGE (e, ei, bb->succs)
590 dump_edge_info (file, e, 1);
592 if ((flags & TDF_DETAILS)
593 && (bb->flags & BB_RTL)
594 && df)
596 putc ('\n', file);
597 df_dump_bottom (bb, file);
601 putc ('\n', file);
604 /* Dump the register info to FILE. */
606 void
607 dump_reg_info (FILE *file)
609 unsigned int i, max = max_reg_num ();
610 if (reload_completed)
611 return;
613 if (reg_info_p_size < max)
614 max = reg_info_p_size;
616 fprintf (file, "%d registers.\n", max);
617 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
619 enum reg_class rclass, altclass;
621 if (regstat_n_sets_and_refs)
622 fprintf (file, "\nRegister %d used %d times across %d insns",
623 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
624 else if (df)
625 fprintf (file, "\nRegister %d used %d times across %d insns",
626 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
628 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
629 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
630 if (regstat_n_sets_and_refs)
631 fprintf (file, "; set %d time%s", REG_N_SETS (i),
632 (REG_N_SETS (i) == 1) ? "" : "s");
633 else if (df)
634 fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
635 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
636 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
637 fputs ("; user var", file);
638 if (REG_N_DEATHS (i) != 1)
639 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
640 if (REG_N_CALLS_CROSSED (i) == 1)
641 fputs ("; crosses 1 call", file);
642 else if (REG_N_CALLS_CROSSED (i))
643 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
644 if (REG_FREQ_CALLS_CROSSED (i))
645 fprintf (file, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i));
646 if (regno_reg_rtx[i] != NULL
647 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
648 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
650 rclass = reg_preferred_class (i);
651 altclass = reg_alternate_class (i);
652 if (rclass != GENERAL_REGS || altclass != ALL_REGS)
654 if (altclass == ALL_REGS || rclass == ALL_REGS)
655 fprintf (file, "; pref %s", reg_class_names[(int) rclass]);
656 else if (altclass == NO_REGS)
657 fprintf (file, "; %s or none", reg_class_names[(int) rclass]);
658 else
659 fprintf (file, "; pref %s, else %s",
660 reg_class_names[(int) rclass],
661 reg_class_names[(int) altclass]);
664 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
665 fputs ("; pointer", file);
666 fputs (".\n", file);
671 void
672 dump_flow_info (FILE *file, int flags)
674 basic_block bb;
676 /* There are no pseudo registers after reload. Don't dump them. */
677 if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
678 dump_reg_info (file);
680 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
681 FOR_ALL_BB (bb)
683 dump_bb_info (bb, true, true, flags, "", file);
684 check_bb_profile (bb, file);
687 putc ('\n', file);
690 DEBUG_FUNCTION void
691 debug_flow_info (void)
693 dump_flow_info (stderr, TDF_DETAILS);
696 void
697 dump_edge_info (FILE *file, edge e, int do_succ)
699 basic_block side = (do_succ ? e->dest : e->src);
700 /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
701 if (cfun && side == ENTRY_BLOCK_PTR)
702 fputs (" ENTRY", file);
703 else if (cfun && side == EXIT_BLOCK_PTR)
704 fputs (" EXIT", file);
705 else
706 fprintf (file, " %d", side->index);
708 if (e->probability)
709 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
711 if (e->count)
713 fputs (" count:", file);
714 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
717 if (e->flags)
719 static const char * const bitnames[] = {
720 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
721 "can_fallthru", "irreducible", "sibcall", "loop_exit",
722 "true", "false", "exec", "crossing", "preserve"
724 int comma = 0;
725 int i, flags = e->flags;
727 fputs (" (", file);
728 for (i = 0; flags; i++)
729 if (flags & (1 << i))
731 flags &= ~(1 << i);
733 if (comma)
734 fputc (',', file);
735 if (i < (int) ARRAY_SIZE (bitnames))
736 fputs (bitnames[i], file);
737 else
738 fprintf (file, "%d", i);
739 comma = 1;
742 fputc (')', file);
746 /* Simple routines to easily allocate AUX fields of basic blocks. */
748 static struct obstack block_aux_obstack;
749 static void *first_block_aux_obj = 0;
750 static struct obstack edge_aux_obstack;
751 static void *first_edge_aux_obj = 0;
753 /* Allocate a memory block of SIZE as BB->aux. The obstack must
754 be first initialized by alloc_aux_for_blocks. */
756 static void
757 alloc_aux_for_block (basic_block bb, int size)
759 /* Verify that aux field is clear. */
760 gcc_assert (!bb->aux && first_block_aux_obj);
761 bb->aux = obstack_alloc (&block_aux_obstack, size);
762 memset (bb->aux, 0, size);
765 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
766 alloc_aux_for_block for each basic block. */
768 void
769 alloc_aux_for_blocks (int size)
771 static int initialized;
773 if (!initialized)
775 gcc_obstack_init (&block_aux_obstack);
776 initialized = 1;
778 else
779 /* Check whether AUX data are still allocated. */
780 gcc_assert (!first_block_aux_obj);
782 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
783 if (size)
785 basic_block bb;
787 FOR_ALL_BB (bb)
788 alloc_aux_for_block (bb, size);
792 /* Clear AUX pointers of all blocks. */
794 void
795 clear_aux_for_blocks (void)
797 basic_block bb;
799 FOR_ALL_BB (bb)
800 bb->aux = NULL;
803 /* Free data allocated in block_aux_obstack and clear AUX pointers
804 of all blocks. */
806 void
807 free_aux_for_blocks (void)
809 gcc_assert (first_block_aux_obj);
810 obstack_free (&block_aux_obstack, first_block_aux_obj);
811 first_block_aux_obj = NULL;
813 clear_aux_for_blocks ();
816 /* Allocate a memory edge of SIZE as E->aux. The obstack must
817 be first initialized by alloc_aux_for_edges. */
819 void
820 alloc_aux_for_edge (edge e, int size)
822 /* Verify that aux field is clear. */
823 gcc_assert (!e->aux && first_edge_aux_obj);
824 e->aux = obstack_alloc (&edge_aux_obstack, size);
825 memset (e->aux, 0, size);
828 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
829 alloc_aux_for_edge for each basic edge. */
831 void
832 alloc_aux_for_edges (int size)
834 static int initialized;
836 if (!initialized)
838 gcc_obstack_init (&edge_aux_obstack);
839 initialized = 1;
841 else
842 /* Check whether AUX data are still allocated. */
843 gcc_assert (!first_edge_aux_obj);
845 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
846 if (size)
848 basic_block bb;
850 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
852 edge e;
853 edge_iterator ei;
855 FOR_EACH_EDGE (e, ei, bb->succs)
856 alloc_aux_for_edge (e, size);
861 /* Clear AUX pointers of all edges. */
863 void
864 clear_aux_for_edges (void)
866 basic_block bb;
867 edge e;
869 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
871 edge_iterator ei;
872 FOR_EACH_EDGE (e, ei, bb->succs)
873 e->aux = NULL;
877 /* Free data allocated in edge_aux_obstack and clear AUX pointers
878 of all edges. */
880 void
881 free_aux_for_edges (void)
883 gcc_assert (first_edge_aux_obj);
884 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
885 first_edge_aux_obj = NULL;
887 clear_aux_for_edges ();
890 DEBUG_FUNCTION void
891 debug_bb (basic_block bb)
893 dump_bb (bb, stderr, 0);
896 DEBUG_FUNCTION basic_block
897 debug_bb_n (int n)
899 basic_block bb = BASIC_BLOCK (n);
900 dump_bb (bb, stderr, 0);
901 return bb;
904 /* Dumps cfg related information about basic block BB to FILE. */
906 static void
907 dump_cfg_bb_info (FILE *file, basic_block bb)
909 unsigned i;
910 edge_iterator ei;
911 bool first = true;
912 static const char * const bb_bitnames[] =
914 "new", "reachable", "irreducible_loop", "superblock",
915 "nosched", "hot", "cold", "dup", "xlabel", "rtl",
916 "fwdr", "nothrd"
918 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
919 edge e;
921 fprintf (file, "Basic block %d", bb->index);
922 for (i = 0; i < n_bitnames; i++)
923 if (bb->flags & (1 << i))
925 if (first)
926 fputs (" (", file);
927 else
928 fputs (", ", file);
929 first = false;
930 fputs (bb_bitnames[i], file);
932 if (!first)
933 putc (')', file);
934 putc ('\n', file);
936 fputs ("Predecessors: ", file);
937 FOR_EACH_EDGE (e, ei, bb->preds)
938 dump_edge_info (file, e, 0);
940 fprintf (file, "\nSuccessors: ");
941 FOR_EACH_EDGE (e, ei, bb->succs)
942 dump_edge_info (file, e, 1);
943 fputs ("\n\n", file);
946 /* Dumps a brief description of cfg to FILE. */
948 void
949 brief_dump_cfg (FILE *file)
951 basic_block bb;
953 FOR_EACH_BB (bb)
955 dump_cfg_bb_info (file, bb);
959 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
960 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
961 redirected to destination of TAKEN_EDGE.
963 This function may leave the profile inconsistent in the case TAKEN_EDGE
964 frequency or count is believed to be lower than FREQUENCY or COUNT
965 respectively. */
966 void
967 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
968 gcov_type count, edge taken_edge)
970 edge c;
971 int prob;
972 edge_iterator ei;
974 bb->count -= count;
975 if (bb->count < 0)
977 if (dump_file)
978 fprintf (dump_file, "bb %i count became negative after threading",
979 bb->index);
980 bb->count = 0;
983 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
984 Watch for overflows. */
985 if (bb->frequency)
986 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
987 else
988 prob = 0;
989 if (prob > taken_edge->probability)
991 if (dump_file)
992 fprintf (dump_file, "Jump threading proved probability of edge "
993 "%i->%i too small (it is %i, should be %i).\n",
994 taken_edge->src->index, taken_edge->dest->index,
995 taken_edge->probability, prob);
996 prob = taken_edge->probability;
999 /* Now rescale the probabilities. */
1000 taken_edge->probability -= prob;
1001 prob = REG_BR_PROB_BASE - prob;
1002 bb->frequency -= edge_frequency;
1003 if (bb->frequency < 0)
1004 bb->frequency = 0;
1005 if (prob <= 0)
1007 if (dump_file)
1008 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
1009 "frequency of block should end up being 0, it is %i\n",
1010 bb->index, bb->frequency);
1011 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
1012 ei = ei_start (bb->succs);
1013 ei_next (&ei);
1014 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
1015 c->probability = 0;
1017 else if (prob != REG_BR_PROB_BASE)
1019 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
1021 FOR_EACH_EDGE (c, ei, bb->succs)
1023 /* Protect from overflow due to additional scaling. */
1024 if (c->probability > prob)
1025 c->probability = REG_BR_PROB_BASE;
1026 else
1028 c->probability = RDIV (c->probability * scale, 65536);
1029 if (c->probability > REG_BR_PROB_BASE)
1030 c->probability = REG_BR_PROB_BASE;
1035 gcc_assert (bb == taken_edge->src);
1036 taken_edge->count -= count;
1037 if (taken_edge->count < 0)
1039 if (dump_file)
1040 fprintf (dump_file, "edge %i->%i count became negative after threading",
1041 taken_edge->src->index, taken_edge->dest->index);
1042 taken_edge->count = 0;
1046 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1047 by NUM/DEN, in int arithmetic. May lose some accuracy. */
1048 void
1049 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
1051 int i;
1052 edge e;
1053 if (num < 0)
1054 num = 0;
1056 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
1057 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
1058 and still safely fit in int during calculations. */
1059 if (den > 1000)
1061 if (num > 1000000)
1062 return;
1064 num = RDIV (1000 * num, den);
1065 den = 1000;
1067 if (num > 100 * den)
1068 return;
1070 for (i = 0; i < nbbs; i++)
1072 edge_iterator ei;
1073 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1074 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
1075 if (bbs[i]->frequency > BB_FREQ_MAX)
1076 bbs[i]->frequency = BB_FREQ_MAX;
1077 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1078 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1079 e->count = RDIV (e->count * num, den);
1083 /* numbers smaller than this value are safe to multiply without getting
1084 64bit overflow. */
1085 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
1087 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1088 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
1089 function but considerably slower. */
1090 void
1091 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
1092 gcov_type den)
1094 int i;
1095 edge e;
1096 gcov_type fraction = RDIV (num * 65536, den);
1098 gcc_assert (fraction >= 0);
1100 if (num < MAX_SAFE_MULTIPLIER)
1101 for (i = 0; i < nbbs; i++)
1103 edge_iterator ei;
1104 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1105 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1106 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1107 else
1108 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1109 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1110 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1111 e->count = RDIV (e->count * num, den);
1112 else
1113 e->count = RDIV (e->count * fraction, 65536);
1115 else
1116 for (i = 0; i < nbbs; i++)
1118 edge_iterator ei;
1119 if (sizeof (gcov_type) > sizeof (int))
1120 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1121 else
1122 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1123 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1124 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1125 e->count = RDIV (e->count * fraction, 65536);
1129 /* Data structures used to maintain mapping between basic blocks and
1130 copies. */
1131 static htab_t bb_original;
1132 static htab_t bb_copy;
1134 /* And between loops and copies. */
1135 static htab_t loop_copy;
1136 static alloc_pool original_copy_bb_pool;
1138 struct htab_bb_copy_original_entry
1140 /* Block we are attaching info to. */
1141 int index1;
1142 /* Index of original or copy (depending on the hashtable) */
1143 int index2;
1146 static hashval_t
1147 bb_copy_original_hash (const void *p)
1149 const struct htab_bb_copy_original_entry *data
1150 = ((const struct htab_bb_copy_original_entry *)p);
1152 return data->index1;
1154 static int
1155 bb_copy_original_eq (const void *p, const void *q)
1157 const struct htab_bb_copy_original_entry *data
1158 = ((const struct htab_bb_copy_original_entry *)p);
1159 const struct htab_bb_copy_original_entry *data2
1160 = ((const struct htab_bb_copy_original_entry *)q);
1162 return data->index1 == data2->index1;
1165 /* Initialize the data structures to maintain mapping between blocks
1166 and its copies. */
1167 void
1168 initialize_original_copy_tables (void)
1170 gcc_assert (!original_copy_bb_pool);
1171 original_copy_bb_pool
1172 = create_alloc_pool ("original_copy",
1173 sizeof (struct htab_bb_copy_original_entry), 10);
1174 bb_original = htab_create (10, bb_copy_original_hash,
1175 bb_copy_original_eq, NULL);
1176 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1177 loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1180 /* Free the data structures to maintain mapping between blocks and
1181 its copies. */
1182 void
1183 free_original_copy_tables (void)
1185 gcc_assert (original_copy_bb_pool);
1186 htab_delete (bb_copy);
1187 htab_delete (bb_original);
1188 htab_delete (loop_copy);
1189 free_alloc_pool (original_copy_bb_pool);
1190 bb_copy = NULL;
1191 bb_original = NULL;
1192 loop_copy = NULL;
1193 original_copy_bb_pool = NULL;
1196 /* Removes the value associated with OBJ from table TAB. */
1198 static void
1199 copy_original_table_clear (htab_t tab, unsigned obj)
1201 void **slot;
1202 struct htab_bb_copy_original_entry key, *elt;
1204 if (!original_copy_bb_pool)
1205 return;
1207 key.index1 = obj;
1208 slot = htab_find_slot (tab, &key, NO_INSERT);
1209 if (!slot)
1210 return;
1212 elt = (struct htab_bb_copy_original_entry *) *slot;
1213 htab_clear_slot (tab, slot);
1214 pool_free (original_copy_bb_pool, elt);
1217 /* Sets the value associated with OBJ in table TAB to VAL.
1218 Do nothing when data structures are not initialized. */
1220 static void
1221 copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
1223 struct htab_bb_copy_original_entry **slot;
1224 struct htab_bb_copy_original_entry key;
1226 if (!original_copy_bb_pool)
1227 return;
1229 key.index1 = obj;
1230 slot = (struct htab_bb_copy_original_entry **)
1231 htab_find_slot (tab, &key, INSERT);
1232 if (!*slot)
1234 *slot = (struct htab_bb_copy_original_entry *)
1235 pool_alloc (original_copy_bb_pool);
1236 (*slot)->index1 = obj;
1238 (*slot)->index2 = val;
1241 /* Set original for basic block. Do nothing when data structures are not
1242 initialized so passes not needing this don't need to care. */
1243 void
1244 set_bb_original (basic_block bb, basic_block original)
1246 copy_original_table_set (bb_original, bb->index, original->index);
1249 /* Get the original basic block. */
1250 basic_block
1251 get_bb_original (basic_block bb)
1253 struct htab_bb_copy_original_entry *entry;
1254 struct htab_bb_copy_original_entry key;
1256 gcc_assert (original_copy_bb_pool);
1258 key.index1 = bb->index;
1259 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1260 if (entry)
1261 return BASIC_BLOCK (entry->index2);
1262 else
1263 return NULL;
1266 /* Set copy for basic block. Do nothing when data structures are not
1267 initialized so passes not needing this don't need to care. */
1268 void
1269 set_bb_copy (basic_block bb, basic_block copy)
1271 copy_original_table_set (bb_copy, bb->index, copy->index);
1274 /* Get the copy of basic block. */
1275 basic_block
1276 get_bb_copy (basic_block bb)
1278 struct htab_bb_copy_original_entry *entry;
1279 struct htab_bb_copy_original_entry key;
1281 gcc_assert (original_copy_bb_pool);
1283 key.index1 = bb->index;
1284 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1285 if (entry)
1286 return BASIC_BLOCK (entry->index2);
1287 else
1288 return NULL;
1291 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1292 initialized so passes not needing this don't need to care. */
1294 void
1295 set_loop_copy (struct loop *loop, struct loop *copy)
1297 if (!copy)
1298 copy_original_table_clear (loop_copy, loop->num);
1299 else
1300 copy_original_table_set (loop_copy, loop->num, copy->num);
1303 /* Get the copy of LOOP. */
1305 struct loop *
1306 get_loop_copy (struct loop *loop)
1308 struct htab_bb_copy_original_entry *entry;
1309 struct htab_bb_copy_original_entry key;
1311 gcc_assert (original_copy_bb_pool);
1313 key.index1 = loop->num;
1314 entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
1315 if (entry)
1316 return get_loop (entry->index2);
1317 else
1318 return NULL;