* rtlanal.c (add_reg_note): New function.
[official-gcc.git] / gcc / regmove.c
blob7de8d0d5b988f176deac582d41b459543e793ca4
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
48 #include "df.h"
50 static int perhaps_ends_bb_p (rtx);
51 static int optimize_reg_copy_1 (rtx, rtx, rtx);
52 static void optimize_reg_copy_2 (rtx, rtx, rtx);
53 static void optimize_reg_copy_3 (rtx, rtx, rtx);
54 static void copy_src_to_dest (rtx, rtx, rtx);
56 struct match {
57 int with[MAX_RECOG_OPERANDS];
58 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
59 int commutative[MAX_RECOG_OPERANDS];
60 int early_clobber[MAX_RECOG_OPERANDS];
63 static rtx discover_flags_reg (void);
64 static void mark_flags_life_zones (rtx);
65 static void flags_set_1 (rtx, const_rtx, void *);
67 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
68 static int find_matches (rtx, struct match *);
69 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
70 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int);
71 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
72 static int regclass_compatible_p (int, int);
73 static int replacement_quality (rtx);
74 static int fixup_match_2 (rtx, rtx, rtx, rtx);
76 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
77 causing too much register allocation problems. */
78 static int
79 regclass_compatible_p (int class0, int class1)
81 return (class0 == class1
82 || (reg_class_subset_p (class0, class1)
83 && ! CLASS_LIKELY_SPILLED_P (class0))
84 || (reg_class_subset_p (class1, class0)
85 && ! CLASS_LIKELY_SPILLED_P (class1)));
88 /* Find the place in the rtx X where REG is used as a memory address.
89 Return the MEM rtx that so uses it.
90 If PLUSCONST is nonzero, search instead for a memory address equivalent to
91 (plus REG (const_int PLUSCONST)).
93 If such an address does not appear, return 0.
94 If REG appears more than once, or is used other than in such an address,
95 return (rtx) 1. */
97 static rtx
98 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
100 enum rtx_code code = GET_CODE (x);
101 const char * const fmt = GET_RTX_FORMAT (code);
102 int i;
103 rtx value = 0;
104 rtx tem;
106 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
107 return x;
109 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
110 && XEXP (XEXP (x, 0), 0) == reg
111 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
112 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
113 return x;
115 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
117 /* If REG occurs inside a MEM used in a bit-field reference,
118 that is unacceptable. */
119 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
120 return (rtx) (size_t) 1;
123 if (x == reg)
124 return (rtx) (size_t) 1;
126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
128 if (fmt[i] == 'e')
130 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
131 if (value == 0)
132 value = tem;
133 else if (tem != 0)
134 return (rtx) (size_t) 1;
136 else if (fmt[i] == 'E')
138 int j;
139 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
141 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
142 if (value == 0)
143 value = tem;
144 else if (tem != 0)
145 return (rtx) (size_t) 1;
150 return value;
154 /* INC_INSN is an instruction that adds INCREMENT to REG.
155 Try to fold INC_INSN as a post/pre in/decrement into INSN.
156 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
157 Return nonzero for success. */
158 static int
159 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
160 HOST_WIDE_INT increment, int pre)
162 enum rtx_code inc_code;
164 rtx pset = single_set (insn);
165 if (pset)
167 /* Can't use the size of SET_SRC, we might have something like
168 (sign_extend:SI (mem:QI ... */
169 rtx use = find_use_as_address (pset, reg, 0);
170 if (use != 0 && use != (rtx) (size_t) 1)
172 int size = GET_MODE_SIZE (GET_MODE (use));
173 if (0
174 || (HAVE_POST_INCREMENT
175 && pre == 0 && (inc_code = POST_INC, increment == size))
176 || (HAVE_PRE_INCREMENT
177 && pre == 1 && (inc_code = PRE_INC, increment == size))
178 || (HAVE_POST_DECREMENT
179 && pre == 0 && (inc_code = POST_DEC, increment == -size))
180 || (HAVE_PRE_DECREMENT
181 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
184 if (inc_insn_set)
185 validate_change
186 (inc_insn,
187 &SET_SRC (inc_insn_set),
188 XEXP (SET_SRC (inc_insn_set), 0), 1);
189 validate_change (insn, &XEXP (use, 0),
190 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
191 if (apply_change_group ())
193 /* If there is a REG_DEAD note on this insn, we must
194 change this not to REG_UNUSED meaning that the register
195 is set, but the value is dead. Failure to do so will
196 result in sched1 dying -- when it recomputes lifetime
197 information, the number of REG_DEAD notes will have
198 changed. */
199 rtx note = find_reg_note (insn, REG_DEAD, reg);
200 if (note)
201 PUT_MODE (note, REG_UNUSED);
203 add_reg_note (insn, REG_INC, reg);
205 if (! inc_insn_set)
206 delete_insn (inc_insn);
207 return 1;
212 return 0;
215 /* Determine if the pattern generated by add_optab has a clobber,
216 such as might be issued for a flags hard register. To make the
217 code elsewhere simpler, we handle cc0 in this same framework.
219 Return the register if one was discovered. Return NULL_RTX if
220 if no flags were found. Return pc_rtx if we got confused. */
222 static rtx
223 discover_flags_reg (void)
225 rtx tmp;
226 tmp = gen_rtx_REG (word_mode, 10000);
227 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
229 /* If we get something that isn't a simple set, or a
230 [(set ..) (clobber ..)], this whole function will go wrong. */
231 if (GET_CODE (tmp) == SET)
232 return NULL_RTX;
233 else if (GET_CODE (tmp) == PARALLEL)
235 int found;
237 if (XVECLEN (tmp, 0) != 2)
238 return pc_rtx;
239 tmp = XVECEXP (tmp, 0, 1);
240 if (GET_CODE (tmp) != CLOBBER)
241 return pc_rtx;
242 tmp = XEXP (tmp, 0);
244 /* Don't do anything foolish if the md wanted to clobber a
245 scratch or something. We only care about hard regs.
246 Moreover we don't like the notion of subregs of hard regs. */
247 if (GET_CODE (tmp) == SUBREG
248 && REG_P (SUBREG_REG (tmp))
249 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
250 return pc_rtx;
251 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
253 return (found ? tmp : NULL_RTX);
256 return pc_rtx;
259 /* It is a tedious task identifying when the flags register is live and
260 when it is safe to optimize. Since we process the instruction stream
261 multiple times, locate and record these live zones by marking the
262 mode of the instructions --
264 QImode is used on the instruction at which the flags becomes live.
266 HImode is used within the range (exclusive) that the flags are
267 live. Thus the user of the flags is not marked.
269 All other instructions are cleared to VOIDmode. */
271 /* Used to communicate with flags_set_1. */
272 static rtx flags_set_1_rtx;
273 static int flags_set_1_set;
275 static void
276 mark_flags_life_zones (rtx flags)
278 int flags_regno;
279 int flags_nregs;
280 basic_block block;
282 #ifdef HAVE_cc0
283 /* If we found a flags register on a cc0 host, bail. */
284 if (flags == NULL_RTX)
285 flags = cc0_rtx;
286 else if (flags != cc0_rtx)
287 flags = pc_rtx;
288 #endif
290 /* Simple cases first: if no flags, clear all modes. If confusing,
291 mark the entire function as being in a flags shadow. */
292 if (flags == NULL_RTX || flags == pc_rtx)
294 enum machine_mode mode = (flags ? HImode : VOIDmode);
295 rtx insn;
296 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
297 PUT_MODE (insn, mode);
298 return;
301 #ifdef HAVE_cc0
302 flags_regno = -1;
303 flags_nregs = 1;
304 #else
305 flags_regno = REGNO (flags);
306 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
307 #endif
308 flags_set_1_rtx = flags;
310 /* Process each basic block. */
311 FOR_EACH_BB_REVERSE (block)
313 rtx insn, end;
314 int live;
316 insn = BB_HEAD (block);
317 end = BB_END (block);
319 /* Look out for the (unlikely) case of flags being live across
320 basic block boundaries. */
321 live = 0;
322 #ifndef HAVE_cc0
324 int i;
325 for (i = 0; i < flags_nregs; ++i)
326 live |= REGNO_REG_SET_P (df_get_live_in (block), flags_regno + i);
328 #endif
330 while (1)
332 /* Process liveness in reverse order of importance --
333 alive, death, birth. This lets more important info
334 overwrite the mode of lesser info. */
336 if (INSN_P (insn))
338 #ifdef HAVE_cc0
339 /* In the cc0 case, death is not marked in reg notes,
340 but is instead the mere use of cc0 when it is alive. */
341 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
342 live = 0;
343 #else
344 /* In the hard reg case, we watch death notes. */
345 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
346 live = 0;
347 #endif
348 PUT_MODE (insn, (live ? HImode : VOIDmode));
350 /* In either case, birth is denoted simply by its presence
351 as the destination of a set. */
352 flags_set_1_set = 0;
353 note_stores (PATTERN (insn), flags_set_1, NULL);
354 if (flags_set_1_set)
356 live = 1;
357 PUT_MODE (insn, QImode);
360 else
361 PUT_MODE (insn, (live ? HImode : VOIDmode));
363 if (insn == end)
364 break;
365 insn = NEXT_INSN (insn);
370 /* A subroutine of mark_flags_life_zones, called through note_stores. */
372 static void
373 flags_set_1 (rtx x, const_rtx pat, void *data ATTRIBUTE_UNUSED)
375 if (GET_CODE (pat) == SET
376 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
377 flags_set_1_set = 1;
380 static int *regno_src_regno;
382 /* Indicate how good a choice REG (which appears as a source) is to replace
383 a destination register with. The higher the returned value, the better
384 the choice. The main objective is to avoid using a register that is
385 a candidate for tying to a hard register, since the output might in
386 turn be a candidate to be tied to a different hard register. */
387 static int
388 replacement_quality (rtx reg)
390 int src_regno;
392 /* Bad if this isn't a register at all. */
393 if (!REG_P (reg))
394 return 0;
396 /* If this register is not meant to get a hard register,
397 it is a poor choice. */
398 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
399 return 0;
401 src_regno = regno_src_regno[REGNO (reg)];
403 /* If it was not copied from another register, it is fine. */
404 if (src_regno < 0)
405 return 3;
407 /* Copied from a hard register? */
408 if (src_regno < FIRST_PSEUDO_REGISTER)
409 return 1;
411 /* Copied from a pseudo register - not as bad as from a hard register,
412 yet still cumbersome, since the register live length will be lengthened
413 when the registers get tied. */
414 return 2;
417 /* Return 1 if INSN might end a basic block. */
419 static int perhaps_ends_bb_p (rtx insn)
421 switch (GET_CODE (insn))
423 case CODE_LABEL:
424 case JUMP_INSN:
425 /* These always end a basic block. */
426 return 1;
428 case CALL_INSN:
429 /* A CALL_INSN might be the last insn of a basic block, if it is inside
430 an EH region or if there are nonlocal gotos. Note that this test is
431 very conservative. */
432 if (nonlocal_goto_handler_labels)
433 return 1;
434 /* Fall through. */
435 default:
436 return can_throw_internal (insn);
440 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
441 in INSN.
443 Search forward to see if SRC dies before either it or DEST is modified,
444 but don't scan past the end of a basic block. If so, we can replace SRC
445 with DEST and let SRC die in INSN.
447 This will reduce the number of registers live in that range and may enable
448 DEST to be tied to SRC, thus often saving one register in addition to a
449 register-register copy. */
451 static int
452 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
454 rtx p, q;
455 rtx note;
456 rtx dest_death = 0;
457 int sregno = REGNO (src);
458 int dregno = REGNO (dest);
460 /* We don't want to mess with hard regs if register classes are small. */
461 if (sregno == dregno
462 || (SMALL_REGISTER_CLASSES
463 && (sregno < FIRST_PSEUDO_REGISTER
464 || dregno < FIRST_PSEUDO_REGISTER))
465 /* We don't see all updates to SP if they are in an auto-inc memory
466 reference, so we must disallow this optimization on them. */
467 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
468 return 0;
470 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
472 /* ??? We can't scan past the end of a basic block without updating
473 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
474 if (perhaps_ends_bb_p (p))
475 break;
476 else if (! INSN_P (p))
477 continue;
479 if (reg_set_p (src, p) || reg_set_p (dest, p)
480 /* If SRC is an asm-declared register, it must not be replaced
481 in any asm. Unfortunately, the REG_EXPR tree for the asm
482 variable may be absent in the SRC rtx, so we can't check the
483 actual register declaration easily (the asm operand will have
484 it, though). To avoid complicating the test for a rare case,
485 we just don't perform register replacement for a hard reg
486 mentioned in an asm. */
487 || (sregno < FIRST_PSEUDO_REGISTER
488 && asm_noperands (PATTERN (p)) >= 0
489 && reg_overlap_mentioned_p (src, PATTERN (p)))
490 /* Don't change hard registers used by a call. */
491 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
492 && find_reg_fusage (p, USE, src))
493 /* Don't change a USE of a register. */
494 || (GET_CODE (PATTERN (p)) == USE
495 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
496 break;
498 /* See if all of SRC dies in P. This test is slightly more
499 conservative than it needs to be. */
500 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
501 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
503 int failed = 0;
504 int d_length = 0;
505 int s_length = 0;
506 int d_n_calls = 0;
507 int s_n_calls = 0;
508 int s_freq_calls = 0;
509 int d_freq_calls = 0;
511 /* We can do the optimization. Scan forward from INSN again,
512 replacing regs as we go. Set FAILED if a replacement can't
513 be done. In that case, we can't move the death note for SRC.
514 This should be rare. */
516 /* Set to stop at next insn. */
517 for (q = next_real_insn (insn);
518 q != next_real_insn (p);
519 q = next_real_insn (q))
521 if (reg_overlap_mentioned_p (src, PATTERN (q)))
523 /* If SRC is a hard register, we might miss some
524 overlapping registers with validate_replace_rtx,
525 so we would have to undo it. We can't if DEST is
526 present in the insn, so fail in that combination
527 of cases. */
528 if (sregno < FIRST_PSEUDO_REGISTER
529 && reg_mentioned_p (dest, PATTERN (q)))
530 failed = 1;
532 /* Attempt to replace all uses. */
533 else if (!validate_replace_rtx (src, dest, q))
534 failed = 1;
536 /* If this succeeded, but some part of the register
537 is still present, undo the replacement. */
538 else if (sregno < FIRST_PSEUDO_REGISTER
539 && reg_overlap_mentioned_p (src, PATTERN (q)))
541 validate_replace_rtx (dest, src, q);
542 failed = 1;
546 /* For SREGNO, count the total number of insns scanned.
547 For DREGNO, count the total number of insns scanned after
548 passing the death note for DREGNO. */
549 s_length++;
550 if (dest_death)
551 d_length++;
553 /* If the insn in which SRC dies is a CALL_INSN, don't count it
554 as a call that has been crossed. Otherwise, count it. */
555 if (q != p && CALL_P (q))
557 /* Similarly, total calls for SREGNO, total calls beyond
558 the death note for DREGNO. */
559 s_n_calls++;
560 s_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
561 if (dest_death)
563 d_n_calls++;
564 d_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
568 /* If DEST dies here, remove the death note and save it for
569 later. Make sure ALL of DEST dies here; again, this is
570 overly conservative. */
571 if (dest_death == 0
572 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
574 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
575 failed = 1, dest_death = 0;
576 else
577 remove_note (q, dest_death);
581 if (! failed)
583 /* These counters need to be updated if and only if we are
584 going to move the REG_DEAD note. */
585 if (sregno >= FIRST_PSEUDO_REGISTER)
587 if (REG_LIVE_LENGTH (sregno) >= 0)
589 REG_LIVE_LENGTH (sregno) -= s_length;
590 /* REG_LIVE_LENGTH is only an approximation after
591 combine if sched is not run, so make sure that we
592 still have a reasonable value. */
593 if (REG_LIVE_LENGTH (sregno) < 2)
594 REG_LIVE_LENGTH (sregno) = 2;
597 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
598 REG_FREQ_CALLS_CROSSED (sregno) -= s_freq_calls;
601 /* Move death note of SRC from P to INSN. */
602 remove_note (p, note);
603 XEXP (note, 1) = REG_NOTES (insn);
604 REG_NOTES (insn) = note;
607 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
608 if (! dest_death
609 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
611 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
612 remove_note (insn, dest_death);
615 /* Put death note of DEST on P if we saw it die. */
616 if (dest_death)
618 XEXP (dest_death, 1) = REG_NOTES (p);
619 REG_NOTES (p) = dest_death;
621 if (dregno >= FIRST_PSEUDO_REGISTER)
623 /* If and only if we are moving the death note for DREGNO,
624 then we need to update its counters. */
625 if (REG_LIVE_LENGTH (dregno) >= 0)
626 REG_LIVE_LENGTH (dregno) += d_length;
627 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
628 REG_FREQ_CALLS_CROSSED (dregno) += d_freq_calls;
632 return ! failed;
635 /* If SRC is a hard register which is set or killed in some other
636 way, we can't do this optimization. */
637 else if (sregno < FIRST_PSEUDO_REGISTER
638 && dead_or_set_p (p, src))
639 break;
641 return 0;
644 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
645 a sequence of insns that modify DEST followed by an insn that sets
646 SRC to DEST in which DEST dies, with no prior modification of DEST.
647 (There is no need to check if the insns in between actually modify
648 DEST. We should not have cases where DEST is not modified, but
649 the optimization is safe if no such modification is detected.)
650 In that case, we can replace all uses of DEST, starting with INSN and
651 ending with the set of SRC to DEST, with SRC. We do not do this
652 optimization if a CALL_INSN is crossed unless SRC already crosses a
653 call or if DEST dies before the copy back to SRC.
655 It is assumed that DEST and SRC are pseudos; it is too complicated to do
656 this for hard registers since the substitutions we may make might fail. */
658 static void
659 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
661 rtx p, q;
662 rtx set;
663 int sregno = REGNO (src);
664 int dregno = REGNO (dest);
666 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
668 /* ??? We can't scan past the end of a basic block without updating
669 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
670 if (perhaps_ends_bb_p (p))
671 break;
672 else if (! INSN_P (p))
673 continue;
675 set = single_set (p);
676 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
677 && find_reg_note (p, REG_DEAD, dest))
679 /* We can do the optimization. Scan forward from INSN again,
680 replacing regs as we go. */
682 /* Set to stop at next insn. */
683 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
684 if (INSN_P (q))
686 if (reg_mentioned_p (dest, PATTERN (q)))
688 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
689 df_insn_rescan (q);
692 if (CALL_P (q))
694 int freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (q));
695 REG_N_CALLS_CROSSED (dregno)--;
696 REG_N_CALLS_CROSSED (sregno)++;
697 REG_FREQ_CALLS_CROSSED (dregno) -= freq;
698 REG_FREQ_CALLS_CROSSED (sregno) += freq;
702 remove_note (p, find_reg_note (p, REG_DEAD, dest));
703 REG_N_DEATHS (dregno)--;
704 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
705 REG_N_DEATHS (sregno)--;
706 return;
709 if (reg_set_p (src, p)
710 || find_reg_note (p, REG_DEAD, dest)
711 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
712 break;
716 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
717 Look if SRC dies there, and if it is only set once, by loading
718 it from memory. If so, try to incorporate the zero/sign extension
719 into the memory read, change SRC to the mode of DEST, and alter
720 the remaining accesses to use the appropriate SUBREG. This allows
721 SRC and DEST to be tied later. */
722 static void
723 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
725 rtx src_reg = XEXP (src, 0);
726 int src_no = REGNO (src_reg);
727 int dst_no = REGNO (dest);
728 rtx p, set;
729 enum machine_mode old_mode;
731 if (src_no < FIRST_PSEUDO_REGISTER
732 || dst_no < FIRST_PSEUDO_REGISTER
733 || ! find_reg_note (insn, REG_DEAD, src_reg)
734 || REG_N_DEATHS (src_no) != 1
735 || REG_N_SETS (src_no) != 1)
736 return;
737 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
738 /* ??? We can't scan past the end of a basic block without updating
739 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
740 if (perhaps_ends_bb_p (p))
741 break;
743 if (! p)
744 return;
746 if (! (set = single_set (p))
747 || !MEM_P (SET_SRC (set))
748 /* If there's a REG_EQUIV note, this must be an insn that loads an
749 argument. Prefer keeping the note over doing this optimization. */
750 || find_reg_note (p, REG_EQUIV, NULL_RTX)
751 || SET_DEST (set) != src_reg)
752 return;
754 /* Be conservative: although this optimization is also valid for
755 volatile memory references, that could cause trouble in later passes. */
756 if (MEM_VOLATILE_P (SET_SRC (set)))
757 return;
759 /* Do not use a SUBREG to truncate from one mode to another if truncation
760 is not a nop. */
761 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
762 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
763 GET_MODE_BITSIZE (GET_MODE (src_reg))))
764 return;
766 old_mode = GET_MODE (src_reg);
767 PUT_MODE (src_reg, GET_MODE (src));
768 XEXP (src, 0) = SET_SRC (set);
770 /* Include this change in the group so that it's easily undone if
771 one of the changes in the group is invalid. */
772 validate_change (p, &SET_SRC (set), src, 1);
774 /* Now walk forward making additional replacements. We want to be able
775 to undo all the changes if a later substitution fails. */
776 while (p = NEXT_INSN (p), p != insn)
778 if (! INSN_P (p))
779 continue;
781 /* Make a tentative change. */
782 validate_replace_rtx_group (src_reg,
783 gen_lowpart_SUBREG (old_mode, src_reg),
787 validate_replace_rtx_group (src, src_reg, insn);
789 /* Now see if all the changes are valid. */
790 if (! apply_change_group ())
792 /* One or more changes were no good. Back out everything. */
793 PUT_MODE (src_reg, old_mode);
794 XEXP (src, 0) = src_reg;
796 else
798 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
799 if (note)
800 remove_note (p, note);
805 /* If we were not able to update the users of src to use dest directly, try
806 instead moving the value to dest directly before the operation. */
808 static void
809 copy_src_to_dest (rtx insn, rtx src, rtx dest)
811 rtx seq;
812 rtx link;
813 rtx next;
814 rtx set;
815 rtx move_insn;
816 rtx *p_insn_notes;
817 rtx *p_move_notes;
818 int src_regno;
819 int dest_regno;
820 int insn_uid;
821 int move_uid;
823 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
824 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
825 parameter when there is no frame pointer that is not allocated a register.
826 For now, we just reject them, rather than incrementing the live length. */
828 if (REG_P (src)
829 && REG_LIVE_LENGTH (REGNO (src)) > 0
830 && REG_P (dest)
831 && REG_LIVE_LENGTH (REGNO (dest)) > 0
832 && (set = single_set (insn)) != NULL_RTX
833 && !reg_mentioned_p (dest, SET_SRC (set))
834 && GET_MODE (src) == GET_MODE (dest))
836 int old_num_regs = reg_rtx_no;
838 /* Generate the src->dest move. */
839 start_sequence ();
840 emit_move_insn (dest, src);
841 seq = get_insns ();
842 end_sequence ();
843 /* If this sequence uses new registers, we may not use it. */
844 if (old_num_regs != reg_rtx_no
845 || ! validate_replace_rtx (src, dest, insn))
847 /* We have to restore reg_rtx_no to its old value, lest
848 recompute_reg_usage will try to compute the usage of the
849 new regs, yet reg_n_info is not valid for them. */
850 reg_rtx_no = old_num_regs;
851 return;
853 emit_insn_before (seq, insn);
854 move_insn = PREV_INSN (insn);
855 p_move_notes = &REG_NOTES (move_insn);
856 p_insn_notes = &REG_NOTES (insn);
858 /* Move any notes mentioning src to the move instruction. */
859 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
861 next = XEXP (link, 1);
862 if (XEXP (link, 0) == src)
864 *p_move_notes = link;
865 p_move_notes = &XEXP (link, 1);
867 else
869 *p_insn_notes = link;
870 p_insn_notes = &XEXP (link, 1);
874 *p_move_notes = NULL_RTX;
875 *p_insn_notes = NULL_RTX;
877 insn_uid = INSN_UID (insn);
878 move_uid = INSN_UID (move_insn);
880 /* Update the various register tables. */
881 dest_regno = REGNO (dest);
882 INC_REG_N_SETS (dest_regno, 1);
883 REG_LIVE_LENGTH (dest_regno)++;
884 src_regno = REGNO (src);
885 if (! find_reg_note (move_insn, REG_DEAD, src))
886 REG_LIVE_LENGTH (src_regno)++;
890 /* reg_set_in_bb[REGNO] points to basic block iff the register is set
891 only once in the given block and has REG_EQUAL note. */
893 basic_block *reg_set_in_bb;
895 /* Size of reg_set_in_bb array. */
896 static unsigned int max_reg_computed;
899 /* Return whether REG is set in only one location, and is set to a
900 constant, but is set in a different basic block from INSN (an
901 instructions which uses REG). In this case REG is equivalent to a
902 constant, and we don't want to break that equivalence, because that
903 may increase register pressure and make reload harder. If REG is
904 set in the same basic block as INSN, we don't worry about it,
905 because we'll probably need a register anyhow (??? but what if REG
906 is used in a different basic block as well as this one?). */
908 static bool
909 reg_is_remote_constant_p (rtx reg, rtx insn)
911 basic_block bb;
912 rtx p;
913 int max;
915 if (!reg_set_in_bb)
917 max_reg_computed = max = max_reg_num ();
918 reg_set_in_bb = XCNEWVEC (basic_block, max);
920 FOR_EACH_BB (bb)
921 FOR_BB_INSNS (bb, p)
923 rtx s;
925 if (!INSN_P (p))
926 continue;
927 s = single_set (p);
928 /* This is the instruction which sets REG. If there is a
929 REG_EQUAL note, then REG is equivalent to a constant. */
930 if (s != 0
931 && REG_P (SET_DEST (s))
932 && REG_N_SETS (REGNO (SET_DEST (s))) == 1
933 && find_reg_note (p, REG_EQUAL, NULL_RTX))
934 reg_set_in_bb[REGNO (SET_DEST (s))] = bb;
938 gcc_assert (REGNO (reg) < max_reg_computed);
939 if (reg_set_in_bb[REGNO (reg)] == NULL)
940 return false;
941 return (reg_set_in_bb[REGNO (reg)] != BLOCK_FOR_INSN (insn));
944 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
945 another add immediate instruction with the same source and dest registers,
946 and if we find one, we change INSN to an increment, and return 1. If
947 no changes are made, we return 0.
949 This changes
950 (set (reg100) (plus reg1 offset1))
952 (set (reg100) (plus reg1 offset2))
954 (set (reg100) (plus reg1 offset1))
956 (set (reg100) (plus reg100 offset2-offset1)) */
958 /* ??? What does this comment mean? */
959 /* cse disrupts preincrement / postdecrement sequences when it finds a
960 hard register as ultimate source, like the frame pointer. */
962 static int
963 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset)
965 rtx p, dst_death = 0;
966 int length, num_calls = 0, freq_calls = 0;
968 /* If SRC dies in INSN, we'd have to move the death note. This is
969 considered to be very unlikely, so we just skip the optimization
970 in this case. */
971 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
972 return 0;
974 /* Scan backward to find the first instruction that sets DST. */
976 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
978 rtx pset;
980 /* ??? We can't scan past the end of a basic block without updating
981 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
982 if (perhaps_ends_bb_p (p))
983 break;
984 else if (! INSN_P (p))
985 continue;
987 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
988 dst_death = p;
989 if (! dst_death)
990 length++;
992 pset = single_set (p);
993 if (pset && SET_DEST (pset) == dst
994 && GET_CODE (SET_SRC (pset)) == PLUS
995 && XEXP (SET_SRC (pset), 0) == src
996 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
998 HOST_WIDE_INT newconst
999 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
1000 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
1002 if (add && validate_change (insn, &PATTERN (insn), add, 0))
1004 /* Remove the death note for DST from DST_DEATH. */
1005 if (dst_death)
1007 remove_death (REGNO (dst), dst_death);
1008 REG_LIVE_LENGTH (REGNO (dst)) += length;
1009 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
1010 REG_FREQ_CALLS_CROSSED (REGNO (dst)) += freq_calls;
1013 if (dump_file)
1014 fprintf (dump_file,
1015 "Fixed operand of insn %d.\n",
1016 INSN_UID (insn));
1018 #ifdef AUTO_INC_DEC
1019 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
1021 if (LABEL_P (p)
1022 || JUMP_P (p))
1023 break;
1024 if (! INSN_P (p))
1025 continue;
1026 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1028 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
1029 return 1;
1030 break;
1033 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1035 if (LABEL_P (p)
1036 || JUMP_P (p))
1037 break;
1038 if (! INSN_P (p))
1039 continue;
1040 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1042 try_auto_increment (p, insn, 0, dst, newconst, 1);
1043 break;
1046 #endif
1047 return 1;
1051 if (reg_set_p (dst, PATTERN (p)))
1052 break;
1054 /* If we have passed a call instruction, and the
1055 pseudo-reg SRC is not already live across a call,
1056 then don't perform the optimization. */
1057 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1058 hard regs are clobbered. Thus, we only use it for src for
1059 non-call insns. */
1060 if (CALL_P (p))
1062 if (! dst_death)
1064 num_calls++;
1065 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1068 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1069 break;
1071 if (call_used_regs [REGNO (dst)]
1072 || find_reg_fusage (p, CLOBBER, dst))
1073 break;
1075 else if (reg_set_p (src, PATTERN (p)))
1076 break;
1079 return 0;
1082 /* Main entry for the register move optimization.
1083 F is the first instruction.
1084 NREGS is one plus the highest pseudo-reg number used in the instruction.
1085 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1086 (or 0 if none should be output). */
1088 static void
1089 regmove_optimize (rtx f, int nregs)
1091 rtx insn;
1092 struct match match;
1093 int pass;
1094 int i;
1095 rtx copy_src, copy_dst;
1097 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1098 confused by non-call exceptions ending blocks. */
1099 if (flag_non_call_exceptions)
1100 return;
1102 df_note_add_problem ();
1103 df_analyze ();
1105 regstat_init_n_sets_and_refs ();
1106 regstat_compute_ri ();
1108 /* Find out where a potential flags register is live, and so that we
1109 can suppress some optimizations in those zones. */
1110 mark_flags_life_zones (discover_flags_reg ());
1112 regno_src_regno = XNEWVEC (int, nregs);
1113 for (i = nregs; --i >= 0; )
1114 regno_src_regno[i] = -1;
1116 /* A forward/backward pass. Replace output operands with input operands. */
1118 for (pass = 0; pass <= 2; pass++)
1120 if (! flag_regmove && pass >= flag_expensive_optimizations)
1121 goto done;
1123 if (dump_file)
1124 fprintf (dump_file, "Starting %s pass...\n",
1125 pass ? "backward" : "forward");
1127 for (insn = pass ? get_last_insn () : f; insn;
1128 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1130 rtx set;
1131 int op_no, match_no;
1133 set = single_set (insn);
1134 if (! set)
1135 continue;
1137 if (flag_expensive_optimizations && ! pass
1138 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1139 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1140 && REG_P (XEXP (SET_SRC (set), 0))
1141 && REG_P (SET_DEST (set)))
1142 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1144 if (flag_expensive_optimizations && ! pass
1145 && REG_P (SET_SRC (set))
1146 && REG_P (SET_DEST (set)))
1148 /* If this is a register-register copy where SRC is not dead,
1149 see if we can optimize it. If this optimization succeeds,
1150 it will become a copy where SRC is dead. */
1151 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1152 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1153 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1155 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1156 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1157 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1158 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1159 && SET_SRC (set) != SET_DEST (set))
1161 int srcregno = REGNO (SET_SRC (set));
1162 if (regno_src_regno[srcregno] >= 0)
1163 srcregno = regno_src_regno[srcregno];
1164 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1168 if (! flag_regmove)
1169 continue;
1171 if (! find_matches (insn, &match))
1172 continue;
1174 /* Now scan through the operands looking for a source operand
1175 which is supposed to match the destination operand.
1176 Then scan forward for an instruction which uses the dest
1177 operand.
1178 If it dies there, then replace the dest in both operands with
1179 the source operand. */
1181 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1183 rtx src, dst, src_subreg;
1184 enum reg_class src_class, dst_class;
1186 match_no = match.with[op_no];
1188 /* Nothing to do if the two operands aren't supposed to match. */
1189 if (match_no < 0)
1190 continue;
1192 src = recog_data.operand[op_no];
1193 dst = recog_data.operand[match_no];
1195 if (!REG_P (src))
1196 continue;
1198 src_subreg = src;
1199 if (GET_CODE (dst) == SUBREG
1200 && GET_MODE_SIZE (GET_MODE (dst))
1201 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1203 dst = SUBREG_REG (dst);
1204 src_subreg = lowpart_subreg (GET_MODE (dst),
1205 src, GET_MODE (src));
1206 if (!src_subreg)
1207 continue;
1209 if (!REG_P (dst)
1210 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1211 continue;
1213 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1215 if (match.commutative[op_no] < op_no)
1216 regno_src_regno[REGNO (dst)] = REGNO (src);
1217 continue;
1220 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1221 continue;
1223 /* op_no/src must be a read-only operand, and
1224 match_operand/dst must be a write-only operand. */
1225 if (match.use[op_no] != READ
1226 || match.use[match_no] != WRITE)
1227 continue;
1229 if (match.early_clobber[match_no]
1230 && count_occurrences (PATTERN (insn), src, 0) > 1)
1231 continue;
1233 /* Make sure match_operand is the destination. */
1234 if (recog_data.operand[match_no] != SET_DEST (set))
1235 continue;
1237 /* If the operands already match, then there is nothing to do. */
1238 if (operands_match_p (src, dst))
1239 continue;
1241 /* But in the commutative case, we might find a better match. */
1242 if (match.commutative[op_no] >= 0)
1244 rtx comm = recog_data.operand[match.commutative[op_no]];
1245 if (operands_match_p (comm, dst)
1246 && (replacement_quality (comm)
1247 >= replacement_quality (src)))
1248 continue;
1251 src_class = reg_preferred_class (REGNO (src));
1252 dst_class = reg_preferred_class (REGNO (dst));
1253 if (! regclass_compatible_p (src_class, dst_class))
1254 continue;
1256 if (GET_MODE (src) != GET_MODE (dst))
1257 continue;
1259 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1260 op_no, match_no))
1261 break;
1266 /* A backward pass. Replace input operands with output operands. */
1268 if (dump_file)
1269 fprintf (dump_file, "Starting backward pass...\n");
1271 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1273 if (INSN_P (insn))
1275 int op_no, match_no;
1276 int success = 0;
1278 if (! find_matches (insn, &match))
1279 continue;
1281 /* Now scan through the operands looking for a destination operand
1282 which is supposed to match a source operand.
1283 Then scan backward for an instruction which sets the source
1284 operand. If safe, then replace the source operand with the
1285 dest operand in both instructions. */
1287 copy_src = NULL_RTX;
1288 copy_dst = NULL_RTX;
1289 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1291 rtx set, p, src, dst;
1292 rtx src_note, dst_note;
1293 int num_calls = 0, freq_calls = 0;
1294 enum reg_class src_class, dst_class;
1295 int length;
1297 match_no = match.with[op_no];
1299 /* Nothing to do if the two operands aren't supposed to match. */
1300 if (match_no < 0)
1301 continue;
1303 dst = recog_data.operand[match_no];
1304 src = recog_data.operand[op_no];
1306 if (!REG_P (src))
1307 continue;
1309 if (!REG_P (dst)
1310 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1311 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1312 || GET_MODE (src) != GET_MODE (dst))
1313 continue;
1315 /* If the operands already match, then there is nothing to do. */
1316 if (operands_match_p (src, dst))
1317 continue;
1319 if (match.commutative[op_no] >= 0)
1321 rtx comm = recog_data.operand[match.commutative[op_no]];
1322 if (operands_match_p (comm, dst))
1323 continue;
1326 set = single_set (insn);
1327 if (! set)
1328 continue;
1330 /* Note that single_set ignores parts of a parallel set for
1331 which one of the destinations is REG_UNUSED. We can't
1332 handle that here, since we can wind up rewriting things
1333 such that a single register is set twice within a single
1334 parallel. */
1335 if (reg_set_p (src, insn))
1336 continue;
1338 /* match_no/dst must be a write-only operand, and
1339 operand_operand/src must be a read-only operand. */
1340 if (match.use[op_no] != READ
1341 || match.use[match_no] != WRITE)
1342 continue;
1344 if (match.early_clobber[match_no]
1345 && count_occurrences (PATTERN (insn), src, 0) > 1)
1346 continue;
1348 /* Make sure match_no is the destination. */
1349 if (recog_data.operand[match_no] != SET_DEST (set))
1350 continue;
1352 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1354 if (GET_CODE (SET_SRC (set)) == PLUS
1355 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1356 && XEXP (SET_SRC (set), 0) == src
1357 && fixup_match_2 (insn, dst, src,
1358 XEXP (SET_SRC (set), 1)))
1359 break;
1360 continue;
1362 src_class = reg_preferred_class (REGNO (src));
1363 dst_class = reg_preferred_class (REGNO (dst));
1365 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1367 /* We used to force the copy here like in other cases, but
1368 it produces worse code, as it eliminates no copy
1369 instructions and the copy emitted will be produced by
1370 reload anyway. On patterns with multiple alternatives,
1371 there may be better solution available.
1373 In particular this change produced slower code for numeric
1374 i387 programs. */
1376 continue;
1379 if (! regclass_compatible_p (src_class, dst_class))
1381 if (!copy_src)
1383 copy_src = src;
1384 copy_dst = dst;
1386 continue;
1389 /* Can not modify an earlier insn to set dst if this insn
1390 uses an old value in the source. */
1391 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1393 if (!copy_src)
1395 copy_src = src;
1396 copy_dst = dst;
1398 continue;
1401 /* If src is set once in a different basic block,
1402 and is set equal to a constant, then do not use
1403 it for this optimization, as this would make it
1404 no longer equivalent to a constant. */
1406 if (reg_is_remote_constant_p (src, insn))
1408 if (!copy_src)
1410 copy_src = src;
1411 copy_dst = dst;
1413 continue;
1417 if (dump_file)
1418 fprintf (dump_file,
1419 "Could fix operand %d of insn %d matching operand %d.\n",
1420 op_no, INSN_UID (insn), match_no);
1422 /* Scan backward to find the first instruction that uses
1423 the input operand. If the operand is set here, then
1424 replace it in both instructions with match_no. */
1426 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1428 rtx pset;
1430 /* ??? We can't scan past the end of a basic block without
1431 updating the register lifetime info
1432 (REG_DEAD/basic_block_live_at_start). */
1433 if (perhaps_ends_bb_p (p))
1434 break;
1435 else if (! INSN_P (p))
1436 continue;
1438 length++;
1440 /* ??? See if all of SRC is set in P. This test is much
1441 more conservative than it needs to be. */
1442 pset = single_set (p);
1443 if (pset && SET_DEST (pset) == src)
1445 /* We use validate_replace_rtx, in case there
1446 are multiple identical source operands. All of
1447 them have to be changed at the same time. */
1448 if (validate_replace_rtx (src, dst, insn))
1450 if (validate_change (p, &SET_DEST (pset),
1451 dst, 0))
1452 success = 1;
1453 else
1455 /* Change all source operands back.
1456 This modifies the dst as a side-effect. */
1457 validate_replace_rtx (dst, src, insn);
1458 /* Now make sure the dst is right. */
1459 validate_change (insn,
1460 recog_data.operand_loc[match_no],
1461 dst, 0);
1464 break;
1467 /* We can't make this change if SRC is read or
1468 partially written in P, since we are going to
1469 eliminate SRC. We can't make this change
1470 if DST is mentioned at all in P,
1471 since we are going to change its value. */
1472 if (reg_overlap_mentioned_p (src, PATTERN (p))
1473 || reg_mentioned_p (dst, PATTERN (p)))
1474 break;
1476 /* If we have passed a call instruction, and the
1477 pseudo-reg DST is not already live across a call,
1478 then don't perform the optimization. */
1479 if (CALL_P (p))
1481 num_calls++;
1482 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1484 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1485 break;
1489 if (success)
1491 int dstno, srcno;
1493 /* Remove the death note for SRC from INSN. */
1494 remove_note (insn, src_note);
1495 /* Move the death note for SRC to P if it is used
1496 there. */
1497 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1499 XEXP (src_note, 1) = REG_NOTES (p);
1500 REG_NOTES (p) = src_note;
1502 /* If there is a REG_DEAD note for DST on P, then remove
1503 it, because DST is now set there. */
1504 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1505 remove_note (p, dst_note);
1507 dstno = REGNO (dst);
1508 srcno = REGNO (src);
1510 INC_REG_N_SETS (dstno, 1);
1511 INC_REG_N_SETS (srcno, -1);
1513 REG_N_CALLS_CROSSED (dstno) += num_calls;
1514 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1515 REG_FREQ_CALLS_CROSSED (dstno) += freq_calls;
1516 REG_FREQ_CALLS_CROSSED (srcno) -= freq_calls;
1518 REG_LIVE_LENGTH (dstno) += length;
1519 if (REG_LIVE_LENGTH (srcno) >= 0)
1521 REG_LIVE_LENGTH (srcno) -= length;
1522 /* REG_LIVE_LENGTH is only an approximation after
1523 combine if sched is not run, so make sure that we
1524 still have a reasonable value. */
1525 if (REG_LIVE_LENGTH (srcno) < 2)
1526 REG_LIVE_LENGTH (srcno) = 2;
1529 if (dump_file)
1530 fprintf (dump_file,
1531 "Fixed operand %d of insn %d matching operand %d.\n",
1532 op_no, INSN_UID (insn), match_no);
1534 break;
1538 /* If we weren't able to replace any of the alternatives, try an
1539 alternative approach of copying the source to the destination. */
1540 if (!success && copy_src != NULL_RTX)
1541 copy_src_to_dest (insn, copy_src, copy_dst);
1545 done:
1546 /* Clean up. */
1547 free (regno_src_regno);
1548 if (reg_set_in_bb)
1550 free (reg_set_in_bb);
1551 reg_set_in_bb = NULL;
1553 regstat_free_n_sets_and_refs ();
1554 regstat_free_ri ();
1557 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1558 Returns 0 if INSN can't be recognized, or if the alternative can't be
1559 determined.
1561 Initialize the info in MATCHP based on the constraints. */
1563 static int
1564 find_matches (rtx insn, struct match *matchp)
1566 int likely_spilled[MAX_RECOG_OPERANDS];
1567 int op_no;
1568 int any_matches = 0;
1570 extract_insn (insn);
1571 if (! constrain_operands (0))
1572 return 0;
1574 /* Must initialize this before main loop, because the code for
1575 the commutative case may set matches for operands other than
1576 the current one. */
1577 for (op_no = recog_data.n_operands; --op_no >= 0; )
1578 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1580 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1582 const char *p;
1583 char c;
1584 int i = 0;
1586 p = recog_data.constraints[op_no];
1588 likely_spilled[op_no] = 0;
1589 matchp->use[op_no] = READ;
1590 matchp->early_clobber[op_no] = 0;
1591 if (*p == '=')
1592 matchp->use[op_no] = WRITE;
1593 else if (*p == '+')
1594 matchp->use[op_no] = READWRITE;
1596 for (;*p && i < which_alternative; p++)
1597 if (*p == ',')
1598 i++;
1600 while ((c = *p) != '\0' && c != ',')
1602 switch (c)
1604 case '=':
1605 break;
1606 case '+':
1607 break;
1608 case '&':
1609 matchp->early_clobber[op_no] = 1;
1610 break;
1611 case '%':
1612 matchp->commutative[op_no] = op_no + 1;
1613 matchp->commutative[op_no + 1] = op_no;
1614 break;
1616 case '0': case '1': case '2': case '3': case '4':
1617 case '5': case '6': case '7': case '8': case '9':
1619 char *end;
1620 unsigned long match_ul = strtoul (p, &end, 10);
1621 int match = match_ul;
1623 p = end;
1625 if (match < op_no && likely_spilled[match])
1626 continue;
1627 matchp->with[op_no] = match;
1628 any_matches = 1;
1629 if (matchp->commutative[op_no] >= 0)
1630 matchp->with[matchp->commutative[op_no]] = match;
1632 continue;
1634 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1635 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1636 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1637 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1638 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1639 likely_spilled[op_no] = 1;
1640 break;
1642 p += CONSTRAINT_LEN (c, p);
1645 return any_matches;
1648 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1649 assumed to be in INSN. */
1651 static void
1652 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1654 rtx x = *loc;
1655 enum rtx_code code;
1656 const char *fmt;
1657 int i, j;
1659 if (! x)
1660 return;
1662 code = GET_CODE (x);
1663 if (code == REG)
1665 if (REGNO (x) != dst_reg)
1666 return;
1668 validate_change (insn, loc, src, 1);
1670 return;
1673 /* Process each of our operands recursively. */
1674 fmt = GET_RTX_FORMAT (code);
1675 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1676 if (*fmt == 'e')
1677 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1678 else if (*fmt == 'E')
1679 for (j = 0; j < XVECLEN (x, i); j++)
1680 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1683 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1684 the only set in INSN. INSN has just been recognized and constrained.
1685 SRC is operand number OPERAND_NUMBER in INSN.
1686 DST is operand number MATCH_NUMBER in INSN.
1687 If BACKWARD is nonzero, we have been called in a backward pass.
1688 Return nonzero for success. */
1690 static int
1691 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1692 int backward, int operand_number, int match_number)
1694 rtx p;
1695 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1696 int success = 0;
1697 int num_calls = 0, freq_calls = 0, s_num_calls = 0, s_freq_calls = 0;
1698 enum rtx_code code = NOTE;
1699 HOST_WIDE_INT insn_const = 0, newconst = 0;
1700 rtx overlap = 0; /* need to move insn ? */
1701 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1702 int length, s_length;
1704 if (! src_note)
1706 /* Look for (set (regX) (op regA constX))
1707 (set (regY) (op regA constY))
1708 and change that to
1709 (set (regA) (op regA constX)).
1710 (set (regY) (op regA constY-constX)).
1711 This works for add and shift operations, if
1712 regA is dead after or set by the second insn. */
1714 code = GET_CODE (SET_SRC (set));
1715 if ((code == PLUS || code == LSHIFTRT
1716 || code == ASHIFT || code == ASHIFTRT)
1717 && XEXP (SET_SRC (set), 0) == src
1718 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1719 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1720 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1721 return 0;
1722 else
1723 /* We might find a src_note while scanning. */
1724 code = NOTE;
1727 if (dump_file)
1728 fprintf (dump_file,
1729 "Could fix operand %d of insn %d matching operand %d.\n",
1730 operand_number, INSN_UID (insn), match_number);
1732 /* If SRC is equivalent to a constant set in a different basic block,
1733 then do not use it for this optimization. We want the equivalence
1734 so that if we have to reload this register, we can reload the
1735 constant, rather than extending the lifespan of the register. */
1736 if (reg_is_remote_constant_p (src, insn))
1737 return 0;
1739 /* Scan forward to find the next instruction that
1740 uses the output operand. If the operand dies here,
1741 then replace it in both instructions with
1742 operand_number. */
1744 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1746 if (CALL_P (p))
1747 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1748 REGNO (dst), src, p);
1750 /* ??? We can't scan past the end of a basic block without updating
1751 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1752 if (perhaps_ends_bb_p (p))
1753 break;
1754 else if (! INSN_P (p))
1755 continue;
1757 length++;
1758 if (src_note)
1759 s_length++;
1761 if (reg_set_p (src, p) || reg_set_p (dst, p)
1762 || (GET_CODE (PATTERN (p)) == USE
1763 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1764 break;
1766 /* See if all of DST dies in P. This test is
1767 slightly more conservative than it needs to be. */
1768 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1769 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1771 /* If we would be moving INSN, check that we won't move it
1772 into the shadow of a live a live flags register. */
1773 /* ??? We only try to move it in front of P, although
1774 we could move it anywhere between OVERLAP and P. */
1775 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1776 break;
1778 if (! src_note)
1780 rtx q;
1781 rtx set2 = NULL_RTX;
1783 /* If an optimization is done, the value of SRC while P
1784 is executed will be changed. Check that this is OK. */
1785 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1786 break;
1787 for (q = p; q; q = NEXT_INSN (q))
1789 /* ??? We can't scan past the end of a basic block without
1790 updating the register lifetime info
1791 (REG_DEAD/basic_block_live_at_start). */
1792 if (perhaps_ends_bb_p (q))
1794 q = 0;
1795 break;
1797 else if (! INSN_P (q))
1798 continue;
1799 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1800 || reg_set_p (src, q))
1801 break;
1803 if (q)
1804 set2 = single_set (q);
1805 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1806 || XEXP (SET_SRC (set2), 0) != src
1807 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1808 || (SET_DEST (set2) != src
1809 && ! find_reg_note (q, REG_DEAD, src)))
1811 /* If this is a PLUS, we can still save a register by doing
1812 src += insn_const;
1814 src -= insn_const; .
1815 This also gives opportunities for subsequent
1816 optimizations in the backward pass, so do it there. */
1817 if (code == PLUS && backward
1818 /* Don't do this if we can likely tie DST to SET_DEST
1819 of P later; we can't do this tying here if we got a
1820 hard register. */
1821 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1822 && single_set (p)
1823 && REG_P (SET_DEST (single_set (p)))
1824 && (REGNO (SET_DEST (single_set (p)))
1825 < FIRST_PSEUDO_REGISTER))
1826 /* We may only emit an insn directly after P if we
1827 are not in the shadow of a live flags register. */
1828 && GET_MODE (p) == VOIDmode)
1830 search_end = q;
1831 q = insn;
1832 set2 = set;
1833 newconst = -insn_const;
1834 code = MINUS;
1836 else
1837 break;
1839 else
1841 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1842 /* Reject out of range shifts. */
1843 if (code != PLUS
1844 && (newconst < 0
1845 || ((unsigned HOST_WIDE_INT) newconst
1846 >= (GET_MODE_BITSIZE (GET_MODE
1847 (SET_SRC (set2)))))))
1848 break;
1849 if (code == PLUS)
1851 post_inc = q;
1852 if (SET_DEST (set2) != src)
1853 post_inc_set = set2;
1856 /* We use 1 as last argument to validate_change so that all
1857 changes are accepted or rejected together by apply_change_group
1858 when it is called by validate_replace_rtx . */
1859 validate_change (q, &XEXP (SET_SRC (set2), 1),
1860 GEN_INT (newconst), 1);
1862 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1863 if (validate_replace_rtx (dst, src_subreg, p))
1864 success = 1;
1865 break;
1868 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1869 break;
1870 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1872 /* INSN was already checked to be movable wrt. the registers that it
1873 sets / uses when we found no REG_DEAD note for src on it, but it
1874 still might clobber the flags register. We'll have to check that
1875 we won't insert it into the shadow of a live flags register when
1876 we finally know where we are to move it. */
1877 overlap = p;
1878 src_note = find_reg_note (p, REG_DEAD, src);
1881 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1882 already live across a call, then don't perform the optimization. */
1883 if (CALL_P (p))
1885 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1886 break;
1888 num_calls++;
1889 freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1891 if (src_note)
1893 s_num_calls++;
1894 s_freq_calls += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1899 if (! success)
1900 return 0;
1902 /* Remove the death note for DST from P. */
1903 remove_note (p, dst_note);
1904 if (code == MINUS)
1906 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1907 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1908 && search_end
1909 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1910 post_inc = 0;
1911 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1912 INC_REG_N_SETS (REGNO (src), 1);
1913 REG_LIVE_LENGTH (REGNO (src))++;
1915 if (overlap)
1917 /* The lifetime of src and dest overlap,
1918 but we can change this by moving insn. */
1919 rtx pat = PATTERN (insn);
1920 if (src_note)
1921 remove_note (overlap, src_note);
1922 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1923 && code == PLUS
1924 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1925 insn = overlap;
1926 else
1928 rtx notes = REG_NOTES (insn);
1930 p = emit_insn_after_setloc (pat, PREV_INSN (p), INSN_LOCATOR (insn));
1931 delete_insn (insn);
1932 REG_NOTES (p) = notes;
1933 df_notes_rescan (p);
1936 /* Sometimes we'd generate src = const; src += n;
1937 if so, replace the instruction that set src
1938 in the first place. */
1940 if (! overlap && (code == PLUS || code == MINUS))
1942 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1943 rtx q, set2 = NULL_RTX;
1944 int num_calls2 = 0, s_length2 = 0, freq_calls2 = 0;
1946 if (note && CONSTANT_P (XEXP (note, 0)))
1948 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1950 /* ??? We can't scan past the end of a basic block without
1951 updating the register lifetime info
1952 (REG_DEAD/basic_block_live_at_start). */
1953 if (perhaps_ends_bb_p (q))
1955 q = 0;
1956 break;
1958 else if (! INSN_P (q))
1959 continue;
1961 s_length2++;
1962 if (reg_set_p (src, q))
1964 set2 = single_set (q);
1965 break;
1967 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1969 q = 0;
1970 break;
1972 if (CALL_P (p))
1974 num_calls2++;
1975 freq_calls2 += REG_FREQ_FROM_BB (BLOCK_FOR_INSN (p));
1978 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1979 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1981 delete_insn (q);
1982 INC_REG_N_SETS (REGNO (src), -1);
1983 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1984 REG_FREQ_CALLS_CROSSED (REGNO (src)) -= freq_calls2;
1985 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1986 insn_const = 0;
1991 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1992 && (code == PLUS || code == MINUS) && insn_const
1993 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1994 insn = p;
1995 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1996 && post_inc
1997 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1998 post_inc = 0;
1999 /* If post_inc still prevails, try to find an
2000 insn where it can be used as a pre-in/decrement.
2001 If code is MINUS, this was already tried. */
2002 if (post_inc && code == PLUS
2003 /* Check that newconst is likely to be usable
2004 in a pre-in/decrement before starting the search. */
2005 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
2006 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
2007 && exact_log2 (newconst))
2009 rtx q, inc_dest;
2011 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
2012 for (q = post_inc; (q = NEXT_INSN (q)); )
2014 /* ??? We can't scan past the end of a basic block without updating
2015 the register lifetime info
2016 (REG_DEAD/basic_block_live_at_start). */
2017 if (perhaps_ends_bb_p (q))
2018 break;
2019 else if (! INSN_P (q))
2020 continue;
2021 else if (src != inc_dest
2022 && (reg_overlap_mentioned_p (src, PATTERN (q))
2023 || reg_set_p (src, q)))
2024 break;
2025 else if (reg_set_p (inc_dest, q))
2026 break;
2027 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
2029 try_auto_increment (q, post_inc,
2030 post_inc_set, inc_dest, newconst, 1);
2031 break;
2036 /* Move the death note for DST to INSN if it is used
2037 there. */
2038 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
2040 XEXP (dst_note, 1) = REG_NOTES (insn);
2041 REG_NOTES (insn) = dst_note;
2044 if (src_note)
2046 /* Move the death note for SRC from INSN to P. */
2047 if (! overlap)
2048 remove_note (insn, src_note);
2049 XEXP (src_note, 1) = REG_NOTES (p);
2050 REG_NOTES (p) = src_note;
2052 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2053 REG_FREQ_CALLS_CROSSED (REGNO (src)) += s_freq_calls;
2056 INC_REG_N_SETS (REGNO (src), 1);
2057 INC_REG_N_SETS (REGNO (dst), -1);
2059 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2060 REG_FREQ_CALLS_CROSSED (REGNO (dst)) -= freq_calls;
2062 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2063 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2065 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2066 /* REG_LIVE_LENGTH is only an approximation after
2067 combine if sched is not run, so make sure that we
2068 still have a reasonable value. */
2069 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2070 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2072 if (dump_file)
2073 fprintf (dump_file,
2074 "Fixed operand %d of insn %d matching operand %d.\n",
2075 operand_number, INSN_UID (insn), match_number);
2076 return 1;
2080 /* Return nonzero if X is stable and mentions no registers but for
2081 mentioning SRC or mentioning / changing DST . If in doubt, presume
2082 it is unstable.
2083 The rationale is that we want to check if we can move an insn easily
2084 while just paying attention to SRC and DST. */
2085 static int
2086 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2088 RTX_CODE code = GET_CODE (x);
2089 switch (GET_RTX_CLASS (code))
2091 case RTX_UNARY:
2092 case RTX_BIN_ARITH:
2093 case RTX_COMM_ARITH:
2094 case RTX_COMPARE:
2095 case RTX_COMM_COMPARE:
2096 case RTX_TERNARY:
2097 case RTX_BITFIELD_OPS:
2099 int i;
2100 const char *fmt = GET_RTX_FORMAT (code);
2101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2102 if (fmt[i] == 'e'
2103 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2104 return 0;
2105 return 1;
2107 case RTX_OBJ:
2108 if (code == REG)
2109 return x == src || x == dst;
2110 /* If this is a MEM, look inside - there might be a register hidden in
2111 the address of an unchanging MEM. */
2112 if (code == MEM
2113 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2114 return 0;
2115 /* Fall through. */
2116 default:
2117 return ! rtx_unstable_p (x);
2122 static bool
2123 gate_handle_regmove (void)
2125 return (optimize > 0 && flag_regmove);
2128 /* Register allocation pre-pass, to reduce number of moves necessary
2129 for two-address machines. */
2130 static unsigned int
2131 rest_of_handle_regmove (void)
2133 regmove_optimize (get_insns (), max_reg_num ());
2134 return 0;
2137 struct rtl_opt_pass pass_regmove =
2140 RTL_PASS,
2141 "regmove", /* name */
2142 gate_handle_regmove, /* gate */
2143 rest_of_handle_regmove, /* execute */
2144 NULL, /* sub */
2145 NULL, /* next */
2146 0, /* static_pass_number */
2147 TV_REGMOVE, /* tv_id */
2148 0, /* properties_required */
2149 0, /* properties_provided */
2150 0, /* properties_destroyed */
2151 0, /* todo_flags_start */
2152 TODO_df_finish | TODO_verify_rtl_sharing |
2153 TODO_dump_func |
2154 TODO_ggc_collect /* todo_flags_finish */