* configure.in (c-mbchar): Append, don't overwrite, `extra_c_flags'.
[official-gcc.git] / gcc / regclass.c
blob1b9608586947a8e0af188352a0a97fb03e49566d
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
26 #include "config.h"
27 #include "system.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "basic-block.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "reload.h"
38 #include "real.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "ggc.h"
43 #ifndef REGISTER_MOVE_COST
44 #define REGISTER_MOVE_COST(x, y) 2
45 #endif
47 static void init_reg_sets_1 PROTO((void));
48 static void init_reg_modes PROTO((void));
50 /* If we have auto-increment or auto-decrement and we can have secondary
51 reloads, we are not allowed to use classes requiring secondary
52 reloads for pseudos auto-incremented since reload can't handle it. */
54 #ifdef AUTO_INC_DEC
55 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
56 #define FORBIDDEN_INC_DEC_CLASSES
57 #endif
58 #endif
60 /* Register tables used by many passes. */
62 /* Indexed by hard register number, contains 1 for registers
63 that are fixed use (stack pointer, pc, frame pointer, etc.).
64 These are the registers that cannot be used to allocate
65 a pseudo reg for general use. */
67 char fixed_regs[FIRST_PSEUDO_REGISTER];
69 /* Same info as a HARD_REG_SET. */
71 HARD_REG_SET fixed_reg_set;
73 /* Data for initializing the above. */
75 static char initial_fixed_regs[] = FIXED_REGISTERS;
77 /* Indexed by hard register number, contains 1 for registers
78 that are fixed use or are clobbered by function calls.
79 These are the registers that cannot be used to allocate
80 a pseudo reg whose life crosses calls unless we are able
81 to save/restore them across the calls. */
83 char call_used_regs[FIRST_PSEUDO_REGISTER];
85 /* Same info as a HARD_REG_SET. */
87 HARD_REG_SET call_used_reg_set;
89 /* HARD_REG_SET of registers we want to avoid caller saving. */
90 HARD_REG_SET losing_caller_save_reg_set;
92 /* Data for initializing the above. */
94 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96 /* Indexed by hard register number, contains 1 for registers that are
97 fixed use or call used registers that cannot hold quantities across
98 calls even if we are willing to save and restore them. call fixed
99 registers are a subset of call used registers. */
101 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103 /* The same info as a HARD_REG_SET. */
105 HARD_REG_SET call_fixed_reg_set;
107 /* Number of non-fixed registers. */
109 int n_non_fixed_regs;
111 /* Indexed by hard register number, contains 1 for registers
112 that are being used for global register decls.
113 These must be exempt from ordinary flow analysis
114 and are also considered fixed. */
116 char global_regs[FIRST_PSEUDO_REGISTER];
118 /* Table of register numbers in the order in which to try to use them. */
119 #ifdef REG_ALLOC_ORDER
120 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
121 #endif
123 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
125 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
127 /* The same information, but as an array of unsigned ints. We copy from
128 these unsigned ints to the table above. We do this so the tm.h files
129 do not have to be aware of the wordsize for machines with <= 64 regs. */
131 #define N_REG_INTS \
132 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
134 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
135 = REG_CLASS_CONTENTS;
137 /* For each reg class, number of regs it contains. */
139 int reg_class_size[N_REG_CLASSES];
141 /* For each reg class, table listing all the containing classes. */
143 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
145 /* For each reg class, table listing all the classes contained in it. */
147 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
149 /* For each pair of reg classes,
150 a largest reg class contained in their union. */
152 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
154 /* For each pair of reg classes,
155 the smallest reg class containing their union. */
157 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
159 /* Array containing all of the register names */
161 char *reg_names[] = REGISTER_NAMES;
163 /* For each hard register, the widest mode object that it can contain.
164 This will be a MODE_INT mode if the register can hold integers. Otherwise
165 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
166 register. */
168 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
170 /* Maximum cost of moving from a register in one class to a register in
171 another class. Based on REGISTER_MOVE_COST. */
173 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
175 /* Similar, but here we don't have to move if the first index is a subset
176 of the second so in that case the cost is zero. */
178 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
180 #ifdef FORBIDDEN_INC_DEC_CLASSES
182 /* These are the classes that regs which are auto-incremented or decremented
183 cannot be put in. */
185 static int forbidden_inc_dec_class[N_REG_CLASSES];
187 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
188 context. */
190 static char *in_inc_dec;
192 #endif /* FORBIDDEN_INC_DEC_CLASSES */
194 #ifdef HAVE_SECONDARY_RELOADS
196 /* Sample MEM values for use by memory_move_secondary_cost. */
198 static rtx top_of_stack[MAX_MACHINE_MODE];
200 #endif /* HAVE_SECONDARY_RELOADS */
202 /* Linked list of reg_info structures allocated for reg_n_info array.
203 Grouping all of the allocated structures together in one lump
204 means only one call to bzero to clear them, rather than n smaller
205 calls. */
206 struct reg_info_data {
207 struct reg_info_data *next; /* next set of reg_info structures */
208 size_t min_index; /* minimum index # */
209 size_t max_index; /* maximum index # */
210 char used_p; /* non-zero if this has been used previously */
211 reg_info data[1]; /* beginning of the reg_info data */
214 static struct reg_info_data *reg_info_head;
217 /* Function called only once to initialize the above data on reg usage.
218 Once this is done, various switches may override. */
220 void
221 init_reg_sets ()
223 register int i, j;
225 /* First copy the register information from the initial int form into
226 the regsets. */
228 for (i = 0; i < N_REG_CLASSES; i++)
230 CLEAR_HARD_REG_SET (reg_class_contents[i]);
232 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
233 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
234 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
235 SET_HARD_REG_BIT (reg_class_contents[i], j);
238 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
239 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
240 bzero (global_regs, sizeof global_regs);
242 /* Do any additional initialization regsets may need */
243 INIT_ONCE_REG_SET ();
246 /* After switches have been processed, which perhaps alter
247 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
249 static void
250 init_reg_sets_1 ()
252 register unsigned int i, j;
254 /* This macro allows the fixed or call-used registers
255 and the register classes to depend on target flags. */
257 #ifdef CONDITIONAL_REGISTER_USAGE
258 CONDITIONAL_REGISTER_USAGE;
259 #endif
261 /* Compute number of hard regs in each class. */
263 bzero ((char *) reg_class_size, sizeof reg_class_size);
264 for (i = 0; i < N_REG_CLASSES; i++)
265 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
266 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
267 reg_class_size[i]++;
269 /* Initialize the table of subunions.
270 reg_class_subunion[I][J] gets the largest-numbered reg-class
271 that is contained in the union of classes I and J. */
273 for (i = 0; i < N_REG_CLASSES; i++)
275 for (j = 0; j < N_REG_CLASSES; j++)
277 #ifdef HARD_REG_SET
278 register /* Declare it register if it's a scalar. */
279 #endif
280 HARD_REG_SET c;
281 register int k;
283 COPY_HARD_REG_SET (c, reg_class_contents[i]);
284 IOR_HARD_REG_SET (c, reg_class_contents[j]);
285 for (k = 0; k < N_REG_CLASSES; k++)
287 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
288 subclass1);
289 continue;
291 subclass1:
292 /* keep the largest subclass */ /* SPEE 900308 */
293 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
294 reg_class_contents[(int) reg_class_subunion[i][j]],
295 subclass2);
296 reg_class_subunion[i][j] = (enum reg_class) k;
297 subclass2:
303 /* Initialize the table of superunions.
304 reg_class_superunion[I][J] gets the smallest-numbered reg-class
305 containing the union of classes I and J. */
307 for (i = 0; i < N_REG_CLASSES; i++)
309 for (j = 0; j < N_REG_CLASSES; j++)
311 #ifdef HARD_REG_SET
312 register /* Declare it register if it's a scalar. */
313 #endif
314 HARD_REG_SET c;
315 register int k;
317 COPY_HARD_REG_SET (c, reg_class_contents[i]);
318 IOR_HARD_REG_SET (c, reg_class_contents[j]);
319 for (k = 0; k < N_REG_CLASSES; k++)
320 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
322 superclass:
323 reg_class_superunion[i][j] = (enum reg_class) k;
327 /* Initialize the tables of subclasses and superclasses of each reg class.
328 First clear the whole table, then add the elements as they are found. */
330 for (i = 0; i < N_REG_CLASSES; i++)
332 for (j = 0; j < N_REG_CLASSES; j++)
334 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
335 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
339 for (i = 0; i < N_REG_CLASSES; i++)
341 if (i == (int) NO_REGS)
342 continue;
344 for (j = i + 1; j < N_REG_CLASSES; j++)
346 enum reg_class *p;
348 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
349 subclass);
350 continue;
351 subclass:
352 /* Reg class I is a subclass of J.
353 Add J to the table of superclasses of I. */
354 p = &reg_class_superclasses[i][0];
355 while (*p != LIM_REG_CLASSES) p++;
356 *p = (enum reg_class) j;
357 /* Add I to the table of superclasses of J. */
358 p = &reg_class_subclasses[j][0];
359 while (*p != LIM_REG_CLASSES) p++;
360 *p = (enum reg_class) i;
364 /* Initialize "constant" tables. */
366 CLEAR_HARD_REG_SET (fixed_reg_set);
367 CLEAR_HARD_REG_SET (call_used_reg_set);
368 CLEAR_HARD_REG_SET (call_fixed_reg_set);
370 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
372 n_non_fixed_regs = 0;
374 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
376 if (fixed_regs[i])
377 SET_HARD_REG_BIT (fixed_reg_set, i);
378 else
379 n_non_fixed_regs++;
381 if (call_used_regs[i])
382 SET_HARD_REG_BIT (call_used_reg_set, i);
383 if (call_fixed_regs[i])
384 SET_HARD_REG_BIT (call_fixed_reg_set, i);
385 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
386 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
389 /* Initialize the move cost table. Find every subset of each class
390 and take the maximum cost of moving any subset to any other. */
392 for (i = 0; i < N_REG_CLASSES; i++)
393 for (j = 0; j < N_REG_CLASSES; j++)
395 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
396 enum reg_class *p1, *p2;
398 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
399 if (*p2 != i)
400 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
402 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
404 if (*p1 != j)
405 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
407 for (p2 = &reg_class_subclasses[j][0];
408 *p2 != LIM_REG_CLASSES; p2++)
409 if (*p1 != *p2)
410 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
413 move_cost[i][j] = cost;
415 if (reg_class_subset_p (i, j))
416 cost = 0;
418 may_move_cost[i][j] = cost;
422 /* Compute the table of register modes.
423 These values are used to record death information for individual registers
424 (as opposed to a multi-register mode). */
426 static void
427 init_reg_modes ()
429 register int i;
431 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
433 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
435 /* If we couldn't find a valid mode, just use the previous mode.
436 ??? One situation in which we need to do this is on the mips where
437 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
438 to use DF mode for the even registers and VOIDmode for the odd
439 (for the cpu models where the odd ones are inaccessible). */
440 if (reg_raw_mode[i] == VOIDmode)
441 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
445 /* Finish initializing the register sets and
446 initialize the register modes. */
448 void
449 init_regs ()
451 /* This finishes what was started by init_reg_sets, but couldn't be done
452 until after register usage was specified. */
453 init_reg_sets_1 ();
455 init_reg_modes ();
457 #ifdef HAVE_SECONDARY_RELOADS
459 /* Make some fake stack-frame MEM references for use in
460 memory_move_secondary_cost. */
461 int i;
462 for (i = 0; i < MAX_MACHINE_MODE; i++)
463 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
464 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
466 #endif
469 #ifdef HAVE_SECONDARY_RELOADS
471 /* Compute extra cost of moving registers to/from memory due to reloads.
472 Only needed if secondary reloads are required for memory moves. */
475 memory_move_secondary_cost (mode, class, in)
476 enum machine_mode mode;
477 enum reg_class class;
478 int in;
480 enum reg_class altclass;
481 int partial_cost = 0;
482 /* We need a memory reference to feed to SECONDARY... macros. */
483 rtx mem = top_of_stack[(int) mode];
485 if (in)
487 #ifdef SECONDARY_INPUT_RELOAD_CLASS
488 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
489 #else
490 altclass = NO_REGS;
491 #endif
493 else
495 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
496 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
497 #else
498 altclass = NO_REGS;
499 #endif
502 if (altclass == NO_REGS)
503 return 0;
505 if (in)
506 partial_cost = REGISTER_MOVE_COST (altclass, class);
507 else
508 partial_cost = REGISTER_MOVE_COST (class, altclass);
510 if (class == altclass)
511 /* This isn't simply a copy-to-temporary situation. Can't guess
512 what it is, so MEMORY_MOVE_COST really ought not to be calling
513 here in that case.
515 I'm tempted to put in an abort here, but returning this will
516 probably only give poor estimates, which is what we would've
517 had before this code anyways. */
518 return partial_cost;
520 /* Check if the secondary reload register will also need a
521 secondary reload. */
522 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
524 #endif
526 /* Return a machine mode that is legitimate for hard reg REGNO and large
527 enough to save nregs. If we can't find one, return VOIDmode. */
529 enum machine_mode
530 choose_hard_reg_mode (regno, nregs)
531 int regno;
532 int nregs;
534 enum machine_mode found_mode = VOIDmode, mode;
536 /* We first look for the largest integer mode that can be validly
537 held in REGNO. If none, we look for the largest floating-point mode.
538 If we still didn't find a valid mode, try CCmode. */
540 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
541 mode != VOIDmode;
542 mode = GET_MODE_WIDER_MODE (mode))
543 if (HARD_REGNO_NREGS (regno, mode) == nregs
544 && HARD_REGNO_MODE_OK (regno, mode))
545 found_mode = mode;
547 if (found_mode != VOIDmode)
548 return found_mode;
550 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
551 mode != VOIDmode;
552 mode = GET_MODE_WIDER_MODE (mode))
553 if (HARD_REGNO_NREGS (regno, mode) == nregs
554 && HARD_REGNO_MODE_OK (regno, mode))
555 found_mode = mode;
557 if (found_mode != VOIDmode)
558 return found_mode;
560 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
561 && HARD_REGNO_MODE_OK (regno, CCmode))
562 return CCmode;
564 /* We can't find a mode valid for this register. */
565 return VOIDmode;
568 /* Specify the usage characteristics of the register named NAME.
569 It should be a fixed register if FIXED and a
570 call-used register if CALL_USED. */
572 void
573 fix_register (name, fixed, call_used)
574 char *name;
575 int fixed, call_used;
577 int i;
579 /* Decode the name and update the primary form of
580 the register info. */
582 if ((i = decode_reg_name (name)) >= 0)
584 if ((i == STACK_POINTER_REGNUM
585 #ifdef HARD_FRAME_POINTER_REGNUM
586 || i == HARD_FRAME_POINTER_REGNUM
587 #else
588 || i == FRAME_POINTER_REGNUM
589 #endif
591 && (fixed == 0 || call_used == 0))
593 static const char * const what_option[2][2] = {
594 { "call-saved", "call-used" },
595 { "no-such-option", "fixed" }};
597 error ("can't use '%s' as a %s register", name,
598 what_option[fixed][call_used]);
600 else
602 fixed_regs[i] = fixed;
603 call_used_regs[i] = call_used;
606 else
608 warning ("unknown register name: %s", name);
612 /* Mark register number I as global. */
614 void
615 globalize_reg (i)
616 int i;
618 if (global_regs[i])
620 warning ("register used for two global register variables");
621 return;
624 if (call_used_regs[i] && ! fixed_regs[i])
625 warning ("call-clobbered register used for global register variable");
627 global_regs[i] = 1;
629 /* If already fixed, nothing else to do. */
630 if (fixed_regs[i])
631 return;
633 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
634 n_non_fixed_regs--;
636 SET_HARD_REG_BIT (fixed_reg_set, i);
637 SET_HARD_REG_BIT (call_used_reg_set, i);
638 SET_HARD_REG_BIT (call_fixed_reg_set, i);
641 /* Now the data and code for the `regclass' pass, which happens
642 just before local-alloc. */
644 /* The `costs' struct records the cost of using a hard register of each class
645 and of using memory for each pseudo. We use this data to set up
646 register class preferences. */
648 struct costs
650 int cost[N_REG_CLASSES];
651 int mem_cost;
654 /* Record the cost of each class for each pseudo. */
656 static struct costs *costs;
658 /* Initialized once, and used to initialize cost values for each insn. */
660 static struct costs init_cost;
662 /* Record the same data by operand number, accumulated for each alternative
663 in an insn. The contribution to a pseudo is that of the minimum-cost
664 alternative. */
666 static struct costs op_costs[MAX_RECOG_OPERANDS];
668 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
669 This is available after `regclass' is run. */
671 static char *prefclass;
673 /* altclass[R] is a register class that we should use for allocating
674 pseudo number R if no register in the preferred class is available.
675 If no register in this class is available, memory is preferred.
677 It might appear to be more general to have a bitmask of classes here,
678 but since it is recommended that there be a class corresponding to the
679 union of most major pair of classes, that generality is not required.
681 This is available after `regclass' is run. */
683 static char *altclass;
685 /* Allocated buffers for prefclass and altclass. */
686 static char *prefclass_buffer;
687 static char *altclass_buffer;
689 /* Record the depth of loops that we are in. */
691 static int loop_depth;
693 /* Account for the fact that insns within a loop are executed very commonly,
694 but don't keep doing this as loops go too deep. */
696 static int loop_cost;
698 static rtx scan_one_insn PROTO((rtx, int));
699 static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
700 char *, const char **, rtx));
701 static int copy_cost PROTO((rtx, enum machine_mode,
702 enum reg_class, int));
703 static void record_address_regs PROTO((rtx, enum reg_class, int));
704 #ifdef FORBIDDEN_INC_DEC_CLASSES
705 static int auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
706 #endif
707 static void reg_scan_mark_refs PROTO((rtx, rtx, int, int));
709 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
710 This function is sometimes called before the info has been computed.
711 When that happens, just return GENERAL_REGS, which is innocuous. */
713 enum reg_class
714 reg_preferred_class (regno)
715 int regno;
717 if (prefclass == 0)
718 return GENERAL_REGS;
719 return (enum reg_class) prefclass[regno];
722 enum reg_class
723 reg_alternate_class (regno)
724 int regno;
726 if (prefclass == 0)
727 return ALL_REGS;
729 return (enum reg_class) altclass[regno];
732 /* Initialize some global data for this pass. */
734 void
735 regclass_init ()
737 int i;
739 init_cost.mem_cost = 10000;
740 for (i = 0; i < N_REG_CLASSES; i++)
741 init_cost.cost[i] = 10000;
743 /* This prevents dump_flow_info from losing if called
744 before regclass is run. */
745 prefclass = 0;
748 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
749 time it would save code to put a certain register in a certain class.
750 PASS, when nonzero, inhibits some optimizations which need only be done
751 once.
752 Return the last insn processed, so that the scan can be continued from
753 there. */
755 static rtx
756 scan_one_insn (insn, pass)
757 rtx insn;
758 int pass;
760 enum rtx_code code = GET_CODE (insn);
761 enum rtx_code pat_code;
762 const char *constraints[MAX_RECOG_OPERANDS];
763 enum machine_mode modes[MAX_RECOG_OPERANDS];
764 char subreg_changes_size[MAX_RECOG_OPERANDS];
765 rtx set, note;
766 int i, j;
768 /* Show that an insn inside a loop is likely to be executed three
769 times more than insns outside a loop. This is much more aggressive
770 than the assumptions made elsewhere and is being tried as an
771 experiment. */
773 if (code == NOTE)
775 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
776 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
777 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
778 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
780 return insn;
783 if (GET_RTX_CLASS (code) != 'i')
784 return insn;
786 pat_code = GET_CODE (PATTERN (insn));
787 if (pat_code == USE
788 || pat_code == CLOBBER
789 || pat_code == ASM_INPUT
790 || pat_code == ADDR_VEC
791 || pat_code == ADDR_DIFF_VEC)
792 return insn;
794 set = single_set (insn);
795 extract_insn (insn);
797 for (i = 0; i < recog_data.n_operands; i++)
799 constraints[i] = recog_data.constraints[i];
800 modes[i] = recog_data.operand_mode[i];
802 memset (subreg_changes_size, 0, sizeof (subreg_changes_size));
804 /* If this insn loads a parameter from its stack slot, then
805 it represents a savings, rather than a cost, if the
806 parameter is stored in memory. Record this fact. */
808 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
809 && GET_CODE (SET_SRC (set)) == MEM
810 && (note = find_reg_note (insn, REG_EQUIV,
811 NULL_RTX)) != 0
812 && GET_CODE (XEXP (note, 0)) == MEM)
814 costs[REGNO (SET_DEST (set))].mem_cost
815 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
816 GENERAL_REGS, 1)
817 * loop_cost);
818 record_address_regs (XEXP (SET_SRC (set), 0),
819 BASE_REG_CLASS, loop_cost * 2);
820 return insn;
823 /* Improve handling of two-address insns such as
824 (set X (ashift CONST Y)) where CONST must be made to
825 match X. Change it into two insns: (set X CONST)
826 (set X (ashift X Y)). If we left this for reloading, it
827 would probably get three insns because X and Y might go
828 in the same place. This prevents X and Y from receiving
829 the same hard reg.
831 We can only do this if the modes of operands 0 and 1
832 (which might not be the same) are tieable and we only need
833 do this during our first pass. */
835 if (pass == 0 && optimize
836 && recog_data.n_operands >= 3
837 && recog_data.constraints[1][0] == '0'
838 && recog_data.constraints[1][1] == 0
839 && CONSTANT_P (recog_data.operand[1])
840 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
841 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
842 && GET_CODE (recog_data.operand[0]) == REG
843 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
844 recog_data.operand_mode[1]))
846 rtx previnsn = prev_real_insn (insn);
847 rtx dest
848 = gen_lowpart (recog_data.operand_mode[1],
849 recog_data.operand[0]);
850 rtx newinsn
851 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
853 /* If this insn was the start of a basic block,
854 include the new insn in that block.
855 We need not check for code_label here;
856 while a basic block can start with a code_label,
857 INSN could not be at the beginning of that block. */
858 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
860 int b;
861 for (b = 0; b < n_basic_blocks; b++)
862 if (insn == BLOCK_HEAD (b))
863 BLOCK_HEAD (b) = newinsn;
866 /* This makes one more setting of new insns's dest. */
867 REG_N_SETS (REGNO (recog_data.operand[0]))++;
869 *recog_data.operand_loc[1] = recog_data.operand[0];
870 for (i = recog_data.n_dups - 1; i >= 0; i--)
871 if (recog_data.dup_num[i] == 1)
872 *recog_data.dup_loc[i] = recog_data.operand[0];
874 return PREV_INSN (newinsn);
877 /* If we get here, we are set up to record the costs of all the
878 operands for this insn. Start by initializing the costs.
879 Then handle any address registers. Finally record the desired
880 classes for any pseudos, doing it twice if some pair of
881 operands are commutative. */
883 for (i = 0; i < recog_data.n_operands; i++)
885 op_costs[i] = init_cost;
887 if (GET_CODE (recog_data.operand[i]) == SUBREG)
889 rtx inner = SUBREG_REG (recog_data.operand[i]);
890 if (GET_MODE_SIZE (modes[i]) != GET_MODE_SIZE (GET_MODE (inner)))
891 subreg_changes_size[i] = 1;
892 recog_data.operand[i] = inner;
895 if (GET_CODE (recog_data.operand[i]) == MEM)
896 record_address_regs (XEXP (recog_data.operand[i], 0),
897 BASE_REG_CLASS, loop_cost * 2);
898 else if (constraints[i][0] == 'p')
899 record_address_regs (recog_data.operand[i],
900 BASE_REG_CLASS, loop_cost * 2);
903 /* Check for commutative in a separate loop so everything will
904 have been initialized. We must do this even if one operand
905 is a constant--see addsi3 in m68k.md. */
907 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
908 if (constraints[i][0] == '%')
910 const char *xconstraints[MAX_RECOG_OPERANDS];
911 int j;
913 /* Handle commutative operands by swapping the constraints.
914 We assume the modes are the same. */
916 for (j = 0; j < recog_data.n_operands; j++)
917 xconstraints[j] = constraints[j];
919 xconstraints[i] = constraints[i+1];
920 xconstraints[i+1] = constraints[i];
921 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
922 recog_data.operand, modes, subreg_changes_size,
923 xconstraints, insn);
926 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
927 recog_data.operand, modes, subreg_changes_size,
928 constraints, insn);
930 /* Now add the cost for each operand to the total costs for
931 its register. */
933 for (i = 0; i < recog_data.n_operands; i++)
934 if (GET_CODE (recog_data.operand[i]) == REG
935 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
937 int regno = REGNO (recog_data.operand[i]);
938 struct costs *p = &costs[regno], *q = &op_costs[i];
940 p->mem_cost += q->mem_cost * loop_cost;
941 for (j = 0; j < N_REG_CLASSES; j++)
942 p->cost[j] += q->cost[j] * loop_cost;
945 return insn;
948 /* This is a pass of the compiler that scans all instructions
949 and calculates the preferred class for each pseudo-register.
950 This information can be accessed later by calling `reg_preferred_class'.
951 This pass comes just before local register allocation. */
953 void
954 regclass (f, nregs)
955 rtx f;
956 int nregs;
958 register rtx insn;
959 register int i;
960 int pass;
962 init_recog ();
964 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
966 #ifdef FORBIDDEN_INC_DEC_CLASSES
968 in_inc_dec = (char *) alloca (nregs);
970 /* Initialize information about which register classes can be used for
971 pseudos that are auto-incremented or auto-decremented. It would
972 seem better to put this in init_reg_sets, but we need to be able
973 to allocate rtx, which we can't do that early. */
975 for (i = 0; i < N_REG_CLASSES; i++)
977 rtx r = gen_rtx_REG (VOIDmode, 0);
978 enum machine_mode m;
979 register int j;
981 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
982 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
984 REGNO (r) = j;
986 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
987 m = (enum machine_mode) ((int) m + 1))
988 if (HARD_REGNO_MODE_OK (j, m))
990 PUT_MODE (r, m);
992 /* If a register is not directly suitable for an
993 auto-increment or decrement addressing mode and
994 requires secondary reloads, disallow its class from
995 being used in such addresses. */
997 if ((0
998 #ifdef SECONDARY_RELOAD_CLASS
999 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1000 != NO_REGS)
1001 #else
1002 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1003 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1004 != NO_REGS)
1005 #endif
1006 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1007 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1008 != NO_REGS)
1009 #endif
1010 #endif
1012 && ! auto_inc_dec_reg_p (r, m))
1013 forbidden_inc_dec_class[i] = 1;
1017 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1019 /* Normally we scan the insns once and determine the best class to use for
1020 each register. However, if -fexpensive_optimizations are on, we do so
1021 twice, the second time using the tentative best classes to guide the
1022 selection. */
1024 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1026 /* Zero out our accumulation of the cost of each class for each reg. */
1028 bzero ((char *) costs, nregs * sizeof (struct costs));
1030 #ifdef FORBIDDEN_INC_DEC_CLASSES
1031 bzero (in_inc_dec, nregs);
1032 #endif
1034 loop_depth = 0, loop_cost = 1;
1036 /* Scan the instructions and record each time it would
1037 save code to put a certain register in a certain class. */
1039 for (insn = f; insn; insn = NEXT_INSN (insn))
1041 insn = scan_one_insn (insn, pass);
1044 /* Now for each register look at how desirable each class is
1045 and find which class is preferred. Store that in
1046 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
1047 class any of whose registers is better than memory. */
1049 if (pass == 0)
1051 prefclass = prefclass_buffer;
1052 altclass = altclass_buffer;
1055 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1057 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1058 enum reg_class best = ALL_REGS, alt = NO_REGS;
1059 /* This is an enum reg_class, but we call it an int
1060 to save lots of casts. */
1061 register int class;
1062 register struct costs *p = &costs[i];
1064 for (class = (int) ALL_REGS - 1; class > 0; class--)
1066 /* Ignore classes that are too small for this operand or
1067 invalid for a operand that was auto-incremented. */
1068 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1069 > reg_class_size[class]
1070 #ifdef FORBIDDEN_INC_DEC_CLASSES
1071 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1072 #endif
1075 else if (p->cost[class] < best_cost)
1077 best_cost = p->cost[class];
1078 best = (enum reg_class) class;
1080 else if (p->cost[class] == best_cost)
1081 best = reg_class_subunion[(int)best][class];
1084 /* Record the alternate register class; i.e., a class for which
1085 every register in it is better than using memory. If adding a
1086 class would make a smaller class (i.e., no union of just those
1087 classes exists), skip that class. The major unions of classes
1088 should be provided as a register class. Don't do this if we
1089 will be doing it again later. */
1091 if (pass == 1 || ! flag_expensive_optimizations)
1092 for (class = 0; class < N_REG_CLASSES; class++)
1093 if (p->cost[class] < p->mem_cost
1094 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1095 > reg_class_size[(int) alt])
1096 #ifdef FORBIDDEN_INC_DEC_CLASSES
1097 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1098 #endif
1100 alt = reg_class_subunion[(int) alt][class];
1102 /* If we don't add any classes, nothing to try. */
1103 if (alt == best)
1104 alt = NO_REGS;
1106 /* We cast to (int) because (char) hits bugs in some compilers. */
1107 prefclass[i] = (int) best;
1108 altclass[i] = (int) alt;
1112 free (costs);
1115 /* Record the cost of using memory or registers of various classes for
1116 the operands in INSN.
1118 N_ALTS is the number of alternatives.
1120 N_OPS is the number of operands.
1122 OPS is an array of the operands.
1124 MODES are the modes of the operands, in case any are VOIDmode.
1126 CONSTRAINTS are the constraints to use for the operands. This array
1127 is modified by this procedure.
1129 This procedure works alternative by alternative. For each alternative
1130 we assume that we will be able to allocate all pseudos to their ideal
1131 register class and calculate the cost of using that alternative. Then
1132 we compute for each operand that is a pseudo-register, the cost of
1133 having the pseudo allocated to each register class and using it in that
1134 alternative. To this cost is added the cost of the alternative.
1136 The cost of each class for this insn is its lowest cost among all the
1137 alternatives. */
1139 static void
1140 record_reg_classes (n_alts, n_ops, ops, modes, subreg_changes_size,
1141 constraints, insn)
1142 int n_alts;
1143 int n_ops;
1144 rtx *ops;
1145 enum machine_mode *modes;
1146 char *subreg_changes_size;
1147 const char **constraints;
1148 rtx insn;
1150 int alt;
1151 int i, j;
1152 rtx set;
1154 /* Process each alternative, each time minimizing an operand's cost with
1155 the cost for each operand in that alternative. */
1157 for (alt = 0; alt < n_alts; alt++)
1159 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1160 int alt_fail = 0;
1161 int alt_cost = 0;
1162 enum reg_class classes[MAX_RECOG_OPERANDS];
1163 int class;
1165 for (i = 0; i < n_ops; i++)
1167 const char *p = constraints[i];
1168 rtx op = ops[i];
1169 enum machine_mode mode = modes[i];
1170 int allows_addr = 0;
1171 int allows_mem = 0;
1172 int win = 0;
1173 unsigned char c;
1175 /* Initially show we know nothing about the register class. */
1176 classes[i] = NO_REGS;
1178 /* If this operand has no constraints at all, we can conclude
1179 nothing about it since anything is valid. */
1181 if (*p == 0)
1183 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1184 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1186 continue;
1189 /* If this alternative is only relevant when this operand
1190 matches a previous operand, we do different things depending
1191 on whether this operand is a pseudo-reg or not. We must process
1192 any modifiers for the operand before we can make this test. */
1194 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1195 p++;
1197 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1199 j = p[0] - '0';
1200 classes[i] = classes[j];
1202 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1204 /* If this matches the other operand, we have no added
1205 cost and we win. */
1206 if (rtx_equal_p (ops[j], op))
1207 win = 1;
1209 /* If we can put the other operand into a register, add to
1210 the cost of this alternative the cost to copy this
1211 operand to the register used for the other operand. */
1213 else if (classes[j] != NO_REGS)
1214 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1216 else if (GET_CODE (ops[j]) != REG
1217 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1219 /* This op is a pseudo but the one it matches is not. */
1221 /* If we can't put the other operand into a register, this
1222 alternative can't be used. */
1224 if (classes[j] == NO_REGS)
1225 alt_fail = 1;
1227 /* Otherwise, add to the cost of this alternative the cost
1228 to copy the other operand to the register used for this
1229 operand. */
1231 else
1232 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1234 else
1236 /* The costs of this operand are the same as that of the
1237 other operand. However, if we cannot tie them, this
1238 alternative needs to do a copy, which is one
1239 instruction. */
1241 this_op_costs[i] = this_op_costs[j];
1242 if (REGNO (ops[i]) != REGNO (ops[j])
1243 && ! find_reg_note (insn, REG_DEAD, op))
1244 alt_cost += 2;
1246 /* This is in place of ordinary cost computation
1247 for this operand, so skip to the end of the
1248 alternative (should be just one character). */
1249 while (*p && *p++ != ',')
1252 constraints[i] = p;
1253 continue;
1257 /* Scan all the constraint letters. See if the operand matches
1258 any of the constraints. Collect the valid register classes
1259 and see if this operand accepts memory. */
1261 while (*p && (c = *p++) != ',')
1262 switch (c)
1264 case '*':
1265 /* Ignore the next letter for this pass. */
1266 p++;
1267 break;
1269 case '?':
1270 alt_cost += 2;
1271 case '!': case '#': case '&':
1272 case '0': case '1': case '2': case '3': case '4':
1273 case '5': case '6': case '7': case '8': case '9':
1274 break;
1276 case 'p':
1277 allows_addr = 1;
1278 win = address_operand (op, GET_MODE (op));
1279 /* We know this operand is an address, so we want it to be
1280 allocated to a register that can be the base of an
1281 address, ie BASE_REG_CLASS. */
1282 classes[i]
1283 = reg_class_subunion[(int) classes[i]]
1284 [(int) BASE_REG_CLASS];
1285 break;
1287 case 'm': case 'o': case 'V':
1288 /* It doesn't seem worth distinguishing between offsettable
1289 and non-offsettable addresses here. */
1290 allows_mem = 1;
1291 if (GET_CODE (op) == MEM)
1292 win = 1;
1293 break;
1295 case '<':
1296 if (GET_CODE (op) == MEM
1297 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1298 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1299 win = 1;
1300 break;
1302 case '>':
1303 if (GET_CODE (op) == MEM
1304 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1305 || GET_CODE (XEXP (op, 0)) == POST_INC))
1306 win = 1;
1307 break;
1309 case 'E':
1310 #ifndef REAL_ARITHMETIC
1311 /* Match any floating double constant, but only if
1312 we can examine the bits of it reliably. */
1313 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1314 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1315 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1316 break;
1317 #endif
1318 if (GET_CODE (op) == CONST_DOUBLE)
1319 win = 1;
1320 break;
1322 case 'F':
1323 if (GET_CODE (op) == CONST_DOUBLE)
1324 win = 1;
1325 break;
1327 case 'G':
1328 case 'H':
1329 if (GET_CODE (op) == CONST_DOUBLE
1330 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1331 win = 1;
1332 break;
1334 case 's':
1335 if (GET_CODE (op) == CONST_INT
1336 || (GET_CODE (op) == CONST_DOUBLE
1337 && GET_MODE (op) == VOIDmode))
1338 break;
1339 case 'i':
1340 if (CONSTANT_P (op)
1341 #ifdef LEGITIMATE_PIC_OPERAND_P
1342 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1343 #endif
1345 win = 1;
1346 break;
1348 case 'n':
1349 if (GET_CODE (op) == CONST_INT
1350 || (GET_CODE (op) == CONST_DOUBLE
1351 && GET_MODE (op) == VOIDmode))
1352 win = 1;
1353 break;
1355 case 'I':
1356 case 'J':
1357 case 'K':
1358 case 'L':
1359 case 'M':
1360 case 'N':
1361 case 'O':
1362 case 'P':
1363 if (GET_CODE (op) == CONST_INT
1364 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1365 win = 1;
1366 break;
1368 case 'X':
1369 win = 1;
1370 break;
1372 #ifdef EXTRA_CONSTRAINT
1373 case 'Q':
1374 case 'R':
1375 case 'S':
1376 case 'T':
1377 case 'U':
1378 if (EXTRA_CONSTRAINT (op, c))
1379 win = 1;
1380 break;
1381 #endif
1383 case 'g':
1384 if (GET_CODE (op) == MEM
1385 || (CONSTANT_P (op)
1386 #ifdef LEGITIMATE_PIC_OPERAND_P
1387 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1388 #endif
1390 win = 1;
1391 allows_mem = 1;
1392 case 'r':
1393 classes[i]
1394 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1395 break;
1397 default:
1398 classes[i]
1399 = reg_class_subunion[(int) classes[i]]
1400 [(int) REG_CLASS_FROM_LETTER (c)];
1403 constraints[i] = p;
1405 #ifdef CLASS_CANNOT_CHANGE_SIZE
1406 /* If we noted a subreg earlier, and the selected class is a
1407 subclass of CLASS_CANNOT_CHANGE_SIZE, zap it. */
1408 if (subreg_changes_size[i]
1409 && (reg_class_subunion[(int) CLASS_CANNOT_CHANGE_SIZE]
1410 [(int) classes[i]]
1411 == CLASS_CANNOT_CHANGE_SIZE))
1412 classes[i] = NO_REGS;
1413 #endif
1415 /* How we account for this operand now depends on whether it is a
1416 pseudo register or not. If it is, we first check if any
1417 register classes are valid. If not, we ignore this alternative,
1418 since we want to assume that all pseudos get allocated for
1419 register preferencing. If some register class is valid, compute
1420 the costs of moving the pseudo into that class. */
1422 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1424 if (classes[i] == NO_REGS)
1426 /* We must always fail if the operand is a REG, but
1427 we did not find a suitable class.
1429 Otherwise we may perform an uninitialized read
1430 from this_op_costs after the `continue' statement
1431 below. */
1432 alt_fail = 1;
1434 else
1436 struct costs *pp = &this_op_costs[i];
1438 for (class = 0; class < N_REG_CLASSES; class++)
1439 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1441 /* If the alternative actually allows memory, make things
1442 a bit cheaper since we won't need an extra insn to
1443 load it. */
1445 pp->mem_cost = (MEMORY_MOVE_COST (mode, classes[i], 1)
1446 - allows_mem);
1448 /* If we have assigned a class to this register in our
1449 first pass, add a cost to this alternative corresponding
1450 to what we would add if this register were not in the
1451 appropriate class. */
1453 if (prefclass)
1454 alt_cost
1455 += may_move_cost[(unsigned char)prefclass[REGNO (op)]][(int) classes[i]];
1459 /* Otherwise, if this alternative wins, either because we
1460 have already determined that or if we have a hard register of
1461 the proper class, there is no cost for this alternative. */
1463 else if (win
1464 || (GET_CODE (op) == REG
1465 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1468 /* If registers are valid, the cost of this alternative includes
1469 copying the object to and/or from a register. */
1471 else if (classes[i] != NO_REGS)
1473 if (recog_data.operand_type[i] != OP_OUT)
1474 alt_cost += copy_cost (op, mode, classes[i], 1);
1476 if (recog_data.operand_type[i] != OP_IN)
1477 alt_cost += copy_cost (op, mode, classes[i], 0);
1480 /* The only other way this alternative can be used is if this is a
1481 constant that could be placed into memory. */
1483 else if (CONSTANT_P (op) && (allows_addr || allows_mem))
1484 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1485 else
1486 alt_fail = 1;
1489 if (alt_fail)
1490 continue;
1492 /* Finally, update the costs with the information we've calculated
1493 about this alternative. */
1495 for (i = 0; i < n_ops; i++)
1496 if (GET_CODE (ops[i]) == REG
1497 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1499 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1500 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1502 pp->mem_cost = MIN (pp->mem_cost,
1503 (qq->mem_cost + alt_cost) * scale);
1505 for (class = 0; class < N_REG_CLASSES; class++)
1506 pp->cost[class] = MIN (pp->cost[class],
1507 (qq->cost[class] + alt_cost) * scale);
1511 /* If this insn is a single set copying operand 1 to operand 0
1512 and one is a pseudo with the other a hard reg that is in its
1513 own register class, set the cost of that register class to -1. */
1515 if ((set = single_set (insn)) != 0
1516 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1517 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1518 for (i = 0; i <= 1; i++)
1519 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1521 int regno = REGNO (ops[!i]);
1522 enum machine_mode mode = GET_MODE (ops[!i]);
1523 int class;
1524 int nr;
1526 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1527 && (reg_class_size[(unsigned char)prefclass[regno]]
1528 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1529 op_costs[i].cost[(unsigned char)prefclass[regno]] = -1;
1530 else if (regno < FIRST_PSEUDO_REGISTER)
1531 for (class = 0; class < N_REG_CLASSES; class++)
1532 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1533 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1535 if (reg_class_size[class] == 1)
1536 op_costs[i].cost[class] = -1;
1537 else
1539 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1541 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1542 break;
1545 if (nr == HARD_REGNO_NREGS(regno,mode))
1546 op_costs[i].cost[class] = -1;
1552 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1553 TO_P is zero) a register of class CLASS in mode MODE.
1555 X must not be a pseudo. */
1557 static int
1558 copy_cost (x, mode, class, to_p)
1559 rtx x;
1560 enum machine_mode mode;
1561 enum reg_class class;
1562 int to_p;
1564 #ifdef HAVE_SECONDARY_RELOADS
1565 enum reg_class secondary_class = NO_REGS;
1566 #endif
1568 /* If X is a SCRATCH, there is actually nothing to move since we are
1569 assuming optimal allocation. */
1571 if (GET_CODE (x) == SCRATCH)
1572 return 0;
1574 /* Get the class we will actually use for a reload. */
1575 class = PREFERRED_RELOAD_CLASS (x, class);
1577 #ifdef HAVE_SECONDARY_RELOADS
1578 /* If we need a secondary reload (we assume here that we are using
1579 the secondary reload as an intermediate, not a scratch register), the
1580 cost is that to load the input into the intermediate register, then
1581 to copy them. We use a special value of TO_P to avoid recursion. */
1583 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1584 if (to_p == 1)
1585 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1586 #endif
1588 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1589 if (! to_p)
1590 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1591 #endif
1593 if (secondary_class != NO_REGS)
1594 return (move_cost[(int) secondary_class][(int) class]
1595 + copy_cost (x, mode, secondary_class, 2));
1596 #endif /* HAVE_SECONDARY_RELOADS */
1598 /* For memory, use the memory move cost, for (hard) registers, use the
1599 cost to move between the register classes, and use 2 for everything
1600 else (constants). */
1602 if (GET_CODE (x) == MEM || class == NO_REGS)
1603 return MEMORY_MOVE_COST (mode, class, to_p);
1605 else if (GET_CODE (x) == REG)
1606 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1608 else
1609 /* If this is a constant, we may eventually want to call rtx_cost here. */
1610 return 2;
1613 /* Record the pseudo registers we must reload into hard registers
1614 in a subexpression of a memory address, X.
1616 CLASS is the class that the register needs to be in and is either
1617 BASE_REG_CLASS or INDEX_REG_CLASS.
1619 SCALE is twice the amount to multiply the cost by (it is twice so we
1620 can represent half-cost adjustments). */
1622 static void
1623 record_address_regs (x, class, scale)
1624 rtx x;
1625 enum reg_class class;
1626 int scale;
1628 register enum rtx_code code = GET_CODE (x);
1630 switch (code)
1632 case CONST_INT:
1633 case CONST:
1634 case CC0:
1635 case PC:
1636 case SYMBOL_REF:
1637 case LABEL_REF:
1638 return;
1640 case PLUS:
1641 /* When we have an address that is a sum,
1642 we must determine whether registers are "base" or "index" regs.
1643 If there is a sum of two registers, we must choose one to be
1644 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1645 to make a good choice most of the time. We only need to do this
1646 on machines that can have two registers in an address and where
1647 the base and index register classes are different.
1649 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1650 that seems bogus since it should only be set when we are sure
1651 the register is being used as a pointer. */
1654 rtx arg0 = XEXP (x, 0);
1655 rtx arg1 = XEXP (x, 1);
1656 register enum rtx_code code0 = GET_CODE (arg0);
1657 register enum rtx_code code1 = GET_CODE (arg1);
1659 /* Look inside subregs. */
1660 if (code0 == SUBREG)
1661 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1662 if (code1 == SUBREG)
1663 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1665 /* If this machine only allows one register per address, it must
1666 be in the first operand. */
1668 if (MAX_REGS_PER_ADDRESS == 1)
1669 record_address_regs (arg0, class, scale);
1671 /* If index and base registers are the same on this machine, just
1672 record registers in any non-constant operands. We assume here,
1673 as well as in the tests below, that all addresses are in
1674 canonical form. */
1676 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1678 record_address_regs (arg0, class, scale);
1679 if (! CONSTANT_P (arg1))
1680 record_address_regs (arg1, class, scale);
1683 /* If the second operand is a constant integer, it doesn't change
1684 what class the first operand must be. */
1686 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1687 record_address_regs (arg0, class, scale);
1689 /* If the second operand is a symbolic constant, the first operand
1690 must be an index register. */
1692 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1693 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1695 /* If both operands are registers but one is already a hard register
1696 of index or base class, give the other the class that the hard
1697 register is not. */
1699 #ifdef REG_OK_FOR_BASE_P
1700 else if (code0 == REG && code1 == REG
1701 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1702 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1703 record_address_regs (arg1,
1704 REG_OK_FOR_BASE_P (arg0)
1705 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1706 scale);
1707 else if (code0 == REG && code1 == REG
1708 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1709 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1710 record_address_regs (arg0,
1711 REG_OK_FOR_BASE_P (arg1)
1712 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1713 scale);
1714 #endif
1716 /* If one operand is known to be a pointer, it must be the base
1717 with the other operand the index. Likewise if the other operand
1718 is a MULT. */
1720 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1721 || code1 == MULT)
1723 record_address_regs (arg0, BASE_REG_CLASS, scale);
1724 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1726 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1727 || code0 == MULT)
1729 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1730 record_address_regs (arg1, BASE_REG_CLASS, scale);
1733 /* Otherwise, count equal chances that each might be a base
1734 or index register. This case should be rare. */
1736 else
1738 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1739 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1740 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1741 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1744 break;
1746 case POST_INC:
1747 case PRE_INC:
1748 case POST_DEC:
1749 case PRE_DEC:
1750 /* Double the importance of a pseudo register that is incremented
1751 or decremented, since it would take two extra insns
1752 if it ends up in the wrong place. If the operand is a pseudo,
1753 show it is being used in an INC_DEC context. */
1755 #ifdef FORBIDDEN_INC_DEC_CLASSES
1756 if (GET_CODE (XEXP (x, 0)) == REG
1757 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1758 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1759 #endif
1761 record_address_regs (XEXP (x, 0), class, 2 * scale);
1762 break;
1764 case REG:
1766 register struct costs *pp = &costs[REGNO (x)];
1767 register int i;
1769 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1771 for (i = 0; i < N_REG_CLASSES; i++)
1772 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1774 break;
1776 default:
1778 register const char *fmt = GET_RTX_FORMAT (code);
1779 register int i;
1780 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1781 if (fmt[i] == 'e')
1782 record_address_regs (XEXP (x, i), class, scale);
1787 #ifdef FORBIDDEN_INC_DEC_CLASSES
1789 /* Return 1 if REG is valid as an auto-increment memory reference
1790 to an object of MODE. */
1792 static int
1793 auto_inc_dec_reg_p (reg, mode)
1794 rtx reg;
1795 enum machine_mode mode;
1797 if (HAVE_POST_INCREMENT
1798 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1799 return 1;
1801 if (HAVE_POST_DECREMENT
1802 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1803 return 1;
1805 if (HAVE_PRE_INCREMENT
1806 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1807 return 1;
1809 if (HAVE_PRE_DECREMENT
1810 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1811 return 1;
1813 return 0;
1815 #endif
1817 static short *renumber = (short *)0;
1818 static size_t regno_allocated = 0;
1820 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1821 reg_scan and flow_analysis that are indexed by the register number. If
1822 NEW_P is non zero, initialize all of the registers, otherwise only
1823 initialize the new registers allocated. The same table is kept from
1824 function to function, only reallocating it when we need more room. If
1825 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1827 void
1828 allocate_reg_info (num_regs, new_p, renumber_p)
1829 size_t num_regs;
1830 int new_p;
1831 int renumber_p;
1833 size_t size_info;
1834 size_t size_renumber;
1835 size_t min = (new_p) ? 0 : reg_n_max;
1836 struct reg_info_data *reg_data;
1837 struct reg_info_data *reg_next;
1839 if (num_regs > regno_allocated)
1841 size_t old_allocated = regno_allocated;
1843 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
1844 size_renumber = regno_allocated * sizeof (short);
1846 if (!reg_n_info)
1848 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
1849 renumber = (short *) xmalloc (size_renumber);
1850 prefclass_buffer = (char *) xmalloc (regno_allocated);
1851 altclass_buffer = (char *) xmalloc (regno_allocated);
1854 else
1856 VARRAY_GROW (reg_n_info, regno_allocated);
1858 if (new_p) /* if we're zapping everything, no need to realloc */
1860 free ((char *)renumber);
1861 free ((char *)prefclass_buffer);
1862 free ((char *)altclass_buffer);
1863 renumber = (short *) xmalloc (size_renumber);
1864 prefclass_buffer = (char *) xmalloc (regno_allocated);
1865 altclass_buffer = (char *) xmalloc (regno_allocated);
1868 else
1870 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1871 prefclass_buffer = (char *) xrealloc ((char *)prefclass_buffer,
1872 regno_allocated);
1874 altclass_buffer = (char *) xrealloc ((char *)altclass_buffer,
1875 regno_allocated);
1879 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
1880 + sizeof (struct reg_info_data) - sizeof (reg_info);
1881 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
1882 reg_data->min_index = old_allocated;
1883 reg_data->max_index = regno_allocated - 1;
1884 reg_data->next = reg_info_head;
1885 reg_info_head = reg_data;
1888 reg_n_max = num_regs;
1889 if (min < num_regs)
1891 /* Loop through each of the segments allocated for the actual
1892 reg_info pages, and set up the pointers, zero the pages, etc. */
1893 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1895 size_t min_index = reg_data->min_index;
1896 size_t max_index = reg_data->max_index;
1898 reg_next = reg_data->next;
1899 if (min <= max_index)
1901 size_t max = max_index;
1902 size_t local_min = min - min_index;
1903 size_t i;
1905 if (min < min_index)
1906 local_min = 0;
1907 if (!reg_data->used_p) /* page just allocated with calloc */
1908 reg_data->used_p = 1; /* no need to zero */
1909 else
1910 bzero ((char *) &reg_data->data[local_min],
1911 sizeof (reg_info) * (max - min_index - local_min + 1));
1913 for (i = min_index+local_min; i <= max; i++)
1915 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
1916 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1917 renumber[i] = -1;
1918 prefclass_buffer[i] = (char) NO_REGS;
1919 altclass_buffer[i] = (char) NO_REGS;
1925 /* If {pref,alt}class have already been allocated, update the pointers to
1926 the newly realloced ones. */
1927 if (prefclass)
1929 prefclass = prefclass_buffer;
1930 altclass = altclass_buffer;
1933 if (renumber_p)
1934 reg_renumber = renumber;
1936 /* Tell the regset code about the new number of registers */
1937 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1940 /* Free up the space allocated by allocate_reg_info. */
1941 void
1942 free_reg_info ()
1944 if (reg_n_info)
1946 struct reg_info_data *reg_data;
1947 struct reg_info_data *reg_next;
1949 VARRAY_FREE (reg_n_info);
1950 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1952 reg_next = reg_data->next;
1953 free ((char *)reg_data);
1956 free (prefclass_buffer);
1957 free (altclass_buffer);
1958 prefclass_buffer = (char *)0;
1959 altclass_buffer = (char *)0;
1960 reg_info_head = (struct reg_info_data *)0;
1961 renumber = (short *)0;
1963 regno_allocated = 0;
1964 reg_n_max = 0;
1967 /* This is the `regscan' pass of the compiler, run just before cse
1968 and again just before loop.
1970 It finds the first and last use of each pseudo-register
1971 and records them in the vectors regno_first_uid, regno_last_uid
1972 and counts the number of sets in the vector reg_n_sets.
1974 REPEAT is nonzero the second time this is called. */
1976 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1977 Always at least 3, since the combiner could put that many together
1978 and we want this to remain correct for all the remaining passes. */
1980 int max_parallel;
1982 void
1983 reg_scan (f, nregs, repeat)
1984 rtx f;
1985 int nregs;
1986 int repeat;
1988 register rtx insn;
1990 allocate_reg_info (nregs, TRUE, FALSE);
1991 max_parallel = 3;
1993 for (insn = f; insn; insn = NEXT_INSN (insn))
1994 if (GET_CODE (insn) == INSN
1995 || GET_CODE (insn) == CALL_INSN
1996 || GET_CODE (insn) == JUMP_INSN)
1998 if (GET_CODE (PATTERN (insn)) == PARALLEL
1999 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2000 max_parallel = XVECLEN (PATTERN (insn), 0);
2001 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2003 if (REG_NOTES (insn))
2004 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2008 /* Update 'regscan' information by looking at the insns
2009 from FIRST to LAST. Some new REGs have been created,
2010 and any REG with number greater than OLD_MAX_REGNO is
2011 such a REG. We only update information for those. */
2013 void
2014 reg_scan_update(first, last, old_max_regno)
2015 rtx first;
2016 rtx last;
2017 int old_max_regno;
2019 register rtx insn;
2021 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2023 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2024 if (GET_CODE (insn) == INSN
2025 || GET_CODE (insn) == CALL_INSN
2026 || GET_CODE (insn) == JUMP_INSN)
2028 if (GET_CODE (PATTERN (insn)) == PARALLEL
2029 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2030 max_parallel = XVECLEN (PATTERN (insn), 0);
2031 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2033 if (REG_NOTES (insn))
2034 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2038 /* X is the expression to scan. INSN is the insn it appears in.
2039 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2040 We should only record information for REGs with numbers
2041 greater than or equal to MIN_REGNO. */
2043 static void
2044 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2045 rtx x;
2046 rtx insn;
2047 int note_flag;
2048 int min_regno;
2050 register enum rtx_code code;
2051 register rtx dest;
2052 register rtx note;
2054 code = GET_CODE (x);
2055 switch (code)
2057 case CONST:
2058 case CONST_INT:
2059 case CONST_DOUBLE:
2060 case CC0:
2061 case PC:
2062 case SYMBOL_REF:
2063 case LABEL_REF:
2064 case ADDR_VEC:
2065 case ADDR_DIFF_VEC:
2066 return;
2068 case REG:
2070 register int regno = REGNO (x);
2072 if (regno >= min_regno)
2074 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2075 if (!note_flag)
2076 REGNO_LAST_UID (regno) = INSN_UID (insn);
2077 if (REGNO_FIRST_UID (regno) == 0)
2078 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2081 break;
2083 case EXPR_LIST:
2084 if (XEXP (x, 0))
2085 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2086 if (XEXP (x, 1))
2087 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2088 break;
2090 case INSN_LIST:
2091 if (XEXP (x, 1))
2092 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2093 break;
2095 case SET:
2096 /* Count a set of the destination if it is a register. */
2097 for (dest = SET_DEST (x);
2098 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2099 || GET_CODE (dest) == ZERO_EXTEND;
2100 dest = XEXP (dest, 0))
2103 if (GET_CODE (dest) == REG
2104 && REGNO (dest) >= min_regno)
2105 REG_N_SETS (REGNO (dest))++;
2107 /* If this is setting a pseudo from another pseudo or the sum of a
2108 pseudo and a constant integer and the other pseudo is known to be
2109 a pointer, set the destination to be a pointer as well.
2111 Likewise if it is setting the destination from an address or from a
2112 value equivalent to an address or to the sum of an address and
2113 something else.
2115 But don't do any of this if the pseudo corresponds to a user
2116 variable since it should have already been set as a pointer based
2117 on the type. */
2119 if (GET_CODE (SET_DEST (x)) == REG
2120 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2121 && REGNO (SET_DEST (x)) >= min_regno
2122 /* If the destination pseudo is set more than once, then other
2123 sets might not be to a pointer value (consider access to a
2124 union in two threads of control in the presense of global
2125 optimizations). So only set REGNO_POINTER_FLAG on the destination
2126 pseudo if this is the only set of that pseudo. */
2127 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2128 && ! REG_USERVAR_P (SET_DEST (x))
2129 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2130 && ((GET_CODE (SET_SRC (x)) == REG
2131 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2132 || ((GET_CODE (SET_SRC (x)) == PLUS
2133 || GET_CODE (SET_SRC (x)) == LO_SUM)
2134 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2135 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2136 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2137 || GET_CODE (SET_SRC (x)) == CONST
2138 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2139 || GET_CODE (SET_SRC (x)) == LABEL_REF
2140 || (GET_CODE (SET_SRC (x)) == HIGH
2141 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2142 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2143 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2144 || ((GET_CODE (SET_SRC (x)) == PLUS
2145 || GET_CODE (SET_SRC (x)) == LO_SUM)
2146 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2147 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2148 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2149 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2150 && (GET_CODE (XEXP (note, 0)) == CONST
2151 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2152 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2153 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2155 /* ... fall through ... */
2157 default:
2159 register const char *fmt = GET_RTX_FORMAT (code);
2160 register int i;
2161 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2163 if (fmt[i] == 'e')
2164 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2165 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2167 register int j;
2168 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2169 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2176 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2177 is also in C2. */
2180 reg_class_subset_p (c1, c2)
2181 register enum reg_class c1;
2182 register enum reg_class c2;
2184 if (c1 == c2) return 1;
2186 if (c2 == ALL_REGS)
2187 win:
2188 return 1;
2189 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2190 reg_class_contents[(int)c2],
2191 win);
2192 return 0;
2195 /* Return nonzero if there is a register that is in both C1 and C2. */
2198 reg_classes_intersect_p (c1, c2)
2199 register enum reg_class c1;
2200 register enum reg_class c2;
2202 #ifdef HARD_REG_SET
2203 register
2204 #endif
2205 HARD_REG_SET c;
2207 if (c1 == c2) return 1;
2209 if (c1 == ALL_REGS || c2 == ALL_REGS)
2210 return 1;
2212 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2213 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2215 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2216 return 1;
2218 lose:
2219 return 0;
2222 /* Release any memory allocated by register sets. */
2224 void
2225 regset_release_memory ()
2227 bitmap_release_memory ();