1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 #include "alloc-pool.h"
28 /* To provide consistency in naming, all IRA external variables,
29 functions, common typedefs start with prefix ira_. */
31 #ifdef ENABLE_CHECKING
32 #define ENABLE_IRA_CHECKING
35 #ifdef ENABLE_IRA_CHECKING
36 #define ira_assert(c) gcc_assert (c)
38 /* Always define and include C, so that warnings for empty body in an
39 'if' statement and unused variable do not occur. */
40 #define ira_assert(c) ((void)(0 && (c)))
43 /* Compute register frequency from edge frequency FREQ. It is
44 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
45 profile driven feedback is available and the function is never
46 executed, frequency is always equivalent. Otherwise rescale the
48 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
49 (optimize_function_for_size_p (cfun) \
50 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
51 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
53 /* A modified value of flag `-fira-verbose' used internally. */
54 extern int internal_flag_ira_verbose
;
56 /* Dump file of the allocator if it is not NULL. */
57 extern FILE *ira_dump_file
;
59 /* Typedefs for pointers to allocno live range, allocno, and copy of
61 typedef struct live_range
*live_range_t
;
62 typedef struct ira_allocno
*ira_allocno_t
;
63 typedef struct ira_allocno_pref
*ira_pref_t
;
64 typedef struct ira_allocno_copy
*ira_copy_t
;
65 typedef struct ira_object
*ira_object_t
;
67 /* Definition of vector of allocnos and copies. */
69 /* Typedef for pointer to the subsequent structure. */
70 typedef struct ira_loop_tree_node
*ira_loop_tree_node_t
;
72 typedef unsigned short move_table
[N_REG_CLASSES
];
74 /* In general case, IRA is a regional allocator. The regions are
75 nested and form a tree. Currently regions are natural loops. The
76 following structure describes loop tree node (representing basic
77 block or loop). We need such tree because the loop tree from
78 cfgloop.h is not convenient for the optimization: basic blocks are
79 not a part of the tree from cfgloop.h. We also use the nodes for
80 storing additional information about basic blocks/loops for the
81 register allocation purposes. */
82 struct ira_loop_tree_node
84 /* The node represents basic block if children == NULL. */
85 basic_block bb
; /* NULL for loop. */
86 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
88 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89 SUBLOOP_NEXT is always NULL for BBs. */
90 ira_loop_tree_node_t subloop_next
, next
;
91 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92 the node. They are NULL for BBs. */
93 ira_loop_tree_node_t subloops
, children
;
94 /* The node immediately containing given node. */
95 ira_loop_tree_node_t parent
;
97 /* Loop level in range [0, ira_loop_tree_height). */
100 /* All the following members are defined only for nodes representing
103 /* The loop number from CFG loop tree. The root number is 0. */
106 /* True if the loop was marked for removal from the register
110 /* Allocnos in the loop corresponding to their regnos. If it is
111 NULL the loop does not form a separate register allocation region
112 (e.g. because it has abnormal enter/exit edges and we can not put
113 code for register shuffling on the edges if a different
114 allocation is used for a pseudo-register on different sides of
115 the edges). Caps are not in the map (remember we can have more
116 one cap with the same regno in a region). */
117 ira_allocno_t
*regno_allocno_map
;
119 /* True if there is an entry to given loop not from its parent (or
120 grandparent) basic block. For example, it is possible for two
121 adjacent loops inside another loop. */
122 bool entered_from_non_parent_p
;
124 /* Maximal register pressure inside loop for given register class
125 (defined only for the pressure classes). */
126 int reg_pressure
[N_REG_CLASSES
];
128 /* Numbers of allocnos referred or living in the loop node (except
129 for its subloops). */
132 /* Numbers of allocnos living at the loop borders. */
133 bitmap border_allocnos
;
135 /* Regnos of pseudos modified in the loop node (including its
137 bitmap modified_regnos
;
139 /* Numbers of copies referred in the corresponding loop. */
143 /* The root of the loop tree corresponding to the all function. */
144 extern ira_loop_tree_node_t ira_loop_tree_root
;
146 /* Height of the loop tree. */
147 extern int ira_loop_tree_height
;
149 /* All nodes representing basic blocks are referred through the
150 following array. We can not use basic block member `aux' for this
151 because it is used for insertion of insns on edges. */
152 extern ira_loop_tree_node_t ira_bb_nodes
;
154 /* Two access macros to the nodes representing basic blocks. */
155 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
156 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
157 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
158 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
161 "\n%s: %d: error in %s: it is not a block node\n", \
162 __FILE__, __LINE__, __FUNCTION__); \
163 gcc_unreachable (); \
167 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
170 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
172 /* All nodes representing loops are referred through the following
174 extern ira_loop_tree_node_t ira_loop_nodes
;
176 /* Two access macros to the nodes representing loops. */
177 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
178 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
179 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
180 if (_node->children == NULL || _node->bb != NULL \
181 || (_node->loop == NULL && current_loops != NULL)) \
184 "\n%s: %d: error in %s: it is not a loop node\n", \
185 __FILE__, __LINE__, __FUNCTION__); \
186 gcc_unreachable (); \
190 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
193 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
196 /* The structure describes program points where a given allocno lives.
197 If the live ranges of two allocnos are intersected, the allocnos
201 /* Object whose live range is described by given structure. */
203 /* Program point range. */
205 /* Next structure describing program points where the allocno
208 /* Pointer to structures with the same start/finish. */
209 live_range_t start_next
, finish_next
;
212 /* Program points are enumerated by numbers from range
213 0..IRA_MAX_POINT-1. There are approximately two times more program
214 points than insns. Program points are places in the program where
215 liveness info can be changed. In most general case (there are more
216 complicated cases too) some program points correspond to places
217 where input operand dies and other ones correspond to places where
218 output operands are born. */
219 extern int ira_max_point
;
221 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222 live ranges with given start/finish point. */
223 extern live_range_t
*ira_start_point_ranges
, *ira_finish_point_ranges
;
225 /* A structure representing conflict information for an allocno
226 (or one of its subwords). */
229 /* The allocno associated with this record. */
230 ira_allocno_t allocno
;
231 /* Vector of accumulated conflicting conflict_redords with NULL end
232 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
234 void *conflicts_array
;
235 /* Pointer to structures describing at what program point the
236 object lives. We always maintain the list in such way that *the
237 ranges in the list are not intersected and ordered by decreasing
238 their program points*. */
239 live_range_t live_ranges
;
240 /* The subword within ALLOCNO which is represented by this object.
241 Zero means the lowest-order subword (or the entire allocno in case
242 it is not being tracked in subwords). */
244 /* Allocated size of the conflicts array. */
245 unsigned int conflicts_array_size
;
246 /* A unique number for every instance of this structure, which is used
247 to represent it in conflict bit vectors. */
249 /* Before building conflicts, MIN and MAX are initialized to
250 correspondingly minimal and maximal points of the accumulated
251 live ranges. Afterwards, they hold the minimal and maximal ids
252 of other ira_objects that this one can conflict with. */
254 /* Initial and accumulated hard registers conflicting with this
255 object and as a consequences can not be assigned to the allocno.
256 All non-allocatable hard regs and hard regs of register classes
257 different from given allocno one are included in the sets. */
258 HARD_REG_SET conflict_hard_regs
, total_conflict_hard_regs
;
259 /* Number of accumulated conflicts in the vector of conflicting
261 int num_accumulated_conflicts
;
262 /* TRUE if conflicts are represented by a vector of pointers to
263 ira_object structures. Otherwise, we use a bit vector indexed
264 by conflict ID numbers. */
265 unsigned int conflict_vec_p
: 1;
268 /* A structure representing an allocno (allocation entity). Allocno
269 represents a pseudo-register in an allocation region. If
270 pseudo-register does not live in a region but it lives in the
271 nested regions, it is represented in the region by special allocno
272 called *cap*. There may be more one cap representing the same
273 pseudo-register in region. It means that the corresponding
274 pseudo-register lives in more one non-intersected subregion. */
277 /* The allocno order number starting with 0. Each allocno has an
278 unique number and the number is never changed for the
281 /* Regno for allocno or cap. */
283 /* Mode of the allocno which is the mode of the corresponding
285 ENUM_BITFIELD (machine_mode
) mode
: 8;
286 /* Register class which should be used for allocation for given
287 allocno. NO_REGS means that we should use memory. */
288 ENUM_BITFIELD (reg_class
) aclass
: 16;
289 /* During the reload, value TRUE means that we should not reassign a
290 hard register to the allocno got memory earlier. It is set up
291 when we removed memory-memory move insn before each iteration of
293 unsigned int dont_reassign_p
: 1;
295 /* Set to TRUE if allocno can't be assigned to the stack hard
296 register correspondingly in this region and area including the
297 region and all its subregions recursively. */
298 unsigned int no_stack_reg_p
: 1, total_no_stack_reg_p
: 1;
300 /* TRUE value means that there is no sense to spill the allocno
301 during coloring because the spill will result in additional
302 reloads in reload pass. */
303 unsigned int bad_spill_p
: 1;
304 /* TRUE if a hard register or memory has been assigned to the
306 unsigned int assigned_p
: 1;
307 /* TRUE if conflicts for given allocno are represented by vector of
308 pointers to the conflicting allocnos. Otherwise, we use a bit
309 vector where a bit with given index represents allocno with the
311 unsigned int conflict_vec_p
: 1;
312 /* Hard register assigned to given allocno. Negative value means
313 that memory was allocated to the allocno. During the reload,
314 spilled allocno has value equal to the corresponding stack slot
315 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
316 reload (at this point pseudo-register has only one allocno) which
317 did not get stack slot yet. */
318 short int hard_regno
;
319 /* Allocnos with the same regno are linked by the following member.
320 Allocnos corresponding to inner loops are first in the list (it
321 corresponds to depth-first traverse of the loops). */
322 ira_allocno_t next_regno_allocno
;
323 /* There may be different allocnos with the same regno in different
324 regions. Allocnos are bound to the corresponding loop tree node.
325 Pseudo-register may have only one regular allocno with given loop
326 tree node but more than one cap (see comments above). */
327 ira_loop_tree_node_t loop_tree_node
;
328 /* Accumulated usage references of the allocno. Here and below,
329 word 'accumulated' means info for given region and all nested
330 subregions. In this case, 'accumulated' means sum of references
331 of the corresponding pseudo-register in this region and in all
332 nested subregions recursively. */
334 /* Accumulated frequency of usage of the allocno. */
336 /* Minimal accumulated and updated costs of usage register of the
338 int class_cost
, updated_class_cost
;
339 /* Minimal accumulated, and updated costs of memory for the allocno.
340 At the allocation start, the original and updated costs are
341 equal. The updated cost may be changed after finishing
342 allocation in a region and starting allocation in a subregion.
343 The change reflects the cost of spill/restore code on the
344 subregion border if we assign memory to the pseudo in the
346 int memory_cost
, updated_memory_cost
;
347 /* Accumulated number of points where the allocno lives and there is
348 excess pressure for its class. Excess pressure for a register
349 class at some point means that there are more allocnos of given
350 register class living at the point than number of hard-registers
351 of the class available for the allocation. */
352 int excess_pressure_points_num
;
353 /* Allocno hard reg preferences. */
354 ira_pref_t allocno_prefs
;
355 /* Copies to other non-conflicting allocnos. The copies can
356 represent move insn or potential move insn usually because of two
357 operand insn constraints. */
358 ira_copy_t allocno_copies
;
359 /* It is a allocno (cap) representing given allocno on upper loop tree
362 /* It is a link to allocno (cap) on lower loop level represented by
363 given cap. Null if given allocno is not a cap. */
364 ira_allocno_t cap_member
;
365 /* The number of objects tracked in the following array. */
367 /* An array of structures describing conflict information and live
368 ranges for each object associated with the allocno. There may be
369 more than one such object in cases where the allocno represents a
370 multi-word register. */
371 ira_object_t objects
[2];
372 /* Accumulated frequency of calls which given allocno
375 /* Accumulated number of the intersected calls. */
376 int calls_crossed_num
;
377 /* The number of calls across which it is live, but which should not
378 affect register preferences. */
379 int cheap_calls_crossed_num
;
380 /* Registers clobbered by intersected calls. */
381 HARD_REG_SET crossed_calls_clobbered_regs
;
382 /* Array of usage costs (accumulated and the one updated during
383 coloring) for each hard register of the allocno class. The
384 member value can be NULL if all costs are the same and equal to
385 CLASS_COST. For example, the costs of two different hard
386 registers can be different if one hard register is callee-saved
387 and another one is callee-used and the allocno lives through
388 calls. Another example can be case when for some insn the
389 corresponding pseudo-register value should be put in specific
390 register class (e.g. AREG for x86) which is a strict subset of
391 the allocno class (GENERAL_REGS for x86). We have updated costs
392 to reflect the situation when the usage cost of a hard register
393 is decreased because the allocno is connected to another allocno
394 by a copy and the another allocno has been assigned to the hard
396 int *hard_reg_costs
, *updated_hard_reg_costs
;
397 /* Array of decreasing costs (accumulated and the one updated during
398 coloring) for allocnos conflicting with given allocno for hard
399 regno of the allocno class. The member value can be NULL if all
400 costs are the same. These costs are used to reflect preferences
401 of other allocnos not assigned yet during assigning to given
403 int *conflict_hard_reg_costs
, *updated_conflict_hard_reg_costs
;
404 /* Different additional data. It is used to decrease size of
405 allocno data footprint. */
410 /* All members of the allocno structures should be accessed only
411 through the following macros. */
412 #define ALLOCNO_NUM(A) ((A)->num)
413 #define ALLOCNO_REGNO(A) ((A)->regno)
414 #define ALLOCNO_REG(A) ((A)->reg)
415 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
416 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
417 #define ALLOCNO_CAP(A) ((A)->cap)
418 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
419 #define ALLOCNO_NREFS(A) ((A)->nrefs)
420 #define ALLOCNO_FREQ(A) ((A)->freq)
421 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
422 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
423 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
424 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
425 #define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
426 ((A)->crossed_calls_clobbered_regs)
427 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
428 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
429 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
430 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
431 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
433 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
434 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
436 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
437 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
438 #define ALLOCNO_MODE(A) ((A)->mode)
439 #define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
440 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
441 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
442 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
443 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
444 ((A)->conflict_hard_reg_costs)
445 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
446 ((A)->updated_conflict_hard_reg_costs)
447 #define ALLOCNO_CLASS(A) ((A)->aclass)
448 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
449 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
450 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
451 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
452 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
453 ((A)->excess_pressure_points_num)
454 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
455 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
456 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
458 /* Typedef for pointer to the subsequent structure. */
459 typedef struct ira_emit_data
*ira_emit_data_t
;
461 /* Allocno bound data used for emit pseudo live range split insns and
465 /* TRUE if the allocno assigned to memory was a destination of
466 removed move (see ira-emit.c) at loop exit because the value of
467 the corresponding pseudo-register is not changed inside the
469 unsigned int mem_optimized_dest_p
: 1;
470 /* TRUE if the corresponding pseudo-register has disjoint live
471 ranges and the other allocnos of the pseudo-register except this
473 unsigned int somewhere_renamed_p
: 1;
474 /* TRUE if allocno with the same REGNO in a subregion has been
475 renamed, in other words, got a new pseudo-register. */
476 unsigned int child_renamed_p
: 1;
477 /* Final rtx representation of the allocno. */
479 /* Non NULL if we remove restoring value from given allocno to
480 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
481 allocno value is not changed inside the loop. */
482 ira_allocno_t mem_optimized_dest
;
485 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
487 /* Data used to emit live range split insns and to flattening IR. */
488 extern ira_emit_data_t ira_allocno_emit_data
;
490 /* Abbreviation for frequent emit data access. */
492 allocno_emit_reg (ira_allocno_t a
)
494 return ALLOCNO_EMIT_DATA (a
)->reg
;
497 #define OBJECT_ALLOCNO(O) ((O)->allocno)
498 #define OBJECT_SUBWORD(O) ((O)->subword)
499 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
500 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
501 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
502 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
503 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
504 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
505 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
506 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
507 #define OBJECT_MIN(O) ((O)->min)
508 #define OBJECT_MAX(O) ((O)->max)
509 #define OBJECT_CONFLICT_ID(O) ((O)->id)
510 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
512 /* Map regno -> allocnos with given regno (see comments for
513 allocno member `next_regno_allocno'). */
514 extern ira_allocno_t
*ira_regno_allocno_map
;
516 /* Array of references to all allocnos. The order number of the
517 allocno corresponds to the index in the array. Removed allocnos
518 have NULL element value. */
519 extern ira_allocno_t
*ira_allocnos
;
521 /* The size of the previous array. */
522 extern int ira_allocnos_num
;
524 /* Map a conflict id to its corresponding ira_object structure. */
525 extern ira_object_t
*ira_object_id_map
;
527 /* The size of the previous array. */
528 extern int ira_objects_num
;
530 /* The following structure represents a hard register prefererence of
531 allocno. The preference represent move insns or potential move
532 insns usually because of two operand insn constraints. One move
533 operand is a hard register. */
534 struct ira_allocno_pref
536 /* The unique order number of the preference node starting with 0. */
538 /* Preferred hard register. */
540 /* Accumulated execution frequency of insns from which the
541 preference created. */
544 ira_allocno_t allocno
;
545 /* All prefernces with the same allocno are linked by the following
547 ira_pref_t next_pref
;
550 /* Array of references to all allocno preferences. The order number
551 of the preference corresponds to the index in the array. */
552 extern ira_pref_t
*ira_prefs
;
554 /* Size of the previous array. */
555 extern int ira_prefs_num
;
557 /* The following structure represents a copy of two allocnos. The
558 copies represent move insns or potential move insns usually because
559 of two operand insn constraints. To remove register shuffle, we
560 also create copies between allocno which is output of an insn and
561 allocno becoming dead in the insn. */
562 struct ira_allocno_copy
564 /* The unique order number of the copy node starting with 0. */
566 /* Allocnos connected by the copy. The first allocno should have
567 smaller order number than the second one. */
568 ira_allocno_t first
, second
;
569 /* Execution frequency of the copy. */
572 /* It is a move insn which is an origin of the copy. The member
573 value for the copy representing two operand insn constraints or
574 for the copy created to remove register shuffle is NULL. In last
575 case the copy frequency is smaller than the corresponding insn
576 execution frequency. */
578 /* All copies with the same allocno as FIRST are linked by the two
579 following members. */
580 ira_copy_t prev_first_allocno_copy
, next_first_allocno_copy
;
581 /* All copies with the same allocno as SECOND are linked by the two
582 following members. */
583 ira_copy_t prev_second_allocno_copy
, next_second_allocno_copy
;
584 /* Region from which given copy is originated. */
585 ira_loop_tree_node_t loop_tree_node
;
588 /* Array of references to all copies. The order number of the copy
589 corresponds to the index in the array. Removed copies have NULL
591 extern ira_copy_t
*ira_copies
;
593 /* Size of the previous array. */
594 extern int ira_copies_num
;
596 /* The following structure describes a stack slot used for spilled
598 struct ira_spilled_reg_stack_slot
600 /* pseudo-registers assigned to the stack slot. */
601 bitmap_head spilled_regs
;
602 /* RTL representation of the stack slot. */
604 /* Size of the stack slot. */
608 /* The number of elements in the following array. */
609 extern int ira_spilled_reg_stack_slots_num
;
611 /* The following array contains info about spilled pseudo-registers
612 stack slots used in current function so far. */
613 extern struct ira_spilled_reg_stack_slot
*ira_spilled_reg_stack_slots
;
615 /* Correspondingly overall cost of the allocation, cost of the
616 allocnos assigned to hard-registers, cost of the allocnos assigned
617 to memory, cost of loads, stores and register move insns generated
618 for pseudo-register live range splitting (see ira-emit.c). */
619 extern int ira_overall_cost
;
620 extern int ira_reg_cost
, ira_mem_cost
;
621 extern int ira_load_cost
, ira_store_cost
, ira_shuffle_cost
;
622 extern int ira_move_loops_num
, ira_additional_jumps_num
;
625 /* This page contains a bitset implementation called 'min/max sets' used to
626 record conflicts in IRA.
627 They are named min/maxs set since we keep track of a minimum and a maximum
628 bit number for each set representing the bounds of valid elements. Otherwise,
629 the implementation resembles sbitmaps in that we store an array of integers
630 whose bits directly represent the members of the set. */
632 /* The type used as elements in the array, and the number of bits in
635 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
636 #define IRA_INT_TYPE HOST_WIDE_INT
638 /* Set, clear or test bit number I in R, a bit vector of elements with
639 minimal index and maximal index equal correspondingly to MIN and
641 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
643 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
644 (({ int _min = (MIN), _max = (MAX), _i = (I); \
645 if (_i < _min || _i > _max) \
648 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
649 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
650 gcc_unreachable (); \
652 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
653 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
656 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
657 (({ int _min = (MIN), _max = (MAX), _i = (I); \
658 if (_i < _min || _i > _max) \
661 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
662 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
663 gcc_unreachable (); \
665 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
666 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
668 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
669 (({ int _min = (MIN), _max = (MAX), _i = (I); \
670 if (_i < _min || _i > _max) \
673 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
674 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
675 gcc_unreachable (); \
677 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
678 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
682 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
683 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
684 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
686 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
687 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
688 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
690 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
691 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
692 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
696 /* The iterator for min/max sets. */
697 struct minmax_set_iterator
{
699 /* Array containing the bit vector. */
702 /* The number of the current element in the vector. */
703 unsigned int word_num
;
705 /* The number of bits in the bit vector. */
708 /* The current bit index of the bit vector. */
709 unsigned int bit_num
;
711 /* Index corresponding to the 1st bit of the bit vector. */
714 /* The word of the bit vector currently visited. */
715 unsigned IRA_INT_TYPE word
;
718 /* Initialize the iterator I for bit vector VEC containing minimal and
719 maximal values MIN and MAX. */
721 minmax_set_iter_init (minmax_set_iterator
*i
, IRA_INT_TYPE
*vec
, int min
,
726 i
->nel
= max
< min
? 0 : max
- min
+ 1;
729 i
->word
= i
->nel
== 0 ? 0 : vec
[0];
732 /* Return TRUE if we have more allocnos to visit, in which case *N is
733 set to the number of the element to be visited. Otherwise, return
736 minmax_set_iter_cond (minmax_set_iterator
*i
, int *n
)
738 /* Skip words that are zeros. */
739 for (; i
->word
== 0; i
->word
= i
->vec
[i
->word_num
])
742 i
->bit_num
= i
->word_num
* IRA_INT_BITS
;
744 /* If we have reached the end, break. */
745 if (i
->bit_num
>= i
->nel
)
749 /* Skip bits that are zero. */
750 for (; (i
->word
& 1) == 0; i
->word
>>= 1)
753 *n
= (int) i
->bit_num
+ i
->start_val
;
758 /* Advance to the next element in the set. */
760 minmax_set_iter_next (minmax_set_iterator
*i
)
766 /* Loop over all elements of a min/max set given by bit vector VEC and
767 their minimal and maximal values MIN and MAX. In each iteration, N
768 is set to the number of next allocno. ITER is an instance of
769 minmax_set_iterator used to iterate over the set. */
770 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
771 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
772 minmax_set_iter_cond (&(ITER), &(N)); \
773 minmax_set_iter_next (&(ITER)))
775 struct target_ira_int
{
778 void free_ira_costs ();
779 void free_register_move_costs ();
781 /* Initialized once. It is a maximal possible size of the allocated
783 int x_max_struct_costs_size
;
785 /* Allocated and initialized once, and used to initialize cost values
787 struct costs
*x_init_cost
;
789 /* Allocated once, and used for temporary purposes. */
790 struct costs
*x_temp_costs
;
792 /* Allocated once, and used for the cost calculation. */
793 struct costs
*x_op_costs
[MAX_RECOG_OPERANDS
];
794 struct costs
*x_this_op_costs
[MAX_RECOG_OPERANDS
];
796 /* Hard registers that can not be used for the register allocator for
797 all functions of the current compilation unit. */
798 HARD_REG_SET x_no_unit_alloc_regs
;
800 /* Map: hard regs X modes -> set of hard registers for storing value
801 of given mode starting with given hard register. */
802 HARD_REG_SET (x_ira_reg_mode_hard_regset
803 [FIRST_PSEUDO_REGISTER
][NUM_MACHINE_MODES
]);
805 /* Maximum cost of moving from a register in one class to a register
806 in another class. Based on TARGET_REGISTER_MOVE_COST. */
807 move_table
*x_ira_register_move_cost
[MAX_MACHINE_MODE
];
809 /* Similar, but here we don't have to move if the first index is a
810 subset of the second so in that case the cost is zero. */
811 move_table
*x_ira_may_move_in_cost
[MAX_MACHINE_MODE
];
813 /* Similar, but here we don't have to move if the first index is a
814 superset of the second so in that case the cost is zero. */
815 move_table
*x_ira_may_move_out_cost
[MAX_MACHINE_MODE
];
817 /* Keep track of the last mode we initialized move costs for. */
818 int x_last_mode_for_init_move_cost
;
820 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
822 short int x_ira_max_memory_move_cost
[MAX_MACHINE_MODE
][N_REG_CLASSES
][2];
824 /* Map class->true if class is a possible allocno class, false
826 bool x_ira_reg_allocno_class_p
[N_REG_CLASSES
];
828 /* Map class->true if class is a pressure class, false otherwise. */
829 bool x_ira_reg_pressure_class_p
[N_REG_CLASSES
];
831 /* Array of the number of hard registers of given class which are
832 available for allocation. The order is defined by the hard
834 short x_ira_non_ordered_class_hard_regs
[N_REG_CLASSES
][FIRST_PSEUDO_REGISTER
];
836 /* Index (in ira_class_hard_regs; for given register class and hard
837 register (in general case a hard register can belong to several
838 register classes;. The index is negative for hard registers
839 unavailable for the allocation. */
840 short x_ira_class_hard_reg_index
[N_REG_CLASSES
][FIRST_PSEUDO_REGISTER
];
842 /* Array whose values are hard regset of hard registers available for
843 the allocation of given register class whose HARD_REGNO_MODE_OK
844 values for given mode are zero. */
845 HARD_REG_SET x_ira_prohibited_class_mode_regs
[N_REG_CLASSES
][NUM_MACHINE_MODES
];
847 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
849 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
853 - (reg:M 2) is valid and occupies two registers;
854 - register 2 belongs to CL; and
855 - register 3 belongs to the same pressure class as CL
857 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
859 HARD_REG_SET x_ira_useful_class_mode_regs
[N_REG_CLASSES
][NUM_MACHINE_MODES
];
861 /* The value is number of elements in the subsequent array. */
862 int x_ira_important_classes_num
;
864 /* The array containing all non-empty classes. Such classes is
865 important for calculation of the hard register usage costs. */
866 enum reg_class x_ira_important_classes
[N_REG_CLASSES
];
868 /* The array containing indexes of important classes in the previous
869 array. The array elements are defined only for important
871 int x_ira_important_class_nums
[N_REG_CLASSES
];
873 /* Map class->true if class is an uniform class, false otherwise. */
874 bool x_ira_uniform_class_p
[N_REG_CLASSES
];
876 /* The biggest important class inside of intersection of the two
877 classes (that is calculated taking only hard registers available
878 for allocation into account;. If the both classes contain no hard
879 registers available for allocation, the value is calculated with
880 taking all hard-registers including fixed ones into account. */
881 enum reg_class x_ira_reg_class_intersect
[N_REG_CLASSES
][N_REG_CLASSES
];
883 /* Classes with end marker LIM_REG_CLASSES which are intersected with
884 given class (the first index). That includes given class itself.
885 This is calculated taking only hard registers available for
886 allocation into account. */
887 enum reg_class x_ira_reg_class_super_classes
[N_REG_CLASSES
][N_REG_CLASSES
];
889 /* The biggest (smallest) important class inside of (covering) union
890 of the two classes (that is calculated taking only hard registers
891 available for allocation into account). If the both classes
892 contain no hard registers available for allocation, the value is
893 calculated with taking all hard-registers including fixed ones
894 into account. In other words, the value is the corresponding
895 reg_class_subunion (reg_class_superunion) value. */
896 enum reg_class x_ira_reg_class_subunion
[N_REG_CLASSES
][N_REG_CLASSES
];
897 enum reg_class x_ira_reg_class_superunion
[N_REG_CLASSES
][N_REG_CLASSES
];
899 /* For each reg class, table listing all the classes contained in it
900 (excluding the class itself. Non-allocatable registers are
901 excluded from the consideration). */
902 enum reg_class x_alloc_reg_class_subclasses
[N_REG_CLASSES
][N_REG_CLASSES
];
904 /* Array whose values are hard regset of hard registers for which
905 move of the hard register in given mode into itself is
907 HARD_REG_SET x_ira_prohibited_mode_move_regs
[NUM_MACHINE_MODES
];
909 /* Flag of that the above array has been initialized. */
910 bool x_ira_prohibited_mode_move_regs_initialized_p
;
913 extern struct target_ira_int default_target_ira_int
;
914 #if SWITCHABLE_TARGET
915 extern struct target_ira_int
*this_target_ira_int
;
917 #define this_target_ira_int (&default_target_ira_int)
920 #define ira_reg_mode_hard_regset \
921 (this_target_ira_int->x_ira_reg_mode_hard_regset)
922 #define ira_register_move_cost \
923 (this_target_ira_int->x_ira_register_move_cost)
924 #define ira_max_memory_move_cost \
925 (this_target_ira_int->x_ira_max_memory_move_cost)
926 #define ira_may_move_in_cost \
927 (this_target_ira_int->x_ira_may_move_in_cost)
928 #define ira_may_move_out_cost \
929 (this_target_ira_int->x_ira_may_move_out_cost)
930 #define ira_reg_allocno_class_p \
931 (this_target_ira_int->x_ira_reg_allocno_class_p)
932 #define ira_reg_pressure_class_p \
933 (this_target_ira_int->x_ira_reg_pressure_class_p)
934 #define ira_non_ordered_class_hard_regs \
935 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
936 #define ira_class_hard_reg_index \
937 (this_target_ira_int->x_ira_class_hard_reg_index)
938 #define ira_prohibited_class_mode_regs \
939 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
940 #define ira_useful_class_mode_regs \
941 (this_target_ira_int->x_ira_useful_class_mode_regs)
942 #define ira_important_classes_num \
943 (this_target_ira_int->x_ira_important_classes_num)
944 #define ira_important_classes \
945 (this_target_ira_int->x_ira_important_classes)
946 #define ira_important_class_nums \
947 (this_target_ira_int->x_ira_important_class_nums)
948 #define ira_uniform_class_p \
949 (this_target_ira_int->x_ira_uniform_class_p)
950 #define ira_reg_class_intersect \
951 (this_target_ira_int->x_ira_reg_class_intersect)
952 #define ira_reg_class_super_classes \
953 (this_target_ira_int->x_ira_reg_class_super_classes)
954 #define ira_reg_class_subunion \
955 (this_target_ira_int->x_ira_reg_class_subunion)
956 #define ira_reg_class_superunion \
957 (this_target_ira_int->x_ira_reg_class_superunion)
958 #define ira_prohibited_mode_move_regs \
959 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
963 extern void *ira_allocate (size_t);
964 extern void ira_free (void *addr
);
965 extern bitmap
ira_allocate_bitmap (void);
966 extern void ira_free_bitmap (bitmap
);
967 extern void ira_print_disposition (FILE *);
968 extern void ira_debug_disposition (void);
969 extern void ira_debug_allocno_classes (void);
970 extern void ira_init_register_move_cost (enum machine_mode
);
971 extern void ira_setup_alts (rtx_insn
*insn
, HARD_REG_SET
&alts
);
972 extern int ira_get_dup_out_num (int op_num
, HARD_REG_SET
&alts
);
976 /* The current loop tree node and its regno allocno map. */
977 extern ira_loop_tree_node_t ira_curr_loop_tree_node
;
978 extern ira_allocno_t
*ira_curr_regno_allocno_map
;
980 extern void ira_debug_pref (ira_pref_t
);
981 extern void ira_debug_prefs (void);
982 extern void ira_debug_allocno_prefs (ira_allocno_t
);
984 extern void ira_debug_copy (ira_copy_t
);
985 extern void debug (ira_allocno_copy
&ref
);
986 extern void debug (ira_allocno_copy
*ptr
);
988 extern void ira_debug_copies (void);
989 extern void ira_debug_allocno_copies (ira_allocno_t
);
990 extern void debug (ira_allocno
&ref
);
991 extern void debug (ira_allocno
*ptr
);
993 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t
,
994 void (*) (ira_loop_tree_node_t
),
995 void (*) (ira_loop_tree_node_t
));
996 extern ira_allocno_t
ira_parent_allocno (ira_allocno_t
);
997 extern ira_allocno_t
ira_parent_or_cap_allocno (ira_allocno_t
);
998 extern ira_allocno_t
ira_create_allocno (int, bool, ira_loop_tree_node_t
);
999 extern void ira_create_allocno_objects (ira_allocno_t
);
1000 extern void ira_set_allocno_class (ira_allocno_t
, enum reg_class
);
1001 extern bool ira_conflict_vector_profitable_p (ira_object_t
, int);
1002 extern void ira_allocate_conflict_vec (ira_object_t
, int);
1003 extern void ira_allocate_object_conflicts (ira_object_t
, int);
1004 extern void ior_hard_reg_conflicts (ira_allocno_t
, HARD_REG_SET
*);
1005 extern void ira_print_expanded_allocno (ira_allocno_t
);
1006 extern void ira_add_live_range_to_object (ira_object_t
, int, int);
1007 extern live_range_t
ira_create_live_range (ira_object_t
, int, int,
1009 extern live_range_t
ira_copy_live_range_list (live_range_t
);
1010 extern live_range_t
ira_merge_live_ranges (live_range_t
, live_range_t
);
1011 extern bool ira_live_ranges_intersect_p (live_range_t
, live_range_t
);
1012 extern void ira_finish_live_range (live_range_t
);
1013 extern void ira_finish_live_range_list (live_range_t
);
1014 extern void ira_free_allocno_updated_costs (ira_allocno_t
);
1015 extern ira_pref_t
ira_create_pref (ira_allocno_t
, int, int);
1016 extern void ira_add_allocno_pref (ira_allocno_t
, int, int);
1017 extern void ira_remove_pref (ira_pref_t
);
1018 extern void ira_remove_allocno_prefs (ira_allocno_t
);
1019 extern ira_copy_t
ira_create_copy (ira_allocno_t
, ira_allocno_t
,
1020 int, bool, rtx_insn
*,
1021 ira_loop_tree_node_t
);
1022 extern ira_copy_t
ira_add_allocno_copy (ira_allocno_t
, ira_allocno_t
, int,
1024 ira_loop_tree_node_t
);
1026 extern int *ira_allocate_cost_vector (reg_class_t
);
1027 extern void ira_free_cost_vector (int *, reg_class_t
);
1029 extern void ira_flattening (int, int);
1030 extern bool ira_build (void);
1031 extern void ira_destroy (void);
1034 extern void ira_init_costs_once (void);
1035 extern void ira_init_costs (void);
1036 extern void ira_costs (void);
1037 extern void ira_tune_allocno_costs (void);
1041 extern void ira_rebuild_start_finish_chains (void);
1042 extern void ira_print_live_range_list (FILE *, live_range_t
);
1043 extern void debug (live_range
&ref
);
1044 extern void debug (live_range
*ptr
);
1045 extern void ira_debug_live_range_list (live_range_t
);
1046 extern void ira_debug_allocno_live_ranges (ira_allocno_t
);
1047 extern void ira_debug_live_ranges (void);
1048 extern void ira_create_allocno_live_ranges (void);
1049 extern void ira_compress_allocno_live_ranges (void);
1050 extern void ira_finish_allocno_live_ranges (void);
1052 /* ira-conflicts.c */
1053 extern void ira_debug_conflicts (bool);
1054 extern void ira_build_conflicts (void);
1057 extern void ira_debug_hard_regs_forest (void);
1058 extern int ira_loop_edge_freq (ira_loop_tree_node_t
, int, bool);
1059 extern void ira_reassign_conflict_allocnos (int);
1060 extern void ira_initiate_assign (void);
1061 extern void ira_finish_assign (void);
1062 extern void ira_color (void);
1065 extern void ira_initiate_emit_data (void);
1066 extern void ira_finish_emit_data (void);
1067 extern void ira_emit (bool);
1071 /* Return true if equivalence of pseudo REGNO is not a lvalue. */
1073 ira_equiv_no_lvalue_p (int regno
)
1075 if (regno
>= ira_reg_equiv_len
)
1077 return (ira_reg_equiv
[regno
].constant
!= NULL_RTX
1078 || ira_reg_equiv
[regno
].invariant
!= NULL_RTX
1079 || (ira_reg_equiv
[regno
].memory
!= NULL_RTX
1080 && MEM_READONLY_P (ira_reg_equiv
[regno
].memory
)));
1085 /* Initialize register costs for MODE if necessary. */
1087 ira_init_register_move_cost_if_necessary (enum machine_mode mode
)
1089 if (ira_register_move_cost
[mode
] == NULL
)
1090 ira_init_register_move_cost (mode
);
1095 /* The iterator for all allocnos. */
1096 struct ira_allocno_iterator
{
1097 /* The number of the current element in IRA_ALLOCNOS. */
1101 /* Initialize the iterator I. */
1103 ira_allocno_iter_init (ira_allocno_iterator
*i
)
1108 /* Return TRUE if we have more allocnos to visit, in which case *A is
1109 set to the allocno to be visited. Otherwise, return FALSE. */
1111 ira_allocno_iter_cond (ira_allocno_iterator
*i
, ira_allocno_t
*a
)
1115 for (n
= i
->n
; n
< ira_allocnos_num
; n
++)
1116 if (ira_allocnos
[n
] != NULL
)
1118 *a
= ira_allocnos
[n
];
1125 /* Loop over all allocnos. In each iteration, A is set to the next
1126 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1128 #define FOR_EACH_ALLOCNO(A, ITER) \
1129 for (ira_allocno_iter_init (&(ITER)); \
1130 ira_allocno_iter_cond (&(ITER), &(A));)
1132 /* The iterator for all objects. */
1133 struct ira_object_iterator
{
1134 /* The number of the current element in ira_object_id_map. */
1138 /* Initialize the iterator I. */
1140 ira_object_iter_init (ira_object_iterator
*i
)
1145 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1146 set to the object to be visited. Otherwise, return FALSE. */
1148 ira_object_iter_cond (ira_object_iterator
*i
, ira_object_t
*obj
)
1152 for (n
= i
->n
; n
< ira_objects_num
; n
++)
1153 if (ira_object_id_map
[n
] != NULL
)
1155 *obj
= ira_object_id_map
[n
];
1162 /* Loop over all objects. In each iteration, OBJ is set to the next
1163 object. ITER is an instance of ira_object_iterator used to iterate
1165 #define FOR_EACH_OBJECT(OBJ, ITER) \
1166 for (ira_object_iter_init (&(ITER)); \
1167 ira_object_iter_cond (&(ITER), &(OBJ));)
1169 /* The iterator for objects associated with an allocno. */
1170 struct ira_allocno_object_iterator
{
1171 /* The number of the element the allocno's object array. */
1175 /* Initialize the iterator I. */
1177 ira_allocno_object_iter_init (ira_allocno_object_iterator
*i
)
1182 /* Return TRUE if we have more objects to visit in allocno A, in which
1183 case *O is set to the object to be visited. Otherwise, return
1186 ira_allocno_object_iter_cond (ira_allocno_object_iterator
*i
, ira_allocno_t a
,
1190 if (n
< ALLOCNO_NUM_OBJECTS (a
))
1192 *o
= ALLOCNO_OBJECT (a
, n
);
1198 /* Loop over all objects associated with allocno A. In each
1199 iteration, O is set to the next object. ITER is an instance of
1200 ira_allocno_object_iterator used to iterate the conflicts. */
1201 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1202 for (ira_allocno_object_iter_init (&(ITER)); \
1203 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1206 /* The iterator for prefs. */
1207 struct ira_pref_iterator
{
1208 /* The number of the current element in IRA_PREFS. */
1212 /* Initialize the iterator I. */
1214 ira_pref_iter_init (ira_pref_iterator
*i
)
1219 /* Return TRUE if we have more prefs to visit, in which case *PREF is
1220 set to the pref to be visited. Otherwise, return FALSE. */
1222 ira_pref_iter_cond (ira_pref_iterator
*i
, ira_pref_t
*pref
)
1226 for (n
= i
->n
; n
< ira_prefs_num
; n
++)
1227 if (ira_prefs
[n
] != NULL
)
1229 *pref
= ira_prefs
[n
];
1236 /* Loop over all prefs. In each iteration, P is set to the next
1237 pref. ITER is an instance of ira_pref_iterator used to iterate
1239 #define FOR_EACH_PREF(P, ITER) \
1240 for (ira_pref_iter_init (&(ITER)); \
1241 ira_pref_iter_cond (&(ITER), &(P));)
1244 /* The iterator for copies. */
1245 struct ira_copy_iterator
{
1246 /* The number of the current element in IRA_COPIES. */
1250 /* Initialize the iterator I. */
1252 ira_copy_iter_init (ira_copy_iterator
*i
)
1257 /* Return TRUE if we have more copies to visit, in which case *CP is
1258 set to the copy to be visited. Otherwise, return FALSE. */
1260 ira_copy_iter_cond (ira_copy_iterator
*i
, ira_copy_t
*cp
)
1264 for (n
= i
->n
; n
< ira_copies_num
; n
++)
1265 if (ira_copies
[n
] != NULL
)
1267 *cp
= ira_copies
[n
];
1274 /* Loop over all copies. In each iteration, C is set to the next
1275 copy. ITER is an instance of ira_copy_iterator used to iterate
1277 #define FOR_EACH_COPY(C, ITER) \
1278 for (ira_copy_iter_init (&(ITER)); \
1279 ira_copy_iter_cond (&(ITER), &(C));)
1281 /* The iterator for object conflicts. */
1282 struct ira_object_conflict_iterator
{
1284 /* TRUE if the conflicts are represented by vector of allocnos. */
1285 bool conflict_vec_p
;
1287 /* The conflict vector or conflict bit vector. */
1290 /* The number of the current element in the vector (of type
1291 ira_object_t or IRA_INT_TYPE). */
1292 unsigned int word_num
;
1294 /* The bit vector size. It is defined only if
1295 OBJECT_CONFLICT_VEC_P is FALSE. */
1298 /* The current bit index of bit vector. It is defined only if
1299 OBJECT_CONFLICT_VEC_P is FALSE. */
1300 unsigned int bit_num
;
1302 /* The object id corresponding to the 1st bit of the bit vector. It
1303 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1304 int base_conflict_id
;
1306 /* The word of bit vector currently visited. It is defined only if
1307 OBJECT_CONFLICT_VEC_P is FALSE. */
1308 unsigned IRA_INT_TYPE word
;
1311 /* Initialize the iterator I with ALLOCNO conflicts. */
1313 ira_object_conflict_iter_init (ira_object_conflict_iterator
*i
,
1316 i
->conflict_vec_p
= OBJECT_CONFLICT_VEC_P (obj
);
1317 i
->vec
= OBJECT_CONFLICT_ARRAY (obj
);
1319 if (i
->conflict_vec_p
)
1320 i
->size
= i
->bit_num
= i
->base_conflict_id
= i
->word
= 0;
1323 if (OBJECT_MIN (obj
) > OBJECT_MAX (obj
))
1326 i
->size
= ((OBJECT_MAX (obj
) - OBJECT_MIN (obj
)
1328 / IRA_INT_BITS
) * sizeof (IRA_INT_TYPE
);
1330 i
->base_conflict_id
= OBJECT_MIN (obj
);
1331 i
->word
= (i
->size
== 0 ? 0 : ((IRA_INT_TYPE
*) i
->vec
)[0]);
1335 /* Return TRUE if we have more conflicting allocnos to visit, in which
1336 case *A is set to the allocno to be visited. Otherwise, return
1339 ira_object_conflict_iter_cond (ira_object_conflict_iterator
*i
,
1344 if (i
->conflict_vec_p
)
1346 obj
= ((ira_object_t
*) i
->vec
)[i
->word_num
++];
1352 unsigned IRA_INT_TYPE word
= i
->word
;
1353 unsigned int bit_num
= i
->bit_num
;
1355 /* Skip words that are zeros. */
1356 for (; word
== 0; word
= ((IRA_INT_TYPE
*) i
->vec
)[i
->word_num
])
1360 /* If we have reached the end, break. */
1361 if (i
->word_num
* sizeof (IRA_INT_TYPE
) >= i
->size
)
1364 bit_num
= i
->word_num
* IRA_INT_BITS
;
1367 /* Skip bits that are zero. */
1368 for (; (word
& 1) == 0; word
>>= 1)
1371 obj
= ira_object_id_map
[bit_num
+ i
->base_conflict_id
];
1372 i
->bit_num
= bit_num
+ 1;
1373 i
->word
= word
>> 1;
1380 /* Loop over all objects conflicting with OBJ. In each iteration,
1381 CONF is set to the next conflicting object. ITER is an instance
1382 of ira_object_conflict_iterator used to iterate the conflicts. */
1383 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1384 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1385 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1389 /* The function returns TRUE if at least one hard register from ones
1390 starting with HARD_REGNO and containing value of MODE are in set
1393 ira_hard_reg_set_intersection_p (int hard_regno
, enum machine_mode mode
,
1394 HARD_REG_SET hard_regset
)
1398 gcc_assert (hard_regno
>= 0);
1399 for (i
= hard_regno_nregs
[hard_regno
][mode
] - 1; i
>= 0; i
--)
1400 if (TEST_HARD_REG_BIT (hard_regset
, hard_regno
+ i
))
1405 /* Return number of hard registers in hard register SET. */
1407 hard_reg_set_size (HARD_REG_SET set
)
1411 for (size
= i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1412 if (TEST_HARD_REG_BIT (set
, i
))
1417 /* The function returns TRUE if hard registers starting with
1418 HARD_REGNO and containing value of MODE are fully in set
1421 ira_hard_reg_in_set_p (int hard_regno
, enum machine_mode mode
,
1422 HARD_REG_SET hard_regset
)
1426 ira_assert (hard_regno
>= 0);
1427 for (i
= hard_regno_nregs
[hard_regno
][mode
] - 1; i
>= 0; i
--)
1428 if (!TEST_HARD_REG_BIT (hard_regset
, hard_regno
+ i
))
1435 /* To save memory we use a lazy approach for allocation and
1436 initialization of the cost vectors. We do this only when it is
1437 really necessary. */
1439 /* Allocate cost vector *VEC for hard registers of ACLASS and
1440 initialize the elements by VAL if it is necessary */
1442 ira_allocate_and_set_costs (int **vec
, reg_class_t aclass
, int val
)
1449 *vec
= reg_costs
= ira_allocate_cost_vector (aclass
);
1450 len
= ira_class_hard_regs_num
[(int) aclass
];
1451 for (i
= 0; i
< len
; i
++)
1455 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1456 values of vector SRC into the vector if it is necessary */
1458 ira_allocate_and_copy_costs (int **vec
, enum reg_class aclass
, int *src
)
1462 if (*vec
!= NULL
|| src
== NULL
)
1464 *vec
= ira_allocate_cost_vector (aclass
);
1465 len
= ira_class_hard_regs_num
[aclass
];
1466 memcpy (*vec
, src
, sizeof (int) * len
);
1469 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1470 values of vector SRC into the vector if it is necessary */
1472 ira_allocate_and_accumulate_costs (int **vec
, enum reg_class aclass
, int *src
)
1478 len
= ira_class_hard_regs_num
[aclass
];
1481 *vec
= ira_allocate_cost_vector (aclass
);
1482 memset (*vec
, 0, sizeof (int) * len
);
1484 for (i
= 0; i
< len
; i
++)
1485 (*vec
)[i
] += src
[i
];
1488 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1489 values of vector SRC into the vector or initialize it by VAL (if
1492 ira_allocate_and_set_or_copy_costs (int **vec
, enum reg_class aclass
,
1500 *vec
= reg_costs
= ira_allocate_cost_vector (aclass
);
1501 len
= ira_class_hard_regs_num
[aclass
];
1503 memcpy (reg_costs
, src
, sizeof (int) * len
);
1506 for (i
= 0; i
< len
; i
++)
1511 extern rtx
ira_create_new_reg (rtx
);
1512 extern int first_moveable_pseudo
, last_moveable_pseudo
;
1514 #endif /* GCC_IRA_INT_H */