PR tree-optimization/85826 - ICE in gimple-ssa-warn-restruct on
[official-gcc.git] / gcc / cfgloop.c
blob8af793c60154eb097eb106798aff9f84f9f1f0d0
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
35 static void flow_loops_cfg_dump (FILE *);
37 /* Dump loop related CFG information. */
39 static void
40 flow_loops_cfg_dump (FILE *file)
42 basic_block bb;
44 if (!file)
45 return;
47 FOR_EACH_BB_FN (bb, cfun)
49 edge succ;
50 edge_iterator ei;
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
61 bool
62 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
64 unsigned odepth = loop_depth (outer);
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
73 struct loop *
74 superloop_at_depth (struct loop *loop, unsigned depth)
76 unsigned ldepth = loop_depth (loop);
78 gcc_assert (depth <= ldepth);
80 if (depth == ldepth)
81 return loop;
83 return (*loop->superloops)[depth];
86 /* Returns the list of the latch edges of LOOP. */
88 static vec<edge>
89 get_loop_latch_edges (const struct loop *loop)
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
101 return ret;
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
107 void
108 flow_loop_dump (const struct loop *loop, FILE *file,
109 void (*loop_dump_aux) (const struct loop *, FILE *, int),
110 int verbose)
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
117 if (! loop || ! loop->header)
118 return;
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
139 if (loop->latch)
141 bool read_profile_p;
142 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
143 if (read_profile_p && !loop->any_estimate)
144 fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n",
145 (uint64_t) nit);
148 fprintf (file, ";; nodes:");
149 bbs = get_loop_body (loop);
150 for (i = 0; i < loop->num_nodes; i++)
151 fprintf (file, " %d", bbs[i]->index);
152 free (bbs);
153 fprintf (file, "\n");
155 if (loop_dump_aux)
156 loop_dump_aux (loop, file, verbose);
159 /* Dump the loop information about loops to the stream FILE,
160 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
162 void
163 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
165 struct loop *loop;
167 if (!current_loops || ! file)
168 return;
170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
172 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
174 flow_loop_dump (loop, file, loop_dump_aux, verbose);
177 if (verbose)
178 flow_loops_cfg_dump (file);
181 /* Free data allocated for LOOP. */
183 void
184 flow_loop_free (struct loop *loop)
186 struct loop_exit *exit, *next;
188 vec_free (loop->superloops);
190 /* Break the list of the loop exit records. They will be freed when the
191 corresponding edge is rescanned or removed, and this avoids
192 accessing the (already released) head of the list stored in the
193 loop structure. */
194 for (exit = loop->exits->next; exit != loop->exits; exit = next)
196 next = exit->next;
197 exit->next = exit;
198 exit->prev = exit;
201 ggc_free (loop->exits);
202 ggc_free (loop);
205 /* Free all the memory allocated for LOOPS. */
207 void
208 flow_loops_free (struct loops *loops)
210 if (loops->larray)
212 unsigned i;
213 loop_p loop;
215 /* Free the loop descriptors. */
216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
218 if (!loop)
219 continue;
221 flow_loop_free (loop);
224 vec_free (loops->larray);
228 /* Find the nodes contained within the LOOP with header HEADER.
229 Return the number of nodes within the loop. */
232 flow_loop_nodes_find (basic_block header, struct loop *loop)
234 vec<basic_block> stack = vNULL;
235 int num_nodes = 1;
236 edge latch;
237 edge_iterator latch_ei;
239 header->loop_father = loop;
241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
243 if (latch->src->loop_father == loop
244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 continue;
247 num_nodes++;
248 stack.safe_push (latch->src);
249 latch->src->loop_father = loop;
251 while (!stack.is_empty ())
253 basic_block node;
254 edge e;
255 edge_iterator ei;
257 node = stack.pop ();
259 FOR_EACH_EDGE (e, ei, node->preds)
261 basic_block ancestor = e->src;
263 if (ancestor->loop_father != loop)
265 ancestor->loop_father = loop;
266 num_nodes++;
267 stack.safe_push (ancestor);
272 stack.release ();
274 return num_nodes;
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
287 loop->superloops = 0;
288 vec_alloc (loop->superloops, depth);
289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
290 loop->superloops->quick_push (ploop);
291 loop->superloops->quick_push (father);
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. If AFTER is non-null
300 then it's expected it's a pointer into FATHERs inner sibling
301 list and LOOP is added behind AFTER, otherwise it's added in front
302 of FATHERs siblings. */
304 void
305 flow_loop_tree_node_add (struct loop *father, struct loop *loop,
306 struct loop *after)
308 if (after)
310 loop->next = after->next;
311 after->next = loop;
313 else
315 loop->next = father->inner;
316 father->inner = loop;
319 establish_preds (loop, father);
322 /* Remove LOOP from the loop hierarchy tree. */
324 void
325 flow_loop_tree_node_remove (struct loop *loop)
327 struct loop *prev, *father;
329 father = loop_outer (loop);
331 /* Remove loop from the list of sons. */
332 if (father->inner == loop)
333 father->inner = loop->next;
334 else
336 for (prev = father->inner; prev->next != loop; prev = prev->next)
337 continue;
338 prev->next = loop->next;
341 loop->superloops = NULL;
344 /* Allocates and returns new loop structure. */
346 struct loop *
347 alloc_loop (void)
349 struct loop *loop = ggc_cleared_alloc<struct loop> ();
351 loop->exits = ggc_cleared_alloc<loop_exit> ();
352 loop->exits->next = loop->exits->prev = loop->exits;
353 loop->can_be_parallel = false;
354 loop->constraints = 0;
355 loop->nb_iterations_upper_bound = 0;
356 loop->nb_iterations_likely_upper_bound = 0;
357 loop->nb_iterations_estimate = 0;
358 return loop;
361 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
362 (including the root of the loop tree). */
364 void
365 init_loops_structure (struct function *fn,
366 struct loops *loops, unsigned num_loops)
368 struct loop *root;
370 memset (loops, 0, sizeof *loops);
371 vec_alloc (loops->larray, num_loops);
373 /* Dummy loop containing whole function. */
374 root = alloc_loop ();
375 root->num_nodes = n_basic_blocks_for_fn (fn);
376 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
377 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
378 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
379 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
381 loops->larray->quick_push (root);
382 loops->tree_root = root;
385 /* Returns whether HEADER is a loop header. */
387 bool
388 bb_loop_header_p (basic_block header)
390 edge_iterator ei;
391 edge e;
393 /* If we have an abnormal predecessor, do not consider the
394 loop (not worth the problems). */
395 if (bb_has_abnormal_pred (header))
396 return false;
398 /* Look for back edges where a predecessor is dominated
399 by this block. A natural loop has a single entry
400 node (header) that dominates all the nodes in the
401 loop. It also has single back edge to the header
402 from a latch node. */
403 FOR_EACH_EDGE (e, ei, header->preds)
405 basic_block latch = e->src;
406 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
407 && dominated_by_p (CDI_DOMINATORS, latch, header))
408 return true;
411 return false;
414 /* Find all the natural loops in the function and save in LOOPS structure and
415 recalculate loop_father information in basic block structures.
416 If LOOPS is non-NULL then the loop structures for already recorded loops
417 will be re-used and their number will not change. We assume that no
418 stale loops exist in LOOPS.
419 When LOOPS is NULL it is allocated and re-built from scratch.
420 Return the built LOOPS structure. */
422 struct loops *
423 flow_loops_find (struct loops *loops)
425 bool from_scratch = (loops == NULL);
426 int *rc_order;
427 int b;
428 unsigned i;
430 /* Ensure that the dominators are computed. */
431 calculate_dominance_info (CDI_DOMINATORS);
433 if (!loops)
435 loops = ggc_cleared_alloc<struct loops> ();
436 init_loops_structure (cfun, loops, 1);
439 /* Ensure that loop exits were released. */
440 gcc_assert (loops->exits == NULL);
442 /* Taking care of this degenerate case makes the rest of
443 this code simpler. */
444 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
445 return loops;
447 /* The root loop node contains all basic-blocks. */
448 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
450 /* Compute depth first search order of the CFG so that outer
451 natural loops will be found before inner natural loops. */
452 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
453 pre_and_rev_post_order_compute (NULL, rc_order, false);
455 /* Gather all loop headers in reverse completion order and allocate
456 loop structures for loops that are not already present. */
457 auto_vec<loop_p> larray (loops->larray->length ());
458 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
460 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
461 if (bb_loop_header_p (header))
463 struct loop *loop;
465 /* The current active loop tree has valid loop-fathers for
466 header blocks. */
467 if (!from_scratch
468 && header->loop_father->header == header)
470 loop = header->loop_father;
471 /* If we found an existing loop remove it from the
472 loop tree. It is going to be inserted again
473 below. */
474 flow_loop_tree_node_remove (loop);
476 else
478 /* Otherwise allocate a new loop structure for the loop. */
479 loop = alloc_loop ();
480 /* ??? We could re-use unused loop slots here. */
481 loop->num = loops->larray->length ();
482 vec_safe_push (loops->larray, loop);
483 loop->header = header;
485 if (!from_scratch
486 && dump_file && (dump_flags & TDF_DETAILS))
487 fprintf (dump_file, "flow_loops_find: discovered new "
488 "loop %d with header %d\n",
489 loop->num, header->index);
491 /* Reset latch, we recompute it below. */
492 loop->latch = NULL;
493 larray.safe_push (loop);
496 /* Make blocks part of the loop root node at start. */
497 header->loop_father = loops->tree_root;
500 free (rc_order);
502 /* Now iterate over the loops found, insert them into the loop tree
503 and assign basic-block ownership. */
504 for (i = 0; i < larray.length (); ++i)
506 struct loop *loop = larray[i];
507 basic_block header = loop->header;
508 edge_iterator ei;
509 edge e;
511 flow_loop_tree_node_add (header->loop_father, loop);
512 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
514 /* Look for the latch for this header block, if it has just a
515 single one. */
516 FOR_EACH_EDGE (e, ei, header->preds)
518 basic_block latch = e->src;
520 if (flow_bb_inside_loop_p (loop, latch))
522 if (loop->latch != NULL)
524 /* More than one latch edge. */
525 loop->latch = NULL;
526 break;
528 loop->latch = latch;
533 return loops;
536 /* qsort helper for sort_sibling_loops. */
538 static int *sort_sibling_loops_cmp_rpo;
539 static int
540 sort_sibling_loops_cmp (const void *la_, const void *lb_)
542 const struct loop *la = *(const struct loop * const *)la_;
543 const struct loop *lb = *(const struct loop * const *)lb_;
544 return (sort_sibling_loops_cmp_rpo[la->header->index]
545 - sort_sibling_loops_cmp_rpo[lb->header->index]);
548 /* Sort sibling loops in RPO order. */
550 void
551 sort_sibling_loops (function *fn)
553 /* Match flow_loops_find in the order we sort sibling loops. */
554 sort_sibling_loops_cmp_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
555 int *rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
556 pre_and_rev_post_order_compute_fn (fn, NULL, rc_order, false);
557 for (int i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; ++i)
558 sort_sibling_loops_cmp_rpo[rc_order[i]] = i;
559 free (rc_order);
561 auto_vec<loop_p, 3> siblings;
562 loop_p loop;
563 FOR_EACH_LOOP_FN (fn, loop, LI_INCLUDE_ROOT)
564 if (loop->inner && loop->inner->next)
566 loop_p sibling = loop->inner;
569 siblings.safe_push (sibling);
570 sibling = sibling->next;
572 while (sibling);
573 siblings.qsort (sort_sibling_loops_cmp);
574 loop_p *siblingp = &loop->inner;
575 for (unsigned i = 0; i < siblings.length (); ++i)
577 *siblingp = siblings[i];
578 siblingp = &(*siblingp)->next;
580 *siblingp = NULL;
581 siblings.truncate (0);
584 free (sort_sibling_loops_cmp_rpo);
585 sort_sibling_loops_cmp_rpo = NULL;
588 /* Ratio of frequencies of edges so that one of more latch edges is
589 considered to belong to inner loop with same header. */
590 #define HEAVY_EDGE_RATIO 8
592 /* Minimum number of samples for that we apply
593 find_subloop_latch_edge_by_profile heuristics. */
594 #define HEAVY_EDGE_MIN_SAMPLES 10
596 /* If the profile info is available, finds an edge in LATCHES that much more
597 frequent than the remaining edges. Returns such an edge, or NULL if we do
598 not find one.
600 We do not use guessed profile here, only the measured one. The guessed
601 profile is usually too flat and unreliable for this (and it is mostly based
602 on the loop structure of the program, so it does not make much sense to
603 derive the loop structure from it). */
605 static edge
606 find_subloop_latch_edge_by_profile (vec<edge> latches)
608 unsigned i;
609 edge e, me = NULL;
610 profile_count mcount = profile_count::zero (), tcount = profile_count::zero ();
612 FOR_EACH_VEC_ELT (latches, i, e)
614 if (e->count ()> mcount)
616 me = e;
617 mcount = e->count();
619 tcount += e->count();
622 if (!tcount.initialized_p () || !(tcount.ipa () > HEAVY_EDGE_MIN_SAMPLES)
623 || (tcount - mcount).apply_scale (HEAVY_EDGE_RATIO, 1) > tcount)
624 return NULL;
626 if (dump_file)
627 fprintf (dump_file,
628 "Found latch edge %d -> %d using profile information.\n",
629 me->src->index, me->dest->index);
630 return me;
633 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
634 on the structure of induction variables. Returns this edge, or NULL if we
635 do not find any.
637 We are quite conservative, and look just for an obvious simple innermost
638 loop (which is the case where we would lose the most performance by not
639 disambiguating the loop). More precisely, we look for the following
640 situation: The source of the chosen latch edge dominates sources of all
641 the other latch edges. Additionally, the header does not contain a phi node
642 such that the argument from the chosen edge is equal to the argument from
643 another edge. */
645 static edge
646 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
648 edge e, latch = latches[0];
649 unsigned i;
650 gphi *phi;
651 gphi_iterator psi;
652 tree lop;
653 basic_block bb;
655 /* Find the candidate for the latch edge. */
656 for (i = 1; latches.iterate (i, &e); i++)
657 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
658 latch = e;
660 /* Verify that it dominates all the latch edges. */
661 FOR_EACH_VEC_ELT (latches, i, e)
662 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
663 return NULL;
665 /* Check for a phi node that would deny that this is a latch edge of
666 a subloop. */
667 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
669 phi = psi.phi ();
670 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
672 /* Ignore the values that are not changed inside the subloop. */
673 if (TREE_CODE (lop) != SSA_NAME
674 || SSA_NAME_DEF_STMT (lop) == phi)
675 continue;
676 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
677 if (!bb || !flow_bb_inside_loop_p (loop, bb))
678 continue;
680 FOR_EACH_VEC_ELT (latches, i, e)
681 if (e != latch
682 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
683 return NULL;
686 if (dump_file)
687 fprintf (dump_file,
688 "Found latch edge %d -> %d using iv structure.\n",
689 latch->src->index, latch->dest->index);
690 return latch;
693 /* If we can determine that one of the several latch edges of LOOP behaves
694 as a latch edge of a separate subloop, returns this edge. Otherwise
695 returns NULL. */
697 static edge
698 find_subloop_latch_edge (struct loop *loop)
700 vec<edge> latches = get_loop_latch_edges (loop);
701 edge latch = NULL;
703 if (latches.length () > 1)
705 latch = find_subloop_latch_edge_by_profile (latches);
707 if (!latch
708 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
709 should use cfghook for this, but it is hard to imagine it would
710 be useful elsewhere. */
711 && current_ir_type () == IR_GIMPLE)
712 latch = find_subloop_latch_edge_by_ivs (loop, latches);
715 latches.release ();
716 return latch;
719 /* Callback for make_forwarder_block. Returns true if the edge E is marked
720 in the set MFB_REIS_SET. */
722 static hash_set<edge> *mfb_reis_set;
723 static bool
724 mfb_redirect_edges_in_set (edge e)
726 return mfb_reis_set->contains (e);
729 /* Creates a subloop of LOOP with latch edge LATCH. */
731 static void
732 form_subloop (struct loop *loop, edge latch)
734 edge_iterator ei;
735 edge e, new_entry;
736 struct loop *new_loop;
738 mfb_reis_set = new hash_set<edge>;
739 FOR_EACH_EDGE (e, ei, loop->header->preds)
741 if (e != latch)
742 mfb_reis_set->add (e);
744 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
745 NULL);
746 delete mfb_reis_set;
748 loop->header = new_entry->src;
750 /* Find the blocks and subloops that belong to the new loop, and add it to
751 the appropriate place in the loop tree. */
752 new_loop = alloc_loop ();
753 new_loop->header = new_entry->dest;
754 new_loop->latch = latch->src;
755 add_loop (new_loop, loop);
758 /* Make all the latch edges of LOOP to go to a single forwarder block --
759 a new latch of LOOP. */
761 static void
762 merge_latch_edges (struct loop *loop)
764 vec<edge> latches = get_loop_latch_edges (loop);
765 edge latch, e;
766 unsigned i;
768 gcc_assert (latches.length () > 0);
770 if (latches.length () == 1)
771 loop->latch = latches[0]->src;
772 else
774 if (dump_file)
775 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
777 mfb_reis_set = new hash_set<edge>;
778 FOR_EACH_VEC_ELT (latches, i, e)
779 mfb_reis_set->add (e);
780 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
781 NULL);
782 delete mfb_reis_set;
784 loop->header = latch->dest;
785 loop->latch = latch->src;
788 latches.release ();
791 /* LOOP may have several latch edges. Transform it into (possibly several)
792 loops with single latch edge. */
794 static void
795 disambiguate_multiple_latches (struct loop *loop)
797 edge e;
799 /* We eliminate the multiple latches by splitting the header to the forwarder
800 block F and the rest R, and redirecting the edges. There are two cases:
802 1) If there is a latch edge E that corresponds to a subloop (we guess
803 that based on profile -- if it is taken much more often than the
804 remaining edges; and on trees, using the information about induction
805 variables of the loops), we redirect E to R, all the remaining edges to
806 F, then rescan the loops and try again for the outer loop.
807 2) If there is no such edge, we redirect all latch edges to F, and the
808 entry edges to R, thus making F the single latch of the loop. */
810 if (dump_file)
811 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
812 loop->num);
814 /* During latch merging, we may need to redirect the entry edges to a new
815 block. This would cause problems if the entry edge was the one from the
816 entry block. To avoid having to handle this case specially, split
817 such entry edge. */
818 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
819 if (e)
820 split_edge (e);
822 while (1)
824 e = find_subloop_latch_edge (loop);
825 if (!e)
826 break;
828 form_subloop (loop, e);
831 merge_latch_edges (loop);
834 /* Split loops with multiple latch edges. */
836 void
837 disambiguate_loops_with_multiple_latches (void)
839 struct loop *loop;
841 FOR_EACH_LOOP (loop, 0)
843 if (!loop->latch)
844 disambiguate_multiple_latches (loop);
848 /* Return nonzero if basic block BB belongs to LOOP. */
849 bool
850 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
852 struct loop *source_loop;
854 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
855 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
856 return 0;
858 source_loop = bb->loop_father;
859 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
862 /* Enumeration predicate for get_loop_body_with_size. */
863 static bool
864 glb_enum_p (const_basic_block bb, const void *glb_loop)
866 const struct loop *const loop = (const struct loop *) glb_loop;
867 return (bb != loop->header
868 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
871 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
872 order against direction of edges from latch. Specially, if
873 header != latch, latch is the 1-st block. LOOP cannot be the fake
874 loop tree root, and its size must be at most MAX_SIZE. The blocks
875 in the LOOP body are stored to BODY, and the size of the LOOP is
876 returned. */
878 unsigned
879 get_loop_body_with_size (const struct loop *loop, basic_block *body,
880 unsigned max_size)
882 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
883 body, max_size, loop);
886 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
887 order against direction of edges from latch. Specially, if
888 header != latch, latch is the 1-st block. */
890 basic_block *
891 get_loop_body (const struct loop *loop)
893 basic_block *body, bb;
894 unsigned tv = 0;
896 gcc_assert (loop->num_nodes);
898 body = XNEWVEC (basic_block, loop->num_nodes);
900 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
902 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
903 special-case the fake loop that contains the whole function. */
904 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
905 body[tv++] = loop->header;
906 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
907 FOR_EACH_BB_FN (bb, cfun)
908 body[tv++] = bb;
910 else
911 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
913 gcc_assert (tv == loop->num_nodes);
914 return body;
917 /* Fills dominance descendants inside LOOP of the basic block BB into
918 array TOVISIT from index *TV. */
920 static void
921 fill_sons_in_loop (const struct loop *loop, basic_block bb,
922 basic_block *tovisit, int *tv)
924 basic_block son, postpone = NULL;
926 tovisit[(*tv)++] = bb;
927 for (son = first_dom_son (CDI_DOMINATORS, bb);
928 son;
929 son = next_dom_son (CDI_DOMINATORS, son))
931 if (!flow_bb_inside_loop_p (loop, son))
932 continue;
934 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
936 postpone = son;
937 continue;
939 fill_sons_in_loop (loop, son, tovisit, tv);
942 if (postpone)
943 fill_sons_in_loop (loop, postpone, tovisit, tv);
946 /* Gets body of a LOOP (that must be different from the outermost loop)
947 sorted by dominance relation. Additionally, if a basic block s dominates
948 the latch, then only blocks dominated by s are be after it. */
950 basic_block *
951 get_loop_body_in_dom_order (const struct loop *loop)
953 basic_block *tovisit;
954 int tv;
956 gcc_assert (loop->num_nodes);
958 tovisit = XNEWVEC (basic_block, loop->num_nodes);
960 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
962 tv = 0;
963 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
965 gcc_assert (tv == (int) loop->num_nodes);
967 return tovisit;
970 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
972 basic_block *
973 get_loop_body_in_custom_order (const struct loop *loop,
974 int (*bb_comparator) (const void *, const void *))
976 basic_block *bbs = get_loop_body (loop);
978 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
980 return bbs;
983 /* Get body of a LOOP in breadth first sort order. */
985 basic_block *
986 get_loop_body_in_bfs_order (const struct loop *loop)
988 basic_block *blocks;
989 basic_block bb;
990 unsigned int i = 1;
991 unsigned int vc = 0;
993 gcc_assert (loop->num_nodes);
994 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
996 blocks = XNEWVEC (basic_block, loop->num_nodes);
997 auto_bitmap visited;
998 blocks[0] = loop->header;
999 bitmap_set_bit (visited, loop->header->index);
1000 while (i < loop->num_nodes)
1002 edge e;
1003 edge_iterator ei;
1004 gcc_assert (i > vc);
1005 bb = blocks[vc++];
1007 FOR_EACH_EDGE (e, ei, bb->succs)
1009 if (flow_bb_inside_loop_p (loop, e->dest))
1011 /* This bb is now visited. */
1012 if (bitmap_set_bit (visited, e->dest->index))
1013 blocks[i++] = e->dest;
1018 return blocks;
1021 /* Hash function for struct loop_exit. */
1023 hashval_t
1024 loop_exit_hasher::hash (loop_exit *exit)
1026 return htab_hash_pointer (exit->e);
1029 /* Equality function for struct loop_exit. Compares with edge. */
1031 bool
1032 loop_exit_hasher::equal (loop_exit *exit, edge e)
1034 return exit->e == e;
1037 /* Frees the list of loop exit descriptions EX. */
1039 void
1040 loop_exit_hasher::remove (loop_exit *exit)
1042 loop_exit *next;
1043 for (; exit; exit = next)
1045 next = exit->next_e;
1047 exit->next->prev = exit->prev;
1048 exit->prev->next = exit->next;
1050 ggc_free (exit);
1054 /* Returns the list of records for E as an exit of a loop. */
1056 static struct loop_exit *
1057 get_exit_descriptions (edge e)
1059 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
1062 /* Updates the lists of loop exits in that E appears.
1063 If REMOVED is true, E is being removed, and we
1064 just remove it from the lists of exits.
1065 If NEW_EDGE is true and E is not a loop exit, we
1066 do not try to remove it from loop exit lists. */
1068 void
1069 rescan_loop_exit (edge e, bool new_edge, bool removed)
1071 struct loop_exit *exits = NULL, *exit;
1072 struct loop *aloop, *cloop;
1074 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1075 return;
1077 if (!removed
1078 && e->src->loop_father != NULL
1079 && e->dest->loop_father != NULL
1080 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1082 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1083 for (aloop = e->src->loop_father;
1084 aloop != cloop;
1085 aloop = loop_outer (aloop))
1087 exit = ggc_alloc<loop_exit> ();
1088 exit->e = e;
1090 exit->next = aloop->exits->next;
1091 exit->prev = aloop->exits;
1092 exit->next->prev = exit;
1093 exit->prev->next = exit;
1095 exit->next_e = exits;
1096 exits = exit;
1100 if (!exits && new_edge)
1101 return;
1103 loop_exit **slot
1104 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1105 exits ? INSERT : NO_INSERT);
1106 if (!slot)
1107 return;
1109 if (exits)
1111 if (*slot)
1112 loop_exit_hasher::remove (*slot);
1113 *slot = exits;
1115 else
1116 current_loops->exits->clear_slot (slot);
1119 /* For each loop, record list of exit edges, and start maintaining these
1120 lists. */
1122 void
1123 record_loop_exits (void)
1125 basic_block bb;
1126 edge_iterator ei;
1127 edge e;
1129 if (!current_loops)
1130 return;
1132 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1133 return;
1134 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1136 gcc_assert (current_loops->exits == NULL);
1137 current_loops->exits
1138 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1140 FOR_EACH_BB_FN (bb, cfun)
1142 FOR_EACH_EDGE (e, ei, bb->succs)
1144 rescan_loop_exit (e, true, false);
1149 /* Dumps information about the exit in *SLOT to FILE.
1150 Callback for htab_traverse. */
1153 dump_recorded_exit (loop_exit **slot, FILE *file)
1155 struct loop_exit *exit = *slot;
1156 unsigned n = 0;
1157 edge e = exit->e;
1159 for (; exit != NULL; exit = exit->next_e)
1160 n++;
1162 fprintf (file, "Edge %d->%d exits %u loops\n",
1163 e->src->index, e->dest->index, n);
1165 return 1;
1168 /* Dumps the recorded exits of loops to FILE. */
1170 extern void dump_recorded_exits (FILE *);
1171 void
1172 dump_recorded_exits (FILE *file)
1174 if (!current_loops->exits)
1175 return;
1176 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1179 /* Releases lists of loop exits. */
1181 void
1182 release_recorded_exits (function *fn)
1184 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1185 loops_for_fn (fn)->exits->empty ();
1186 loops_for_fn (fn)->exits = NULL;
1187 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1190 /* Returns the list of the exit edges of a LOOP. */
1192 vec<edge>
1193 get_loop_exit_edges (const struct loop *loop)
1195 vec<edge> edges = vNULL;
1196 edge e;
1197 unsigned i;
1198 basic_block *body;
1199 edge_iterator ei;
1200 struct loop_exit *exit;
1202 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1204 /* If we maintain the lists of exits, use them. Otherwise we must
1205 scan the body of the loop. */
1206 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1208 for (exit = loop->exits->next; exit->e; exit = exit->next)
1209 edges.safe_push (exit->e);
1211 else
1213 body = get_loop_body (loop);
1214 for (i = 0; i < loop->num_nodes; i++)
1215 FOR_EACH_EDGE (e, ei, body[i]->succs)
1217 if (!flow_bb_inside_loop_p (loop, e->dest))
1218 edges.safe_push (e);
1220 free (body);
1223 return edges;
1226 /* Counts the number of conditional branches inside LOOP. */
1228 unsigned
1229 num_loop_branches (const struct loop *loop)
1231 unsigned i, n;
1232 basic_block * body;
1234 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1236 body = get_loop_body (loop);
1237 n = 0;
1238 for (i = 0; i < loop->num_nodes; i++)
1239 if (EDGE_COUNT (body[i]->succs) >= 2)
1240 n++;
1241 free (body);
1243 return n;
1246 /* Adds basic block BB to LOOP. */
1247 void
1248 add_bb_to_loop (basic_block bb, struct loop *loop)
1250 unsigned i;
1251 loop_p ploop;
1252 edge_iterator ei;
1253 edge e;
1255 gcc_assert (bb->loop_father == NULL);
1256 bb->loop_father = loop;
1257 loop->num_nodes++;
1258 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1259 ploop->num_nodes++;
1261 FOR_EACH_EDGE (e, ei, bb->succs)
1263 rescan_loop_exit (e, true, false);
1265 FOR_EACH_EDGE (e, ei, bb->preds)
1267 rescan_loop_exit (e, true, false);
1271 /* Remove basic block BB from loops. */
1272 void
1273 remove_bb_from_loops (basic_block bb)
1275 unsigned i;
1276 struct loop *loop = bb->loop_father;
1277 loop_p ploop;
1278 edge_iterator ei;
1279 edge e;
1281 gcc_assert (loop != NULL);
1282 loop->num_nodes--;
1283 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1284 ploop->num_nodes--;
1285 bb->loop_father = NULL;
1287 FOR_EACH_EDGE (e, ei, bb->succs)
1289 rescan_loop_exit (e, false, true);
1291 FOR_EACH_EDGE (e, ei, bb->preds)
1293 rescan_loop_exit (e, false, true);
1297 /* Finds nearest common ancestor in loop tree for given loops. */
1298 struct loop *
1299 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1301 unsigned sdepth, ddepth;
1303 if (!loop_s) return loop_d;
1304 if (!loop_d) return loop_s;
1306 sdepth = loop_depth (loop_s);
1307 ddepth = loop_depth (loop_d);
1309 if (sdepth < ddepth)
1310 loop_d = (*loop_d->superloops)[sdepth];
1311 else if (sdepth > ddepth)
1312 loop_s = (*loop_s->superloops)[ddepth];
1314 while (loop_s != loop_d)
1316 loop_s = loop_outer (loop_s);
1317 loop_d = loop_outer (loop_d);
1319 return loop_s;
1322 /* Removes LOOP from structures and frees its data. */
1324 void
1325 delete_loop (struct loop *loop)
1327 /* Remove the loop from structure. */
1328 flow_loop_tree_node_remove (loop);
1330 /* Remove loop from loops array. */
1331 (*current_loops->larray)[loop->num] = NULL;
1333 /* Free loop data. */
1334 flow_loop_free (loop);
1337 /* Cancels the LOOP; it must be innermost one. */
1339 static void
1340 cancel_loop (struct loop *loop)
1342 basic_block *bbs;
1343 unsigned i;
1344 struct loop *outer = loop_outer (loop);
1346 gcc_assert (!loop->inner);
1348 /* Move blocks up one level (they should be removed as soon as possible). */
1349 bbs = get_loop_body (loop);
1350 for (i = 0; i < loop->num_nodes; i++)
1351 bbs[i]->loop_father = outer;
1353 free (bbs);
1354 delete_loop (loop);
1357 /* Cancels LOOP and all its subloops. */
1358 void
1359 cancel_loop_tree (struct loop *loop)
1361 while (loop->inner)
1362 cancel_loop_tree (loop->inner);
1363 cancel_loop (loop);
1366 /* Checks that information about loops is correct
1367 -- sizes of loops are all right
1368 -- results of get_loop_body really belong to the loop
1369 -- loop header have just single entry edge and single latch edge
1370 -- loop latches have only single successor that is header of their loop
1371 -- irreducible loops are correctly marked
1372 -- the cached loop depth and loop father of each bb is correct
1374 DEBUG_FUNCTION void
1375 verify_loop_structure (void)
1377 unsigned *sizes, i, j;
1378 basic_block bb, *bbs;
1379 struct loop *loop;
1380 int err = 0;
1381 edge e;
1382 unsigned num = number_of_loops (cfun);
1383 struct loop_exit *exit, *mexit;
1384 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1386 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1388 error ("loop verification on loop tree that needs fixup");
1389 err = 1;
1392 /* We need up-to-date dominators, compute or verify them. */
1393 if (!dom_available)
1394 calculate_dominance_info (CDI_DOMINATORS);
1395 else
1396 verify_dominators (CDI_DOMINATORS);
1398 /* Check the loop tree root. */
1399 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1400 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1401 || (current_loops->tree_root->num_nodes
1402 != (unsigned) n_basic_blocks_for_fn (cfun)))
1404 error ("corrupt loop tree root");
1405 err = 1;
1408 /* Check the headers. */
1409 FOR_EACH_BB_FN (bb, cfun)
1410 if (bb_loop_header_p (bb))
1412 if (bb->loop_father->header == NULL)
1414 error ("loop with header %d marked for removal", bb->index);
1415 err = 1;
1417 else if (bb->loop_father->header != bb)
1419 error ("loop with header %d not in loop tree", bb->index);
1420 err = 1;
1423 else if (bb->loop_father->header == bb)
1425 error ("non-loop with header %d not marked for removal", bb->index);
1426 err = 1;
1429 /* Check the recorded loop father and sizes of loops. */
1430 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1431 bitmap_clear (visited);
1432 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1433 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1435 unsigned n;
1437 if (loop->header == NULL)
1439 error ("removed loop %d in loop tree", loop->num);
1440 err = 1;
1441 continue;
1444 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1445 if (loop->num_nodes != n)
1447 error ("size of loop %d should be %d, not %d",
1448 loop->num, n, loop->num_nodes);
1449 err = 1;
1452 for (j = 0; j < n; j++)
1454 bb = bbs[j];
1456 if (!flow_bb_inside_loop_p (loop, bb))
1458 error ("bb %d does not belong to loop %d",
1459 bb->index, loop->num);
1460 err = 1;
1463 /* Ignore this block if it is in an inner loop. */
1464 if (bitmap_bit_p (visited, bb->index))
1465 continue;
1466 bitmap_set_bit (visited, bb->index);
1468 if (bb->loop_father != loop)
1470 error ("bb %d has father loop %d, should be loop %d",
1471 bb->index, bb->loop_father->num, loop->num);
1472 err = 1;
1476 free (bbs);
1478 /* Check headers and latches. */
1479 FOR_EACH_LOOP (loop, 0)
1481 i = loop->num;
1482 if (loop->header == NULL)
1483 continue;
1484 if (!bb_loop_header_p (loop->header))
1486 error ("loop %d%'s header is not a loop header", i);
1487 err = 1;
1489 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1490 && EDGE_COUNT (loop->header->preds) != 2)
1492 error ("loop %d%'s header does not have exactly 2 entries", i);
1493 err = 1;
1495 if (loop->latch)
1497 if (!find_edge (loop->latch, loop->header))
1499 error ("loop %d%'s latch does not have an edge to its header", i);
1500 err = 1;
1502 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1504 error ("loop %d%'s latch is not dominated by its header", i);
1505 err = 1;
1508 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1510 if (!single_succ_p (loop->latch))
1512 error ("loop %d%'s latch does not have exactly 1 successor", i);
1513 err = 1;
1515 if (single_succ (loop->latch) != loop->header)
1517 error ("loop %d%'s latch does not have header as successor", i);
1518 err = 1;
1520 if (loop->latch->loop_father != loop)
1522 error ("loop %d%'s latch does not belong directly to it", i);
1523 err = 1;
1526 if (loop->header->loop_father != loop)
1528 error ("loop %d%'s header does not belong directly to it", i);
1529 err = 1;
1531 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1532 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1534 error ("loop %d%'s latch is marked as part of irreducible region", i);
1535 err = 1;
1539 /* Check irreducible loops. */
1540 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1542 /* Record old info. */
1543 auto_sbitmap irreds (last_basic_block_for_fn (cfun));
1544 FOR_EACH_BB_FN (bb, cfun)
1546 edge_iterator ei;
1547 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1548 bitmap_set_bit (irreds, bb->index);
1549 else
1550 bitmap_clear_bit (irreds, bb->index);
1551 FOR_EACH_EDGE (e, ei, bb->succs)
1552 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1553 e->flags |= EDGE_ALL_FLAGS + 1;
1556 /* Recount it. */
1557 mark_irreducible_loops ();
1559 /* Compare. */
1560 FOR_EACH_BB_FN (bb, cfun)
1562 edge_iterator ei;
1564 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1565 && !bitmap_bit_p (irreds, bb->index))
1567 error ("basic block %d should be marked irreducible", bb->index);
1568 err = 1;
1570 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1571 && bitmap_bit_p (irreds, bb->index))
1573 error ("basic block %d should not be marked irreducible", bb->index);
1574 err = 1;
1576 FOR_EACH_EDGE (e, ei, bb->succs)
1578 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1579 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1581 error ("edge from %d to %d should be marked irreducible",
1582 e->src->index, e->dest->index);
1583 err = 1;
1585 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1586 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1588 error ("edge from %d to %d should not be marked irreducible",
1589 e->src->index, e->dest->index);
1590 err = 1;
1592 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1597 /* Check the recorded loop exits. */
1598 FOR_EACH_LOOP (loop, 0)
1600 if (!loop->exits || loop->exits->e != NULL)
1602 error ("corrupted head of the exits list of loop %d",
1603 loop->num);
1604 err = 1;
1606 else
1608 /* Check that the list forms a cycle, and all elements except
1609 for the head are nonnull. */
1610 for (mexit = loop->exits, exit = mexit->next, i = 0;
1611 exit->e && exit != mexit;
1612 exit = exit->next)
1614 if (i++ & 1)
1615 mexit = mexit->next;
1618 if (exit != loop->exits)
1620 error ("corrupted exits list of loop %d", loop->num);
1621 err = 1;
1625 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1627 if (loop->exits->next != loop->exits)
1629 error ("nonempty exits list of loop %d, but exits are not recorded",
1630 loop->num);
1631 err = 1;
1636 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1638 unsigned n_exits = 0, eloops;
1640 sizes = XCNEWVEC (unsigned, num);
1641 memset (sizes, 0, sizeof (unsigned) * num);
1642 FOR_EACH_BB_FN (bb, cfun)
1644 edge_iterator ei;
1645 if (bb->loop_father == current_loops->tree_root)
1646 continue;
1647 FOR_EACH_EDGE (e, ei, bb->succs)
1649 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1650 continue;
1652 n_exits++;
1653 exit = get_exit_descriptions (e);
1654 if (!exit)
1656 error ("exit %d->%d not recorded",
1657 e->src->index, e->dest->index);
1658 err = 1;
1660 eloops = 0;
1661 for (; exit; exit = exit->next_e)
1662 eloops++;
1664 for (loop = bb->loop_father;
1665 loop != e->dest->loop_father
1666 /* When a loop exit is also an entry edge which
1667 can happen when avoiding CFG manipulations
1668 then the last loop exited is the outer loop
1669 of the loop entered. */
1670 && loop != loop_outer (e->dest->loop_father);
1671 loop = loop_outer (loop))
1673 eloops--;
1674 sizes[loop->num]++;
1677 if (eloops != 0)
1679 error ("wrong list of exited loops for edge %d->%d",
1680 e->src->index, e->dest->index);
1681 err = 1;
1686 if (n_exits != current_loops->exits->elements ())
1688 error ("too many loop exits recorded");
1689 err = 1;
1692 FOR_EACH_LOOP (loop, 0)
1694 eloops = 0;
1695 for (exit = loop->exits->next; exit->e; exit = exit->next)
1696 eloops++;
1697 if (eloops != sizes[loop->num])
1699 error ("%d exits recorded for loop %d (having %d exits)",
1700 eloops, loop->num, sizes[loop->num]);
1701 err = 1;
1705 free (sizes);
1708 gcc_assert (!err);
1710 if (!dom_available)
1711 free_dominance_info (CDI_DOMINATORS);
1714 /* Returns latch edge of LOOP. */
1715 edge
1716 loop_latch_edge (const struct loop *loop)
1718 return find_edge (loop->latch, loop->header);
1721 /* Returns preheader edge of LOOP. */
1722 edge
1723 loop_preheader_edge (const struct loop *loop)
1725 edge e;
1726 edge_iterator ei;
1728 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1729 && ! loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES));
1731 FOR_EACH_EDGE (e, ei, loop->header->preds)
1732 if (e->src != loop->latch)
1733 break;
1735 if (! e)
1737 gcc_assert (! loop_outer (loop));
1738 return single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1741 return e;
1744 /* Returns true if E is an exit of LOOP. */
1746 bool
1747 loop_exit_edge_p (const struct loop *loop, const_edge e)
1749 return (flow_bb_inside_loop_p (loop, e->src)
1750 && !flow_bb_inside_loop_p (loop, e->dest));
1753 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1754 or more than one exit. If loops do not have the exits recorded, NULL
1755 is returned always. */
1757 edge
1758 single_exit (const struct loop *loop)
1760 struct loop_exit *exit = loop->exits->next;
1762 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1763 return NULL;
1765 if (exit->e && exit->next == loop->exits)
1766 return exit->e;
1767 else
1768 return NULL;
1771 /* Returns true when BB has an incoming edge exiting LOOP. */
1773 bool
1774 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1776 edge e;
1777 edge_iterator ei;
1779 FOR_EACH_EDGE (e, ei, bb->preds)
1780 if (loop_exit_edge_p (loop, e))
1781 return true;
1783 return false;
1786 /* Returns true when BB has an outgoing edge exiting LOOP. */
1788 bool
1789 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1791 edge e;
1792 edge_iterator ei;
1794 FOR_EACH_EDGE (e, ei, bb->succs)
1795 if (loop_exit_edge_p (loop, e))
1796 return true;
1798 return false;
1801 /* Return location corresponding to the loop control condition if possible. */
1803 location_t
1804 get_loop_location (struct loop *loop)
1806 rtx_insn *insn = NULL;
1807 struct niter_desc *desc = NULL;
1808 edge exit;
1810 /* For a for or while loop, we would like to return the location
1811 of the for or while statement, if possible. To do this, look
1812 for the branch guarding the loop back-edge. */
1814 /* If this is a simple loop with an in_edge, then the loop control
1815 branch is typically at the end of its source. */
1816 desc = get_simple_loop_desc (loop);
1817 if (desc->in_edge)
1819 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1821 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1822 return INSN_LOCATION (insn);
1825 /* If loop has a single exit, then the loop control branch
1826 must be at the end of its source. */
1827 if ((exit = single_exit (loop)))
1829 FOR_BB_INSNS_REVERSE (exit->src, insn)
1831 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1832 return INSN_LOCATION (insn);
1835 /* Next check the latch, to see if it is non-empty. */
1836 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1838 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1839 return INSN_LOCATION (insn);
1841 /* Finally, if none of the above identifies the loop control branch,
1842 return the first location in the loop header. */
1843 FOR_BB_INSNS (loop->header, insn)
1845 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1846 return INSN_LOCATION (insn);
1848 /* If all else fails, simply return the current function location. */
1849 return DECL_SOURCE_LOCATION (current_function_decl);
1852 /* Records that every statement in LOOP is executed I_BOUND times.
1853 REALISTIC is true if I_BOUND is expected to be close to the real number
1854 of iterations. UPPER is true if we are sure the loop iterates at most
1855 I_BOUND times. */
1857 void
1858 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1859 bool realistic, bool upper)
1861 /* Update the bounds only when there is no previous estimation, or when the
1862 current estimation is smaller. */
1863 if (upper
1864 && (!loop->any_upper_bound
1865 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1867 loop->any_upper_bound = true;
1868 loop->nb_iterations_upper_bound = i_bound;
1869 if (!loop->any_likely_upper_bound)
1871 loop->any_likely_upper_bound = true;
1872 loop->nb_iterations_likely_upper_bound = i_bound;
1875 if (realistic
1876 && (!loop->any_estimate
1877 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1879 loop->any_estimate = true;
1880 loop->nb_iterations_estimate = i_bound;
1882 if (!realistic
1883 && (!loop->any_likely_upper_bound
1884 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1886 loop->any_likely_upper_bound = true;
1887 loop->nb_iterations_likely_upper_bound = i_bound;
1890 /* If an upper bound is smaller than the realistic estimate of the
1891 number of iterations, use the upper bound instead. */
1892 if (loop->any_upper_bound
1893 && loop->any_estimate
1894 && wi::ltu_p (loop->nb_iterations_upper_bound,
1895 loop->nb_iterations_estimate))
1896 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1897 if (loop->any_upper_bound
1898 && loop->any_likely_upper_bound
1899 && wi::ltu_p (loop->nb_iterations_upper_bound,
1900 loop->nb_iterations_likely_upper_bound))
1901 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1904 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1905 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1906 on the number of iterations of LOOP could not be derived, returns -1. */
1908 HOST_WIDE_INT
1909 get_estimated_loop_iterations_int (struct loop *loop)
1911 widest_int nit;
1912 HOST_WIDE_INT hwi_nit;
1914 if (!get_estimated_loop_iterations (loop, &nit))
1915 return -1;
1917 if (!wi::fits_shwi_p (nit))
1918 return -1;
1919 hwi_nit = nit.to_shwi ();
1921 return hwi_nit < 0 ? -1 : hwi_nit;
1924 /* Returns an upper bound on the number of executions of statements
1925 in the LOOP. For statements before the loop exit, this exceeds
1926 the number of execution of the latch by one. */
1928 HOST_WIDE_INT
1929 max_stmt_executions_int (struct loop *loop)
1931 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1932 HOST_WIDE_INT snit;
1934 if (nit == -1)
1935 return -1;
1937 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1939 /* If the computation overflows, return -1. */
1940 return snit < 0 ? -1 : snit;
1943 /* Returns an likely upper bound on the number of executions of statements
1944 in the LOOP. For statements before the loop exit, this exceeds
1945 the number of execution of the latch by one. */
1947 HOST_WIDE_INT
1948 likely_max_stmt_executions_int (struct loop *loop)
1950 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1951 HOST_WIDE_INT snit;
1953 if (nit == -1)
1954 return -1;
1956 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1958 /* If the computation overflows, return -1. */
1959 return snit < 0 ? -1 : snit;
1962 /* Sets NIT to the estimated number of executions of the latch of the
1963 LOOP. If we have no reliable estimate, the function returns false, otherwise
1964 returns true. */
1966 bool
1967 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1969 /* Even if the bound is not recorded, possibly we can derrive one from
1970 profile. */
1971 if (!loop->any_estimate)
1973 if (loop->header->count.reliable_p ())
1975 *nit = gcov_type_to_wide_int
1976 (expected_loop_iterations_unbounded (loop) + 1);
1977 return true;
1979 return false;
1982 *nit = loop->nb_iterations_estimate;
1983 return true;
1986 /* Sets NIT to an upper bound for the maximum number of executions of the
1987 latch of the LOOP. If we have no reliable estimate, the function returns
1988 false, otherwise returns true. */
1990 bool
1991 get_max_loop_iterations (const struct loop *loop, widest_int *nit)
1993 if (!loop->any_upper_bound)
1994 return false;
1996 *nit = loop->nb_iterations_upper_bound;
1997 return true;
2000 /* Similar to get_max_loop_iterations, but returns the estimate only
2001 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2002 on the number of iterations of LOOP could not be derived, returns -1. */
2004 HOST_WIDE_INT
2005 get_max_loop_iterations_int (const struct loop *loop)
2007 widest_int nit;
2008 HOST_WIDE_INT hwi_nit;
2010 if (!get_max_loop_iterations (loop, &nit))
2011 return -1;
2013 if (!wi::fits_shwi_p (nit))
2014 return -1;
2015 hwi_nit = nit.to_shwi ();
2017 return hwi_nit < 0 ? -1 : hwi_nit;
2020 /* Sets NIT to an upper bound for the maximum number of executions of the
2021 latch of the LOOP. If we have no reliable estimate, the function returns
2022 false, otherwise returns true. */
2024 bool
2025 get_likely_max_loop_iterations (struct loop *loop, widest_int *nit)
2027 if (!loop->any_likely_upper_bound)
2028 return false;
2030 *nit = loop->nb_iterations_likely_upper_bound;
2031 return true;
2034 /* Similar to get_max_loop_iterations, but returns the estimate only
2035 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2036 on the number of iterations of LOOP could not be derived, returns -1. */
2038 HOST_WIDE_INT
2039 get_likely_max_loop_iterations_int (struct loop *loop)
2041 widest_int nit;
2042 HOST_WIDE_INT hwi_nit;
2044 if (!get_likely_max_loop_iterations (loop, &nit))
2045 return -1;
2047 if (!wi::fits_shwi_p (nit))
2048 return -1;
2049 hwi_nit = nit.to_shwi ();
2051 return hwi_nit < 0 ? -1 : hwi_nit;
2054 /* Returns the loop depth of the loop BB belongs to. */
2057 bb_loop_depth (const_basic_block bb)
2059 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
2062 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
2064 void
2065 mark_loop_for_removal (loop_p loop)
2067 if (loop->header == NULL)
2068 return;
2069 loop->former_header = loop->header;
2070 loop->header = NULL;
2071 loop->latch = NULL;
2072 loops_state_set (LOOPS_NEED_FIXUP);