Daily bump.
[official-gcc.git] / gcc / flow.c
blob96eb72555d438226a0a2277d114da4bd83fe2a53
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "insn-flags.h"
137 #include "expr.h"
138 #include "ssa.h"
140 #include "obstack.h"
141 #include "splay-tree.h"
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
171 /* The obstack on which the flow graph components are allocated. */
173 struct obstack flow_obstack;
174 static char *flow_firstobj;
176 /* Number of basic blocks in the current function. */
178 int n_basic_blocks;
180 /* Number of edges in the current function. */
182 int n_edges;
184 /* The basic block array. */
186 varray_type basic_block_info;
188 /* The special entry and exit blocks. */
190 struct basic_block_def entry_exit_blocks[2]
191 = {{NULL, /* head */
192 NULL, /* end */
193 NULL, /* pred */
194 NULL, /* succ */
195 NULL, /* local_set */
196 NULL, /* cond_local_set */
197 NULL, /* global_live_at_start */
198 NULL, /* global_live_at_end */
199 NULL, /* aux */
200 ENTRY_BLOCK, /* index */
201 0, /* loop_depth */
202 -1, -1, /* eh_beg, eh_end */
203 0 /* count */
206 NULL, /* head */
207 NULL, /* end */
208 NULL, /* pred */
209 NULL, /* succ */
210 NULL, /* local_set */
211 NULL, /* cond_local_set */
212 NULL, /* global_live_at_start */
213 NULL, /* global_live_at_end */
214 NULL, /* aux */
215 EXIT_BLOCK, /* index */
216 0, /* loop_depth */
217 -1, -1, /* eh_beg, eh_end */
218 0 /* count */
222 /* Nonzero if the second flow pass has completed. */
223 int flow2_completed;
225 /* Maximum register number used in this function, plus one. */
227 int max_regno;
229 /* Indexed by n, giving various register information */
231 varray_type reg_n_info;
233 /* Size of a regset for the current function,
234 in (1) bytes and (2) elements. */
236 int regset_bytes;
237 int regset_size;
239 /* Regset of regs live when calls to `setjmp'-like functions happen. */
240 /* ??? Does this exist only for the setjmp-clobbered warning message? */
242 regset regs_live_at_setjmp;
244 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
245 that have to go in the same hard reg.
246 The first two regs in the list are a pair, and the next two
247 are another pair, etc. */
248 rtx regs_may_share;
250 /* Set of registers that may be eliminable. These are handled specially
251 in updating regs_ever_live. */
253 static HARD_REG_SET elim_reg_set;
255 /* The basic block structure for every insn, indexed by uid. */
257 varray_type basic_block_for_insn;
259 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
260 /* ??? Should probably be using LABEL_NUSES instead. It would take a
261 bit of surgery to be able to use or co-opt the routines in jump. */
263 static rtx label_value_list;
264 static rtx tail_recursion_label_list;
266 /* Holds information for tracking conditional register life information. */
267 struct reg_cond_life_info
269 /* An EXPR_LIST of conditions under which a register is dead. */
270 rtx condition;
272 /* ??? Could store mask of bytes that are dead, so that we could finally
273 track lifetimes of multi-word registers accessed via subregs. */
276 /* For use in communicating between propagate_block and its subroutines.
277 Holds all information needed to compute life and def-use information. */
279 struct propagate_block_info
281 /* The basic block we're considering. */
282 basic_block bb;
284 /* Bit N is set if register N is conditionally or unconditionally live. */
285 regset reg_live;
287 /* Bit N is set if register N is set this insn. */
288 regset new_set;
290 /* Element N is the next insn that uses (hard or pseudo) register N
291 within the current basic block; or zero, if there is no such insn. */
292 rtx *reg_next_use;
294 /* Contains a list of all the MEMs we are tracking for dead store
295 elimination. */
296 rtx mem_set_list;
298 /* If non-null, record the set of registers set unconditionally in the
299 basic block. */
300 regset local_set;
302 /* If non-null, record the set of registers set conditionally in the
303 basic block. */
304 regset cond_local_set;
306 #ifdef HAVE_conditional_execution
307 /* Indexed by register number, holds a reg_cond_life_info for each
308 register that is not unconditionally live or dead. */
309 splay_tree reg_cond_dead;
311 /* Bit N is set if register N is in an expression in reg_cond_dead. */
312 regset reg_cond_reg;
313 #endif
315 /* Non-zero if the value of CC0 is live. */
316 int cc0_live;
318 /* Flags controling the set of information propagate_block collects. */
319 int flags;
322 /* Store the data structures necessary for depth-first search. */
323 struct depth_first_search_dsS {
324 /* stack for backtracking during the algorithm */
325 basic_block *stack;
327 /* number of edges in the stack. That is, positions 0, ..., sp-1
328 have edges. */
329 unsigned int sp;
331 /* record of basic blocks already seen by depth-first search */
332 sbitmap visited_blocks;
334 typedef struct depth_first_search_dsS *depth_first_search_ds;
336 /* Forward declarations */
337 static int count_basic_blocks PARAMS ((rtx));
338 static void find_basic_blocks_1 PARAMS ((rtx));
339 static rtx find_label_refs PARAMS ((rtx, rtx));
340 static void clear_edges PARAMS ((void));
341 static void make_edges PARAMS ((rtx));
342 static void make_label_edge PARAMS ((sbitmap *, basic_block,
343 rtx, int));
344 static void make_eh_edge PARAMS ((sbitmap *, eh_nesting_info *,
345 basic_block, rtx, int));
346 static void mark_critical_edges PARAMS ((void));
347 static void move_stray_eh_region_notes PARAMS ((void));
348 static void record_active_eh_regions PARAMS ((rtx));
350 static void commit_one_edge_insertion PARAMS ((edge));
352 static void delete_unreachable_blocks PARAMS ((void));
353 static void delete_eh_regions PARAMS ((void));
354 static int can_delete_note_p PARAMS ((rtx));
355 static void expunge_block PARAMS ((basic_block));
356 static int can_delete_label_p PARAMS ((rtx));
357 static int tail_recursion_label_p PARAMS ((rtx));
358 static int merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
359 basic_block));
360 static int merge_blocks_move_successor_nojumps PARAMS ((basic_block,
361 basic_block));
362 static int merge_blocks PARAMS ((edge,basic_block,basic_block));
363 static void try_merge_blocks PARAMS ((void));
364 static void tidy_fallthru_edges PARAMS ((void));
365 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
366 static void verify_wide_reg PARAMS ((int, rtx, rtx));
367 static void verify_local_live_at_start PARAMS ((regset, basic_block));
368 static int set_noop_p PARAMS ((rtx));
369 static int noop_move_p PARAMS ((rtx));
370 static void delete_noop_moves PARAMS ((rtx));
371 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
372 static void notice_stack_pointer_modification PARAMS ((rtx));
373 static void mark_reg PARAMS ((rtx, void *));
374 static void mark_regs_live_at_end PARAMS ((regset));
375 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
376 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
377 static void propagate_block_delete_insn PARAMS ((basic_block, rtx));
378 static rtx propagate_block_delete_libcall PARAMS ((basic_block, rtx, rtx));
379 static int insn_dead_p PARAMS ((struct propagate_block_info *,
380 rtx, int, rtx));
381 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
382 rtx, rtx));
383 static void mark_set_regs PARAMS ((struct propagate_block_info *,
384 rtx, rtx));
385 static void mark_set_1 PARAMS ((struct propagate_block_info *,
386 enum rtx_code, rtx, rtx,
387 rtx, int));
388 #ifdef HAVE_conditional_execution
389 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
390 int, rtx));
391 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
392 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
393 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
394 int));
395 static rtx ior_reg_cond PARAMS ((rtx, rtx));
396 static rtx not_reg_cond PARAMS ((rtx));
397 static rtx nand_reg_cond PARAMS ((rtx, rtx));
398 #endif
399 #ifdef AUTO_INC_DEC
400 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
401 rtx, rtx, rtx, rtx, rtx));
402 static void find_auto_inc PARAMS ((struct propagate_block_info *,
403 rtx, rtx));
404 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
405 rtx));
406 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
407 #endif
408 static void mark_used_reg PARAMS ((struct propagate_block_info *,
409 rtx, rtx, rtx));
410 static void mark_used_regs PARAMS ((struct propagate_block_info *,
411 rtx, rtx, rtx));
412 void dump_flow_info PARAMS ((FILE *));
413 void debug_flow_info PARAMS ((void));
414 static void dump_edge_info PARAMS ((FILE *, edge, int));
415 static void print_rtl_and_abort PARAMS ((void));
417 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
418 rtx));
419 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
420 rtx));
421 static void remove_fake_successors PARAMS ((basic_block));
422 static void flow_nodes_print PARAMS ((const char *, const sbitmap,
423 FILE *));
424 static void flow_edge_list_print PARAMS ((const char *, const edge *,
425 int, FILE *));
426 static void flow_loops_cfg_dump PARAMS ((const struct loops *,
427 FILE *));
428 static int flow_loop_nested_p PARAMS ((struct loop *,
429 struct loop *));
430 static int flow_loop_entry_edges_find PARAMS ((basic_block, const sbitmap,
431 edge **));
432 static int flow_loop_exit_edges_find PARAMS ((const sbitmap, edge **));
433 static int flow_loop_nodes_find PARAMS ((basic_block, basic_block, sbitmap));
434 static int flow_depth_first_order_compute PARAMS ((int *, int *));
435 static void flow_dfs_compute_reverse_init
436 PARAMS ((depth_first_search_ds));
437 static void flow_dfs_compute_reverse_add_bb
438 PARAMS ((depth_first_search_ds, basic_block));
439 static basic_block flow_dfs_compute_reverse_execute
440 PARAMS ((depth_first_search_ds));
441 static void flow_dfs_compute_reverse_finish
442 PARAMS ((depth_first_search_ds));
443 static void flow_loop_pre_header_scan PARAMS ((struct loop *));
444 static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
445 const sbitmap *));
446 static void flow_loop_tree_node_add PARAMS ((struct loop *, struct loop *));
447 static void flow_loops_tree_build PARAMS ((struct loops *));
448 static int flow_loop_level_compute PARAMS ((struct loop *, int));
449 static int flow_loops_level_compute PARAMS ((struct loops *));
450 static void allocate_bb_life_data PARAMS ((void));
452 /* Find basic blocks of the current function.
453 F is the first insn of the function and NREGS the number of register
454 numbers in use. */
456 void
457 find_basic_blocks (f, nregs, file)
458 rtx f;
459 int nregs ATTRIBUTE_UNUSED;
460 FILE *file ATTRIBUTE_UNUSED;
462 int max_uid;
464 /* Flush out existing data. */
465 if (basic_block_info != NULL)
467 int i;
469 clear_edges ();
471 /* Clear bb->aux on all extant basic blocks. We'll use this as a
472 tag for reuse during create_basic_block, just in case some pass
473 copies around basic block notes improperly. */
474 for (i = 0; i < n_basic_blocks; ++i)
475 BASIC_BLOCK (i)->aux = NULL;
477 VARRAY_FREE (basic_block_info);
480 n_basic_blocks = count_basic_blocks (f);
482 /* Size the basic block table. The actual structures will be allocated
483 by find_basic_blocks_1, since we want to keep the structure pointers
484 stable across calls to find_basic_blocks. */
485 /* ??? This whole issue would be much simpler if we called find_basic_blocks
486 exactly once, and thereafter we don't have a single long chain of
487 instructions at all until close to the end of compilation when we
488 actually lay them out. */
490 VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
492 find_basic_blocks_1 (f);
494 /* Record the block to which an insn belongs. */
495 /* ??? This should be done another way, by which (perhaps) a label is
496 tagged directly with the basic block that it starts. It is used for
497 more than that currently, but IMO that is the only valid use. */
499 max_uid = get_max_uid ();
500 #ifdef AUTO_INC_DEC
501 /* Leave space for insns life_analysis makes in some cases for auto-inc.
502 These cases are rare, so we don't need too much space. */
503 max_uid += max_uid / 10;
504 #endif
506 compute_bb_for_insn (max_uid);
508 /* Discover the edges of our cfg. */
509 record_active_eh_regions (f);
510 make_edges (label_value_list);
512 /* Do very simple cleanup now, for the benefit of code that runs between
513 here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */
514 tidy_fallthru_edges ();
516 mark_critical_edges ();
518 #ifdef ENABLE_CHECKING
519 verify_flow_info ();
520 #endif
523 void
524 check_function_return_warnings ()
526 if (warn_missing_noreturn
527 && !TREE_THIS_VOLATILE (cfun->decl)
528 && EXIT_BLOCK_PTR->pred == NULL)
529 warning ("function might be possible candidate for attribute `noreturn'");
531 /* If we have a path to EXIT, then we do return. */
532 if (TREE_THIS_VOLATILE (cfun->decl)
533 && EXIT_BLOCK_PTR->pred != NULL)
534 warning ("`noreturn' function does return");
536 /* If the clobber_return_insn appears in some basic block, then we
537 do reach the end without returning a value. */
538 else if (warn_return_type
539 && cfun->x_clobber_return_insn != NULL
540 && EXIT_BLOCK_PTR->pred != NULL)
542 int max_uid = get_max_uid ();
544 /* If clobber_return_insn was excised by jump1, then renumber_insns
545 can make max_uid smaller than the number still recorded in our rtx.
546 That's fine, since this is a quick way of verifying that the insn
547 is no longer in the chain. */
548 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
550 /* Recompute insn->block mapping, since the initial mapping is
551 set before we delete unreachable blocks. */
552 compute_bb_for_insn (max_uid);
554 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
555 warning ("control reaches end of non-void function");
560 /* Count the basic blocks of the function. */
562 static int
563 count_basic_blocks (f)
564 rtx f;
566 register rtx insn;
567 register RTX_CODE prev_code;
568 register int count = 0;
569 int eh_region = 0;
570 int call_had_abnormal_edge = 0;
572 prev_code = JUMP_INSN;
573 for (insn = f; insn; insn = NEXT_INSN (insn))
575 register RTX_CODE code = GET_CODE (insn);
577 if (code == CODE_LABEL
578 || (GET_RTX_CLASS (code) == 'i'
579 && (prev_code == JUMP_INSN
580 || prev_code == BARRIER
581 || (prev_code == CALL_INSN && call_had_abnormal_edge))))
582 count++;
584 /* Record whether this call created an edge. */
585 if (code == CALL_INSN)
587 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
588 int region = (note ? INTVAL (XEXP (note, 0)) : 1);
590 call_had_abnormal_edge = 0;
592 /* If there is an EH region or rethrow, we have an edge. */
593 if ((eh_region && region > 0)
594 || find_reg_note (insn, REG_EH_RETHROW, NULL_RTX))
595 call_had_abnormal_edge = 1;
596 else if (nonlocal_goto_handler_labels && region >= 0)
597 /* If there is a nonlocal goto label and the specified
598 region number isn't -1, we have an edge. (0 means
599 no throw, but might have a nonlocal goto). */
600 call_had_abnormal_edge = 1;
603 if (code != NOTE)
604 prev_code = code;
605 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
606 ++eh_region;
607 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
608 --eh_region;
611 /* The rest of the compiler works a bit smoother when we don't have to
612 check for the edge case of do-nothing functions with no basic blocks. */
613 if (count == 0)
615 emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
616 count = 1;
619 return count;
622 /* Scan a list of insns for labels referred to other than by jumps.
623 This is used to scan the alternatives of a call placeholder. */
624 static rtx
625 find_label_refs (f, lvl)
626 rtx f;
627 rtx lvl;
629 rtx insn;
631 for (insn = f; insn; insn = NEXT_INSN (insn))
632 if (INSN_P (insn))
634 rtx note;
636 /* Make a list of all labels referred to other than by jumps
637 (which just don't have the REG_LABEL notes).
639 Make a special exception for labels followed by an ADDR*VEC,
640 as this would be a part of the tablejump setup code.
642 Make a special exception for the eh_return_stub_label, which
643 we know isn't part of any otherwise visible control flow. */
645 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
646 if (REG_NOTE_KIND (note) == REG_LABEL)
648 rtx lab = XEXP (note, 0), next;
650 if (lab == eh_return_stub_label)
652 else if ((next = next_nonnote_insn (lab)) != NULL
653 && GET_CODE (next) == JUMP_INSN
654 && (GET_CODE (PATTERN (next)) == ADDR_VEC
655 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
657 else if (GET_CODE (lab) == NOTE)
659 else
660 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
664 return lvl;
667 /* Find all basic blocks of the function whose first insn is F.
669 Collect and return a list of labels whose addresses are taken. This
670 will be used in make_edges for use with computed gotos. */
672 static void
673 find_basic_blocks_1 (f)
674 rtx f;
676 register rtx insn, next;
677 int i = 0;
678 rtx bb_note = NULL_RTX;
679 rtx eh_list = NULL_RTX;
680 rtx lvl = NULL_RTX;
681 rtx trll = NULL_RTX;
682 rtx head = NULL_RTX;
683 rtx end = NULL_RTX;
685 /* We process the instructions in a slightly different way than we did
686 previously. This is so that we see a NOTE_BASIC_BLOCK after we have
687 closed out the previous block, so that it gets attached at the proper
688 place. Since this form should be equivalent to the previous,
689 count_basic_blocks continues to use the old form as a check. */
691 for (insn = f; insn; insn = next)
693 enum rtx_code code = GET_CODE (insn);
695 next = NEXT_INSN (insn);
697 switch (code)
699 case NOTE:
701 int kind = NOTE_LINE_NUMBER (insn);
703 /* Keep a LIFO list of the currently active exception notes. */
704 if (kind == NOTE_INSN_EH_REGION_BEG)
705 eh_list = alloc_INSN_LIST (insn, eh_list);
706 else if (kind == NOTE_INSN_EH_REGION_END)
708 rtx t = eh_list;
710 eh_list = XEXP (eh_list, 1);
711 free_INSN_LIST_node (t);
714 /* Look for basic block notes with which to keep the
715 basic_block_info pointers stable. Unthread the note now;
716 we'll put it back at the right place in create_basic_block.
717 Or not at all if we've already found a note in this block. */
718 else if (kind == NOTE_INSN_BASIC_BLOCK)
720 if (bb_note == NULL_RTX)
721 bb_note = insn;
722 else
723 next = flow_delete_insn (insn);
725 break;
728 case CODE_LABEL:
729 /* A basic block starts at a label. If we've closed one off due
730 to a barrier or some such, no need to do it again. */
731 if (head != NULL_RTX)
733 /* While we now have edge lists with which other portions of
734 the compiler might determine a call ending a basic block
735 does not imply an abnormal edge, it will be a bit before
736 everything can be updated. So continue to emit a noop at
737 the end of such a block. */
738 if (GET_CODE (end) == CALL_INSN && ! SIBLING_CALL_P (end))
740 rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
741 end = emit_insn_after (nop, end);
744 create_basic_block (i++, head, end, bb_note);
745 bb_note = NULL_RTX;
748 head = end = insn;
749 break;
751 case JUMP_INSN:
752 /* A basic block ends at a jump. */
753 if (head == NULL_RTX)
754 head = insn;
755 else
757 /* ??? Make a special check for table jumps. The way this
758 happens is truly and amazingly gross. We are about to
759 create a basic block that contains just a code label and
760 an addr*vec jump insn. Worse, an addr_diff_vec creates
761 its own natural loop.
763 Prevent this bit of brain damage, pasting things together
764 correctly in make_edges.
766 The correct solution involves emitting the table directly
767 on the tablejump instruction as a note, or JUMP_LABEL. */
769 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
770 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
772 head = end = NULL;
773 n_basic_blocks--;
774 break;
777 end = insn;
778 goto new_bb_inclusive;
780 case BARRIER:
781 /* A basic block ends at a barrier. It may be that an unconditional
782 jump already closed the basic block -- no need to do it again. */
783 if (head == NULL_RTX)
784 break;
786 /* While we now have edge lists with which other portions of the
787 compiler might determine a call ending a basic block does not
788 imply an abnormal edge, it will be a bit before everything can
789 be updated. So continue to emit a noop at the end of such a
790 block. */
791 if (GET_CODE (end) == CALL_INSN && ! SIBLING_CALL_P (end))
793 rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
794 end = emit_insn_after (nop, end);
796 goto new_bb_exclusive;
798 case CALL_INSN:
800 /* Record whether this call created an edge. */
801 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
802 int region = (note ? INTVAL (XEXP (note, 0)) : 1);
803 int call_has_abnormal_edge = 0;
805 if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
807 /* Scan each of the alternatives for label refs. */
808 lvl = find_label_refs (XEXP (PATTERN (insn), 0), lvl);
809 lvl = find_label_refs (XEXP (PATTERN (insn), 1), lvl);
810 lvl = find_label_refs (XEXP (PATTERN (insn), 2), lvl);
811 /* Record its tail recursion label, if any. */
812 if (XEXP (PATTERN (insn), 3) != NULL_RTX)
813 trll = alloc_EXPR_LIST (0, XEXP (PATTERN (insn), 3), trll);
816 /* If there is an EH region or rethrow, we have an edge. */
817 if ((eh_list && region > 0)
818 || find_reg_note (insn, REG_EH_RETHROW, NULL_RTX))
819 call_has_abnormal_edge = 1;
820 else if (nonlocal_goto_handler_labels && region >= 0)
821 /* If there is a nonlocal goto label and the specified
822 region number isn't -1, we have an edge. (0 means
823 no throw, but might have a nonlocal goto). */
824 call_has_abnormal_edge = 1;
826 /* A basic block ends at a call that can either throw or
827 do a non-local goto. */
828 if (call_has_abnormal_edge)
830 new_bb_inclusive:
831 if (head == NULL_RTX)
832 head = insn;
833 end = insn;
835 new_bb_exclusive:
836 create_basic_block (i++, head, end, bb_note);
837 head = end = NULL_RTX;
838 bb_note = NULL_RTX;
839 break;
842 /* Fall through. */
844 default:
845 if (GET_RTX_CLASS (code) == 'i')
847 if (head == NULL_RTX)
848 head = insn;
849 end = insn;
851 break;
854 if (GET_RTX_CLASS (code) == 'i')
856 rtx note;
858 /* Make a list of all labels referred to other than by jumps
859 (which just don't have the REG_LABEL notes).
861 Make a special exception for labels followed by an ADDR*VEC,
862 as this would be a part of the tablejump setup code.
864 Make a special exception for the eh_return_stub_label, which
865 we know isn't part of any otherwise visible control flow. */
867 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
868 if (REG_NOTE_KIND (note) == REG_LABEL)
870 rtx lab = XEXP (note, 0), next;
872 if (lab == eh_return_stub_label)
874 else if ((next = next_nonnote_insn (lab)) != NULL
875 && GET_CODE (next) == JUMP_INSN
876 && (GET_CODE (PATTERN (next)) == ADDR_VEC
877 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
879 else if (GET_CODE (lab) == NOTE)
881 else
882 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
887 if (head != NULL_RTX)
888 create_basic_block (i++, head, end, bb_note);
889 else if (bb_note)
890 flow_delete_insn (bb_note);
892 if (i != n_basic_blocks)
893 abort ();
895 label_value_list = lvl;
896 tail_recursion_label_list = trll;
899 /* Tidy the CFG by deleting unreachable code and whatnot. */
901 void
902 cleanup_cfg (f)
903 rtx f;
905 delete_unreachable_blocks ();
906 move_stray_eh_region_notes ();
907 record_active_eh_regions (f);
908 try_merge_blocks ();
909 mark_critical_edges ();
911 /* Kill the data we won't maintain. */
912 free_EXPR_LIST_list (&label_value_list);
913 free_EXPR_LIST_list (&tail_recursion_label_list);
916 /* Create a new basic block consisting of the instructions between
917 HEAD and END inclusive. Reuses the note and basic block struct
918 in BB_NOTE, if any. */
920 void
921 create_basic_block (index, head, end, bb_note)
922 int index;
923 rtx head, end, bb_note;
925 basic_block bb;
927 if (bb_note
928 && ! RTX_INTEGRATED_P (bb_note)
929 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
930 && bb->aux == NULL)
932 /* If we found an existing note, thread it back onto the chain. */
934 rtx after;
936 if (GET_CODE (head) == CODE_LABEL)
937 after = head;
938 else
940 after = PREV_INSN (head);
941 head = bb_note;
944 if (after != bb_note && NEXT_INSN (after) != bb_note)
945 reorder_insns (bb_note, bb_note, after);
947 else
949 /* Otherwise we must create a note and a basic block structure.
950 Since we allow basic block structs in rtl, give the struct
951 the same lifetime by allocating it off the function obstack
952 rather than using malloc. */
954 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
955 memset (bb, 0, sizeof (*bb));
957 if (GET_CODE (head) == CODE_LABEL)
958 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
959 else
961 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
962 head = bb_note;
964 NOTE_BASIC_BLOCK (bb_note) = bb;
967 /* Always include the bb note in the block. */
968 if (NEXT_INSN (end) == bb_note)
969 end = bb_note;
971 bb->head = head;
972 bb->end = end;
973 bb->index = index;
974 BASIC_BLOCK (index) = bb;
976 /* Tag the block so that we know it has been used when considering
977 other basic block notes. */
978 bb->aux = bb;
981 /* Records the basic block struct in BB_FOR_INSN, for every instruction
982 indexed by INSN_UID. MAX is the size of the array. */
984 void
985 compute_bb_for_insn (max)
986 int max;
988 int i;
990 if (basic_block_for_insn)
991 VARRAY_FREE (basic_block_for_insn);
992 VARRAY_BB_INIT (basic_block_for_insn, max, "basic_block_for_insn");
994 for (i = 0; i < n_basic_blocks; ++i)
996 basic_block bb = BASIC_BLOCK (i);
997 rtx insn, end;
999 end = bb->end;
1000 insn = bb->head;
1001 while (1)
1003 int uid = INSN_UID (insn);
1004 if (uid < max)
1005 VARRAY_BB (basic_block_for_insn, uid) = bb;
1006 if (insn == end)
1007 break;
1008 insn = NEXT_INSN (insn);
1013 /* Free the memory associated with the edge structures. */
1015 static void
1016 clear_edges ()
1018 int i;
1019 edge n, e;
1021 for (i = 0; i < n_basic_blocks; ++i)
1023 basic_block bb = BASIC_BLOCK (i);
1025 for (e = bb->succ; e; e = n)
1027 n = e->succ_next;
1028 free (e);
1031 bb->succ = 0;
1032 bb->pred = 0;
1035 for (e = ENTRY_BLOCK_PTR->succ; e; e = n)
1037 n = e->succ_next;
1038 free (e);
1041 ENTRY_BLOCK_PTR->succ = 0;
1042 EXIT_BLOCK_PTR->pred = 0;
1044 n_edges = 0;
1047 /* Identify the edges between basic blocks.
1049 NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
1050 that are otherwise unreachable may be reachable with a non-local goto.
1052 BB_EH_END is an array indexed by basic block number in which we record
1053 the list of exception regions active at the end of the basic block. */
1055 static void
1056 make_edges (label_value_list)
1057 rtx label_value_list;
1059 int i;
1060 eh_nesting_info *eh_nest_info = init_eh_nesting_info ();
1061 sbitmap *edge_cache = NULL;
1063 /* Assume no computed jump; revise as we create edges. */
1064 current_function_has_computed_jump = 0;
1066 /* Heavy use of computed goto in machine-generated code can lead to
1067 nearly fully-connected CFGs. In that case we spend a significant
1068 amount of time searching the edge lists for duplicates. */
1069 if (forced_labels || label_value_list)
1071 edge_cache = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1072 sbitmap_vector_zero (edge_cache, n_basic_blocks);
1075 /* By nature of the way these get numbered, block 0 is always the entry. */
1076 make_edge (edge_cache, ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);
1078 for (i = 0; i < n_basic_blocks; ++i)
1080 basic_block bb = BASIC_BLOCK (i);
1081 rtx insn, x;
1082 enum rtx_code code;
1083 int force_fallthru = 0;
1085 /* Examine the last instruction of the block, and discover the
1086 ways we can leave the block. */
1088 insn = bb->end;
1089 code = GET_CODE (insn);
1091 /* A branch. */
1092 if (code == JUMP_INSN)
1094 rtx tmp;
1096 /* ??? Recognize a tablejump and do the right thing. */
1097 if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
1098 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
1099 && GET_CODE (tmp) == JUMP_INSN
1100 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
1101 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
1103 rtvec vec;
1104 int j;
1106 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1107 vec = XVEC (PATTERN (tmp), 0);
1108 else
1109 vec = XVEC (PATTERN (tmp), 1);
1111 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1112 make_label_edge (edge_cache, bb,
1113 XEXP (RTVEC_ELT (vec, j), 0), 0);
1115 /* Some targets (eg, ARM) emit a conditional jump that also
1116 contains the out-of-range target. Scan for these and
1117 add an edge if necessary. */
1118 if ((tmp = single_set (insn)) != NULL
1119 && SET_DEST (tmp) == pc_rtx
1120 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1121 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
1122 make_label_edge (edge_cache, bb,
1123 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
1125 #ifdef CASE_DROPS_THROUGH
1126 /* Silly VAXen. The ADDR_VEC is going to be in the way of
1127 us naturally detecting fallthru into the next block. */
1128 force_fallthru = 1;
1129 #endif
1132 /* If this is a computed jump, then mark it as reaching
1133 everything on the label_value_list and forced_labels list. */
1134 else if (computed_jump_p (insn))
1136 current_function_has_computed_jump = 1;
1138 for (x = label_value_list; x; x = XEXP (x, 1))
1139 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
1141 for (x = forced_labels; x; x = XEXP (x, 1))
1142 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
1145 /* Returns create an exit out. */
1146 else if (returnjump_p (insn))
1147 make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
1149 /* Otherwise, we have a plain conditional or unconditional jump. */
1150 else
1152 if (! JUMP_LABEL (insn))
1153 abort ();
1154 make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
1158 /* If this is a sibling call insn, then this is in effect a
1159 combined call and return, and so we need an edge to the
1160 exit block. No need to worry about EH edges, since we
1161 wouldn't have created the sibling call in the first place. */
1163 if (code == CALL_INSN && SIBLING_CALL_P (insn))
1164 make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
1165 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
1167 /* If this is a CALL_INSN, then mark it as reaching the active EH
1168 handler for this CALL_INSN. If we're handling asynchronous
1169 exceptions then any insn can reach any of the active handlers.
1171 Also mark the CALL_INSN as reaching any nonlocal goto handler. */
1173 else if (code == CALL_INSN || asynchronous_exceptions)
1175 /* Add any appropriate EH edges. We do this unconditionally
1176 since there may be a REG_EH_REGION or REG_EH_RETHROW note
1177 on the call, and this needn't be within an EH region. */
1178 make_eh_edge (edge_cache, eh_nest_info, bb, insn, bb->eh_end);
1180 /* If we have asynchronous exceptions, do the same for *all*
1181 exception regions active in the block. */
1182 if (asynchronous_exceptions
1183 && bb->eh_beg != bb->eh_end)
1185 if (bb->eh_beg >= 0)
1186 make_eh_edge (edge_cache, eh_nest_info, bb,
1187 NULL_RTX, bb->eh_beg);
1189 for (x = bb->head; x != bb->end; x = NEXT_INSN (x))
1190 if (GET_CODE (x) == NOTE
1191 && (NOTE_LINE_NUMBER (x) == NOTE_INSN_EH_REGION_BEG
1192 || NOTE_LINE_NUMBER (x) == NOTE_INSN_EH_REGION_END))
1194 int region = NOTE_EH_HANDLER (x);
1195 make_eh_edge (edge_cache, eh_nest_info, bb,
1196 NULL_RTX, region);
1200 if (code == CALL_INSN && nonlocal_goto_handler_labels)
1202 /* ??? This could be made smarter: in some cases it's possible
1203 to tell that certain calls will not do a nonlocal goto.
1205 For example, if the nested functions that do the nonlocal
1206 gotos do not have their addresses taken, then only calls to
1207 those functions or to other nested functions that use them
1208 could possibly do nonlocal gotos. */
1209 /* We do know that a REG_EH_REGION note with a value less
1210 than 0 is guaranteed not to perform a non-local goto. */
1211 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1212 if (!note || INTVAL (XEXP (note, 0)) >= 0)
1213 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
1214 make_label_edge (edge_cache, bb, XEXP (x, 0),
1215 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
1219 /* We know something about the structure of the function __throw in
1220 libgcc2.c. It is the only function that ever contains eh_stub
1221 labels. It modifies its return address so that the last block
1222 returns to one of the eh_stub labels within it. So we have to
1223 make additional edges in the flow graph. */
1224 if (i + 1 == n_basic_blocks && eh_return_stub_label != 0)
1225 make_label_edge (edge_cache, bb, eh_return_stub_label, EDGE_EH);
1227 /* Find out if we can drop through to the next block. */
1228 insn = next_nonnote_insn (insn);
1229 if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
1230 make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
1231 else if (i + 1 < n_basic_blocks)
1233 rtx tmp = BLOCK_HEAD (i + 1);
1234 if (GET_CODE (tmp) == NOTE)
1235 tmp = next_nonnote_insn (tmp);
1236 if (force_fallthru || insn == tmp)
1237 make_edge (edge_cache, bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU);
1241 free_eh_nesting_info (eh_nest_info);
1242 if (edge_cache)
1243 sbitmap_vector_free (edge_cache);
1246 /* Create an edge between two basic blocks. FLAGS are auxiliary information
1247 about the edge that is accumulated between calls. */
1249 void
1250 make_edge (edge_cache, src, dst, flags)
1251 sbitmap *edge_cache;
1252 basic_block src, dst;
1253 int flags;
1255 int use_edge_cache;
1256 edge e;
1258 /* Don't bother with edge cache for ENTRY or EXIT; there aren't that
1259 many edges to them, and we didn't allocate memory for it. */
1260 use_edge_cache = (edge_cache
1261 && src != ENTRY_BLOCK_PTR
1262 && dst != EXIT_BLOCK_PTR);
1264 /* Make sure we don't add duplicate edges. */
1265 switch (use_edge_cache)
1267 default:
1268 /* Quick test for non-existance of the edge. */
1269 if (! TEST_BIT (edge_cache[src->index], dst->index))
1270 break;
1272 /* The edge exists; early exit if no work to do. */
1273 if (flags == 0)
1274 return;
1276 /* FALLTHRU */
1277 case 0:
1278 for (e = src->succ; e; e = e->succ_next)
1279 if (e->dest == dst)
1281 e->flags |= flags;
1282 return;
1284 break;
1287 e = (edge) xcalloc (1, sizeof (*e));
1288 n_edges++;
1290 e->succ_next = src->succ;
1291 e->pred_next = dst->pred;
1292 e->src = src;
1293 e->dest = dst;
1294 e->flags = flags;
1296 src->succ = e;
1297 dst->pred = e;
1299 if (use_edge_cache)
1300 SET_BIT (edge_cache[src->index], dst->index);
1303 /* Create an edge from a basic block to a label. */
1305 static void
1306 make_label_edge (edge_cache, src, label, flags)
1307 sbitmap *edge_cache;
1308 basic_block src;
1309 rtx label;
1310 int flags;
1312 if (GET_CODE (label) != CODE_LABEL)
1313 abort ();
1315 /* If the label was never emitted, this insn is junk, but avoid a
1316 crash trying to refer to BLOCK_FOR_INSN (label). This can happen
1317 as a result of a syntax error and a diagnostic has already been
1318 printed. */
1320 if (INSN_UID (label) == 0)
1321 return;
1323 make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
1326 /* Create the edges generated by INSN in REGION. */
1328 static void
1329 make_eh_edge (edge_cache, eh_nest_info, src, insn, region)
1330 sbitmap *edge_cache;
1331 eh_nesting_info *eh_nest_info;
1332 basic_block src;
1333 rtx insn;
1334 int region;
1336 handler_info **handler_list;
1337 int num, is_call;
1339 is_call = (insn && GET_CODE (insn) == CALL_INSN ? EDGE_ABNORMAL_CALL : 0);
1340 num = reachable_handlers (region, eh_nest_info, insn, &handler_list);
1341 while (--num >= 0)
1343 make_label_edge (edge_cache, src, handler_list[num]->handler_label,
1344 EDGE_ABNORMAL | EDGE_EH | is_call);
1348 /* EH_REGION notes appearing between basic blocks is ambiguous, and even
1349 dangerous if we intend to move basic blocks around. Move such notes
1350 into the following block. */
1352 static void
1353 move_stray_eh_region_notes ()
1355 int i;
1356 basic_block b1, b2;
1358 if (n_basic_blocks < 2)
1359 return;
1361 b2 = BASIC_BLOCK (n_basic_blocks - 1);
1362 for (i = n_basic_blocks - 2; i >= 0; --i, b2 = b1)
1364 rtx insn, next, list = NULL_RTX;
1366 b1 = BASIC_BLOCK (i);
1367 for (insn = NEXT_INSN (b1->end); insn != b2->head; insn = next)
1369 next = NEXT_INSN (insn);
1370 if (GET_CODE (insn) == NOTE
1371 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1372 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
1374 /* Unlink from the insn chain. */
1375 NEXT_INSN (PREV_INSN (insn)) = next;
1376 PREV_INSN (next) = PREV_INSN (insn);
1378 /* Queue it. */
1379 NEXT_INSN (insn) = list;
1380 list = insn;
1384 if (list == NULL_RTX)
1385 continue;
1387 /* Find where to insert these things. */
1388 insn = b2->head;
1389 if (GET_CODE (insn) == CODE_LABEL)
1390 insn = NEXT_INSN (insn);
1392 while (list)
1394 next = NEXT_INSN (list);
1395 add_insn_after (list, insn);
1396 list = next;
1401 /* Recompute eh_beg/eh_end for each basic block. */
1403 static void
1404 record_active_eh_regions (f)
1405 rtx f;
1407 rtx insn, eh_list = NULL_RTX;
1408 int i = 0;
1409 basic_block bb = BASIC_BLOCK (0);
1411 for (insn = f; insn; insn = NEXT_INSN (insn))
1413 if (bb->head == insn)
1414 bb->eh_beg = (eh_list ? NOTE_EH_HANDLER (XEXP (eh_list, 0)) : -1);
1416 if (GET_CODE (insn) == NOTE)
1418 int kind = NOTE_LINE_NUMBER (insn);
1419 if (kind == NOTE_INSN_EH_REGION_BEG)
1420 eh_list = alloc_INSN_LIST (insn, eh_list);
1421 else if (kind == NOTE_INSN_EH_REGION_END)
1423 rtx t = XEXP (eh_list, 1);
1424 free_INSN_LIST_node (eh_list);
1425 eh_list = t;
1429 if (bb->end == insn)
1431 bb->eh_end = (eh_list ? NOTE_EH_HANDLER (XEXP (eh_list, 0)) : -1);
1432 i += 1;
1433 if (i == n_basic_blocks)
1434 break;
1435 bb = BASIC_BLOCK (i);
1440 /* Identify critical edges and set the bits appropriately. */
1442 static void
1443 mark_critical_edges ()
1445 int i, n = n_basic_blocks;
1446 basic_block bb;
1448 /* We begin with the entry block. This is not terribly important now,
1449 but could be if a front end (Fortran) implemented alternate entry
1450 points. */
1451 bb = ENTRY_BLOCK_PTR;
1452 i = -1;
1454 while (1)
1456 edge e;
1458 /* (1) Critical edges must have a source with multiple successors. */
1459 if (bb->succ && bb->succ->succ_next)
1461 for (e = bb->succ; e; e = e->succ_next)
1463 /* (2) Critical edges must have a destination with multiple
1464 predecessors. Note that we know there is at least one
1465 predecessor -- the edge we followed to get here. */
1466 if (e->dest->pred->pred_next)
1467 e->flags |= EDGE_CRITICAL;
1468 else
1469 e->flags &= ~EDGE_CRITICAL;
1472 else
1474 for (e = bb->succ; e; e = e->succ_next)
1475 e->flags &= ~EDGE_CRITICAL;
1478 if (++i >= n)
1479 break;
1480 bb = BASIC_BLOCK (i);
1484 /* Split a block BB after insn INSN creating a new fallthru edge.
1485 Return the new edge. Note that to keep other parts of the compiler happy,
1486 this function renumbers all the basic blocks so that the new
1487 one has a number one greater than the block split. */
1489 edge
1490 split_block (bb, insn)
1491 basic_block bb;
1492 rtx insn;
1494 basic_block new_bb;
1495 edge new_edge;
1496 edge e;
1497 rtx bb_note;
1498 int i, j;
1500 /* There is no point splitting the block after its end. */
1501 if (bb->end == insn)
1502 return 0;
1504 /* Create the new structures. */
1505 new_bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*new_bb));
1506 new_edge = (edge) xcalloc (1, sizeof (*new_edge));
1507 n_edges++;
1509 memset (new_bb, 0, sizeof (*new_bb));
1511 new_bb->head = NEXT_INSN (insn);
1512 new_bb->end = bb->end;
1513 bb->end = insn;
1515 new_bb->succ = bb->succ;
1516 bb->succ = new_edge;
1517 new_bb->pred = new_edge;
1518 new_bb->count = bb->count;
1519 new_bb->loop_depth = bb->loop_depth;
1521 new_edge->src = bb;
1522 new_edge->dest = new_bb;
1523 new_edge->flags = EDGE_FALLTHRU;
1524 new_edge->probability = REG_BR_PROB_BASE;
1525 new_edge->count = bb->count;
1527 /* Redirect the src of the successor edges of bb to point to new_bb. */
1528 for (e = new_bb->succ; e; e = e->succ_next)
1529 e->src = new_bb;
1531 /* Place the new block just after the block being split. */
1532 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
1534 /* Some parts of the compiler expect blocks to be number in
1535 sequential order so insert the new block immediately after the
1536 block being split.. */
1537 j = bb->index;
1538 for (i = n_basic_blocks - 1; i > j + 1; --i)
1540 basic_block tmp = BASIC_BLOCK (i - 1);
1541 BASIC_BLOCK (i) = tmp;
1542 tmp->index = i;
1545 BASIC_BLOCK (i) = new_bb;
1546 new_bb->index = i;
1548 /* Create the basic block note. */
1549 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
1550 new_bb->head);
1551 NOTE_BASIC_BLOCK (bb_note) = new_bb;
1552 new_bb->head = bb_note;
1554 update_bb_for_insn (new_bb);
1556 if (bb->global_live_at_start)
1558 new_bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1559 new_bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1560 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
1562 /* We now have to calculate which registers are live at the end
1563 of the split basic block and at the start of the new basic
1564 block. Start with those registers that are known to be live
1565 at the end of the original basic block and get
1566 propagate_block to determine which registers are live. */
1567 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
1568 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
1569 COPY_REG_SET (bb->global_live_at_end,
1570 new_bb->global_live_at_start);
1573 return new_edge;
1577 /* Split a (typically critical) edge. Return the new block.
1578 Abort on abnormal edges.
1580 ??? The code generally expects to be called on critical edges.
1581 The case of a block ending in an unconditional jump to a
1582 block with multiple predecessors is not handled optimally. */
1584 basic_block
1585 split_edge (edge_in)
1586 edge edge_in;
1588 basic_block old_pred, bb, old_succ;
1589 edge edge_out;
1590 rtx bb_note;
1591 int i, j;
1593 /* Abnormal edges cannot be split. */
1594 if ((edge_in->flags & EDGE_ABNORMAL) != 0)
1595 abort ();
1597 old_pred = edge_in->src;
1598 old_succ = edge_in->dest;
1600 /* Remove the existing edge from the destination's pred list. */
1602 edge *pp;
1603 for (pp = &old_succ->pred; *pp != edge_in; pp = &(*pp)->pred_next)
1604 continue;
1605 *pp = edge_in->pred_next;
1606 edge_in->pred_next = NULL;
1609 /* Create the new structures. */
1610 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
1611 edge_out = (edge) xcalloc (1, sizeof (*edge_out));
1612 n_edges++;
1614 memset (bb, 0, sizeof (*bb));
1616 /* ??? This info is likely going to be out of date very soon. */
1617 if (old_succ->global_live_at_start)
1619 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1620 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1621 COPY_REG_SET (bb->global_live_at_start, old_succ->global_live_at_start);
1622 COPY_REG_SET (bb->global_live_at_end, old_succ->global_live_at_start);
1625 /* Wire them up. */
1626 bb->pred = edge_in;
1627 bb->succ = edge_out;
1628 bb->count = edge_in->count;
1630 edge_in->dest = bb;
1631 edge_in->flags &= ~EDGE_CRITICAL;
1633 edge_out->pred_next = old_succ->pred;
1634 edge_out->succ_next = NULL;
1635 edge_out->src = bb;
1636 edge_out->dest = old_succ;
1637 edge_out->flags = EDGE_FALLTHRU;
1638 edge_out->probability = REG_BR_PROB_BASE;
1639 edge_out->count = edge_in->count;
1641 old_succ->pred = edge_out;
1643 /* Tricky case -- if there existed a fallthru into the successor
1644 (and we're not it) we must add a new unconditional jump around
1645 the new block we're actually interested in.
1647 Further, if that edge is critical, this means a second new basic
1648 block must be created to hold it. In order to simplify correct
1649 insn placement, do this before we touch the existing basic block
1650 ordering for the block we were really wanting. */
1651 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1653 edge e;
1654 for (e = edge_out->pred_next; e; e = e->pred_next)
1655 if (e->flags & EDGE_FALLTHRU)
1656 break;
1658 if (e)
1660 basic_block jump_block;
1661 rtx pos;
1663 if ((e->flags & EDGE_CRITICAL) == 0
1664 && e->src != ENTRY_BLOCK_PTR)
1666 /* Non critical -- we can simply add a jump to the end
1667 of the existing predecessor. */
1668 jump_block = e->src;
1670 else
1672 /* We need a new block to hold the jump. The simplest
1673 way to do the bulk of the work here is to recursively
1674 call ourselves. */
1675 jump_block = split_edge (e);
1676 e = jump_block->succ;
1679 /* Now add the jump insn ... */
1680 pos = emit_jump_insn_after (gen_jump (old_succ->head),
1681 jump_block->end);
1682 jump_block->end = pos;
1683 if (basic_block_for_insn)
1684 set_block_for_insn (pos, jump_block);
1685 emit_barrier_after (pos);
1687 /* ... let jump know that label is in use, ... */
1688 JUMP_LABEL (pos) = old_succ->head;
1689 ++LABEL_NUSES (old_succ->head);
1691 /* ... and clear fallthru on the outgoing edge. */
1692 e->flags &= ~EDGE_FALLTHRU;
1694 /* Continue splitting the interesting edge. */
1698 /* Place the new block just in front of the successor. */
1699 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
1700 if (old_succ == EXIT_BLOCK_PTR)
1701 j = n_basic_blocks - 1;
1702 else
1703 j = old_succ->index;
1704 for (i = n_basic_blocks - 1; i > j; --i)
1706 basic_block tmp = BASIC_BLOCK (i - 1);
1707 BASIC_BLOCK (i) = tmp;
1708 tmp->index = i;
1710 BASIC_BLOCK (i) = bb;
1711 bb->index = i;
1713 /* Create the basic block note.
1715 Where we place the note can have a noticable impact on the generated
1716 code. Consider this cfg:
1722 +->1-->2--->E
1724 +--+
1726 If we need to insert an insn on the edge from block 0 to block 1,
1727 we want to ensure the instructions we insert are outside of any
1728 loop notes that physically sit between block 0 and block 1. Otherwise
1729 we confuse the loop optimizer into thinking the loop is a phony. */
1730 if (old_succ != EXIT_BLOCK_PTR
1731 && PREV_INSN (old_succ->head)
1732 && GET_CODE (PREV_INSN (old_succ->head)) == NOTE
1733 && NOTE_LINE_NUMBER (PREV_INSN (old_succ->head)) == NOTE_INSN_LOOP_BEG)
1734 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
1735 PREV_INSN (old_succ->head));
1736 else if (old_succ != EXIT_BLOCK_PTR)
1737 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, old_succ->head);
1738 else
1739 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
1740 NOTE_BASIC_BLOCK (bb_note) = bb;
1741 bb->head = bb->end = bb_note;
1743 /* Not quite simple -- for non-fallthru edges, we must adjust the
1744 predecessor's jump instruction to target our new block. */
1745 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1747 rtx tmp, insn = old_pred->end;
1748 rtx old_label = old_succ->head;
1749 rtx new_label = gen_label_rtx ();
1751 if (GET_CODE (insn) != JUMP_INSN)
1752 abort ();
1754 /* ??? Recognize a tablejump and adjust all matching cases. */
1755 if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
1756 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
1757 && GET_CODE (tmp) == JUMP_INSN
1758 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
1759 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
1761 rtvec vec;
1762 int j;
1764 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1765 vec = XVEC (PATTERN (tmp), 0);
1766 else
1767 vec = XVEC (PATTERN (tmp), 1);
1769 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1770 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1772 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (VOIDmode, new_label);
1773 --LABEL_NUSES (old_label);
1774 ++LABEL_NUSES (new_label);
1777 /* Handle casesi dispatch insns */
1778 if ((tmp = single_set (insn)) != NULL
1779 && SET_DEST (tmp) == pc_rtx
1780 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1781 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1782 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
1784 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
1785 new_label);
1786 --LABEL_NUSES (old_label);
1787 ++LABEL_NUSES (new_label);
1790 else
1792 /* This would have indicated an abnormal edge. */
1793 if (computed_jump_p (insn))
1794 abort ();
1796 /* A return instruction can't be redirected. */
1797 if (returnjump_p (insn))
1798 abort ();
1800 /* If the insn doesn't go where we think, we're confused. */
1801 if (JUMP_LABEL (insn) != old_label)
1802 abort ();
1804 redirect_jump (insn, new_label, 0);
1807 emit_label_before (new_label, bb_note);
1808 bb->head = new_label;
1811 return bb;
1814 /* Queue instructions for insertion on an edge between two basic blocks.
1815 The new instructions and basic blocks (if any) will not appear in the
1816 CFG until commit_edge_insertions is called. */
1818 void
1819 insert_insn_on_edge (pattern, e)
1820 rtx pattern;
1821 edge e;
1823 /* We cannot insert instructions on an abnormal critical edge.
1824 It will be easier to find the culprit if we die now. */
1825 if ((e->flags & (EDGE_ABNORMAL|EDGE_CRITICAL))
1826 == (EDGE_ABNORMAL|EDGE_CRITICAL))
1827 abort ();
1829 if (e->insns == NULL_RTX)
1830 start_sequence ();
1831 else
1832 push_to_sequence (e->insns);
1834 emit_insn (pattern);
1836 e->insns = get_insns ();
1837 end_sequence ();
1840 /* Update the CFG for the instructions queued on edge E. */
1842 static void
1843 commit_one_edge_insertion (e)
1844 edge e;
1846 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1847 basic_block bb;
1849 /* Pull the insns off the edge now since the edge might go away. */
1850 insns = e->insns;
1851 e->insns = NULL_RTX;
1853 /* Figure out where to put these things. If the destination has
1854 one predecessor, insert there. Except for the exit block. */
1855 if (e->dest->pred->pred_next == NULL
1856 && e->dest != EXIT_BLOCK_PTR)
1858 bb = e->dest;
1860 /* Get the location correct wrt a code label, and "nice" wrt
1861 a basic block note, and before everything else. */
1862 tmp = bb->head;
1863 if (GET_CODE (tmp) == CODE_LABEL)
1864 tmp = NEXT_INSN (tmp);
1865 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1866 tmp = NEXT_INSN (tmp);
1867 if (tmp == bb->head)
1868 before = tmp;
1869 else
1870 after = PREV_INSN (tmp);
1873 /* If the source has one successor and the edge is not abnormal,
1874 insert there. Except for the entry block. */
1875 else if ((e->flags & EDGE_ABNORMAL) == 0
1876 && e->src->succ->succ_next == NULL
1877 && e->src != ENTRY_BLOCK_PTR)
1879 bb = e->src;
1880 /* It is possible to have a non-simple jump here. Consider a target
1881 where some forms of unconditional jumps clobber a register. This
1882 happens on the fr30 for example.
1884 We know this block has a single successor, so we can just emit
1885 the queued insns before the jump. */
1886 if (GET_CODE (bb->end) == JUMP_INSN)
1888 before = bb->end;
1890 else
1892 /* We'd better be fallthru, or we've lost track of what's what. */
1893 if ((e->flags & EDGE_FALLTHRU) == 0)
1894 abort ();
1896 after = bb->end;
1900 /* Otherwise we must split the edge. */
1901 else
1903 bb = split_edge (e);
1904 after = bb->end;
1907 /* Now that we've found the spot, do the insertion. */
1909 /* Set the new block number for these insns, if structure is allocated. */
1910 if (basic_block_for_insn)
1912 rtx i;
1913 for (i = insns; i != NULL_RTX; i = NEXT_INSN (i))
1914 set_block_for_insn (i, bb);
1917 if (before)
1919 emit_insns_before (insns, before);
1920 if (before == bb->head)
1921 bb->head = insns;
1923 last = prev_nonnote_insn (before);
1925 else
1927 last = emit_insns_after (insns, after);
1928 if (after == bb->end)
1929 bb->end = last;
1932 if (returnjump_p (last))
1934 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1935 This is not currently a problem because this only happens
1936 for the (single) epilogue, which already has a fallthru edge
1937 to EXIT. */
1939 e = bb->succ;
1940 if (e->dest != EXIT_BLOCK_PTR
1941 || e->succ_next != NULL
1942 || (e->flags & EDGE_FALLTHRU) == 0)
1943 abort ();
1944 e->flags &= ~EDGE_FALLTHRU;
1946 emit_barrier_after (last);
1947 bb->end = last;
1949 if (before)
1950 flow_delete_insn (before);
1952 else if (GET_CODE (last) == JUMP_INSN)
1953 abort ();
1956 /* Update the CFG for all queued instructions. */
1958 void
1959 commit_edge_insertions ()
1961 int i;
1962 basic_block bb;
1964 #ifdef ENABLE_CHECKING
1965 verify_flow_info ();
1966 #endif
1968 i = -1;
1969 bb = ENTRY_BLOCK_PTR;
1970 while (1)
1972 edge e, next;
1974 for (e = bb->succ; e; e = next)
1976 next = e->succ_next;
1977 if (e->insns)
1978 commit_one_edge_insertion (e);
1981 if (++i >= n_basic_blocks)
1982 break;
1983 bb = BASIC_BLOCK (i);
1987 /* Delete all unreachable basic blocks. */
1989 static void
1990 delete_unreachable_blocks ()
1992 basic_block *worklist, *tos;
1993 int deleted_handler;
1994 edge e;
1995 int i, n;
1997 n = n_basic_blocks;
1998 tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n);
2000 /* Use basic_block->aux as a marker. Clear them all. */
2002 for (i = 0; i < n; ++i)
2003 BASIC_BLOCK (i)->aux = NULL;
2005 /* Add our starting points to the worklist. Almost always there will
2006 be only one. It isn't inconcievable that we might one day directly
2007 support Fortran alternate entry points. */
2009 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
2011 *tos++ = e->dest;
2013 /* Mark the block with a handy non-null value. */
2014 e->dest->aux = e;
2017 /* Iterate: find everything reachable from what we've already seen. */
2019 while (tos != worklist)
2021 basic_block b = *--tos;
2023 for (e = b->succ; e; e = e->succ_next)
2024 if (!e->dest->aux)
2026 *tos++ = e->dest;
2027 e->dest->aux = e;
2031 /* Delete all unreachable basic blocks. Count down so that we don't
2032 interfere with the block renumbering that happens in flow_delete_block. */
2034 deleted_handler = 0;
2036 for (i = n - 1; i >= 0; --i)
2038 basic_block b = BASIC_BLOCK (i);
2040 if (b->aux != NULL)
2041 /* This block was found. Tidy up the mark. */
2042 b->aux = NULL;
2043 else
2044 deleted_handler |= flow_delete_block (b);
2047 tidy_fallthru_edges ();
2049 /* If we deleted an exception handler, we may have EH region begin/end
2050 blocks to remove as well. */
2051 if (deleted_handler)
2052 delete_eh_regions ();
2054 free (worklist);
2057 /* Find EH regions for which there is no longer a handler, and delete them. */
2059 static void
2060 delete_eh_regions ()
2062 rtx insn;
2064 update_rethrow_references ();
2066 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2067 if (GET_CODE (insn) == NOTE)
2069 if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2070 || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2072 int num = NOTE_EH_HANDLER (insn);
2073 /* A NULL handler indicates a region is no longer needed,
2074 as long as its rethrow label isn't used. */
2075 if (get_first_handler (num) == NULL && ! rethrow_used (num))
2077 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2078 NOTE_SOURCE_FILE (insn) = 0;
2084 /* Return true if NOTE is not one of the ones that must be kept paired,
2085 so that we may simply delete them. */
2087 static int
2088 can_delete_note_p (note)
2089 rtx note;
2091 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
2092 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
2095 /* Unlink a chain of insns between START and FINISH, leaving notes
2096 that must be paired. */
2098 void
2099 flow_delete_insn_chain (start, finish)
2100 rtx start, finish;
2102 /* Unchain the insns one by one. It would be quicker to delete all
2103 of these with a single unchaining, rather than one at a time, but
2104 we need to keep the NOTE's. */
2106 rtx next;
2108 while (1)
2110 next = NEXT_INSN (start);
2111 if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
2113 else if (GET_CODE (start) == CODE_LABEL
2114 && ! can_delete_label_p (start))
2116 const char *name = LABEL_NAME (start);
2117 PUT_CODE (start, NOTE);
2118 NOTE_LINE_NUMBER (start) = NOTE_INSN_DELETED_LABEL;
2119 NOTE_SOURCE_FILE (start) = name;
2121 else
2122 next = flow_delete_insn (start);
2124 if (start == finish)
2125 break;
2126 start = next;
2130 /* Delete the insns in a (non-live) block. We physically delete every
2131 non-deleted-note insn, and update the flow graph appropriately.
2133 Return nonzero if we deleted an exception handler. */
2135 /* ??? Preserving all such notes strikes me as wrong. It would be nice
2136 to post-process the stream to remove empty blocks, loops, ranges, etc. */
2139 flow_delete_block (b)
2140 basic_block b;
2142 int deleted_handler = 0;
2143 rtx insn, end, tmp;
2145 /* If the head of this block is a CODE_LABEL, then it might be the
2146 label for an exception handler which can't be reached.
2148 We need to remove the label from the exception_handler_label list
2149 and remove the associated NOTE_INSN_EH_REGION_BEG and
2150 NOTE_INSN_EH_REGION_END notes. */
2152 insn = b->head;
2154 never_reached_warning (insn);
2156 if (GET_CODE (insn) == CODE_LABEL)
2158 rtx x, *prev = &exception_handler_labels;
2160 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2162 if (XEXP (x, 0) == insn)
2164 /* Found a match, splice this label out of the EH label list. */
2165 *prev = XEXP (x, 1);
2166 XEXP (x, 1) = NULL_RTX;
2167 XEXP (x, 0) = NULL_RTX;
2169 /* Remove the handler from all regions */
2170 remove_handler (insn);
2171 deleted_handler = 1;
2172 break;
2174 prev = &XEXP (x, 1);
2178 /* Include any jump table following the basic block. */
2179 end = b->end;
2180 if (GET_CODE (end) == JUMP_INSN
2181 && (tmp = JUMP_LABEL (end)) != NULL_RTX
2182 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
2183 && GET_CODE (tmp) == JUMP_INSN
2184 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
2185 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
2186 end = tmp;
2188 /* Include any barrier that may follow the basic block. */
2189 tmp = next_nonnote_insn (end);
2190 if (tmp && GET_CODE (tmp) == BARRIER)
2191 end = tmp;
2193 /* Selectively delete the entire chain. */
2194 flow_delete_insn_chain (insn, end);
2196 /* Remove the edges into and out of this block. Note that there may
2197 indeed be edges in, if we are removing an unreachable loop. */
2199 edge e, next, *q;
2201 for (e = b->pred; e; e = next)
2203 for (q = &e->src->succ; *q != e; q = &(*q)->succ_next)
2204 continue;
2205 *q = e->succ_next;
2206 next = e->pred_next;
2207 n_edges--;
2208 free (e);
2210 for (e = b->succ; e; e = next)
2212 for (q = &e->dest->pred; *q != e; q = &(*q)->pred_next)
2213 continue;
2214 *q = e->pred_next;
2215 next = e->succ_next;
2216 n_edges--;
2217 free (e);
2220 b->pred = NULL;
2221 b->succ = NULL;
2224 /* Remove the basic block from the array, and compact behind it. */
2225 expunge_block (b);
2227 return deleted_handler;
2230 /* Remove block B from the basic block array and compact behind it. */
2232 static void
2233 expunge_block (b)
2234 basic_block b;
2236 int i, n = n_basic_blocks;
2238 for (i = b->index; i + 1 < n; ++i)
2240 basic_block x = BASIC_BLOCK (i + 1);
2241 BASIC_BLOCK (i) = x;
2242 x->index = i;
2245 basic_block_info->num_elements--;
2246 n_basic_blocks--;
2249 /* Delete INSN by patching it out. Return the next insn. */
2252 flow_delete_insn (insn)
2253 rtx insn;
2255 rtx prev = PREV_INSN (insn);
2256 rtx next = NEXT_INSN (insn);
2257 rtx note;
2259 PREV_INSN (insn) = NULL_RTX;
2260 NEXT_INSN (insn) = NULL_RTX;
2261 INSN_DELETED_P (insn) = 1;
2263 if (prev)
2264 NEXT_INSN (prev) = next;
2265 if (next)
2266 PREV_INSN (next) = prev;
2267 else
2268 set_last_insn (prev);
2270 if (GET_CODE (insn) == CODE_LABEL)
2271 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2273 /* If deleting a jump, decrement the use count of the label. Deleting
2274 the label itself should happen in the normal course of block merging. */
2275 if (GET_CODE (insn) == JUMP_INSN
2276 && JUMP_LABEL (insn)
2277 && GET_CODE (JUMP_LABEL (insn)) == CODE_LABEL)
2278 LABEL_NUSES (JUMP_LABEL (insn))--;
2280 /* Also if deleting an insn that references a label. */
2281 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
2282 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2283 LABEL_NUSES (XEXP (note, 0))--;
2285 return next;
2288 /* True if a given label can be deleted. */
2290 static int
2291 can_delete_label_p (label)
2292 rtx label;
2294 rtx x;
2296 if (LABEL_PRESERVE_P (label))
2297 return 0;
2299 for (x = forced_labels; x; x = XEXP (x, 1))
2300 if (label == XEXP (x, 0))
2301 return 0;
2302 for (x = label_value_list; x; x = XEXP (x, 1))
2303 if (label == XEXP (x, 0))
2304 return 0;
2305 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2306 if (label == XEXP (x, 0))
2307 return 0;
2309 /* User declared labels must be preserved. */
2310 if (LABEL_NAME (label) != 0)
2311 return 0;
2313 return 1;
2316 static int
2317 tail_recursion_label_p (label)
2318 rtx label;
2320 rtx x;
2322 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
2323 if (label == XEXP (x, 0))
2324 return 1;
2326 return 0;
2329 /* Blocks A and B are to be merged into a single block A. The insns
2330 are already contiguous, hence `nomove'. */
2332 void
2333 merge_blocks_nomove (a, b)
2334 basic_block a, b;
2336 edge e;
2337 rtx b_head, b_end, a_end;
2338 rtx del_first = NULL_RTX, del_last = NULL_RTX;
2339 int b_empty = 0;
2341 /* If there was a CODE_LABEL beginning B, delete it. */
2342 b_head = b->head;
2343 b_end = b->end;
2344 if (GET_CODE (b_head) == CODE_LABEL)
2346 /* Detect basic blocks with nothing but a label. This can happen
2347 in particular at the end of a function. */
2348 if (b_head == b_end)
2349 b_empty = 1;
2350 del_first = del_last = b_head;
2351 b_head = NEXT_INSN (b_head);
2354 /* Delete the basic block note. */
2355 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
2357 if (b_head == b_end)
2358 b_empty = 1;
2359 if (! del_last)
2360 del_first = b_head;
2361 del_last = b_head;
2362 b_head = NEXT_INSN (b_head);
2365 /* If there was a jump out of A, delete it. */
2366 a_end = a->end;
2367 if (GET_CODE (a_end) == JUMP_INSN)
2369 rtx prev;
2371 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
2372 if (GET_CODE (prev) != NOTE
2373 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
2374 || prev == a->head)
2375 break;
2377 del_first = a_end;
2379 #ifdef HAVE_cc0
2380 /* If this was a conditional jump, we need to also delete
2381 the insn that set cc0. */
2382 if (prev && sets_cc0_p (prev))
2384 rtx tmp = prev;
2385 prev = prev_nonnote_insn (prev);
2386 if (!prev)
2387 prev = a->head;
2388 del_first = tmp;
2390 #endif
2392 a_end = prev;
2394 else if (GET_CODE (NEXT_INSN (a_end)) == BARRIER)
2395 del_first = NEXT_INSN (a_end);
2397 /* Delete everything marked above as well as crap that might be
2398 hanging out between the two blocks. */
2399 flow_delete_insn_chain (del_first, del_last);
2401 /* Normally there should only be one successor of A and that is B, but
2402 partway though the merge of blocks for conditional_execution we'll
2403 be merging a TEST block with THEN and ELSE successors. Free the
2404 whole lot of them and hope the caller knows what they're doing. */
2405 while (a->succ)
2406 remove_edge (a->succ);
2408 /* Adjust the edges out of B for the new owner. */
2409 for (e = b->succ; e; e = e->succ_next)
2410 e->src = a;
2411 a->succ = b->succ;
2413 /* B hasn't quite yet ceased to exist. Attempt to prevent mishap. */
2414 b->pred = b->succ = NULL;
2416 /* Reassociate the insns of B with A. */
2417 if (!b_empty)
2419 if (basic_block_for_insn)
2421 BLOCK_FOR_INSN (b_head) = a;
2422 while (b_head != b_end)
2424 b_head = NEXT_INSN (b_head);
2425 BLOCK_FOR_INSN (b_head) = a;
2428 a_end = b_end;
2430 a->end = a_end;
2432 expunge_block (b);
2435 /* Blocks A and B are to be merged into a single block. A has no incoming
2436 fallthru edge, so it can be moved before B without adding or modifying
2437 any jumps (aside from the jump from A to B). */
2439 static int
2440 merge_blocks_move_predecessor_nojumps (a, b)
2441 basic_block a, b;
2443 rtx start, end, barrier;
2444 int index;
2446 start = a->head;
2447 end = a->end;
2449 barrier = next_nonnote_insn (end);
2450 if (GET_CODE (barrier) != BARRIER)
2451 abort ();
2452 flow_delete_insn (barrier);
2454 /* Move block and loop notes out of the chain so that we do not
2455 disturb their order.
2457 ??? A better solution would be to squeeze out all the non-nested notes
2458 and adjust the block trees appropriately. Even better would be to have
2459 a tighter connection between block trees and rtl so that this is not
2460 necessary. */
2461 start = squeeze_notes (start, end);
2463 /* Scramble the insn chain. */
2464 if (end != PREV_INSN (b->head))
2465 reorder_insns (start, end, PREV_INSN (b->head));
2467 if (rtl_dump_file)
2469 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
2470 a->index, b->index);
2473 /* Swap the records for the two blocks around. Although we are deleting B,
2474 A is now where B was and we want to compact the BB array from where
2475 A used to be. */
2476 BASIC_BLOCK (a->index) = b;
2477 BASIC_BLOCK (b->index) = a;
2478 index = a->index;
2479 a->index = b->index;
2480 b->index = index;
2482 /* Now blocks A and B are contiguous. Merge them. */
2483 merge_blocks_nomove (a, b);
2485 return 1;
2488 /* Blocks A and B are to be merged into a single block. B has no outgoing
2489 fallthru edge, so it can be moved after A without adding or modifying
2490 any jumps (aside from the jump from A to B). */
2492 static int
2493 merge_blocks_move_successor_nojumps (a, b)
2494 basic_block a, b;
2496 rtx start, end, barrier;
2498 start = b->head;
2499 end = b->end;
2500 barrier = NEXT_INSN (end);
2502 /* Recognize a jump table following block B. */
2503 if (GET_CODE (barrier) == CODE_LABEL
2504 && NEXT_INSN (barrier)
2505 && GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
2506 && (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
2507 || GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
2509 end = NEXT_INSN (barrier);
2510 barrier = NEXT_INSN (end);
2513 /* There had better have been a barrier there. Delete it. */
2514 if (GET_CODE (barrier) != BARRIER)
2515 abort ();
2516 flow_delete_insn (barrier);
2518 /* Move block and loop notes out of the chain so that we do not
2519 disturb their order.
2521 ??? A better solution would be to squeeze out all the non-nested notes
2522 and adjust the block trees appropriately. Even better would be to have
2523 a tighter connection between block trees and rtl so that this is not
2524 necessary. */
2525 start = squeeze_notes (start, end);
2527 /* Scramble the insn chain. */
2528 reorder_insns (start, end, a->end);
2530 /* Now blocks A and B are contiguous. Merge them. */
2531 merge_blocks_nomove (a, b);
2533 if (rtl_dump_file)
2535 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
2536 b->index, a->index);
2539 return 1;
2542 /* Attempt to merge basic blocks that are potentially non-adjacent.
2543 Return true iff the attempt succeeded. */
2545 static int
2546 merge_blocks (e, b, c)
2547 edge e;
2548 basic_block b, c;
2550 /* If C has a tail recursion label, do not merge. There is no
2551 edge recorded from the call_placeholder back to this label, as
2552 that would make optimize_sibling_and_tail_recursive_calls more
2553 complex for no gain. */
2554 if (GET_CODE (c->head) == CODE_LABEL
2555 && tail_recursion_label_p (c->head))
2556 return 0;
2558 /* If B has a fallthru edge to C, no need to move anything. */
2559 if (e->flags & EDGE_FALLTHRU)
2561 merge_blocks_nomove (b, c);
2563 if (rtl_dump_file)
2565 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
2566 b->index, c->index);
2569 return 1;
2571 else
2573 edge tmp_edge;
2574 basic_block d;
2575 int c_has_outgoing_fallthru;
2576 int b_has_incoming_fallthru;
2578 /* We must make sure to not munge nesting of exception regions,
2579 lexical blocks, and loop notes.
2581 The first is taken care of by requiring that the active eh
2582 region at the end of one block always matches the active eh
2583 region at the beginning of the next block.
2585 The later two are taken care of by squeezing out all the notes. */
2587 /* ??? A throw/catch edge (or any abnormal edge) should be rarely
2588 executed and we may want to treat blocks which have two out
2589 edges, one normal, one abnormal as only having one edge for
2590 block merging purposes. */
2592 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
2593 if (tmp_edge->flags & EDGE_FALLTHRU)
2594 break;
2595 c_has_outgoing_fallthru = (tmp_edge != NULL);
2597 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
2598 if (tmp_edge->flags & EDGE_FALLTHRU)
2599 break;
2600 b_has_incoming_fallthru = (tmp_edge != NULL);
2602 /* If B does not have an incoming fallthru, and the exception regions
2603 match, then it can be moved immediately before C without introducing
2604 or modifying jumps.
2606 C can not be the first block, so we do not have to worry about
2607 accessing a non-existent block. */
2608 d = BASIC_BLOCK (c->index - 1);
2609 if (! b_has_incoming_fallthru
2610 && d->eh_end == b->eh_beg
2611 && b->eh_end == c->eh_beg)
2612 return merge_blocks_move_predecessor_nojumps (b, c);
2614 /* Otherwise, we're going to try to move C after B. Make sure the
2615 exception regions match.
2617 If B is the last basic block, then we must not try to access the
2618 block structure for block B + 1. Luckily in that case we do not
2619 need to worry about matching exception regions. */
2620 d = (b->index + 1 < n_basic_blocks ? BASIC_BLOCK (b->index + 1) : NULL);
2621 if (b->eh_end == c->eh_beg
2622 && (d == NULL || c->eh_end == d->eh_beg))
2624 /* If C does not have an outgoing fallthru, then it can be moved
2625 immediately after B without introducing or modifying jumps. */
2626 if (! c_has_outgoing_fallthru)
2627 return merge_blocks_move_successor_nojumps (b, c);
2629 /* Otherwise, we'll need to insert an extra jump, and possibly
2630 a new block to contain it. */
2631 /* ??? Not implemented yet. */
2634 return 0;
2638 /* Top level driver for merge_blocks. */
2640 static void
2641 try_merge_blocks ()
2643 int i;
2645 /* Attempt to merge blocks as made possible by edge removal. If a block
2646 has only one successor, and the successor has only one predecessor,
2647 they may be combined. */
2649 for (i = 0; i < n_basic_blocks;)
2651 basic_block c, b = BASIC_BLOCK (i);
2652 edge s;
2654 /* A loop because chains of blocks might be combineable. */
2655 while ((s = b->succ) != NULL
2656 && s->succ_next == NULL
2657 && (s->flags & EDGE_EH) == 0
2658 && (c = s->dest) != EXIT_BLOCK_PTR
2659 && c->pred->pred_next == NULL
2660 /* If the jump insn has side effects, we can't kill the edge. */
2661 && (GET_CODE (b->end) != JUMP_INSN
2662 || onlyjump_p (b->end))
2663 && merge_blocks (s, b, c))
2664 continue;
2666 /* Don't get confused by the index shift caused by deleting blocks. */
2667 i = b->index + 1;
2671 /* The given edge should potentially be a fallthru edge. If that is in
2672 fact true, delete the jump and barriers that are in the way. */
2674 void
2675 tidy_fallthru_edge (e, b, c)
2676 edge e;
2677 basic_block b, c;
2679 rtx q;
2681 /* ??? In a late-running flow pass, other folks may have deleted basic
2682 blocks by nopping out blocks, leaving multiple BARRIERs between here
2683 and the target label. They ought to be chastized and fixed.
2685 We can also wind up with a sequence of undeletable labels between
2686 one block and the next.
2688 So search through a sequence of barriers, labels, and notes for
2689 the head of block C and assert that we really do fall through. */
2691 if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
2692 return;
2694 /* Remove what will soon cease being the jump insn from the source block.
2695 If block B consisted only of this single jump, turn it into a deleted
2696 note. */
2697 q = b->end;
2698 if (GET_CODE (q) == JUMP_INSN
2699 && onlyjump_p (q)
2700 && (any_uncondjump_p (q)
2701 || (b->succ == e && e->succ_next == NULL)))
2703 #ifdef HAVE_cc0
2704 /* If this was a conditional jump, we need to also delete
2705 the insn that set cc0. */
2706 if (any_condjump_p (q) && sets_cc0_p (PREV_INSN (q)))
2707 q = PREV_INSN (q);
2708 #endif
2710 if (b->head == q)
2712 PUT_CODE (q, NOTE);
2713 NOTE_LINE_NUMBER (q) = NOTE_INSN_DELETED;
2714 NOTE_SOURCE_FILE (q) = 0;
2716 else
2717 q = PREV_INSN (q);
2719 b->end = q;
2722 /* Selectively unlink the sequence. */
2723 if (q != PREV_INSN (c->head))
2724 flow_delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));
2726 e->flags |= EDGE_FALLTHRU;
2729 /* Fix up edges that now fall through, or rather should now fall through
2730 but previously required a jump around now deleted blocks. Simplify
2731 the search by only examining blocks numerically adjacent, since this
2732 is how find_basic_blocks created them. */
2734 static void
2735 tidy_fallthru_edges ()
2737 int i;
2739 for (i = 1; i < n_basic_blocks; ++i)
2741 basic_block b = BASIC_BLOCK (i - 1);
2742 basic_block c = BASIC_BLOCK (i);
2743 edge s;
2745 /* We care about simple conditional or unconditional jumps with
2746 a single successor.
2748 If we had a conditional branch to the next instruction when
2749 find_basic_blocks was called, then there will only be one
2750 out edge for the block which ended with the conditional
2751 branch (since we do not create duplicate edges).
2753 Furthermore, the edge will be marked as a fallthru because we
2754 merge the flags for the duplicate edges. So we do not want to
2755 check that the edge is not a FALLTHRU edge. */
2756 if ((s = b->succ) != NULL
2757 && s->succ_next == NULL
2758 && s->dest == c
2759 /* If the jump insn has side effects, we can't tidy the edge. */
2760 && (GET_CODE (b->end) != JUMP_INSN
2761 || onlyjump_p (b->end)))
2762 tidy_fallthru_edge (s, b, c);
2766 /* Perform data flow analysis.
2767 F is the first insn of the function; FLAGS is a set of PROP_* flags
2768 to be used in accumulating flow info. */
2770 void
2771 life_analysis (f, file, flags)
2772 rtx f;
2773 FILE *file;
2774 int flags;
2776 #ifdef ELIMINABLE_REGS
2777 register int i;
2778 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2779 #endif
2781 /* Record which registers will be eliminated. We use this in
2782 mark_used_regs. */
2784 CLEAR_HARD_REG_SET (elim_reg_set);
2786 #ifdef ELIMINABLE_REGS
2787 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2788 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
2789 #else
2790 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
2791 #endif
2793 if (! optimize)
2794 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC);
2796 /* The post-reload life analysis have (on a global basis) the same
2797 registers live as was computed by reload itself. elimination
2798 Otherwise offsets and such may be incorrect.
2800 Reload will make some registers as live even though they do not
2801 appear in the rtl.
2803 We don't want to create new auto-incs after reload, since they
2804 are unlikely to be useful and can cause problems with shared
2805 stack slots. */
2806 if (reload_completed)
2807 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
2809 /* We want alias analysis information for local dead store elimination. */
2810 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2811 init_alias_analysis ();
2813 /* Always remove no-op moves. Do this before other processing so
2814 that we don't have to keep re-scanning them. */
2815 delete_noop_moves (f);
2817 /* Some targets can emit simpler epilogues if they know that sp was
2818 not ever modified during the function. After reload, of course,
2819 we've already emitted the epilogue so there's no sense searching. */
2820 if (! reload_completed)
2821 notice_stack_pointer_modification (f);
2823 /* Allocate and zero out data structures that will record the
2824 data from lifetime analysis. */
2825 allocate_reg_life_data ();
2826 allocate_bb_life_data ();
2828 /* Find the set of registers live on function exit. */
2829 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
2831 /* "Update" life info from zero. It'd be nice to begin the
2832 relaxation with just the exit and noreturn blocks, but that set
2833 is not immediately handy. */
2835 if (flags & PROP_REG_INFO)
2836 memset (regs_ever_live, 0, sizeof (regs_ever_live));
2837 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
2839 /* Clean up. */
2840 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2841 end_alias_analysis ();
2843 if (file)
2844 dump_flow_info (file);
2846 free_basic_block_vars (1);
2849 /* A subroutine of verify_wide_reg, called through for_each_rtx.
2850 Search for REGNO. If found, abort if it is not wider than word_mode. */
2852 static int
2853 verify_wide_reg_1 (px, pregno)
2854 rtx *px;
2855 void *pregno;
2857 rtx x = *px;
2858 unsigned int regno = *(int *) pregno;
2860 if (GET_CODE (x) == REG && REGNO (x) == regno)
2862 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
2863 abort ();
2864 return 1;
2866 return 0;
2869 /* A subroutine of verify_local_live_at_start. Search through insns
2870 between HEAD and END looking for register REGNO. */
2872 static void
2873 verify_wide_reg (regno, head, end)
2874 int regno;
2875 rtx head, end;
2877 while (1)
2879 if (INSN_P (head)
2880 && for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno))
2881 return;
2882 if (head == end)
2883 break;
2884 head = NEXT_INSN (head);
2887 /* We didn't find the register at all. Something's way screwy. */
2888 if (rtl_dump_file)
2889 fprintf (rtl_dump_file, "Aborting in verify_wide_reg; reg %d\n", regno);
2890 print_rtl_and_abort ();
2893 /* A subroutine of update_life_info. Verify that there are no untoward
2894 changes in live_at_start during a local update. */
2896 static void
2897 verify_local_live_at_start (new_live_at_start, bb)
2898 regset new_live_at_start;
2899 basic_block bb;
2901 if (reload_completed)
2903 /* After reload, there are no pseudos, nor subregs of multi-word
2904 registers. The regsets should exactly match. */
2905 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
2907 if (rtl_dump_file)
2909 fprintf (rtl_dump_file,
2910 "live_at_start mismatch in bb %d, aborting\n",
2911 bb->index);
2912 debug_bitmap_file (rtl_dump_file, bb->global_live_at_start);
2913 debug_bitmap_file (rtl_dump_file, new_live_at_start);
2915 print_rtl_and_abort ();
2918 else
2920 int i;
2922 /* Find the set of changed registers. */
2923 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
2925 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
2927 /* No registers should die. */
2928 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
2930 if (rtl_dump_file)
2931 fprintf (rtl_dump_file,
2932 "Register %d died unexpectedly in block %d\n", i,
2933 bb->index);
2934 print_rtl_and_abort ();
2937 /* Verify that the now-live register is wider than word_mode. */
2938 verify_wide_reg (i, bb->head, bb->end);
2943 /* Updates life information starting with the basic blocks set in BLOCKS.
2944 If BLOCKS is null, consider it to be the universal set.
2946 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
2947 we are only expecting local modifications to basic blocks. If we find
2948 extra registers live at the beginning of a block, then we either killed
2949 useful data, or we have a broken split that wants data not provided.
2950 If we find registers removed from live_at_start, that means we have
2951 a broken peephole that is killing a register it shouldn't.
2953 ??? This is not true in one situation -- when a pre-reload splitter
2954 generates subregs of a multi-word pseudo, current life analysis will
2955 lose the kill. So we _can_ have a pseudo go live. How irritating.
2957 Including PROP_REG_INFO does not properly refresh regs_ever_live
2958 unless the caller resets it to zero. */
2960 void
2961 update_life_info (blocks, extent, prop_flags)
2962 sbitmap blocks;
2963 enum update_life_extent extent;
2964 int prop_flags;
2966 regset tmp;
2967 regset_head tmp_head;
2968 int i;
2970 tmp = INITIALIZE_REG_SET (tmp_head);
2972 /* For a global update, we go through the relaxation process again. */
2973 if (extent != UPDATE_LIFE_LOCAL)
2975 calculate_global_regs_live (blocks, blocks,
2976 prop_flags & PROP_SCAN_DEAD_CODE);
2978 /* If asked, remove notes from the blocks we'll update. */
2979 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
2980 count_or_remove_death_notes (blocks, 1);
2983 if (blocks)
2985 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
2987 basic_block bb = BASIC_BLOCK (i);
2989 COPY_REG_SET (tmp, bb->global_live_at_end);
2990 propagate_block (bb, tmp, NULL, NULL, prop_flags);
2992 if (extent == UPDATE_LIFE_LOCAL)
2993 verify_local_live_at_start (tmp, bb);
2996 else
2998 for (i = n_basic_blocks - 1; i >= 0; --i)
3000 basic_block bb = BASIC_BLOCK (i);
3002 COPY_REG_SET (tmp, bb->global_live_at_end);
3003 propagate_block (bb, tmp, NULL, NULL, prop_flags);
3005 if (extent == UPDATE_LIFE_LOCAL)
3006 verify_local_live_at_start (tmp, bb);
3010 FREE_REG_SET (tmp);
3012 if (prop_flags & PROP_REG_INFO)
3014 /* The only pseudos that are live at the beginning of the function
3015 are those that were not set anywhere in the function. local-alloc
3016 doesn't know how to handle these correctly, so mark them as not
3017 local to any one basic block. */
3018 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
3019 FIRST_PSEUDO_REGISTER, i,
3020 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
3022 /* We have a problem with any pseudoreg that lives across the setjmp.
3023 ANSI says that if a user variable does not change in value between
3024 the setjmp and the longjmp, then the longjmp preserves it. This
3025 includes longjmp from a place where the pseudo appears dead.
3026 (In principle, the value still exists if it is in scope.)
3027 If the pseudo goes in a hard reg, some other value may occupy
3028 that hard reg where this pseudo is dead, thus clobbering the pseudo.
3029 Conclusion: such a pseudo must not go in a hard reg. */
3030 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
3031 FIRST_PSEUDO_REGISTER, i,
3033 if (regno_reg_rtx[i] != 0)
3035 REG_LIVE_LENGTH (i) = -1;
3036 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
3042 /* Free the variables allocated by find_basic_blocks.
3044 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
3046 void
3047 free_basic_block_vars (keep_head_end_p)
3048 int keep_head_end_p;
3050 if (basic_block_for_insn)
3052 VARRAY_FREE (basic_block_for_insn);
3053 basic_block_for_insn = NULL;
3056 if (! keep_head_end_p)
3058 clear_edges ();
3059 VARRAY_FREE (basic_block_info);
3060 n_basic_blocks = 0;
3062 ENTRY_BLOCK_PTR->aux = NULL;
3063 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
3064 EXIT_BLOCK_PTR->aux = NULL;
3065 EXIT_BLOCK_PTR->global_live_at_start = NULL;
3069 /* Return nonzero if the destination of SET equals the source. */
3071 static int
3072 set_noop_p (set)
3073 rtx set;
3075 rtx src = SET_SRC (set);
3076 rtx dst = SET_DEST (set);
3078 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
3080 if (SUBREG_WORD (src) != SUBREG_WORD (dst))
3081 return 0;
3082 src = SUBREG_REG (src);
3083 dst = SUBREG_REG (dst);
3086 return (GET_CODE (src) == REG && GET_CODE (dst) == REG
3087 && REGNO (src) == REGNO (dst));
3090 /* Return nonzero if an insn consists only of SETs, each of which only sets a
3091 value to itself. */
3093 static int
3094 noop_move_p (insn)
3095 rtx insn;
3097 rtx pat = PATTERN (insn);
3099 /* Insns carrying these notes are useful later on. */
3100 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
3101 return 0;
3103 if (GET_CODE (pat) == SET && set_noop_p (pat))
3104 return 1;
3106 if (GET_CODE (pat) == PARALLEL)
3108 int i;
3109 /* If nothing but SETs of registers to themselves,
3110 this insn can also be deleted. */
3111 for (i = 0; i < XVECLEN (pat, 0); i++)
3113 rtx tem = XVECEXP (pat, 0, i);
3115 if (GET_CODE (tem) == USE
3116 || GET_CODE (tem) == CLOBBER)
3117 continue;
3119 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
3120 return 0;
3123 return 1;
3125 return 0;
3128 /* Delete any insns that copy a register to itself. */
3130 static void
3131 delete_noop_moves (f)
3132 rtx f;
3134 rtx insn;
3135 for (insn = f; insn; insn = NEXT_INSN (insn))
3137 if (GET_CODE (insn) == INSN && noop_move_p (insn))
3139 PUT_CODE (insn, NOTE);
3140 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
3141 NOTE_SOURCE_FILE (insn) = 0;
3146 /* Determine if the stack pointer is constant over the life of the function.
3147 Only useful before prologues have been emitted. */
3149 static void
3150 notice_stack_pointer_modification_1 (x, pat, data)
3151 rtx x;
3152 rtx pat ATTRIBUTE_UNUSED;
3153 void *data ATTRIBUTE_UNUSED;
3155 if (x == stack_pointer_rtx
3156 /* The stack pointer is only modified indirectly as the result
3157 of a push until later in flow. See the comments in rtl.texi
3158 regarding Embedded Side-Effects on Addresses. */
3159 || (GET_CODE (x) == MEM
3160 && (GET_CODE (XEXP (x, 0)) == PRE_DEC
3161 || GET_CODE (XEXP (x, 0)) == PRE_INC
3162 || GET_CODE (XEXP (x, 0)) == PRE_MODIFY
3163 || GET_CODE (XEXP (x, 0)) == POST_MODIFY
3164 || GET_CODE (XEXP (x, 0)) == POST_DEC
3165 || GET_CODE (XEXP (x, 0)) == POST_INC)
3166 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
3167 current_function_sp_is_unchanging = 0;
3170 static void
3171 notice_stack_pointer_modification (f)
3172 rtx f;
3174 rtx insn;
3176 /* Assume that the stack pointer is unchanging if alloca hasn't
3177 been used. */
3178 current_function_sp_is_unchanging = !current_function_calls_alloca;
3179 if (! current_function_sp_is_unchanging)
3180 return;
3182 for (insn = f; insn; insn = NEXT_INSN (insn))
3184 if (INSN_P (insn))
3186 /* Check if insn modifies the stack pointer. */
3187 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
3188 NULL);
3189 if (! current_function_sp_is_unchanging)
3190 return;
3195 /* Mark a register in SET. Hard registers in large modes get all
3196 of their component registers set as well. */
3198 static void
3199 mark_reg (reg, xset)
3200 rtx reg;
3201 void *xset;
3203 regset set = (regset) xset;
3204 int regno = REGNO (reg);
3206 if (GET_MODE (reg) == BLKmode)
3207 abort ();
3209 SET_REGNO_REG_SET (set, regno);
3210 if (regno < FIRST_PSEUDO_REGISTER)
3212 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
3213 while (--n > 0)
3214 SET_REGNO_REG_SET (set, regno + n);
3218 /* Mark those regs which are needed at the end of the function as live
3219 at the end of the last basic block. */
3221 static void
3222 mark_regs_live_at_end (set)
3223 regset set;
3225 int i;
3227 /* If exiting needs the right stack value, consider the stack pointer
3228 live at the end of the function. */
3229 if ((HAVE_epilogue && reload_completed)
3230 || ! EXIT_IGNORE_STACK
3231 || (! FRAME_POINTER_REQUIRED
3232 && ! current_function_calls_alloca
3233 && flag_omit_frame_pointer)
3234 || current_function_sp_is_unchanging)
3236 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
3239 /* Mark the frame pointer if needed at the end of the function. If
3240 we end up eliminating it, it will be removed from the live list
3241 of each basic block by reload. */
3243 if (! reload_completed || frame_pointer_needed)
3245 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
3246 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3247 /* If they are different, also mark the hard frame pointer as live. */
3248 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
3249 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
3250 #endif
3253 #ifdef PIC_OFFSET_TABLE_REGNUM
3254 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
3255 /* Many architectures have a GP register even without flag_pic.
3256 Assume the pic register is not in use, or will be handled by
3257 other means, if it is not fixed. */
3258 if (fixed_regs[PIC_OFFSET_TABLE_REGNUM])
3259 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
3260 #endif
3261 #endif
3263 /* Mark all global registers, and all registers used by the epilogue
3264 as being live at the end of the function since they may be
3265 referenced by our caller. */
3266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3267 if (global_regs[i] || EPILOGUE_USES (i))
3268 SET_REGNO_REG_SET (set, i);
3270 /* Mark all call-saved registers that we actaully used. */
3271 if (HAVE_epilogue && reload_completed)
3273 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3274 if (regs_ever_live[i] && ! call_used_regs[i] && ! LOCAL_REGNO (i))
3275 SET_REGNO_REG_SET (set, i);
3278 /* Mark function return value. */
3279 diddle_return_value (mark_reg, set);
3282 /* Callback function for for_each_successor_phi. DATA is a regset.
3283 Sets the SRC_REGNO, the regno of the phi alternative for phi node
3284 INSN, in the regset. */
3286 static int
3287 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
3288 rtx insn ATTRIBUTE_UNUSED;
3289 int dest_regno ATTRIBUTE_UNUSED;
3290 int src_regno;
3291 void *data;
3293 regset live = (regset) data;
3294 SET_REGNO_REG_SET (live, src_regno);
3295 return 0;
3298 /* Propagate global life info around the graph of basic blocks. Begin
3299 considering blocks with their corresponding bit set in BLOCKS_IN.
3300 If BLOCKS_IN is null, consider it the universal set.
3302 BLOCKS_OUT is set for every block that was changed. */
3304 static void
3305 calculate_global_regs_live (blocks_in, blocks_out, flags)
3306 sbitmap blocks_in, blocks_out;
3307 int flags;
3309 basic_block *queue, *qhead, *qtail, *qend;
3310 regset tmp, new_live_at_end;
3311 regset_head tmp_head;
3312 regset_head new_live_at_end_head;
3313 int i;
3315 tmp = INITIALIZE_REG_SET (tmp_head);
3316 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
3318 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
3319 because the `head == tail' style test for an empty queue doesn't
3320 work with a full queue. */
3321 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
3322 qtail = queue;
3323 qhead = qend = queue + n_basic_blocks + 2;
3325 /* Queue the blocks set in the initial mask. Do this in reverse block
3326 number order so that we are more likely for the first round to do
3327 useful work. We use AUX non-null to flag that the block is queued. */
3328 if (blocks_in)
3330 /* Clear out the garbage that might be hanging out in bb->aux. */
3331 for (i = n_basic_blocks - 1; i >= 0; --i)
3332 BASIC_BLOCK (i)->aux = NULL;
3334 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
3336 basic_block bb = BASIC_BLOCK (i);
3337 *--qhead = bb;
3338 bb->aux = bb;
3341 else
3343 for (i = 0; i < n_basic_blocks; ++i)
3345 basic_block bb = BASIC_BLOCK (i);
3346 *--qhead = bb;
3347 bb->aux = bb;
3351 if (blocks_out)
3352 sbitmap_zero (blocks_out);
3354 while (qhead != qtail)
3356 int rescan, changed;
3357 basic_block bb;
3358 edge e;
3360 bb = *qhead++;
3361 if (qhead == qend)
3362 qhead = queue;
3363 bb->aux = NULL;
3365 /* Begin by propogating live_at_start from the successor blocks. */
3366 CLEAR_REG_SET (new_live_at_end);
3367 for (e = bb->succ; e; e = e->succ_next)
3369 basic_block sb = e->dest;
3370 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
3373 /* The all-important stack pointer must always be live. */
3374 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
3376 /* Before reload, there are a few registers that must be forced
3377 live everywhere -- which might not already be the case for
3378 blocks within infinite loops. */
3379 if (! reload_completed)
3381 /* Any reference to any pseudo before reload is a potential
3382 reference of the frame pointer. */
3383 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
3385 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3386 /* Pseudos with argument area equivalences may require
3387 reloading via the argument pointer. */
3388 if (fixed_regs[ARG_POINTER_REGNUM])
3389 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
3390 #endif
3392 #ifdef PIC_OFFSET_TABLE_REGNUM
3393 /* Any constant, or pseudo with constant equivalences, may
3394 require reloading from memory using the pic register. */
3395 if (fixed_regs[PIC_OFFSET_TABLE_REGNUM])
3396 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
3397 #endif
3400 /* Regs used in phi nodes are not included in
3401 global_live_at_start, since they are live only along a
3402 particular edge. Set those regs that are live because of a
3403 phi node alternative corresponding to this particular block. */
3404 if (in_ssa_form)
3405 for_each_successor_phi (bb, &set_phi_alternative_reg,
3406 new_live_at_end);
3408 if (bb == ENTRY_BLOCK_PTR)
3410 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3411 continue;
3414 /* On our first pass through this block, we'll go ahead and continue.
3415 Recognize first pass by local_set NULL. On subsequent passes, we
3416 get to skip out early if live_at_end wouldn't have changed. */
3418 if (bb->local_set == NULL)
3420 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3421 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3422 rescan = 1;
3424 else
3426 /* If any bits were removed from live_at_end, we'll have to
3427 rescan the block. This wouldn't be necessary if we had
3428 precalculated local_live, however with PROP_SCAN_DEAD_CODE
3429 local_live is really dependent on live_at_end. */
3430 CLEAR_REG_SET (tmp);
3431 rescan = bitmap_operation (tmp, bb->global_live_at_end,
3432 new_live_at_end, BITMAP_AND_COMPL);
3434 if (! rescan)
3436 /* If any of the registers in the new live_at_end set are
3437 conditionally set in this basic block, we must rescan.
3438 This is because conditional lifetimes at the end of the
3439 block do not just take the live_at_end set into account,
3440 but also the liveness at the start of each successor
3441 block. We can miss changes in those sets if we only
3442 compare the new live_at_end against the previous one. */
3443 CLEAR_REG_SET (tmp);
3444 rescan = bitmap_operation (tmp, new_live_at_end,
3445 bb->cond_local_set, BITMAP_AND);
3448 if (! rescan)
3450 /* Find the set of changed bits. Take this opportunity
3451 to notice that this set is empty and early out. */
3452 CLEAR_REG_SET (tmp);
3453 changed = bitmap_operation (tmp, bb->global_live_at_end,
3454 new_live_at_end, BITMAP_XOR);
3455 if (! changed)
3456 continue;
3458 /* If any of the changed bits overlap with local_set,
3459 we'll have to rescan the block. Detect overlap by
3460 the AND with ~local_set turning off bits. */
3461 rescan = bitmap_operation (tmp, tmp, bb->local_set,
3462 BITMAP_AND_COMPL);
3466 /* Let our caller know that BB changed enough to require its
3467 death notes updated. */
3468 if (blocks_out)
3469 SET_BIT (blocks_out, bb->index);
3471 if (! rescan)
3473 /* Add to live_at_start the set of all registers in
3474 new_live_at_end that aren't in the old live_at_end. */
3476 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
3477 BITMAP_AND_COMPL);
3478 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3480 changed = bitmap_operation (bb->global_live_at_start,
3481 bb->global_live_at_start,
3482 tmp, BITMAP_IOR);
3483 if (! changed)
3484 continue;
3486 else
3488 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3490 /* Rescan the block insn by insn to turn (a copy of) live_at_end
3491 into live_at_start. */
3492 propagate_block (bb, new_live_at_end, bb->local_set,
3493 bb->cond_local_set, flags);
3495 /* If live_at start didn't change, no need to go farther. */
3496 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
3497 continue;
3499 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
3502 /* Queue all predecessors of BB so that we may re-examine
3503 their live_at_end. */
3504 for (e = bb->pred; e; e = e->pred_next)
3506 basic_block pb = e->src;
3507 if (pb->aux == NULL)
3509 *qtail++ = pb;
3510 if (qtail == qend)
3511 qtail = queue;
3512 pb->aux = pb;
3517 FREE_REG_SET (tmp);
3518 FREE_REG_SET (new_live_at_end);
3520 if (blocks_out)
3522 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
3524 basic_block bb = BASIC_BLOCK (i);
3525 FREE_REG_SET (bb->local_set);
3526 FREE_REG_SET (bb->cond_local_set);
3529 else
3531 for (i = n_basic_blocks - 1; i >= 0; --i)
3533 basic_block bb = BASIC_BLOCK (i);
3534 FREE_REG_SET (bb->local_set);
3535 FREE_REG_SET (bb->cond_local_set);
3539 free (queue);
3542 /* Subroutines of life analysis. */
3544 /* Allocate the permanent data structures that represent the results
3545 of life analysis. Not static since used also for stupid life analysis. */
3547 static void
3548 allocate_bb_life_data ()
3550 register int i;
3552 for (i = 0; i < n_basic_blocks; i++)
3554 basic_block bb = BASIC_BLOCK (i);
3556 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3557 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3560 ENTRY_BLOCK_PTR->global_live_at_end
3561 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3562 EXIT_BLOCK_PTR->global_live_at_start
3563 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3565 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3568 void
3569 allocate_reg_life_data ()
3571 int i;
3573 max_regno = max_reg_num ();
3575 /* Recalculate the register space, in case it has grown. Old style
3576 vector oriented regsets would set regset_{size,bytes} here also. */
3577 allocate_reg_info (max_regno, FALSE, FALSE);
3579 /* Reset all the data we'll collect in propagate_block and its
3580 subroutines. */
3581 for (i = 0; i < max_regno; i++)
3583 REG_N_SETS (i) = 0;
3584 REG_N_REFS (i) = 0;
3585 REG_N_DEATHS (i) = 0;
3586 REG_N_CALLS_CROSSED (i) = 0;
3587 REG_LIVE_LENGTH (i) = 0;
3588 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
3592 /* Delete dead instructions for propagate_block. */
3594 static void
3595 propagate_block_delete_insn (bb, insn)
3596 basic_block bb;
3597 rtx insn;
3599 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
3601 /* If the insn referred to a label, and that label was attached to
3602 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
3603 pretty much mandatory to delete it, because the ADDR_VEC may be
3604 referencing labels that no longer exist. */
3606 if (inote)
3608 rtx label = XEXP (inote, 0);
3609 rtx next;
3611 if (LABEL_NUSES (label) == 1
3612 && (next = next_nonnote_insn (label)) != NULL
3613 && GET_CODE (next) == JUMP_INSN
3614 && (GET_CODE (PATTERN (next)) == ADDR_VEC
3615 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
3617 rtx pat = PATTERN (next);
3618 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
3619 int len = XVECLEN (pat, diff_vec_p);
3620 int i;
3622 for (i = 0; i < len; i++)
3623 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
3625 flow_delete_insn (next);
3629 if (bb->end == insn)
3630 bb->end = PREV_INSN (insn);
3631 flow_delete_insn (insn);
3634 /* Delete dead libcalls for propagate_block. Return the insn
3635 before the libcall. */
3637 static rtx
3638 propagate_block_delete_libcall (bb, insn, note)
3639 basic_block bb;
3640 rtx insn, note;
3642 rtx first = XEXP (note, 0);
3643 rtx before = PREV_INSN (first);
3645 if (insn == bb->end)
3646 bb->end = before;
3648 flow_delete_insn_chain (first, insn);
3649 return before;
3652 /* Update the life-status of regs for one insn. Return the previous insn. */
3655 propagate_one_insn (pbi, insn)
3656 struct propagate_block_info *pbi;
3657 rtx insn;
3659 rtx prev = PREV_INSN (insn);
3660 int flags = pbi->flags;
3661 int insn_is_dead = 0;
3662 int libcall_is_dead = 0;
3663 rtx note;
3664 int i;
3666 if (! INSN_P (insn))
3667 return prev;
3669 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3670 if (flags & PROP_SCAN_DEAD_CODE)
3672 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0,
3673 REG_NOTES (insn));
3674 libcall_is_dead = (insn_is_dead && note != 0
3675 && libcall_dead_p (pbi, note, insn));
3678 /* We almost certainly don't want to delete prologue or epilogue
3679 instructions. Warn about probable compiler losage. */
3680 if (insn_is_dead
3681 && reload_completed
3682 && (((HAVE_epilogue || HAVE_prologue)
3683 && prologue_epilogue_contains (insn))
3684 || (HAVE_sibcall_epilogue
3685 && sibcall_epilogue_contains (insn)))
3686 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
3688 if (flags & PROP_KILL_DEAD_CODE)
3690 warning ("ICE: would have deleted prologue/epilogue insn");
3691 if (!inhibit_warnings)
3692 debug_rtx (insn);
3694 libcall_is_dead = insn_is_dead = 0;
3697 /* If an instruction consists of just dead store(s) on final pass,
3698 delete it. */
3699 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
3701 /* Record sets. Do this even for dead instructions, since they
3702 would have killed the values if they hadn't been deleted. */
3703 mark_set_regs (pbi, PATTERN (insn), insn);
3705 /* CC0 is now known to be dead. Either this insn used it,
3706 in which case it doesn't anymore, or clobbered it,
3707 so the next insn can't use it. */
3708 pbi->cc0_live = 0;
3710 if (libcall_is_dead)
3712 prev = propagate_block_delete_libcall (pbi->bb, insn, note);
3713 insn = NEXT_INSN (prev);
3715 else
3716 propagate_block_delete_insn (pbi->bb, insn);
3718 return prev;
3721 /* See if this is an increment or decrement that can be merged into
3722 a following memory address. */
3723 #ifdef AUTO_INC_DEC
3725 register rtx x = single_set (insn);
3727 /* Does this instruction increment or decrement a register? */
3728 if ((flags & PROP_AUTOINC)
3729 && x != 0
3730 && GET_CODE (SET_DEST (x)) == REG
3731 && (GET_CODE (SET_SRC (x)) == PLUS
3732 || GET_CODE (SET_SRC (x)) == MINUS)
3733 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
3734 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3735 /* Ok, look for a following memory ref we can combine with.
3736 If one is found, change the memory ref to a PRE_INC
3737 or PRE_DEC, cancel this insn, and return 1.
3738 Return 0 if nothing has been done. */
3739 && try_pre_increment_1 (pbi, insn))
3740 return prev;
3742 #endif /* AUTO_INC_DEC */
3744 CLEAR_REG_SET (pbi->new_set);
3746 /* If this is not the final pass, and this insn is copying the value of
3747 a library call and it's dead, don't scan the insns that perform the
3748 library call, so that the call's arguments are not marked live. */
3749 if (libcall_is_dead)
3751 /* Record the death of the dest reg. */
3752 mark_set_regs (pbi, PATTERN (insn), insn);
3754 insn = XEXP (note, 0);
3755 return PREV_INSN (insn);
3757 else if (GET_CODE (PATTERN (insn)) == SET
3758 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
3759 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
3760 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
3761 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
3762 /* We have an insn to pop a constant amount off the stack.
3763 (Such insns use PLUS regardless of the direction of the stack,
3764 and any insn to adjust the stack by a constant is always a pop.)
3765 These insns, if not dead stores, have no effect on life. */
3767 else
3769 /* Any regs live at the time of a call instruction must not go
3770 in a register clobbered by calls. Find all regs now live and
3771 record this for them. */
3773 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
3774 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
3775 { REG_N_CALLS_CROSSED (i)++; });
3777 /* Record sets. Do this even for dead instructions, since they
3778 would have killed the values if they hadn't been deleted. */
3779 mark_set_regs (pbi, PATTERN (insn), insn);
3781 if (GET_CODE (insn) == CALL_INSN)
3783 register int i;
3784 rtx note, cond;
3786 cond = NULL_RTX;
3787 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
3788 cond = COND_EXEC_TEST (PATTERN (insn));
3790 /* Non-constant calls clobber memory. */
3791 if (! CONST_CALL_P (insn))
3792 free_EXPR_LIST_list (&pbi->mem_set_list);
3794 /* There may be extra registers to be clobbered. */
3795 for (note = CALL_INSN_FUNCTION_USAGE (insn);
3796 note;
3797 note = XEXP (note, 1))
3798 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
3799 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
3800 cond, insn, pbi->flags);
3802 /* Calls change all call-used and global registers. */
3803 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3804 if (call_used_regs[i] && ! global_regs[i]
3805 && ! fixed_regs[i])
3807 /* We do not want REG_UNUSED notes for these registers. */
3808 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
3809 cond, insn,
3810 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
3814 /* If an insn doesn't use CC0, it becomes dead since we assume
3815 that every insn clobbers it. So show it dead here;
3816 mark_used_regs will set it live if it is referenced. */
3817 pbi->cc0_live = 0;
3819 /* Record uses. */
3820 if (! insn_is_dead)
3821 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
3823 /* Sometimes we may have inserted something before INSN (such as a move)
3824 when we make an auto-inc. So ensure we will scan those insns. */
3825 #ifdef AUTO_INC_DEC
3826 prev = PREV_INSN (insn);
3827 #endif
3829 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
3831 register int i;
3832 rtx note, cond;
3834 cond = NULL_RTX;
3835 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
3836 cond = COND_EXEC_TEST (PATTERN (insn));
3838 /* Calls use their arguments. */
3839 for (note = CALL_INSN_FUNCTION_USAGE (insn);
3840 note;
3841 note = XEXP (note, 1))
3842 if (GET_CODE (XEXP (note, 0)) == USE)
3843 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
3844 cond, insn);
3846 /* The stack ptr is used (honorarily) by a CALL insn. */
3847 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
3849 /* Calls may also reference any of the global registers,
3850 so they are made live. */
3851 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3852 if (global_regs[i])
3853 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
3854 cond, insn);
3858 /* On final pass, update counts of how many insns in which each reg
3859 is live. */
3860 if (flags & PROP_REG_INFO)
3861 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
3862 { REG_LIVE_LENGTH (i)++; });
3864 return prev;
3867 /* Initialize a propagate_block_info struct for public consumption.
3868 Note that the structure itself is opaque to this file, but that
3869 the user can use the regsets provided here. */
3871 struct propagate_block_info *
3872 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
3873 basic_block bb;
3874 regset live, local_set, cond_local_set;
3875 int flags;
3877 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
3879 pbi->bb = bb;
3880 pbi->reg_live = live;
3881 pbi->mem_set_list = NULL_RTX;
3882 pbi->local_set = local_set;
3883 pbi->cond_local_set = cond_local_set;
3884 pbi->cc0_live = 0;
3885 pbi->flags = flags;
3887 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3888 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
3889 else
3890 pbi->reg_next_use = NULL;
3892 pbi->new_set = BITMAP_XMALLOC ();
3894 #ifdef HAVE_conditional_execution
3895 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
3896 free_reg_cond_life_info);
3897 pbi->reg_cond_reg = BITMAP_XMALLOC ();
3899 /* If this block ends in a conditional branch, for each register live
3900 from one side of the branch and not the other, record the register
3901 as conditionally dead. */
3902 if ((flags & (PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE))
3903 && GET_CODE (bb->end) == JUMP_INSN
3904 && any_condjump_p (bb->end))
3906 regset_head diff_head;
3907 regset diff = INITIALIZE_REG_SET (diff_head);
3908 basic_block bb_true, bb_false;
3909 rtx cond_true, cond_false, set_src;
3910 int i;
3912 /* Identify the successor blocks. */
3913 bb_true = bb->succ->dest;
3914 if (bb->succ->succ_next != NULL)
3916 bb_false = bb->succ->succ_next->dest;
3918 if (bb->succ->flags & EDGE_FALLTHRU)
3920 basic_block t = bb_false;
3921 bb_false = bb_true;
3922 bb_true = t;
3924 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
3925 abort ();
3927 else
3929 /* This can happen with a conditional jump to the next insn. */
3930 if (JUMP_LABEL (bb->end) != bb_true->head)
3931 abort ();
3933 /* Simplest way to do nothing. */
3934 bb_false = bb_true;
3937 /* Extract the condition from the branch. */
3938 set_src = SET_SRC (pc_set (bb->end));
3939 cond_true = XEXP (set_src, 0);
3940 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
3941 GET_MODE (cond_true), XEXP (cond_true, 0),
3942 XEXP (cond_true, 1));
3943 if (GET_CODE (XEXP (set_src, 1)) == PC)
3945 rtx t = cond_false;
3946 cond_false = cond_true;
3947 cond_true = t;
3950 /* Compute which register lead different lives in the successors. */
3951 if (bitmap_operation (diff, bb_true->global_live_at_start,
3952 bb_false->global_live_at_start, BITMAP_XOR))
3954 rtx reg = XEXP (cond_true, 0);
3956 if (GET_CODE (reg) == SUBREG)
3957 reg = SUBREG_REG (reg);
3959 if (GET_CODE (reg) != REG)
3960 abort ();
3962 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
3964 /* For each such register, mark it conditionally dead. */
3965 EXECUTE_IF_SET_IN_REG_SET
3966 (diff, 0, i,
3968 struct reg_cond_life_info *rcli;
3969 rtx cond;
3971 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3973 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
3974 cond = cond_false;
3975 else
3976 cond = cond_true;
3977 rcli->condition = alloc_EXPR_LIST (0, cond, NULL_RTX);
3979 splay_tree_insert (pbi->reg_cond_dead, i,
3980 (splay_tree_value) rcli);
3984 FREE_REG_SET (diff);
3986 #endif
3988 /* If this block has no successors, any stores to the frame that aren't
3989 used later in the block are dead. So make a pass over the block
3990 recording any such that are made and show them dead at the end. We do
3991 a very conservative and simple job here. */
3992 if (optimize
3993 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
3994 && (TYPE_RETURNS_STACK_DEPRESSED
3995 (TREE_TYPE (current_function_decl))))
3996 && (flags & PROP_SCAN_DEAD_CODE)
3997 && (bb->succ == NULL
3998 || (bb->succ->succ_next == NULL
3999 && bb->succ->dest == EXIT_BLOCK_PTR)))
4001 rtx insn;
4002 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
4003 if (GET_CODE (insn) == INSN
4004 && GET_CODE (PATTERN (insn)) == SET
4005 && GET_CODE (SET_DEST (PATTERN (insn))) == MEM)
4007 rtx mem = SET_DEST (PATTERN (insn));
4009 if (XEXP (mem, 0) == frame_pointer_rtx
4010 || (GET_CODE (XEXP (mem, 0)) == PLUS
4011 && XEXP (XEXP (mem, 0), 0) == frame_pointer_rtx
4012 && GET_CODE (XEXP (XEXP (mem, 0), 1)) == CONST_INT))
4014 #ifdef AUTO_INC_DEC
4015 /* Store a copy of mem, otherwise the address may be scrogged
4016 by find_auto_inc. This matters because insn_dead_p uses
4017 an rtx_equal_p check to determine if two addresses are
4018 the same. This works before find_auto_inc, but fails
4019 after find_auto_inc, causing discrepencies between the
4020 set of live registers calculated during the
4021 calculate_global_regs_live phase and what actually exists
4022 after flow completes, leading to aborts. */
4023 if (flags & PROP_AUTOINC)
4024 mem = shallow_copy_rtx (mem);
4025 #endif
4026 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
4031 return pbi;
4034 /* Release a propagate_block_info struct. */
4036 void
4037 free_propagate_block_info (pbi)
4038 struct propagate_block_info *pbi;
4040 free_EXPR_LIST_list (&pbi->mem_set_list);
4042 BITMAP_XFREE (pbi->new_set);
4044 #ifdef HAVE_conditional_execution
4045 splay_tree_delete (pbi->reg_cond_dead);
4046 BITMAP_XFREE (pbi->reg_cond_reg);
4047 #endif
4049 if (pbi->reg_next_use)
4050 free (pbi->reg_next_use);
4052 free (pbi);
4055 /* Compute the registers live at the beginning of a basic block BB from
4056 those live at the end.
4058 When called, REG_LIVE contains those live at the end. On return, it
4059 contains those live at the beginning.
4061 LOCAL_SET, if non-null, will be set with all registers killed
4062 unconditionally by this basic block.
4063 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
4064 killed conditionally by this basic block. If there is any unconditional
4065 set of a register, then the corresponding bit will be set in LOCAL_SET
4066 and cleared in COND_LOCAL_SET.
4067 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
4068 case, the resulting set will be equal to the union of the two sets that
4069 would otherwise be computed. */
4071 void
4072 propagate_block (bb, live, local_set, cond_local_set, flags)
4073 basic_block bb;
4074 regset live;
4075 regset local_set;
4076 regset cond_local_set;
4077 int flags;
4079 struct propagate_block_info *pbi;
4080 rtx insn, prev;
4082 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
4084 if (flags & PROP_REG_INFO)
4086 register int i;
4088 /* Process the regs live at the end of the block.
4089 Mark them as not local to any one basic block. */
4090 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
4091 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
4094 /* Scan the block an insn at a time from end to beginning. */
4096 for (insn = bb->end;; insn = prev)
4098 /* If this is a call to `setjmp' et al, warn if any
4099 non-volatile datum is live. */
4100 if ((flags & PROP_REG_INFO)
4101 && GET_CODE (insn) == NOTE
4102 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
4103 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
4105 prev = propagate_one_insn (pbi, insn);
4107 if (insn == bb->head)
4108 break;
4111 free_propagate_block_info (pbi);
4114 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
4115 (SET expressions whose destinations are registers dead after the insn).
4116 NEEDED is the regset that says which regs are alive after the insn.
4118 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
4120 If X is the entire body of an insn, NOTES contains the reg notes
4121 pertaining to the insn. */
4123 static int
4124 insn_dead_p (pbi, x, call_ok, notes)
4125 struct propagate_block_info *pbi;
4126 rtx x;
4127 int call_ok;
4128 rtx notes ATTRIBUTE_UNUSED;
4130 enum rtx_code code = GET_CODE (x);
4132 #ifdef AUTO_INC_DEC
4133 /* If flow is invoked after reload, we must take existing AUTO_INC
4134 expresions into account. */
4135 if (reload_completed)
4137 for (; notes; notes = XEXP (notes, 1))
4139 if (REG_NOTE_KIND (notes) == REG_INC)
4141 int regno = REGNO (XEXP (notes, 0));
4143 /* Don't delete insns to set global regs. */
4144 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
4145 || REGNO_REG_SET_P (pbi->reg_live, regno))
4146 return 0;
4150 #endif
4152 /* If setting something that's a reg or part of one,
4153 see if that register's altered value will be live. */
4155 if (code == SET)
4157 rtx r = SET_DEST (x);
4159 #ifdef HAVE_cc0
4160 if (GET_CODE (r) == CC0)
4161 return ! pbi->cc0_live;
4162 #endif
4164 /* A SET that is a subroutine call cannot be dead. */
4165 if (GET_CODE (SET_SRC (x)) == CALL)
4167 if (! call_ok)
4168 return 0;
4171 /* Don't eliminate loads from volatile memory or volatile asms. */
4172 else if (volatile_refs_p (SET_SRC (x)))
4173 return 0;
4175 if (GET_CODE (r) == MEM)
4177 rtx temp;
4179 if (MEM_VOLATILE_P (r))
4180 return 0;
4182 /* Walk the set of memory locations we are currently tracking
4183 and see if one is an identical match to this memory location.
4184 If so, this memory write is dead (remember, we're walking
4185 backwards from the end of the block to the start). */
4186 temp = pbi->mem_set_list;
4187 while (temp)
4189 rtx mem = XEXP (temp, 0);
4191 if (rtx_equal_p (mem, r))
4192 return 1;
4193 #ifdef AUTO_INC_DEC
4194 /* Check if memory reference matches an auto increment. Only
4195 post increment/decrement or modify are valid. */
4196 if (GET_MODE (mem) == GET_MODE (r)
4197 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
4198 || GET_CODE (XEXP (mem, 0)) == POST_INC
4199 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
4200 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
4201 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
4202 return 1;
4203 #endif
4204 temp = XEXP (temp, 1);
4207 else
4209 while (GET_CODE (r) == SUBREG
4210 || GET_CODE (r) == STRICT_LOW_PART
4211 || GET_CODE (r) == ZERO_EXTRACT)
4212 r = XEXP (r, 0);
4214 if (GET_CODE (r) == REG)
4216 int regno = REGNO (r);
4218 /* Obvious. */
4219 if (REGNO_REG_SET_P (pbi->reg_live, regno))
4220 return 0;
4222 /* If this is a hard register, verify that subsequent
4223 words are not needed. */
4224 if (regno < FIRST_PSEUDO_REGISTER)
4226 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
4228 while (--n > 0)
4229 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
4230 return 0;
4233 /* Don't delete insns to set global regs. */
4234 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
4235 return 0;
4237 /* Make sure insns to set the stack pointer aren't deleted. */
4238 if (regno == STACK_POINTER_REGNUM)
4239 return 0;
4241 /* ??? These bits might be redundant with the force live bits
4242 in calculate_global_regs_live. We would delete from
4243 sequential sets; whether this actually affects real code
4244 for anything but the stack pointer I don't know. */
4245 /* Make sure insns to set the frame pointer aren't deleted. */
4246 if (regno == FRAME_POINTER_REGNUM
4247 && (! reload_completed || frame_pointer_needed))
4248 return 0;
4249 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4250 if (regno == HARD_FRAME_POINTER_REGNUM
4251 && (! reload_completed || frame_pointer_needed))
4252 return 0;
4253 #endif
4255 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4256 /* Make sure insns to set arg pointer are never deleted
4257 (if the arg pointer isn't fixed, there will be a USE
4258 for it, so we can treat it normally). */
4259 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4260 return 0;
4261 #endif
4263 /* Otherwise, the set is dead. */
4264 return 1;
4269 /* If performing several activities, insn is dead if each activity
4270 is individually dead. Also, CLOBBERs and USEs can be ignored; a
4271 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
4272 worth keeping. */
4273 else if (code == PARALLEL)
4275 int i = XVECLEN (x, 0);
4277 for (i--; i >= 0; i--)
4278 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
4279 && GET_CODE (XVECEXP (x, 0, i)) != USE
4280 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
4281 return 0;
4283 return 1;
4286 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
4287 is not necessarily true for hard registers. */
4288 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
4289 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
4290 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
4291 return 1;
4293 /* We do not check other CLOBBER or USE here. An insn consisting of just
4294 a CLOBBER or just a USE should not be deleted. */
4295 return 0;
4298 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
4299 return 1 if the entire library call is dead.
4300 This is true if INSN copies a register (hard or pseudo)
4301 and if the hard return reg of the call insn is dead.
4302 (The caller should have tested the destination of the SET inside
4303 INSN already for death.)
4305 If this insn doesn't just copy a register, then we don't
4306 have an ordinary libcall. In that case, cse could not have
4307 managed to substitute the source for the dest later on,
4308 so we can assume the libcall is dead.
4310 PBI is the block info giving pseudoregs live before this insn.
4311 NOTE is the REG_RETVAL note of the insn. */
4313 static int
4314 libcall_dead_p (pbi, note, insn)
4315 struct propagate_block_info *pbi;
4316 rtx note;
4317 rtx insn;
4319 rtx x = single_set (insn);
4321 if (x)
4323 register rtx r = SET_SRC (x);
4324 if (GET_CODE (r) == REG)
4326 rtx call = XEXP (note, 0);
4327 rtx call_pat;
4328 register int i;
4330 /* Find the call insn. */
4331 while (call != insn && GET_CODE (call) != CALL_INSN)
4332 call = NEXT_INSN (call);
4334 /* If there is none, do nothing special,
4335 since ordinary death handling can understand these insns. */
4336 if (call == insn)
4337 return 0;
4339 /* See if the hard reg holding the value is dead.
4340 If this is a PARALLEL, find the call within it. */
4341 call_pat = PATTERN (call);
4342 if (GET_CODE (call_pat) == PARALLEL)
4344 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
4345 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
4346 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
4347 break;
4349 /* This may be a library call that is returning a value
4350 via invisible pointer. Do nothing special, since
4351 ordinary death handling can understand these insns. */
4352 if (i < 0)
4353 return 0;
4355 call_pat = XVECEXP (call_pat, 0, i);
4358 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
4361 return 1;
4364 /* Return 1 if register REGNO was used before it was set, i.e. if it is
4365 live at function entry. Don't count global register variables, variables
4366 in registers that can be used for function arg passing, or variables in
4367 fixed hard registers. */
4370 regno_uninitialized (regno)
4371 int regno;
4373 if (n_basic_blocks == 0
4374 || (regno < FIRST_PSEUDO_REGISTER
4375 && (global_regs[regno]
4376 || fixed_regs[regno]
4377 || FUNCTION_ARG_REGNO_P (regno))))
4378 return 0;
4380 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
4383 /* 1 if register REGNO was alive at a place where `setjmp' was called
4384 and was set more than once or is an argument.
4385 Such regs may be clobbered by `longjmp'. */
4388 regno_clobbered_at_setjmp (regno)
4389 int regno;
4391 if (n_basic_blocks == 0)
4392 return 0;
4394 return ((REG_N_SETS (regno) > 1
4395 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
4396 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
4399 /* INSN references memory, possibly using autoincrement addressing modes.
4400 Find any entries on the mem_set_list that need to be invalidated due
4401 to an address change. */
4403 static void
4404 invalidate_mems_from_autoinc (pbi, insn)
4405 struct propagate_block_info *pbi;
4406 rtx insn;
4408 rtx note = REG_NOTES (insn);
4409 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
4411 if (REG_NOTE_KIND (note) == REG_INC)
4413 rtx temp = pbi->mem_set_list;
4414 rtx prev = NULL_RTX;
4415 rtx next;
4417 while (temp)
4419 next = XEXP (temp, 1);
4420 if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0)))
4422 /* Splice temp out of list. */
4423 if (prev)
4424 XEXP (prev, 1) = next;
4425 else
4426 pbi->mem_set_list = next;
4427 free_EXPR_LIST_node (temp);
4429 else
4430 prev = temp;
4431 temp = next;
4437 /* EXP is either a MEM or a REG. Remove any dependant entries
4438 from pbi->mem_set_list. */
4440 static void
4441 invalidate_mems_from_set (pbi, exp)
4442 struct propagate_block_info *pbi;
4443 rtx exp;
4445 rtx temp = pbi->mem_set_list;
4446 rtx prev = NULL_RTX;
4447 rtx next;
4449 while (temp)
4451 next = XEXP (temp, 1);
4452 if ((GET_CODE (exp) == MEM
4453 && output_dependence (XEXP (temp, 0), exp))
4454 || (GET_CODE (exp) == REG
4455 && reg_overlap_mentioned_p (exp, XEXP (temp, 0))))
4457 /* Splice this entry out of the list. */
4458 if (prev)
4459 XEXP (prev, 1) = next;
4460 else
4461 pbi->mem_set_list = next;
4462 free_EXPR_LIST_node (temp);
4464 else
4465 prev = temp;
4466 temp = next;
4470 /* Process the registers that are set within X. Their bits are set to
4471 1 in the regset DEAD, because they are dead prior to this insn.
4473 If INSN is nonzero, it is the insn being processed.
4475 FLAGS is the set of operations to perform. */
4477 static void
4478 mark_set_regs (pbi, x, insn)
4479 struct propagate_block_info *pbi;
4480 rtx x, insn;
4482 rtx cond = NULL_RTX;
4483 rtx link;
4484 enum rtx_code code;
4486 if (insn)
4487 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
4489 if (REG_NOTE_KIND (link) == REG_INC)
4490 mark_set_1 (pbi, SET, XEXP (link, 0),
4491 (GET_CODE (x) == COND_EXEC
4492 ? COND_EXEC_TEST (x) : NULL_RTX),
4493 insn, pbi->flags);
4495 retry:
4496 switch (code = GET_CODE (x))
4498 case SET:
4499 case CLOBBER:
4500 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
4501 return;
4503 case COND_EXEC:
4504 cond = COND_EXEC_TEST (x);
4505 x = COND_EXEC_CODE (x);
4506 goto retry;
4508 case PARALLEL:
4510 register int i;
4511 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4513 rtx sub = XVECEXP (x, 0, i);
4514 switch (code = GET_CODE (sub))
4516 case COND_EXEC:
4517 if (cond != NULL_RTX)
4518 abort ();
4520 cond = COND_EXEC_TEST (sub);
4521 sub = COND_EXEC_CODE (sub);
4522 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
4523 break;
4524 /* Fall through. */
4526 case SET:
4527 case CLOBBER:
4528 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
4529 break;
4531 default:
4532 break;
4535 break;
4538 default:
4539 break;
4543 /* Process a single SET rtx, X. */
4545 static void
4546 mark_set_1 (pbi, code, reg, cond, insn, flags)
4547 struct propagate_block_info *pbi;
4548 enum rtx_code code;
4549 rtx reg, cond, insn;
4550 int flags;
4552 int regno_first = -1, regno_last = -1;
4553 int not_dead = 0;
4554 int i;
4556 /* Some targets place small structures in registers for
4557 return values of functions. We have to detect this
4558 case specially here to get correct flow information. */
4559 if (GET_CODE (reg) == PARALLEL
4560 && GET_MODE (reg) == BLKmode)
4562 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
4563 mark_set_1 (pbi, code, XVECEXP (reg, 0, i), cond, insn, flags);
4564 return;
4567 /* Modifying just one hardware register of a multi-reg value or just a
4568 byte field of a register does not mean the value from before this insn
4569 is now dead. Of course, if it was dead after it's unused now. */
4571 switch (GET_CODE (reg))
4573 case ZERO_EXTRACT:
4574 case SIGN_EXTRACT:
4575 case STRICT_LOW_PART:
4576 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
4578 reg = XEXP (reg, 0);
4579 while (GET_CODE (reg) == SUBREG
4580 || GET_CODE (reg) == ZERO_EXTRACT
4581 || GET_CODE (reg) == SIGN_EXTRACT
4582 || GET_CODE (reg) == STRICT_LOW_PART);
4583 if (GET_CODE (reg) == MEM)
4584 break;
4585 not_dead = REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
4586 /* Fall through. */
4588 case REG:
4589 regno_last = regno_first = REGNO (reg);
4590 if (regno_first < FIRST_PSEUDO_REGISTER)
4591 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
4592 break;
4594 case SUBREG:
4595 if (GET_CODE (SUBREG_REG (reg)) == REG)
4597 enum machine_mode outer_mode = GET_MODE (reg);
4598 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
4600 /* Identify the range of registers affected. This is moderately
4601 tricky for hard registers. See alter_subreg. */
4603 regno_last = regno_first = REGNO (SUBREG_REG (reg));
4604 if (regno_first < FIRST_PSEUDO_REGISTER)
4606 #ifdef ALTER_HARD_SUBREG
4607 regno_first = ALTER_HARD_SUBREG (outer_mode, SUBREG_WORD (reg),
4608 inner_mode, regno_first);
4609 #else
4610 regno_first += SUBREG_WORD (reg);
4611 #endif
4612 regno_last = (regno_first
4613 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
4615 /* Since we've just adjusted the register number ranges, make
4616 sure REG matches. Otherwise some_was_live will be clear
4617 when it shouldn't have been, and we'll create incorrect
4618 REG_UNUSED notes. */
4619 reg = gen_rtx_REG (outer_mode, regno_first);
4621 else
4623 /* If the number of words in the subreg is less than the number
4624 of words in the full register, we have a well-defined partial
4625 set. Otherwise the high bits are undefined.
4627 This is only really applicable to pseudos, since we just took
4628 care of multi-word hard registers. */
4629 if (((GET_MODE_SIZE (outer_mode)
4630 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
4631 < ((GET_MODE_SIZE (inner_mode)
4632 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
4633 not_dead = REGNO_REG_SET_P (pbi->reg_live, regno_first);
4635 reg = SUBREG_REG (reg);
4638 else
4639 reg = SUBREG_REG (reg);
4640 break;
4642 default:
4643 break;
4646 /* If this set is a MEM, then it kills any aliased writes.
4647 If this set is a REG, then it kills any MEMs which use the reg. */
4648 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
4650 if (GET_CODE (reg) == MEM || GET_CODE (reg) == REG)
4651 invalidate_mems_from_set (pbi, reg);
4653 /* If the memory reference had embedded side effects (autoincrement
4654 address modes. Then we may need to kill some entries on the
4655 memory set list. */
4656 if (insn && GET_CODE (reg) == MEM)
4657 invalidate_mems_from_autoinc (pbi, insn);
4659 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
4660 /* ??? With more effort we could track conditional memory life. */
4661 && ! cond
4662 /* We do not know the size of a BLKmode store, so we do not track
4663 them for redundant store elimination. */
4664 && GET_MODE (reg) != BLKmode
4665 /* There are no REG_INC notes for SP, so we can't assume we'll see
4666 everything that invalidates it. To be safe, don't eliminate any
4667 stores though SP; none of them should be redundant anyway. */
4668 && ! reg_mentioned_p (stack_pointer_rtx, reg))
4670 #ifdef AUTO_INC_DEC
4671 /* Store a copy of mem, otherwise the address may be
4672 scrogged by find_auto_inc. */
4673 if (flags & PROP_AUTOINC)
4674 reg = shallow_copy_rtx (reg);
4675 #endif
4676 pbi->mem_set_list = alloc_EXPR_LIST (0, reg, pbi->mem_set_list);
4680 if (GET_CODE (reg) == REG
4681 && ! (regno_first == FRAME_POINTER_REGNUM
4682 && (! reload_completed || frame_pointer_needed))
4683 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4684 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
4685 && (! reload_completed || frame_pointer_needed))
4686 #endif
4687 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4688 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
4689 #endif
4692 int some_was_live = 0, some_was_dead = 0;
4694 for (i = regno_first; i <= regno_last; ++i)
4696 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
4697 if (pbi->local_set)
4699 /* Order of the set operation matters here since both
4700 sets may be the same. */
4701 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
4702 if (cond != NULL_RTX
4703 && ! REGNO_REG_SET_P (pbi->local_set, i))
4704 SET_REGNO_REG_SET (pbi->cond_local_set, i);
4705 else
4706 SET_REGNO_REG_SET (pbi->local_set, i);
4708 if (code != CLOBBER)
4709 SET_REGNO_REG_SET (pbi->new_set, i);
4711 some_was_live |= needed_regno;
4712 some_was_dead |= ! needed_regno;
4715 #ifdef HAVE_conditional_execution
4716 /* Consider conditional death in deciding that the register needs
4717 a death note. */
4718 if (some_was_live && ! not_dead
4719 /* The stack pointer is never dead. Well, not strictly true,
4720 but it's very difficult to tell from here. Hopefully
4721 combine_stack_adjustments will fix up the most egregious
4722 errors. */
4723 && regno_first != STACK_POINTER_REGNUM)
4725 for (i = regno_first; i <= regno_last; ++i)
4726 if (! mark_regno_cond_dead (pbi, i, cond))
4727 not_dead = 1;
4729 #endif
4731 /* Additional data to record if this is the final pass. */
4732 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
4733 | PROP_DEATH_NOTES | PROP_AUTOINC))
4735 register rtx y;
4736 register int blocknum = pbi->bb->index;
4738 y = NULL_RTX;
4739 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
4741 y = pbi->reg_next_use[regno_first];
4743 /* The next use is no longer next, since a store intervenes. */
4744 for (i = regno_first; i <= regno_last; ++i)
4745 pbi->reg_next_use[i] = 0;
4748 if (flags & PROP_REG_INFO)
4750 for (i = regno_first; i <= regno_last; ++i)
4752 /* Count (weighted) references, stores, etc. This counts a
4753 register twice if it is modified, but that is correct. */
4754 REG_N_SETS (i) += 1;
4755 REG_N_REFS (i) += (optimize_size ? 1
4756 : pbi->bb->loop_depth + 1);
4758 /* The insns where a reg is live are normally counted
4759 elsewhere, but we want the count to include the insn
4760 where the reg is set, and the normal counting mechanism
4761 would not count it. */
4762 REG_LIVE_LENGTH (i) += 1;
4765 /* If this is a hard reg, record this function uses the reg. */
4766 if (regno_first < FIRST_PSEUDO_REGISTER)
4768 for (i = regno_first; i <= regno_last; i++)
4769 regs_ever_live[i] = 1;
4771 else
4773 /* Keep track of which basic blocks each reg appears in. */
4774 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
4775 REG_BASIC_BLOCK (regno_first) = blocknum;
4776 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
4777 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
4781 if (! some_was_dead)
4783 if (flags & PROP_LOG_LINKS)
4785 /* Make a logical link from the next following insn
4786 that uses this register, back to this insn.
4787 The following insns have already been processed.
4789 We don't build a LOG_LINK for hard registers containing
4790 in ASM_OPERANDs. If these registers get replaced,
4791 we might wind up changing the semantics of the insn,
4792 even if reload can make what appear to be valid
4793 assignments later. */
4794 if (y && (BLOCK_NUM (y) == blocknum)
4795 && (regno_first >= FIRST_PSEUDO_REGISTER
4796 || asm_noperands (PATTERN (y)) < 0))
4797 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
4800 else if (not_dead)
4802 else if (! some_was_live)
4804 if (flags & PROP_REG_INFO)
4805 REG_N_DEATHS (regno_first) += 1;
4807 if (flags & PROP_DEATH_NOTES)
4809 /* Note that dead stores have already been deleted
4810 when possible. If we get here, we have found a
4811 dead store that cannot be eliminated (because the
4812 same insn does something useful). Indicate this
4813 by marking the reg being set as dying here. */
4814 REG_NOTES (insn)
4815 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
4818 else
4820 if (flags & PROP_DEATH_NOTES)
4822 /* This is a case where we have a multi-word hard register
4823 and some, but not all, of the words of the register are
4824 needed in subsequent insns. Write REG_UNUSED notes
4825 for those parts that were not needed. This case should
4826 be rare. */
4828 for (i = regno_first; i <= regno_last; ++i)
4829 if (! REGNO_REG_SET_P (pbi->reg_live, i))
4830 REG_NOTES (insn)
4831 = alloc_EXPR_LIST (REG_UNUSED,
4832 gen_rtx_REG (reg_raw_mode[i], i),
4833 REG_NOTES (insn));
4838 /* Mark the register as being dead. */
4839 if (some_was_live
4840 && ! not_dead
4841 /* The stack pointer is never dead. Well, not strictly true,
4842 but it's very difficult to tell from here. Hopefully
4843 combine_stack_adjustments will fix up the most egregious
4844 errors. */
4845 && regno_first != STACK_POINTER_REGNUM)
4847 for (i = regno_first; i <= regno_last; ++i)
4848 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
4851 else if (GET_CODE (reg) == REG)
4853 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
4854 pbi->reg_next_use[regno_first] = 0;
4857 /* If this is the last pass and this is a SCRATCH, show it will be dying
4858 here and count it. */
4859 else if (GET_CODE (reg) == SCRATCH)
4861 if (flags & PROP_DEATH_NOTES)
4862 REG_NOTES (insn)
4863 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
4867 #ifdef HAVE_conditional_execution
4868 /* Mark REGNO conditionally dead.
4869 Return true if the register is now unconditionally dead. */
4871 static int
4872 mark_regno_cond_dead (pbi, regno, cond)
4873 struct propagate_block_info *pbi;
4874 int regno;
4875 rtx cond;
4877 /* If this is a store to a predicate register, the value of the
4878 predicate is changing, we don't know that the predicate as seen
4879 before is the same as that seen after. Flush all dependent
4880 conditions from reg_cond_dead. This will make all such
4881 conditionally live registers unconditionally live. */
4882 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
4883 flush_reg_cond_reg (pbi, regno);
4885 /* If this is an unconditional store, remove any conditional
4886 life that may have existed. */
4887 if (cond == NULL_RTX)
4888 splay_tree_remove (pbi->reg_cond_dead, regno);
4889 else
4891 splay_tree_node node;
4892 struct reg_cond_life_info *rcli;
4893 rtx ncond;
4895 /* Otherwise this is a conditional set. Record that fact.
4896 It may have been conditionally used, or there may be a
4897 subsequent set with a complimentary condition. */
4899 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
4900 if (node == NULL)
4902 /* The register was unconditionally live previously.
4903 Record the current condition as the condition under
4904 which it is dead. */
4905 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
4906 rcli->condition = alloc_EXPR_LIST (0, cond, NULL_RTX);
4907 splay_tree_insert (pbi->reg_cond_dead, regno,
4908 (splay_tree_value) rcli);
4910 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
4912 /* Not unconditionaly dead. */
4913 return 0;
4915 else
4917 /* The register was conditionally live previously.
4918 Add the new condition to the old. */
4919 rcli = (struct reg_cond_life_info *) node->value;
4920 ncond = rcli->condition;
4921 ncond = ior_reg_cond (ncond, cond);
4923 /* If the register is now unconditionally dead,
4924 remove the entry in the splay_tree. */
4925 if (ncond == const1_rtx)
4926 splay_tree_remove (pbi->reg_cond_dead, regno);
4927 else
4929 rcli->condition = ncond;
4931 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
4933 /* Not unconditionaly dead. */
4934 return 0;
4939 return 1;
4942 /* Called from splay_tree_delete for pbi->reg_cond_life. */
4944 static void
4945 free_reg_cond_life_info (value)
4946 splay_tree_value value;
4948 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
4949 free_EXPR_LIST_list (&rcli->condition);
4950 free (rcli);
4953 /* Helper function for flush_reg_cond_reg. */
4955 static int
4956 flush_reg_cond_reg_1 (node, data)
4957 splay_tree_node node;
4958 void *data;
4960 struct reg_cond_life_info *rcli;
4961 int *xdata = (int *) data;
4962 unsigned int regno = xdata[0];
4963 rtx c, *prev;
4965 /* Don't need to search if last flushed value was farther on in
4966 the in-order traversal. */
4967 if (xdata[1] >= (int) node->key)
4968 return 0;
4970 /* Splice out portions of the expression that refer to regno. */
4971 rcli = (struct reg_cond_life_info *) node->value;
4972 c = *(prev = &rcli->condition);
4973 while (c)
4975 if (regno == REGNO (XEXP (XEXP (c, 0), 0)))
4977 rtx next = XEXP (c, 1);
4978 free_EXPR_LIST_node (c);
4979 c = *prev = next;
4981 else
4982 c = *(prev = &XEXP (c, 1));
4985 /* If the entire condition is now NULL, signal the node to be removed. */
4986 if (! rcli->condition)
4988 xdata[1] = node->key;
4989 return -1;
4991 else
4992 return 0;
4995 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
4997 static void
4998 flush_reg_cond_reg (pbi, regno)
4999 struct propagate_block_info *pbi;
5000 int regno;
5002 int pair[2];
5004 pair[0] = regno;
5005 pair[1] = -1;
5006 while (splay_tree_foreach (pbi->reg_cond_dead,
5007 flush_reg_cond_reg_1, pair) == -1)
5008 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
5010 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
5013 /* Logical arithmetic on predicate conditions. IOR, NOT and NAND.
5014 We actually use EXPR_LIST to chain the sub-expressions together
5015 instead of IOR because it's easier to manipulate and we have
5016 the lists.c functions to reuse nodes.
5018 Return a new rtl expression as appropriate. */
5020 static rtx
5021 ior_reg_cond (old, x)
5022 rtx old, x;
5024 enum rtx_code x_code;
5025 rtx x_reg;
5026 rtx c;
5028 /* We expect these conditions to be of the form (eq reg 0). */
5029 x_code = GET_CODE (x);
5030 if (GET_RTX_CLASS (x_code) != '<'
5031 || GET_CODE (x_reg = XEXP (x, 0)) != REG
5032 || XEXP (x, 1) != const0_rtx)
5033 abort ();
5035 /* Search the expression for an existing sub-expression of X_REG. */
5036 for (c = old; c; c = XEXP (c, 1))
5038 rtx y = XEXP (c, 0);
5039 if (REGNO (XEXP (y, 0)) == REGNO (x_reg))
5041 /* If we find X already present in OLD, we need do nothing. */
5042 if (GET_CODE (y) == x_code)
5043 return old;
5045 /* If we find X being a compliment of a condition in OLD,
5046 then the entire condition is true. */
5047 if (GET_CODE (y) == reverse_condition (x_code))
5048 return const1_rtx;
5052 /* Otherwise just add to the chain. */
5053 return alloc_EXPR_LIST (0, x, old);
5056 static rtx
5057 not_reg_cond (x)
5058 rtx x;
5060 enum rtx_code x_code;
5061 rtx x_reg;
5063 /* We expect these conditions to be of the form (eq reg 0). */
5064 x_code = GET_CODE (x);
5065 if (GET_RTX_CLASS (x_code) != '<'
5066 || GET_CODE (x_reg = XEXP (x, 0)) != REG
5067 || XEXP (x, 1) != const0_rtx)
5068 abort ();
5070 return alloc_EXPR_LIST (0, gen_rtx_fmt_ee (reverse_condition (x_code),
5071 VOIDmode, x_reg, const0_rtx),
5072 NULL_RTX);
5075 static rtx
5076 nand_reg_cond (old, x)
5077 rtx old, x;
5079 enum rtx_code x_code;
5080 rtx x_reg;
5081 rtx c, *prev;
5083 /* We expect these conditions to be of the form (eq reg 0). */
5084 x_code = GET_CODE (x);
5085 if (GET_RTX_CLASS (x_code) != '<'
5086 || GET_CODE (x_reg = XEXP (x, 0)) != REG
5087 || XEXP (x, 1) != const0_rtx)
5088 abort ();
5090 /* Search the expression for an existing sub-expression of X_REG. */
5092 for (c = *(prev = &old); c; c = *(prev = &XEXP (c, 1)))
5094 rtx y = XEXP (c, 0);
5095 if (REGNO (XEXP (y, 0)) == REGNO (x_reg))
5097 /* If we find X already present in OLD, then we need to
5098 splice it out. */
5099 if (GET_CODE (y) == x_code)
5101 *prev = XEXP (c, 1);
5102 free_EXPR_LIST_node (c);
5103 return old ? old : const0_rtx;
5106 /* If we find X being a compliment of a condition in OLD,
5107 then we need do nothing. */
5108 if (GET_CODE (y) == reverse_condition (x_code))
5109 return old;
5113 /* Otherwise, by implication, the register in question is now live for
5114 the inverse of the condition X. */
5115 return alloc_EXPR_LIST (0, gen_rtx_fmt_ee (reverse_condition (x_code),
5116 VOIDmode, x_reg, const0_rtx),
5117 old);
5119 #endif /* HAVE_conditional_execution */
5121 #ifdef AUTO_INC_DEC
5123 /* Try to substitute the auto-inc expression INC as the address inside
5124 MEM which occurs in INSN. Currently, the address of MEM is an expression
5125 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
5126 that has a single set whose source is a PLUS of INCR_REG and something
5127 else. */
5129 static void
5130 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
5131 struct propagate_block_info *pbi;
5132 rtx inc, insn, mem, incr, incr_reg;
5134 int regno = REGNO (incr_reg);
5135 rtx set = single_set (incr);
5136 rtx q = SET_DEST (set);
5137 rtx y = SET_SRC (set);
5138 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
5140 /* Make sure this reg appears only once in this insn. */
5141 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
5142 return;
5144 if (dead_or_set_p (incr, incr_reg)
5145 /* Mustn't autoinc an eliminable register. */
5146 && (regno >= FIRST_PSEUDO_REGISTER
5147 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
5149 /* This is the simple case. Try to make the auto-inc. If
5150 we can't, we are done. Otherwise, we will do any
5151 needed updates below. */
5152 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
5153 return;
5155 else if (GET_CODE (q) == REG
5156 /* PREV_INSN used here to check the semi-open interval
5157 [insn,incr). */
5158 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
5159 /* We must also check for sets of q as q may be
5160 a call clobbered hard register and there may
5161 be a call between PREV_INSN (insn) and incr. */
5162 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
5164 /* We have *p followed sometime later by q = p+size.
5165 Both p and q must be live afterward,
5166 and q is not used between INSN and its assignment.
5167 Change it to q = p, ...*q..., q = q+size.
5168 Then fall into the usual case. */
5169 rtx insns, temp;
5171 start_sequence ();
5172 emit_move_insn (q, incr_reg);
5173 insns = get_insns ();
5174 end_sequence ();
5176 if (basic_block_for_insn)
5177 for (temp = insns; temp; temp = NEXT_INSN (temp))
5178 set_block_for_insn (temp, pbi->bb);
5180 /* If we can't make the auto-inc, or can't make the
5181 replacement into Y, exit. There's no point in making
5182 the change below if we can't do the auto-inc and doing
5183 so is not correct in the pre-inc case. */
5185 XEXP (inc, 0) = q;
5186 validate_change (insn, &XEXP (mem, 0), inc, 1);
5187 validate_change (incr, &XEXP (y, opnum), q, 1);
5188 if (! apply_change_group ())
5189 return;
5191 /* We now know we'll be doing this change, so emit the
5192 new insn(s) and do the updates. */
5193 emit_insns_before (insns, insn);
5195 if (pbi->bb->head == insn)
5196 pbi->bb->head = insns;
5198 /* INCR will become a NOTE and INSN won't contain a
5199 use of INCR_REG. If a use of INCR_REG was just placed in
5200 the insn before INSN, make that the next use.
5201 Otherwise, invalidate it. */
5202 if (GET_CODE (PREV_INSN (insn)) == INSN
5203 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
5204 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
5205 pbi->reg_next_use[regno] = PREV_INSN (insn);
5206 else
5207 pbi->reg_next_use[regno] = 0;
5209 incr_reg = q;
5210 regno = REGNO (q);
5212 /* REGNO is now used in INCR which is below INSN, but
5213 it previously wasn't live here. If we don't mark
5214 it as live, we'll put a REG_DEAD note for it
5215 on this insn, which is incorrect. */
5216 SET_REGNO_REG_SET (pbi->reg_live, regno);
5218 /* If there are any calls between INSN and INCR, show
5219 that REGNO now crosses them. */
5220 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
5221 if (GET_CODE (temp) == CALL_INSN)
5222 REG_N_CALLS_CROSSED (regno)++;
5224 else
5225 return;
5227 /* If we haven't returned, it means we were able to make the
5228 auto-inc, so update the status. First, record that this insn
5229 has an implicit side effect. */
5231 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
5233 /* Modify the old increment-insn to simply copy
5234 the already-incremented value of our register. */
5235 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
5236 abort ();
5238 /* If that makes it a no-op (copying the register into itself) delete
5239 it so it won't appear to be a "use" and a "set" of this
5240 register. */
5241 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
5243 /* If the original source was dead, it's dead now. */
5244 rtx note;
5246 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
5248 remove_note (incr, note);
5249 if (XEXP (note, 0) != incr_reg)
5250 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
5253 PUT_CODE (incr, NOTE);
5254 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
5255 NOTE_SOURCE_FILE (incr) = 0;
5258 if (regno >= FIRST_PSEUDO_REGISTER)
5260 /* Count an extra reference to the reg. When a reg is
5261 incremented, spilling it is worse, so we want to make
5262 that less likely. */
5263 REG_N_REFS (regno) += (optimize_size ? 1 : pbi->bb->loop_depth + 1);
5265 /* Count the increment as a setting of the register,
5266 even though it isn't a SET in rtl. */
5267 REG_N_SETS (regno)++;
5271 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
5272 reference. */
5274 static void
5275 find_auto_inc (pbi, x, insn)
5276 struct propagate_block_info *pbi;
5277 rtx x;
5278 rtx insn;
5280 rtx addr = XEXP (x, 0);
5281 HOST_WIDE_INT offset = 0;
5282 rtx set, y, incr, inc_val;
5283 int regno;
5284 int size = GET_MODE_SIZE (GET_MODE (x));
5286 if (GET_CODE (insn) == JUMP_INSN)
5287 return;
5289 /* Here we detect use of an index register which might be good for
5290 postincrement, postdecrement, preincrement, or predecrement. */
5292 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5293 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
5295 if (GET_CODE (addr) != REG)
5296 return;
5298 regno = REGNO (addr);
5300 /* Is the next use an increment that might make auto-increment? */
5301 incr = pbi->reg_next_use[regno];
5302 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
5303 return;
5304 set = single_set (incr);
5305 if (set == 0 || GET_CODE (set) != SET)
5306 return;
5307 y = SET_SRC (set);
5309 if (GET_CODE (y) != PLUS)
5310 return;
5312 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
5313 inc_val = XEXP (y, 1);
5314 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
5315 inc_val = XEXP (y, 0);
5316 else
5317 return;
5319 if (GET_CODE (inc_val) == CONST_INT)
5321 if (HAVE_POST_INCREMENT
5322 && (INTVAL (inc_val) == size && offset == 0))
5323 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
5324 incr, addr);
5325 else if (HAVE_POST_DECREMENT
5326 && (INTVAL (inc_val) == -size && offset == 0))
5327 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
5328 incr, addr);
5329 else if (HAVE_PRE_INCREMENT
5330 && (INTVAL (inc_val) == size && offset == size))
5331 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
5332 incr, addr);
5333 else if (HAVE_PRE_DECREMENT
5334 && (INTVAL (inc_val) == -size && offset == -size))
5335 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
5336 incr, addr);
5337 else if (HAVE_POST_MODIFY_DISP && offset == 0)
5338 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
5339 gen_rtx_PLUS (Pmode,
5340 addr,
5341 inc_val)),
5342 insn, x, incr, addr);
5344 else if (GET_CODE (inc_val) == REG
5345 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
5346 NEXT_INSN (incr)))
5349 if (HAVE_POST_MODIFY_REG && offset == 0)
5350 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
5351 gen_rtx_PLUS (Pmode,
5352 addr,
5353 inc_val)),
5354 insn, x, incr, addr);
5358 #endif /* AUTO_INC_DEC */
5360 static void
5361 mark_used_reg (pbi, reg, cond, insn)
5362 struct propagate_block_info *pbi;
5363 rtx reg;
5364 rtx cond ATTRIBUTE_UNUSED;
5365 rtx insn;
5367 int regno = REGNO (reg);
5368 int some_was_live = REGNO_REG_SET_P (pbi->reg_live, regno);
5369 int some_was_dead = ! some_was_live;
5370 int some_not_set;
5371 int n;
5373 /* A hard reg in a wide mode may really be multiple registers.
5374 If so, mark all of them just like the first. */
5375 if (regno < FIRST_PSEUDO_REGISTER)
5377 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5378 while (--n > 0)
5380 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, regno + n);
5381 some_was_live |= needed_regno;
5382 some_was_dead |= ! needed_regno;
5386 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
5388 /* Record where each reg is used, so when the reg is set we know
5389 the next insn that uses it. */
5390 pbi->reg_next_use[regno] = insn;
5393 if (pbi->flags & PROP_REG_INFO)
5395 if (regno < FIRST_PSEUDO_REGISTER)
5397 /* If this is a register we are going to try to eliminate,
5398 don't mark it live here. If we are successful in
5399 eliminating it, it need not be live unless it is used for
5400 pseudos, in which case it will have been set live when it
5401 was allocated to the pseudos. If the register will not
5402 be eliminated, reload will set it live at that point.
5404 Otherwise, record that this function uses this register. */
5405 /* ??? The PPC backend tries to "eliminate" on the pic
5406 register to itself. This should be fixed. In the mean
5407 time, hack around it. */
5409 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno)
5410 && (regno == FRAME_POINTER_REGNUM
5411 || regno == ARG_POINTER_REGNUM)))
5413 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5415 regs_ever_live[regno + --n] = 1;
5416 while (n > 0);
5419 else
5421 /* Keep track of which basic block each reg appears in. */
5423 register int blocknum = pbi->bb->index;
5424 if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
5425 REG_BASIC_BLOCK (regno) = blocknum;
5426 else if (REG_BASIC_BLOCK (regno) != blocknum)
5427 REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
5429 /* Count (weighted) number of uses of each reg. */
5430 REG_N_REFS (regno) += (optimize_size ? 1
5431 : pbi->bb->loop_depth + 1);
5435 /* Find out if any of the register was set this insn. */
5436 some_not_set = ! REGNO_REG_SET_P (pbi->new_set, regno);
5437 if (regno < FIRST_PSEUDO_REGISTER)
5439 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5440 while (--n > 0)
5441 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, regno + n);
5444 /* Record and count the insns in which a reg dies. If it is used in
5445 this insn and was dead below the insn then it dies in this insn.
5446 If it was set in this insn, we do not make a REG_DEAD note;
5447 likewise if we already made such a note. */
5448 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
5449 && some_was_dead
5450 && some_not_set)
5452 /* Check for the case where the register dying partially
5453 overlaps the register set by this insn. */
5454 if (regno < FIRST_PSEUDO_REGISTER
5455 && HARD_REGNO_NREGS (regno, GET_MODE (reg)) > 1)
5457 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5458 while (--n >= 0)
5459 some_was_live |= REGNO_REG_SET_P (pbi->new_set, regno + n);
5462 /* If none of the words in X is needed, make a REG_DEAD note.
5463 Otherwise, we must make partial REG_DEAD notes. */
5464 if (! some_was_live)
5466 if ((pbi->flags & PROP_DEATH_NOTES)
5467 && ! find_regno_note (insn, REG_DEAD, regno))
5468 REG_NOTES (insn)
5469 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
5471 if (pbi->flags & PROP_REG_INFO)
5472 REG_N_DEATHS (regno)++;
5474 else
5476 /* Don't make a REG_DEAD note for a part of a register
5477 that is set in the insn. */
5479 n = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
5480 for (; n >= regno; n--)
5481 if (! REGNO_REG_SET_P (pbi->reg_live, n)
5482 && ! dead_or_set_regno_p (insn, n))
5483 REG_NOTES (insn)
5484 = alloc_EXPR_LIST (REG_DEAD,
5485 gen_rtx_REG (reg_raw_mode[n], n),
5486 REG_NOTES (insn));
5490 SET_REGNO_REG_SET (pbi->reg_live, regno);
5491 if (regno < FIRST_PSEUDO_REGISTER)
5493 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
5494 while (--n > 0)
5495 SET_REGNO_REG_SET (pbi->reg_live, regno + n);
5498 #ifdef HAVE_conditional_execution
5499 /* If this is a conditional use, record that fact. If it is later
5500 conditionally set, we'll know to kill the register. */
5501 if (cond != NULL_RTX)
5503 splay_tree_node node;
5504 struct reg_cond_life_info *rcli;
5505 rtx ncond;
5507 if (some_was_live)
5509 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
5510 if (node == NULL)
5512 /* The register was unconditionally live previously.
5513 No need to do anything. */
5515 else
5517 /* The register was conditionally live previously.
5518 Subtract the new life cond from the old death cond. */
5519 rcli = (struct reg_cond_life_info *) node->value;
5520 ncond = rcli->condition;
5521 ncond = nand_reg_cond (ncond, cond);
5523 /* If the register is now unconditionally live, remove the
5524 entry in the splay_tree. */
5525 if (ncond == const0_rtx)
5527 rcli->condition = NULL_RTX;
5528 splay_tree_remove (pbi->reg_cond_dead, regno);
5530 else
5532 rcli->condition = ncond;
5533 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
5537 else
5539 /* The register was not previously live at all. Record
5540 the condition under which it is still dead. */
5541 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
5542 rcli->condition = not_reg_cond (cond);
5543 splay_tree_insert (pbi->reg_cond_dead, regno,
5544 (splay_tree_value) rcli);
5546 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
5549 else if (some_was_live)
5551 splay_tree_node node;
5552 struct reg_cond_life_info *rcli;
5554 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
5555 if (node != NULL)
5557 /* The register was conditionally live previously, but is now
5558 unconditionally so. Remove it from the conditionally dead
5559 list, so that a conditional set won't cause us to think
5560 it dead. */
5561 rcli = (struct reg_cond_life_info *) node->value;
5562 rcli->condition = NULL_RTX;
5563 splay_tree_remove (pbi->reg_cond_dead, regno);
5567 #endif
5570 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
5571 This is done assuming the registers needed from X are those that
5572 have 1-bits in PBI->REG_LIVE.
5574 INSN is the containing instruction. If INSN is dead, this function
5575 is not called. */
5577 static void
5578 mark_used_regs (pbi, x, cond, insn)
5579 struct propagate_block_info *pbi;
5580 rtx x, cond, insn;
5582 register RTX_CODE code;
5583 register int regno;
5584 int flags = pbi->flags;
5586 retry:
5587 code = GET_CODE (x);
5588 switch (code)
5590 case LABEL_REF:
5591 case SYMBOL_REF:
5592 case CONST_INT:
5593 case CONST:
5594 case CONST_DOUBLE:
5595 case PC:
5596 case ADDR_VEC:
5597 case ADDR_DIFF_VEC:
5598 return;
5600 #ifdef HAVE_cc0
5601 case CC0:
5602 pbi->cc0_live = 1;
5603 return;
5604 #endif
5606 case CLOBBER:
5607 /* If we are clobbering a MEM, mark any registers inside the address
5608 as being used. */
5609 if (GET_CODE (XEXP (x, 0)) == MEM)
5610 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
5611 return;
5613 case MEM:
5614 /* Don't bother watching stores to mems if this is not the
5615 final pass. We'll not be deleting dead stores this round. */
5616 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
5618 /* Invalidate the data for the last MEM stored, but only if MEM is
5619 something that can be stored into. */
5620 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
5621 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
5622 /* Needn't clear the memory set list. */
5624 else
5626 rtx temp = pbi->mem_set_list;
5627 rtx prev = NULL_RTX;
5628 rtx next;
5630 while (temp)
5632 next = XEXP (temp, 1);
5633 if (anti_dependence (XEXP (temp, 0), x))
5635 /* Splice temp out of the list. */
5636 if (prev)
5637 XEXP (prev, 1) = next;
5638 else
5639 pbi->mem_set_list = next;
5640 free_EXPR_LIST_node (temp);
5642 else
5643 prev = temp;
5644 temp = next;
5648 /* If the memory reference had embedded side effects (autoincrement
5649 address modes. Then we may need to kill some entries on the
5650 memory set list. */
5651 if (insn)
5652 invalidate_mems_from_autoinc (pbi, insn);
5655 #ifdef AUTO_INC_DEC
5656 if (flags & PROP_AUTOINC)
5657 find_auto_inc (pbi, x, insn);
5658 #endif
5659 break;
5661 case SUBREG:
5662 #ifdef CLASS_CANNOT_CHANGE_MODE
5663 if (GET_CODE (SUBREG_REG (x)) == REG
5664 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
5665 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
5666 GET_MODE (SUBREG_REG (x))))
5667 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
5668 #endif
5670 /* While we're here, optimize this case. */
5671 x = SUBREG_REG (x);
5672 if (GET_CODE (x) != REG)
5673 goto retry;
5674 /* Fall through. */
5676 case REG:
5677 /* See a register other than being set => mark it as needed. */
5678 mark_used_reg (pbi, x, cond, insn);
5679 return;
5681 case SET:
5683 register rtx testreg = SET_DEST (x);
5684 int mark_dest = 0;
5686 /* If storing into MEM, don't show it as being used. But do
5687 show the address as being used. */
5688 if (GET_CODE (testreg) == MEM)
5690 #ifdef AUTO_INC_DEC
5691 if (flags & PROP_AUTOINC)
5692 find_auto_inc (pbi, testreg, insn);
5693 #endif
5694 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
5695 mark_used_regs (pbi, SET_SRC (x), cond, insn);
5696 return;
5699 /* Storing in STRICT_LOW_PART is like storing in a reg
5700 in that this SET might be dead, so ignore it in TESTREG.
5701 but in some other ways it is like using the reg.
5703 Storing in a SUBREG or a bit field is like storing the entire
5704 register in that if the register's value is not used
5705 then this SET is not needed. */
5706 while (GET_CODE (testreg) == STRICT_LOW_PART
5707 || GET_CODE (testreg) == ZERO_EXTRACT
5708 || GET_CODE (testreg) == SIGN_EXTRACT
5709 || GET_CODE (testreg) == SUBREG)
5711 #ifdef CLASS_CANNOT_CHANGE_MODE
5712 if (GET_CODE (testreg) == SUBREG
5713 && GET_CODE (SUBREG_REG (testreg)) == REG
5714 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
5715 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
5716 GET_MODE (testreg)))
5717 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
5718 #endif
5720 /* Modifying a single register in an alternate mode
5721 does not use any of the old value. But these other
5722 ways of storing in a register do use the old value. */
5723 if (GET_CODE (testreg) == SUBREG
5724 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
5726 else
5727 mark_dest = 1;
5729 testreg = XEXP (testreg, 0);
5732 /* If this is a store into a register, recursively scan the
5733 value being stored. */
5735 if ((GET_CODE (testreg) == PARALLEL
5736 && GET_MODE (testreg) == BLKmode)
5737 || (GET_CODE (testreg) == REG
5738 && (regno = REGNO (testreg),
5739 ! (regno == FRAME_POINTER_REGNUM
5740 && (! reload_completed || frame_pointer_needed)))
5741 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5742 && ! (regno == HARD_FRAME_POINTER_REGNUM
5743 && (! reload_completed || frame_pointer_needed))
5744 #endif
5745 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5746 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
5747 #endif
5750 if (mark_dest)
5751 mark_used_regs (pbi, SET_DEST (x), cond, insn);
5752 mark_used_regs (pbi, SET_SRC (x), cond, insn);
5753 return;
5756 break;
5758 case ASM_OPERANDS:
5759 case UNSPEC_VOLATILE:
5760 case TRAP_IF:
5761 case ASM_INPUT:
5763 /* Traditional and volatile asm instructions must be considered to use
5764 and clobber all hard registers, all pseudo-registers and all of
5765 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
5767 Consider for instance a volatile asm that changes the fpu rounding
5768 mode. An insn should not be moved across this even if it only uses
5769 pseudo-regs because it might give an incorrectly rounded result.
5771 ?!? Unfortunately, marking all hard registers as live causes massive
5772 problems for the register allocator and marking all pseudos as live
5773 creates mountains of uninitialized variable warnings.
5775 So for now, just clear the memory set list and mark any regs
5776 we can find in ASM_OPERANDS as used. */
5777 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
5778 free_EXPR_LIST_list (&pbi->mem_set_list);
5780 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
5781 We can not just fall through here since then we would be confused
5782 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
5783 traditional asms unlike their normal usage. */
5784 if (code == ASM_OPERANDS)
5786 int j;
5788 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
5789 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
5791 break;
5794 case COND_EXEC:
5795 if (cond != NULL_RTX)
5796 abort ();
5798 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
5800 cond = COND_EXEC_TEST (x);
5801 x = COND_EXEC_CODE (x);
5802 goto retry;
5804 case PHI:
5805 /* We _do_not_ want to scan operands of phi nodes. Operands of
5806 a phi function are evaluated only when control reaches this
5807 block along a particular edge. Therefore, regs that appear
5808 as arguments to phi should not be added to the global live at
5809 start. */
5810 return;
5812 default:
5813 break;
5816 /* Recursively scan the operands of this expression. */
5819 register const char *fmt = GET_RTX_FORMAT (code);
5820 register int i;
5822 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5824 if (fmt[i] == 'e')
5826 /* Tail recursive case: save a function call level. */
5827 if (i == 0)
5829 x = XEXP (x, 0);
5830 goto retry;
5832 mark_used_regs (pbi, XEXP (x, i), cond, insn);
5834 else if (fmt[i] == 'E')
5836 register int j;
5837 for (j = 0; j < XVECLEN (x, i); j++)
5838 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
5844 #ifdef AUTO_INC_DEC
5846 static int
5847 try_pre_increment_1 (pbi, insn)
5848 struct propagate_block_info *pbi;
5849 rtx insn;
5851 /* Find the next use of this reg. If in same basic block,
5852 make it do pre-increment or pre-decrement if appropriate. */
5853 rtx x = single_set (insn);
5854 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
5855 * INTVAL (XEXP (SET_SRC (x), 1)));
5856 int regno = REGNO (SET_DEST (x));
5857 rtx y = pbi->reg_next_use[regno];
5858 if (y != 0
5859 && SET_DEST (x) != stack_pointer_rtx
5860 && BLOCK_NUM (y) == BLOCK_NUM (insn)
5861 /* Don't do this if the reg dies, or gets set in y; a standard addressing
5862 mode would be better. */
5863 && ! dead_or_set_p (y, SET_DEST (x))
5864 && try_pre_increment (y, SET_DEST (x), amount))
5866 /* We have found a suitable auto-increment and already changed
5867 insn Y to do it. So flush this increment instruction. */
5868 propagate_block_delete_insn (pbi->bb, insn);
5870 /* Count a reference to this reg for the increment insn we are
5871 deleting. When a reg is incremented, spilling it is worse,
5872 so we want to make that less likely. */
5873 if (regno >= FIRST_PSEUDO_REGISTER)
5875 REG_N_REFS (regno) += (optimize_size ? 1
5876 : pbi->bb->loop_depth + 1);
5877 REG_N_SETS (regno)++;
5880 /* Flush any remembered memories depending on the value of
5881 the incremented register. */
5882 invalidate_mems_from_set (pbi, SET_DEST (x));
5884 return 1;
5886 return 0;
5889 /* Try to change INSN so that it does pre-increment or pre-decrement
5890 addressing on register REG in order to add AMOUNT to REG.
5891 AMOUNT is negative for pre-decrement.
5892 Returns 1 if the change could be made.
5893 This checks all about the validity of the result of modifying INSN. */
5895 static int
5896 try_pre_increment (insn, reg, amount)
5897 rtx insn, reg;
5898 HOST_WIDE_INT amount;
5900 register rtx use;
5902 /* Nonzero if we can try to make a pre-increment or pre-decrement.
5903 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
5904 int pre_ok = 0;
5905 /* Nonzero if we can try to make a post-increment or post-decrement.
5906 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
5907 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
5908 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
5909 int post_ok = 0;
5911 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
5912 int do_post = 0;
5914 /* From the sign of increment, see which possibilities are conceivable
5915 on this target machine. */
5916 if (HAVE_PRE_INCREMENT && amount > 0)
5917 pre_ok = 1;
5918 if (HAVE_POST_INCREMENT && amount > 0)
5919 post_ok = 1;
5921 if (HAVE_PRE_DECREMENT && amount < 0)
5922 pre_ok = 1;
5923 if (HAVE_POST_DECREMENT && amount < 0)
5924 post_ok = 1;
5926 if (! (pre_ok || post_ok))
5927 return 0;
5929 /* It is not safe to add a side effect to a jump insn
5930 because if the incremented register is spilled and must be reloaded
5931 there would be no way to store the incremented value back in memory. */
5933 if (GET_CODE (insn) == JUMP_INSN)
5934 return 0;
5936 use = 0;
5937 if (pre_ok)
5938 use = find_use_as_address (PATTERN (insn), reg, 0);
5939 if (post_ok && (use == 0 || use == (rtx) 1))
5941 use = find_use_as_address (PATTERN (insn), reg, -amount);
5942 do_post = 1;
5945 if (use == 0 || use == (rtx) 1)
5946 return 0;
5948 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
5949 return 0;
5951 /* See if this combination of instruction and addressing mode exists. */
5952 if (! validate_change (insn, &XEXP (use, 0),
5953 gen_rtx_fmt_e (amount > 0
5954 ? (do_post ? POST_INC : PRE_INC)
5955 : (do_post ? POST_DEC : PRE_DEC),
5956 Pmode, reg), 0))
5957 return 0;
5959 /* Record that this insn now has an implicit side effect on X. */
5960 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
5961 return 1;
5964 #endif /* AUTO_INC_DEC */
5966 /* Find the place in the rtx X where REG is used as a memory address.
5967 Return the MEM rtx that so uses it.
5968 If PLUSCONST is nonzero, search instead for a memory address equivalent to
5969 (plus REG (const_int PLUSCONST)).
5971 If such an address does not appear, return 0.
5972 If REG appears more than once, or is used other than in such an address,
5973 return (rtx)1. */
5976 find_use_as_address (x, reg, plusconst)
5977 register rtx x;
5978 rtx reg;
5979 HOST_WIDE_INT plusconst;
5981 enum rtx_code code = GET_CODE (x);
5982 const char *fmt = GET_RTX_FORMAT (code);
5983 register int i;
5984 register rtx value = 0;
5985 register rtx tem;
5987 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
5988 return x;
5990 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
5991 && XEXP (XEXP (x, 0), 0) == reg
5992 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5993 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
5994 return x;
5996 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
5998 /* If REG occurs inside a MEM used in a bit-field reference,
5999 that is unacceptable. */
6000 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
6001 return (rtx) (HOST_WIDE_INT) 1;
6004 if (x == reg)
6005 return (rtx) (HOST_WIDE_INT) 1;
6007 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6009 if (fmt[i] == 'e')
6011 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
6012 if (value == 0)
6013 value = tem;
6014 else if (tem != 0)
6015 return (rtx) (HOST_WIDE_INT) 1;
6017 else if (fmt[i] == 'E')
6019 register int j;
6020 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6022 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
6023 if (value == 0)
6024 value = tem;
6025 else if (tem != 0)
6026 return (rtx) (HOST_WIDE_INT) 1;
6031 return value;
6034 /* Write information about registers and basic blocks into FILE.
6035 This is part of making a debugging dump. */
6037 void
6038 dump_regset (r, outf)
6039 regset r;
6040 FILE *outf;
6042 int i;
6043 if (r == NULL)
6045 fputs (" (nil)", outf);
6046 return;
6049 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
6051 fprintf (outf, " %d", i);
6052 if (i < FIRST_PSEUDO_REGISTER)
6053 fprintf (outf, " [%s]",
6054 reg_names[i]);
6058 void
6059 debug_regset (r)
6060 regset r;
6062 dump_regset (r, stderr);
6063 putc ('\n', stderr);
6066 void
6067 dump_flow_info (file)
6068 FILE *file;
6070 register int i;
6071 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6073 fprintf (file, "%d registers.\n", max_regno);
6074 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
6075 if (REG_N_REFS (i))
6077 enum reg_class class, altclass;
6078 fprintf (file, "\nRegister %d used %d times across %d insns",
6079 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
6080 if (REG_BASIC_BLOCK (i) >= 0)
6081 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
6082 if (REG_N_SETS (i))
6083 fprintf (file, "; set %d time%s", REG_N_SETS (i),
6084 (REG_N_SETS (i) == 1) ? "" : "s");
6085 if (REG_USERVAR_P (regno_reg_rtx[i]))
6086 fprintf (file, "; user var");
6087 if (REG_N_DEATHS (i) != 1)
6088 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
6089 if (REG_N_CALLS_CROSSED (i) == 1)
6090 fprintf (file, "; crosses 1 call");
6091 else if (REG_N_CALLS_CROSSED (i))
6092 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
6093 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
6094 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
6095 class = reg_preferred_class (i);
6096 altclass = reg_alternate_class (i);
6097 if (class != GENERAL_REGS || altclass != ALL_REGS)
6099 if (altclass == ALL_REGS || class == ALL_REGS)
6100 fprintf (file, "; pref %s", reg_class_names[(int) class]);
6101 else if (altclass == NO_REGS)
6102 fprintf (file, "; %s or none", reg_class_names[(int) class]);
6103 else
6104 fprintf (file, "; pref %s, else %s",
6105 reg_class_names[(int) class],
6106 reg_class_names[(int) altclass]);
6108 if (REG_POINTER (regno_reg_rtx[i]))
6109 fprintf (file, "; pointer");
6110 fprintf (file, ".\n");
6113 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
6114 for (i = 0; i < n_basic_blocks; i++)
6116 register basic_block bb = BASIC_BLOCK (i);
6117 register edge e;
6119 fprintf (file, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count %d.\n",
6120 i, INSN_UID (bb->head), INSN_UID (bb->end), bb->loop_depth, bb->count);
6122 fprintf (file, "Predecessors: ");
6123 for (e = bb->pred; e; e = e->pred_next)
6124 dump_edge_info (file, e, 0);
6126 fprintf (file, "\nSuccessors: ");
6127 for (e = bb->succ; e; e = e->succ_next)
6128 dump_edge_info (file, e, 1);
6130 fprintf (file, "\nRegisters live at start:");
6131 dump_regset (bb->global_live_at_start, file);
6133 fprintf (file, "\nRegisters live at end:");
6134 dump_regset (bb->global_live_at_end, file);
6136 putc ('\n', file);
6139 putc ('\n', file);
6142 void
6143 debug_flow_info ()
6145 dump_flow_info (stderr);
6148 static void
6149 dump_edge_info (file, e, do_succ)
6150 FILE *file;
6151 edge e;
6152 int do_succ;
6154 basic_block side = (do_succ ? e->dest : e->src);
6156 if (side == ENTRY_BLOCK_PTR)
6157 fputs (" ENTRY", file);
6158 else if (side == EXIT_BLOCK_PTR)
6159 fputs (" EXIT", file);
6160 else
6161 fprintf (file, " %d", side->index);
6163 if (e->count)
6164 fprintf (file, " count:%d", e->count);
6166 if (e->flags)
6168 static const char * const bitnames[] = {
6169 "fallthru", "crit", "ab", "abcall", "eh", "fake"
6171 int comma = 0;
6172 int i, flags = e->flags;
6174 fputc (' ', file);
6175 fputc ('(', file);
6176 for (i = 0; flags; i++)
6177 if (flags & (1 << i))
6179 flags &= ~(1 << i);
6181 if (comma)
6182 fputc (',', file);
6183 if (i < (int) ARRAY_SIZE (bitnames))
6184 fputs (bitnames[i], file);
6185 else
6186 fprintf (file, "%d", i);
6187 comma = 1;
6189 fputc (')', file);
6193 /* Print out one basic block with live information at start and end. */
6195 void
6196 dump_bb (bb, outf)
6197 basic_block bb;
6198 FILE *outf;
6200 rtx insn;
6201 rtx last;
6202 edge e;
6204 fprintf (outf, ";; Basic block %d, loop depth %d, count %d",
6205 bb->index, bb->loop_depth, bb->count);
6206 if (bb->eh_beg != -1 || bb->eh_end != -1)
6207 fprintf (outf, ", eh regions %d/%d", bb->eh_beg, bb->eh_end);
6208 putc ('\n', outf);
6210 fputs (";; Predecessors: ", outf);
6211 for (e = bb->pred; e; e = e->pred_next)
6212 dump_edge_info (outf, e, 0);
6213 putc ('\n', outf);
6215 fputs (";; Registers live at start:", outf);
6216 dump_regset (bb->global_live_at_start, outf);
6217 putc ('\n', outf);
6219 for (insn = bb->head, last = NEXT_INSN (bb->end);
6220 insn != last;
6221 insn = NEXT_INSN (insn))
6222 print_rtl_single (outf, insn);
6224 fputs (";; Registers live at end:", outf);
6225 dump_regset (bb->global_live_at_end, outf);
6226 putc ('\n', outf);
6228 fputs (";; Successors: ", outf);
6229 for (e = bb->succ; e; e = e->succ_next)
6230 dump_edge_info (outf, e, 1);
6231 putc ('\n', outf);
6234 void
6235 debug_bb (bb)
6236 basic_block bb;
6238 dump_bb (bb, stderr);
6241 void
6242 debug_bb_n (n)
6243 int n;
6245 dump_bb (BASIC_BLOCK (n), stderr);
6248 /* Like print_rtl, but also print out live information for the start of each
6249 basic block. */
6251 void
6252 print_rtl_with_bb (outf, rtx_first)
6253 FILE *outf;
6254 rtx rtx_first;
6256 register rtx tmp_rtx;
6258 if (rtx_first == 0)
6259 fprintf (outf, "(nil)\n");
6260 else
6262 int i;
6263 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
6264 int max_uid = get_max_uid ();
6265 basic_block *start = (basic_block *)
6266 xcalloc (max_uid, sizeof (basic_block));
6267 basic_block *end = (basic_block *)
6268 xcalloc (max_uid, sizeof (basic_block));
6269 enum bb_state *in_bb_p = (enum bb_state *)
6270 xcalloc (max_uid, sizeof (enum bb_state));
6272 for (i = n_basic_blocks - 1; i >= 0; i--)
6274 basic_block bb = BASIC_BLOCK (i);
6275 rtx x;
6277 start[INSN_UID (bb->head)] = bb;
6278 end[INSN_UID (bb->end)] = bb;
6279 for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
6281 enum bb_state state = IN_MULTIPLE_BB;
6282 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
6283 state = IN_ONE_BB;
6284 in_bb_p[INSN_UID (x)] = state;
6286 if (x == bb->end)
6287 break;
6291 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
6293 int did_output;
6294 basic_block bb;
6296 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
6298 fprintf (outf, ";; Start of basic block %d, registers live:",
6299 bb->index);
6300 dump_regset (bb->global_live_at_start, outf);
6301 putc ('\n', outf);
6304 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
6305 && GET_CODE (tmp_rtx) != NOTE
6306 && GET_CODE (tmp_rtx) != BARRIER)
6307 fprintf (outf, ";; Insn is not within a basic block\n");
6308 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
6309 fprintf (outf, ";; Insn is in multiple basic blocks\n");
6311 did_output = print_rtl_single (outf, tmp_rtx);
6313 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
6315 fprintf (outf, ";; End of basic block %d, registers live:\n",
6316 bb->index);
6317 dump_regset (bb->global_live_at_end, outf);
6318 putc ('\n', outf);
6321 if (did_output)
6322 putc ('\n', outf);
6325 free (start);
6326 free (end);
6327 free (in_bb_p);
6330 if (current_function_epilogue_delay_list != 0)
6332 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
6333 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
6334 tmp_rtx = XEXP (tmp_rtx, 1))
6335 print_rtl_single (outf, XEXP (tmp_rtx, 0));
6339 /* Dump the rtl into the current debugging dump file, then abort. */
6340 static void
6341 print_rtl_and_abort ()
6343 if (rtl_dump_file)
6345 print_rtl_with_bb (rtl_dump_file, get_insns ());
6346 fclose (rtl_dump_file);
6348 abort ();
6351 /* Recompute register set/reference counts immediately prior to register
6352 allocation.
6354 This avoids problems with set/reference counts changing to/from values
6355 which have special meanings to the register allocators.
6357 Additionally, the reference counts are the primary component used by the
6358 register allocators to prioritize pseudos for allocation to hard regs.
6359 More accurate reference counts generally lead to better register allocation.
6361 F is the first insn to be scanned.
6363 LOOP_STEP denotes how much loop_depth should be incremented per
6364 loop nesting level in order to increase the ref count more for
6365 references in a loop.
6367 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
6368 possibly other information which is used by the register allocators. */
6370 void
6371 recompute_reg_usage (f, loop_step)
6372 rtx f ATTRIBUTE_UNUSED;
6373 int loop_step ATTRIBUTE_UNUSED;
6375 allocate_reg_life_data ();
6376 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
6379 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
6380 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
6381 of the number of registers that died. */
6384 count_or_remove_death_notes (blocks, kill)
6385 sbitmap blocks;
6386 int kill;
6388 int i, count = 0;
6390 for (i = n_basic_blocks - 1; i >= 0; --i)
6392 basic_block bb;
6393 rtx insn;
6395 if (blocks && ! TEST_BIT (blocks, i))
6396 continue;
6398 bb = BASIC_BLOCK (i);
6400 for (insn = bb->head;; insn = NEXT_INSN (insn))
6402 if (INSN_P (insn))
6404 rtx *pprev = &REG_NOTES (insn);
6405 rtx link = *pprev;
6407 while (link)
6409 switch (REG_NOTE_KIND (link))
6411 case REG_DEAD:
6412 if (GET_CODE (XEXP (link, 0)) == REG)
6414 rtx reg = XEXP (link, 0);
6415 int n;
6417 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
6418 n = 1;
6419 else
6420 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
6421 count += n;
6423 /* Fall through. */
6425 case REG_UNUSED:
6426 if (kill)
6428 rtx next = XEXP (link, 1);
6429 free_EXPR_LIST_node (link);
6430 *pprev = link = next;
6431 break;
6433 /* Fall through. */
6435 default:
6436 pprev = &XEXP (link, 1);
6437 link = *pprev;
6438 break;
6443 if (insn == bb->end)
6444 break;
6448 return count;
6452 /* Update insns block within BB. */
6454 void
6455 update_bb_for_insn (bb)
6456 basic_block bb;
6458 rtx insn;
6460 if (! basic_block_for_insn)
6461 return;
6463 for (insn = bb->head; ; insn = NEXT_INSN (insn))
6465 set_block_for_insn (insn, bb);
6467 if (insn == bb->end)
6468 break;
6473 /* Record INSN's block as BB. */
6475 void
6476 set_block_for_insn (insn, bb)
6477 rtx insn;
6478 basic_block bb;
6480 size_t uid = INSN_UID (insn);
6481 if (uid >= basic_block_for_insn->num_elements)
6483 int new_size;
6485 /* Add one-eighth the size so we don't keep calling xrealloc. */
6486 new_size = uid + (uid + 7) / 8;
6488 VARRAY_GROW (basic_block_for_insn, new_size);
6490 VARRAY_BB (basic_block_for_insn, uid) = bb;
6493 /* Record INSN's block number as BB. */
6494 /* ??? This has got to go. */
6496 void
6497 set_block_num (insn, bb)
6498 rtx insn;
6499 int bb;
6501 set_block_for_insn (insn, BASIC_BLOCK (bb));
6504 /* Verify the CFG consistency. This function check some CFG invariants and
6505 aborts when something is wrong. Hope that this function will help to
6506 convert many optimization passes to preserve CFG consistent.
6508 Currently it does following checks:
6510 - test head/end pointers
6511 - overlapping of basic blocks
6512 - edge list corectness
6513 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
6514 - tails of basic blocks (ensure that boundary is necesary)
6515 - scans body of the basic block for JUMP_INSN, CODE_LABEL
6516 and NOTE_INSN_BASIC_BLOCK
6517 - check that all insns are in the basic blocks
6518 (except the switch handling code, barriers and notes)
6519 - check that all returns are followed by barriers
6521 In future it can be extended check a lot of other stuff as well
6522 (reachability of basic blocks, life information, etc. etc.). */
6524 void
6525 verify_flow_info ()
6527 const int max_uid = get_max_uid ();
6528 const rtx rtx_first = get_insns ();
6529 rtx last_head = get_last_insn ();
6530 basic_block *bb_info;
6531 rtx x;
6532 int i, last_bb_num_seen, num_bb_notes, err = 0;
6534 bb_info = (basic_block *) xcalloc (max_uid, sizeof (basic_block));
6536 for (i = n_basic_blocks - 1; i >= 0; i--)
6538 basic_block bb = BASIC_BLOCK (i);
6539 rtx head = bb->head;
6540 rtx end = bb->end;
6542 /* Verify the end of the basic block is in the INSN chain. */
6543 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
6544 if (x == end)
6545 break;
6546 if (!x)
6548 error ("End insn %d for block %d not found in the insn stream.",
6549 INSN_UID (end), bb->index);
6550 err = 1;
6553 /* Work backwards from the end to the head of the basic block
6554 to verify the head is in the RTL chain. */
6555 for (; x != NULL_RTX; x = PREV_INSN (x))
6557 /* While walking over the insn chain, verify insns appear
6558 in only one basic block and initialize the BB_INFO array
6559 used by other passes. */
6560 if (bb_info[INSN_UID (x)] != NULL)
6562 error ("Insn %d is in multiple basic blocks (%d and %d)",
6563 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
6564 err = 1;
6566 bb_info[INSN_UID (x)] = bb;
6568 if (x == head)
6569 break;
6571 if (!x)
6573 error ("Head insn %d for block %d not found in the insn stream.",
6574 INSN_UID (head), bb->index);
6575 err = 1;
6578 last_head = x;
6581 /* Now check the basic blocks (boundaries etc.) */
6582 for (i = n_basic_blocks - 1; i >= 0; i--)
6584 basic_block bb = BASIC_BLOCK (i);
6585 /* Check corectness of edge lists */
6586 edge e;
6588 e = bb->succ;
6589 while (e)
6591 if (e->src != bb)
6593 fprintf (stderr,
6594 "verify_flow_info: Basic block %d succ edge is corrupted\n",
6595 bb->index);
6596 fprintf (stderr, "Predecessor: ");
6597 dump_edge_info (stderr, e, 0);
6598 fprintf (stderr, "\nSuccessor: ");
6599 dump_edge_info (stderr, e, 1);
6600 fflush (stderr);
6601 err = 1;
6603 if (e->dest != EXIT_BLOCK_PTR)
6605 edge e2 = e->dest->pred;
6606 while (e2 && e2 != e)
6607 e2 = e2->pred_next;
6608 if (!e2)
6610 error ("Basic block %i edge lists are corrupted", bb->index);
6611 err = 1;
6614 e = e->succ_next;
6617 e = bb->pred;
6618 while (e)
6620 if (e->dest != bb)
6622 error ("Basic block %d pred edge is corrupted", bb->index);
6623 fputs ("Predecessor: ", stderr);
6624 dump_edge_info (stderr, e, 0);
6625 fputs ("\nSuccessor: ", stderr);
6626 dump_edge_info (stderr, e, 1);
6627 fputc ('\n', stderr);
6628 err = 1;
6630 if (e->src != ENTRY_BLOCK_PTR)
6632 edge e2 = e->src->succ;
6633 while (e2 && e2 != e)
6634 e2 = e2->succ_next;
6635 if (!e2)
6637 error ("Basic block %i edge lists are corrupted", bb->index);
6638 err = 1;
6641 e = e->pred_next;
6644 /* OK pointers are correct. Now check the header of basic
6645 block. It ought to contain optional CODE_LABEL followed
6646 by NOTE_BASIC_BLOCK. */
6647 x = bb->head;
6648 if (GET_CODE (x) == CODE_LABEL)
6650 if (bb->end == x)
6652 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
6653 bb->index);
6654 err = 1;
6656 x = NEXT_INSN (x);
6658 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
6660 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
6661 bb->index);
6662 err = 1;
6665 if (bb->end == x)
6667 /* Do checks for empty blocks here */
6669 else
6671 x = NEXT_INSN (x);
6672 while (x)
6674 if (NOTE_INSN_BASIC_BLOCK_P (x))
6676 error ("NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d",
6677 INSN_UID (x), bb->index);
6678 err = 1;
6681 if (x == bb->end)
6682 break;
6684 if (GET_CODE (x) == JUMP_INSN
6685 || GET_CODE (x) == CODE_LABEL
6686 || GET_CODE (x) == BARRIER)
6688 error ("In basic block %d:", bb->index);
6689 fatal_insn ("Flow control insn inside a basic block", x);
6692 x = NEXT_INSN (x);
6697 last_bb_num_seen = -1;
6698 num_bb_notes = 0;
6699 x = rtx_first;
6700 while (x)
6702 if (NOTE_INSN_BASIC_BLOCK_P (x))
6704 basic_block bb = NOTE_BASIC_BLOCK (x);
6705 num_bb_notes++;
6706 if (bb->index != last_bb_num_seen + 1)
6707 fatal ("Basic blocks not numbered consecutively");
6708 last_bb_num_seen = bb->index;
6711 if (!bb_info[INSN_UID (x)])
6713 switch (GET_CODE (x))
6715 case BARRIER:
6716 case NOTE:
6717 break;
6719 case CODE_LABEL:
6720 /* An addr_vec is placed outside any block block. */
6721 if (NEXT_INSN (x)
6722 && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
6723 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
6724 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
6726 x = NEXT_INSN (x);
6729 /* But in any case, non-deletable labels can appear anywhere. */
6730 break;
6732 default:
6733 fatal_insn ("Insn outside basic block", x);
6737 if (INSN_P (x)
6738 && GET_CODE (x) == JUMP_INSN
6739 && returnjump_p (x) && ! condjump_p (x)
6740 && ! (NEXT_INSN (x) && GET_CODE (NEXT_INSN (x)) == BARRIER))
6741 fatal_insn ("Return not followed by barrier", x);
6743 x = NEXT_INSN (x);
6746 if (num_bb_notes != n_basic_blocks)
6747 fatal ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
6748 num_bb_notes, n_basic_blocks);
6750 if (err)
6751 abort ();
6753 /* Clean up. */
6754 free (bb_info);
6757 /* Functions to access an edge list with a vector representation.
6758 Enough data is kept such that given an index number, the
6759 pred and succ that edge represents can be determined, or
6760 given a pred and a succ, its index number can be returned.
6761 This allows algorithms which consume a lot of memory to
6762 represent the normally full matrix of edge (pred,succ) with a
6763 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
6764 wasted space in the client code due to sparse flow graphs. */
6766 /* This functions initializes the edge list. Basically the entire
6767 flowgraph is processed, and all edges are assigned a number,
6768 and the data structure is filled in. */
6770 struct edge_list *
6771 create_edge_list ()
6773 struct edge_list *elist;
6774 edge e;
6775 int num_edges;
6776 int x;
6777 int block_count;
6779 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
6781 num_edges = 0;
6783 /* Determine the number of edges in the flow graph by counting successor
6784 edges on each basic block. */
6785 for (x = 0; x < n_basic_blocks; x++)
6787 basic_block bb = BASIC_BLOCK (x);
6789 for (e = bb->succ; e; e = e->succ_next)
6790 num_edges++;
6792 /* Don't forget successors of the entry block. */
6793 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
6794 num_edges++;
6796 elist = (struct edge_list *) xmalloc (sizeof (struct edge_list));
6797 elist->num_blocks = block_count;
6798 elist->num_edges = num_edges;
6799 elist->index_to_edge = (edge *) xmalloc (sizeof (edge) * num_edges);
6801 num_edges = 0;
6803 /* Follow successors of the entry block, and register these edges. */
6804 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
6806 elist->index_to_edge[num_edges] = e;
6807 num_edges++;
6810 for (x = 0; x < n_basic_blocks; x++)
6812 basic_block bb = BASIC_BLOCK (x);
6814 /* Follow all successors of blocks, and register these edges. */
6815 for (e = bb->succ; e; e = e->succ_next)
6817 elist->index_to_edge[num_edges] = e;
6818 num_edges++;
6821 return elist;
6824 /* This function free's memory associated with an edge list. */
6826 void
6827 free_edge_list (elist)
6828 struct edge_list *elist;
6830 if (elist)
6832 free (elist->index_to_edge);
6833 free (elist);
6837 /* This function provides debug output showing an edge list. */
6839 void
6840 print_edge_list (f, elist)
6841 FILE *f;
6842 struct edge_list *elist;
6844 int x;
6845 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
6846 elist->num_blocks - 2, elist->num_edges);
6848 for (x = 0; x < elist->num_edges; x++)
6850 fprintf (f, " %-4d - edge(", x);
6851 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
6852 fprintf (f, "entry,");
6853 else
6854 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
6856 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
6857 fprintf (f, "exit)\n");
6858 else
6859 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
6863 /* This function provides an internal consistency check of an edge list,
6864 verifying that all edges are present, and that there are no
6865 extra edges. */
6867 void
6868 verify_edge_list (f, elist)
6869 FILE *f;
6870 struct edge_list *elist;
6872 int x, pred, succ, index;
6873 edge e;
6875 for (x = 0; x < n_basic_blocks; x++)
6877 basic_block bb = BASIC_BLOCK (x);
6879 for (e = bb->succ; e; e = e->succ_next)
6881 pred = e->src->index;
6882 succ = e->dest->index;
6883 index = EDGE_INDEX (elist, e->src, e->dest);
6884 if (index == EDGE_INDEX_NO_EDGE)
6886 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
6887 continue;
6889 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
6890 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
6891 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
6892 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
6893 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
6894 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
6897 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
6899 pred = e->src->index;
6900 succ = e->dest->index;
6901 index = EDGE_INDEX (elist, e->src, e->dest);
6902 if (index == EDGE_INDEX_NO_EDGE)
6904 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
6905 continue;
6907 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
6908 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
6909 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
6910 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
6911 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
6912 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
6914 /* We've verified that all the edges are in the list, no lets make sure
6915 there are no spurious edges in the list. */
6917 for (pred = 0; pred < n_basic_blocks; pred++)
6918 for (succ = 0; succ < n_basic_blocks; succ++)
6920 basic_block p = BASIC_BLOCK (pred);
6921 basic_block s = BASIC_BLOCK (succ);
6923 int found_edge = 0;
6925 for (e = p->succ; e; e = e->succ_next)
6926 if (e->dest == s)
6928 found_edge = 1;
6929 break;
6931 for (e = s->pred; e; e = e->pred_next)
6932 if (e->src == p)
6934 found_edge = 1;
6935 break;
6937 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
6938 == EDGE_INDEX_NO_EDGE && found_edge != 0)
6939 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
6940 pred, succ);
6941 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
6942 != EDGE_INDEX_NO_EDGE && found_edge == 0)
6943 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
6944 pred, succ, EDGE_INDEX (elist, BASIC_BLOCK (pred),
6945 BASIC_BLOCK (succ)));
6947 for (succ = 0; succ < n_basic_blocks; succ++)
6949 basic_block p = ENTRY_BLOCK_PTR;
6950 basic_block s = BASIC_BLOCK (succ);
6952 int found_edge = 0;
6954 for (e = p->succ; e; e = e->succ_next)
6955 if (e->dest == s)
6957 found_edge = 1;
6958 break;
6960 for (e = s->pred; e; e = e->pred_next)
6961 if (e->src == p)
6963 found_edge = 1;
6964 break;
6966 if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
6967 == EDGE_INDEX_NO_EDGE && found_edge != 0)
6968 fprintf (f, "*** Edge (entry, %d) appears to not have an index\n",
6969 succ);
6970 if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
6971 != EDGE_INDEX_NO_EDGE && found_edge == 0)
6972 fprintf (f, "*** Edge (entry, %d) has index %d, but no edge exists\n",
6973 succ, EDGE_INDEX (elist, ENTRY_BLOCK_PTR,
6974 BASIC_BLOCK (succ)));
6976 for (pred = 0; pred < n_basic_blocks; pred++)
6978 basic_block p = BASIC_BLOCK (pred);
6979 basic_block s = EXIT_BLOCK_PTR;
6981 int found_edge = 0;
6983 for (e = p->succ; e; e = e->succ_next)
6984 if (e->dest == s)
6986 found_edge = 1;
6987 break;
6989 for (e = s->pred; e; e = e->pred_next)
6990 if (e->src == p)
6992 found_edge = 1;
6993 break;
6995 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
6996 == EDGE_INDEX_NO_EDGE && found_edge != 0)
6997 fprintf (f, "*** Edge (%d, exit) appears to not have an index\n",
6998 pred);
6999 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
7000 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7001 fprintf (f, "*** Edge (%d, exit) has index %d, but no edge exists\n",
7002 pred, EDGE_INDEX (elist, BASIC_BLOCK (pred),
7003 EXIT_BLOCK_PTR));
7007 /* This routine will determine what, if any, edge there is between
7008 a specified predecessor and successor. */
7011 find_edge_index (edge_list, pred, succ)
7012 struct edge_list *edge_list;
7013 basic_block pred, succ;
7015 int x;
7016 for (x = 0; x < NUM_EDGES (edge_list); x++)
7018 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
7019 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
7020 return x;
7022 return (EDGE_INDEX_NO_EDGE);
7025 /* This function will remove an edge from the flow graph. */
7027 void
7028 remove_edge (e)
7029 edge e;
7031 edge last_pred = NULL;
7032 edge last_succ = NULL;
7033 edge tmp;
7034 basic_block src, dest;
7035 src = e->src;
7036 dest = e->dest;
7037 for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
7038 last_succ = tmp;
7040 if (!tmp)
7041 abort ();
7042 if (last_succ)
7043 last_succ->succ_next = e->succ_next;
7044 else
7045 src->succ = e->succ_next;
7047 for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
7048 last_pred = tmp;
7050 if (!tmp)
7051 abort ();
7052 if (last_pred)
7053 last_pred->pred_next = e->pred_next;
7054 else
7055 dest->pred = e->pred_next;
7057 n_edges--;
7058 free (e);
7061 /* This routine will remove any fake successor edges for a basic block.
7062 When the edge is removed, it is also removed from whatever predecessor
7063 list it is in. */
7065 static void
7066 remove_fake_successors (bb)
7067 basic_block bb;
7069 edge e;
7070 for (e = bb->succ; e;)
7072 edge tmp = e;
7073 e = e->succ_next;
7074 if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
7075 remove_edge (tmp);
7079 /* This routine will remove all fake edges from the flow graph. If
7080 we remove all fake successors, it will automatically remove all
7081 fake predecessors. */
7083 void
7084 remove_fake_edges ()
7086 int x;
7088 for (x = 0; x < n_basic_blocks; x++)
7089 remove_fake_successors (BASIC_BLOCK (x));
7091 /* We've handled all successors except the entry block's. */
7092 remove_fake_successors (ENTRY_BLOCK_PTR);
7095 /* This function will add a fake edge between any block which has no
7096 successors, and the exit block. Some data flow equations require these
7097 edges to exist. */
7099 void
7100 add_noreturn_fake_exit_edges ()
7102 int x;
7104 for (x = 0; x < n_basic_blocks; x++)
7105 if (BASIC_BLOCK (x)->succ == NULL)
7106 make_edge (NULL, BASIC_BLOCK (x), EXIT_BLOCK_PTR, EDGE_FAKE);
7109 /* This function adds a fake edge between any infinite loops to the
7110 exit block. Some optimizations require a path from each node to
7111 the exit node.
7113 See also Morgan, Figure 3.10, pp. 82-83.
7115 The current implementation is ugly, not attempting to minimize the
7116 number of inserted fake edges. To reduce the number of fake edges
7117 to insert, add fake edges from _innermost_ loops containing only
7118 nodes not reachable from the exit block. */
7120 void
7121 connect_infinite_loops_to_exit ()
7123 basic_block unvisited_block;
7125 /* Perform depth-first search in the reverse graph to find nodes
7126 reachable from the exit block. */
7127 struct depth_first_search_dsS dfs_ds;
7129 flow_dfs_compute_reverse_init (&dfs_ds);
7130 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
7132 /* Repeatedly add fake edges, updating the unreachable nodes. */
7133 while (1)
7135 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
7136 if (!unvisited_block)
7137 break;
7138 make_edge (NULL, unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
7139 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
7142 flow_dfs_compute_reverse_finish (&dfs_ds);
7144 return;
7147 /* Redirect an edge's successor from one block to another. */
7149 void
7150 redirect_edge_succ (e, new_succ)
7151 edge e;
7152 basic_block new_succ;
7154 edge *pe;
7156 /* Disconnect the edge from the old successor block. */
7157 for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
7158 continue;
7159 *pe = (*pe)->pred_next;
7161 /* Reconnect the edge to the new successor block. */
7162 e->pred_next = new_succ->pred;
7163 new_succ->pred = e;
7164 e->dest = new_succ;
7167 /* Redirect an edge's predecessor from one block to another. */
7169 void
7170 redirect_edge_pred (e, new_pred)
7171 edge e;
7172 basic_block new_pred;
7174 edge *pe;
7176 /* Disconnect the edge from the old predecessor block. */
7177 for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
7178 continue;
7179 *pe = (*pe)->succ_next;
7181 /* Reconnect the edge to the new predecessor block. */
7182 e->succ_next = new_pred->succ;
7183 new_pred->succ = e;
7184 e->src = new_pred;
7187 /* Dump the list of basic blocks in the bitmap NODES. */
7189 static void
7190 flow_nodes_print (str, nodes, file)
7191 const char *str;
7192 const sbitmap nodes;
7193 FILE *file;
7195 int node;
7197 if (! nodes)
7198 return;
7200 fprintf (file, "%s { ", str);
7201 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
7202 fputs ("}\n", file);
7206 /* Dump the list of edges in the array EDGE_LIST. */
7208 static void
7209 flow_edge_list_print (str, edge_list, num_edges, file)
7210 const char *str;
7211 const edge *edge_list;
7212 int num_edges;
7213 FILE *file;
7215 int i;
7217 if (! edge_list)
7218 return;
7220 fprintf (file, "%s { ", str);
7221 for (i = 0; i < num_edges; i++)
7222 fprintf (file, "%d->%d ", edge_list[i]->src->index,
7223 edge_list[i]->dest->index);
7224 fputs ("}\n", file);
7228 /* Dump loop related CFG information. */
7230 static void
7231 flow_loops_cfg_dump (loops, file)
7232 const struct loops *loops;
7233 FILE *file;
7235 int i;
7237 if (! loops->num || ! file || ! loops->cfg.dom)
7238 return;
7240 for (i = 0; i < n_basic_blocks; i++)
7242 edge succ;
7244 fprintf (file, ";; %d succs { ", i);
7245 for (succ = BASIC_BLOCK (i)->succ; succ; succ = succ->succ_next)
7246 fprintf (file, "%d ", succ->dest->index);
7247 flow_nodes_print ("} dom", loops->cfg.dom[i], file);
7250 /* Dump the DFS node order. */
7251 if (loops->cfg.dfs_order)
7253 fputs (";; DFS order: ", file);
7254 for (i = 0; i < n_basic_blocks; i++)
7255 fprintf (file, "%d ", loops->cfg.dfs_order[i]);
7256 fputs ("\n", file);
7258 /* Dump the reverse completion node order. */
7259 if (loops->cfg.rc_order)
7261 fputs (";; RC order: ", file);
7262 for (i = 0; i < n_basic_blocks; i++)
7263 fprintf (file, "%d ", loops->cfg.rc_order[i]);
7264 fputs ("\n", file);
7268 /* Return non-zero if the nodes of LOOP are a subset of OUTER. */
7270 static int
7271 flow_loop_nested_p (outer, loop)
7272 struct loop *outer;
7273 struct loop *loop;
7275 return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
7279 /* Dump the loop information specified by LOOP to the stream FILE
7280 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
7281 void
7282 flow_loop_dump (loop, file, loop_dump_aux, verbose)
7283 const struct loop *loop;
7284 FILE *file;
7285 void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
7286 int verbose;
7288 if (! loop || ! loop->header)
7289 return;
7291 fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
7292 loop->num, INSN_UID (loop->first->head),
7293 INSN_UID (loop->last->end),
7294 loop->shared ? " shared" : "",
7295 loop->invalid ? " invalid" : "");
7296 fprintf (file, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
7297 loop->header->index, loop->latch->index,
7298 loop->pre_header ? loop->pre_header->index : -1,
7299 loop->first->index, loop->last->index);
7300 fprintf (file, ";; depth %d, level %d, outer %ld\n",
7301 loop->depth, loop->level,
7302 (long) (loop->outer ? loop->outer->num : -1));
7304 if (loop->pre_header_edges)
7305 flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
7306 loop->num_pre_header_edges, file);
7307 flow_edge_list_print (";; entry edges", loop->entry_edges,
7308 loop->num_entries, file);
7309 fprintf (file, ";; %d", loop->num_nodes);
7310 flow_nodes_print (" nodes", loop->nodes, file);
7311 flow_edge_list_print (";; exit edges", loop->exit_edges,
7312 loop->num_exits, file);
7313 if (loop->exits_doms)
7314 flow_nodes_print (";; exit doms", loop->exits_doms, file);
7315 if (loop_dump_aux)
7316 loop_dump_aux (loop, file, verbose);
7320 /* Dump the loop information specified by LOOPS to the stream FILE,
7321 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
7322 void
7323 flow_loops_dump (loops, file, loop_dump_aux, verbose)
7324 const struct loops *loops;
7325 FILE *file;
7326 void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
7327 int verbose;
7329 int i;
7330 int num_loops;
7332 num_loops = loops->num;
7333 if (! num_loops || ! file)
7334 return;
7336 fprintf (file, ";; %d loops found, %d levels\n",
7337 num_loops, loops->levels);
7339 for (i = 0; i < num_loops; i++)
7341 struct loop *loop = &loops->array[i];
7343 flow_loop_dump (loop, file, loop_dump_aux, verbose);
7345 if (loop->shared)
7347 int j;
7349 for (j = 0; j < i; j++)
7351 struct loop *oloop = &loops->array[j];
7353 if (loop->header == oloop->header)
7355 int disjoint;
7356 int smaller;
7358 smaller = loop->num_nodes < oloop->num_nodes;
7360 /* If the union of LOOP and OLOOP is different than
7361 the larger of LOOP and OLOOP then LOOP and OLOOP
7362 must be disjoint. */
7363 disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
7364 smaller ? oloop : loop);
7365 fprintf (file,
7366 ";; loop header %d shared by loops %d, %d %s\n",
7367 loop->header->index, i, j,
7368 disjoint ? "disjoint" : "nested");
7374 if (verbose)
7375 flow_loops_cfg_dump (loops, file);
7379 /* Free all the memory allocated for LOOPS. */
7381 void
7382 flow_loops_free (loops)
7383 struct loops *loops;
7385 if (loops->array)
7387 int i;
7389 if (! loops->num)
7390 abort ();
7392 /* Free the loop descriptors. */
7393 for (i = 0; i < loops->num; i++)
7395 struct loop *loop = &loops->array[i];
7397 if (loop->pre_header_edges)
7398 free (loop->pre_header_edges);
7399 if (loop->nodes)
7400 sbitmap_free (loop->nodes);
7401 if (loop->entry_edges)
7402 free (loop->entry_edges);
7403 if (loop->exit_edges)
7404 free (loop->exit_edges);
7405 if (loop->exits_doms)
7406 sbitmap_free (loop->exits_doms);
7408 free (loops->array);
7409 loops->array = NULL;
7411 if (loops->cfg.dom)
7412 sbitmap_vector_free (loops->cfg.dom);
7413 if (loops->cfg.dfs_order)
7414 free (loops->cfg.dfs_order);
7416 if (loops->shared_headers)
7417 sbitmap_free (loops->shared_headers);
7422 /* Find the entry edges into the loop with header HEADER and nodes
7423 NODES and store in ENTRY_EDGES array. Return the number of entry
7424 edges from the loop. */
7426 static int
7427 flow_loop_entry_edges_find (header, nodes, entry_edges)
7428 basic_block header;
7429 const sbitmap nodes;
7430 edge **entry_edges;
7432 edge e;
7433 int num_entries;
7435 *entry_edges = NULL;
7437 num_entries = 0;
7438 for (e = header->pred; e; e = e->pred_next)
7440 basic_block src = e->src;
7442 if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
7443 num_entries++;
7446 if (! num_entries)
7447 abort ();
7449 *entry_edges = (edge *) xmalloc (num_entries * sizeof (edge *));
7451 num_entries = 0;
7452 for (e = header->pred; e; e = e->pred_next)
7454 basic_block src = e->src;
7456 if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
7457 (*entry_edges)[num_entries++] = e;
7460 return num_entries;
7464 /* Find the exit edges from the loop using the bitmap of loop nodes
7465 NODES and store in EXIT_EDGES array. Return the number of
7466 exit edges from the loop. */
7468 static int
7469 flow_loop_exit_edges_find (nodes, exit_edges)
7470 const sbitmap nodes;
7471 edge **exit_edges;
7473 edge e;
7474 int node;
7475 int num_exits;
7477 *exit_edges = NULL;
7479 /* Check all nodes within the loop to see if there are any
7480 successors not in the loop. Note that a node may have multiple
7481 exiting edges ????? A node can have one jumping edge and one fallthru
7482 edge so only one of these can exit the loop. */
7483 num_exits = 0;
7484 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
7485 for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
7487 basic_block dest = e->dest;
7489 if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
7490 num_exits++;
7494 if (! num_exits)
7495 return 0;
7497 *exit_edges = (edge *) xmalloc (num_exits * sizeof (edge *));
7499 /* Store all exiting edges into an array. */
7500 num_exits = 0;
7501 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
7502 for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
7504 basic_block dest = e->dest;
7506 if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
7507 (*exit_edges)[num_exits++] = e;
7511 return num_exits;
7515 /* Find the nodes contained within the loop with header HEADER and
7516 latch LATCH and store in NODES. Return the number of nodes within
7517 the loop. */
7519 static int
7520 flow_loop_nodes_find (header, latch, nodes)
7521 basic_block header;
7522 basic_block latch;
7523 sbitmap nodes;
7525 basic_block *stack;
7526 int sp;
7527 int num_nodes = 0;
7529 stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
7530 sp = 0;
7532 /* Start with only the loop header in the set of loop nodes. */
7533 sbitmap_zero (nodes);
7534 SET_BIT (nodes, header->index);
7535 num_nodes++;
7536 header->loop_depth++;
7538 /* Push the loop latch on to the stack. */
7539 if (! TEST_BIT (nodes, latch->index))
7541 SET_BIT (nodes, latch->index);
7542 latch->loop_depth++;
7543 num_nodes++;
7544 stack[sp++] = latch;
7547 while (sp)
7549 basic_block node;
7550 edge e;
7552 node = stack[--sp];
7553 for (e = node->pred; e; e = e->pred_next)
7555 basic_block ancestor = e->src;
7557 /* If each ancestor not marked as part of loop, add to set of
7558 loop nodes and push on to stack. */
7559 if (ancestor != ENTRY_BLOCK_PTR
7560 && ! TEST_BIT (nodes, ancestor->index))
7562 SET_BIT (nodes, ancestor->index);
7563 ancestor->loop_depth++;
7564 num_nodes++;
7565 stack[sp++] = ancestor;
7569 free (stack);
7570 return num_nodes;
7573 /* Compute the depth first search order and store in the array
7574 DFS_ORDER if non-zero, marking the nodes visited in VISITED. If
7575 RC_ORDER is non-zero, return the reverse completion number for each
7576 node. Returns the number of nodes visited. A depth first search
7577 tries to get as far away from the starting point as quickly as
7578 possible. */
7580 static int
7581 flow_depth_first_order_compute (dfs_order, rc_order)
7582 int *dfs_order;
7583 int *rc_order;
7585 edge *stack;
7586 int sp;
7587 int dfsnum = 0;
7588 int rcnum = n_basic_blocks - 1;
7589 sbitmap visited;
7591 /* Allocate stack for back-tracking up CFG. */
7592 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
7593 sp = 0;
7595 /* Allocate bitmap to track nodes that have been visited. */
7596 visited = sbitmap_alloc (n_basic_blocks);
7598 /* None of the nodes in the CFG have been visited yet. */
7599 sbitmap_zero (visited);
7601 /* Push the first edge on to the stack. */
7602 stack[sp++] = ENTRY_BLOCK_PTR->succ;
7604 while (sp)
7606 edge e;
7607 basic_block src;
7608 basic_block dest;
7610 /* Look at the edge on the top of the stack. */
7611 e = stack[sp - 1];
7612 src = e->src;
7613 dest = e->dest;
7615 /* Check if the edge destination has been visited yet. */
7616 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
7618 /* Mark that we have visited the destination. */
7619 SET_BIT (visited, dest->index);
7621 if (dfs_order)
7622 dfs_order[dfsnum++] = dest->index;
7624 if (dest->succ)
7626 /* Since the DEST node has been visited for the first
7627 time, check its successors. */
7628 stack[sp++] = dest->succ;
7630 else
7632 /* There are no successors for the DEST node so assign
7633 its reverse completion number. */
7634 if (rc_order)
7635 rc_order[rcnum--] = dest->index;
7638 else
7640 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
7642 /* There are no more successors for the SRC node
7643 so assign its reverse completion number. */
7644 if (rc_order)
7645 rc_order[rcnum--] = src->index;
7648 if (e->succ_next)
7649 stack[sp - 1] = e->succ_next;
7650 else
7651 sp--;
7655 free (stack);
7656 sbitmap_free (visited);
7658 /* The number of nodes visited should not be greater than
7659 n_basic_blocks. */
7660 if (dfsnum > n_basic_blocks)
7661 abort ();
7663 /* There are some nodes left in the CFG that are unreachable. */
7664 if (dfsnum < n_basic_blocks)
7665 abort ();
7666 return dfsnum;
7669 /* Compute the depth first search order on the _reverse_ graph and
7670 store in the array DFS_ORDER, marking the nodes visited in VISITED.
7671 Returns the number of nodes visited.
7673 The computation is split into three pieces:
7675 flow_dfs_compute_reverse_init () creates the necessary data
7676 structures.
7678 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
7679 structures. The block will start the search.
7681 flow_dfs_compute_reverse_execute () continues (or starts) the
7682 search using the block on the top of the stack, stopping when the
7683 stack is empty.
7685 flow_dfs_compute_reverse_finish () destroys the necessary data
7686 structures.
7688 Thus, the user will probably call ..._init(), call ..._add_bb() to
7689 add a beginning basic block to the stack, call ..._execute(),
7690 possibly add another bb to the stack and again call ..._execute(),
7691 ..., and finally call _finish(). */
7693 /* Initialize the data structures used for depth-first search on the
7694 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
7695 added to the basic block stack. DATA is the current depth-first
7696 search context. If INITIALIZE_STACK is non-zero, there is an
7697 element on the stack. */
7699 static void
7700 flow_dfs_compute_reverse_init (data)
7701 depth_first_search_ds data;
7703 /* Allocate stack for back-tracking up CFG. */
7704 data->stack =
7705 (basic_block *) xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
7706 * sizeof (basic_block));
7707 data->sp = 0;
7709 /* Allocate bitmap to track nodes that have been visited. */
7710 data->visited_blocks = sbitmap_alloc (n_basic_blocks - (INVALID_BLOCK + 1));
7712 /* None of the nodes in the CFG have been visited yet. */
7713 sbitmap_zero (data->visited_blocks);
7715 return;
7718 /* Add the specified basic block to the top of the dfs data
7719 structures. When the search continues, it will start at the
7720 block. */
7722 static void
7723 flow_dfs_compute_reverse_add_bb (data, bb)
7724 depth_first_search_ds data;
7725 basic_block bb;
7727 data->stack[data->sp++] = bb;
7728 return;
7731 /* Continue the depth-first search through the reverse graph starting
7732 with the block at the stack's top and ending when the stack is
7733 empty. Visited nodes are marked. Returns an unvisited basic
7734 block, or NULL if there is none available. */
7736 static basic_block
7737 flow_dfs_compute_reverse_execute (data)
7738 depth_first_search_ds data;
7740 basic_block bb;
7741 edge e;
7742 int i;
7744 while (data->sp > 0)
7746 bb = data->stack[--data->sp];
7748 /* Mark that we have visited this node. */
7749 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
7751 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
7753 /* Perform depth-first search on adjacent vertices. */
7754 for (e = bb->pred; e; e = e->pred_next)
7755 flow_dfs_compute_reverse_add_bb (data, e->src);
7759 /* Determine if there are unvisited basic blocks. */
7760 for (i = n_basic_blocks - (INVALID_BLOCK + 1); --i >= 0;)
7761 if (!TEST_BIT (data->visited_blocks, i))
7762 return BASIC_BLOCK (i + (INVALID_BLOCK + 1));
7763 return NULL;
7766 /* Destroy the data structures needed for depth-first search on the
7767 reverse graph. */
7769 static void
7770 flow_dfs_compute_reverse_finish (data)
7771 depth_first_search_ds data;
7773 free (data->stack);
7774 sbitmap_free (data->visited_blocks);
7775 return;
7779 /* Find the root node of the loop pre-header extended basic block and
7780 the edges along the trace from the root node to the loop header. */
7782 static void
7783 flow_loop_pre_header_scan (loop)
7784 struct loop *loop;
7786 int num = 0;
7787 basic_block ebb;
7789 loop->num_pre_header_edges = 0;
7791 if (loop->num_entries != 1)
7792 return;
7794 ebb = loop->entry_edges[0]->src;
7796 if (ebb != ENTRY_BLOCK_PTR)
7798 edge e;
7800 /* Count number of edges along trace from loop header to
7801 root of pre-header extended basic block. Usually this is
7802 only one or two edges. */
7803 num++;
7804 while (ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next)
7806 ebb = ebb->pred->src;
7807 num++;
7810 loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge *));
7811 loop->num_pre_header_edges = num;
7813 /* Store edges in order that they are followed. The source
7814 of the first edge is the root node of the pre-header extended
7815 basic block and the destination of the last last edge is
7816 the loop header. */
7817 for (e = loop->entry_edges[0]; num; e = e->src->pred)
7819 loop->pre_header_edges[--num] = e;
7825 /* Return the block for the pre-header of the loop with header
7826 HEADER where DOM specifies the dominator information. Return NULL if
7827 there is no pre-header. */
7829 static basic_block
7830 flow_loop_pre_header_find (header, dom)
7831 basic_block header;
7832 const sbitmap *dom;
7834 basic_block pre_header;
7835 edge e;
7837 /* If block p is a predecessor of the header and is the only block
7838 that the header does not dominate, then it is the pre-header. */
7839 pre_header = NULL;
7840 for (e = header->pred; e; e = e->pred_next)
7842 basic_block node = e->src;
7844 if (node != ENTRY_BLOCK_PTR
7845 && ! TEST_BIT (dom[node->index], header->index))
7847 if (pre_header == NULL)
7848 pre_header = node;
7849 else
7851 /* There are multiple edges into the header from outside
7852 the loop so there is no pre-header block. */
7853 pre_header = NULL;
7854 break;
7858 return pre_header;
7861 /* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
7862 previously added. The insertion algorithm assumes that the loops
7863 are added in the order found by a depth first search of the CFG. */
7865 static void
7866 flow_loop_tree_node_add (prevloop, loop)
7867 struct loop *prevloop;
7868 struct loop *loop;
7871 if (flow_loop_nested_p (prevloop, loop))
7873 prevloop->inner = loop;
7874 loop->outer = prevloop;
7875 return;
7878 while (prevloop->outer)
7880 if (flow_loop_nested_p (prevloop->outer, loop))
7882 prevloop->next = loop;
7883 loop->outer = prevloop->outer;
7884 return;
7886 prevloop = prevloop->outer;
7889 prevloop->next = loop;
7890 loop->outer = NULL;
7893 /* Build the loop hierarchy tree for LOOPS. */
7895 static void
7896 flow_loops_tree_build (loops)
7897 struct loops *loops;
7899 int i;
7900 int num_loops;
7902 num_loops = loops->num;
7903 if (! num_loops)
7904 return;
7906 /* Root the loop hierarchy tree with the first loop found.
7907 Since we used a depth first search this should be the
7908 outermost loop. */
7909 loops->tree = &loops->array[0];
7910 loops->tree->outer = loops->tree->inner = loops->tree->next = NULL;
7912 /* Add the remaining loops to the tree. */
7913 for (i = 1; i < num_loops; i++)
7914 flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
7917 /* Helper function to compute loop nesting depth and enclosed loop level
7918 for the natural loop specified by LOOP at the loop depth DEPTH.
7919 Returns the loop level. */
7921 static int
7922 flow_loop_level_compute (loop, depth)
7923 struct loop *loop;
7924 int depth;
7926 struct loop *inner;
7927 int level = 1;
7929 if (! loop)
7930 return 0;
7932 /* Traverse loop tree assigning depth and computing level as the
7933 maximum level of all the inner loops of this loop. The loop
7934 level is equivalent to the height of the loop in the loop tree
7935 and corresponds to the number of enclosed loop levels (including
7936 itself). */
7937 for (inner = loop->inner; inner; inner = inner->next)
7939 int ilevel;
7941 ilevel = flow_loop_level_compute (inner, depth + 1) + 1;
7943 if (ilevel > level)
7944 level = ilevel;
7946 loop->level = level;
7947 loop->depth = depth;
7948 return level;
7951 /* Compute the loop nesting depth and enclosed loop level for the loop
7952 hierarchy tree specfied by LOOPS. Return the maximum enclosed loop
7953 level. */
7955 static int
7956 flow_loops_level_compute (loops)
7957 struct loops *loops;
7959 struct loop *loop;
7960 int level;
7961 int levels = 0;
7963 /* Traverse all the outer level loops. */
7964 for (loop = loops->tree; loop; loop = loop->next)
7966 level = flow_loop_level_compute (loop, 1);
7967 if (level > levels)
7968 levels = level;
7970 return levels;
7974 /* Find all the natural loops in the function and save in LOOPS structure
7975 and recalculate loop_depth information in basic block structures.
7976 FLAGS controls which loop information is collected.
7977 Return the number of natural loops found. */
7980 flow_loops_find (loops, flags)
7981 struct loops *loops;
7982 int flags;
7984 int i;
7985 int b;
7986 int num_loops;
7987 edge e;
7988 sbitmap headers;
7989 sbitmap *dom;
7990 int *dfs_order;
7991 int *rc_order;
7993 /* This function cannot be repeatedly called with different
7994 flags to build up the loop information. The loop tree
7995 must always be built if this function is called. */
7996 if (! (flags & LOOP_TREE))
7997 abort ();
7999 memset (loops, 0, sizeof (*loops));
8001 /* Taking care of this degenerate case makes the rest of
8002 this code simpler. */
8003 if (n_basic_blocks == 0)
8004 return 0;
8006 dfs_order = NULL;
8007 rc_order = NULL;
8009 /* Compute the dominators. */
8010 dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8011 calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
8013 /* Count the number of loop edges (back edges). This should be the
8014 same as the number of natural loops. */
8016 num_loops = 0;
8017 for (b = 0; b < n_basic_blocks; b++)
8019 basic_block header;
8021 header = BASIC_BLOCK (b);
8022 header->loop_depth = 0;
8024 for (e = header->pred; e; e = e->pred_next)
8026 basic_block latch = e->src;
8028 /* Look for back edges where a predecessor is dominated
8029 by this block. A natural loop has a single entry
8030 node (header) that dominates all the nodes in the
8031 loop. It also has single back edge to the header
8032 from a latch node. Note that multiple natural loops
8033 may share the same header. */
8034 if (b != header->index)
8035 abort ();
8037 if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], b))
8038 num_loops++;
8042 if (num_loops)
8044 /* Compute depth first search order of the CFG so that outer
8045 natural loops will be found before inner natural loops. */
8046 dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
8047 rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
8048 flow_depth_first_order_compute (dfs_order, rc_order);
8050 /* Allocate loop structures. */
8051 loops->array
8052 = (struct loop *) xcalloc (num_loops, sizeof (struct loop));
8054 headers = sbitmap_alloc (n_basic_blocks);
8055 sbitmap_zero (headers);
8057 loops->shared_headers = sbitmap_alloc (n_basic_blocks);
8058 sbitmap_zero (loops->shared_headers);
8060 /* Find and record information about all the natural loops
8061 in the CFG. */
8062 num_loops = 0;
8063 for (b = 0; b < n_basic_blocks; b++)
8065 basic_block header;
8067 /* Search the nodes of the CFG in reverse completion order
8068 so that we can find outer loops first. */
8069 header = BASIC_BLOCK (rc_order[b]);
8071 /* Look for all the possible latch blocks for this header. */
8072 for (e = header->pred; e; e = e->pred_next)
8074 basic_block latch = e->src;
8076 /* Look for back edges where a predecessor is dominated
8077 by this block. A natural loop has a single entry
8078 node (header) that dominates all the nodes in the
8079 loop. It also has single back edge to the header
8080 from a latch node. Note that multiple natural loops
8081 may share the same header. */
8082 if (latch != ENTRY_BLOCK_PTR
8083 && TEST_BIT (dom[latch->index], header->index))
8085 struct loop *loop;
8087 loop = loops->array + num_loops;
8089 loop->header = header;
8090 loop->latch = latch;
8091 loop->num = num_loops;
8093 num_loops++;
8098 for (i = 0; i < num_loops; i++)
8100 struct loop *loop = &loops->array[i];
8101 int j;
8103 /* Keep track of blocks that are loop headers so
8104 that we can tell which loops should be merged. */
8105 if (TEST_BIT (headers, loop->header->index))
8106 SET_BIT (loops->shared_headers, loop->header->index);
8107 SET_BIT (headers, loop->header->index);
8109 /* Find nodes contained within the loop. */
8110 loop->nodes = sbitmap_alloc (n_basic_blocks);
8111 loop->num_nodes
8112 = flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);
8114 /* Compute first and last blocks within the loop.
8115 These are often the same as the loop header and
8116 loop latch respectively, but this is not always
8117 the case. */
8118 loop->first
8119 = BASIC_BLOCK (sbitmap_first_set_bit (loop->nodes));
8120 loop->last
8121 = BASIC_BLOCK (sbitmap_last_set_bit (loop->nodes));
8123 if (flags & LOOP_EDGES)
8125 /* Find edges which enter the loop header.
8126 Note that the entry edges should only
8127 enter the header of a natural loop. */
8128 loop->num_entries
8129 = flow_loop_entry_edges_find (loop->header,
8130 loop->nodes,
8131 &loop->entry_edges);
8133 /* Find edges which exit the loop. */
8134 loop->num_exits
8135 = flow_loop_exit_edges_find (loop->nodes,
8136 &loop->exit_edges);
8138 /* Determine which loop nodes dominate all the exits
8139 of the loop. */
8140 loop->exits_doms = sbitmap_alloc (n_basic_blocks);
8141 sbitmap_copy (loop->exits_doms, loop->nodes);
8142 for (j = 0; j < loop->num_exits; j++)
8143 sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
8144 dom[loop->exit_edges[j]->src->index]);
8146 /* The header of a natural loop must dominate
8147 all exits. */
8148 if (! TEST_BIT (loop->exits_doms, loop->header->index))
8149 abort ();
8152 if (flags & LOOP_PRE_HEADER)
8154 /* Look to see if the loop has a pre-header node. */
8155 loop->pre_header
8156 = flow_loop_pre_header_find (loop->header, dom);
8158 flow_loop_pre_header_scan (loop);
8162 /* Natural loops with shared headers may either be disjoint or
8163 nested. Disjoint loops with shared headers cannot be inner
8164 loops and should be merged. For now just mark loops that share
8165 headers. */
8166 for (i = 0; i < num_loops; i++)
8167 if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
8168 loops->array[i].shared = 1;
8170 sbitmap_free (headers);
8173 loops->num = num_loops;
8175 /* Save CFG derived information to avoid recomputing it. */
8176 loops->cfg.dom = dom;
8177 loops->cfg.dfs_order = dfs_order;
8178 loops->cfg.rc_order = rc_order;
8180 /* Build the loop hierarchy tree. */
8181 flow_loops_tree_build (loops);
8183 /* Assign the loop nesting depth and enclosed loop level for each
8184 loop. */
8185 loops->levels = flow_loops_level_compute (loops);
8187 return num_loops;
8191 /* Update the information regarding the loops in the CFG
8192 specified by LOOPS. */
8194 flow_loops_update (loops, flags)
8195 struct loops *loops;
8196 int flags;
8198 /* One day we may want to update the current loop data. For now
8199 throw away the old stuff and rebuild what we need. */
8200 if (loops->array)
8201 flow_loops_free (loops);
8203 return flow_loops_find (loops, flags);
8207 /* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
8210 flow_loop_outside_edge_p (loop, e)
8211 const struct loop *loop;
8212 edge e;
8214 if (e->dest != loop->header)
8215 abort ();
8216 return (e->src == ENTRY_BLOCK_PTR)
8217 || ! TEST_BIT (loop->nodes, e->src->index);
8220 /* Clear LOG_LINKS fields of insns in a chain.
8221 Also clear the global_live_at_{start,end} fields of the basic block
8222 structures. */
8224 void
8225 clear_log_links (insns)
8226 rtx insns;
8228 rtx i;
8229 int b;
8231 for (i = insns; i; i = NEXT_INSN (i))
8232 if (INSN_P (i))
8233 LOG_LINKS (i) = 0;
8235 for (b = 0; b < n_basic_blocks; b++)
8237 basic_block bb = BASIC_BLOCK (b);
8239 bb->global_live_at_start = NULL;
8240 bb->global_live_at_end = NULL;
8243 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
8244 EXIT_BLOCK_PTR->global_live_at_start = NULL;
8247 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
8248 correspond to the hard registers, if any, set in that map. This
8249 could be done far more efficiently by having all sorts of special-cases
8250 with moving single words, but probably isn't worth the trouble. */
8252 void
8253 reg_set_to_hard_reg_set (to, from)
8254 HARD_REG_SET *to;
8255 bitmap from;
8257 int i;
8259 EXECUTE_IF_SET_IN_BITMAP
8260 (from, 0, i,
8262 if (i >= FIRST_PSEUDO_REGISTER)
8263 return;
8264 SET_HARD_REG_BIT (*to, i);
8268 /* Called once at intialization time. */
8270 void
8271 init_flow ()
8273 static int initialized;
8275 if (!initialized)
8277 gcc_obstack_init (&flow_obstack);
8278 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
8279 initialized = 1;
8281 else
8283 obstack_free (&flow_obstack, flow_firstobj);
8284 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);