Fix typo
[official-gcc.git] / gcc / convert.c
blobb97d08fa4f7a544838c9571cbac8852dab174a25
1 /* Utility routines for data type conversion for GNU C.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997,
3 1998 Free Software Foundation, Inc.
5 This file is part of GNU C.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "convert.h"
31 #include "toplev.h"
33 /* Convert EXPR to some pointer or reference type TYPE.
35 EXPR must be pointer, reference, integer, enumeral, or literal zero;
36 in other cases error is called. */
38 tree
39 convert_to_pointer (type, expr)
40 tree type, expr;
42 if (integer_zerop (expr))
44 expr = build_int_2 (0, 0);
45 TREE_TYPE (expr) = type;
46 return expr;
49 switch (TREE_CODE (TREE_TYPE (expr)))
51 case POINTER_TYPE:
52 case REFERENCE_TYPE:
53 return build1 (NOP_EXPR, type, expr);
55 case INTEGER_TYPE:
56 case ENUMERAL_TYPE:
57 case BOOLEAN_TYPE:
58 case CHAR_TYPE:
59 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
60 return build1 (CONVERT_EXPR, type, expr);
62 return
63 convert_to_pointer (type,
64 convert (type_for_size (POINTER_SIZE, 0), expr));
66 default:
67 error ("cannot convert to a pointer type");
68 return convert_to_pointer (type, integer_zero_node);
72 /* Convert EXPR to some floating-point type TYPE.
74 EXPR must be float, integer, or enumeral;
75 in other cases error is called. */
77 tree
78 convert_to_real (type, expr)
79 tree type, expr;
81 switch (TREE_CODE (TREE_TYPE (expr)))
83 case REAL_TYPE:
84 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
85 type, expr);
87 case INTEGER_TYPE:
88 case ENUMERAL_TYPE:
89 case BOOLEAN_TYPE:
90 case CHAR_TYPE:
91 return build1 (FLOAT_EXPR, type, expr);
93 case COMPLEX_TYPE:
94 return convert (type,
95 fold (build1 (REALPART_EXPR,
96 TREE_TYPE (TREE_TYPE (expr)), expr)));
98 case POINTER_TYPE:
99 case REFERENCE_TYPE:
100 error ("pointer value used where a floating point value was expected");
101 return convert_to_real (type, integer_zero_node);
103 default:
104 error ("aggregate value used where a float was expected");
105 return convert_to_real (type, integer_zero_node);
109 /* Convert EXPR to some integer (or enum) type TYPE.
111 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
112 vector; in other cases error is called.
114 The result of this is always supposed to be a newly created tree node
115 not in use in any existing structure. */
117 tree
118 convert_to_integer (type, expr)
119 tree type, expr;
121 enum tree_code ex_form = TREE_CODE (expr);
122 tree intype = TREE_TYPE (expr);
123 unsigned int inprec = TYPE_PRECISION (intype);
124 unsigned int outprec = TYPE_PRECISION (type);
126 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
127 be. Consider `enum E = { a, b = (enum E) 3 };'. */
128 if (!COMPLETE_TYPE_P (type))
130 error ("conversion to incomplete type");
131 return error_mark_node;
134 switch (TREE_CODE (intype))
136 case POINTER_TYPE:
137 case REFERENCE_TYPE:
138 if (integer_zerop (expr))
139 expr = integer_zero_node;
140 else
141 expr = fold (build1 (CONVERT_EXPR,
142 type_for_size (POINTER_SIZE, 0), expr));
144 return convert_to_integer (type, expr);
146 case INTEGER_TYPE:
147 case ENUMERAL_TYPE:
148 case BOOLEAN_TYPE:
149 case CHAR_TYPE:
150 /* If this is a logical operation, which just returns 0 or 1, we can
151 change the type of the expression. For some logical operations,
152 we must also change the types of the operands to maintain type
153 correctness. */
155 if (TREE_CODE_CLASS (ex_form) == '<')
157 TREE_TYPE (expr) = type;
158 return expr;
161 else if (ex_form == TRUTH_AND_EXPR || ex_form == TRUTH_ANDIF_EXPR
162 || ex_form == TRUTH_OR_EXPR || ex_form == TRUTH_ORIF_EXPR
163 || ex_form == TRUTH_XOR_EXPR)
165 TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
166 TREE_OPERAND (expr, 1) = convert (type, TREE_OPERAND (expr, 1));
167 TREE_TYPE (expr) = type;
168 return expr;
171 else if (ex_form == TRUTH_NOT_EXPR)
173 TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
174 TREE_TYPE (expr) = type;
175 return expr;
178 /* If we are widening the type, put in an explicit conversion.
179 Similarly if we are not changing the width. After this, we know
180 we are truncating EXPR. */
182 else if (outprec >= inprec)
183 return build1 (NOP_EXPR, type, expr);
185 /* If TYPE is an enumeral type or a type with a precision less
186 than the number of bits in its mode, do the conversion to the
187 type corresponding to its mode, then do a nop conversion
188 to TYPE. */
189 else if (TREE_CODE (type) == ENUMERAL_TYPE
190 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
191 return build1 (NOP_EXPR, type,
192 convert (type_for_mode (TYPE_MODE (type),
193 TREE_UNSIGNED (type)),
194 expr));
196 /* Here detect when we can distribute the truncation down past some
197 arithmetic. For example, if adding two longs and converting to an
198 int, we can equally well convert both to ints and then add.
199 For the operations handled here, such truncation distribution
200 is always safe.
201 It is desirable in these cases:
202 1) when truncating down to full-word from a larger size
203 2) when truncating takes no work.
204 3) when at least one operand of the arithmetic has been extended
205 (as by C's default conversions). In this case we need two conversions
206 if we do the arithmetic as already requested, so we might as well
207 truncate both and then combine. Perhaps that way we need only one.
209 Note that in general we cannot do the arithmetic in a type
210 shorter than the desired result of conversion, even if the operands
211 are both extended from a shorter type, because they might overflow
212 if combined in that type. The exceptions to this--the times when
213 two narrow values can be combined in their narrow type even to
214 make a wider result--are handled by "shorten" in build_binary_op. */
216 switch (ex_form)
218 case RSHIFT_EXPR:
219 /* We can pass truncation down through right shifting
220 when the shift count is a nonpositive constant. */
221 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
222 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
223 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
224 integer_one_node)))
225 goto trunc1;
226 break;
228 case LSHIFT_EXPR:
229 /* We can pass truncation down through left shifting
230 when the shift count is a nonnegative constant. */
231 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
232 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
233 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
235 /* If shift count is less than the width of the truncated type,
236 really shift. */
237 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
238 /* In this case, shifting is like multiplication. */
239 goto trunc1;
240 else
242 /* If it is >= that width, result is zero.
243 Handling this with trunc1 would give the wrong result:
244 (int) ((long long) a << 32) is well defined (as 0)
245 but (int) a << 32 is undefined and would get a
246 warning. */
248 tree t = convert_to_integer (type, integer_zero_node);
250 /* If the original expression had side-effects, we must
251 preserve it. */
252 if (TREE_SIDE_EFFECTS (expr))
253 return build (COMPOUND_EXPR, type, expr, t);
254 else
255 return t;
258 break;
260 case MAX_EXPR:
261 case MIN_EXPR:
262 case MULT_EXPR:
264 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
265 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
267 /* Don't distribute unless the output precision is at least as big
268 as the actual inputs. Otherwise, the comparison of the
269 truncated values will be wrong. */
270 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
271 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
272 /* If signedness of arg0 and arg1 don't match,
273 we can't necessarily find a type to compare them in. */
274 && (TREE_UNSIGNED (TREE_TYPE (arg0))
275 == TREE_UNSIGNED (TREE_TYPE (arg1))))
276 goto trunc1;
277 break;
280 case PLUS_EXPR:
281 case MINUS_EXPR:
282 case BIT_AND_EXPR:
283 case BIT_IOR_EXPR:
284 case BIT_XOR_EXPR:
285 case BIT_ANDTC_EXPR:
286 trunc1:
288 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
289 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
291 if (outprec >= BITS_PER_WORD
292 || TRULY_NOOP_TRUNCATION (outprec, inprec)
293 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
294 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
296 /* Do the arithmetic in type TYPEX,
297 then convert result to TYPE. */
298 register tree typex = type;
300 /* Can't do arithmetic in enumeral types
301 so use an integer type that will hold the values. */
302 if (TREE_CODE (typex) == ENUMERAL_TYPE)
303 typex = type_for_size (TYPE_PRECISION (typex),
304 TREE_UNSIGNED (typex));
306 /* But now perhaps TYPEX is as wide as INPREC.
307 In that case, do nothing special here.
308 (Otherwise would recurse infinitely in convert. */
309 if (TYPE_PRECISION (typex) != inprec)
311 /* Don't do unsigned arithmetic where signed was wanted,
312 or vice versa.
313 Exception: if both of the original operands were
314 unsigned then can safely do the work as unsigned.
315 And we may need to do it as unsigned
316 if we truncate to the original size. */
317 typex = ((TREE_UNSIGNED (TREE_TYPE (expr))
318 || (TREE_UNSIGNED (TREE_TYPE (arg0))
319 && TREE_UNSIGNED (TREE_TYPE (arg1))))
320 ? unsigned_type (typex) : signed_type (typex));
321 return convert (type,
322 fold (build (ex_form, typex,
323 convert (typex, arg0),
324 convert (typex, arg1),
325 0)));
329 break;
331 case NEGATE_EXPR:
332 case BIT_NOT_EXPR:
333 /* This is not correct for ABS_EXPR,
334 since we must test the sign before truncation. */
336 register tree typex = type;
338 /* Can't do arithmetic in enumeral types
339 so use an integer type that will hold the values. */
340 if (TREE_CODE (typex) == ENUMERAL_TYPE)
341 typex = type_for_size (TYPE_PRECISION (typex),
342 TREE_UNSIGNED (typex));
344 /* But now perhaps TYPEX is as wide as INPREC.
345 In that case, do nothing special here.
346 (Otherwise would recurse infinitely in convert. */
347 if (TYPE_PRECISION (typex) != inprec)
349 /* Don't do unsigned arithmetic where signed was wanted,
350 or vice versa. */
351 typex = (TREE_UNSIGNED (TREE_TYPE (expr))
352 ? unsigned_type (typex) : signed_type (typex));
353 return convert (type,
354 fold (build1 (ex_form, typex,
355 convert (typex,
356 TREE_OPERAND (expr, 0)))));
360 case NOP_EXPR:
361 /* If truncating after truncating, might as well do all at once.
362 If truncating after extending, we may get rid of wasted work. */
363 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
365 case COND_EXPR:
366 /* It is sometimes worthwhile to push the narrowing down through
367 the conditional and never loses. */
368 return fold (build (COND_EXPR, type, TREE_OPERAND (expr, 0),
369 convert (type, TREE_OPERAND (expr, 1)),
370 convert (type, TREE_OPERAND (expr, 2))));
372 default:
373 break;
376 return build1 (NOP_EXPR, type, expr);
378 case REAL_TYPE:
379 return build1 (FIX_TRUNC_EXPR, type, expr);
381 case COMPLEX_TYPE:
382 return convert (type,
383 fold (build1 (REALPART_EXPR,
384 TREE_TYPE (TREE_TYPE (expr)), expr)));
386 case VECTOR_TYPE:
387 if (GET_MODE_SIZE (TYPE_MODE (type))
388 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
390 error ("can't convert between vector values of different size");
391 return error_mark_node;
393 return build1 (NOP_EXPR, type, expr);
395 default:
396 error ("aggregate value used where an integer was expected");
397 return convert (type, integer_zero_node);
401 /* Convert EXPR to the complex type TYPE in the usual ways. */
403 tree
404 convert_to_complex (type, expr)
405 tree type, expr;
407 tree subtype = TREE_TYPE (type);
409 switch (TREE_CODE (TREE_TYPE (expr)))
411 case REAL_TYPE:
412 case INTEGER_TYPE:
413 case ENUMERAL_TYPE:
414 case BOOLEAN_TYPE:
415 case CHAR_TYPE:
416 return build (COMPLEX_EXPR, type, convert (subtype, expr),
417 convert (subtype, integer_zero_node));
419 case COMPLEX_TYPE:
421 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
423 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
424 return expr;
425 else if (TREE_CODE (expr) == COMPLEX_EXPR)
426 return fold (build (COMPLEX_EXPR,
427 type,
428 convert (subtype, TREE_OPERAND (expr, 0)),
429 convert (subtype, TREE_OPERAND (expr, 1))));
430 else
432 expr = save_expr (expr);
433 return
434 fold (build (COMPLEX_EXPR,
435 type, convert (subtype,
436 fold (build1 (REALPART_EXPR,
437 TREE_TYPE (TREE_TYPE (expr)),
438 expr))),
439 convert (subtype,
440 fold (build1 (IMAGPART_EXPR,
441 TREE_TYPE (TREE_TYPE (expr)),
442 expr)))));
446 case POINTER_TYPE:
447 case REFERENCE_TYPE:
448 error ("pointer value used where a complex was expected");
449 return convert_to_complex (type, integer_zero_node);
451 default:
452 error ("aggregate value used where a complex was expected");
453 return convert_to_complex (type, integer_zero_node);
457 /* Convert EXPR to the vector type TYPE in the usual ways. */
459 tree
460 convert_to_vector (type, expr)
461 tree type, expr;
463 switch (TREE_CODE (TREE_TYPE (expr)))
465 case INTEGER_TYPE:
466 case VECTOR_TYPE:
467 if (GET_MODE_SIZE (TYPE_MODE (type))
468 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
470 error ("can't convert between vector values of different size");
471 return error_mark_node;
473 return build1 (NOP_EXPR, type, expr);
475 default:
476 error ("can't convert value to a vector");
477 return convert_to_vector (type, integer_zero_node);