1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
32 #include "coretypes.h"
38 #include "tree-pass.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
53 #include "gimple-iterator.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-scalar-evolution.h"
58 #include "ipa-utils.h"
59 #include "gimple-pretty-print.h"
62 #include "stringpool.h"
65 /* Enum with reasons why a predictor is ignored. */
71 REASON_SINGLE_EDGE_DUPLICATE
,
72 REASON_EDGE_PAIR_DUPLICATE
75 /* String messages for the aforementioned enum. */
77 static const char *reason_messages
[] = {"", " (ignored)",
78 " (single edge duplicate)", " (edge pair duplicate)"};
80 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
81 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
82 static sreal real_almost_one
, real_br_prob_base
,
83 real_inv_br_prob_base
, real_one_half
, real_bb_freq_max
;
85 static void combine_predictions_for_insn (rtx_insn
*, basic_block
);
86 static void dump_prediction (FILE *, enum br_predictor
, int, basic_block
,
87 enum predictor_reason
, edge
);
88 static void predict_paths_leading_to (basic_block
, enum br_predictor
,
90 struct loop
*in_loop
= NULL
);
91 static void predict_paths_leading_to_edge (edge
, enum br_predictor
,
93 struct loop
*in_loop
= NULL
);
94 static bool can_predict_insn_p (const rtx_insn
*);
96 /* Information we hold about each branch predictor.
97 Filled using information from predict.def. */
101 const char *const name
; /* Name used in the debugging dumps. */
102 const int hitrate
; /* Expected hitrate used by
103 predict_insn_def call. */
107 /* Use given predictor without Dempster-Shaffer theory if it matches
108 using first_match heuristics. */
109 #define PRED_FLAG_FIRST_MATCH 1
111 /* Recompute hitrate in percent to our representation. */
113 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
115 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
116 static const struct predictor_info predictor_info
[]= {
117 #include "predict.def"
119 /* Upper bound on predictors. */
124 /* Return TRUE if frequency FREQ is considered to be hot. */
127 maybe_hot_frequency_p (struct function
*fun
, int freq
)
129 struct cgraph_node
*node
= cgraph_node::get (fun
->decl
);
130 if (!profile_info
|| profile_status_for_fn (fun
) != PROFILE_READ
)
132 if (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
134 if (node
->frequency
== NODE_FREQUENCY_HOT
)
137 if (profile_status_for_fn (fun
) == PROFILE_ABSENT
)
139 if (node
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
140 && freq
< (ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
* 2 / 3))
142 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
) == 0)
144 if (freq
* PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
)
145 < ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
)
150 static gcov_type min_count
= -1;
152 /* Determine the threshold for hot BB counts. */
155 get_hot_bb_threshold ()
157 gcov_working_set_t
*ws
;
160 ws
= find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE
));
162 min_count
= ws
->min_counter
;
167 /* Set the threshold for hot BB counts. */
170 set_hot_bb_threshold (gcov_type min
)
175 /* Return TRUE if frequency FREQ is considered to be hot. */
178 maybe_hot_count_p (struct function
*, profile_count count
)
180 if (!count
.initialized_p ())
182 /* Code executed at most once is not hot. */
183 if (count
<= MAX (profile_info
? profile_info
->runs
: 1, 1))
185 return (count
.to_gcov_type () >= get_hot_bb_threshold ());
188 /* Return true in case BB can be CPU intensive and should be optimized
189 for maximal performance. */
192 maybe_hot_bb_p (struct function
*fun
, const_basic_block bb
)
194 gcc_checking_assert (fun
);
195 if (!maybe_hot_count_p (fun
, bb
->count
))
197 return maybe_hot_frequency_p (fun
, bb
->frequency
);
200 /* Return true in case BB can be CPU intensive and should be optimized
201 for maximal performance. */
204 maybe_hot_edge_p (edge e
)
206 if (!maybe_hot_count_p (cfun
, e
->count
))
208 return maybe_hot_frequency_p (cfun
, EDGE_FREQUENCY (e
));
211 /* Return true if profile COUNT and FREQUENCY, or function FUN static
212 node frequency reflects never being executed. */
215 probably_never_executed (struct function
*fun
,
216 profile_count count
, int)
218 gcc_checking_assert (fun
);
219 if (count
== profile_count::zero ())
221 if (count
.initialized_p () && profile_status_for_fn (fun
) == PROFILE_READ
)
223 int unlikely_count_fraction
= PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION
);
224 if (count
.apply_scale (unlikely_count_fraction
, 1) >= profile_info
->runs
)
228 if ((!profile_info
|| profile_status_for_fn (fun
) != PROFILE_READ
)
229 && (cgraph_node::get (fun
->decl
)->frequency
230 == NODE_FREQUENCY_UNLIKELY_EXECUTED
))
236 /* Return true in case BB is probably never executed. */
239 probably_never_executed_bb_p (struct function
*fun
, const_basic_block bb
)
241 return probably_never_executed (fun
, bb
->count
, bb
->frequency
);
245 /* Return true if E is unlikely executed for obvious reasons. */
248 unlikely_executed_edge_p (edge e
)
250 return (e
->count
== profile_count::zero ()
251 || e
->probability
== profile_probability::never ())
252 || (e
->flags
& (EDGE_EH
| EDGE_FAKE
));
255 /* Return true in case edge E is probably never executed. */
258 probably_never_executed_edge_p (struct function
*fun
, edge e
)
260 if (unlikely_executed_edge_p (e
))
262 return probably_never_executed (fun
, e
->count
, EDGE_FREQUENCY (e
));
265 /* Return true when current function should always be optimized for size. */
268 optimize_function_for_size_p (struct function
*fun
)
270 if (!fun
|| !fun
->decl
)
271 return optimize_size
;
272 cgraph_node
*n
= cgraph_node::get (fun
->decl
);
273 return n
&& n
->optimize_for_size_p ();
276 /* Return true when current function should always be optimized for speed. */
279 optimize_function_for_speed_p (struct function
*fun
)
281 return !optimize_function_for_size_p (fun
);
284 /* Return the optimization type that should be used for the function FUN. */
287 function_optimization_type (struct function
*fun
)
289 return (optimize_function_for_speed_p (fun
)
291 : OPTIMIZE_FOR_SIZE
);
294 /* Return TRUE when BB should be optimized for size. */
297 optimize_bb_for_size_p (const_basic_block bb
)
299 return (optimize_function_for_size_p (cfun
)
300 || (bb
&& !maybe_hot_bb_p (cfun
, bb
)));
303 /* Return TRUE when BB should be optimized for speed. */
306 optimize_bb_for_speed_p (const_basic_block bb
)
308 return !optimize_bb_for_size_p (bb
);
311 /* Return the optimization type that should be used for block BB. */
314 bb_optimization_type (const_basic_block bb
)
316 return (optimize_bb_for_speed_p (bb
)
318 : OPTIMIZE_FOR_SIZE
);
321 /* Return TRUE when BB should be optimized for size. */
324 optimize_edge_for_size_p (edge e
)
326 return optimize_function_for_size_p (cfun
) || !maybe_hot_edge_p (e
);
329 /* Return TRUE when BB should be optimized for speed. */
332 optimize_edge_for_speed_p (edge e
)
334 return !optimize_edge_for_size_p (e
);
337 /* Return TRUE when BB should be optimized for size. */
340 optimize_insn_for_size_p (void)
342 return optimize_function_for_size_p (cfun
) || !crtl
->maybe_hot_insn_p
;
345 /* Return TRUE when BB should be optimized for speed. */
348 optimize_insn_for_speed_p (void)
350 return !optimize_insn_for_size_p ();
353 /* Return TRUE when LOOP should be optimized for size. */
356 optimize_loop_for_size_p (struct loop
*loop
)
358 return optimize_bb_for_size_p (loop
->header
);
361 /* Return TRUE when LOOP should be optimized for speed. */
364 optimize_loop_for_speed_p (struct loop
*loop
)
366 return optimize_bb_for_speed_p (loop
->header
);
369 /* Return TRUE when LOOP nest should be optimized for speed. */
372 optimize_loop_nest_for_speed_p (struct loop
*loop
)
374 struct loop
*l
= loop
;
375 if (optimize_loop_for_speed_p (loop
))
378 while (l
&& l
!= loop
)
380 if (optimize_loop_for_speed_p (l
))
388 while (l
!= loop
&& !l
->next
)
397 /* Return TRUE when LOOP nest should be optimized for size. */
400 optimize_loop_nest_for_size_p (struct loop
*loop
)
402 return !optimize_loop_nest_for_speed_p (loop
);
405 /* Return true when edge E is likely to be well predictable by branch
409 predictable_edge_p (edge e
)
411 if (!e
->probability
.initialized_p ())
413 if ((e
->probability
.to_reg_br_prob_base ()
414 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100)
415 || (REG_BR_PROB_BASE
- e
->probability
.to_reg_br_prob_base ()
416 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100))
422 /* Set RTL expansion for BB profile. */
425 rtl_profile_for_bb (basic_block bb
)
427 crtl
->maybe_hot_insn_p
= maybe_hot_bb_p (cfun
, bb
);
430 /* Set RTL expansion for edge profile. */
433 rtl_profile_for_edge (edge e
)
435 crtl
->maybe_hot_insn_p
= maybe_hot_edge_p (e
);
438 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
440 default_rtl_profile (void)
442 crtl
->maybe_hot_insn_p
= true;
445 /* Return true if the one of outgoing edges is already predicted by
449 rtl_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
452 if (!INSN_P (BB_END (bb
)))
454 for (note
= REG_NOTES (BB_END (bb
)); note
; note
= XEXP (note
, 1))
455 if (REG_NOTE_KIND (note
) == REG_BR_PRED
456 && INTVAL (XEXP (XEXP (note
, 0), 0)) == (int)predictor
)
461 /* Structure representing predictions in tree level. */
463 struct edge_prediction
{
464 struct edge_prediction
*ep_next
;
466 enum br_predictor ep_predictor
;
470 /* This map contains for a basic block the list of predictions for the
473 static hash_map
<const_basic_block
, edge_prediction
*> *bb_predictions
;
475 /* Return true if the one of outgoing edges is already predicted by
479 gimple_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
481 struct edge_prediction
*i
;
482 edge_prediction
**preds
= bb_predictions
->get (bb
);
487 for (i
= *preds
; i
; i
= i
->ep_next
)
488 if (i
->ep_predictor
== predictor
)
493 /* Return true if the one of outgoing edges is already predicted by
494 PREDICTOR for edge E predicted as TAKEN. */
497 edge_predicted_by_p (edge e
, enum br_predictor predictor
, bool taken
)
499 struct edge_prediction
*i
;
500 basic_block bb
= e
->src
;
501 edge_prediction
**preds
= bb_predictions
->get (bb
);
505 int probability
= predictor_info
[(int) predictor
].hitrate
;
508 probability
= REG_BR_PROB_BASE
- probability
;
510 for (i
= *preds
; i
; i
= i
->ep_next
)
511 if (i
->ep_predictor
== predictor
513 && i
->ep_probability
== probability
)
518 /* Same predicate as above, working on edges. */
520 edge_probability_reliable_p (const_edge e
)
522 return e
->probability
.probably_reliable_p ();
525 /* Same predicate as edge_probability_reliable_p, working on notes. */
527 br_prob_note_reliable_p (const_rtx note
)
529 gcc_assert (REG_NOTE_KIND (note
) == REG_BR_PROB
);
530 return profile_probability::from_reg_br_prob_note
531 (XINT (note
, 0)).probably_reliable_p ();
535 predict_insn (rtx_insn
*insn
, enum br_predictor predictor
, int probability
)
537 gcc_assert (any_condjump_p (insn
));
538 if (!flag_guess_branch_prob
)
541 add_reg_note (insn
, REG_BR_PRED
,
542 gen_rtx_CONCAT (VOIDmode
,
543 GEN_INT ((int) predictor
),
544 GEN_INT ((int) probability
)));
547 /* Predict insn by given predictor. */
550 predict_insn_def (rtx_insn
*insn
, enum br_predictor predictor
,
551 enum prediction taken
)
553 int probability
= predictor_info
[(int) predictor
].hitrate
;
556 probability
= REG_BR_PROB_BASE
- probability
;
558 predict_insn (insn
, predictor
, probability
);
561 /* Predict edge E with given probability if possible. */
564 rtl_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
567 last_insn
= BB_END (e
->src
);
569 /* We can store the branch prediction information only about
570 conditional jumps. */
571 if (!any_condjump_p (last_insn
))
574 /* We always store probability of branching. */
575 if (e
->flags
& EDGE_FALLTHRU
)
576 probability
= REG_BR_PROB_BASE
- probability
;
578 predict_insn (last_insn
, predictor
, probability
);
581 /* Predict edge E with the given PROBABILITY. */
583 gimple_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
585 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
586 && EDGE_COUNT (e
->src
->succs
) > 1
587 && flag_guess_branch_prob
590 struct edge_prediction
*i
= XNEW (struct edge_prediction
);
591 edge_prediction
*&preds
= bb_predictions
->get_or_insert (e
->src
);
595 i
->ep_probability
= probability
;
596 i
->ep_predictor
= predictor
;
601 /* Filter edge predictions PREDS by a function FILTER. DATA are passed
602 to the filter function. */
605 filter_predictions (edge_prediction
**preds
,
606 bool (*filter
) (edge_prediction
*, void *), void *data
)
613 struct edge_prediction
**prediction
= preds
;
614 struct edge_prediction
*next
;
618 if ((*filter
) (*prediction
, data
))
619 prediction
= &((*prediction
)->ep_next
);
622 next
= (*prediction
)->ep_next
;
630 /* Filter function predicate that returns true for a edge predicate P
631 if its edge is equal to DATA. */
634 equal_edge_p (edge_prediction
*p
, void *data
)
636 return p
->ep_edge
== (edge
)data
;
639 /* Remove all predictions on given basic block that are attached
642 remove_predictions_associated_with_edge (edge e
)
647 edge_prediction
**preds
= bb_predictions
->get (e
->src
);
648 filter_predictions (preds
, equal_edge_p
, e
);
651 /* Clears the list of predictions stored for BB. */
654 clear_bb_predictions (basic_block bb
)
656 edge_prediction
**preds
= bb_predictions
->get (bb
);
657 struct edge_prediction
*pred
, *next
;
662 for (pred
= *preds
; pred
; pred
= next
)
664 next
= pred
->ep_next
;
670 /* Return true when we can store prediction on insn INSN.
671 At the moment we represent predictions only on conditional
672 jumps, not at computed jump or other complicated cases. */
674 can_predict_insn_p (const rtx_insn
*insn
)
676 return (JUMP_P (insn
)
677 && any_condjump_p (insn
)
678 && EDGE_COUNT (BLOCK_FOR_INSN (insn
)->succs
) >= 2);
681 /* Predict edge E by given predictor if possible. */
684 predict_edge_def (edge e
, enum br_predictor predictor
,
685 enum prediction taken
)
687 int probability
= predictor_info
[(int) predictor
].hitrate
;
690 probability
= REG_BR_PROB_BASE
- probability
;
692 predict_edge (e
, predictor
, probability
);
695 /* Invert all branch predictions or probability notes in the INSN. This needs
696 to be done each time we invert the condition used by the jump. */
699 invert_br_probabilities (rtx insn
)
703 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
704 if (REG_NOTE_KIND (note
) == REG_BR_PROB
)
705 XINT (note
, 0) = profile_probability::from_reg_br_prob_note
706 (XINT (note
, 0)).invert ().to_reg_br_prob_note ();
707 else if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
708 XEXP (XEXP (note
, 0), 1)
709 = GEN_INT (REG_BR_PROB_BASE
- INTVAL (XEXP (XEXP (note
, 0), 1)));
712 /* Dump information about the branch prediction to the output file. */
715 dump_prediction (FILE *file
, enum br_predictor predictor
, int probability
,
716 basic_block bb
, enum predictor_reason reason
= REASON_NONE
,
726 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
727 if (! (e
->flags
& EDGE_FALLTHRU
))
730 char edge_info_str
[128];
732 sprintf (edge_info_str
, " of edge %d->%d", ep_edge
->src
->index
,
733 ep_edge
->dest
->index
);
735 edge_info_str
[0] = '\0';
737 fprintf (file
, " %s heuristics%s%s: %.1f%%",
738 predictor_info
[predictor
].name
,
739 edge_info_str
, reason_messages
[reason
],
740 probability
* 100.0 / REG_BR_PROB_BASE
);
742 if (bb
->count
.initialized_p ())
744 fprintf (file
, " exec ");
745 bb
->count
.dump (file
);
748 fprintf (file
, " hit ");
749 e
->count
.dump (file
);
750 fprintf (file
, " (%.1f%%)", e
->count
.to_gcov_type() * 100.0
751 / bb
->count
.to_gcov_type ());
755 fprintf (file
, "\n");
758 /* Return true if STMT is known to be unlikely executed. */
761 unlikely_executed_stmt_p (gimple
*stmt
)
763 if (!is_gimple_call (stmt
))
765 /* NORETURN attribute alone is not strong enough: exit() may be quite
766 likely executed once during program run. */
767 if (gimple_call_fntype (stmt
)
768 && lookup_attribute ("cold",
769 TYPE_ATTRIBUTES (gimple_call_fntype (stmt
)))
770 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl
)))
772 tree decl
= gimple_call_fndecl (stmt
);
775 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl
))
776 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl
)))
779 cgraph_node
*n
= cgraph_node::get (decl
);
784 n
= n
->ultimate_alias_target (&avail
);
785 if (avail
< AVAIL_AVAILABLE
)
788 || n
->decl
== current_function_decl
)
790 return n
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
;
793 /* Return true if BB is unlikely executed. */
796 unlikely_executed_bb_p (basic_block bb
)
798 if (bb
->count
== profile_count::zero ())
800 if (bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) || bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
802 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
803 !gsi_end_p (gsi
); gsi_next (&gsi
))
805 if (unlikely_executed_stmt_p (gsi_stmt (gsi
)))
807 if (stmt_can_terminate_bb_p (gsi_stmt (gsi
)))
813 /* We can not predict the probabilities of outgoing edges of bb. Set them
814 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
815 even probability for all edges not mentioned in the set. These edges
816 are given PROB_VERY_UNLIKELY probability. */
819 set_even_probabilities (basic_block bb
,
820 hash_set
<edge
> *unlikely_edges
= NULL
)
822 unsigned nedges
= 0, unlikely_count
= 0;
825 profile_probability all
= profile_probability::always ();
827 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
828 if (e
->probability
.initialized_p ())
829 all
-= e
->probability
;
830 else if (!unlikely_executed_edge_p (e
))
833 if (unlikely_edges
!= NULL
&& unlikely_edges
->contains (e
))
835 all
-= profile_probability::very_unlikely ();
840 /* Make the distribution even if all edges are unlikely. */
841 if (unlikely_count
== nedges
)
843 unlikely_edges
= NULL
;
847 unsigned c
= nedges
- unlikely_count
;
849 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
850 if (e
->probability
.initialized_p ())
852 else if (!unlikely_executed_edge_p (e
))
854 if (unlikely_edges
!= NULL
&& unlikely_edges
->contains (e
))
855 e
->probability
= profile_probability::very_unlikely ();
857 e
->probability
= all
.apply_scale (1, c
).guessed ();
860 e
->probability
= profile_probability::never ();
863 /* Add REG_BR_PROB note to JUMP with PROB. */
866 add_reg_br_prob_note (rtx_insn
*jump
, profile_probability prob
)
868 gcc_checking_assert (JUMP_P (jump
) && !find_reg_note (jump
, REG_BR_PROB
, 0));
869 add_int_reg_note (jump
, REG_BR_PROB
, prob
.to_reg_br_prob_note ());
872 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
873 note if not already present. Remove now useless REG_BR_PRED notes. */
876 combine_predictions_for_insn (rtx_insn
*insn
, basic_block bb
)
881 int best_probability
= PROB_EVEN
;
882 enum br_predictor best_predictor
= END_PREDICTORS
;
883 int combined_probability
= REG_BR_PROB_BASE
/ 2;
885 bool first_match
= false;
888 if (!can_predict_insn_p (insn
))
890 set_even_probabilities (bb
);
894 prob_note
= find_reg_note (insn
, REG_BR_PROB
, 0);
895 pnote
= ®_NOTES (insn
);
897 fprintf (dump_file
, "Predictions for insn %i bb %i\n", INSN_UID (insn
),
900 /* We implement "first match" heuristics and use probability guessed
901 by predictor with smallest index. */
902 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
903 if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
905 enum br_predictor predictor
= ((enum br_predictor
)
906 INTVAL (XEXP (XEXP (note
, 0), 0)));
907 int probability
= INTVAL (XEXP (XEXP (note
, 0), 1));
910 if (best_predictor
> predictor
911 && predictor_info
[predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
912 best_probability
= probability
, best_predictor
= predictor
;
914 d
= (combined_probability
* probability
915 + (REG_BR_PROB_BASE
- combined_probability
)
916 * (REG_BR_PROB_BASE
- probability
));
918 /* Use FP math to avoid overflows of 32bit integers. */
920 /* If one probability is 0% and one 100%, avoid division by zero. */
921 combined_probability
= REG_BR_PROB_BASE
/ 2;
923 combined_probability
= (((double) combined_probability
) * probability
924 * REG_BR_PROB_BASE
/ d
+ 0.5);
927 /* Decide which heuristic to use. In case we didn't match anything,
928 use no_prediction heuristic, in case we did match, use either
929 first match or Dempster-Shaffer theory depending on the flags. */
931 if (best_predictor
!= END_PREDICTORS
)
935 dump_prediction (dump_file
, PRED_NO_PREDICTION
,
936 combined_probability
, bb
);
940 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
,
941 bb
, !first_match
? REASON_NONE
: REASON_IGNORED
);
943 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
,
944 bb
, first_match
? REASON_NONE
: REASON_IGNORED
);
948 combined_probability
= best_probability
;
949 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
);
953 if (REG_NOTE_KIND (*pnote
) == REG_BR_PRED
)
955 enum br_predictor predictor
= ((enum br_predictor
)
956 INTVAL (XEXP (XEXP (*pnote
, 0), 0)));
957 int probability
= INTVAL (XEXP (XEXP (*pnote
, 0), 1));
959 dump_prediction (dump_file
, predictor
, probability
, bb
,
960 (!first_match
|| best_predictor
== predictor
)
961 ? REASON_NONE
: REASON_IGNORED
);
962 *pnote
= XEXP (*pnote
, 1);
965 pnote
= &XEXP (*pnote
, 1);
970 profile_probability p
971 = profile_probability::from_reg_br_prob_base (combined_probability
);
972 add_reg_br_prob_note (insn
, p
);
974 /* Save the prediction into CFG in case we are seeing non-degenerated
976 if (!single_succ_p (bb
))
978 BRANCH_EDGE (bb
)->probability
= p
;
979 FALLTHRU_EDGE (bb
)->probability
980 = BRANCH_EDGE (bb
)->probability
.invert ();
983 else if (!single_succ_p (bb
))
985 profile_probability prob
= profile_probability::from_reg_br_prob_note
986 (XINT (prob_note
, 0));
988 BRANCH_EDGE (bb
)->probability
= prob
;
989 FALLTHRU_EDGE (bb
)->probability
= prob
.invert ();
992 single_succ_edge (bb
)->probability
= profile_probability::always ();
995 /* Edge prediction hash traits. */
997 struct predictor_hash
: pointer_hash
<edge_prediction
>
1000 static inline hashval_t
hash (const edge_prediction
*);
1001 static inline bool equal (const edge_prediction
*, const edge_prediction
*);
1004 /* Calculate hash value of an edge prediction P based on predictor and
1005 normalized probability. */
1008 predictor_hash::hash (const edge_prediction
*p
)
1010 inchash::hash hstate
;
1011 hstate
.add_int (p
->ep_predictor
);
1013 int prob
= p
->ep_probability
;
1014 if (prob
> REG_BR_PROB_BASE
/ 2)
1015 prob
= REG_BR_PROB_BASE
- prob
;
1017 hstate
.add_int (prob
);
1019 return hstate
.end ();
1022 /* Return true whether edge predictions P1 and P2 use the same predictor and
1023 have equal (or opposed probability). */
1026 predictor_hash::equal (const edge_prediction
*p1
, const edge_prediction
*p2
)
1028 return (p1
->ep_predictor
== p2
->ep_predictor
1029 && (p1
->ep_probability
== p2
->ep_probability
1030 || p1
->ep_probability
== REG_BR_PROB_BASE
- p2
->ep_probability
));
1033 struct predictor_hash_traits
: predictor_hash
,
1034 typed_noop_remove
<edge_prediction
*> {};
1036 /* Return true if edge prediction P is not in DATA hash set. */
1039 not_removed_prediction_p (edge_prediction
*p
, void *data
)
1041 hash_set
<edge_prediction
*> *remove
= (hash_set
<edge_prediction
*> *) data
;
1042 return !remove
->contains (p
);
1045 /* Prune predictions for a basic block BB. Currently we do following
1048 1) remove duplicate prediction that is guessed with the same probability
1049 (different than 1/2) to both edge
1050 2) remove duplicates for a prediction that belongs with the same probability
1056 prune_predictions_for_bb (basic_block bb
)
1058 edge_prediction
**preds
= bb_predictions
->get (bb
);
1062 hash_table
<predictor_hash_traits
> s (13);
1063 hash_set
<edge_prediction
*> remove
;
1065 /* Step 1: identify predictors that should be removed. */
1066 for (edge_prediction
*pred
= *preds
; pred
; pred
= pred
->ep_next
)
1068 edge_prediction
*existing
= s
.find (pred
);
1071 if (pred
->ep_edge
== existing
->ep_edge
1072 && pred
->ep_probability
== existing
->ep_probability
)
1074 /* Remove a duplicate predictor. */
1075 dump_prediction (dump_file
, pred
->ep_predictor
,
1076 pred
->ep_probability
, bb
,
1077 REASON_SINGLE_EDGE_DUPLICATE
, pred
->ep_edge
);
1081 else if (pred
->ep_edge
!= existing
->ep_edge
1082 && pred
->ep_probability
== existing
->ep_probability
1083 && pred
->ep_probability
!= REG_BR_PROB_BASE
/ 2)
1085 /* Remove both predictors as they predict the same
1087 dump_prediction (dump_file
, existing
->ep_predictor
,
1088 pred
->ep_probability
, bb
,
1089 REASON_EDGE_PAIR_DUPLICATE
,
1091 dump_prediction (dump_file
, pred
->ep_predictor
,
1092 pred
->ep_probability
, bb
,
1093 REASON_EDGE_PAIR_DUPLICATE
,
1096 remove
.add (existing
);
1101 edge_prediction
**slot2
= s
.find_slot (pred
, INSERT
);
1105 /* Step 2: Remove predictors. */
1106 filter_predictions (preds
, not_removed_prediction_p
, &remove
);
1110 /* Combine predictions into single probability and store them into CFG.
1111 Remove now useless prediction entries.
1112 If DRY_RUN is set, only produce dumps and do not modify profile. */
1115 combine_predictions_for_bb (basic_block bb
, bool dry_run
)
1117 int best_probability
= PROB_EVEN
;
1118 enum br_predictor best_predictor
= END_PREDICTORS
;
1119 int combined_probability
= REG_BR_PROB_BASE
/ 2;
1121 bool first_match
= false;
1123 struct edge_prediction
*pred
;
1125 edge e
, first
= NULL
, second
= NULL
;
1128 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1129 if (!unlikely_executed_edge_p (e
))
1132 if (first
&& !second
)
1137 else if (!e
->probability
.initialized_p ())
1138 e
->probability
= profile_probability::never ();
1140 /* When there is no successor or only one choice, prediction is easy.
1142 When we have a basic block with more than 2 successors, the situation
1143 is more complicated as DS theory cannot be used literally.
1144 More precisely, let's assume we predicted edge e1 with probability p1,
1145 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1146 need to find probability of e.g. m1({b2}), which we don't know.
1147 The only approximation is to equally distribute 1-p1 to all edges
1150 According to numbers we've got from SPEC2006 benchark, there's only
1151 one interesting reliable predictor (noreturn call), which can be
1152 handled with a bit easier approach. */
1155 hash_set
<edge
> unlikely_edges (4);
1157 /* Identify all edges that have a probability close to very unlikely.
1158 Doing the approach for very unlikely doesn't worth for doing as
1159 there's no such probability in SPEC2006 benchmark. */
1160 edge_prediction
**preds
= bb_predictions
->get (bb
);
1162 for (pred
= *preds
; pred
; pred
= pred
->ep_next
)
1163 if (pred
->ep_probability
<= PROB_VERY_UNLIKELY
)
1164 unlikely_edges
.add (pred
->ep_edge
);
1167 set_even_probabilities (bb
, &unlikely_edges
);
1168 clear_bb_predictions (bb
);
1171 fprintf (dump_file
, "Predictions for bb %i\n", bb
->index
);
1172 if (unlikely_edges
.elements () == 0)
1174 "%i edges in bb %i predicted to even probabilities\n",
1179 "%i edges in bb %i predicted with some unlikely edges\n",
1181 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1182 if (!unlikely_executed_edge_p (e
))
1183 dump_prediction (dump_file
, PRED_COMBINED
,
1184 e
->probability
.to_reg_br_prob_base (), bb
, REASON_NONE
, e
);
1191 fprintf (dump_file
, "Predictions for bb %i\n", bb
->index
);
1193 prune_predictions_for_bb (bb
);
1195 edge_prediction
**preds
= bb_predictions
->get (bb
);
1199 /* We implement "first match" heuristics and use probability guessed
1200 by predictor with smallest index. */
1201 for (pred
= *preds
; pred
; pred
= pred
->ep_next
)
1203 enum br_predictor predictor
= pred
->ep_predictor
;
1204 int probability
= pred
->ep_probability
;
1206 if (pred
->ep_edge
!= first
)
1207 probability
= REG_BR_PROB_BASE
- probability
;
1210 /* First match heuristics would be widly confused if we predicted
1212 if (best_predictor
> predictor
1213 && predictor_info
[predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
1215 struct edge_prediction
*pred2
;
1216 int prob
= probability
;
1218 for (pred2
= (struct edge_prediction
*) *preds
;
1219 pred2
; pred2
= pred2
->ep_next
)
1220 if (pred2
!= pred
&& pred2
->ep_predictor
== pred
->ep_predictor
)
1222 int probability2
= pred2
->ep_probability
;
1224 if (pred2
->ep_edge
!= first
)
1225 probability2
= REG_BR_PROB_BASE
- probability2
;
1227 if ((probability
< REG_BR_PROB_BASE
/ 2) !=
1228 (probability2
< REG_BR_PROB_BASE
/ 2))
1231 /* If the same predictor later gave better result, go for it! */
1232 if ((probability
>= REG_BR_PROB_BASE
/ 2 && (probability2
> probability
))
1233 || (probability
<= REG_BR_PROB_BASE
/ 2 && (probability2
< probability
)))
1234 prob
= probability2
;
1237 best_probability
= prob
, best_predictor
= predictor
;
1240 d
= (combined_probability
* probability
1241 + (REG_BR_PROB_BASE
- combined_probability
)
1242 * (REG_BR_PROB_BASE
- probability
));
1244 /* Use FP math to avoid overflows of 32bit integers. */
1246 /* If one probability is 0% and one 100%, avoid division by zero. */
1247 combined_probability
= REG_BR_PROB_BASE
/ 2;
1249 combined_probability
= (((double) combined_probability
)
1251 * REG_BR_PROB_BASE
/ d
+ 0.5);
1255 /* Decide which heuristic to use. In case we didn't match anything,
1256 use no_prediction heuristic, in case we did match, use either
1257 first match or Dempster-Shaffer theory depending on the flags. */
1259 if (best_predictor
!= END_PREDICTORS
)
1263 dump_prediction (dump_file
, PRED_NO_PREDICTION
, combined_probability
, bb
);
1267 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
, bb
,
1268 !first_match
? REASON_NONE
: REASON_IGNORED
);
1270 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
, bb
,
1271 first_match
? REASON_NONE
: REASON_IGNORED
);
1275 combined_probability
= best_probability
;
1276 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
);
1280 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
1282 enum br_predictor predictor
= pred
->ep_predictor
;
1283 int probability
= pred
->ep_probability
;
1285 dump_prediction (dump_file
, predictor
, probability
, bb
,
1286 (!first_match
|| best_predictor
== predictor
)
1287 ? REASON_NONE
: REASON_IGNORED
, pred
->ep_edge
);
1290 clear_bb_predictions (bb
);
1292 if (!bb
->count
.initialized_p () && !dry_run
)
1295 = profile_probability::from_reg_br_prob_base (combined_probability
);
1296 second
->probability
= first
->probability
.invert ();
1300 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1301 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1303 T1 and T2 should be one of the following cases:
1304 1. T1 is SSA_NAME, T2 is NULL
1305 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1306 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1309 strips_small_constant (tree t1
, tree t2
)
1316 else if (TREE_CODE (t1
) == SSA_NAME
)
1318 else if (tree_fits_shwi_p (t1
))
1319 value
= tree_to_shwi (t1
);
1325 else if (tree_fits_shwi_p (t2
))
1326 value
= tree_to_shwi (t2
);
1327 else if (TREE_CODE (t2
) == SSA_NAME
)
1335 if (value
<= 4 && value
>= -4)
1341 /* Return the SSA_NAME in T or T's operands.
1342 Return NULL if SSA_NAME cannot be found. */
1345 get_base_value (tree t
)
1347 if (TREE_CODE (t
) == SSA_NAME
)
1350 if (!BINARY_CLASS_P (t
))
1353 switch (TREE_OPERAND_LENGTH (t
))
1356 return strips_small_constant (TREE_OPERAND (t
, 0), NULL
);
1358 return strips_small_constant (TREE_OPERAND (t
, 0),
1359 TREE_OPERAND (t
, 1));
1365 /* Check the compare STMT in LOOP. If it compares an induction
1366 variable to a loop invariant, return true, and save
1367 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1368 Otherwise return false and set LOOP_INVAIANT to NULL. */
1371 is_comparison_with_loop_invariant_p (gcond
*stmt
, struct loop
*loop
,
1372 tree
*loop_invariant
,
1373 enum tree_code
*compare_code
,
1377 tree op0
, op1
, bound
, base
;
1379 enum tree_code code
;
1382 code
= gimple_cond_code (stmt
);
1383 *loop_invariant
= NULL
;
1399 op0
= gimple_cond_lhs (stmt
);
1400 op1
= gimple_cond_rhs (stmt
);
1402 if ((TREE_CODE (op0
) != SSA_NAME
&& TREE_CODE (op0
) != INTEGER_CST
)
1403 || (TREE_CODE (op1
) != SSA_NAME
&& TREE_CODE (op1
) != INTEGER_CST
))
1405 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op0
, &iv0
, true))
1407 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op1
, &iv1
, true))
1409 if (TREE_CODE (iv0
.step
) != INTEGER_CST
1410 || TREE_CODE (iv1
.step
) != INTEGER_CST
)
1412 if ((integer_zerop (iv0
.step
) && integer_zerop (iv1
.step
))
1413 || (!integer_zerop (iv0
.step
) && !integer_zerop (iv1
.step
)))
1416 if (integer_zerop (iv0
.step
))
1418 if (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
1419 code
= invert_tree_comparison (code
, false);
1422 if (tree_fits_shwi_p (iv1
.step
))
1431 if (tree_fits_shwi_p (iv0
.step
))
1437 if (TREE_CODE (bound
) != INTEGER_CST
)
1438 bound
= get_base_value (bound
);
1441 if (TREE_CODE (base
) != INTEGER_CST
)
1442 base
= get_base_value (base
);
1446 *loop_invariant
= bound
;
1447 *compare_code
= code
;
1449 *loop_iv_base
= base
;
1453 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1456 expr_coherent_p (tree t1
, tree t2
)
1459 tree ssa_name_1
= NULL
;
1460 tree ssa_name_2
= NULL
;
1462 gcc_assert (TREE_CODE (t1
) == SSA_NAME
|| TREE_CODE (t1
) == INTEGER_CST
);
1463 gcc_assert (TREE_CODE (t2
) == SSA_NAME
|| TREE_CODE (t2
) == INTEGER_CST
);
1468 if (TREE_CODE (t1
) == INTEGER_CST
&& TREE_CODE (t2
) == INTEGER_CST
)
1470 if (TREE_CODE (t1
) == INTEGER_CST
|| TREE_CODE (t2
) == INTEGER_CST
)
1473 /* Check to see if t1 is expressed/defined with t2. */
1474 stmt
= SSA_NAME_DEF_STMT (t1
);
1475 gcc_assert (stmt
!= NULL
);
1476 if (is_gimple_assign (stmt
))
1478 ssa_name_1
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1479 if (ssa_name_1
&& ssa_name_1
== t2
)
1483 /* Check to see if t2 is expressed/defined with t1. */
1484 stmt
= SSA_NAME_DEF_STMT (t2
);
1485 gcc_assert (stmt
!= NULL
);
1486 if (is_gimple_assign (stmt
))
1488 ssa_name_2
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1489 if (ssa_name_2
&& ssa_name_2
== t1
)
1493 /* Compare if t1 and t2's def_stmts are identical. */
1494 if (ssa_name_2
!= NULL
&& ssa_name_1
== ssa_name_2
)
1500 /* Return true if E is predicted by one of loop heuristics. */
1503 predicted_by_loop_heuristics_p (basic_block bb
)
1505 struct edge_prediction
*i
;
1506 edge_prediction
**preds
= bb_predictions
->get (bb
);
1511 for (i
= *preds
; i
; i
= i
->ep_next
)
1512 if (i
->ep_predictor
== PRED_LOOP_ITERATIONS_GUESSED
1513 || i
->ep_predictor
== PRED_LOOP_ITERATIONS_MAX
1514 || i
->ep_predictor
== PRED_LOOP_ITERATIONS
1515 || i
->ep_predictor
== PRED_LOOP_EXIT
1516 || i
->ep_predictor
== PRED_LOOP_EXIT_WITH_RECURSION
1517 || i
->ep_predictor
== PRED_LOOP_EXTRA_EXIT
)
1522 /* Predict branch probability of BB when BB contains a branch that compares
1523 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1524 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1527 for (int i = 0; i < bound; i++) {
1534 In this loop, we will predict the branch inside the loop to be taken. */
1537 predict_iv_comparison (struct loop
*loop
, basic_block bb
,
1538 tree loop_bound_var
,
1539 tree loop_iv_base_var
,
1540 enum tree_code loop_bound_code
,
1541 int loop_bound_step
)
1544 tree compare_var
, compare_base
;
1545 enum tree_code compare_code
;
1546 tree compare_step_var
;
1550 if (predicted_by_loop_heuristics_p (bb
))
1553 stmt
= last_stmt (bb
);
1554 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1556 if (!is_comparison_with_loop_invariant_p (as_a
<gcond
*> (stmt
),
1563 /* Find the taken edge. */
1564 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1565 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1568 /* When comparing an IV to a loop invariant, NE is more likely to be
1569 taken while EQ is more likely to be not-taken. */
1570 if (compare_code
== NE_EXPR
)
1572 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1575 else if (compare_code
== EQ_EXPR
)
1577 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1581 if (!expr_coherent_p (loop_iv_base_var
, compare_base
))
1584 /* If loop bound, base and compare bound are all constants, we can
1585 calculate the probability directly. */
1586 if (tree_fits_shwi_p (loop_bound_var
)
1587 && tree_fits_shwi_p (compare_var
)
1588 && tree_fits_shwi_p (compare_base
))
1591 bool overflow
, overall_overflow
= false;
1592 widest_int compare_count
, tem
;
1594 /* (loop_bound - base) / compare_step */
1595 tem
= wi::sub (wi::to_widest (loop_bound_var
),
1596 wi::to_widest (compare_base
), SIGNED
, &overflow
);
1597 overall_overflow
|= overflow
;
1598 widest_int loop_count
= wi::div_trunc (tem
,
1599 wi::to_widest (compare_step_var
),
1601 overall_overflow
|= overflow
;
1603 if (!wi::neg_p (wi::to_widest (compare_step_var
))
1604 ^ (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1606 /* (loop_bound - compare_bound) / compare_step */
1607 tem
= wi::sub (wi::to_widest (loop_bound_var
),
1608 wi::to_widest (compare_var
), SIGNED
, &overflow
);
1609 overall_overflow
|= overflow
;
1610 compare_count
= wi::div_trunc (tem
, wi::to_widest (compare_step_var
),
1612 overall_overflow
|= overflow
;
1616 /* (compare_bound - base) / compare_step */
1617 tem
= wi::sub (wi::to_widest (compare_var
),
1618 wi::to_widest (compare_base
), SIGNED
, &overflow
);
1619 overall_overflow
|= overflow
;
1620 compare_count
= wi::div_trunc (tem
, wi::to_widest (compare_step_var
),
1622 overall_overflow
|= overflow
;
1624 if (compare_code
== LE_EXPR
|| compare_code
== GE_EXPR
)
1626 if (loop_bound_code
== LE_EXPR
|| loop_bound_code
== GE_EXPR
)
1628 if (wi::neg_p (compare_count
))
1630 if (wi::neg_p (loop_count
))
1632 if (loop_count
== 0)
1634 else if (wi::cmps (compare_count
, loop_count
) == 1)
1635 probability
= REG_BR_PROB_BASE
;
1638 tem
= compare_count
* REG_BR_PROB_BASE
;
1639 tem
= wi::udiv_trunc (tem
, loop_count
);
1640 probability
= tem
.to_uhwi ();
1643 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1644 if (!overall_overflow
)
1645 predict_edge (then_edge
, PRED_LOOP_IV_COMPARE
, probability
);
1650 if (expr_coherent_p (loop_bound_var
, compare_var
))
1652 if ((loop_bound_code
== LT_EXPR
|| loop_bound_code
== LE_EXPR
)
1653 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1654 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1655 else if ((loop_bound_code
== GT_EXPR
|| loop_bound_code
== GE_EXPR
)
1656 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1657 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1658 else if (loop_bound_code
== NE_EXPR
)
1660 /* If the loop backedge condition is "(i != bound)", we do
1661 the comparison based on the step of IV:
1662 * step < 0 : backedge condition is like (i > bound)
1663 * step > 0 : backedge condition is like (i < bound) */
1664 gcc_assert (loop_bound_step
!= 0);
1665 if (loop_bound_step
> 0
1666 && (compare_code
== LT_EXPR
1667 || compare_code
== LE_EXPR
))
1668 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1669 else if (loop_bound_step
< 0
1670 && (compare_code
== GT_EXPR
1671 || compare_code
== GE_EXPR
))
1672 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1674 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1677 /* The branch is predicted not-taken if loop_bound_code is
1678 opposite with compare_code. */
1679 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1681 else if (expr_coherent_p (loop_iv_base_var
, compare_var
))
1684 for (i = s; i < h; i++)
1686 The branch should be predicted taken. */
1687 if (loop_bound_step
> 0
1688 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1689 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1690 else if (loop_bound_step
< 0
1691 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1692 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1694 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1698 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1699 exits are resulted from short-circuit conditions that will generate an
1702 if (foo() || global > 10)
1705 This will be translated into:
1710 if foo() goto BB6 else goto BB5
1712 if global > 10 goto BB6 else goto BB7
1716 iftmp = (PHI 0(BB5), 1(BB6))
1717 if iftmp == 1 goto BB8 else goto BB3
1719 outside of the loop...
1721 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1722 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1723 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1724 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1727 predict_extra_loop_exits (edge exit_edge
)
1730 bool check_value_one
;
1731 gimple
*lhs_def_stmt
;
1733 tree cmp_rhs
, cmp_lhs
;
1737 last
= last_stmt (exit_edge
->src
);
1740 cmp_stmt
= dyn_cast
<gcond
*> (last
);
1744 cmp_rhs
= gimple_cond_rhs (cmp_stmt
);
1745 cmp_lhs
= gimple_cond_lhs (cmp_stmt
);
1746 if (!TREE_CONSTANT (cmp_rhs
)
1747 || !(integer_zerop (cmp_rhs
) || integer_onep (cmp_rhs
)))
1749 if (TREE_CODE (cmp_lhs
) != SSA_NAME
)
1752 /* If check_value_one is true, only the phi_args with value '1' will lead
1753 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1755 check_value_one
= (((integer_onep (cmp_rhs
))
1756 ^ (gimple_cond_code (cmp_stmt
) == EQ_EXPR
))
1757 ^ ((exit_edge
->flags
& EDGE_TRUE_VALUE
) != 0));
1759 lhs_def_stmt
= SSA_NAME_DEF_STMT (cmp_lhs
);
1763 phi_stmt
= dyn_cast
<gphi
*> (lhs_def_stmt
);
1767 for (i
= 0; i
< gimple_phi_num_args (phi_stmt
); i
++)
1771 tree val
= gimple_phi_arg_def (phi_stmt
, i
);
1772 edge e
= gimple_phi_arg_edge (phi_stmt
, i
);
1774 if (!TREE_CONSTANT (val
) || !(integer_zerop (val
) || integer_onep (val
)))
1776 if ((check_value_one
^ integer_onep (val
)) == 1)
1778 if (EDGE_COUNT (e
->src
->succs
) != 1)
1780 predict_paths_leading_to_edge (e
, PRED_LOOP_EXTRA_EXIT
, NOT_TAKEN
);
1784 FOR_EACH_EDGE (e1
, ei
, e
->src
->preds
)
1785 predict_paths_leading_to_edge (e1
, PRED_LOOP_EXTRA_EXIT
, NOT_TAKEN
);
1790 /* Predict edge probabilities by exploiting loop structure. */
1793 predict_loops (void)
1797 hash_set
<struct loop
*> with_recursion(10);
1799 FOR_EACH_BB_FN (bb
, cfun
)
1801 gimple_stmt_iterator gsi
;
1804 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1805 if (is_gimple_call (gsi_stmt (gsi
))
1806 && (decl
= gimple_call_fndecl (gsi_stmt (gsi
))) != NULL
1807 && recursive_call_p (current_function_decl
, decl
))
1809 loop
= bb
->loop_father
;
1810 while (loop
&& !with_recursion
.add (loop
))
1811 loop
= loop_outer (loop
);
1815 /* Try to predict out blocks in a loop that are not part of a
1817 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
1819 basic_block bb
, *bbs
;
1820 unsigned j
, n_exits
= 0;
1822 struct tree_niter_desc niter_desc
;
1824 struct nb_iter_bound
*nb_iter
;
1825 enum tree_code loop_bound_code
= ERROR_MARK
;
1826 tree loop_bound_step
= NULL
;
1827 tree loop_bound_var
= NULL
;
1828 tree loop_iv_base
= NULL
;
1830 bool recursion
= with_recursion
.contains (loop
);
1832 exits
= get_loop_exit_edges (loop
);
1833 FOR_EACH_VEC_ELT (exits
, j
, ex
)
1834 if (!unlikely_executed_edge_p (ex
) && !(ex
->flags
& EDGE_ABNORMAL_CALL
))
1842 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1843 fprintf (dump_file
, "Predicting loop %i%s with %i exits.\n",
1844 loop
->num
, recursion
? " (with recursion)":"", n_exits
);
1845 if (dump_file
&& (dump_flags
& TDF_DETAILS
)
1846 && max_loop_iterations_int (loop
) >= 0)
1849 "Loop %d iterates at most %i times.\n", loop
->num
,
1850 (int)max_loop_iterations_int (loop
));
1852 if (dump_file
&& (dump_flags
& TDF_DETAILS
)
1853 && likely_max_loop_iterations_int (loop
) >= 0)
1855 fprintf (dump_file
, "Loop %d likely iterates at most %i times.\n",
1856 loop
->num
, (int)likely_max_loop_iterations_int (loop
));
1859 FOR_EACH_VEC_ELT (exits
, j
, ex
)
1862 HOST_WIDE_INT nitercst
;
1863 int max
= PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS
);
1865 enum br_predictor predictor
;
1868 if (unlikely_executed_edge_p (ex
)
1869 || (ex
->flags
& EDGE_ABNORMAL_CALL
))
1871 /* Loop heuristics do not expect exit conditional to be inside
1872 inner loop. We predict from innermost to outermost loop. */
1873 if (predicted_by_loop_heuristics_p (ex
->src
))
1875 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1876 fprintf (dump_file
, "Skipping exit %i->%i because "
1877 "it is already predicted.\n",
1878 ex
->src
->index
, ex
->dest
->index
);
1881 predict_extra_loop_exits (ex
);
1883 if (number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
1884 niter
= niter_desc
.niter
;
1885 if (!niter
|| TREE_CODE (niter_desc
.niter
) != INTEGER_CST
)
1886 niter
= loop_niter_by_eval (loop
, ex
);
1887 if (dump_file
&& (dump_flags
& TDF_DETAILS
)
1888 && TREE_CODE (niter
) == INTEGER_CST
)
1890 fprintf (dump_file
, "Exit %i->%i %d iterates ",
1891 ex
->src
->index
, ex
->dest
->index
,
1893 print_generic_expr (dump_file
, niter
, TDF_SLIM
);
1894 fprintf (dump_file
, " times.\n");
1897 if (TREE_CODE (niter
) == INTEGER_CST
)
1899 if (tree_fits_uhwi_p (niter
)
1901 && compare_tree_int (niter
, max
- 1) == -1)
1902 nitercst
= tree_to_uhwi (niter
) + 1;
1905 predictor
= PRED_LOOP_ITERATIONS
;
1907 /* If we have just one exit and we can derive some information about
1908 the number of iterations of the loop from the statements inside
1909 the loop, use it to predict this exit. */
1910 else if (n_exits
== 1
1911 && estimated_stmt_executions (loop
, &nit
))
1913 if (wi::gtu_p (nit
, max
))
1916 nitercst
= nit
.to_shwi ();
1917 predictor
= PRED_LOOP_ITERATIONS_GUESSED
;
1919 /* If we have likely upper bound, trust it for very small iteration
1920 counts. Such loops would otherwise get mispredicted by standard
1921 LOOP_EXIT heuristics. */
1922 else if (n_exits
== 1
1923 && likely_max_stmt_executions (loop
, &nit
)
1925 RDIV (REG_BR_PROB_BASE
,
1929 ? PRED_LOOP_EXIT_WITH_RECURSION
1930 : PRED_LOOP_EXIT
].hitrate
)))
1932 nitercst
= nit
.to_shwi ();
1933 predictor
= PRED_LOOP_ITERATIONS_MAX
;
1937 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1938 fprintf (dump_file
, "Nothing known about exit %i->%i.\n",
1939 ex
->src
->index
, ex
->dest
->index
);
1943 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1944 fprintf (dump_file
, "Recording prediction to %i iterations by %s.\n",
1945 (int)nitercst
, predictor_info
[predictor
].name
);
1946 /* If the prediction for number of iterations is zero, do not
1947 predict the exit edges. */
1951 probability
= RDIV (REG_BR_PROB_BASE
, nitercst
);
1952 predict_edge (ex
, predictor
, probability
);
1956 /* Find information about loop bound variables. */
1957 for (nb_iter
= loop
->bounds
; nb_iter
;
1958 nb_iter
= nb_iter
->next
)
1960 && gimple_code (nb_iter
->stmt
) == GIMPLE_COND
)
1962 stmt
= as_a
<gcond
*> (nb_iter
->stmt
);
1965 if (!stmt
&& last_stmt (loop
->header
)
1966 && gimple_code (last_stmt (loop
->header
)) == GIMPLE_COND
)
1967 stmt
= as_a
<gcond
*> (last_stmt (loop
->header
));
1969 is_comparison_with_loop_invariant_p (stmt
, loop
,
1975 bbs
= get_loop_body (loop
);
1977 for (j
= 0; j
< loop
->num_nodes
; j
++)
1984 /* Bypass loop heuristics on continue statement. These
1985 statements construct loops via "non-loop" constructs
1986 in the source language and are better to be handled
1988 if (predicted_by_p (bb
, PRED_CONTINUE
))
1990 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1991 fprintf (dump_file
, "BB %i predicted by continue.\n",
1996 /* If we already used more reliable loop exit predictors, do not
1997 bother with PRED_LOOP_EXIT. */
1998 if (!predicted_by_loop_heuristics_p (bb
))
2000 /* For loop with many exits we don't want to predict all exits
2001 with the pretty large probability, because if all exits are
2002 considered in row, the loop would be predicted to iterate
2003 almost never. The code to divide probability by number of
2004 exits is very rough. It should compute the number of exits
2005 taken in each patch through function (not the overall number
2006 of exits that might be a lot higher for loops with wide switch
2007 statements in them) and compute n-th square root.
2009 We limit the minimal probability by 2% to avoid
2010 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2011 as this was causing regression in perl benchmark containing such
2014 int probability
= ((REG_BR_PROB_BASE
2017 ? PRED_LOOP_EXIT_WITH_RECURSION
2018 : PRED_LOOP_EXIT
].hitrate
)
2020 if (probability
< HITRATE (2))
2021 probability
= HITRATE (2);
2022 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2023 if (e
->dest
->index
< NUM_FIXED_BLOCKS
2024 || !flow_bb_inside_loop_p (loop
, e
->dest
))
2026 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2028 "Predicting exit %i->%i with prob %i.\n",
2029 e
->src
->index
, e
->dest
->index
, probability
);
2031 recursion
? PRED_LOOP_EXIT_WITH_RECURSION
2032 : PRED_LOOP_EXIT
, probability
);
2036 predict_iv_comparison (loop
, bb
, loop_bound_var
, loop_iv_base
,
2038 tree_to_shwi (loop_bound_step
));
2041 /* In the following code
2046 guess that cond is unlikely. */
2047 if (loop_outer (loop
)->num
)
2049 basic_block bb
= NULL
;
2050 edge preheader_edge
= loop_preheader_edge (loop
);
2052 if (single_pred_p (preheader_edge
->src
)
2053 && single_succ_p (preheader_edge
->src
))
2054 preheader_edge
= single_pred_edge (preheader_edge
->src
);
2056 gimple
*stmt
= last_stmt (preheader_edge
->src
);
2057 /* Pattern match fortran loop preheader:
2058 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2059 _17 = (logical(kind=4)) _16;
2065 Loop guard branch prediction says nothing about duplicated loop
2066 headers produced by fortran frontend and in this case we want
2067 to predict paths leading to this preheader. */
2070 && gimple_code (stmt
) == GIMPLE_COND
2071 && gimple_cond_code (stmt
) == NE_EXPR
2072 && TREE_CODE (gimple_cond_lhs (stmt
)) == SSA_NAME
2073 && integer_zerop (gimple_cond_rhs (stmt
)))
2075 gimple
*call_stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt
));
2076 if (gimple_code (call_stmt
) == GIMPLE_ASSIGN
2077 && gimple_expr_code (call_stmt
) == NOP_EXPR
2078 && TREE_CODE (gimple_assign_rhs1 (call_stmt
)) == SSA_NAME
)
2079 call_stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt
));
2080 if (gimple_call_internal_p (call_stmt
, IFN_BUILTIN_EXPECT
)
2081 && TREE_CODE (gimple_call_arg (call_stmt
, 2)) == INTEGER_CST
2082 && tree_fits_uhwi_p (gimple_call_arg (call_stmt
, 2))
2083 && tree_to_uhwi (gimple_call_arg (call_stmt
, 2))
2084 == PRED_FORTRAN_LOOP_PREHEADER
)
2085 bb
= preheader_edge
->src
;
2089 if (!dominated_by_p (CDI_DOMINATORS
,
2090 loop_outer (loop
)->latch
, loop
->header
))
2091 predict_paths_leading_to_edge (loop_preheader_edge (loop
),
2093 ? PRED_LOOP_GUARD_WITH_RECURSION
2100 if (!dominated_by_p (CDI_DOMINATORS
,
2101 loop_outer (loop
)->latch
, bb
))
2102 predict_paths_leading_to (bb
,
2104 ? PRED_LOOP_GUARD_WITH_RECURSION
2111 /* Free basic blocks from get_loop_body. */
2116 /* Attempt to predict probabilities of BB outgoing edges using local
2119 bb_estimate_probability_locally (basic_block bb
)
2121 rtx_insn
*last_insn
= BB_END (bb
);
2124 if (! can_predict_insn_p (last_insn
))
2126 cond
= get_condition (last_insn
, NULL
, false, false);
2130 /* Try "pointer heuristic."
2131 A comparison ptr == 0 is predicted as false.
2132 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2133 if (COMPARISON_P (cond
)
2134 && ((REG_P (XEXP (cond
, 0)) && REG_POINTER (XEXP (cond
, 0)))
2135 || (REG_P (XEXP (cond
, 1)) && REG_POINTER (XEXP (cond
, 1)))))
2137 if (GET_CODE (cond
) == EQ
)
2138 predict_insn_def (last_insn
, PRED_POINTER
, NOT_TAKEN
);
2139 else if (GET_CODE (cond
) == NE
)
2140 predict_insn_def (last_insn
, PRED_POINTER
, TAKEN
);
2144 /* Try "opcode heuristic."
2145 EQ tests are usually false and NE tests are usually true. Also,
2146 most quantities are positive, so we can make the appropriate guesses
2147 about signed comparisons against zero. */
2148 switch (GET_CODE (cond
))
2151 /* Unconditional branch. */
2152 predict_insn_def (last_insn
, PRED_UNCONDITIONAL
,
2153 cond
== const0_rtx
? NOT_TAKEN
: TAKEN
);
2158 /* Floating point comparisons appears to behave in a very
2159 unpredictable way because of special role of = tests in
2161 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
2163 /* Comparisons with 0 are often used for booleans and there is
2164 nothing useful to predict about them. */
2165 else if (XEXP (cond
, 1) == const0_rtx
2166 || XEXP (cond
, 0) == const0_rtx
)
2169 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, NOT_TAKEN
);
2174 /* Floating point comparisons appears to behave in a very
2175 unpredictable way because of special role of = tests in
2177 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
2179 /* Comparisons with 0 are often used for booleans and there is
2180 nothing useful to predict about them. */
2181 else if (XEXP (cond
, 1) == const0_rtx
2182 || XEXP (cond
, 0) == const0_rtx
)
2185 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, TAKEN
);
2189 predict_insn_def (last_insn
, PRED_FPOPCODE
, TAKEN
);
2193 predict_insn_def (last_insn
, PRED_FPOPCODE
, NOT_TAKEN
);
2198 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
2199 || XEXP (cond
, 1) == constm1_rtx
)
2200 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, NOT_TAKEN
);
2205 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
2206 || XEXP (cond
, 1) == constm1_rtx
)
2207 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, TAKEN
);
2215 /* Set edge->probability for each successor edge of BB. */
2217 guess_outgoing_edge_probabilities (basic_block bb
)
2219 bb_estimate_probability_locally (bb
);
2220 combine_predictions_for_insn (BB_END (bb
), bb
);
2223 static tree
expr_expected_value (tree
, bitmap
, enum br_predictor
*predictor
);
2225 /* Helper function for expr_expected_value. */
2228 expr_expected_value_1 (tree type
, tree op0
, enum tree_code code
,
2229 tree op1
, bitmap visited
, enum br_predictor
*predictor
)
2234 *predictor
= PRED_UNCONDITIONAL
;
2236 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
2238 if (TREE_CONSTANT (op0
))
2241 if (code
== IMAGPART_EXPR
)
2243 if (TREE_CODE (TREE_OPERAND (op0
, 0)) == SSA_NAME
)
2245 def
= SSA_NAME_DEF_STMT (TREE_OPERAND (op0
, 0));
2246 if (is_gimple_call (def
)
2247 && gimple_call_internal_p (def
)
2248 && (gimple_call_internal_fn (def
)
2249 == IFN_ATOMIC_COMPARE_EXCHANGE
))
2251 /* Assume that any given atomic operation has low contention,
2252 and thus the compare-and-swap operation succeeds. */
2254 *predictor
= PRED_COMPARE_AND_SWAP
;
2255 return build_one_cst (TREE_TYPE (op0
));
2260 if (code
!= SSA_NAME
)
2263 def
= SSA_NAME_DEF_STMT (op0
);
2265 /* If we were already here, break the infinite cycle. */
2266 if (!bitmap_set_bit (visited
, SSA_NAME_VERSION (op0
)))
2269 if (gimple_code (def
) == GIMPLE_PHI
)
2271 /* All the arguments of the PHI node must have the same constant
2273 int i
, n
= gimple_phi_num_args (def
);
2274 tree val
= NULL
, new_val
;
2276 for (i
= 0; i
< n
; i
++)
2278 tree arg
= PHI_ARG_DEF (def
, i
);
2279 enum br_predictor predictor2
;
2281 /* If this PHI has itself as an argument, we cannot
2282 determine the string length of this argument. However,
2283 if we can find an expected constant value for the other
2284 PHI args then we can still be sure that this is
2285 likely a constant. So be optimistic and just
2286 continue with the next argument. */
2287 if (arg
== PHI_RESULT (def
))
2290 new_val
= expr_expected_value (arg
, visited
, &predictor2
);
2292 /* It is difficult to combine value predictors. Simply assume
2293 that later predictor is weaker and take its prediction. */
2294 if (predictor
&& *predictor
< predictor2
)
2295 *predictor
= predictor2
;
2300 else if (!operand_equal_p (val
, new_val
, false))
2305 if (is_gimple_assign (def
))
2307 if (gimple_assign_lhs (def
) != op0
)
2310 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def
)),
2311 gimple_assign_rhs1 (def
),
2312 gimple_assign_rhs_code (def
),
2313 gimple_assign_rhs2 (def
),
2314 visited
, predictor
);
2317 if (is_gimple_call (def
))
2319 tree decl
= gimple_call_fndecl (def
);
2322 if (gimple_call_internal_p (def
)
2323 && gimple_call_internal_fn (def
) == IFN_BUILTIN_EXPECT
)
2325 gcc_assert (gimple_call_num_args (def
) == 3);
2326 tree val
= gimple_call_arg (def
, 0);
2327 if (TREE_CONSTANT (val
))
2331 tree val2
= gimple_call_arg (def
, 2);
2332 gcc_assert (TREE_CODE (val2
) == INTEGER_CST
2333 && tree_fits_uhwi_p (val2
)
2334 && tree_to_uhwi (val2
) < END_PREDICTORS
);
2335 *predictor
= (enum br_predictor
) tree_to_uhwi (val2
);
2337 return gimple_call_arg (def
, 1);
2341 if (DECL_BUILT_IN_CLASS (decl
) == BUILT_IN_NORMAL
)
2342 switch (DECL_FUNCTION_CODE (decl
))
2344 case BUILT_IN_EXPECT
:
2347 if (gimple_call_num_args (def
) != 2)
2349 val
= gimple_call_arg (def
, 0);
2350 if (TREE_CONSTANT (val
))
2353 *predictor
= PRED_BUILTIN_EXPECT
;
2354 return gimple_call_arg (def
, 1);
2357 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
:
2358 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1
:
2359 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2
:
2360 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4
:
2361 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8
:
2362 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16
:
2363 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE
:
2364 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N
:
2365 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1
:
2366 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2
:
2367 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4
:
2368 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8
:
2369 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16
:
2370 /* Assume that any given atomic operation has low contention,
2371 and thus the compare-and-swap operation succeeds. */
2373 *predictor
= PRED_COMPARE_AND_SWAP
;
2374 return boolean_true_node
;
2383 if (get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
)
2386 enum br_predictor predictor2
;
2387 op0
= expr_expected_value (op0
, visited
, predictor
);
2390 op1
= expr_expected_value (op1
, visited
, &predictor2
);
2391 if (predictor
&& *predictor
< predictor2
)
2392 *predictor
= predictor2
;
2395 res
= fold_build2 (code
, type
, op0
, op1
);
2396 if (TREE_CONSTANT (res
))
2400 if (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
)
2403 op0
= expr_expected_value (op0
, visited
, predictor
);
2406 res
= fold_build1 (code
, type
, op0
);
2407 if (TREE_CONSTANT (res
))
2414 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2415 The function is used by builtin_expect branch predictor so the evidence
2416 must come from this construct and additional possible constant folding.
2418 We may want to implement more involved value guess (such as value range
2419 propagation based prediction), but such tricks shall go to new
2423 expr_expected_value (tree expr
, bitmap visited
,
2424 enum br_predictor
*predictor
)
2426 enum tree_code code
;
2429 if (TREE_CONSTANT (expr
))
2432 *predictor
= PRED_UNCONDITIONAL
;
2436 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
2437 return expr_expected_value_1 (TREE_TYPE (expr
),
2438 op0
, code
, op1
, visited
, predictor
);
2441 /* Predict using opcode of the last statement in basic block. */
2443 tree_predict_by_opcode (basic_block bb
)
2445 gimple
*stmt
= last_stmt (bb
);
2452 enum br_predictor predictor
;
2454 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
2456 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
2457 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
2459 op0
= gimple_cond_lhs (stmt
);
2460 op1
= gimple_cond_rhs (stmt
);
2461 cmp
= gimple_cond_code (stmt
);
2462 type
= TREE_TYPE (op0
);
2463 val
= expr_expected_value_1 (boolean_type_node
, op0
, cmp
, op1
, auto_bitmap (),
2465 if (val
&& TREE_CODE (val
) == INTEGER_CST
)
2467 if (predictor
== PRED_BUILTIN_EXPECT
)
2469 int percent
= PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY
);
2471 gcc_assert (percent
>= 0 && percent
<= 100);
2472 if (integer_zerop (val
))
2473 percent
= 100 - percent
;
2474 predict_edge (then_edge
, PRED_BUILTIN_EXPECT
, HITRATE (percent
));
2477 predict_edge_def (then_edge
, predictor
,
2478 integer_zerop (val
) ? NOT_TAKEN
: TAKEN
);
2480 /* Try "pointer heuristic."
2481 A comparison ptr == 0 is predicted as false.
2482 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2483 if (POINTER_TYPE_P (type
))
2486 predict_edge_def (then_edge
, PRED_TREE_POINTER
, NOT_TAKEN
);
2487 else if (cmp
== NE_EXPR
)
2488 predict_edge_def (then_edge
, PRED_TREE_POINTER
, TAKEN
);
2492 /* Try "opcode heuristic."
2493 EQ tests are usually false and NE tests are usually true. Also,
2494 most quantities are positive, so we can make the appropriate guesses
2495 about signed comparisons against zero. */
2500 /* Floating point comparisons appears to behave in a very
2501 unpredictable way because of special role of = tests in
2503 if (FLOAT_TYPE_P (type
))
2505 /* Comparisons with 0 are often used for booleans and there is
2506 nothing useful to predict about them. */
2507 else if (integer_zerop (op0
) || integer_zerop (op1
))
2510 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, NOT_TAKEN
);
2515 /* Floating point comparisons appears to behave in a very
2516 unpredictable way because of special role of = tests in
2518 if (FLOAT_TYPE_P (type
))
2520 /* Comparisons with 0 are often used for booleans and there is
2521 nothing useful to predict about them. */
2522 else if (integer_zerop (op0
)
2523 || integer_zerop (op1
))
2526 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, TAKEN
);
2530 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, TAKEN
);
2533 case UNORDERED_EXPR
:
2534 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, NOT_TAKEN
);
2539 if (integer_zerop (op1
)
2540 || integer_onep (op1
)
2541 || integer_all_onesp (op1
)
2544 || real_minus_onep (op1
))
2545 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, NOT_TAKEN
);
2550 if (integer_zerop (op1
)
2551 || integer_onep (op1
)
2552 || integer_all_onesp (op1
)
2555 || real_minus_onep (op1
))
2556 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, TAKEN
);
2564 /* Returns TRUE if the STMT is exit(0) like statement. */
2567 is_exit_with_zero_arg (const gimple
*stmt
)
2569 /* This is not exit, _exit or _Exit. */
2570 if (!gimple_call_builtin_p (stmt
, BUILT_IN_EXIT
)
2571 && !gimple_call_builtin_p (stmt
, BUILT_IN__EXIT
)
2572 && !gimple_call_builtin_p (stmt
, BUILT_IN__EXIT2
))
2575 /* Argument is an interger zero. */
2576 return integer_zerop (gimple_call_arg (stmt
, 0));
2579 /* Try to guess whether the value of return means error code. */
2581 static enum br_predictor
2582 return_prediction (tree val
, enum prediction
*prediction
)
2586 return PRED_NO_PREDICTION
;
2587 /* Different heuristics for pointers and scalars. */
2588 if (POINTER_TYPE_P (TREE_TYPE (val
)))
2590 /* NULL is usually not returned. */
2591 if (integer_zerop (val
))
2593 *prediction
= NOT_TAKEN
;
2594 return PRED_NULL_RETURN
;
2597 else if (INTEGRAL_TYPE_P (TREE_TYPE (val
)))
2599 /* Negative return values are often used to indicate
2601 if (TREE_CODE (val
) == INTEGER_CST
2602 && tree_int_cst_sgn (val
) < 0)
2604 *prediction
= NOT_TAKEN
;
2605 return PRED_NEGATIVE_RETURN
;
2607 /* Constant return values seems to be commonly taken.
2608 Zero/one often represent booleans so exclude them from the
2610 if (TREE_CONSTANT (val
)
2611 && (!integer_zerop (val
) && !integer_onep (val
)))
2613 *prediction
= NOT_TAKEN
;
2614 return PRED_CONST_RETURN
;
2617 return PRED_NO_PREDICTION
;
2620 /* Find the basic block with return expression and look up for possible
2621 return value trying to apply RETURN_PREDICTION heuristics. */
2623 apply_return_prediction (void)
2625 greturn
*return_stmt
= NULL
;
2629 int phi_num_args
, i
;
2630 enum br_predictor pred
;
2631 enum prediction direction
;
2634 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
2636 gimple
*last
= last_stmt (e
->src
);
2638 && gimple_code (last
) == GIMPLE_RETURN
)
2640 return_stmt
= as_a
<greturn
*> (last
);
2646 return_val
= gimple_return_retval (return_stmt
);
2649 if (TREE_CODE (return_val
) != SSA_NAME
2650 || !SSA_NAME_DEF_STMT (return_val
)
2651 || gimple_code (SSA_NAME_DEF_STMT (return_val
)) != GIMPLE_PHI
)
2653 phi
= as_a
<gphi
*> (SSA_NAME_DEF_STMT (return_val
));
2654 phi_num_args
= gimple_phi_num_args (phi
);
2655 pred
= return_prediction (PHI_ARG_DEF (phi
, 0), &direction
);
2657 /* Avoid the degenerate case where all return values form the function
2658 belongs to same category (ie they are all positive constants)
2659 so we can hardly say something about them. */
2660 for (i
= 1; i
< phi_num_args
; i
++)
2661 if (pred
!= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
))
2663 if (i
!= phi_num_args
)
2664 for (i
= 0; i
< phi_num_args
; i
++)
2666 pred
= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
);
2667 if (pred
!= PRED_NO_PREDICTION
)
2668 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi
, i
), pred
,
2673 /* Look for basic block that contains unlikely to happen events
2674 (such as noreturn calls) and mark all paths leading to execution
2675 of this basic blocks as unlikely. */
2678 tree_bb_level_predictions (void)
2681 bool has_return_edges
= false;
2685 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
2686 if (!unlikely_executed_edge_p (e
) && !(e
->flags
& EDGE_ABNORMAL_CALL
))
2688 has_return_edges
= true;
2692 apply_return_prediction ();
2694 FOR_EACH_BB_FN (bb
, cfun
)
2696 gimple_stmt_iterator gsi
;
2698 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2700 gimple
*stmt
= gsi_stmt (gsi
);
2703 if (is_gimple_call (stmt
))
2705 if (gimple_call_noreturn_p (stmt
)
2707 && !is_exit_with_zero_arg (stmt
))
2708 predict_paths_leading_to (bb
, PRED_NORETURN
,
2710 decl
= gimple_call_fndecl (stmt
);
2712 && lookup_attribute ("cold",
2713 DECL_ATTRIBUTES (decl
)))
2714 predict_paths_leading_to (bb
, PRED_COLD_FUNCTION
,
2716 if (decl
&& recursive_call_p (current_function_decl
, decl
))
2717 predict_paths_leading_to (bb
, PRED_RECURSIVE_CALL
,
2720 else if (gimple_code (stmt
) == GIMPLE_PREDICT
)
2722 predict_paths_leading_to (bb
, gimple_predict_predictor (stmt
),
2723 gimple_predict_outcome (stmt
));
2724 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2725 hints to callers. */
2731 /* Callback for hash_map::traverse, asserts that the pointer map is
2735 assert_is_empty (const_basic_block
const &, edge_prediction
*const &value
,
2738 gcc_assert (!value
);
2742 /* Predict branch probabilities and estimate profile for basic block BB.
2743 When LOCAL_ONLY is set do not use any global properties of CFG. */
2746 tree_estimate_probability_bb (basic_block bb
, bool local_only
)
2751 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2753 /* Look for block we are guarding (ie we dominate it,
2754 but it doesn't postdominate us). */
2755 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
) && e
->dest
!= bb
2757 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
)
2758 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e
->dest
))
2760 gimple_stmt_iterator bi
;
2762 /* The call heuristic claims that a guarded function call
2763 is improbable. This is because such calls are often used
2764 to signal exceptional situations such as printing error
2766 for (bi
= gsi_start_bb (e
->dest
); !gsi_end_p (bi
);
2769 gimple
*stmt
= gsi_stmt (bi
);
2770 if (is_gimple_call (stmt
)
2771 && !gimple_inexpensive_call_p (as_a
<gcall
*> (stmt
))
2772 /* Constant and pure calls are hardly used to signalize
2773 something exceptional. */
2774 && gimple_has_side_effects (stmt
))
2776 if (gimple_call_fndecl (stmt
))
2777 predict_edge_def (e
, PRED_CALL
, NOT_TAKEN
);
2778 else if (virtual_method_call_p (gimple_call_fn (stmt
)))
2779 predict_edge_def (e
, PRED_POLYMORPHIC_CALL
, NOT_TAKEN
);
2781 predict_edge_def (e
, PRED_INDIR_CALL
, TAKEN
);
2787 tree_predict_by_opcode (bb
);
2790 /* Predict branch probabilities and estimate profile of the tree CFG.
2791 This function can be called from the loop optimizers to recompute
2792 the profile information.
2793 If DRY_RUN is set, do not modify CFG and only produce dump files. */
2796 tree_estimate_probability (bool dry_run
)
2800 add_noreturn_fake_exit_edges ();
2801 connect_infinite_loops_to_exit ();
2802 /* We use loop_niter_by_eval, which requires that the loops have
2804 create_preheaders (CP_SIMPLE_PREHEADERS
);
2805 calculate_dominance_info (CDI_POST_DOMINATORS
);
2807 bb_predictions
= new hash_map
<const_basic_block
, edge_prediction
*>;
2808 tree_bb_level_predictions ();
2809 record_loop_exits ();
2811 if (number_of_loops (cfun
) > 1)
2814 FOR_EACH_BB_FN (bb
, cfun
)
2815 tree_estimate_probability_bb (bb
, false);
2817 FOR_EACH_BB_FN (bb
, cfun
)
2818 combine_predictions_for_bb (bb
, dry_run
);
2821 bb_predictions
->traverse
<void *, assert_is_empty
> (NULL
);
2823 delete bb_predictions
;
2824 bb_predictions
= NULL
;
2827 estimate_bb_frequencies (false);
2828 free_dominance_info (CDI_POST_DOMINATORS
);
2829 remove_fake_exit_edges ();
2832 /* Set edge->probability for each successor edge of BB. */
2834 tree_guess_outgoing_edge_probabilities (basic_block bb
)
2836 bb_predictions
= new hash_map
<const_basic_block
, edge_prediction
*>;
2837 tree_estimate_probability_bb (bb
, true);
2838 combine_predictions_for_bb (bb
, false);
2840 bb_predictions
->traverse
<void *, assert_is_empty
> (NULL
);
2841 delete bb_predictions
;
2842 bb_predictions
= NULL
;
2845 /* Predict edges to successors of CUR whose sources are not postdominated by
2846 BB by PRED and recurse to all postdominators. */
2849 predict_paths_for_bb (basic_block cur
, basic_block bb
,
2850 enum br_predictor pred
,
2851 enum prediction taken
,
2852 bitmap visited
, struct loop
*in_loop
= NULL
)
2858 /* If we exited the loop or CUR is unconditional in the loop, there is
2861 && (!flow_bb_inside_loop_p (in_loop
, cur
)
2862 || dominated_by_p (CDI_DOMINATORS
, in_loop
->latch
, cur
)))
2865 /* We are looking for all edges forming edge cut induced by
2866 set of all blocks postdominated by BB. */
2867 FOR_EACH_EDGE (e
, ei
, cur
->preds
)
2868 if (e
->src
->index
>= NUM_FIXED_BLOCKS
2869 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, bb
))
2875 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2876 if (unlikely_executed_edge_p (e
))
2878 gcc_assert (bb
== cur
|| dominated_by_p (CDI_POST_DOMINATORS
, cur
, bb
));
2880 /* See if there is an edge from e->src that is not abnormal
2881 and does not lead to BB and does not exit the loop. */
2882 FOR_EACH_EDGE (e2
, ei2
, e
->src
->succs
)
2884 && !unlikely_executed_edge_p (e2
)
2885 && !dominated_by_p (CDI_POST_DOMINATORS
, e2
->dest
, bb
)
2886 && (!in_loop
|| !loop_exit_edge_p (in_loop
, e2
)))
2892 /* If there is non-abnormal path leaving e->src, predict edge
2893 using predictor. Otherwise we need to look for paths
2896 The second may lead to infinite loop in the case we are predicitng
2897 regions that are only reachable by abnormal edges. We simply
2898 prevent visiting given BB twice. */
2901 if (!edge_predicted_by_p (e
, pred
, taken
))
2902 predict_edge_def (e
, pred
, taken
);
2904 else if (bitmap_set_bit (visited
, e
->src
->index
))
2905 predict_paths_for_bb (e
->src
, e
->src
, pred
, taken
, visited
, in_loop
);
2907 for (son
= first_dom_son (CDI_POST_DOMINATORS
, cur
);
2909 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
2910 predict_paths_for_bb (son
, bb
, pred
, taken
, visited
, in_loop
);
2913 /* Sets branch probabilities according to PREDiction and
2917 predict_paths_leading_to (basic_block bb
, enum br_predictor pred
,
2918 enum prediction taken
, struct loop
*in_loop
)
2920 predict_paths_for_bb (bb
, bb
, pred
, taken
, auto_bitmap (), in_loop
);
2923 /* Like predict_paths_leading_to but take edge instead of basic block. */
2926 predict_paths_leading_to_edge (edge e
, enum br_predictor pred
,
2927 enum prediction taken
, struct loop
*in_loop
)
2929 bool has_nonloop_edge
= false;
2933 basic_block bb
= e
->src
;
2934 FOR_EACH_EDGE (e2
, ei
, bb
->succs
)
2935 if (e2
->dest
!= e
->src
&& e2
->dest
!= e
->dest
2936 && !unlikely_executed_edge_p (e
)
2937 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e2
->dest
))
2939 has_nonloop_edge
= true;
2942 if (!has_nonloop_edge
)
2944 predict_paths_for_bb (bb
, bb
, pred
, taken
, auto_bitmap (), in_loop
);
2947 predict_edge_def (e
, pred
, taken
);
2950 /* This is used to carry information about basic blocks. It is
2951 attached to the AUX field of the standard CFG block. */
2955 /* Estimated frequency of execution of basic_block. */
2958 /* To keep queue of basic blocks to process. */
2961 /* Number of predecessors we need to visit first. */
2965 /* Similar information for edges. */
2966 struct edge_prob_info
2968 /* In case edge is a loopback edge, the probability edge will be reached
2969 in case header is. Estimated number of iterations of the loop can be
2970 then computed as 1 / (1 - back_edge_prob). */
2971 sreal back_edge_prob
;
2972 /* True if the edge is a loopback edge in the natural loop. */
2973 unsigned int back_edge
:1;
2976 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2978 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2980 /* Helper function for estimate_bb_frequencies.
2981 Propagate the frequencies in blocks marked in
2982 TOVISIT, starting in HEAD. */
2985 propagate_freq (basic_block head
, bitmap tovisit
)
2994 /* For each basic block we need to visit count number of his predecessors
2995 we need to visit first. */
2996 EXECUTE_IF_SET_IN_BITMAP (tovisit
, 0, i
, bi
)
3001 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
3003 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3005 bool visit
= bitmap_bit_p (tovisit
, e
->src
->index
);
3007 if (visit
&& !(e
->flags
& EDGE_DFS_BACK
))
3009 else if (visit
&& dump_file
&& !EDGE_INFO (e
)->back_edge
)
3011 "Irreducible region hit, ignoring edge to %i->%i\n",
3012 e
->src
->index
, bb
->index
);
3014 BLOCK_INFO (bb
)->npredecessors
= count
;
3015 /* When function never returns, we will never process exit block. */
3016 if (!count
&& bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
3018 bb
->count
= profile_count::zero ();
3023 BLOCK_INFO (head
)->frequency
= 1;
3025 for (bb
= head
; bb
; bb
= nextbb
)
3028 sreal cyclic_probability
= 0;
3029 sreal frequency
= 0;
3031 nextbb
= BLOCK_INFO (bb
)->next
;
3032 BLOCK_INFO (bb
)->next
= NULL
;
3034 /* Compute frequency of basic block. */
3038 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3039 gcc_assert (!bitmap_bit_p (tovisit
, e
->src
->index
)
3040 || (e
->flags
& EDGE_DFS_BACK
));
3042 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3043 if (EDGE_INFO (e
)->back_edge
)
3045 cyclic_probability
+= EDGE_INFO (e
)->back_edge_prob
;
3047 else if (!(e
->flags
& EDGE_DFS_BACK
))
3049 /* frequency += (e->probability
3050 * BLOCK_INFO (e->src)->frequency /
3051 REG_BR_PROB_BASE); */
3053 sreal tmp
= e
->probability
.to_reg_br_prob_base ();
3054 tmp
*= BLOCK_INFO (e
->src
)->frequency
;
3055 tmp
*= real_inv_br_prob_base
;
3059 if (cyclic_probability
== 0)
3061 BLOCK_INFO (bb
)->frequency
= frequency
;
3065 if (cyclic_probability
> real_almost_one
)
3066 cyclic_probability
= real_almost_one
;
3068 /* BLOCK_INFO (bb)->frequency = frequency
3069 / (1 - cyclic_probability) */
3071 cyclic_probability
= sreal (1) - cyclic_probability
;
3072 BLOCK_INFO (bb
)->frequency
= frequency
/ cyclic_probability
;
3076 bitmap_clear_bit (tovisit
, bb
->index
);
3078 e
= find_edge (bb
, head
);
3081 /* EDGE_INFO (e)->back_edge_prob
3082 = ((e->probability * BLOCK_INFO (bb)->frequency)
3083 / REG_BR_PROB_BASE); */
3085 sreal tmp
= e
->probability
.to_reg_br_prob_base ();
3086 tmp
*= BLOCK_INFO (bb
)->frequency
;
3087 EDGE_INFO (e
)->back_edge_prob
= tmp
* real_inv_br_prob_base
;
3090 /* Propagate to successor blocks. */
3091 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3092 if (!(e
->flags
& EDGE_DFS_BACK
)
3093 && BLOCK_INFO (e
->dest
)->npredecessors
)
3095 BLOCK_INFO (e
->dest
)->npredecessors
--;
3096 if (!BLOCK_INFO (e
->dest
)->npredecessors
)
3101 BLOCK_INFO (last
)->next
= e
->dest
;
3109 /* Estimate frequencies in loops at same nest level. */
3112 estimate_loops_at_level (struct loop
*first_loop
)
3116 for (loop
= first_loop
; loop
; loop
= loop
->next
)
3121 auto_bitmap tovisit
;
3123 estimate_loops_at_level (loop
->inner
);
3125 /* Find current loop back edge and mark it. */
3126 e
= loop_latch_edge (loop
);
3127 EDGE_INFO (e
)->back_edge
= 1;
3129 bbs
= get_loop_body (loop
);
3130 for (i
= 0; i
< loop
->num_nodes
; i
++)
3131 bitmap_set_bit (tovisit
, bbs
[i
]->index
);
3133 propagate_freq (loop
->header
, tovisit
);
3137 /* Propagates frequencies through structure of loops. */
3140 estimate_loops (void)
3142 auto_bitmap tovisit
;
3145 /* Start by estimating the frequencies in the loops. */
3146 if (number_of_loops (cfun
) > 1)
3147 estimate_loops_at_level (current_loops
->tree_root
->inner
);
3149 /* Now propagate the frequencies through all the blocks. */
3150 FOR_ALL_BB_FN (bb
, cfun
)
3152 bitmap_set_bit (tovisit
, bb
->index
);
3154 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun
), tovisit
);
3157 /* Drop the profile for NODE to guessed, and update its frequency based on
3158 whether it is expected to be hot given the CALL_COUNT. */
3161 drop_profile (struct cgraph_node
*node
, profile_count call_count
)
3163 struct function
*fn
= DECL_STRUCT_FUNCTION (node
->decl
);
3164 /* In the case where this was called by another function with a
3165 dropped profile, call_count will be 0. Since there are no
3166 non-zero call counts to this function, we don't know for sure
3167 whether it is hot, and therefore it will be marked normal below. */
3168 bool hot
= maybe_hot_count_p (NULL
, call_count
);
3172 "Dropping 0 profile for %s. %s based on calls.\n",
3174 hot
? "Function is hot" : "Function is normal");
3175 /* We only expect to miss profiles for functions that are reached
3176 via non-zero call edges in cases where the function may have
3177 been linked from another module or library (COMDATs and extern
3178 templates). See the comments below for handle_missing_profiles.
3179 Also, only warn in cases where the missing counts exceed the
3180 number of training runs. In certain cases with an execv followed
3181 by a no-return call the profile for the no-return call is not
3182 dumped and there can be a mismatch. */
3183 if (!DECL_COMDAT (node
->decl
) && !DECL_EXTERNAL (node
->decl
)
3184 && call_count
> profile_info
->runs
)
3186 if (flag_profile_correction
)
3190 "Missing counts for called function %s\n",
3191 node
->dump_name ());
3194 warning (0, "Missing counts for called function %s",
3195 node
->dump_name ());
3199 FOR_ALL_BB_FN (bb
, fn
)
3201 bb
->count
= profile_count::uninitialized ();
3205 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3206 e
->count
= profile_count::uninitialized ();
3209 struct cgraph_edge
*e
;
3210 for (e
= node
->callees
; e
; e
= e
->next_caller
)
3212 e
->count
= profile_count::uninitialized ();
3213 e
->frequency
= compute_call_stmt_bb_frequency (e
->caller
->decl
,
3214 gimple_bb (e
->call_stmt
));
3216 node
->count
= profile_count::uninitialized ();
3218 profile_status_for_fn (fn
)
3219 = (flag_guess_branch_prob
? PROFILE_GUESSED
: PROFILE_ABSENT
);
3221 = hot
? NODE_FREQUENCY_HOT
: NODE_FREQUENCY_NORMAL
;
3224 /* In the case of COMDAT routines, multiple object files will contain the same
3225 function and the linker will select one for the binary. In that case
3226 all the other copies from the profile instrument binary will be missing
3227 profile counts. Look for cases where this happened, due to non-zero
3228 call counts going to 0-count functions, and drop the profile to guessed
3229 so that we can use the estimated probabilities and avoid optimizing only
3232 The other case where the profile may be missing is when the routine
3233 is not going to be emitted to the object file, e.g. for "extern template"
3234 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3235 all other cases of non-zero calls to 0-count functions. */
3238 handle_missing_profiles (void)
3240 struct cgraph_node
*node
;
3241 int unlikely_count_fraction
= PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION
);
3242 auto_vec
<struct cgraph_node
*, 64> worklist
;
3244 /* See if 0 count function has non-0 count callers. In this case we
3245 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3246 FOR_EACH_DEFINED_FUNCTION (node
)
3248 struct cgraph_edge
*e
;
3249 profile_count call_count
= profile_count::zero ();
3250 gcov_type max_tp_first_run
= 0;
3251 struct function
*fn
= DECL_STRUCT_FUNCTION (node
->decl
);
3253 if (!(node
->count
== profile_count::zero ()))
3255 for (e
= node
->callers
; e
; e
= e
->next_caller
)
3256 if (e
->count
.initialized_p () && e
->count
> 0)
3258 call_count
= call_count
+ e
->count
;
3260 if (e
->caller
->tp_first_run
> max_tp_first_run
)
3261 max_tp_first_run
= e
->caller
->tp_first_run
;
3264 /* If time profile is missing, let assign the maximum that comes from
3265 caller functions. */
3266 if (!node
->tp_first_run
&& max_tp_first_run
)
3267 node
->tp_first_run
= max_tp_first_run
+ 1;
3271 && (call_count
.apply_scale (unlikely_count_fraction
, 1)
3272 >= profile_info
->runs
))
3274 drop_profile (node
, call_count
);
3275 worklist
.safe_push (node
);
3279 /* Propagate the profile dropping to other 0-count COMDATs that are
3280 potentially called by COMDATs we already dropped the profile on. */
3281 while (worklist
.length () > 0)
3283 struct cgraph_edge
*e
;
3285 node
= worklist
.pop ();
3286 for (e
= node
->callees
; e
; e
= e
->next_caller
)
3288 struct cgraph_node
*callee
= e
->callee
;
3289 struct function
*fn
= DECL_STRUCT_FUNCTION (callee
->decl
);
3291 if (callee
->count
> 0)
3293 if ((DECL_COMDAT (callee
->decl
) || DECL_EXTERNAL (callee
->decl
))
3295 && profile_status_for_fn (fn
) == PROFILE_READ
)
3297 drop_profile (node
, profile_count::zero ());
3298 worklist
.safe_push (callee
);
3304 /* Convert counts measured by profile driven feedback to frequencies.
3305 Return nonzero iff there was any nonzero execution count. */
3308 counts_to_freqs (void)
3310 gcov_type count_max
;
3311 profile_count true_count_max
= profile_count::zero ();
3314 /* Don't overwrite the estimated frequencies when the profile for
3315 the function is missing. We may drop this function PROFILE_GUESSED
3316 later in drop_profile (). */
3317 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
.initialized_p ()
3318 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
== profile_count::zero ())
3321 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
3322 if (bb
->count
> true_count_max
)
3323 true_count_max
= bb
->count
;
3325 /* If we have no counts to base frequencies on, keep those that are
3327 if (!(true_count_max
> 0))
3330 count_max
= true_count_max
.to_gcov_type ();
3332 FOR_ALL_BB_FN (bb
, cfun
)
3333 if (bb
->count
.initialized_p ())
3334 bb
->frequency
= RDIV (bb
->count
.to_gcov_type () * BB_FREQ_MAX
, count_max
);
3339 /* Return true if function is likely to be expensive, so there is no point to
3340 optimize performance of prologue, epilogue or do inlining at the expense
3341 of code size growth. THRESHOLD is the limit of number of instructions
3342 function can execute at average to be still considered not expensive. */
3345 expensive_function_p (int threshold
)
3347 unsigned int sum
= 0;
3351 /* We can not compute accurately for large thresholds due to scaled
3353 gcc_assert (threshold
<= BB_FREQ_MAX
);
3355 /* Frequencies are out of range. This either means that function contains
3356 internal loop executing more than BB_FREQ_MAX times or profile feedback
3357 is available and function has not been executed at all. */
3358 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
== 0)
3361 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
3362 limit
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
* threshold
;
3363 FOR_EACH_BB_FN (bb
, cfun
)
3367 FOR_BB_INSNS (bb
, insn
)
3368 if (active_insn_p (insn
))
3370 sum
+= bb
->frequency
;
3379 /* All basic blocks that are reachable only from unlikely basic blocks are
3383 propagate_unlikely_bbs_forward (void)
3385 auto_vec
<basic_block
, 64> worklist
;
3390 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
== profile_count::zero ()))
3392 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->aux
= (void *)(size_t) 1;
3393 worklist
.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
3395 while (worklist
.length () > 0)
3397 bb
= worklist
.pop ();
3398 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3399 if (!(e
->count
== profile_count::zero ())
3400 && !(e
->dest
->count
== profile_count::zero ())
3403 e
->dest
->aux
= (void *)(size_t) 1;
3404 worklist
.safe_push (e
->dest
);
3409 FOR_ALL_BB_FN (bb
, cfun
)
3413 if (!(bb
->count
== profile_count::zero ())
3414 && (dump_file
&& (dump_flags
& TDF_DETAILS
)))
3416 "Basic block %i is marked unlikely by forward prop\n",
3418 bb
->count
= profile_count::zero ();
3420 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3421 e
->count
= profile_count::zero ();
3428 /* Determine basic blocks/edges that are known to be unlikely executed and set
3429 their counters to zero.
3430 This is done with first identifying obviously unlikely BBs/edges and then
3431 propagating in both directions. */
3434 determine_unlikely_bbs ()
3437 auto_vec
<basic_block
, 64> worklist
;
3441 FOR_EACH_BB_FN (bb
, cfun
)
3443 if (!(bb
->count
== profile_count::zero ())
3444 && unlikely_executed_bb_p (bb
))
3446 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3447 fprintf (dump_file
, "Basic block %i is locally unlikely\n",
3449 bb
->count
= profile_count::zero ();
3452 if (bb
->count
== profile_count::zero ())
3455 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3456 e
->count
= profile_count::zero ();
3459 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3460 if (!(e
->count
== profile_count::zero ())
3461 && unlikely_executed_edge_p (e
))
3463 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3464 fprintf (dump_file
, "Edge %i->%i is locally unlikely\n",
3465 bb
->index
, e
->dest
->index
);
3466 e
->count
= profile_count::zero ();
3469 gcc_checking_assert (!bb
->aux
);
3472 auto_vec
<int, 64> nsuccs
;
3473 nsuccs
.safe_grow_cleared (last_basic_block_for_fn (cfun
));
3474 FOR_ALL_BB_FN (bb
, cfun
)
3475 if (!(bb
->count
== profile_count::zero ())
3476 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
3478 nsuccs
[bb
->index
] = 0;
3479 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3480 if (!(e
->count
== profile_count::zero ()))
3481 nsuccs
[bb
->index
]++;
3482 if (!nsuccs
[bb
->index
])
3483 worklist
.safe_push (bb
);
3485 while (worklist
.length () > 0)
3487 bb
= worklist
.pop ();
3488 if (bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
3491 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
3492 !gsi_end_p (gsi
); gsi_next (&gsi
))
3493 if (stmt_can_terminate_bb_p (gsi_stmt (gsi
))
3494 /* stmt_can_terminate_bb_p special cases noreturns because it
3495 assumes that fake edges are created. We want to know that
3496 noreturn alone does not imply BB to be unlikely. */
3497 || (is_gimple_call (gsi_stmt (gsi
))
3498 && (gimple_call_flags (gsi_stmt (gsi
)) & ECF_NORETURN
)))
3506 if (!(bb
->count
== profile_count::zero ())
3507 && (dump_file
&& (dump_flags
& TDF_DETAILS
)))
3509 "Basic block %i is marked unlikely by backward prop\n",
3511 bb
->count
= profile_count::zero ();
3513 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3514 if (!(e
->count
== profile_count::zero ()))
3516 e
->count
= profile_count::zero ();
3517 if (!(e
->src
->count
== profile_count::zero ()))
3519 nsuccs
[e
->src
->index
]--;
3520 if (!nsuccs
[e
->src
->index
])
3521 worklist
.safe_push (e
->src
);
3527 /* Estimate and propagate basic block frequencies using the given branch
3528 probabilities. If FORCE is true, the frequencies are used to estimate
3529 the counts even when there are already non-zero profile counts. */
3532 estimate_bb_frequencies (bool force
)
3537 determine_unlikely_bbs ();
3539 if (force
|| profile_status_for_fn (cfun
) != PROFILE_READ
3540 || !counts_to_freqs ())
3542 static int real_values_initialized
= 0;
3544 if (!real_values_initialized
)
3546 real_values_initialized
= 1;
3547 real_br_prob_base
= REG_BR_PROB_BASE
;
3548 real_bb_freq_max
= BB_FREQ_MAX
;
3549 real_one_half
= sreal (1, -1);
3550 real_inv_br_prob_base
= sreal (1) / real_br_prob_base
;
3551 real_almost_one
= sreal (1) - real_inv_br_prob_base
;
3554 mark_dfs_back_edges ();
3556 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->probability
=
3557 profile_probability::always ();
3559 /* Set up block info for each basic block. */
3560 alloc_aux_for_blocks (sizeof (block_info
));
3561 alloc_aux_for_edges (sizeof (edge_prob_info
));
3562 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
3567 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3569 EDGE_INFO (e
)->back_edge_prob
3570 = e
->probability
.to_reg_br_prob_base ();
3571 EDGE_INFO (e
)->back_edge_prob
*= real_inv_br_prob_base
;
3575 /* First compute frequencies locally for each loop from innermost
3576 to outermost to examine frequencies for back edges. */
3580 FOR_EACH_BB_FN (bb
, cfun
)
3581 if (freq_max
< BLOCK_INFO (bb
)->frequency
)
3582 freq_max
= BLOCK_INFO (bb
)->frequency
;
3584 freq_max
= real_bb_freq_max
/ freq_max
;
3585 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
3587 sreal tmp
= BLOCK_INFO (bb
)->frequency
* freq_max
+ real_one_half
;
3588 bb
->frequency
= tmp
.to_int ();
3591 free_aux_for_blocks ();
3592 free_aux_for_edges ();
3594 compute_function_frequency ();
3597 /* Decide whether function is hot, cold or unlikely executed. */
3599 compute_function_frequency (void)
3602 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
3604 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
3605 || MAIN_NAME_P (DECL_NAME (current_function_decl
)))
3606 node
->only_called_at_startup
= true;
3607 if (DECL_STATIC_DESTRUCTOR (current_function_decl
))
3608 node
->only_called_at_exit
= true;
3610 if (profile_status_for_fn (cfun
) != PROFILE_READ
)
3612 int flags
= flags_from_decl_or_type (current_function_decl
);
3613 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
== profile_count::zero ()
3614 || lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl
))
3616 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
3617 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl
))
3619 node
->frequency
= NODE_FREQUENCY_HOT
;
3620 else if (flags
& ECF_NORETURN
)
3621 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
3622 else if (MAIN_NAME_P (DECL_NAME (current_function_decl
)))
3623 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
3624 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
3625 || DECL_STATIC_DESTRUCTOR (current_function_decl
))
3626 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
3630 /* Only first time try to drop function into unlikely executed.
3631 After inlining the roundoff errors may confuse us.
3632 Ipa-profile pass will drop functions only called from unlikely
3633 functions to unlikely and that is most of what we care about. */
3634 if (!cfun
->after_inlining
)
3635 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
3636 FOR_EACH_BB_FN (bb
, cfun
)
3638 if (maybe_hot_bb_p (cfun
, bb
))
3640 node
->frequency
= NODE_FREQUENCY_HOT
;
3643 if (!probably_never_executed_bb_p (cfun
, bb
))
3644 node
->frequency
= NODE_FREQUENCY_NORMAL
;
3648 /* Build PREDICT_EXPR. */
3650 build_predict_expr (enum br_predictor predictor
, enum prediction taken
)
3652 tree t
= build1 (PREDICT_EXPR
, void_type_node
,
3653 build_int_cst (integer_type_node
, predictor
));
3654 SET_PREDICT_EXPR_OUTCOME (t
, taken
);
3659 predictor_name (enum br_predictor predictor
)
3661 return predictor_info
[predictor
].name
;
3664 /* Predict branch probabilities and estimate profile of the tree CFG. */
3668 const pass_data pass_data_profile
=
3670 GIMPLE_PASS
, /* type */
3671 "profile_estimate", /* name */
3672 OPTGROUP_NONE
, /* optinfo_flags */
3673 TV_BRANCH_PROB
, /* tv_id */
3674 PROP_cfg
, /* properties_required */
3675 0, /* properties_provided */
3676 0, /* properties_destroyed */
3677 0, /* todo_flags_start */
3678 0, /* todo_flags_finish */
3681 class pass_profile
: public gimple_opt_pass
3684 pass_profile (gcc::context
*ctxt
)
3685 : gimple_opt_pass (pass_data_profile
, ctxt
)
3688 /* opt_pass methods: */
3689 virtual bool gate (function
*) { return flag_guess_branch_prob
; }
3690 virtual unsigned int execute (function
*);
3692 }; // class pass_profile
3695 pass_profile::execute (function
*fun
)
3699 if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
3702 loop_optimizer_init (LOOPS_NORMAL
);
3703 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3704 flow_loops_dump (dump_file
, NULL
, 0);
3706 mark_irreducible_loops ();
3708 nb_loops
= number_of_loops (fun
);
3712 tree_estimate_probability (false);
3717 loop_optimizer_finalize ();
3718 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3719 gimple_dump_cfg (dump_file
, dump_flags
);
3720 if (profile_status_for_fn (fun
) == PROFILE_ABSENT
)
3721 profile_status_for_fn (fun
) = PROFILE_GUESSED
;
3722 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3725 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
3726 if (loop
->header
->frequency
)
3727 fprintf (dump_file
, "Loop got predicted %d to iterate %i times.\n",
3729 (int)expected_loop_iterations_unbounded (loop
));
3737 make_pass_profile (gcc::context
*ctxt
)
3739 return new pass_profile (ctxt
);
3744 const pass_data pass_data_strip_predict_hints
=
3746 GIMPLE_PASS
, /* type */
3747 "*strip_predict_hints", /* name */
3748 OPTGROUP_NONE
, /* optinfo_flags */
3749 TV_BRANCH_PROB
, /* tv_id */
3750 PROP_cfg
, /* properties_required */
3751 0, /* properties_provided */
3752 0, /* properties_destroyed */
3753 0, /* todo_flags_start */
3754 0, /* todo_flags_finish */
3757 class pass_strip_predict_hints
: public gimple_opt_pass
3760 pass_strip_predict_hints (gcc::context
*ctxt
)
3761 : gimple_opt_pass (pass_data_strip_predict_hints
, ctxt
)
3764 /* opt_pass methods: */
3765 opt_pass
* clone () { return new pass_strip_predict_hints (m_ctxt
); }
3766 virtual unsigned int execute (function
*);
3768 }; // class pass_strip_predict_hints
3770 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3771 we no longer need. */
3773 pass_strip_predict_hints::execute (function
*fun
)
3778 bool changed
= false;
3780 FOR_EACH_BB_FN (bb
, fun
)
3782 gimple_stmt_iterator bi
;
3783 for (bi
= gsi_start_bb (bb
); !gsi_end_p (bi
);)
3785 gimple
*stmt
= gsi_stmt (bi
);
3787 if (gimple_code (stmt
) == GIMPLE_PREDICT
)
3789 gsi_remove (&bi
, true);
3793 else if (is_gimple_call (stmt
))
3795 tree fndecl
= gimple_call_fndecl (stmt
);
3798 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
3799 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_EXPECT
3800 && gimple_call_num_args (stmt
) == 2)
3801 || (gimple_call_internal_p (stmt
)
3802 && gimple_call_internal_fn (stmt
) == IFN_BUILTIN_EXPECT
))
3804 var
= gimple_call_lhs (stmt
);
3809 = gimple_build_assign (var
, gimple_call_arg (stmt
, 0));
3810 gsi_replace (&bi
, ass_stmt
, true);
3814 gsi_remove (&bi
, true);
3822 return changed
? TODO_cleanup_cfg
: 0;
3828 make_pass_strip_predict_hints (gcc::context
*ctxt
)
3830 return new pass_strip_predict_hints (ctxt
);
3833 /* Rebuild function frequencies. Passes are in general expected to
3834 maintain profile by hand, however in some cases this is not possible:
3835 for example when inlining several functions with loops freuqencies might run
3836 out of scale and thus needs to be recomputed. */
3839 rebuild_frequencies (void)
3841 timevar_push (TV_REBUILD_FREQUENCIES
);
3843 /* When the max bb count in the function is small, there is a higher
3844 chance that there were truncation errors in the integer scaling
3845 of counts by inlining and other optimizations. This could lead
3846 to incorrect classification of code as being cold when it isn't.
3847 In that case, force the estimation of bb counts/frequencies from the
3848 branch probabilities, rather than computing frequencies from counts,
3849 which may also lead to frequencies incorrectly reduced to 0. There
3850 is less precision in the probabilities, so we only do this for small
3852 profile_count count_max
= profile_count::zero ();
3854 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
3855 if (bb
->count
> count_max
)
3856 count_max
= bb
->count
;
3858 if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
3859 || (!flag_auto_profile
&& profile_status_for_fn (cfun
) == PROFILE_READ
3860 && count_max
< REG_BR_PROB_BASE
/ 10))
3862 loop_optimizer_init (0);
3863 add_noreturn_fake_exit_edges ();
3864 mark_irreducible_loops ();
3865 connect_infinite_loops_to_exit ();
3866 estimate_bb_frequencies (true);
3867 remove_fake_exit_edges ();
3868 loop_optimizer_finalize ();
3870 else if (profile_status_for_fn (cfun
) == PROFILE_READ
)
3874 timevar_pop (TV_REBUILD_FREQUENCIES
);
3877 /* Perform a dry run of the branch prediction pass and report comparsion of
3878 the predicted and real profile into the dump file. */
3881 report_predictor_hitrates (void)
3885 loop_optimizer_init (LOOPS_NORMAL
);
3886 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3887 flow_loops_dump (dump_file
, NULL
, 0);
3889 mark_irreducible_loops ();
3891 nb_loops
= number_of_loops (cfun
);
3895 tree_estimate_probability (true);
3900 loop_optimizer_finalize ();
3903 /* Force edge E to be cold.
3904 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
3905 keep low probability to represent possible error in a guess. This is used
3906 i.e. in case we predict loop to likely iterate given number of times but
3907 we are not 100% sure.
3909 This function locally updates profile without attempt to keep global
3910 consistency which can not be reached in full generality without full profile
3911 rebuild from probabilities alone. Doing so is not necessarily a good idea
3912 because frequencies and counts may be more realistic then probabilities.
3914 In some cases (such as for elimination of early exits during full loop
3915 unrolling) the caller can ensure that profile will get consistent
3919 force_edge_cold (edge e
, bool impossible
)
3921 profile_count count_sum
= profile_count::zero ();
3922 profile_probability prob_sum
= profile_probability::never ();
3925 profile_count old_count
= e
->count
;
3926 profile_probability old_probability
= e
->probability
;
3927 bool uninitialized_exit
= false;
3929 profile_probability goal
= (impossible
? profile_probability::never ()
3930 : profile_probability::very_unlikely ());
3932 /* If edge is already improbably or cold, just return. */
3933 if (e
->probability
<= goal
3934 && (!impossible
|| e
->count
== profile_count::zero ()))
3936 FOR_EACH_EDGE (e2
, ei
, e
->src
->succs
)
3939 if (e2
->count
.initialized_p ())
3940 count_sum
+= e2
->count
;
3942 uninitialized_exit
= true;
3943 if (e2
->probability
.initialized_p ())
3944 prob_sum
+= e2
->probability
;
3947 /* If there are other edges out of e->src, redistribute probabilitity
3949 if (prob_sum
> profile_probability::never ())
3951 if (!(e
->probability
< goal
))
3952 e
->probability
= goal
;
3954 e
->count
= profile_count::zero ();
3955 else if (old_probability
> profile_probability::never ())
3956 e
->count
= e
->count
.apply_probability (e
->probability
3959 e
->count
= e
->count
.apply_scale (1, REG_BR_PROB_BASE
);
3961 profile_probability prob_comp
= prob_sum
/ e
->probability
.invert ();
3963 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3964 fprintf (dump_file
, "Making edge %i->%i %s by redistributing "
3965 "probability to other edges.\n",
3966 e
->src
->index
, e
->dest
->index
,
3967 impossible
? "impossible" : "cold");
3968 profile_count count_sum2
= count_sum
+ old_count
- e
->count
;
3969 FOR_EACH_EDGE (e2
, ei
, e
->src
->succs
)
3973 e2
->count
.apply_scale (count_sum2
, count_sum
);
3974 e2
->probability
/= prob_comp
;
3976 if (current_ir_type () != IR_GIMPLE
3977 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
3978 update_br_prob_note (e
->src
);
3980 /* If all edges out of e->src are unlikely, the basic block itself
3984 if (prob_sum
== profile_probability::never ())
3985 e
->probability
= profile_probability::always ();
3989 e
->probability
= profile_probability::never ();
3990 /* If BB has some edges out that are not impossible, we can not
3991 assume that BB itself is. */
3994 if (current_ir_type () != IR_GIMPLE
3995 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
3996 update_br_prob_note (e
->src
);
3997 if (e
->src
->count
== profile_count::zero ())
3999 if (count_sum
== profile_count::zero () && !uninitialized_exit
4003 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
4005 else if (current_ir_type () == IR_GIMPLE
)
4006 for (gimple_stmt_iterator gsi
= gsi_start_bb (e
->src
);
4007 !gsi_end_p (gsi
); gsi_next (&gsi
))
4009 if (stmt_can_terminate_bb_p (gsi_stmt (gsi
)))
4015 /* FIXME: Implement RTL path. */
4020 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4022 "Making bb %i impossible and dropping count to 0.\n",
4024 e
->count
= profile_count::zero ();
4025 e
->src
->count
= profile_count::zero ();
4026 FOR_EACH_EDGE (e2
, ei
, e
->src
->preds
)
4027 force_edge_cold (e2
, impossible
);
4032 /* If we did not adjusting, the source basic block has no likely edeges
4033 leaving other direction. In that case force that bb cold, too.
4034 This in general is difficult task to do, but handle special case when
4035 BB has only one predecestor. This is common case when we are updating
4036 after loop transforms. */
4037 if (!(prob_sum
> profile_probability::never ())
4038 && count_sum
== profile_count::zero ()
4039 && single_pred_p (e
->src
) && e
->src
->frequency
> (impossible
? 0 : 1))
4041 int old_frequency
= e
->src
->frequency
;
4042 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4043 fprintf (dump_file
, "Making bb %i %s.\n", e
->src
->index
,
4044 impossible
? "impossible" : "cold");
4045 e
->src
->frequency
= MIN (e
->src
->frequency
, impossible
? 0 : 1);
4047 e
->src
->count
= e
->count
= profile_count::zero ();
4049 e
->src
->count
= e
->count
= e
->count
.apply_scale (e
->src
->frequency
,
4051 force_edge_cold (single_pred_edge (e
->src
), impossible
);
4053 else if (dump_file
&& (dump_flags
& TDF_DETAILS
)
4054 && maybe_hot_bb_p (cfun
, e
->src
))
4055 fprintf (dump_file
, "Giving up on making bb %i %s.\n", e
->src
->index
,
4056 impossible
? "impossible" : "cold");
4062 namespace selftest
{
4064 /* Test that value range of predictor values defined in predict.def is
4065 within range (50, 100]. */
4067 struct branch_predictor
4070 unsigned probability
;
4073 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4076 test_prediction_value_range ()
4078 branch_predictor predictors
[] = {
4079 #include "predict.def"
4083 for (unsigned i
= 0; predictors
[i
].name
!= NULL
; i
++)
4085 unsigned p
= 100 * predictors
[i
].probability
/ REG_BR_PROB_BASE
;
4086 ASSERT_TRUE (p
> 50 && p
<= 100);
4090 #undef DEF_PREDICTOR
4092 /* Run all of the selfests within this file. */
4097 test_prediction_value_range ();
4100 } // namespace selftest
4101 #endif /* CHECKING_P. */