1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
35 #include "diagnostic-core.h"
37 /* Include insn-config.h before expr.h so that HAVE_conditional_move
38 is properly defined. */
39 #include "stor-layout.h"
44 #include "optabs-tree.h"
47 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
49 static rtx
expand_unop_direct (machine_mode
, optab
, rtx
, rtx
, int);
50 static void emit_libcall_block_1 (rtx_insn
*, rtx
, rtx
, rtx
, bool);
52 /* Debug facility for use in GDB. */
53 void debug_optab_libfuncs (void);
55 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
56 the result of operation CODE applied to OP0 (and OP1 if it is a binary
59 If the last insn does not set TARGET, don't do anything, but return 1.
61 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
62 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
63 try again, ensuring that TARGET is not one of the operands. */
66 add_equal_note (rtx_insn
*insns
, rtx target
, enum rtx_code code
, rtx op0
, rtx op1
)
72 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
74 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
75 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
76 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
77 && GET_RTX_CLASS (code
) != RTX_COMPARE
78 && GET_RTX_CLASS (code
) != RTX_UNARY
)
81 if (GET_CODE (target
) == ZERO_EXTRACT
)
84 for (last_insn
= insns
;
85 NEXT_INSN (last_insn
) != NULL_RTX
;
86 last_insn
= NEXT_INSN (last_insn
))
89 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
90 a value changing in the insn, so the note would be invalid for CSE. */
91 if (reg_overlap_mentioned_p (target
, op0
)
92 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
95 && (rtx_equal_p (target
, op0
)
96 || (op1
&& rtx_equal_p (target
, op1
))))
98 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
99 over expanding it as temp = MEM op X, MEM = temp. If the target
100 supports MEM = MEM op X instructions, it is sometimes too hard
101 to reconstruct that form later, especially if X is also a memory,
102 and due to multiple occurrences of addresses the address might
103 be forced into register unnecessarily.
104 Note that not emitting the REG_EQUIV note might inhibit
105 CSE in some cases. */
106 set
= single_set (last_insn
);
108 && GET_CODE (SET_SRC (set
)) == code
109 && MEM_P (SET_DEST (set
))
110 && (rtx_equal_p (SET_DEST (set
), XEXP (SET_SRC (set
), 0))
111 || (op1
&& rtx_equal_p (SET_DEST (set
),
112 XEXP (SET_SRC (set
), 1)))))
118 set
= set_for_reg_notes (last_insn
);
122 if (! rtx_equal_p (SET_DEST (set
), target
)
123 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
124 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
125 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
128 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
138 if (GET_MODE (op0
) != VOIDmode
&& GET_MODE (target
) != GET_MODE (op0
))
140 note
= gen_rtx_fmt_e (code
, GET_MODE (op0
), copy_rtx (op0
));
141 if (GET_MODE_SIZE (GET_MODE (op0
))
142 > GET_MODE_SIZE (GET_MODE (target
)))
143 note
= simplify_gen_unary (TRUNCATE
, GET_MODE (target
),
144 note
, GET_MODE (op0
));
146 note
= simplify_gen_unary (ZERO_EXTEND
, GET_MODE (target
),
147 note
, GET_MODE (op0
));
152 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
156 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
158 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
163 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
164 for a widening operation would be. In most cases this would be OP0, but if
165 that's a constant it'll be VOIDmode, which isn't useful. */
168 widened_mode (machine_mode to_mode
, rtx op0
, rtx op1
)
170 machine_mode m0
= GET_MODE (op0
);
171 machine_mode m1
= GET_MODE (op1
);
174 if (m0
== VOIDmode
&& m1
== VOIDmode
)
176 else if (m0
== VOIDmode
|| GET_MODE_SIZE (m0
) < GET_MODE_SIZE (m1
))
181 if (GET_MODE_SIZE (result
) > GET_MODE_SIZE (to_mode
))
187 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
188 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
189 not actually do a sign-extend or zero-extend, but can leave the
190 higher-order bits of the result rtx undefined, for example, in the case
191 of logical operations, but not right shifts. */
194 widen_operand (rtx op
, machine_mode mode
, machine_mode oldmode
,
195 int unsignedp
, int no_extend
)
199 /* If we don't have to extend and this is a constant, return it. */
200 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
203 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
204 extend since it will be more efficient to do so unless the signedness of
205 a promoted object differs from our extension. */
207 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
208 && SUBREG_CHECK_PROMOTED_SIGN (op
, unsignedp
)))
209 return convert_modes (mode
, oldmode
, op
, unsignedp
);
211 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
213 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
214 return gen_lowpart (mode
, force_reg (GET_MODE (op
), op
));
216 /* Otherwise, get an object of MODE, clobber it, and set the low-order
219 result
= gen_reg_rtx (mode
);
220 emit_clobber (result
);
221 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
225 /* Expand vector widening operations.
227 There are two different classes of operations handled here:
228 1) Operations whose result is wider than all the arguments to the operation.
229 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
230 In this case OP0 and optionally OP1 would be initialized,
231 but WIDE_OP wouldn't (not relevant for this case).
232 2) Operations whose result is of the same size as the last argument to the
233 operation, but wider than all the other arguments to the operation.
234 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
235 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
237 E.g, when called to expand the following operations, this is how
238 the arguments will be initialized:
240 widening-sum 2 oprnd0 - oprnd1
241 widening-dot-product 3 oprnd0 oprnd1 oprnd2
242 widening-mult 2 oprnd0 oprnd1 -
243 type-promotion (vec-unpack) 1 oprnd0 - - */
246 expand_widen_pattern_expr (sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
247 rtx target
, int unsignedp
)
249 struct expand_operand eops
[4];
250 tree oprnd0
, oprnd1
, oprnd2
;
251 machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
252 optab widen_pattern_optab
;
253 enum insn_code icode
;
254 int nops
= TREE_CODE_LENGTH (ops
->code
);
258 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
259 widen_pattern_optab
=
260 optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
261 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
262 || ops
->code
== WIDEN_MULT_MINUS_EXPR
)
263 icode
= find_widening_optab_handler (widen_pattern_optab
,
264 TYPE_MODE (TREE_TYPE (ops
->op2
)),
267 icode
= optab_handler (widen_pattern_optab
, tmode0
);
268 gcc_assert (icode
!= CODE_FOR_nothing
);
273 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
276 /* The last operand is of a wider mode than the rest of the operands. */
281 gcc_assert (tmode1
== tmode0
);
284 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
288 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
289 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
291 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
293 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
294 expand_insn (icode
, op
, eops
);
295 return eops
[0].value
;
298 /* Generate code to perform an operation specified by TERNARY_OPTAB
299 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
301 UNSIGNEDP is for the case where we have to widen the operands
302 to perform the operation. It says to use zero-extension.
304 If TARGET is nonzero, the value
305 is generated there, if it is convenient to do so.
306 In all cases an rtx is returned for the locus of the value;
307 this may or may not be TARGET. */
310 expand_ternary_op (machine_mode mode
, optab ternary_optab
, rtx op0
,
311 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
313 struct expand_operand ops
[4];
314 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
316 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
318 create_output_operand (&ops
[0], target
, mode
);
319 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
320 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
321 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
322 expand_insn (icode
, 4, ops
);
327 /* Like expand_binop, but return a constant rtx if the result can be
328 calculated at compile time. The arguments and return value are
329 otherwise the same as for expand_binop. */
332 simplify_expand_binop (machine_mode mode
, optab binoptab
,
333 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
334 enum optab_methods methods
)
336 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
338 rtx x
= simplify_binary_operation (optab_to_code (binoptab
),
344 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
347 /* Like simplify_expand_binop, but always put the result in TARGET.
348 Return true if the expansion succeeded. */
351 force_expand_binop (machine_mode mode
, optab binoptab
,
352 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
353 enum optab_methods methods
)
355 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
356 target
, unsignedp
, methods
);
360 emit_move_insn (target
, x
);
364 /* Create a new vector value in VMODE with all elements set to OP. The
365 mode of OP must be the element mode of VMODE. If OP is a constant,
366 then the return value will be a constant. */
369 expand_vector_broadcast (machine_mode vmode
, rtx op
)
371 enum insn_code icode
;
376 gcc_checking_assert (VECTOR_MODE_P (vmode
));
378 n
= GET_MODE_NUNITS (vmode
);
379 vec
= rtvec_alloc (n
);
380 for (i
= 0; i
< n
; ++i
)
381 RTVEC_ELT (vec
, i
) = op
;
384 return gen_rtx_CONST_VECTOR (vmode
, vec
);
386 /* ??? If the target doesn't have a vec_init, then we have no easy way
387 of performing this operation. Most of this sort of generic support
388 is hidden away in the vector lowering support in gimple. */
389 icode
= convert_optab_handler (vec_init_optab
, vmode
,
390 GET_MODE_INNER (vmode
));
391 if (icode
== CODE_FOR_nothing
)
394 ret
= gen_reg_rtx (vmode
);
395 emit_insn (GEN_FCN (icode
) (ret
, gen_rtx_PARALLEL (vmode
, vec
)));
400 /* This subroutine of expand_doubleword_shift handles the cases in which
401 the effective shift value is >= BITS_PER_WORD. The arguments and return
402 value are the same as for the parent routine, except that SUPERWORD_OP1
403 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
404 INTO_TARGET may be null if the caller has decided to calculate it. */
407 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
408 rtx outof_target
, rtx into_target
,
409 int unsignedp
, enum optab_methods methods
)
411 if (into_target
!= 0)
412 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
413 into_target
, unsignedp
, methods
))
416 if (outof_target
!= 0)
418 /* For a signed right shift, we must fill OUTOF_TARGET with copies
419 of the sign bit, otherwise we must fill it with zeros. */
420 if (binoptab
!= ashr_optab
)
421 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
423 if (!force_expand_binop (word_mode
, binoptab
,
424 outof_input
, GEN_INT (BITS_PER_WORD
- 1),
425 outof_target
, unsignedp
, methods
))
431 /* This subroutine of expand_doubleword_shift handles the cases in which
432 the effective shift value is < BITS_PER_WORD. The arguments and return
433 value are the same as for the parent routine. */
436 expand_subword_shift (machine_mode op1_mode
, optab binoptab
,
437 rtx outof_input
, rtx into_input
, rtx op1
,
438 rtx outof_target
, rtx into_target
,
439 int unsignedp
, enum optab_methods methods
,
440 unsigned HOST_WIDE_INT shift_mask
)
442 optab reverse_unsigned_shift
, unsigned_shift
;
445 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
446 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
448 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
449 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
450 the opposite direction to BINOPTAB. */
451 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
453 carries
= outof_input
;
454 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
,
455 op1_mode
), op1_mode
);
456 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
461 /* We must avoid shifting by BITS_PER_WORD bits since that is either
462 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
463 has unknown behavior. Do a single shift first, then shift by the
464 remainder. It's OK to use ~OP1 as the remainder if shift counts
465 are truncated to the mode size. */
466 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
467 outof_input
, const1_rtx
, 0, unsignedp
, methods
);
468 if (shift_mask
== BITS_PER_WORD
- 1)
470 tmp
= immed_wide_int_const
471 (wi::minus_one (GET_MODE_PRECISION (op1_mode
)), op1_mode
);
472 tmp
= simplify_expand_binop (op1_mode
, xor_optab
, op1
, tmp
,
477 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
- 1,
478 op1_mode
), op1_mode
);
479 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
483 if (tmp
== 0 || carries
== 0)
485 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
486 carries
, tmp
, 0, unsignedp
, methods
);
490 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
491 so the result can go directly into INTO_TARGET if convenient. */
492 tmp
= expand_binop (word_mode
, unsigned_shift
, into_input
, op1
,
493 into_target
, unsignedp
, methods
);
497 /* Now OR in the bits carried over from OUTOF_INPUT. */
498 if (!force_expand_binop (word_mode
, ior_optab
, tmp
, carries
,
499 into_target
, unsignedp
, methods
))
502 /* Use a standard word_mode shift for the out-of half. */
503 if (outof_target
!= 0)
504 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
505 outof_target
, unsignedp
, methods
))
512 /* Try implementing expand_doubleword_shift using conditional moves.
513 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
514 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
515 are the shift counts to use in the former and latter case. All other
516 arguments are the same as the parent routine. */
519 expand_doubleword_shift_condmove (machine_mode op1_mode
, optab binoptab
,
520 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
521 rtx outof_input
, rtx into_input
,
522 rtx subword_op1
, rtx superword_op1
,
523 rtx outof_target
, rtx into_target
,
524 int unsignedp
, enum optab_methods methods
,
525 unsigned HOST_WIDE_INT shift_mask
)
527 rtx outof_superword
, into_superword
;
529 /* Put the superword version of the output into OUTOF_SUPERWORD and
531 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
532 if (outof_target
!= 0 && subword_op1
== superword_op1
)
534 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
535 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
536 into_superword
= outof_target
;
537 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
538 outof_superword
, 0, unsignedp
, methods
))
543 into_superword
= gen_reg_rtx (word_mode
);
544 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
545 outof_superword
, into_superword
,
550 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
551 if (!expand_subword_shift (op1_mode
, binoptab
,
552 outof_input
, into_input
, subword_op1
,
553 outof_target
, into_target
,
554 unsignedp
, methods
, shift_mask
))
557 /* Select between them. Do the INTO half first because INTO_SUPERWORD
558 might be the current value of OUTOF_TARGET. */
559 if (!emit_conditional_move (into_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
560 into_target
, into_superword
, word_mode
, false))
563 if (outof_target
!= 0)
564 if (!emit_conditional_move (outof_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
565 outof_target
, outof_superword
,
572 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
573 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
574 input operand; the shift moves bits in the direction OUTOF_INPUT->
575 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
576 of the target. OP1 is the shift count and OP1_MODE is its mode.
577 If OP1 is constant, it will have been truncated as appropriate
578 and is known to be nonzero.
580 If SHIFT_MASK is zero, the result of word shifts is undefined when the
581 shift count is outside the range [0, BITS_PER_WORD). This routine must
582 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
584 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
585 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
586 fill with zeros or sign bits as appropriate.
588 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
589 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
590 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
591 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
594 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
595 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
596 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
597 function wants to calculate it itself.
599 Return true if the shift could be successfully synthesized. */
602 expand_doubleword_shift (machine_mode op1_mode
, optab binoptab
,
603 rtx outof_input
, rtx into_input
, rtx op1
,
604 rtx outof_target
, rtx into_target
,
605 int unsignedp
, enum optab_methods methods
,
606 unsigned HOST_WIDE_INT shift_mask
)
608 rtx superword_op1
, tmp
, cmp1
, cmp2
;
609 enum rtx_code cmp_code
;
611 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
612 fill the result with sign or zero bits as appropriate. If so, the value
613 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
614 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
615 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
617 This isn't worthwhile for constant shifts since the optimizers will
618 cope better with in-range shift counts. */
619 if (shift_mask
>= BITS_PER_WORD
621 && !CONSTANT_P (op1
))
623 if (!expand_doubleword_shift (op1_mode
, binoptab
,
624 outof_input
, into_input
, op1
,
626 unsignedp
, methods
, shift_mask
))
628 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
629 outof_target
, unsignedp
, methods
))
634 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
635 is true when the effective shift value is less than BITS_PER_WORD.
636 Set SUPERWORD_OP1 to the shift count that should be used to shift
637 OUTOF_INPUT into INTO_TARGET when the condition is false. */
638 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
, op1_mode
), op1_mode
);
639 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
641 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
642 is a subword shift count. */
643 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
645 cmp2
= CONST0_RTX (op1_mode
);
651 /* Set CMP1 to OP1 - BITS_PER_WORD. */
652 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
654 cmp2
= CONST0_RTX (op1_mode
);
656 superword_op1
= cmp1
;
661 /* If we can compute the condition at compile time, pick the
662 appropriate subroutine. */
663 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
664 if (tmp
!= 0 && CONST_INT_P (tmp
))
666 if (tmp
== const0_rtx
)
667 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
668 outof_target
, into_target
,
671 return expand_subword_shift (op1_mode
, binoptab
,
672 outof_input
, into_input
, op1
,
673 outof_target
, into_target
,
674 unsignedp
, methods
, shift_mask
);
677 /* Try using conditional moves to generate straight-line code. */
678 if (HAVE_conditional_move
)
680 rtx_insn
*start
= get_last_insn ();
681 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
682 cmp_code
, cmp1
, cmp2
,
683 outof_input
, into_input
,
685 outof_target
, into_target
,
686 unsignedp
, methods
, shift_mask
))
688 delete_insns_since (start
);
691 /* As a last resort, use branches to select the correct alternative. */
692 rtx_code_label
*subword_label
= gen_label_rtx ();
693 rtx_code_label
*done_label
= gen_label_rtx ();
696 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
698 profile_probability::uninitialized ());
701 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
702 outof_target
, into_target
,
706 emit_jump_insn (targetm
.gen_jump (done_label
));
708 emit_label (subword_label
);
710 if (!expand_subword_shift (op1_mode
, binoptab
,
711 outof_input
, into_input
, op1
,
712 outof_target
, into_target
,
713 unsignedp
, methods
, shift_mask
))
716 emit_label (done_label
);
720 /* Subroutine of expand_binop. Perform a double word multiplication of
721 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
722 as the target's word_mode. This function return NULL_RTX if anything
723 goes wrong, in which case it may have already emitted instructions
724 which need to be deleted.
726 If we want to multiply two two-word values and have normal and widening
727 multiplies of single-word values, we can do this with three smaller
730 The multiplication proceeds as follows:
731 _______________________
732 [__op0_high_|__op0_low__]
733 _______________________
734 * [__op1_high_|__op1_low__]
735 _______________________________________________
736 _______________________
737 (1) [__op0_low__*__op1_low__]
738 _______________________
739 (2a) [__op0_low__*__op1_high_]
740 _______________________
741 (2b) [__op0_high_*__op1_low__]
742 _______________________
743 (3) [__op0_high_*__op1_high_]
746 This gives a 4-word result. Since we are only interested in the
747 lower 2 words, partial result (3) and the upper words of (2a) and
748 (2b) don't need to be calculated. Hence (2a) and (2b) can be
749 calculated using non-widening multiplication.
751 (1), however, needs to be calculated with an unsigned widening
752 multiplication. If this operation is not directly supported we
753 try using a signed widening multiplication and adjust the result.
754 This adjustment works as follows:
756 If both operands are positive then no adjustment is needed.
758 If the operands have different signs, for example op0_low < 0 and
759 op1_low >= 0, the instruction treats the most significant bit of
760 op0_low as a sign bit instead of a bit with significance
761 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
762 with 2**BITS_PER_WORD - op0_low, and two's complements the
763 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
766 Similarly, if both operands are negative, we need to add
767 (op0_low + op1_low) * 2**BITS_PER_WORD.
769 We use a trick to adjust quickly. We logically shift op0_low right
770 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
771 op0_high (op1_high) before it is used to calculate 2b (2a). If no
772 logical shift exists, we do an arithmetic right shift and subtract
776 expand_doubleword_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
777 bool umulp
, enum optab_methods methods
)
779 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
780 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
781 rtx wordm1
= umulp
? NULL_RTX
: GEN_INT (BITS_PER_WORD
- 1);
782 rtx product
, adjust
, product_high
, temp
;
784 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
785 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
786 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
787 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
789 /* If we're using an unsigned multiply to directly compute the product
790 of the low-order words of the operands and perform any required
791 adjustments of the operands, we begin by trying two more multiplications
792 and then computing the appropriate sum.
794 We have checked above that the required addition is provided.
795 Full-word addition will normally always succeed, especially if
796 it is provided at all, so we don't worry about its failure. The
797 multiplication may well fail, however, so we do handle that. */
801 /* ??? This could be done with emit_store_flag where available. */
802 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
803 NULL_RTX
, 1, methods
);
805 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
806 NULL_RTX
, 0, OPTAB_DIRECT
);
809 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
810 NULL_RTX
, 0, methods
);
813 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
814 NULL_RTX
, 0, OPTAB_DIRECT
);
821 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
822 NULL_RTX
, 0, OPTAB_DIRECT
);
826 /* OP0_HIGH should now be dead. */
830 /* ??? This could be done with emit_store_flag where available. */
831 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
832 NULL_RTX
, 1, methods
);
834 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
835 NULL_RTX
, 0, OPTAB_DIRECT
);
838 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
839 NULL_RTX
, 0, methods
);
842 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
843 NULL_RTX
, 0, OPTAB_DIRECT
);
850 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
851 NULL_RTX
, 0, OPTAB_DIRECT
);
855 /* OP1_HIGH should now be dead. */
857 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
858 NULL_RTX
, 0, OPTAB_DIRECT
);
860 if (target
&& !REG_P (target
))
864 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
865 target
, 1, OPTAB_DIRECT
);
867 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
868 target
, 1, OPTAB_DIRECT
);
873 product_high
= operand_subword (product
, high
, 1, mode
);
874 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
875 NULL_RTX
, 0, OPTAB_DIRECT
);
876 emit_move_insn (product_high
, adjust
);
880 /* Wrapper around expand_binop which takes an rtx code to specify
881 the operation to perform, not an optab pointer. All other
882 arguments are the same. */
884 expand_simple_binop (machine_mode mode
, enum rtx_code code
, rtx op0
,
885 rtx op1
, rtx target
, int unsignedp
,
886 enum optab_methods methods
)
888 optab binop
= code_to_optab (code
);
891 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
894 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
895 binop. Order them according to commutative_operand_precedence and, if
896 possible, try to put TARGET or a pseudo first. */
898 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
900 int op0_prec
= commutative_operand_precedence (op0
);
901 int op1_prec
= commutative_operand_precedence (op1
);
903 if (op0_prec
< op1_prec
)
906 if (op0_prec
> op1_prec
)
909 /* With equal precedence, both orders are ok, but it is better if the
910 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
911 if (target
== 0 || REG_P (target
))
912 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
914 return rtx_equal_p (op1
, target
);
917 /* Return true if BINOPTAB implements a shift operation. */
920 shift_optab_p (optab binoptab
)
922 switch (optab_to_code (binoptab
))
938 /* Return true if BINOPTAB implements a commutative binary operation. */
941 commutative_optab_p (optab binoptab
)
943 return (GET_RTX_CLASS (optab_to_code (binoptab
)) == RTX_COMM_ARITH
944 || binoptab
== smul_widen_optab
945 || binoptab
== umul_widen_optab
946 || binoptab
== smul_highpart_optab
947 || binoptab
== umul_highpart_optab
);
950 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
951 optimizing, and if the operand is a constant that costs more than
952 1 instruction, force the constant into a register and return that
953 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
956 avoid_expensive_constant (machine_mode mode
, optab binoptab
,
957 int opn
, rtx x
, bool unsignedp
)
959 bool speed
= optimize_insn_for_speed_p ();
964 && (rtx_cost (x
, mode
, optab_to_code (binoptab
), opn
, speed
)
965 > set_src_cost (x
, mode
, speed
)))
969 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
970 if (intval
!= INTVAL (x
))
971 x
= GEN_INT (intval
);
974 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
975 x
= force_reg (mode
, x
);
980 /* Helper function for expand_binop: handle the case where there
981 is an insn that directly implements the indicated operation.
982 Returns null if this is not possible. */
984 expand_binop_directly (machine_mode mode
, optab binoptab
,
986 rtx target
, int unsignedp
, enum optab_methods methods
,
989 machine_mode from_mode
= widened_mode (mode
, op0
, op1
);
990 enum insn_code icode
= find_widening_optab_handler (binoptab
, mode
,
992 machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
993 machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
994 machine_mode mode0
, mode1
, tmp_mode
;
995 struct expand_operand ops
[3];
998 rtx xop0
= op0
, xop1
= op1
;
999 bool canonicalize_op1
= false;
1001 /* If it is a commutative operator and the modes would match
1002 if we would swap the operands, we can save the conversions. */
1003 commutative_p
= commutative_optab_p (binoptab
);
1005 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1006 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode1
)
1007 std::swap (xop0
, xop1
);
1009 /* If we are optimizing, force expensive constants into a register. */
1010 xop0
= avoid_expensive_constant (xmode0
, binoptab
, 0, xop0
, unsignedp
);
1011 if (!shift_optab_p (binoptab
))
1012 xop1
= avoid_expensive_constant (xmode1
, binoptab
, 1, xop1
, unsignedp
);
1014 /* Shifts and rotates often use a different mode for op1 from op0;
1015 for VOIDmode constants we don't know the mode, so force it
1016 to be canonicalized using convert_modes. */
1017 canonicalize_op1
= true;
1019 /* In case the insn wants input operands in modes different from
1020 those of the actual operands, convert the operands. It would
1021 seem that we don't need to convert CONST_INTs, but we do, so
1022 that they're properly zero-extended, sign-extended or truncated
1025 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1026 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1028 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1032 mode1
= ((GET_MODE (xop1
) != VOIDmode
|| canonicalize_op1
)
1033 ? GET_MODE (xop1
) : mode
);
1034 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1036 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1040 /* If operation is commutative,
1041 try to make the first operand a register.
1042 Even better, try to make it the same as the target.
1043 Also try to make the last operand a constant. */
1045 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1046 std::swap (xop0
, xop1
);
1048 /* Now, if insn's predicates don't allow our operands, put them into
1051 if (binoptab
== vec_pack_trunc_optab
1052 || binoptab
== vec_pack_usat_optab
1053 || binoptab
== vec_pack_ssat_optab
1054 || binoptab
== vec_pack_ufix_trunc_optab
1055 || binoptab
== vec_pack_sfix_trunc_optab
)
1057 /* The mode of the result is different then the mode of the
1059 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1060 if (VECTOR_MODE_P (mode
)
1061 && GET_MODE_NUNITS (tmp_mode
) != 2 * GET_MODE_NUNITS (mode
))
1063 delete_insns_since (last
);
1070 create_output_operand (&ops
[0], target
, tmp_mode
);
1071 create_input_operand (&ops
[1], xop0
, mode0
);
1072 create_input_operand (&ops
[2], xop1
, mode1
);
1073 pat
= maybe_gen_insn (icode
, 3, ops
);
1076 /* If PAT is composed of more than one insn, try to add an appropriate
1077 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1078 operand, call expand_binop again, this time without a target. */
1079 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1080 && ! add_equal_note (pat
, ops
[0].value
,
1081 optab_to_code (binoptab
),
1082 ops
[1].value
, ops
[2].value
))
1084 delete_insns_since (last
);
1085 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1086 unsignedp
, methods
);
1090 return ops
[0].value
;
1092 delete_insns_since (last
);
1096 /* Generate code to perform an operation specified by BINOPTAB
1097 on operands OP0 and OP1, with result having machine-mode MODE.
1099 UNSIGNEDP is for the case where we have to widen the operands
1100 to perform the operation. It says to use zero-extension.
1102 If TARGET is nonzero, the value
1103 is generated there, if it is convenient to do so.
1104 In all cases an rtx is returned for the locus of the value;
1105 this may or may not be TARGET. */
1108 expand_binop (machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1109 rtx target
, int unsignedp
, enum optab_methods methods
)
1111 enum optab_methods next_methods
1112 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1113 ? OPTAB_WIDEN
: methods
);
1114 enum mode_class mclass
;
1115 machine_mode wider_mode
;
1118 rtx_insn
*entry_last
= get_last_insn ();
1121 mclass
= GET_MODE_CLASS (mode
);
1123 /* If subtracting an integer constant, convert this into an addition of
1124 the negated constant. */
1126 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1128 op1
= negate_rtx (mode
, op1
);
1129 binoptab
= add_optab
;
1131 /* For shifts, constant invalid op1 might be expanded from different
1132 mode than MODE. As those are invalid, force them to a register
1133 to avoid further problems during expansion. */
1134 else if (CONST_INT_P (op1
)
1135 && shift_optab_p (binoptab
)
1136 && UINTVAL (op1
) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode
)))
1138 op1
= gen_int_mode (INTVAL (op1
), GET_MODE_INNER (mode
));
1139 op1
= force_reg (GET_MODE_INNER (mode
), op1
);
1142 /* Record where to delete back to if we backtrack. */
1143 last
= get_last_insn ();
1145 /* If we can do it with a three-operand insn, do so. */
1147 if (methods
!= OPTAB_MUST_WIDEN
1148 && find_widening_optab_handler (binoptab
, mode
,
1149 widened_mode (mode
, op0
, op1
), 1)
1150 != CODE_FOR_nothing
)
1152 temp
= expand_binop_directly (mode
, binoptab
, op0
, op1
, target
,
1153 unsignedp
, methods
, last
);
1158 /* If we were trying to rotate, and that didn't work, try rotating
1159 the other direction before falling back to shifts and bitwise-or. */
1160 if (((binoptab
== rotl_optab
1161 && optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
1162 || (binoptab
== rotr_optab
1163 && optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
))
1164 && mclass
== MODE_INT
)
1166 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1168 unsigned int bits
= GET_MODE_PRECISION (mode
);
1170 if (CONST_INT_P (op1
))
1171 newop1
= GEN_INT (bits
- INTVAL (op1
));
1172 else if (targetm
.shift_truncation_mask (mode
) == bits
- 1)
1173 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1175 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1176 gen_int_mode (bits
, GET_MODE (op1
)), op1
,
1177 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1179 temp
= expand_binop_directly (mode
, otheroptab
, op0
, newop1
,
1180 target
, unsignedp
, methods
, last
);
1185 /* If this is a multiply, see if we can do a widening operation that
1186 takes operands of this mode and makes a wider mode. */
1188 if (binoptab
== smul_optab
1189 && GET_MODE_2XWIDER_MODE (mode
).exists (&wider_mode
)
1190 && (convert_optab_handler ((unsignedp
1192 : smul_widen_optab
),
1193 wider_mode
, mode
) != CODE_FOR_nothing
))
1195 temp
= expand_binop (wider_mode
,
1196 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1197 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1201 if (GET_MODE_CLASS (mode
) == MODE_INT
1202 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (temp
)))
1203 return gen_lowpart (mode
, temp
);
1205 return convert_to_mode (mode
, temp
, unsignedp
);
1209 /* If this is a vector shift by a scalar, see if we can do a vector
1210 shift by a vector. If so, broadcast the scalar into a vector. */
1211 if (mclass
== MODE_VECTOR_INT
)
1213 optab otheroptab
= unknown_optab
;
1215 if (binoptab
== ashl_optab
)
1216 otheroptab
= vashl_optab
;
1217 else if (binoptab
== ashr_optab
)
1218 otheroptab
= vashr_optab
;
1219 else if (binoptab
== lshr_optab
)
1220 otheroptab
= vlshr_optab
;
1221 else if (binoptab
== rotl_optab
)
1222 otheroptab
= vrotl_optab
;
1223 else if (binoptab
== rotr_optab
)
1224 otheroptab
= vrotr_optab
;
1226 if (otheroptab
&& optab_handler (otheroptab
, mode
) != CODE_FOR_nothing
)
1228 /* The scalar may have been extended to be too wide. Truncate
1229 it back to the proper size to fit in the broadcast vector. */
1230 machine_mode inner_mode
= GET_MODE_INNER (mode
);
1231 if (!CONST_INT_P (op1
)
1232 && (GET_MODE_BITSIZE (inner_mode
)
1233 < GET_MODE_BITSIZE (GET_MODE (op1
))))
1234 op1
= force_reg (inner_mode
,
1235 simplify_gen_unary (TRUNCATE
, inner_mode
, op1
,
1237 rtx vop1
= expand_vector_broadcast (mode
, op1
);
1240 temp
= expand_binop_directly (mode
, otheroptab
, op0
, vop1
,
1241 target
, unsignedp
, methods
, last
);
1248 /* Look for a wider mode of the same class for which we think we
1249 can open-code the operation. Check for a widening multiply at the
1250 wider mode as well. */
1252 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1253 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1254 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1256 machine_mode next_mode
;
1257 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1258 || (binoptab
== smul_optab
1259 && GET_MODE_WIDER_MODE (wider_mode
).exists (&next_mode
)
1260 && (find_widening_optab_handler ((unsignedp
1262 : smul_widen_optab
),
1264 != CODE_FOR_nothing
)))
1266 rtx xop0
= op0
, xop1
= op1
;
1269 /* For certain integer operations, we need not actually extend
1270 the narrow operands, as long as we will truncate
1271 the results to the same narrowness. */
1273 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1274 || binoptab
== xor_optab
1275 || binoptab
== add_optab
|| binoptab
== sub_optab
1276 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1277 && mclass
== MODE_INT
)
1280 xop0
= avoid_expensive_constant (mode
, binoptab
, 0,
1282 if (binoptab
!= ashl_optab
)
1283 xop1
= avoid_expensive_constant (mode
, binoptab
, 1,
1287 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1289 /* The second operand of a shift must always be extended. */
1290 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1291 no_extend
&& binoptab
!= ashl_optab
);
1293 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1294 unsignedp
, OPTAB_DIRECT
);
1297 if (mclass
!= MODE_INT
1298 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1301 target
= gen_reg_rtx (mode
);
1302 convert_move (target
, temp
, 0);
1306 return gen_lowpart (mode
, temp
);
1309 delete_insns_since (last
);
1313 /* If operation is commutative,
1314 try to make the first operand a register.
1315 Even better, try to make it the same as the target.
1316 Also try to make the last operand a constant. */
1317 if (commutative_optab_p (binoptab
)
1318 && swap_commutative_operands_with_target (target
, op0
, op1
))
1319 std::swap (op0
, op1
);
1321 /* These can be done a word at a time. */
1322 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1323 && mclass
== MODE_INT
1324 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
1325 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1330 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1331 won't be accurate, so use a new target. */
1335 || !valid_multiword_target_p (target
))
1336 target
= gen_reg_rtx (mode
);
1340 /* Do the actual arithmetic. */
1341 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
1343 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
1344 rtx x
= expand_binop (word_mode
, binoptab
,
1345 operand_subword_force (op0
, i
, mode
),
1346 operand_subword_force (op1
, i
, mode
),
1347 target_piece
, unsignedp
, next_methods
);
1352 if (target_piece
!= x
)
1353 emit_move_insn (target_piece
, x
);
1356 insns
= get_insns ();
1359 if (i
== GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
)
1366 /* Synthesize double word shifts from single word shifts. */
1367 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1368 || binoptab
== ashr_optab
)
1369 && mclass
== MODE_INT
1370 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1371 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1372 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
)
1373 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1374 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1375 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1377 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1378 machine_mode op1_mode
;
1380 double_shift_mask
= targetm
.shift_truncation_mask (mode
);
1381 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1382 op1_mode
= GET_MODE (op1
) != VOIDmode
? GET_MODE (op1
) : word_mode
;
1384 /* Apply the truncation to constant shifts. */
1385 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1386 op1
= GEN_INT (INTVAL (op1
) & double_shift_mask
);
1388 if (op1
== CONST0_RTX (op1_mode
))
1391 /* Make sure that this is a combination that expand_doubleword_shift
1392 can handle. See the comments there for details. */
1393 if (double_shift_mask
== 0
1394 || (shift_mask
== BITS_PER_WORD
- 1
1395 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1398 rtx into_target
, outof_target
;
1399 rtx into_input
, outof_input
;
1400 int left_shift
, outof_word
;
1402 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1403 won't be accurate, so use a new target. */
1407 || !valid_multiword_target_p (target
))
1408 target
= gen_reg_rtx (mode
);
1412 /* OUTOF_* is the word we are shifting bits away from, and
1413 INTO_* is the word that we are shifting bits towards, thus
1414 they differ depending on the direction of the shift and
1415 WORDS_BIG_ENDIAN. */
1417 left_shift
= binoptab
== ashl_optab
;
1418 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1420 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1421 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1423 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1424 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1426 if (expand_doubleword_shift (op1_mode
, binoptab
,
1427 outof_input
, into_input
, op1
,
1428 outof_target
, into_target
,
1429 unsignedp
, next_methods
, shift_mask
))
1431 insns
= get_insns ();
1441 /* Synthesize double word rotates from single word shifts. */
1442 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1443 && mclass
== MODE_INT
1444 && CONST_INT_P (op1
)
1445 && GET_MODE_PRECISION (mode
) == 2 * BITS_PER_WORD
1446 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1447 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1450 rtx into_target
, outof_target
;
1451 rtx into_input
, outof_input
;
1453 int shift_count
, left_shift
, outof_word
;
1455 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1456 won't be accurate, so use a new target. Do this also if target is not
1457 a REG, first because having a register instead may open optimization
1458 opportunities, and second because if target and op0 happen to be MEMs
1459 designating the same location, we would risk clobbering it too early
1460 in the code sequence we generate below. */
1465 || !valid_multiword_target_p (target
))
1466 target
= gen_reg_rtx (mode
);
1470 shift_count
= INTVAL (op1
);
1472 /* OUTOF_* is the word we are shifting bits away from, and
1473 INTO_* is the word that we are shifting bits towards, thus
1474 they differ depending on the direction of the shift and
1475 WORDS_BIG_ENDIAN. */
1477 left_shift
= (binoptab
== rotl_optab
);
1478 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1480 outof_target
= operand_subword (target
, outof_word
, 1, mode
);
1481 into_target
= operand_subword (target
, 1 - outof_word
, 1, mode
);
1483 outof_input
= operand_subword_force (op0
, outof_word
, mode
);
1484 into_input
= operand_subword_force (op0
, 1 - outof_word
, mode
);
1486 if (shift_count
== BITS_PER_WORD
)
1488 /* This is just a word swap. */
1489 emit_move_insn (outof_target
, into_input
);
1490 emit_move_insn (into_target
, outof_input
);
1495 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1496 rtx first_shift_count
, second_shift_count
;
1497 optab reverse_unsigned_shift
, unsigned_shift
;
1499 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1500 ? lshr_optab
: ashl_optab
);
1502 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1503 ? ashl_optab
: lshr_optab
);
1505 if (shift_count
> BITS_PER_WORD
)
1507 first_shift_count
= GEN_INT (shift_count
- BITS_PER_WORD
);
1508 second_shift_count
= GEN_INT (2 * BITS_PER_WORD
- shift_count
);
1512 first_shift_count
= GEN_INT (BITS_PER_WORD
- shift_count
);
1513 second_shift_count
= GEN_INT (shift_count
);
1516 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1517 outof_input
, first_shift_count
,
1518 NULL_RTX
, unsignedp
, next_methods
);
1519 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1520 into_input
, second_shift_count
,
1521 NULL_RTX
, unsignedp
, next_methods
);
1523 if (into_temp1
!= 0 && into_temp2
!= 0)
1524 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1525 into_target
, unsignedp
, next_methods
);
1529 if (inter
!= 0 && inter
!= into_target
)
1530 emit_move_insn (into_target
, inter
);
1532 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1533 into_input
, first_shift_count
,
1534 NULL_RTX
, unsignedp
, next_methods
);
1535 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1536 outof_input
, second_shift_count
,
1537 NULL_RTX
, unsignedp
, next_methods
);
1539 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1540 inter
= expand_binop (word_mode
, ior_optab
,
1541 outof_temp1
, outof_temp2
,
1542 outof_target
, unsignedp
, next_methods
);
1544 if (inter
!= 0 && inter
!= outof_target
)
1545 emit_move_insn (outof_target
, inter
);
1548 insns
= get_insns ();
1558 /* These can be done a word at a time by propagating carries. */
1559 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1560 && mclass
== MODE_INT
1561 && GET_MODE_SIZE (mode
) >= 2 * UNITS_PER_WORD
1562 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1565 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1566 const unsigned int nwords
= GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
;
1567 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1568 rtx xop0
, xop1
, xtarget
;
1570 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1571 value is one of those, use it. Otherwise, use 1 since it is the
1572 one easiest to get. */
1573 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1574 int normalizep
= STORE_FLAG_VALUE
;
1579 /* Prepare the operands. */
1580 xop0
= force_reg (mode
, op0
);
1581 xop1
= force_reg (mode
, op1
);
1583 xtarget
= gen_reg_rtx (mode
);
1585 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1588 /* Indicate for flow that the entire target reg is being set. */
1590 emit_clobber (xtarget
);
1592 /* Do the actual arithmetic. */
1593 for (i
= 0; i
< nwords
; i
++)
1595 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1596 rtx target_piece
= operand_subword (xtarget
, index
, 1, mode
);
1597 rtx op0_piece
= operand_subword_force (xop0
, index
, mode
);
1598 rtx op1_piece
= operand_subword_force (xop1
, index
, mode
);
1601 /* Main add/subtract of the input operands. */
1602 x
= expand_binop (word_mode
, binoptab
,
1603 op0_piece
, op1_piece
,
1604 target_piece
, unsignedp
, next_methods
);
1610 /* Store carry from main add/subtract. */
1611 carry_out
= gen_reg_rtx (word_mode
);
1612 carry_out
= emit_store_flag_force (carry_out
,
1613 (binoptab
== add_optab
1616 word_mode
, 1, normalizep
);
1623 /* Add/subtract previous carry to main result. */
1624 newx
= expand_binop (word_mode
,
1625 normalizep
== 1 ? binoptab
: otheroptab
,
1627 NULL_RTX
, 1, next_methods
);
1631 /* Get out carry from adding/subtracting carry in. */
1632 rtx carry_tmp
= gen_reg_rtx (word_mode
);
1633 carry_tmp
= emit_store_flag_force (carry_tmp
,
1634 (binoptab
== add_optab
1637 word_mode
, 1, normalizep
);
1639 /* Logical-ior the two poss. carry together. */
1640 carry_out
= expand_binop (word_mode
, ior_optab
,
1641 carry_out
, carry_tmp
,
1642 carry_out
, 0, next_methods
);
1646 emit_move_insn (target_piece
, newx
);
1650 if (x
!= target_piece
)
1651 emit_move_insn (target_piece
, x
);
1654 carry_in
= carry_out
;
1657 if (i
== GET_MODE_BITSIZE (mode
) / (unsigned) BITS_PER_WORD
)
1659 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
1660 || ! rtx_equal_p (target
, xtarget
))
1662 rtx_insn
*temp
= emit_move_insn (target
, xtarget
);
1664 set_dst_reg_note (temp
, REG_EQUAL
,
1665 gen_rtx_fmt_ee (optab_to_code (binoptab
),
1666 mode
, copy_rtx (xop0
),
1677 delete_insns_since (last
);
1680 /* Attempt to synthesize double word multiplies using a sequence of word
1681 mode multiplications. We first attempt to generate a sequence using a
1682 more efficient unsigned widening multiply, and if that fails we then
1683 try using a signed widening multiply. */
1685 if (binoptab
== smul_optab
1686 && mclass
== MODE_INT
1687 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1688 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
1689 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
1691 rtx product
= NULL_RTX
;
1692 if (widening_optab_handler (umul_widen_optab
, mode
, word_mode
)
1693 != CODE_FOR_nothing
)
1695 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
1698 delete_insns_since (last
);
1701 if (product
== NULL_RTX
1702 && widening_optab_handler (smul_widen_optab
, mode
, word_mode
)
1703 != CODE_FOR_nothing
)
1705 product
= expand_doubleword_mult (mode
, op0
, op1
, target
,
1708 delete_insns_since (last
);
1711 if (product
!= NULL_RTX
)
1713 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
)
1715 rtx_insn
*move
= emit_move_insn (target
? target
: product
,
1717 set_dst_reg_note (move
,
1719 gen_rtx_fmt_ee (MULT
, mode
,
1722 target
? target
: product
);
1728 /* It can't be open-coded in this mode.
1729 Use a library call if one is available and caller says that's ok. */
1731 libfunc
= optab_libfunc (binoptab
, mode
);
1733 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
1737 machine_mode op1_mode
= mode
;
1742 if (shift_optab_p (binoptab
))
1744 op1_mode
= targetm
.libgcc_shift_count_mode ();
1745 /* Specify unsigned here,
1746 since negative shift counts are meaningless. */
1747 op1x
= convert_to_mode (op1_mode
, op1
, 1);
1750 if (GET_MODE (op0
) != VOIDmode
1751 && GET_MODE (op0
) != mode
)
1752 op0
= convert_to_mode (mode
, op0
, unsignedp
);
1754 /* Pass 1 for NO_QUEUE so we don't lose any increments
1755 if the libcall is cse'd or moved. */
1756 value
= emit_library_call_value (libfunc
,
1757 NULL_RTX
, LCT_CONST
, mode
, 2,
1758 op0
, mode
, op1x
, op1_mode
);
1760 insns
= get_insns ();
1763 bool trapv
= trapv_binoptab_p (binoptab
);
1764 target
= gen_reg_rtx (mode
);
1765 emit_libcall_block_1 (insns
, target
, value
,
1767 : gen_rtx_fmt_ee (optab_to_code (binoptab
),
1768 mode
, op0
, op1
), trapv
);
1773 delete_insns_since (last
);
1775 /* It can't be done in this mode. Can we do it in a wider mode? */
1777 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
1778 || methods
== OPTAB_MUST_WIDEN
))
1780 /* Caller says, don't even try. */
1781 delete_insns_since (entry_last
);
1785 /* Compute the value of METHODS to pass to recursive calls.
1786 Don't allow widening to be tried recursively. */
1788 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
1790 /* Look for a wider mode of the same class for which it appears we can do
1793 if (CLASS_HAS_WIDER_MODES_P (mclass
))
1795 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1797 if (find_widening_optab_handler (binoptab
, wider_mode
, mode
, 1)
1799 || (methods
== OPTAB_LIB
1800 && optab_libfunc (binoptab
, wider_mode
)))
1802 rtx xop0
= op0
, xop1
= op1
;
1805 /* For certain integer operations, we need not actually extend
1806 the narrow operands, as long as we will truncate
1807 the results to the same narrowness. */
1809 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1810 || binoptab
== xor_optab
1811 || binoptab
== add_optab
|| binoptab
== sub_optab
1812 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1813 && mclass
== MODE_INT
)
1816 xop0
= widen_operand (xop0
, wider_mode
, mode
,
1817 unsignedp
, no_extend
);
1819 /* The second operand of a shift must always be extended. */
1820 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1821 no_extend
&& binoptab
!= ashl_optab
);
1823 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1824 unsignedp
, methods
);
1827 if (mclass
!= MODE_INT
1828 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1831 target
= gen_reg_rtx (mode
);
1832 convert_move (target
, temp
, 0);
1836 return gen_lowpart (mode
, temp
);
1839 delete_insns_since (last
);
1844 delete_insns_since (entry_last
);
1848 /* Expand a binary operator which has both signed and unsigned forms.
1849 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1852 If we widen unsigned operands, we may use a signed wider operation instead
1853 of an unsigned wider operation, since the result would be the same. */
1856 sign_expand_binop (machine_mode mode
, optab uoptab
, optab soptab
,
1857 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
1858 enum optab_methods methods
)
1861 optab direct_optab
= unsignedp
? uoptab
: soptab
;
1864 /* Do it without widening, if possible. */
1865 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1866 unsignedp
, OPTAB_DIRECT
);
1867 if (temp
|| methods
== OPTAB_DIRECT
)
1870 /* Try widening to a signed int. Disable any direct use of any
1871 signed insn in the current mode. */
1872 save_enable
= swap_optab_enable (soptab
, mode
, false);
1874 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
1875 unsignedp
, OPTAB_WIDEN
);
1877 /* For unsigned operands, try widening to an unsigned int. */
1878 if (!temp
&& unsignedp
)
1879 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1880 unsignedp
, OPTAB_WIDEN
);
1881 if (temp
|| methods
== OPTAB_WIDEN
)
1884 /* Use the right width libcall if that exists. */
1885 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1886 unsignedp
, OPTAB_LIB
);
1887 if (temp
|| methods
== OPTAB_LIB
)
1890 /* Must widen and use a libcall, use either signed or unsigned. */
1891 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
1892 unsignedp
, methods
);
1893 if (!temp
&& unsignedp
)
1894 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1895 unsignedp
, methods
);
1898 /* Undo the fiddling above. */
1900 swap_optab_enable (soptab
, mode
, true);
1904 /* Generate code to perform an operation specified by UNOPPTAB
1905 on operand OP0, with two results to TARG0 and TARG1.
1906 We assume that the order of the operands for the instruction
1907 is TARG0, TARG1, OP0.
1909 Either TARG0 or TARG1 may be zero, but what that means is that
1910 the result is not actually wanted. We will generate it into
1911 a dummy pseudo-reg and discard it. They may not both be zero.
1913 Returns 1 if this operation can be performed; 0 if not. */
1916 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
1919 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
1920 enum mode_class mclass
;
1921 machine_mode wider_mode
;
1922 rtx_insn
*entry_last
= get_last_insn ();
1925 mclass
= GET_MODE_CLASS (mode
);
1928 targ0
= gen_reg_rtx (mode
);
1930 targ1
= gen_reg_rtx (mode
);
1932 /* Record where to go back to if we fail. */
1933 last
= get_last_insn ();
1935 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
1937 struct expand_operand ops
[3];
1938 enum insn_code icode
= optab_handler (unoptab
, mode
);
1940 create_fixed_operand (&ops
[0], targ0
);
1941 create_fixed_operand (&ops
[1], targ1
);
1942 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
1943 if (maybe_expand_insn (icode
, 3, ops
))
1947 /* It can't be done in this mode. Can we do it in a wider mode? */
1949 if (CLASS_HAS_WIDER_MODES_P (mclass
))
1951 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1953 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
1955 rtx t0
= gen_reg_rtx (wider_mode
);
1956 rtx t1
= gen_reg_rtx (wider_mode
);
1957 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
1959 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
1961 convert_move (targ0
, t0
, unsignedp
);
1962 convert_move (targ1
, t1
, unsignedp
);
1966 delete_insns_since (last
);
1971 delete_insns_since (entry_last
);
1975 /* Generate code to perform an operation specified by BINOPTAB
1976 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1977 We assume that the order of the operands for the instruction
1978 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1979 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1981 Either TARG0 or TARG1 may be zero, but what that means is that
1982 the result is not actually wanted. We will generate it into
1983 a dummy pseudo-reg and discard it. They may not both be zero.
1985 Returns 1 if this operation can be performed; 0 if not. */
1988 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
1991 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
1992 enum mode_class mclass
;
1993 machine_mode wider_mode
;
1994 rtx_insn
*entry_last
= get_last_insn ();
1997 mclass
= GET_MODE_CLASS (mode
);
2000 targ0
= gen_reg_rtx (mode
);
2002 targ1
= gen_reg_rtx (mode
);
2004 /* Record where to go back to if we fail. */
2005 last
= get_last_insn ();
2007 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2009 struct expand_operand ops
[4];
2010 enum insn_code icode
= optab_handler (binoptab
, mode
);
2011 machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2012 machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2013 rtx xop0
= op0
, xop1
= op1
;
2015 /* If we are optimizing, force expensive constants into a register. */
2016 xop0
= avoid_expensive_constant (mode0
, binoptab
, 0, xop0
, unsignedp
);
2017 xop1
= avoid_expensive_constant (mode1
, binoptab
, 1, xop1
, unsignedp
);
2019 create_fixed_operand (&ops
[0], targ0
);
2020 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2021 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
2022 create_fixed_operand (&ops
[3], targ1
);
2023 if (maybe_expand_insn (icode
, 4, ops
))
2025 delete_insns_since (last
);
2028 /* It can't be done in this mode. Can we do it in a wider mode? */
2030 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2032 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2034 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2036 rtx t0
= gen_reg_rtx (wider_mode
);
2037 rtx t1
= gen_reg_rtx (wider_mode
);
2038 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2039 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2041 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2044 convert_move (targ0
, t0
, unsignedp
);
2045 convert_move (targ1
, t1
, unsignedp
);
2049 delete_insns_since (last
);
2054 delete_insns_since (entry_last
);
2058 /* Expand the two-valued library call indicated by BINOPTAB, but
2059 preserve only one of the values. If TARG0 is non-NULL, the first
2060 value is placed into TARG0; otherwise the second value is placed
2061 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2062 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2063 This routine assumes that the value returned by the library call is
2064 as if the return value was of an integral mode twice as wide as the
2065 mode of OP0. Returns 1 if the call was successful. */
2068 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2069 rtx targ0
, rtx targ1
, enum rtx_code code
)
2072 machine_mode libval_mode
;
2077 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2078 gcc_assert (!targ0
!= !targ1
);
2080 mode
= GET_MODE (op0
);
2081 libfunc
= optab_libfunc (binoptab
, mode
);
2085 /* The value returned by the library function will have twice as
2086 many bits as the nominal MODE. */
2087 libval_mode
= smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode
),
2090 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2094 /* Get the part of VAL containing the value that we want. */
2095 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2096 targ0
? 0 : GET_MODE_SIZE (mode
));
2097 insns
= get_insns ();
2099 /* Move the into the desired location. */
2100 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2101 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2107 /* Wrapper around expand_unop which takes an rtx code to specify
2108 the operation to perform, not an optab pointer. All other
2109 arguments are the same. */
2111 expand_simple_unop (machine_mode mode
, enum rtx_code code
, rtx op0
,
2112 rtx target
, int unsignedp
)
2114 optab unop
= code_to_optab (code
);
2117 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2123 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2125 A similar operation can be used for clrsb. UNOPTAB says which operation
2126 we are trying to expand. */
2128 widen_leading (machine_mode mode
, rtx op0
, rtx target
, optab unoptab
)
2130 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2131 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2133 machine_mode wider_mode
;
2134 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2136 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2141 last
= get_last_insn ();
2144 target
= gen_reg_rtx (mode
);
2145 xop0
= widen_operand (op0
, wider_mode
, mode
,
2146 unoptab
!= clrsb_optab
, false);
2147 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2148 unoptab
!= clrsb_optab
);
2151 (wider_mode
, sub_optab
, temp
,
2152 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
2153 - GET_MODE_PRECISION (mode
),
2155 target
, true, OPTAB_DIRECT
);
2157 delete_insns_since (last
);
2166 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2167 quantities, choosing which based on whether the high word is nonzero. */
2169 expand_doubleword_clz (machine_mode mode
, rtx op0
, rtx target
)
2171 rtx xop0
= force_reg (mode
, op0
);
2172 rtx subhi
= gen_highpart (word_mode
, xop0
);
2173 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2174 rtx_code_label
*hi0_label
= gen_label_rtx ();
2175 rtx_code_label
*after_label
= gen_label_rtx ();
2179 /* If we were not given a target, use a word_mode register, not a
2180 'mode' register. The result will fit, and nobody is expecting
2181 anything bigger (the return type of __builtin_clz* is int). */
2183 target
= gen_reg_rtx (word_mode
);
2185 /* In any case, write to a word_mode scratch in both branches of the
2186 conditional, so we can ensure there is a single move insn setting
2187 'target' to tag a REG_EQUAL note on. */
2188 result
= gen_reg_rtx (word_mode
);
2192 /* If the high word is not equal to zero,
2193 then clz of the full value is clz of the high word. */
2194 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2195 word_mode
, true, hi0_label
);
2197 temp
= expand_unop_direct (word_mode
, clz_optab
, subhi
, result
, true);
2202 convert_move (result
, temp
, true);
2204 emit_jump_insn (targetm
.gen_jump (after_label
));
2207 /* Else clz of the full value is clz of the low word plus the number
2208 of bits in the high word. */
2209 emit_label (hi0_label
);
2211 temp
= expand_unop_direct (word_mode
, clz_optab
, sublo
, 0, true);
2214 temp
= expand_binop (word_mode
, add_optab
, temp
,
2215 gen_int_mode (GET_MODE_BITSIZE (word_mode
), word_mode
),
2216 result
, true, OPTAB_DIRECT
);
2220 convert_move (result
, temp
, true);
2222 emit_label (after_label
);
2223 convert_move (target
, result
, true);
2228 add_equal_note (seq
, target
, CLZ
, xop0
, 0);
2237 /* Try calculating popcount of a double-word quantity as two popcount's of
2238 word-sized quantities and summing up the results. */
2240 expand_doubleword_popcount (machine_mode mode
, rtx op0
, rtx target
)
2247 t0
= expand_unop_direct (word_mode
, popcount_optab
,
2248 operand_subword_force (op0
, 0, mode
), NULL_RTX
,
2250 t1
= expand_unop_direct (word_mode
, popcount_optab
,
2251 operand_subword_force (op0
, 1, mode
), NULL_RTX
,
2259 /* If we were not given a target, use a word_mode register, not a
2260 'mode' register. The result will fit, and nobody is expecting
2261 anything bigger (the return type of __builtin_popcount* is int). */
2263 target
= gen_reg_rtx (word_mode
);
2265 t
= expand_binop (word_mode
, add_optab
, t0
, t1
, target
, 0, OPTAB_DIRECT
);
2270 add_equal_note (seq
, t
, POPCOUNT
, op0
, 0);
2278 (parity:narrow (low (x) ^ high (x))) */
2280 expand_doubleword_parity (machine_mode mode
, rtx op0
, rtx target
)
2282 rtx t
= expand_binop (word_mode
, xor_optab
,
2283 operand_subword_force (op0
, 0, mode
),
2284 operand_subword_force (op0
, 1, mode
),
2285 NULL_RTX
, 0, OPTAB_DIRECT
);
2286 return expand_unop (word_mode
, parity_optab
, t
, target
, true);
2292 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2294 widen_bswap (machine_mode mode
, rtx op0
, rtx target
)
2296 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2297 machine_mode wider_mode
;
2301 if (!CLASS_HAS_WIDER_MODES_P (mclass
))
2304 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2305 if (optab_handler (bswap_optab
, wider_mode
) != CODE_FOR_nothing
)
2310 last
= get_last_insn ();
2312 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2313 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2315 gcc_assert (GET_MODE_PRECISION (wider_mode
) == GET_MODE_BITSIZE (wider_mode
)
2316 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
));
2318 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2319 GET_MODE_BITSIZE (wider_mode
)
2320 - GET_MODE_BITSIZE (mode
),
2326 target
= gen_reg_rtx (mode
);
2327 emit_move_insn (target
, gen_lowpart (mode
, x
));
2330 delete_insns_since (last
);
2335 /* Try calculating bswap as two bswaps of two word-sized operands. */
2338 expand_doubleword_bswap (machine_mode mode
, rtx op
, rtx target
)
2342 t1
= expand_unop (word_mode
, bswap_optab
,
2343 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2344 t0
= expand_unop (word_mode
, bswap_optab
,
2345 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2347 if (target
== 0 || !valid_multiword_target_p (target
))
2348 target
= gen_reg_rtx (mode
);
2350 emit_clobber (target
);
2351 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2352 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2357 /* Try calculating (parity x) as (and (popcount x) 1), where
2358 popcount can also be done in a wider mode. */
2360 expand_parity (machine_mode mode
, rtx op0
, rtx target
)
2362 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2363 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2365 machine_mode wider_mode
;
2366 FOR_EACH_MODE_FROM (wider_mode
, mode
)
2368 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2373 last
= get_last_insn ();
2375 if (target
== 0 || GET_MODE (target
) != wider_mode
)
2376 target
= gen_reg_rtx (wider_mode
);
2378 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2379 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2382 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2383 target
, true, OPTAB_DIRECT
);
2387 if (mclass
!= MODE_INT
2388 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2389 return convert_to_mode (mode
, temp
, 0);
2391 return gen_lowpart (mode
, temp
);
2394 delete_insns_since (last
);
2401 /* Try calculating ctz(x) as K - clz(x & -x) ,
2402 where K is GET_MODE_PRECISION(mode) - 1.
2404 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2405 don't have to worry about what the hardware does in that case. (If
2406 the clz instruction produces the usual value at 0, which is K, the
2407 result of this code sequence will be -1; expand_ffs, below, relies
2408 on this. It might be nice to have it be K instead, for consistency
2409 with the (very few) processors that provide a ctz with a defined
2410 value, but that would take one more instruction, and it would be
2411 less convenient for expand_ffs anyway. */
2414 expand_ctz (machine_mode mode
, rtx op0
, rtx target
)
2419 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2424 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2426 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2427 true, OPTAB_DIRECT
);
2429 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
2431 temp
= expand_binop (mode
, sub_optab
,
2432 gen_int_mode (GET_MODE_PRECISION (mode
) - 1, mode
),
2434 true, OPTAB_DIRECT
);
2444 add_equal_note (seq
, temp
, CTZ
, op0
, 0);
2450 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2451 else with the sequence used by expand_clz.
2453 The ffs builtin promises to return zero for a zero value and ctz/clz
2454 may have an undefined value in that case. If they do not give us a
2455 convenient value, we have to generate a test and branch. */
2457 expand_ffs (machine_mode mode
, rtx op0
, rtx target
)
2459 HOST_WIDE_INT val
= 0;
2460 bool defined_at_zero
= false;
2464 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
2468 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
2472 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
2474 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
2477 temp
= expand_ctz (mode
, op0
, 0);
2481 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
2483 defined_at_zero
= true;
2484 val
= (GET_MODE_PRECISION (mode
) - 1) - val
;
2490 if (defined_at_zero
&& val
== -1)
2491 /* No correction needed at zero. */;
2494 /* We don't try to do anything clever with the situation found
2495 on some processors (eg Alpha) where ctz(0:mode) ==
2496 bitsize(mode). If someone can think of a way to send N to -1
2497 and leave alone all values in the range 0..N-1 (where N is a
2498 power of two), cheaper than this test-and-branch, please add it.
2500 The test-and-branch is done after the operation itself, in case
2501 the operation sets condition codes that can be recycled for this.
2502 (This is true on i386, for instance.) */
2504 rtx_code_label
*nonzero_label
= gen_label_rtx ();
2505 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
2506 mode
, true, nonzero_label
);
2508 convert_move (temp
, GEN_INT (-1), false);
2509 emit_label (nonzero_label
);
2512 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2513 to produce a value in the range 0..bitsize. */
2514 temp
= expand_binop (mode
, add_optab
, temp
, gen_int_mode (1, mode
),
2515 target
, false, OPTAB_DIRECT
);
2522 add_equal_note (seq
, temp
, FFS
, op0
, 0);
2531 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2532 conditions, VAL may already be a SUBREG against which we cannot generate
2533 a further SUBREG. In this case, we expect forcing the value into a
2534 register will work around the situation. */
2537 lowpart_subreg_maybe_copy (machine_mode omode
, rtx val
,
2541 ret
= lowpart_subreg (omode
, val
, imode
);
2544 val
= force_reg (imode
, val
);
2545 ret
= lowpart_subreg (omode
, val
, imode
);
2546 gcc_assert (ret
!= NULL
);
2551 /* Expand a floating point absolute value or negation operation via a
2552 logical operation on the sign bit. */
2555 expand_absneg_bit (enum rtx_code code
, scalar_float_mode mode
,
2556 rtx op0
, rtx target
)
2558 const struct real_format
*fmt
;
2559 int bitpos
, word
, nwords
, i
;
2564 /* The format has to have a simple sign bit. */
2565 fmt
= REAL_MODE_FORMAT (mode
);
2569 bitpos
= fmt
->signbit_rw
;
2573 /* Don't create negative zeros if the format doesn't support them. */
2574 if (code
== NEG
&& !fmt
->has_signed_zero
)
2577 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
2579 imode
= int_mode_for_mode (mode
);
2580 if (imode
== BLKmode
)
2589 if (FLOAT_WORDS_BIG_ENDIAN
)
2590 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
2592 word
= bitpos
/ BITS_PER_WORD
;
2593 bitpos
= bitpos
% BITS_PER_WORD
;
2594 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
2597 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
2603 || (nwords
> 1 && !valid_multiword_target_p (target
)))
2604 target
= gen_reg_rtx (mode
);
2610 for (i
= 0; i
< nwords
; ++i
)
2612 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
2613 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
2617 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2619 immed_wide_int_const (mask
, imode
),
2620 targ_piece
, 1, OPTAB_LIB_WIDEN
);
2621 if (temp
!= targ_piece
)
2622 emit_move_insn (targ_piece
, temp
);
2625 emit_move_insn (targ_piece
, op0_piece
);
2628 insns
= get_insns ();
2635 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2636 gen_lowpart (imode
, op0
),
2637 immed_wide_int_const (mask
, imode
),
2638 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
2639 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
2641 set_dst_reg_note (get_last_insn (), REG_EQUAL
,
2642 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)),
2649 /* As expand_unop, but will fail rather than attempt the operation in a
2650 different mode or with a libcall. */
2652 expand_unop_direct (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2655 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2657 struct expand_operand ops
[2];
2658 enum insn_code icode
= optab_handler (unoptab
, mode
);
2659 rtx_insn
*last
= get_last_insn ();
2662 create_output_operand (&ops
[0], target
, mode
);
2663 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2664 pat
= maybe_gen_insn (icode
, 2, ops
);
2667 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
2668 && ! add_equal_note (pat
, ops
[0].value
,
2669 optab_to_code (unoptab
),
2670 ops
[1].value
, NULL_RTX
))
2672 delete_insns_since (last
);
2673 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
2678 return ops
[0].value
;
2684 /* Generate code to perform an operation specified by UNOPTAB
2685 on operand OP0, with result having machine-mode MODE.
2687 UNSIGNEDP is for the case where we have to widen the operands
2688 to perform the operation. It says to use zero-extension.
2690 If TARGET is nonzero, the value
2691 is generated there, if it is convenient to do so.
2692 In all cases an rtx is returned for the locus of the value;
2693 this may or may not be TARGET. */
2696 expand_unop (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2699 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2700 machine_mode wider_mode
;
2701 scalar_float_mode float_mode
;
2705 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
2709 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2711 /* Widening (or narrowing) clz needs special treatment. */
2712 if (unoptab
== clz_optab
)
2714 temp
= widen_leading (mode
, op0
, target
, unoptab
);
2718 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2719 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2721 temp
= expand_doubleword_clz (mode
, op0
, target
);
2729 if (unoptab
== clrsb_optab
)
2731 temp
= widen_leading (mode
, op0
, target
, unoptab
);
2737 if (unoptab
== popcount_optab
2738 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2739 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
2740 && optimize_insn_for_speed_p ())
2742 temp
= expand_doubleword_popcount (mode
, op0
, target
);
2747 if (unoptab
== parity_optab
2748 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2749 && (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
2750 || optab_handler (popcount_optab
, word_mode
) != CODE_FOR_nothing
)
2751 && optimize_insn_for_speed_p ())
2753 temp
= expand_doubleword_parity (mode
, op0
, target
);
2758 /* Widening (or narrowing) bswap needs special treatment. */
2759 if (unoptab
== bswap_optab
)
2761 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2762 or ROTATERT. First try these directly; if this fails, then try the
2763 obvious pair of shifts with allowed widening, as this will probably
2764 be always more efficient than the other fallback methods. */
2770 if (optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
)
2772 temp
= expand_binop (mode
, rotl_optab
, op0
, GEN_INT (8), target
,
2773 unsignedp
, OPTAB_DIRECT
);
2778 if (optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
2780 temp
= expand_binop (mode
, rotr_optab
, op0
, GEN_INT (8), target
,
2781 unsignedp
, OPTAB_DIRECT
);
2786 last
= get_last_insn ();
2788 temp1
= expand_binop (mode
, ashl_optab
, op0
, GEN_INT (8), NULL_RTX
,
2789 unsignedp
, OPTAB_WIDEN
);
2790 temp2
= expand_binop (mode
, lshr_optab
, op0
, GEN_INT (8), NULL_RTX
,
2791 unsignedp
, OPTAB_WIDEN
);
2794 temp
= expand_binop (mode
, ior_optab
, temp1
, temp2
, target
,
2795 unsignedp
, OPTAB_WIDEN
);
2800 delete_insns_since (last
);
2803 temp
= widen_bswap (mode
, op0
, target
);
2807 if (GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
2808 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2810 temp
= expand_doubleword_bswap (mode
, op0
, target
);
2818 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2819 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2821 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2824 rtx_insn
*last
= get_last_insn ();
2826 /* For certain operations, we need not actually extend
2827 the narrow operand, as long as we will truncate the
2828 results to the same narrowness. */
2830 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
2831 (unoptab
== neg_optab
2832 || unoptab
== one_cmpl_optab
)
2833 && mclass
== MODE_INT
);
2835 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2840 if (mclass
!= MODE_INT
2841 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2844 target
= gen_reg_rtx (mode
);
2845 convert_move (target
, temp
, 0);
2849 return gen_lowpart (mode
, temp
);
2852 delete_insns_since (last
);
2856 /* These can be done a word at a time. */
2857 if (unoptab
== one_cmpl_optab
2858 && mclass
== MODE_INT
2859 && GET_MODE_SIZE (mode
) > UNITS_PER_WORD
2860 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2865 if (target
== 0 || target
== op0
|| !valid_multiword_target_p (target
))
2866 target
= gen_reg_rtx (mode
);
2870 /* Do the actual arithmetic. */
2871 for (i
= 0; i
< GET_MODE_BITSIZE (mode
) / BITS_PER_WORD
; i
++)
2873 rtx target_piece
= operand_subword (target
, i
, 1, mode
);
2874 rtx x
= expand_unop (word_mode
, unoptab
,
2875 operand_subword_force (op0
, i
, mode
),
2876 target_piece
, unsignedp
);
2878 if (target_piece
!= x
)
2879 emit_move_insn (target_piece
, x
);
2882 insns
= get_insns ();
2889 if (optab_to_code (unoptab
) == NEG
)
2891 /* Try negating floating point values by flipping the sign bit. */
2892 if (is_a
<scalar_float_mode
> (mode
, &float_mode
))
2894 temp
= expand_absneg_bit (NEG
, float_mode
, op0
, target
);
2899 /* If there is no negation pattern, and we have no negative zero,
2900 try subtracting from zero. */
2901 if (!HONOR_SIGNED_ZEROS (mode
))
2903 temp
= expand_binop (mode
, (unoptab
== negv_optab
2904 ? subv_optab
: sub_optab
),
2905 CONST0_RTX (mode
), op0
, target
,
2906 unsignedp
, OPTAB_DIRECT
);
2912 /* Try calculating parity (x) as popcount (x) % 2. */
2913 if (unoptab
== parity_optab
)
2915 temp
= expand_parity (mode
, op0
, target
);
2920 /* Try implementing ffs (x) in terms of clz (x). */
2921 if (unoptab
== ffs_optab
)
2923 temp
= expand_ffs (mode
, op0
, target
);
2928 /* Try implementing ctz (x) in terms of clz (x). */
2929 if (unoptab
== ctz_optab
)
2931 temp
= expand_ctz (mode
, op0
, target
);
2937 /* Now try a library call in this mode. */
2938 libfunc
= optab_libfunc (unoptab
, mode
);
2944 machine_mode outmode
= mode
;
2946 /* All of these functions return small values. Thus we choose to
2947 have them return something that isn't a double-word. */
2948 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
2949 || unoptab
== clrsb_optab
|| unoptab
== popcount_optab
2950 || unoptab
== parity_optab
)
2952 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
2953 optab_libfunc (unoptab
, mode
)));
2957 /* Pass 1 for NO_QUEUE so we don't lose any increments
2958 if the libcall is cse'd or moved. */
2959 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
2961 insns
= get_insns ();
2964 target
= gen_reg_rtx (outmode
);
2965 bool trapv
= trapv_unoptab_p (unoptab
);
2967 eq_value
= NULL_RTX
;
2970 eq_value
= gen_rtx_fmt_e (optab_to_code (unoptab
), mode
, op0
);
2971 if (GET_MODE_SIZE (outmode
) < GET_MODE_SIZE (mode
))
2972 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
2973 else if (GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (mode
))
2974 eq_value
= simplify_gen_unary (ZERO_EXTEND
,
2975 outmode
, eq_value
, mode
);
2977 emit_libcall_block_1 (insns
, target
, value
, eq_value
, trapv
);
2982 /* It can't be done in this mode. Can we do it in a wider mode? */
2984 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2986 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2988 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
2989 || optab_libfunc (unoptab
, wider_mode
))
2992 rtx_insn
*last
= get_last_insn ();
2994 /* For certain operations, we need not actually extend
2995 the narrow operand, as long as we will truncate the
2996 results to the same narrowness. */
2997 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
2998 (unoptab
== neg_optab
2999 || unoptab
== one_cmpl_optab
3000 || unoptab
== bswap_optab
)
3001 && mclass
== MODE_INT
);
3003 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3006 /* If we are generating clz using wider mode, adjust the
3007 result. Similarly for clrsb. */
3008 if ((unoptab
== clz_optab
|| unoptab
== clrsb_optab
)
3011 (wider_mode
, sub_optab
, temp
,
3012 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
3013 - GET_MODE_PRECISION (mode
),
3015 target
, true, OPTAB_DIRECT
);
3017 /* Likewise for bswap. */
3018 if (unoptab
== bswap_optab
&& temp
!= 0)
3020 gcc_assert (GET_MODE_PRECISION (wider_mode
)
3021 == GET_MODE_BITSIZE (wider_mode
)
3022 && GET_MODE_PRECISION (mode
)
3023 == GET_MODE_BITSIZE (mode
));
3025 temp
= expand_shift (RSHIFT_EXPR
, wider_mode
, temp
,
3026 GET_MODE_BITSIZE (wider_mode
)
3027 - GET_MODE_BITSIZE (mode
),
3033 if (mclass
!= MODE_INT
)
3036 target
= gen_reg_rtx (mode
);
3037 convert_move (target
, temp
, 0);
3041 return gen_lowpart (mode
, temp
);
3044 delete_insns_since (last
);
3049 /* One final attempt at implementing negation via subtraction,
3050 this time allowing widening of the operand. */
3051 if (optab_to_code (unoptab
) == NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3054 temp
= expand_binop (mode
,
3055 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3056 CONST0_RTX (mode
), op0
,
3057 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3065 /* Emit code to compute the absolute value of OP0, with result to
3066 TARGET if convenient. (TARGET may be 0.) The return value says
3067 where the result actually is to be found.
3069 MODE is the mode of the operand; the mode of the result is
3070 different but can be deduced from MODE.
3075 expand_abs_nojump (machine_mode mode
, rtx op0
, rtx target
,
3076 int result_unsignedp
)
3080 if (GET_MODE_CLASS (mode
) != MODE_INT
3082 result_unsignedp
= 1;
3084 /* First try to do it with a special abs instruction. */
3085 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3090 /* For floating point modes, try clearing the sign bit. */
3091 scalar_float_mode float_mode
;
3092 if (is_a
<scalar_float_mode
> (mode
, &float_mode
))
3094 temp
= expand_absneg_bit (ABS
, float_mode
, op0
, target
);
3099 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3100 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3101 && !HONOR_SIGNED_ZEROS (mode
))
3103 rtx_insn
*last
= get_last_insn ();
3105 temp
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3108 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3114 delete_insns_since (last
);
3117 /* If this machine has expensive jumps, we can do integer absolute
3118 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3119 where W is the width of MODE. */
3121 if (GET_MODE_CLASS (mode
) == MODE_INT
3122 && BRANCH_COST (optimize_insn_for_speed_p (),
3125 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3126 GET_MODE_PRECISION (mode
) - 1,
3129 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3132 temp
= expand_binop (mode
, result_unsignedp
? sub_optab
: subv_optab
,
3133 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3143 expand_abs (machine_mode mode
, rtx op0
, rtx target
,
3144 int result_unsignedp
, int safe
)
3147 rtx_code_label
*op1
;
3149 if (GET_MODE_CLASS (mode
) != MODE_INT
3151 result_unsignedp
= 1;
3153 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3157 /* If that does not win, use conditional jump and negate. */
3159 /* It is safe to use the target if it is the same
3160 as the source if this is also a pseudo register */
3161 if (op0
== target
&& REG_P (op0
)
3162 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3165 op1
= gen_label_rtx ();
3166 if (target
== 0 || ! safe
3167 || GET_MODE (target
) != mode
3168 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3170 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3171 target
= gen_reg_rtx (mode
);
3173 emit_move_insn (target
, op0
);
3176 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3177 NULL_RTX
, NULL
, op1
,
3178 profile_probability::uninitialized ());
3180 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3183 emit_move_insn (target
, op0
);
3189 /* Emit code to compute the one's complement absolute value of OP0
3190 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3191 (TARGET may be NULL_RTX.) The return value says where the result
3192 actually is to be found.
3194 MODE is the mode of the operand; the mode of the result is
3195 different but can be deduced from MODE. */
3198 expand_one_cmpl_abs_nojump (machine_mode mode
, rtx op0
, rtx target
)
3202 /* Not applicable for floating point modes. */
3203 if (FLOAT_MODE_P (mode
))
3206 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3207 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3209 rtx_insn
*last
= get_last_insn ();
3211 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3213 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3219 delete_insns_since (last
);
3222 /* If this machine has expensive jumps, we can do one's complement
3223 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3225 if (GET_MODE_CLASS (mode
) == MODE_INT
3226 && BRANCH_COST (optimize_insn_for_speed_p (),
3229 rtx extended
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3230 GET_MODE_PRECISION (mode
) - 1,
3233 temp
= expand_binop (mode
, xor_optab
, extended
, op0
, target
, 0,
3243 /* A subroutine of expand_copysign, perform the copysign operation using the
3244 abs and neg primitives advertised to exist on the target. The assumption
3245 is that we have a split register file, and leaving op0 in fp registers,
3246 and not playing with subregs so much, will help the register allocator. */
3249 expand_copysign_absneg (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3250 int bitpos
, bool op0_is_abs
)
3253 enum insn_code icode
;
3255 rtx_code_label
*label
;
3260 /* Check if the back end provides an insn that handles signbit for the
3262 icode
= optab_handler (signbit_optab
, mode
);
3263 if (icode
!= CODE_FOR_nothing
)
3265 imode
= insn_data
[(int) icode
].operand
[0].mode
;
3266 sign
= gen_reg_rtx (imode
);
3267 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3271 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3273 imode
= int_mode_for_mode (mode
);
3274 if (imode
== BLKmode
)
3276 op1
= gen_lowpart (imode
, op1
);
3283 if (FLOAT_WORDS_BIG_ENDIAN
)
3284 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3286 word
= bitpos
/ BITS_PER_WORD
;
3287 bitpos
= bitpos
% BITS_PER_WORD
;
3288 op1
= operand_subword_force (op1
, word
, mode
);
3291 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3292 sign
= expand_binop (imode
, and_optab
, op1
,
3293 immed_wide_int_const (mask
, imode
),
3294 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3299 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3306 if (target
== NULL_RTX
)
3307 target
= copy_to_reg (op0
);
3309 emit_move_insn (target
, op0
);
3312 label
= gen_label_rtx ();
3313 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3315 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3316 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3318 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3320 emit_move_insn (target
, op0
);
3328 /* A subroutine of expand_copysign, perform the entire copysign operation
3329 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3330 is true if op0 is known to have its sign bit clear. */
3333 expand_copysign_bit (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3334 int bitpos
, bool op0_is_abs
)
3337 int word
, nwords
, i
;
3341 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3343 imode
= int_mode_for_mode (mode
);
3344 if (imode
== BLKmode
)
3353 if (FLOAT_WORDS_BIG_ENDIAN
)
3354 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3356 word
= bitpos
/ BITS_PER_WORD
;
3357 bitpos
= bitpos
% BITS_PER_WORD
;
3358 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3361 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3366 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3367 target
= gen_reg_rtx (mode
);
3373 for (i
= 0; i
< nwords
; ++i
)
3375 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3376 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3382 = expand_binop (imode
, and_optab
, op0_piece
,
3383 immed_wide_int_const (~mask
, imode
),
3384 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3385 op1
= expand_binop (imode
, and_optab
,
3386 operand_subword_force (op1
, i
, mode
),
3387 immed_wide_int_const (mask
, imode
),
3388 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3390 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3391 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3392 if (temp
!= targ_piece
)
3393 emit_move_insn (targ_piece
, temp
);
3396 emit_move_insn (targ_piece
, op0_piece
);
3399 insns
= get_insns ();
3406 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
3407 immed_wide_int_const (mask
, imode
),
3408 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3410 op0
= gen_lowpart (imode
, op0
);
3412 op0
= expand_binop (imode
, and_optab
, op0
,
3413 immed_wide_int_const (~mask
, imode
),
3414 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3416 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
3417 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3418 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3424 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3425 scalar floating point mode. Return NULL if we do not know how to
3426 expand the operation inline. */
3429 expand_copysign (rtx op0
, rtx op1
, rtx target
)
3431 scalar_float_mode mode
;
3432 const struct real_format
*fmt
;
3436 mode
= as_a
<scalar_float_mode
> (GET_MODE (op0
));
3437 gcc_assert (GET_MODE (op1
) == mode
);
3439 /* First try to do it with a special instruction. */
3440 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
3441 target
, 0, OPTAB_DIRECT
);
3445 fmt
= REAL_MODE_FORMAT (mode
);
3446 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
3450 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3452 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
3453 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
3457 if (fmt
->signbit_ro
>= 0
3458 && (CONST_DOUBLE_AS_FLOAT_P (op0
)
3459 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
3460 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
3462 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
3463 fmt
->signbit_ro
, op0_is_abs
);
3468 if (fmt
->signbit_rw
< 0)
3470 return expand_copysign_bit (mode
, op0
, op1
, target
,
3471 fmt
->signbit_rw
, op0_is_abs
);
3474 /* Generate an instruction whose insn-code is INSN_CODE,
3475 with two operands: an output TARGET and an input OP0.
3476 TARGET *must* be nonzero, and the output is always stored there.
3477 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3478 the value that is stored into TARGET.
3480 Return false if expansion failed. */
3483 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
3486 struct expand_operand ops
[2];
3489 create_output_operand (&ops
[0], target
, GET_MODE (target
));
3490 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
3491 pat
= maybe_gen_insn (icode
, 2, ops
);
3495 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
3497 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
);
3501 if (ops
[0].value
!= target
)
3502 emit_move_insn (target
, ops
[0].value
);
3505 /* Generate an instruction whose insn-code is INSN_CODE,
3506 with two operands: an output TARGET and an input OP0.
3507 TARGET *must* be nonzero, and the output is always stored there.
3508 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3509 the value that is stored into TARGET. */
3512 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
3514 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
3518 struct no_conflict_data
3521 rtx_insn
*first
, *insn
;
3525 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3526 the currently examined clobber / store has to stay in the list of
3527 insns that constitute the actual libcall block. */
3529 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
3531 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
3533 /* If this inns directly contributes to setting the target, it must stay. */
3534 if (reg_overlap_mentioned_p (p
->target
, dest
))
3535 p
->must_stay
= true;
3536 /* If we haven't committed to keeping any other insns in the list yet,
3537 there is nothing more to check. */
3538 else if (p
->insn
== p
->first
)
3540 /* If this insn sets / clobbers a register that feeds one of the insns
3541 already in the list, this insn has to stay too. */
3542 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
3543 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
3544 || reg_used_between_p (dest
, p
->first
, p
->insn
)
3545 /* Likewise if this insn depends on a register set by a previous
3546 insn in the list, or if it sets a result (presumably a hard
3547 register) that is set or clobbered by a previous insn.
3548 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3549 SET_DEST perform the former check on the address, and the latter
3550 check on the MEM. */
3551 || (GET_CODE (set
) == SET
3552 && (modified_in_p (SET_SRC (set
), p
->first
)
3553 || modified_in_p (SET_DEST (set
), p
->first
)
3554 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
3555 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
3556 p
->must_stay
= true;
3560 /* Emit code to make a call to a constant function or a library call.
3562 INSNS is a list containing all insns emitted in the call.
3563 These insns leave the result in RESULT. Our block is to copy RESULT
3564 to TARGET, which is logically equivalent to EQUIV.
3566 We first emit any insns that set a pseudo on the assumption that these are
3567 loading constants into registers; doing so allows them to be safely cse'ed
3568 between blocks. Then we emit all the other insns in the block, followed by
3569 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3570 note with an operand of EQUIV. */
3573 emit_libcall_block_1 (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
,
3574 bool equiv_may_trap
)
3576 rtx final_dest
= target
;
3577 rtx_insn
*next
, *last
, *insn
;
3579 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3580 into a MEM later. Protect the libcall block from this change. */
3581 if (! REG_P (target
) || REG_USERVAR_P (target
))
3582 target
= gen_reg_rtx (GET_MODE (target
));
3584 /* If we're using non-call exceptions, a libcall corresponding to an
3585 operation that may trap may also trap. */
3586 /* ??? See the comment in front of make_reg_eh_region_note. */
3587 if (cfun
->can_throw_non_call_exceptions
3588 && (equiv_may_trap
|| may_trap_p (equiv
)))
3590 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3593 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
3596 int lp_nr
= INTVAL (XEXP (note
, 0));
3597 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
3598 remove_note (insn
, note
);
3604 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3605 reg note to indicate that this call cannot throw or execute a nonlocal
3606 goto (unless there is already a REG_EH_REGION note, in which case
3608 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3610 make_reg_eh_region_note_nothrow_nononlocal (insn
);
3613 /* First emit all insns that set pseudos. Remove them from the list as
3614 we go. Avoid insns that set pseudos which were referenced in previous
3615 insns. These can be generated by move_by_pieces, for example,
3616 to update an address. Similarly, avoid insns that reference things
3617 set in previous insns. */
3619 for (insn
= insns
; insn
; insn
= next
)
3621 rtx set
= single_set (insn
);
3623 next
= NEXT_INSN (insn
);
3625 if (set
!= 0 && REG_P (SET_DEST (set
))
3626 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3628 struct no_conflict_data data
;
3630 data
.target
= const0_rtx
;
3634 note_stores (PATTERN (insn
), no_conflict_move_test
, &data
);
3635 if (! data
.must_stay
)
3637 if (PREV_INSN (insn
))
3638 SET_NEXT_INSN (PREV_INSN (insn
)) = next
;
3643 SET_PREV_INSN (next
) = PREV_INSN (insn
);
3649 /* Some ports use a loop to copy large arguments onto the stack.
3650 Don't move anything outside such a loop. */
3655 /* Write the remaining insns followed by the final copy. */
3656 for (insn
= insns
; insn
; insn
= next
)
3658 next
= NEXT_INSN (insn
);
3663 last
= emit_move_insn (target
, result
);
3665 set_dst_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
), target
);
3667 if (final_dest
!= target
)
3668 emit_move_insn (final_dest
, target
);
3672 emit_libcall_block (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
)
3674 emit_libcall_block_1 (insns
, target
, result
, equiv
, false);
3677 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3678 PURPOSE describes how this comparison will be used. CODE is the rtx
3679 comparison code we will be using.
3681 ??? Actually, CODE is slightly weaker than that. A target is still
3682 required to implement all of the normal bcc operations, but not
3683 required to implement all (or any) of the unordered bcc operations. */
3686 can_compare_p (enum rtx_code code
, machine_mode mode
,
3687 enum can_compare_purpose purpose
)
3690 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
3693 enum insn_code icode
;
3695 if (purpose
== ccp_jump
3696 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
3697 && insn_operand_matches (icode
, 0, test
))
3699 if (purpose
== ccp_store_flag
3700 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
3701 && insn_operand_matches (icode
, 1, test
))
3703 if (purpose
== ccp_cmov
3704 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
3707 mode
= GET_MODE_WIDER_MODE (mode
).else_void ();
3708 PUT_MODE (test
, mode
);
3710 while (mode
!= VOIDmode
);
3715 /* This function is called when we are going to emit a compare instruction that
3716 compares the values found in X and Y, using the rtl operator COMPARISON.
3718 If they have mode BLKmode, then SIZE specifies the size of both operands.
3720 UNSIGNEDP nonzero says that the operands are unsigned;
3721 this matters if they need to be widened (as given by METHODS).
3723 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
3724 if we failed to produce one.
3726 *PMODE is the mode of the inputs (in case they are const_int).
3728 This function performs all the setup necessary so that the caller only has
3729 to emit a single comparison insn. This setup can involve doing a BLKmode
3730 comparison or emitting a library call to perform the comparison if no insn
3731 is available to handle it.
3732 The values which are passed in through pointers can be modified; the caller
3733 should perform the comparison on the modified values. Constant
3734 comparisons must have already been folded. */
3737 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
3738 int unsignedp
, enum optab_methods methods
,
3739 rtx
*ptest
, machine_mode
*pmode
)
3741 machine_mode mode
= *pmode
;
3743 machine_mode cmp_mode
;
3744 enum mode_class mclass
;
3746 /* The other methods are not needed. */
3747 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
3748 || methods
== OPTAB_LIB_WIDEN
);
3750 /* If we are optimizing, force expensive constants into a register. */
3751 if (CONSTANT_P (x
) && optimize
3752 && (rtx_cost (x
, mode
, COMPARE
, 0, optimize_insn_for_speed_p ())
3753 > COSTS_N_INSNS (1)))
3754 x
= force_reg (mode
, x
);
3756 if (CONSTANT_P (y
) && optimize
3757 && (rtx_cost (y
, mode
, COMPARE
, 1, optimize_insn_for_speed_p ())
3758 > COSTS_N_INSNS (1)))
3759 y
= force_reg (mode
, y
);
3762 /* Make sure if we have a canonical comparison. The RTL
3763 documentation states that canonical comparisons are required only
3764 for targets which have cc0. */
3765 gcc_assert (!CONSTANT_P (x
) || CONSTANT_P (y
));
3768 /* Don't let both operands fail to indicate the mode. */
3769 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
3770 x
= force_reg (mode
, x
);
3771 if (mode
== VOIDmode
)
3772 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
3774 /* Handle all BLKmode compares. */
3776 if (mode
== BLKmode
)
3778 machine_mode result_mode
;
3779 enum insn_code cmp_code
;
3782 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
3786 /* Try to use a memory block compare insn - either cmpstr
3787 or cmpmem will do. */
3788 FOR_EACH_MODE_IN_CLASS (cmp_mode
, MODE_INT
)
3790 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
3791 if (cmp_code
== CODE_FOR_nothing
)
3792 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
3793 if (cmp_code
== CODE_FOR_nothing
)
3794 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
3795 if (cmp_code
== CODE_FOR_nothing
)
3798 /* Must make sure the size fits the insn's mode. */
3799 if ((CONST_INT_P (size
)
3800 && INTVAL (size
) >= (1 << GET_MODE_BITSIZE (cmp_mode
)))
3801 || (GET_MODE_BITSIZE (GET_MODE (size
))
3802 > GET_MODE_BITSIZE (cmp_mode
)))
3805 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
3806 result
= gen_reg_rtx (result_mode
);
3807 size
= convert_to_mode (cmp_mode
, size
, 1);
3808 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
3810 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
3811 *pmode
= result_mode
;
3815 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
3818 /* Otherwise call a library function. */
3819 result
= emit_block_comp_via_libcall (XEXP (x
, 0), XEXP (y
, 0), size
);
3823 mode
= TYPE_MODE (integer_type_node
);
3824 methods
= OPTAB_LIB_WIDEN
;
3828 /* Don't allow operands to the compare to trap, as that can put the
3829 compare and branch in different basic blocks. */
3830 if (cfun
->can_throw_non_call_exceptions
)
3833 x
= copy_to_reg (x
);
3835 y
= copy_to_reg (y
);
3838 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3840 enum insn_code icode
= optab_handler (cbranch_optab
, CCmode
);
3841 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3842 gcc_assert (icode
!= CODE_FOR_nothing
3843 && insn_operand_matches (icode
, 0, test
));
3848 mclass
= GET_MODE_CLASS (mode
);
3849 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3850 FOR_EACH_MODE_FROM (cmp_mode
, mode
)
3852 enum insn_code icode
;
3853 icode
= optab_handler (cbranch_optab
, cmp_mode
);
3854 if (icode
!= CODE_FOR_nothing
3855 && insn_operand_matches (icode
, 0, test
))
3857 rtx_insn
*last
= get_last_insn ();
3858 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
3859 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
3861 && insn_operand_matches (icode
, 1, op0
)
3862 && insn_operand_matches (icode
, 2, op1
))
3864 XEXP (test
, 0) = op0
;
3865 XEXP (test
, 1) = op1
;
3870 delete_insns_since (last
);
3873 if (methods
== OPTAB_DIRECT
|| !CLASS_HAS_WIDER_MODES_P (mclass
))
3877 if (methods
!= OPTAB_LIB_WIDEN
)
3880 if (!SCALAR_FLOAT_MODE_P (mode
))
3883 machine_mode ret_mode
;
3885 /* Handle a libcall just for the mode we are using. */
3886 libfunc
= optab_libfunc (cmp_optab
, mode
);
3887 gcc_assert (libfunc
);
3889 /* If we want unsigned, and this mode has a distinct unsigned
3890 comparison routine, use that. */
3893 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
3898 ret_mode
= targetm
.libgcc_cmp_return_mode ();
3899 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
3900 ret_mode
, 2, x
, mode
, y
, mode
);
3902 /* There are two kinds of comparison routines. Biased routines
3903 return 0/1/2, and unbiased routines return -1/0/1. Other parts
3904 of gcc expect that the comparison operation is equivalent
3905 to the modified comparison. For signed comparisons compare the
3906 result against 1 in the biased case, and zero in the unbiased
3907 case. For unsigned comparisons always compare against 1 after
3908 biasing the unbiased result by adding 1. This gives us a way to
3910 The comparisons in the fixed-point helper library are always
3915 if (!TARGET_LIB_INT_CMP_BIASED
&& !ALL_FIXED_POINT_MODE_P (mode
))
3918 x
= plus_constant (ret_mode
, result
, 1);
3924 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
3928 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
3936 /* Before emitting an insn with code ICODE, make sure that X, which is going
3937 to be used for operand OPNUM of the insn, is converted from mode MODE to
3938 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3939 that it is accepted by the operand predicate. Return the new value. */
3942 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, machine_mode mode
,
3943 machine_mode wider_mode
, int unsignedp
)
3945 if (mode
!= wider_mode
)
3946 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
3948 if (!insn_operand_matches (icode
, opnum
, x
))
3950 machine_mode op_mode
= insn_data
[(int) icode
].operand
[opnum
].mode
;
3951 if (reload_completed
)
3953 if (GET_MODE (x
) != op_mode
&& GET_MODE (x
) != VOIDmode
)
3955 x
= copy_to_mode_reg (op_mode
, x
);
3961 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3962 we can do the branch. */
3965 emit_cmp_and_jump_insn_1 (rtx test
, machine_mode mode
, rtx label
,
3966 profile_probability prob
)
3968 machine_mode optab_mode
;
3969 enum mode_class mclass
;
3970 enum insn_code icode
;
3973 mclass
= GET_MODE_CLASS (mode
);
3974 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
3975 icode
= optab_handler (cbranch_optab
, optab_mode
);
3977 gcc_assert (icode
!= CODE_FOR_nothing
);
3978 gcc_assert (insn_operand_matches (icode
, 0, test
));
3979 insn
= emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0),
3980 XEXP (test
, 1), label
));
3981 if (prob
.initialized_p ()
3982 && profile_status_for_fn (cfun
) != PROFILE_ABSENT
3985 && any_condjump_p (insn
)
3986 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3987 add_reg_br_prob_note (insn
, prob
);
3990 /* Generate code to compare X with Y so that the condition codes are
3991 set and to jump to LABEL if the condition is true. If X is a
3992 constant and Y is not a constant, then the comparison is swapped to
3993 ensure that the comparison RTL has the canonical form.
3995 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3996 need to be widened. UNSIGNEDP is also used to select the proper
3997 branch condition code.
3999 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4001 MODE is the mode of the inputs (in case they are const_int).
4003 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4004 It will be potentially converted into an unsigned variant based on
4005 UNSIGNEDP to select a proper jump instruction.
4007 PROB is the probability of jumping to LABEL. */
4010 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4011 machine_mode mode
, int unsignedp
, rtx label
,
4012 profile_probability prob
)
4014 rtx op0
= x
, op1
= y
;
4017 /* Swap operands and condition to ensure canonical RTL. */
4018 if (swap_commutative_operands_p (x
, y
)
4019 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4022 comparison
= swap_condition (comparison
);
4025 /* If OP0 is still a constant, then both X and Y must be constants
4026 or the opposite comparison is not supported. Force X into a register
4027 to create canonical RTL. */
4028 if (CONSTANT_P (op0
))
4029 op0
= force_reg (mode
, op0
);
4032 comparison
= unsigned_condition (comparison
);
4034 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4036 emit_cmp_and_jump_insn_1 (test
, mode
, label
, prob
);
4040 /* Emit a library call comparison between floating point X and Y.
4041 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4044 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4045 rtx
*ptest
, machine_mode
*pmode
)
4047 enum rtx_code swapped
= swap_condition (comparison
);
4048 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4049 machine_mode orig_mode
= GET_MODE (x
);
4050 machine_mode mode
, cmp_mode
;
4051 rtx true_rtx
, false_rtx
;
4052 rtx value
, target
, equiv
;
4055 bool reversed_p
= false;
4056 cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4058 FOR_EACH_MODE_FROM (mode
, orig_mode
)
4060 if (code_to_optab (comparison
)
4061 && (libfunc
= optab_libfunc (code_to_optab (comparison
), mode
)))
4064 if (code_to_optab (swapped
)
4065 && (libfunc
= optab_libfunc (code_to_optab (swapped
), mode
)))
4068 comparison
= swapped
;
4072 if (code_to_optab (reversed
)
4073 && (libfunc
= optab_libfunc (code_to_optab (reversed
), mode
)))
4075 comparison
= reversed
;
4081 gcc_assert (mode
!= VOIDmode
);
4083 if (mode
!= orig_mode
)
4085 x
= convert_to_mode (mode
, x
, 0);
4086 y
= convert_to_mode (mode
, y
, 0);
4089 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4090 the RTL. The allows the RTL optimizers to delete the libcall if the
4091 condition can be determined at compile-time. */
4092 if (comparison
== UNORDERED
4093 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4095 true_rtx
= const_true_rtx
;
4096 false_rtx
= const0_rtx
;
4103 true_rtx
= const0_rtx
;
4104 false_rtx
= const_true_rtx
;
4108 true_rtx
= const_true_rtx
;
4109 false_rtx
= const0_rtx
;
4113 true_rtx
= const1_rtx
;
4114 false_rtx
= const0_rtx
;
4118 true_rtx
= const0_rtx
;
4119 false_rtx
= constm1_rtx
;
4123 true_rtx
= constm1_rtx
;
4124 false_rtx
= const0_rtx
;
4128 true_rtx
= const0_rtx
;
4129 false_rtx
= const1_rtx
;
4137 if (comparison
== UNORDERED
)
4139 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4140 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4141 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4142 temp
, const_true_rtx
, equiv
);
4146 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4147 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4148 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4149 equiv
, true_rtx
, false_rtx
);
4153 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4154 cmp_mode
, 2, x
, mode
, y
, mode
);
4155 insns
= get_insns ();
4158 target
= gen_reg_rtx (cmp_mode
);
4159 emit_libcall_block (insns
, target
, value
, equiv
);
4161 if (comparison
== UNORDERED
4162 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4164 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4166 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4171 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4174 emit_indirect_jump (rtx loc
)
4176 if (!targetm
.have_indirect_jump ())
4177 sorry ("indirect jumps are not available on this target");
4180 struct expand_operand ops
[1];
4181 create_address_operand (&ops
[0], loc
);
4182 expand_jump_insn (targetm
.code_for_indirect_jump
, 1, ops
);
4188 /* Emit a conditional move instruction if the machine supports one for that
4189 condition and machine mode.
4191 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4192 the mode to use should they be constants. If it is VOIDmode, they cannot
4195 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4196 should be stored there. MODE is the mode to use should they be constants.
4197 If it is VOIDmode, they cannot both be constants.
4199 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4200 is not supported. */
4203 emit_conditional_move (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4204 machine_mode cmode
, rtx op2
, rtx op3
,
4205 machine_mode mode
, int unsignedp
)
4209 enum insn_code icode
;
4210 enum rtx_code reversed
;
4212 /* If the two source operands are identical, that's just a move. */
4214 if (rtx_equal_p (op2
, op3
))
4217 target
= gen_reg_rtx (mode
);
4219 emit_move_insn (target
, op3
);
4223 /* If one operand is constant, make it the second one. Only do this
4224 if the other operand is not constant as well. */
4226 if (swap_commutative_operands_p (op0
, op1
))
4228 std::swap (op0
, op1
);
4229 code
= swap_condition (code
);
4232 /* get_condition will prefer to generate LT and GT even if the old
4233 comparison was against zero, so undo that canonicalization here since
4234 comparisons against zero are cheaper. */
4235 if (code
== LT
&& op1
== const1_rtx
)
4236 code
= LE
, op1
= const0_rtx
;
4237 else if (code
== GT
&& op1
== constm1_rtx
)
4238 code
= GE
, op1
= const0_rtx
;
4240 if (cmode
== VOIDmode
)
4241 cmode
= GET_MODE (op0
);
4243 enum rtx_code orig_code
= code
;
4244 bool swapped
= false;
4245 if (swap_commutative_operands_p (op2
, op3
)
4246 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4249 std::swap (op2
, op3
);
4254 if (mode
== VOIDmode
)
4255 mode
= GET_MODE (op2
);
4257 icode
= direct_optab_handler (movcc_optab
, mode
);
4259 if (icode
== CODE_FOR_nothing
)
4263 target
= gen_reg_rtx (mode
);
4265 for (int pass
= 0; ; pass
++)
4267 code
= unsignedp
? unsigned_condition (code
) : code
;
4268 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4270 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4271 punt and let the caller figure out how best to deal with this
4273 if (COMPARISON_P (comparison
))
4275 saved_pending_stack_adjust save
;
4276 save_pending_stack_adjust (&save
);
4277 last
= get_last_insn ();
4278 do_pending_stack_adjust ();
4279 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4280 GET_CODE (comparison
), NULL_RTX
, unsignedp
,
4281 OPTAB_WIDEN
, &comparison
, &cmode
);
4284 struct expand_operand ops
[4];
4286 create_output_operand (&ops
[0], target
, mode
);
4287 create_fixed_operand (&ops
[1], comparison
);
4288 create_input_operand (&ops
[2], op2
, mode
);
4289 create_input_operand (&ops
[3], op3
, mode
);
4290 if (maybe_expand_insn (icode
, 4, ops
))
4292 if (ops
[0].value
!= target
)
4293 convert_move (target
, ops
[0].value
, false);
4297 delete_insns_since (last
);
4298 restore_pending_stack_adjust (&save
);
4304 /* If the preferred op2/op3 order is not usable, retry with other
4305 operand order, perhaps it will expand successfully. */
4308 else if ((reversed
= reversed_comparison_code_parts (orig_code
, op0
, op1
,
4314 std::swap (op2
, op3
);
4319 /* Emit a conditional negate or bitwise complement using the
4320 negcc or notcc optabs if available. Return NULL_RTX if such operations
4321 are not available. Otherwise return the RTX holding the result.
4322 TARGET is the desired destination of the result. COMP is the comparison
4323 on which to negate. If COND is true move into TARGET the negation
4324 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4325 CODE is either NEG or NOT. MODE is the machine mode in which the
4326 operation is performed. */
4329 emit_conditional_neg_or_complement (rtx target
, rtx_code code
,
4330 machine_mode mode
, rtx cond
, rtx op1
,
4333 optab op
= unknown_optab
;
4336 else if (code
== NOT
)
4341 insn_code icode
= direct_optab_handler (op
, mode
);
4343 if (icode
== CODE_FOR_nothing
)
4347 target
= gen_reg_rtx (mode
);
4349 rtx_insn
*last
= get_last_insn ();
4350 struct expand_operand ops
[4];
4352 create_output_operand (&ops
[0], target
, mode
);
4353 create_fixed_operand (&ops
[1], cond
);
4354 create_input_operand (&ops
[2], op1
, mode
);
4355 create_input_operand (&ops
[3], op2
, mode
);
4357 if (maybe_expand_insn (icode
, 4, ops
))
4359 if (ops
[0].value
!= target
)
4360 convert_move (target
, ops
[0].value
, false);
4364 delete_insns_since (last
);
4368 /* Emit a conditional addition instruction if the machine supports one for that
4369 condition and machine mode.
4371 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4372 the mode to use should they be constants. If it is VOIDmode, they cannot
4375 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4376 should be stored there. MODE is the mode to use should they be constants.
4377 If it is VOIDmode, they cannot both be constants.
4379 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4380 is not supported. */
4383 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4384 machine_mode cmode
, rtx op2
, rtx op3
,
4385 machine_mode mode
, int unsignedp
)
4389 enum insn_code icode
;
4391 /* If one operand is constant, make it the second one. Only do this
4392 if the other operand is not constant as well. */
4394 if (swap_commutative_operands_p (op0
, op1
))
4396 std::swap (op0
, op1
);
4397 code
= swap_condition (code
);
4400 /* get_condition will prefer to generate LT and GT even if the old
4401 comparison was against zero, so undo that canonicalization here since
4402 comparisons against zero are cheaper. */
4403 if (code
== LT
&& op1
== const1_rtx
)
4404 code
= LE
, op1
= const0_rtx
;
4405 else if (code
== GT
&& op1
== constm1_rtx
)
4406 code
= GE
, op1
= const0_rtx
;
4408 if (cmode
== VOIDmode
)
4409 cmode
= GET_MODE (op0
);
4411 if (mode
== VOIDmode
)
4412 mode
= GET_MODE (op2
);
4414 icode
= optab_handler (addcc_optab
, mode
);
4416 if (icode
== CODE_FOR_nothing
)
4420 target
= gen_reg_rtx (mode
);
4422 code
= unsignedp
? unsigned_condition (code
) : code
;
4423 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4425 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4426 return NULL and let the caller figure out how best to deal with this
4428 if (!COMPARISON_P (comparison
))
4431 do_pending_stack_adjust ();
4432 last
= get_last_insn ();
4433 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4434 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4435 &comparison
, &cmode
);
4438 struct expand_operand ops
[4];
4440 create_output_operand (&ops
[0], target
, mode
);
4441 create_fixed_operand (&ops
[1], comparison
);
4442 create_input_operand (&ops
[2], op2
, mode
);
4443 create_input_operand (&ops
[3], op3
, mode
);
4444 if (maybe_expand_insn (icode
, 4, ops
))
4446 if (ops
[0].value
!= target
)
4447 convert_move (target
, ops
[0].value
, false);
4451 delete_insns_since (last
);
4455 /* These functions attempt to generate an insn body, rather than
4456 emitting the insn, but if the gen function already emits them, we
4457 make no attempt to turn them back into naked patterns. */
4459 /* Generate and return an insn body to add Y to X. */
4462 gen_add2_insn (rtx x
, rtx y
)
4464 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
4466 gcc_assert (insn_operand_matches (icode
, 0, x
));
4467 gcc_assert (insn_operand_matches (icode
, 1, x
));
4468 gcc_assert (insn_operand_matches (icode
, 2, y
));
4470 return GEN_FCN (icode
) (x
, x
, y
);
4473 /* Generate and return an insn body to add r1 and c,
4474 storing the result in r0. */
4477 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
4479 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
4481 if (icode
== CODE_FOR_nothing
4482 || !insn_operand_matches (icode
, 0, r0
)
4483 || !insn_operand_matches (icode
, 1, r1
)
4484 || !insn_operand_matches (icode
, 2, c
))
4487 return GEN_FCN (icode
) (r0
, r1
, c
);
4491 have_add2_insn (rtx x
, rtx y
)
4493 enum insn_code icode
;
4495 gcc_assert (GET_MODE (x
) != VOIDmode
);
4497 icode
= optab_handler (add_optab
, GET_MODE (x
));
4499 if (icode
== CODE_FOR_nothing
)
4502 if (!insn_operand_matches (icode
, 0, x
)
4503 || !insn_operand_matches (icode
, 1, x
)
4504 || !insn_operand_matches (icode
, 2, y
))
4510 /* Generate and return an insn body to add Y to X. */
4513 gen_addptr3_insn (rtx x
, rtx y
, rtx z
)
4515 enum insn_code icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4517 gcc_assert (insn_operand_matches (icode
, 0, x
));
4518 gcc_assert (insn_operand_matches (icode
, 1, y
));
4519 gcc_assert (insn_operand_matches (icode
, 2, z
));
4521 return GEN_FCN (icode
) (x
, y
, z
);
4524 /* Return true if the target implements an addptr pattern and X, Y,
4525 and Z are valid for the pattern predicates. */
4528 have_addptr3_insn (rtx x
, rtx y
, rtx z
)
4530 enum insn_code icode
;
4532 gcc_assert (GET_MODE (x
) != VOIDmode
);
4534 icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4536 if (icode
== CODE_FOR_nothing
)
4539 if (!insn_operand_matches (icode
, 0, x
)
4540 || !insn_operand_matches (icode
, 1, y
)
4541 || !insn_operand_matches (icode
, 2, z
))
4547 /* Generate and return an insn body to subtract Y from X. */
4550 gen_sub2_insn (rtx x
, rtx y
)
4552 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
4554 gcc_assert (insn_operand_matches (icode
, 0, x
));
4555 gcc_assert (insn_operand_matches (icode
, 1, x
));
4556 gcc_assert (insn_operand_matches (icode
, 2, y
));
4558 return GEN_FCN (icode
) (x
, x
, y
);
4561 /* Generate and return an insn body to subtract r1 and c,
4562 storing the result in r0. */
4565 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
4567 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
4569 if (icode
== CODE_FOR_nothing
4570 || !insn_operand_matches (icode
, 0, r0
)
4571 || !insn_operand_matches (icode
, 1, r1
)
4572 || !insn_operand_matches (icode
, 2, c
))
4575 return GEN_FCN (icode
) (r0
, r1
, c
);
4579 have_sub2_insn (rtx x
, rtx y
)
4581 enum insn_code icode
;
4583 gcc_assert (GET_MODE (x
) != VOIDmode
);
4585 icode
= optab_handler (sub_optab
, GET_MODE (x
));
4587 if (icode
== CODE_FOR_nothing
)
4590 if (!insn_operand_matches (icode
, 0, x
)
4591 || !insn_operand_matches (icode
, 1, x
)
4592 || !insn_operand_matches (icode
, 2, y
))
4598 /* Generate the body of an insn to extend Y (with mode MFROM)
4599 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4602 gen_extend_insn (rtx x
, rtx y
, machine_mode mto
,
4603 machine_mode mfrom
, int unsignedp
)
4605 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
4606 return GEN_FCN (icode
) (x
, y
);
4609 /* Generate code to convert FROM to floating point
4610 and store in TO. FROM must be fixed point and not VOIDmode.
4611 UNSIGNEDP nonzero means regard FROM as unsigned.
4612 Normally this is done by correcting the final value
4613 if it is negative. */
4616 expand_float (rtx to
, rtx from
, int unsignedp
)
4618 enum insn_code icode
;
4620 machine_mode fmode
, imode
;
4621 bool can_do_signed
= false;
4623 /* Crash now, because we won't be able to decide which mode to use. */
4624 gcc_assert (GET_MODE (from
) != VOIDmode
);
4626 /* Look for an insn to do the conversion. Do it in the specified
4627 modes if possible; otherwise convert either input, output or both to
4628 wider mode. If the integer mode is wider than the mode of FROM,
4629 we can do the conversion signed even if the input is unsigned. */
4631 FOR_EACH_MODE_FROM (fmode
, GET_MODE (to
))
4632 FOR_EACH_MODE_FROM (imode
, GET_MODE (from
))
4634 int doing_unsigned
= unsignedp
;
4636 if (fmode
!= GET_MODE (to
)
4637 && significand_size (fmode
) < GET_MODE_PRECISION (GET_MODE (from
)))
4640 icode
= can_float_p (fmode
, imode
, unsignedp
);
4641 if (icode
== CODE_FOR_nothing
&& unsignedp
)
4643 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
4644 if (scode
!= CODE_FOR_nothing
)
4645 can_do_signed
= true;
4646 if (imode
!= GET_MODE (from
))
4647 icode
= scode
, doing_unsigned
= 0;
4650 if (icode
!= CODE_FOR_nothing
)
4652 if (imode
!= GET_MODE (from
))
4653 from
= convert_to_mode (imode
, from
, unsignedp
);
4655 if (fmode
!= GET_MODE (to
))
4656 target
= gen_reg_rtx (fmode
);
4658 emit_unop_insn (icode
, target
, from
,
4659 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
4662 convert_move (to
, target
, 0);
4667 /* Unsigned integer, and no way to convert directly. Convert as signed,
4668 then unconditionally adjust the result. */
4669 if (unsignedp
&& can_do_signed
)
4671 rtx_code_label
*label
= gen_label_rtx ();
4673 REAL_VALUE_TYPE offset
;
4675 /* Look for a usable floating mode FMODE wider than the source and at
4676 least as wide as the target. Using FMODE will avoid rounding woes
4677 with unsigned values greater than the signed maximum value. */
4679 FOR_EACH_MODE_FROM (fmode
, GET_MODE (to
))
4680 if (GET_MODE_PRECISION (GET_MODE (from
)) < GET_MODE_BITSIZE (fmode
)
4681 && can_float_p (fmode
, GET_MODE (from
), 0) != CODE_FOR_nothing
)
4684 if (fmode
== VOIDmode
)
4686 /* There is no such mode. Pretend the target is wide enough. */
4687 fmode
= GET_MODE (to
);
4689 /* Avoid double-rounding when TO is narrower than FROM. */
4690 if ((significand_size (fmode
) + 1)
4691 < GET_MODE_PRECISION (GET_MODE (from
)))
4694 rtx_code_label
*neglabel
= gen_label_rtx ();
4696 /* Don't use TARGET if it isn't a register, is a hard register,
4697 or is the wrong mode. */
4699 || REGNO (target
) < FIRST_PSEUDO_REGISTER
4700 || GET_MODE (target
) != fmode
)
4701 target
= gen_reg_rtx (fmode
);
4703 imode
= GET_MODE (from
);
4704 do_pending_stack_adjust ();
4706 /* Test whether the sign bit is set. */
4707 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
4710 /* The sign bit is not set. Convert as signed. */
4711 expand_float (target
, from
, 0);
4712 emit_jump_insn (targetm
.gen_jump (label
));
4715 /* The sign bit is set.
4716 Convert to a usable (positive signed) value by shifting right
4717 one bit, while remembering if a nonzero bit was shifted
4718 out; i.e., compute (from & 1) | (from >> 1). */
4720 emit_label (neglabel
);
4721 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
4722 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4723 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
4724 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
4726 expand_float (target
, temp
, 0);
4728 /* Multiply by 2 to undo the shift above. */
4729 temp
= expand_binop (fmode
, add_optab
, target
, target
,
4730 target
, 0, OPTAB_LIB_WIDEN
);
4732 emit_move_insn (target
, temp
);
4734 do_pending_stack_adjust ();
4740 /* If we are about to do some arithmetic to correct for an
4741 unsigned operand, do it in a pseudo-register. */
4743 if (GET_MODE (to
) != fmode
4744 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
4745 target
= gen_reg_rtx (fmode
);
4747 /* Convert as signed integer to floating. */
4748 expand_float (target
, from
, 0);
4750 /* If FROM is negative (and therefore TO is negative),
4751 correct its value by 2**bitwidth. */
4753 do_pending_stack_adjust ();
4754 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, GET_MODE (from
),
4758 real_2expN (&offset
, GET_MODE_PRECISION (GET_MODE (from
)), fmode
);
4759 temp
= expand_binop (fmode
, add_optab
, target
,
4760 const_double_from_real_value (offset
, fmode
),
4761 target
, 0, OPTAB_LIB_WIDEN
);
4763 emit_move_insn (target
, temp
);
4765 do_pending_stack_adjust ();
4770 /* No hardware instruction available; call a library routine. */
4775 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
4777 if (GET_MODE_PRECISION (GET_MODE (from
)) < GET_MODE_PRECISION (SImode
))
4778 from
= convert_to_mode (SImode
, from
, unsignedp
);
4780 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
4781 gcc_assert (libfunc
);
4785 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4786 GET_MODE (to
), 1, from
,
4788 insns
= get_insns ();
4791 emit_libcall_block (insns
, target
, value
,
4792 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
4793 GET_MODE (to
), from
));
4798 /* Copy result to requested destination
4799 if we have been computing in a temp location. */
4803 if (GET_MODE (target
) == GET_MODE (to
))
4804 emit_move_insn (to
, target
);
4806 convert_move (to
, target
, 0);
4810 /* Generate code to convert FROM to fixed point and store in TO. FROM
4811 must be floating point. */
4814 expand_fix (rtx to
, rtx from
, int unsignedp
)
4816 enum insn_code icode
;
4818 machine_mode fmode
, imode
;
4819 bool must_trunc
= false;
4821 /* We first try to find a pair of modes, one real and one integer, at
4822 least as wide as FROM and TO, respectively, in which we can open-code
4823 this conversion. If the integer mode is wider than the mode of TO,
4824 we can do the conversion either signed or unsigned. */
4826 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
4827 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
4829 int doing_unsigned
= unsignedp
;
4831 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
4832 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
4833 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
4835 if (icode
!= CODE_FOR_nothing
)
4837 rtx_insn
*last
= get_last_insn ();
4838 if (fmode
!= GET_MODE (from
))
4839 from
= convert_to_mode (fmode
, from
, 0);
4843 rtx temp
= gen_reg_rtx (GET_MODE (from
));
4844 from
= expand_unop (GET_MODE (from
), ftrunc_optab
, from
,
4848 if (imode
!= GET_MODE (to
))
4849 target
= gen_reg_rtx (imode
);
4851 if (maybe_emit_unop_insn (icode
, target
, from
,
4852 doing_unsigned
? UNSIGNED_FIX
: FIX
))
4855 convert_move (to
, target
, unsignedp
);
4858 delete_insns_since (last
);
4862 /* For an unsigned conversion, there is one more way to do it.
4863 If we have a signed conversion, we generate code that compares
4864 the real value to the largest representable positive number. If if
4865 is smaller, the conversion is done normally. Otherwise, subtract
4866 one plus the highest signed number, convert, and add it back.
4868 We only need to check all real modes, since we know we didn't find
4869 anything with a wider integer mode.
4871 This code used to extend FP value into mode wider than the destination.
4872 This is needed for decimal float modes which cannot accurately
4873 represent one plus the highest signed number of the same size, but
4874 not for binary modes. Consider, for instance conversion from SFmode
4877 The hot path through the code is dealing with inputs smaller than 2^63
4878 and doing just the conversion, so there is no bits to lose.
4880 In the other path we know the value is positive in the range 2^63..2^64-1
4881 inclusive. (as for other input overflow happens and result is undefined)
4882 So we know that the most important bit set in mantissa corresponds to
4883 2^63. The subtraction of 2^63 should not generate any rounding as it
4884 simply clears out that bit. The rest is trivial. */
4886 if (unsignedp
&& GET_MODE_PRECISION (GET_MODE (to
)) <= HOST_BITS_PER_WIDE_INT
)
4887 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
4888 if (CODE_FOR_nothing
!= can_fix_p (GET_MODE (to
), fmode
, 0, &must_trunc
)
4889 && (!DECIMAL_FLOAT_MODE_P (fmode
)
4890 || GET_MODE_BITSIZE (fmode
) > GET_MODE_PRECISION (GET_MODE (to
))))
4893 REAL_VALUE_TYPE offset
;
4895 rtx_code_label
*lab1
, *lab2
;
4898 bitsize
= GET_MODE_PRECISION (GET_MODE (to
));
4899 real_2expN (&offset
, bitsize
- 1, fmode
);
4900 limit
= const_double_from_real_value (offset
, fmode
);
4901 lab1
= gen_label_rtx ();
4902 lab2
= gen_label_rtx ();
4904 if (fmode
!= GET_MODE (from
))
4905 from
= convert_to_mode (fmode
, from
, 0);
4907 /* See if we need to do the subtraction. */
4908 do_pending_stack_adjust ();
4909 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
, GET_MODE (from
),
4912 /* If not, do the signed "fix" and branch around fixup code. */
4913 expand_fix (to
, from
, 0);
4914 emit_jump_insn (targetm
.gen_jump (lab2
));
4917 /* Otherwise, subtract 2**(N-1), convert to signed number,
4918 then add 2**(N-1). Do the addition using XOR since this
4919 will often generate better code. */
4921 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
4922 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4923 expand_fix (to
, target
, 0);
4924 target
= expand_binop (GET_MODE (to
), xor_optab
, to
,
4926 (HOST_WIDE_INT_1
<< (bitsize
- 1),
4928 to
, 1, OPTAB_LIB_WIDEN
);
4931 emit_move_insn (to
, target
);
4935 if (optab_handler (mov_optab
, GET_MODE (to
)) != CODE_FOR_nothing
)
4937 /* Make a place for a REG_NOTE and add it. */
4938 insn
= emit_move_insn (to
, to
);
4939 set_dst_reg_note (insn
, REG_EQUAL
,
4940 gen_rtx_fmt_e (UNSIGNED_FIX
, GET_MODE (to
),
4948 /* We can't do it with an insn, so use a library call. But first ensure
4949 that the mode of TO is at least as wide as SImode, since those are the
4950 only library calls we know about. */
4952 if (GET_MODE_PRECISION (GET_MODE (to
)) < GET_MODE_PRECISION (SImode
))
4954 target
= gen_reg_rtx (SImode
);
4956 expand_fix (target
, from
, unsignedp
);
4964 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
4965 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
4966 gcc_assert (libfunc
);
4970 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4971 GET_MODE (to
), 1, from
,
4973 insns
= get_insns ();
4976 emit_libcall_block (insns
, target
, value
,
4977 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
4978 GET_MODE (to
), from
));
4983 if (GET_MODE (to
) == GET_MODE (target
))
4984 emit_move_insn (to
, target
);
4986 convert_move (to
, target
, 0);
4991 /* Promote integer arguments for a libcall if necessary.
4992 emit_library_call_value cannot do the promotion because it does not
4993 know if it should do a signed or unsigned promotion. This is because
4994 there are no tree types defined for libcalls. */
4997 prepare_libcall_arg (rtx arg
, int uintp
)
4999 machine_mode mode
= GET_MODE (arg
);
5000 machine_mode arg_mode
;
5001 if (SCALAR_INT_MODE_P (mode
))
5003 /* If we need to promote the integer function argument we need to do
5004 it here instead of inside emit_library_call_value because in
5005 emit_library_call_value we don't know if we should do a signed or
5006 unsigned promotion. */
5009 arg_mode
= promote_function_mode (NULL_TREE
, mode
,
5010 &unsigned_p
, NULL_TREE
, 0);
5011 if (arg_mode
!= mode
)
5012 return convert_to_mode (arg_mode
, arg
, uintp
);
5017 /* Generate code to convert FROM or TO a fixed-point.
5018 If UINTP is true, either TO or FROM is an unsigned integer.
5019 If SATP is true, we need to saturate the result. */
5022 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5024 machine_mode to_mode
= GET_MODE (to
);
5025 machine_mode from_mode
= GET_MODE (from
);
5027 enum rtx_code this_code
;
5028 enum insn_code code
;
5033 if (to_mode
== from_mode
)
5035 emit_move_insn (to
, from
);
5041 tab
= satp
? satfractuns_optab
: fractuns_optab
;
5042 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
5046 tab
= satp
? satfract_optab
: fract_optab
;
5047 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
5049 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
5050 if (code
!= CODE_FOR_nothing
)
5052 emit_unop_insn (code
, to
, from
, this_code
);
5056 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
5057 gcc_assert (libfunc
);
5059 from
= prepare_libcall_arg (from
, uintp
);
5060 from_mode
= GET_MODE (from
);
5063 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
5064 1, from
, from_mode
);
5065 insns
= get_insns ();
5068 emit_libcall_block (insns
, to
, value
,
5069 gen_rtx_fmt_e (optab_to_code (tab
), to_mode
, from
));
5072 /* Generate code to convert FROM to fixed point and store in TO. FROM
5073 must be floating point, TO must be signed. Use the conversion optab
5074 TAB to do the conversion. */
5077 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
5079 enum insn_code icode
;
5081 machine_mode fmode
, imode
;
5083 /* We first try to find a pair of modes, one real and one integer, at
5084 least as wide as FROM and TO, respectively, in which we can open-code
5085 this conversion. If the integer mode is wider than the mode of TO,
5086 we can do the conversion either signed or unsigned. */
5088 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
5089 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
5091 icode
= convert_optab_handler (tab
, imode
, fmode
);
5092 if (icode
!= CODE_FOR_nothing
)
5094 rtx_insn
*last
= get_last_insn ();
5095 if (fmode
!= GET_MODE (from
))
5096 from
= convert_to_mode (fmode
, from
, 0);
5098 if (imode
!= GET_MODE (to
))
5099 target
= gen_reg_rtx (imode
);
5101 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
5103 delete_insns_since (last
);
5107 convert_move (to
, target
, 0);
5115 /* Report whether we have an instruction to perform the operation
5116 specified by CODE on operands of mode MODE. */
5118 have_insn_for (enum rtx_code code
, machine_mode mode
)
5120 return (code_to_optab (code
)
5121 && (optab_handler (code_to_optab (code
), mode
)
5122 != CODE_FOR_nothing
));
5125 /* Print information about the current contents of the optabs on
5129 debug_optab_libfuncs (void)
5133 /* Dump the arithmetic optabs. */
5134 for (i
= FIRST_NORM_OPTAB
; i
<= LAST_NORMLIB_OPTAB
; ++i
)
5135 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5137 rtx l
= optab_libfunc ((optab
) i
, (machine_mode
) j
);
5140 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5141 fprintf (stderr
, "%s\t%s:\t%s\n",
5142 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5148 /* Dump the conversion optabs. */
5149 for (i
= FIRST_CONV_OPTAB
; i
<= LAST_CONVLIB_OPTAB
; ++i
)
5150 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5151 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
5153 rtx l
= convert_optab_libfunc ((optab
) i
, (machine_mode
) j
,
5157 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5158 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
5159 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5167 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5168 CODE. Return 0 on failure. */
5171 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
5173 machine_mode mode
= GET_MODE (op1
);
5174 enum insn_code icode
;
5178 if (mode
== VOIDmode
)
5181 icode
= optab_handler (ctrap_optab
, mode
);
5182 if (icode
== CODE_FOR_nothing
)
5185 /* Some targets only accept a zero trap code. */
5186 if (!insn_operand_matches (icode
, 3, tcode
))
5189 do_pending_stack_adjust ();
5191 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
5196 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
5199 /* If that failed, then give up. */
5207 insn
= get_insns ();
5212 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5213 or unsigned operation code. */
5216 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
5228 code
= unsignedp
? LTU
: LT
;
5231 code
= unsignedp
? LEU
: LE
;
5234 code
= unsignedp
? GTU
: GT
;
5237 code
= unsignedp
? GEU
: GE
;
5240 case UNORDERED_EXPR
:
5279 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
5280 select signed or unsigned operators. OPNO holds the index of the
5281 first comparison operand for insn ICODE. Do not generate the
5282 compare instruction itself. */
5285 vector_compare_rtx (machine_mode cmp_mode
, enum tree_code tcode
,
5286 tree t_op0
, tree t_op1
, bool unsignedp
,
5287 enum insn_code icode
, unsigned int opno
)
5289 struct expand_operand ops
[2];
5290 rtx rtx_op0
, rtx_op1
;
5291 machine_mode m0
, m1
;
5292 enum rtx_code rcode
= get_rtx_code (tcode
, unsignedp
);
5294 gcc_assert (TREE_CODE_CLASS (tcode
) == tcc_comparison
);
5296 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5297 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5298 cases, use the original mode. */
5299 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
5301 m0
= GET_MODE (rtx_op0
);
5303 m0
= TYPE_MODE (TREE_TYPE (t_op0
));
5305 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
5307 m1
= GET_MODE (rtx_op1
);
5309 m1
= TYPE_MODE (TREE_TYPE (t_op1
));
5311 create_input_operand (&ops
[0], rtx_op0
, m0
);
5312 create_input_operand (&ops
[1], rtx_op1
, m1
);
5313 if (!maybe_legitimize_operands (icode
, opno
, 2, ops
))
5315 return gen_rtx_fmt_ee (rcode
, cmp_mode
, ops
[0].value
, ops
[1].value
);
5318 /* Checks if vec_perm mask SEL is a constant equivalent to a shift of the first
5319 vec_perm operand, assuming the second operand is a constant vector of zeroes.
5320 Return the shift distance in bits if so, or NULL_RTX if the vec_perm is not a
5323 shift_amt_for_vec_perm_mask (rtx sel
)
5325 unsigned int i
, first
, nelt
= GET_MODE_NUNITS (GET_MODE (sel
));
5326 unsigned int bitsize
= GET_MODE_UNIT_BITSIZE (GET_MODE (sel
));
5328 if (GET_CODE (sel
) != CONST_VECTOR
)
5331 first
= INTVAL (CONST_VECTOR_ELT (sel
, 0));
5334 for (i
= 1; i
< nelt
; i
++)
5336 int idx
= INTVAL (CONST_VECTOR_ELT (sel
, i
));
5337 unsigned int expected
= i
+ first
;
5338 /* Indices into the second vector are all equivalent. */
5339 if (idx
< 0 || (MIN (nelt
, (unsigned) idx
) != MIN (nelt
, expected
)))
5343 return GEN_INT (first
* bitsize
);
5346 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
5349 expand_vec_perm_1 (enum insn_code icode
, rtx target
,
5350 rtx v0
, rtx v1
, rtx sel
)
5352 machine_mode tmode
= GET_MODE (target
);
5353 machine_mode smode
= GET_MODE (sel
);
5354 struct expand_operand ops
[4];
5356 create_output_operand (&ops
[0], target
, tmode
);
5357 create_input_operand (&ops
[3], sel
, smode
);
5359 /* Make an effort to preserve v0 == v1. The target expander is able to
5360 rely on this to determine if we're permuting a single input operand. */
5361 if (rtx_equal_p (v0
, v1
))
5363 if (!insn_operand_matches (icode
, 1, v0
))
5364 v0
= force_reg (tmode
, v0
);
5365 gcc_checking_assert (insn_operand_matches (icode
, 1, v0
));
5366 gcc_checking_assert (insn_operand_matches (icode
, 2, v0
));
5368 create_fixed_operand (&ops
[1], v0
);
5369 create_fixed_operand (&ops
[2], v0
);
5373 create_input_operand (&ops
[1], v0
, tmode
);
5374 create_input_operand (&ops
[2], v1
, tmode
);
5377 if (maybe_expand_insn (icode
, 4, ops
))
5378 return ops
[0].value
;
5382 /* Generate instructions for vec_perm optab given its mode
5383 and three operands. */
5386 expand_vec_perm (machine_mode mode
, rtx v0
, rtx v1
, rtx sel
, rtx target
)
5388 enum insn_code icode
;
5389 machine_mode qimode
;
5390 unsigned int i
, w
, e
, u
;
5391 rtx tmp
, sel_qi
= NULL
;
5394 if (!target
|| GET_MODE (target
) != mode
)
5395 target
= gen_reg_rtx (mode
);
5397 w
= GET_MODE_SIZE (mode
);
5398 e
= GET_MODE_NUNITS (mode
);
5399 u
= GET_MODE_UNIT_SIZE (mode
);
5401 /* Set QIMODE to a different vector mode with byte elements.
5402 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5404 if (GET_MODE_INNER (mode
) != QImode
)
5406 qimode
= mode_for_vector (QImode
, w
);
5407 if (!VECTOR_MODE_P (qimode
))
5411 /* If the input is a constant, expand it specially. */
5412 gcc_assert (GET_MODE_CLASS (GET_MODE (sel
)) == MODE_VECTOR_INT
);
5413 if (GET_CODE (sel
) == CONST_VECTOR
)
5415 /* See if this can be handled with a vec_shr. We only do this if the
5416 second vector is all zeroes. */
5417 enum insn_code shift_code
= optab_handler (vec_shr_optab
, mode
);
5418 enum insn_code shift_code_qi
= ((qimode
!= VOIDmode
&& qimode
!= mode
)
5419 ? optab_handler (vec_shr_optab
, qimode
)
5420 : CODE_FOR_nothing
);
5421 rtx shift_amt
= NULL_RTX
;
5422 if (v1
== CONST0_RTX (GET_MODE (v1
))
5423 && (shift_code
!= CODE_FOR_nothing
5424 || shift_code_qi
!= CODE_FOR_nothing
))
5426 shift_amt
= shift_amt_for_vec_perm_mask (sel
);
5429 struct expand_operand ops
[3];
5430 if (shift_code
!= CODE_FOR_nothing
)
5432 create_output_operand (&ops
[0], target
, mode
);
5433 create_input_operand (&ops
[1], v0
, mode
);
5434 create_convert_operand_from_type (&ops
[2], shift_amt
,
5436 if (maybe_expand_insn (shift_code
, 3, ops
))
5437 return ops
[0].value
;
5439 if (shift_code_qi
!= CODE_FOR_nothing
)
5441 tmp
= gen_reg_rtx (qimode
);
5442 create_output_operand (&ops
[0], tmp
, qimode
);
5443 create_input_operand (&ops
[1], gen_lowpart (qimode
, v0
),
5445 create_convert_operand_from_type (&ops
[2], shift_amt
,
5447 if (maybe_expand_insn (shift_code_qi
, 3, ops
))
5448 return gen_lowpart (mode
, ops
[0].value
);
5453 icode
= direct_optab_handler (vec_perm_const_optab
, mode
);
5454 if (icode
!= CODE_FOR_nothing
)
5456 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
5461 /* Fall back to a constant byte-based permutation. */
5462 if (qimode
!= VOIDmode
)
5464 vec
= rtvec_alloc (w
);
5465 for (i
= 0; i
< e
; ++i
)
5467 unsigned int j
, this_e
;
5469 this_e
= INTVAL (CONST_VECTOR_ELT (sel
, i
));
5470 this_e
&= 2 * e
- 1;
5473 for (j
= 0; j
< u
; ++j
)
5474 RTVEC_ELT (vec
, i
* u
+ j
) = GEN_INT (this_e
+ j
);
5476 sel_qi
= gen_rtx_CONST_VECTOR (qimode
, vec
);
5478 icode
= direct_optab_handler (vec_perm_const_optab
, qimode
);
5479 if (icode
!= CODE_FOR_nothing
)
5481 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
5482 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
5483 gen_lowpart (qimode
, v1
), sel_qi
);
5485 return gen_lowpart (mode
, tmp
);
5490 /* Otherwise expand as a fully variable permuation. */
5491 icode
= direct_optab_handler (vec_perm_optab
, mode
);
5492 if (icode
!= CODE_FOR_nothing
)
5494 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
5499 /* As a special case to aid several targets, lower the element-based
5500 permutation to a byte-based permutation and try again. */
5501 if (qimode
== VOIDmode
)
5503 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
5504 if (icode
== CODE_FOR_nothing
)
5509 /* Multiply each element by its byte size. */
5510 machine_mode selmode
= GET_MODE (sel
);
5512 sel
= expand_simple_binop (selmode
, PLUS
, sel
, sel
,
5513 NULL
, 0, OPTAB_DIRECT
);
5515 sel
= expand_simple_binop (selmode
, ASHIFT
, sel
,
5516 GEN_INT (exact_log2 (u
)),
5517 NULL
, 0, OPTAB_DIRECT
);
5518 gcc_assert (sel
!= NULL
);
5520 /* Broadcast the low byte each element into each of its bytes. */
5521 vec
= rtvec_alloc (w
);
5522 for (i
= 0; i
< w
; ++i
)
5524 int this_e
= i
/ u
* u
;
5525 if (BYTES_BIG_ENDIAN
)
5527 RTVEC_ELT (vec
, i
) = GEN_INT (this_e
);
5529 tmp
= gen_rtx_CONST_VECTOR (qimode
, vec
);
5530 sel
= gen_lowpart (qimode
, sel
);
5531 sel
= expand_vec_perm (qimode
, sel
, sel
, tmp
, NULL
);
5532 gcc_assert (sel
!= NULL
);
5534 /* Add the byte offset to each byte element. */
5535 /* Note that the definition of the indicies here is memory ordering,
5536 so there should be no difference between big and little endian. */
5537 vec
= rtvec_alloc (w
);
5538 for (i
= 0; i
< w
; ++i
)
5539 RTVEC_ELT (vec
, i
) = GEN_INT (i
% u
);
5540 tmp
= gen_rtx_CONST_VECTOR (qimode
, vec
);
5541 sel_qi
= expand_simple_binop (qimode
, PLUS
, sel
, tmp
,
5542 sel
, 0, OPTAB_DIRECT
);
5543 gcc_assert (sel_qi
!= NULL
);
5546 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
5547 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
5548 gen_lowpart (qimode
, v1
), sel_qi
);
5550 tmp
= gen_lowpart (mode
, tmp
);
5554 /* Generate insns for a VEC_COND_EXPR with mask, given its TYPE and its
5558 expand_vec_cond_mask_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
5561 struct expand_operand ops
[4];
5562 machine_mode mode
= TYPE_MODE (vec_cond_type
);
5563 machine_mode mask_mode
= TYPE_MODE (TREE_TYPE (op0
));
5564 enum insn_code icode
= get_vcond_mask_icode (mode
, mask_mode
);
5565 rtx mask
, rtx_op1
, rtx_op2
;
5567 if (icode
== CODE_FOR_nothing
)
5570 mask
= expand_normal (op0
);
5571 rtx_op1
= expand_normal (op1
);
5572 rtx_op2
= expand_normal (op2
);
5574 mask
= force_reg (mask_mode
, mask
);
5575 rtx_op1
= force_reg (GET_MODE (rtx_op1
), rtx_op1
);
5577 create_output_operand (&ops
[0], target
, mode
);
5578 create_input_operand (&ops
[1], rtx_op1
, mode
);
5579 create_input_operand (&ops
[2], rtx_op2
, mode
);
5580 create_input_operand (&ops
[3], mask
, mask_mode
);
5581 expand_insn (icode
, 4, ops
);
5583 return ops
[0].value
;
5586 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
5590 expand_vec_cond_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
5593 struct expand_operand ops
[6];
5594 enum insn_code icode
;
5595 rtx comparison
, rtx_op1
, rtx_op2
;
5596 machine_mode mode
= TYPE_MODE (vec_cond_type
);
5597 machine_mode cmp_op_mode
;
5600 enum tree_code tcode
;
5602 if (COMPARISON_CLASS_P (op0
))
5604 op0a
= TREE_OPERAND (op0
, 0);
5605 op0b
= TREE_OPERAND (op0
, 1);
5606 tcode
= TREE_CODE (op0
);
5610 gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (op0
)));
5611 if (get_vcond_mask_icode (mode
, TYPE_MODE (TREE_TYPE (op0
)))
5612 != CODE_FOR_nothing
)
5613 return expand_vec_cond_mask_expr (vec_cond_type
, op0
, op1
,
5618 gcc_assert (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (op0
)))
5619 == MODE_VECTOR_INT
);
5621 op0b
= build_zero_cst (TREE_TYPE (op0
));
5625 cmp_op_mode
= TYPE_MODE (TREE_TYPE (op0a
));
5626 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
5629 gcc_assert (GET_MODE_SIZE (mode
) == GET_MODE_SIZE (cmp_op_mode
)
5630 && GET_MODE_NUNITS (mode
) == GET_MODE_NUNITS (cmp_op_mode
));
5632 icode
= get_vcond_icode (mode
, cmp_op_mode
, unsignedp
);
5633 if (icode
== CODE_FOR_nothing
)
5635 if (tcode
== EQ_EXPR
|| tcode
== NE_EXPR
)
5636 icode
= get_vcond_eq_icode (mode
, cmp_op_mode
);
5637 if (icode
== CODE_FOR_nothing
)
5641 comparison
= vector_compare_rtx (VOIDmode
, tcode
, op0a
, op0b
, unsignedp
,
5643 rtx_op1
= expand_normal (op1
);
5644 rtx_op2
= expand_normal (op2
);
5646 create_output_operand (&ops
[0], target
, mode
);
5647 create_input_operand (&ops
[1], rtx_op1
, mode
);
5648 create_input_operand (&ops
[2], rtx_op2
, mode
);
5649 create_fixed_operand (&ops
[3], comparison
);
5650 create_fixed_operand (&ops
[4], XEXP (comparison
, 0));
5651 create_fixed_operand (&ops
[5], XEXP (comparison
, 1));
5652 expand_insn (icode
, 6, ops
);
5653 return ops
[0].value
;
5656 /* Generate insns for a vector comparison into a mask. */
5659 expand_vec_cmp_expr (tree type
, tree exp
, rtx target
)
5661 struct expand_operand ops
[4];
5662 enum insn_code icode
;
5664 machine_mode mask_mode
= TYPE_MODE (type
);
5668 enum tree_code tcode
;
5670 op0a
= TREE_OPERAND (exp
, 0);
5671 op0b
= TREE_OPERAND (exp
, 1);
5672 tcode
= TREE_CODE (exp
);
5674 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
5675 vmode
= TYPE_MODE (TREE_TYPE (op0a
));
5677 icode
= get_vec_cmp_icode (vmode
, mask_mode
, unsignedp
);
5678 if (icode
== CODE_FOR_nothing
)
5680 if (tcode
== EQ_EXPR
|| tcode
== NE_EXPR
)
5681 icode
= get_vec_cmp_eq_icode (vmode
, mask_mode
);
5682 if (icode
== CODE_FOR_nothing
)
5686 comparison
= vector_compare_rtx (mask_mode
, tcode
, op0a
, op0b
,
5687 unsignedp
, icode
, 2);
5688 create_output_operand (&ops
[0], target
, mask_mode
);
5689 create_fixed_operand (&ops
[1], comparison
);
5690 create_fixed_operand (&ops
[2], XEXP (comparison
, 0));
5691 create_fixed_operand (&ops
[3], XEXP (comparison
, 1));
5692 expand_insn (icode
, 4, ops
);
5693 return ops
[0].value
;
5696 /* Expand a highpart multiply. */
5699 expand_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
5700 rtx target
, bool uns_p
)
5702 struct expand_operand eops
[3];
5703 enum insn_code icode
;
5704 int method
, i
, nunits
;
5710 method
= can_mult_highpart_p (mode
, uns_p
);
5716 tab1
= uns_p
? umul_highpart_optab
: smul_highpart_optab
;
5717 return expand_binop (mode
, tab1
, op0
, op1
, target
, uns_p
,
5720 tab1
= uns_p
? vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
5721 tab2
= uns_p
? vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
5724 tab1
= uns_p
? vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
5725 tab2
= uns_p
? vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
5726 if (BYTES_BIG_ENDIAN
)
5727 std::swap (tab1
, tab2
);
5733 icode
= optab_handler (tab1
, mode
);
5734 nunits
= GET_MODE_NUNITS (mode
);
5735 wmode
= insn_data
[icode
].operand
[0].mode
;
5736 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode
) == nunits
);
5737 gcc_checking_assert (GET_MODE_SIZE (wmode
) == GET_MODE_SIZE (mode
));
5739 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
5740 create_input_operand (&eops
[1], op0
, mode
);
5741 create_input_operand (&eops
[2], op1
, mode
);
5742 expand_insn (icode
, 3, eops
);
5743 m1
= gen_lowpart (mode
, eops
[0].value
);
5745 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
5746 create_input_operand (&eops
[1], op0
, mode
);
5747 create_input_operand (&eops
[2], op1
, mode
);
5748 expand_insn (optab_handler (tab2
, mode
), 3, eops
);
5749 m2
= gen_lowpart (mode
, eops
[0].value
);
5751 v
= rtvec_alloc (nunits
);
5754 for (i
= 0; i
< nunits
; ++i
)
5755 RTVEC_ELT (v
, i
) = GEN_INT (!BYTES_BIG_ENDIAN
+ (i
& ~1)
5756 + ((i
& 1) ? nunits
: 0));
5760 for (i
= 0; i
< nunits
; ++i
)
5761 RTVEC_ELT (v
, i
) = GEN_INT (2 * i
+ (BYTES_BIG_ENDIAN
? 0 : 1));
5763 perm
= gen_rtx_CONST_VECTOR (mode
, v
);
5765 return expand_vec_perm (mode
, m1
, m2
, perm
, target
);
5768 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
5772 find_cc_set (rtx x
, const_rtx pat
, void *data
)
5774 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
5775 && GET_CODE (pat
) == SET
)
5777 rtx
*p_cc_reg
= (rtx
*) data
;
5778 gcc_assert (!*p_cc_reg
);
5783 /* This is a helper function for the other atomic operations. This function
5784 emits a loop that contains SEQ that iterates until a compare-and-swap
5785 operation at the end succeeds. MEM is the memory to be modified. SEQ is
5786 a set of instructions that takes a value from OLD_REG as an input and
5787 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
5788 set to the current contents of MEM. After SEQ, a compare-and-swap will
5789 attempt to update MEM with NEW_REG. The function returns true when the
5790 loop was generated successfully. */
5793 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
5795 machine_mode mode
= GET_MODE (mem
);
5796 rtx_code_label
*label
;
5797 rtx cmp_reg
, success
, oldval
;
5799 /* The loop we want to generate looks like
5805 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
5809 Note that we only do the plain load from memory once. Subsequent
5810 iterations use the value loaded by the compare-and-swap pattern. */
5812 label
= gen_label_rtx ();
5813 cmp_reg
= gen_reg_rtx (mode
);
5815 emit_move_insn (cmp_reg
, mem
);
5817 emit_move_insn (old_reg
, cmp_reg
);
5823 if (!expand_atomic_compare_and_swap (&success
, &oldval
, mem
, old_reg
,
5824 new_reg
, false, MEMMODEL_SYNC_SEQ_CST
,
5828 if (oldval
!= cmp_reg
)
5829 emit_move_insn (cmp_reg
, oldval
);
5831 /* Mark this jump predicted not taken. */
5832 emit_cmp_and_jump_insns (success
, const0_rtx
, EQ
, const0_rtx
,
5833 GET_MODE (success
), 1, label
,
5834 profile_probability::guessed_never ());
5839 /* This function tries to emit an atomic_exchange intruction. VAL is written
5840 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
5841 using TARGET if possible. */
5844 maybe_emit_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
5846 machine_mode mode
= GET_MODE (mem
);
5847 enum insn_code icode
;
5849 /* If the target supports the exchange directly, great. */
5850 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
5851 if (icode
!= CODE_FOR_nothing
)
5853 struct expand_operand ops
[4];
5855 create_output_operand (&ops
[0], target
, mode
);
5856 create_fixed_operand (&ops
[1], mem
);
5857 create_input_operand (&ops
[2], val
, mode
);
5858 create_integer_operand (&ops
[3], model
);
5859 if (maybe_expand_insn (icode
, 4, ops
))
5860 return ops
[0].value
;
5866 /* This function tries to implement an atomic exchange operation using
5867 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
5868 The previous contents of *MEM are returned, using TARGET if possible.
5869 Since this instructionn is an acquire barrier only, stronger memory
5870 models may require additional barriers to be emitted. */
5873 maybe_emit_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
,
5874 enum memmodel model
)
5876 machine_mode mode
= GET_MODE (mem
);
5877 enum insn_code icode
;
5878 rtx_insn
*last_insn
= get_last_insn ();
5880 icode
= optab_handler (sync_lock_test_and_set_optab
, mode
);
5882 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
5883 exists, and the memory model is stronger than acquire, add a release
5884 barrier before the instruction. */
5886 if (is_mm_seq_cst (model
) || is_mm_release (model
) || is_mm_acq_rel (model
))
5887 expand_mem_thread_fence (model
);
5889 if (icode
!= CODE_FOR_nothing
)
5891 struct expand_operand ops
[3];
5892 create_output_operand (&ops
[0], target
, mode
);
5893 create_fixed_operand (&ops
[1], mem
);
5894 create_input_operand (&ops
[2], val
, mode
);
5895 if (maybe_expand_insn (icode
, 3, ops
))
5896 return ops
[0].value
;
5899 /* If an external test-and-set libcall is provided, use that instead of
5900 any external compare-and-swap that we might get from the compare-and-
5901 swap-loop expansion later. */
5902 if (!can_compare_and_swap_p (mode
, false))
5904 rtx libfunc
= optab_libfunc (sync_lock_test_and_set_optab
, mode
);
5905 if (libfunc
!= NULL
)
5909 addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
5910 return emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
5911 mode
, 2, addr
, ptr_mode
,
5916 /* If the test_and_set can't be emitted, eliminate any barrier that might
5917 have been emitted. */
5918 delete_insns_since (last_insn
);
5922 /* This function tries to implement an atomic exchange operation using a
5923 compare_and_swap loop. VAL is written to *MEM. The previous contents of
5924 *MEM are returned, using TARGET if possible. No memory model is required
5925 since a compare_and_swap loop is seq-cst. */
5928 maybe_emit_compare_and_swap_exchange_loop (rtx target
, rtx mem
, rtx val
)
5930 machine_mode mode
= GET_MODE (mem
);
5932 if (can_compare_and_swap_p (mode
, true))
5934 if (!target
|| !register_operand (target
, mode
))
5935 target
= gen_reg_rtx (mode
);
5936 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
5943 /* This function tries to implement an atomic test-and-set operation
5944 using the atomic_test_and_set instruction pattern. A boolean value
5945 is returned from the operation, using TARGET if possible. */
5948 maybe_emit_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
5950 machine_mode pat_bool_mode
;
5951 struct expand_operand ops
[3];
5953 if (!targetm
.have_atomic_test_and_set ())
5956 /* While we always get QImode from __atomic_test_and_set, we get
5957 other memory modes from __sync_lock_test_and_set. Note that we
5958 use no endian adjustment here. This matches the 4.6 behavior
5959 in the Sparc backend. */
5960 enum insn_code icode
= targetm
.code_for_atomic_test_and_set
;
5961 gcc_checking_assert (insn_data
[icode
].operand
[1].mode
== QImode
);
5962 if (GET_MODE (mem
) != QImode
)
5963 mem
= adjust_address_nv (mem
, QImode
, 0);
5965 pat_bool_mode
= insn_data
[icode
].operand
[0].mode
;
5966 create_output_operand (&ops
[0], target
, pat_bool_mode
);
5967 create_fixed_operand (&ops
[1], mem
);
5968 create_integer_operand (&ops
[2], model
);
5970 if (maybe_expand_insn (icode
, 3, ops
))
5971 return ops
[0].value
;
5975 /* This function expands the legacy _sync_lock test_and_set operation which is
5976 generally an atomic exchange. Some limited targets only allow the
5977 constant 1 to be stored. This is an ACQUIRE operation.
5979 TARGET is an optional place to stick the return value.
5980 MEM is where VAL is stored. */
5983 expand_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
)
5987 /* Try an atomic_exchange first. */
5988 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, MEMMODEL_SYNC_ACQUIRE
);
5992 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, val
,
5993 MEMMODEL_SYNC_ACQUIRE
);
5997 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6001 /* If there are no other options, try atomic_test_and_set if the value
6002 being stored is 1. */
6003 if (val
== const1_rtx
)
6004 ret
= maybe_emit_atomic_test_and_set (target
, mem
, MEMMODEL_SYNC_ACQUIRE
);
6009 /* This function expands the atomic test_and_set operation:
6010 atomically store a boolean TRUE into MEM and return the previous value.
6012 MEMMODEL is the memory model variant to use.
6013 TARGET is an optional place to stick the return value. */
6016 expand_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
6018 machine_mode mode
= GET_MODE (mem
);
6019 rtx ret
, trueval
, subtarget
;
6021 ret
= maybe_emit_atomic_test_and_set (target
, mem
, model
);
6025 /* Be binary compatible with non-default settings of trueval, and different
6026 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6027 another only has atomic-exchange. */
6028 if (targetm
.atomic_test_and_set_trueval
== 1)
6030 trueval
= const1_rtx
;
6031 subtarget
= target
? target
: gen_reg_rtx (mode
);
6035 trueval
= gen_int_mode (targetm
.atomic_test_and_set_trueval
, mode
);
6036 subtarget
= gen_reg_rtx (mode
);
6039 /* Try the atomic-exchange optab... */
6040 ret
= maybe_emit_atomic_exchange (subtarget
, mem
, trueval
, model
);
6042 /* ... then an atomic-compare-and-swap loop ... */
6044 ret
= maybe_emit_compare_and_swap_exchange_loop (subtarget
, mem
, trueval
);
6046 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6048 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, trueval
, model
);
6050 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6051 things with the value 1. Thus we try again without trueval. */
6052 if (!ret
&& targetm
.atomic_test_and_set_trueval
!= 1)
6053 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, const1_rtx
, model
);
6055 /* Failing all else, assume a single threaded environment and simply
6056 perform the operation. */
6059 /* If the result is ignored skip the move to target. */
6060 if (subtarget
!= const0_rtx
)
6061 emit_move_insn (subtarget
, mem
);
6063 emit_move_insn (mem
, trueval
);
6067 /* Recall that have to return a boolean value; rectify if trueval
6068 is not exactly one. */
6069 if (targetm
.atomic_test_and_set_trueval
!= 1)
6070 ret
= emit_store_flag_force (target
, NE
, ret
, const0_rtx
, mode
, 0, 1);
6075 /* This function expands the atomic exchange operation:
6076 atomically store VAL in MEM and return the previous value in MEM.
6078 MEMMODEL is the memory model variant to use.
6079 TARGET is an optional place to stick the return value. */
6082 expand_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6084 machine_mode mode
= GET_MODE (mem
);
6087 /* If loads are not atomic for the required size and we are not called to
6088 provide a __sync builtin, do not do anything so that we stay consistent
6089 with atomic loads of the same size. */
6090 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
6093 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6095 /* Next try a compare-and-swap loop for the exchange. */
6097 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6102 /* This function expands the atomic compare exchange operation:
6104 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6105 *PTARGET_OVAL is an optional place to store the old value from memory.
6106 Both target parameters may be NULL or const0_rtx to indicate that we do
6107 not care about that return value. Both target parameters are updated on
6108 success to the actual location of the corresponding result.
6110 MEMMODEL is the memory model variant to use.
6112 The return value of the function is true for success. */
6115 expand_atomic_compare_and_swap (rtx
*ptarget_bool
, rtx
*ptarget_oval
,
6116 rtx mem
, rtx expected
, rtx desired
,
6117 bool is_weak
, enum memmodel succ_model
,
6118 enum memmodel fail_model
)
6120 machine_mode mode
= GET_MODE (mem
);
6121 struct expand_operand ops
[8];
6122 enum insn_code icode
;
6123 rtx target_oval
, target_bool
= NULL_RTX
;
6126 /* If loads are not atomic for the required size and we are not called to
6127 provide a __sync builtin, do not do anything so that we stay consistent
6128 with atomic loads of the same size. */
6129 if (!can_atomic_load_p (mode
) && !is_mm_sync (succ_model
))
6132 /* Load expected into a register for the compare and swap. */
6133 if (MEM_P (expected
))
6134 expected
= copy_to_reg (expected
);
6136 /* Make sure we always have some place to put the return oldval.
6137 Further, make sure that place is distinct from the input expected,
6138 just in case we need that path down below. */
6139 if (ptarget_oval
&& *ptarget_oval
== const0_rtx
)
6140 ptarget_oval
= NULL
;
6142 if (ptarget_oval
== NULL
6143 || (target_oval
= *ptarget_oval
) == NULL
6144 || reg_overlap_mentioned_p (expected
, target_oval
))
6145 target_oval
= gen_reg_rtx (mode
);
6147 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
6148 if (icode
!= CODE_FOR_nothing
)
6150 machine_mode bool_mode
= insn_data
[icode
].operand
[0].mode
;
6152 if (ptarget_bool
&& *ptarget_bool
== const0_rtx
)
6153 ptarget_bool
= NULL
;
6155 /* Make sure we always have a place for the bool operand. */
6156 if (ptarget_bool
== NULL
6157 || (target_bool
= *ptarget_bool
) == NULL
6158 || GET_MODE (target_bool
) != bool_mode
)
6159 target_bool
= gen_reg_rtx (bool_mode
);
6161 /* Emit the compare_and_swap. */
6162 create_output_operand (&ops
[0], target_bool
, bool_mode
);
6163 create_output_operand (&ops
[1], target_oval
, mode
);
6164 create_fixed_operand (&ops
[2], mem
);
6165 create_input_operand (&ops
[3], expected
, mode
);
6166 create_input_operand (&ops
[4], desired
, mode
);
6167 create_integer_operand (&ops
[5], is_weak
);
6168 create_integer_operand (&ops
[6], succ_model
);
6169 create_integer_operand (&ops
[7], fail_model
);
6170 if (maybe_expand_insn (icode
, 8, ops
))
6172 /* Return success/failure. */
6173 target_bool
= ops
[0].value
;
6174 target_oval
= ops
[1].value
;
6179 /* Otherwise fall back to the original __sync_val_compare_and_swap
6180 which is always seq-cst. */
6181 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
6182 if (icode
!= CODE_FOR_nothing
)
6186 create_output_operand (&ops
[0], target_oval
, mode
);
6187 create_fixed_operand (&ops
[1], mem
);
6188 create_input_operand (&ops
[2], expected
, mode
);
6189 create_input_operand (&ops
[3], desired
, mode
);
6190 if (!maybe_expand_insn (icode
, 4, ops
))
6193 target_oval
= ops
[0].value
;
6195 /* If the caller isn't interested in the boolean return value,
6196 skip the computation of it. */
6197 if (ptarget_bool
== NULL
)
6200 /* Otherwise, work out if the compare-and-swap succeeded. */
6202 if (have_insn_for (COMPARE
, CCmode
))
6203 note_stores (PATTERN (get_last_insn ()), find_cc_set
, &cc_reg
);
6206 target_bool
= emit_store_flag_force (target_bool
, EQ
, cc_reg
,
6207 const0_rtx
, VOIDmode
, 0, 1);
6210 goto success_bool_from_val
;
6213 /* Also check for library support for __sync_val_compare_and_swap. */
6214 libfunc
= optab_libfunc (sync_compare_and_swap_optab
, mode
);
6215 if (libfunc
!= NULL
)
6217 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6218 rtx target
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6219 mode
, 3, addr
, ptr_mode
,
6220 expected
, mode
, desired
, mode
);
6221 emit_move_insn (target_oval
, target
);
6223 /* Compute the boolean return value only if requested. */
6225 goto success_bool_from_val
;
6233 success_bool_from_val
:
6234 target_bool
= emit_store_flag_force (target_bool
, EQ
, target_oval
,
6235 expected
, VOIDmode
, 1, 1);
6237 /* Make sure that the oval output winds up where the caller asked. */
6239 *ptarget_oval
= target_oval
;
6241 *ptarget_bool
= target_bool
;
6245 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
6248 expand_asm_memory_barrier (void)
6252 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, "", "", 0,
6253 rtvec_alloc (0), rtvec_alloc (0),
6254 rtvec_alloc (0), UNKNOWN_LOCATION
);
6255 MEM_VOLATILE_P (asm_op
) = 1;
6257 clob
= gen_rtx_SCRATCH (VOIDmode
);
6258 clob
= gen_rtx_MEM (BLKmode
, clob
);
6259 clob
= gen_rtx_CLOBBER (VOIDmode
, clob
);
6261 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, asm_op
, clob
)));
6264 /* This routine will either emit the mem_thread_fence pattern or issue a
6265 sync_synchronize to generate a fence for memory model MEMMODEL. */
6268 expand_mem_thread_fence (enum memmodel model
)
6270 if (is_mm_relaxed (model
))
6272 if (targetm
.have_mem_thread_fence ())
6274 emit_insn (targetm
.gen_mem_thread_fence (GEN_INT (model
)));
6275 expand_asm_memory_barrier ();
6277 else if (targetm
.have_memory_barrier ())
6278 emit_insn (targetm
.gen_memory_barrier ());
6279 else if (synchronize_libfunc
!= NULL_RTX
)
6280 emit_library_call (synchronize_libfunc
, LCT_NORMAL
, VOIDmode
, 0);
6282 expand_asm_memory_barrier ();
6285 /* This routine will either emit the mem_signal_fence pattern or issue a
6286 sync_synchronize to generate a fence for memory model MEMMODEL. */
6289 expand_mem_signal_fence (enum memmodel model
)
6291 if (targetm
.have_mem_signal_fence ())
6292 emit_insn (targetm
.gen_mem_signal_fence (GEN_INT (model
)));
6293 else if (!is_mm_relaxed (model
))
6295 /* By default targets are coherent between a thread and the signal
6296 handler running on the same thread. Thus this really becomes a
6297 compiler barrier, in that stores must not be sunk past
6298 (or raised above) a given point. */
6299 expand_asm_memory_barrier ();
6303 /* This function expands the atomic load operation:
6304 return the atomically loaded value in MEM.
6306 MEMMODEL is the memory model variant to use.
6307 TARGET is an option place to stick the return value. */
6310 expand_atomic_load (rtx target
, rtx mem
, enum memmodel model
)
6312 machine_mode mode
= GET_MODE (mem
);
6313 enum insn_code icode
;
6315 /* If the target supports the load directly, great. */
6316 icode
= direct_optab_handler (atomic_load_optab
, mode
);
6317 if (icode
!= CODE_FOR_nothing
)
6319 struct expand_operand ops
[3];
6321 create_output_operand (&ops
[0], target
, mode
);
6322 create_fixed_operand (&ops
[1], mem
);
6323 create_integer_operand (&ops
[2], model
);
6324 if (maybe_expand_insn (icode
, 3, ops
))
6325 return ops
[0].value
;
6328 /* If the size of the object is greater than word size on this target,
6329 then we assume that a load will not be atomic. We could try to
6330 emulate a load with a compare-and-swap operation, but the store that
6331 doing this could result in would be incorrect if this is a volatile
6332 atomic load or targetting read-only-mapped memory. */
6333 if (GET_MODE_PRECISION (mode
) > BITS_PER_WORD
)
6334 /* If there is no atomic load, leave the library call. */
6337 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6338 if (!target
|| target
== const0_rtx
)
6339 target
= gen_reg_rtx (mode
);
6341 /* For SEQ_CST, emit a barrier before the load. */
6342 if (is_mm_seq_cst (model
))
6343 expand_mem_thread_fence (model
);
6345 emit_move_insn (target
, mem
);
6347 /* Emit the appropriate barrier after the load. */
6348 expand_mem_thread_fence (model
);
6353 /* This function expands the atomic store operation:
6354 Atomically store VAL in MEM.
6355 MEMMODEL is the memory model variant to use.
6356 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6357 function returns const0_rtx if a pattern was emitted. */
6360 expand_atomic_store (rtx mem
, rtx val
, enum memmodel model
, bool use_release
)
6362 machine_mode mode
= GET_MODE (mem
);
6363 enum insn_code icode
;
6364 struct expand_operand ops
[3];
6366 /* If the target supports the store directly, great. */
6367 icode
= direct_optab_handler (atomic_store_optab
, mode
);
6368 if (icode
!= CODE_FOR_nothing
)
6370 create_fixed_operand (&ops
[0], mem
);
6371 create_input_operand (&ops
[1], val
, mode
);
6372 create_integer_operand (&ops
[2], model
);
6373 if (maybe_expand_insn (icode
, 3, ops
))
6377 /* If using __sync_lock_release is a viable alternative, try it.
6378 Note that this will not be set to true if we are expanding a generic
6379 __atomic_store_n. */
6382 icode
= direct_optab_handler (sync_lock_release_optab
, mode
);
6383 if (icode
!= CODE_FOR_nothing
)
6385 create_fixed_operand (&ops
[0], mem
);
6386 create_input_operand (&ops
[1], const0_rtx
, mode
);
6387 if (maybe_expand_insn (icode
, 2, ops
))
6389 /* lock_release is only a release barrier. */
6390 if (is_mm_seq_cst (model
))
6391 expand_mem_thread_fence (model
);
6397 /* If the size of the object is greater than word size on this target,
6398 a default store will not be atomic. */
6399 if (GET_MODE_PRECISION (mode
) > BITS_PER_WORD
)
6401 /* If loads are atomic or we are called to provide a __sync builtin,
6402 we can try a atomic_exchange and throw away the result. Otherwise,
6403 don't do anything so that we do not create an inconsistency between
6404 loads and stores. */
6405 if (can_atomic_load_p (mode
) || is_mm_sync (model
))
6407 rtx target
= maybe_emit_atomic_exchange (NULL_RTX
, mem
, val
, model
);
6409 target
= maybe_emit_compare_and_swap_exchange_loop (NULL_RTX
, mem
,
6417 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6418 expand_mem_thread_fence (model
);
6420 emit_move_insn (mem
, val
);
6422 /* For SEQ_CST, also emit a barrier after the store. */
6423 if (is_mm_seq_cst (model
))
6424 expand_mem_thread_fence (model
);
6430 /* Structure containing the pointers and values required to process the
6431 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6433 struct atomic_op_functions
6435 direct_optab mem_fetch_before
;
6436 direct_optab mem_fetch_after
;
6437 direct_optab mem_no_result
;
6440 direct_optab no_result
;
6441 enum rtx_code reverse_code
;
6445 /* Fill in structure pointed to by OP with the various optab entries for an
6446 operation of type CODE. */
6449 get_atomic_op_for_code (struct atomic_op_functions
*op
, enum rtx_code code
)
6451 gcc_assert (op
!= NULL
);
6453 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6454 in the source code during compilation, and the optab entries are not
6455 computable until runtime. Fill in the values at runtime. */
6459 op
->mem_fetch_before
= atomic_fetch_add_optab
;
6460 op
->mem_fetch_after
= atomic_add_fetch_optab
;
6461 op
->mem_no_result
= atomic_add_optab
;
6462 op
->fetch_before
= sync_old_add_optab
;
6463 op
->fetch_after
= sync_new_add_optab
;
6464 op
->no_result
= sync_add_optab
;
6465 op
->reverse_code
= MINUS
;
6468 op
->mem_fetch_before
= atomic_fetch_sub_optab
;
6469 op
->mem_fetch_after
= atomic_sub_fetch_optab
;
6470 op
->mem_no_result
= atomic_sub_optab
;
6471 op
->fetch_before
= sync_old_sub_optab
;
6472 op
->fetch_after
= sync_new_sub_optab
;
6473 op
->no_result
= sync_sub_optab
;
6474 op
->reverse_code
= PLUS
;
6477 op
->mem_fetch_before
= atomic_fetch_xor_optab
;
6478 op
->mem_fetch_after
= atomic_xor_fetch_optab
;
6479 op
->mem_no_result
= atomic_xor_optab
;
6480 op
->fetch_before
= sync_old_xor_optab
;
6481 op
->fetch_after
= sync_new_xor_optab
;
6482 op
->no_result
= sync_xor_optab
;
6483 op
->reverse_code
= XOR
;
6486 op
->mem_fetch_before
= atomic_fetch_and_optab
;
6487 op
->mem_fetch_after
= atomic_and_fetch_optab
;
6488 op
->mem_no_result
= atomic_and_optab
;
6489 op
->fetch_before
= sync_old_and_optab
;
6490 op
->fetch_after
= sync_new_and_optab
;
6491 op
->no_result
= sync_and_optab
;
6492 op
->reverse_code
= UNKNOWN
;
6495 op
->mem_fetch_before
= atomic_fetch_or_optab
;
6496 op
->mem_fetch_after
= atomic_or_fetch_optab
;
6497 op
->mem_no_result
= atomic_or_optab
;
6498 op
->fetch_before
= sync_old_ior_optab
;
6499 op
->fetch_after
= sync_new_ior_optab
;
6500 op
->no_result
= sync_ior_optab
;
6501 op
->reverse_code
= UNKNOWN
;
6504 op
->mem_fetch_before
= atomic_fetch_nand_optab
;
6505 op
->mem_fetch_after
= atomic_nand_fetch_optab
;
6506 op
->mem_no_result
= atomic_nand_optab
;
6507 op
->fetch_before
= sync_old_nand_optab
;
6508 op
->fetch_after
= sync_new_nand_optab
;
6509 op
->no_result
= sync_nand_optab
;
6510 op
->reverse_code
= UNKNOWN
;
6517 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6518 using memory order MODEL. If AFTER is true the operation needs to return
6519 the value of *MEM after the operation, otherwise the previous value.
6520 TARGET is an optional place to place the result. The result is unused if
6522 Return the result if there is a better sequence, otherwise NULL_RTX. */
6525 maybe_optimize_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
6526 enum memmodel model
, bool after
)
6528 /* If the value is prefetched, or not used, it may be possible to replace
6529 the sequence with a native exchange operation. */
6530 if (!after
|| target
== const0_rtx
)
6532 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6533 if (code
== AND
&& val
== const0_rtx
)
6535 if (target
== const0_rtx
)
6536 target
= gen_reg_rtx (GET_MODE (mem
));
6537 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6540 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6541 if (code
== IOR
&& val
== constm1_rtx
)
6543 if (target
== const0_rtx
)
6544 target
= gen_reg_rtx (GET_MODE (mem
));
6545 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6552 /* Try to emit an instruction for a specific operation varaition.
6553 OPTAB contains the OP functions.
6554 TARGET is an optional place to return the result. const0_rtx means unused.
6555 MEM is the memory location to operate on.
6556 VAL is the value to use in the operation.
6557 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6558 MODEL is the memory model, if used.
6559 AFTER is true if the returned result is the value after the operation. */
6562 maybe_emit_op (const struct atomic_op_functions
*optab
, rtx target
, rtx mem
,
6563 rtx val
, bool use_memmodel
, enum memmodel model
, bool after
)
6565 machine_mode mode
= GET_MODE (mem
);
6566 struct expand_operand ops
[4];
6567 enum insn_code icode
;
6571 /* Check to see if there is a result returned. */
6572 if (target
== const0_rtx
)
6576 icode
= direct_optab_handler (optab
->mem_no_result
, mode
);
6577 create_integer_operand (&ops
[2], model
);
6582 icode
= direct_optab_handler (optab
->no_result
, mode
);
6586 /* Otherwise, we need to generate a result. */
6591 icode
= direct_optab_handler (after
? optab
->mem_fetch_after
6592 : optab
->mem_fetch_before
, mode
);
6593 create_integer_operand (&ops
[3], model
);
6598 icode
= optab_handler (after
? optab
->fetch_after
6599 : optab
->fetch_before
, mode
);
6602 create_output_operand (&ops
[op_counter
++], target
, mode
);
6604 if (icode
== CODE_FOR_nothing
)
6607 create_fixed_operand (&ops
[op_counter
++], mem
);
6608 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6609 create_convert_operand_to (&ops
[op_counter
++], val
, mode
, true);
6611 if (maybe_expand_insn (icode
, num_ops
, ops
))
6612 return (target
== const0_rtx
? const0_rtx
: ops
[0].value
);
6618 /* This function expands an atomic fetch_OP or OP_fetch operation:
6619 TARGET is an option place to stick the return value. const0_rtx indicates
6620 the result is unused.
6621 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6622 CODE is the operation being performed (OP)
6623 MEMMODEL is the memory model variant to use.
6624 AFTER is true to return the result of the operation (OP_fetch).
6625 AFTER is false to return the value before the operation (fetch_OP).
6627 This function will *only* generate instructions if there is a direct
6628 optab. No compare and swap loops or libcalls will be generated. */
6631 expand_atomic_fetch_op_no_fallback (rtx target
, rtx mem
, rtx val
,
6632 enum rtx_code code
, enum memmodel model
,
6635 machine_mode mode
= GET_MODE (mem
);
6636 struct atomic_op_functions optab
;
6638 bool unused_result
= (target
== const0_rtx
);
6640 get_atomic_op_for_code (&optab
, code
);
6642 /* Check to see if there are any better instructions. */
6643 result
= maybe_optimize_fetch_op (target
, mem
, val
, code
, model
, after
);
6647 /* Check for the case where the result isn't used and try those patterns. */
6650 /* Try the memory model variant first. */
6651 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, true);
6655 /* Next try the old style withuot a memory model. */
6656 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, true);
6660 /* There is no no-result pattern, so try patterns with a result. */
6664 /* Try the __atomic version. */
6665 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, after
);
6669 /* Try the older __sync version. */
6670 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, after
);
6674 /* If the fetch value can be calculated from the other variation of fetch,
6675 try that operation. */
6676 if (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
)
6678 /* Try the __atomic version, then the older __sync version. */
6679 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, !after
);
6681 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, !after
);
6685 /* If the result isn't used, no need to do compensation code. */
6689 /* Issue compensation code. Fetch_after == fetch_before OP val.
6690 Fetch_before == after REVERSE_OP val. */
6692 code
= optab
.reverse_code
;
6695 result
= expand_simple_binop (mode
, AND
, result
, val
, NULL_RTX
,
6696 true, OPTAB_LIB_WIDEN
);
6697 result
= expand_simple_unop (mode
, NOT
, result
, target
, true);
6700 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
6701 true, OPTAB_LIB_WIDEN
);
6706 /* No direct opcode can be generated. */
6712 /* This function expands an atomic fetch_OP or OP_fetch operation:
6713 TARGET is an option place to stick the return value. const0_rtx indicates
6714 the result is unused.
6715 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6716 CODE is the operation being performed (OP)
6717 MEMMODEL is the memory model variant to use.
6718 AFTER is true to return the result of the operation (OP_fetch).
6719 AFTER is false to return the value before the operation (fetch_OP). */
6721 expand_atomic_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
6722 enum memmodel model
, bool after
)
6724 machine_mode mode
= GET_MODE (mem
);
6726 bool unused_result
= (target
== const0_rtx
);
6728 /* If loads are not atomic for the required size and we are not called to
6729 provide a __sync builtin, do not do anything so that we stay consistent
6730 with atomic loads of the same size. */
6731 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
6734 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, val
, code
, model
,
6740 /* Add/sub can be implemented by doing the reverse operation with -(val). */
6741 if (code
== PLUS
|| code
== MINUS
)
6744 enum rtx_code reverse
= (code
== PLUS
? MINUS
: PLUS
);
6747 tmp
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, true);
6748 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, tmp
, reverse
,
6752 /* PLUS worked so emit the insns and return. */
6759 /* PLUS did not work, so throw away the negation code and continue. */
6763 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
6764 if (!can_compare_and_swap_p (mode
, false))
6768 enum rtx_code orig_code
= code
;
6769 struct atomic_op_functions optab
;
6771 get_atomic_op_for_code (&optab
, code
);
6772 libfunc
= optab_libfunc (after
? optab
.fetch_after
6773 : optab
.fetch_before
, mode
);
6775 && (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
))
6779 code
= optab
.reverse_code
;
6780 libfunc
= optab_libfunc (after
? optab
.fetch_before
6781 : optab
.fetch_after
, mode
);
6783 if (libfunc
!= NULL
)
6785 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6786 result
= emit_library_call_value (libfunc
, NULL
, LCT_NORMAL
, mode
,
6787 2, addr
, ptr_mode
, val
, mode
);
6789 if (!unused_result
&& fixup
)
6790 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
6791 true, OPTAB_LIB_WIDEN
);
6795 /* We need the original code for any further attempts. */
6799 /* If nothing else has succeeded, default to a compare and swap loop. */
6800 if (can_compare_and_swap_p (mode
, true))
6803 rtx t0
= gen_reg_rtx (mode
), t1
;
6807 /* If the result is used, get a register for it. */
6810 if (!target
|| !register_operand (target
, mode
))
6811 target
= gen_reg_rtx (mode
);
6812 /* If fetch_before, copy the value now. */
6814 emit_move_insn (target
, t0
);
6817 target
= const0_rtx
;
6822 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
6823 true, OPTAB_LIB_WIDEN
);
6824 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
6827 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
, true,
6830 /* For after, copy the value now. */
6831 if (!unused_result
&& after
)
6832 emit_move_insn (target
, t1
);
6833 insn
= get_insns ();
6836 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
6843 /* Return true if OPERAND is suitable for operand number OPNO of
6844 instruction ICODE. */
6847 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
6849 return (!insn_data
[(int) icode
].operand
[opno
].predicate
6850 || (insn_data
[(int) icode
].operand
[opno
].predicate
6851 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
6854 /* TARGET is a target of a multiword operation that we are going to
6855 implement as a series of word-mode operations. Return true if
6856 TARGET is suitable for this purpose. */
6859 valid_multiword_target_p (rtx target
)
6864 mode
= GET_MODE (target
);
6865 for (i
= 0; i
< GET_MODE_SIZE (mode
); i
+= UNITS_PER_WORD
)
6866 if (!validate_subreg (word_mode
, mode
, target
, i
))
6871 /* Like maybe_legitimize_operand, but do not change the code of the
6872 current rtx value. */
6875 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
6876 struct expand_operand
*op
)
6878 /* See if the operand matches in its current form. */
6879 if (insn_operand_matches (icode
, opno
, op
->value
))
6882 /* If the operand is a memory whose address has no side effects,
6883 try forcing the address into a non-virtual pseudo register.
6884 The check for side effects is important because copy_to_mode_reg
6885 cannot handle things like auto-modified addresses. */
6886 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
&& MEM_P (op
->value
))
6891 addr
= XEXP (mem
, 0);
6892 if (!(REG_P (addr
) && REGNO (addr
) > LAST_VIRTUAL_REGISTER
)
6893 && !side_effects_p (addr
))
6898 last
= get_last_insn ();
6899 mode
= get_address_mode (mem
);
6900 mem
= replace_equiv_address (mem
, copy_to_mode_reg (mode
, addr
));
6901 if (insn_operand_matches (icode
, opno
, mem
))
6906 delete_insns_since (last
);
6913 /* Try to make OP match operand OPNO of instruction ICODE. Return true
6914 on success, storing the new operand value back in OP. */
6917 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
6918 struct expand_operand
*op
)
6920 machine_mode mode
, imode
;
6921 bool old_volatile_ok
, result
;
6927 old_volatile_ok
= volatile_ok
;
6929 result
= maybe_legitimize_operand_same_code (icode
, opno
, op
);
6930 volatile_ok
= old_volatile_ok
;
6934 gcc_assert (mode
!= VOIDmode
);
6936 && op
->value
!= const0_rtx
6937 && GET_MODE (op
->value
) == mode
6938 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
6941 op
->value
= gen_reg_rtx (mode
);
6947 gcc_assert (mode
!= VOIDmode
);
6948 gcc_assert (GET_MODE (op
->value
) == VOIDmode
6949 || GET_MODE (op
->value
) == mode
);
6950 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
6953 op
->value
= copy_to_mode_reg (mode
, op
->value
);
6956 case EXPAND_CONVERT_TO
:
6957 gcc_assert (mode
!= VOIDmode
);
6958 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
6961 case EXPAND_CONVERT_FROM
:
6962 if (GET_MODE (op
->value
) != VOIDmode
)
6963 mode
= GET_MODE (op
->value
);
6965 /* The caller must tell us what mode this value has. */
6966 gcc_assert (mode
!= VOIDmode
);
6968 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
6969 if (imode
!= VOIDmode
&& imode
!= mode
)
6971 op
->value
= convert_modes (imode
, mode
, op
->value
, op
->unsigned_p
);
6976 case EXPAND_ADDRESS
:
6977 gcc_assert (mode
!= VOIDmode
);
6978 op
->value
= convert_memory_address (mode
, op
->value
);
6981 case EXPAND_INTEGER
:
6982 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
6983 if (mode
!= VOIDmode
&& const_int_operand (op
->value
, mode
))
6987 return insn_operand_matches (icode
, opno
, op
->value
);
6990 /* Make OP describe an input operand that should have the same value
6991 as VALUE, after any mode conversion that the target might request.
6992 TYPE is the type of VALUE. */
6995 create_convert_operand_from_type (struct expand_operand
*op
,
6996 rtx value
, tree type
)
6998 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
6999 TYPE_UNSIGNED (type
));
7002 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7003 of instruction ICODE. Return true on success, leaving the new operand
7004 values in the OPS themselves. Emit no code on failure. */
7007 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
7008 unsigned int nops
, struct expand_operand
*ops
)
7013 last
= get_last_insn ();
7014 for (i
= 0; i
< nops
; i
++)
7015 if (!maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
7017 delete_insns_since (last
);
7023 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7024 as its operands. Return the instruction pattern on success,
7025 and emit any necessary set-up code. Return null and emit no
7029 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
7030 struct expand_operand
*ops
)
7032 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
7033 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
7039 return GEN_FCN (icode
) (ops
[0].value
);
7041 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
7043 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
7045 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7048 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7049 ops
[3].value
, ops
[4].value
);
7051 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7052 ops
[3].value
, ops
[4].value
, ops
[5].value
);
7054 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7055 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7058 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7059 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7060 ops
[6].value
, ops
[7].value
);
7062 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7063 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7064 ops
[6].value
, ops
[7].value
, ops
[8].value
);
7069 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7070 as its operands. Return true on success and emit no code on failure. */
7073 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
7074 struct expand_operand
*ops
)
7076 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
7085 /* Like maybe_expand_insn, but for jumps. */
7088 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7089 struct expand_operand
*ops
)
7091 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
7094 emit_jump_insn (pat
);
7100 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7104 expand_insn (enum insn_code icode
, unsigned int nops
,
7105 struct expand_operand
*ops
)
7107 if (!maybe_expand_insn (icode
, nops
, ops
))
7111 /* Like expand_insn, but for jumps. */
7114 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7115 struct expand_operand
*ops
)
7117 if (!maybe_expand_jump_insn (icode
, nops
, ops
))