* config/darwin.c (darwin_assemble_visibility): Treat
[official-gcc.git] / gcc / ada / a-cbhase.ads
blobed47b798683262661b237bb7d86a61fd1498d577
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . B O U N D E D _ H A S H E D _ S E T S --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 2004-2012, Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
21 -- --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
25 -- --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
30 -- --
31 -- This unit was originally developed by Matthew J Heaney. --
32 ------------------------------------------------------------------------------
34 with Ada.Iterator_Interfaces;
36 private with Ada.Containers.Hash_Tables;
37 private with Ada.Streams;
39 generic
40 type Element_Type is private;
42 with function Hash (Element : Element_Type) return Hash_Type;
44 with function Equivalent_Elements
45 (Left, Right : Element_Type) return Boolean;
47 with function "=" (Left, Right : Element_Type) return Boolean is <>;
49 package Ada.Containers.Bounded_Hashed_Sets is
50 pragma Pure;
51 pragma Remote_Types;
53 type Set (Capacity : Count_Type; Modulus : Hash_Type) is tagged private
54 with Constant_Indexing => Constant_Reference,
55 Default_Iterator => Iterate,
56 Iterator_Element => Element_Type;
58 pragma Preelaborable_Initialization (Set);
60 type Cursor is private;
61 pragma Preelaborable_Initialization (Cursor);
63 Empty_Set : constant Set;
64 -- Set objects declared without an initialization expression are
65 -- initialized to the value Empty_Set.
67 No_Element : constant Cursor;
68 -- Cursor objects declared without an initialization expression are
69 -- initialized to the value No_Element.
71 function Has_Element (Position : Cursor) return Boolean;
72 -- Equivalent to Position /= No_Element
74 package Set_Iterator_Interfaces is new
75 Ada.Iterator_Interfaces (Cursor, Has_Element);
77 function "=" (Left, Right : Set) return Boolean;
78 -- For each element in Left, set equality attempts to find the equal
79 -- element in Right; if a search fails, then set equality immediately
80 -- returns False. The search works by calling Hash to find the bucket in
81 -- the Right set that corresponds to the Left element. If the bucket is
82 -- non-empty, the search calls the generic formal element equality operator
83 -- to compare the element (in Left) to the element of each node in the
84 -- bucket (in Right); the search terminates when a matching node in the
85 -- bucket is found, or the nodes in the bucket are exhausted. (Note that
86 -- element equality is called here, not Equivalent_Elements. Set equality
87 -- is the only operation in which element equality is used. Compare set
88 -- equality to Equivalent_Sets, which does call Equivalent_Elements.)
90 function Equivalent_Sets (Left, Right : Set) return Boolean;
91 -- Similar to set equality, with the difference that the element in Left is
92 -- compared to the elements in Right using the generic formal
93 -- Equivalent_Elements operation instead of element equality.
95 function To_Set (New_Item : Element_Type) return Set;
96 -- Constructs a singleton set comprising New_Element. To_Set calls Hash to
97 -- determine the bucket for New_Item.
99 function Capacity (Container : Set) return Count_Type;
100 -- Returns the current capacity of the set. Capacity is the maximum length
101 -- before which rehashing in guaranteed not to occur.
103 procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
104 -- If the value of the Capacity actual parameter is less or equal to
105 -- Container.Capacity, then the operation has no effect. Otherwise it
106 -- raises Capacity_Error (as no expansion of capacity is possible for a
107 -- bounded form).
109 function Default_Modulus (Capacity : Count_Type) return Hash_Type;
110 -- Returns a modulus value (hash table size) which is optimal for the
111 -- specified capacity (which corresponds to the maximum number of items).
113 function Length (Container : Set) return Count_Type;
114 -- Returns the number of items in the set
116 function Is_Empty (Container : Set) return Boolean;
117 -- Equivalent to Length (Container) = 0
119 procedure Clear (Container : in out Set);
120 -- Removes all of the items from the set
122 function Element (Position : Cursor) return Element_Type;
123 -- Returns the element of the node designated by the cursor
125 procedure Replace_Element
126 (Container : in out Set;
127 Position : Cursor;
128 New_Item : Element_Type);
129 -- If New_Item is equivalent (as determined by calling Equivalent_Elements)
130 -- to the element of the node designated by Position, then New_Element is
131 -- assigned to that element. Otherwise, it calls Hash to determine the
132 -- bucket for New_Item. If the bucket is not empty, then it calls
133 -- Equivalent_Elements for each node in that bucket to determine whether
134 -- New_Item is equivalent to an element in that bucket. If
135 -- Equivalent_Elements returns True then Program_Error is raised (because
136 -- an element may appear only once in the set); otherwise, New_Item is
137 -- assigned to the node designated by Position, and the node is moved to
138 -- its new bucket.
140 procedure Query_Element
141 (Position : Cursor;
142 Process : not null access procedure (Element : Element_Type));
143 -- Calls Process with the element (having only a constant view) of the node
144 -- designated by the cursor.
146 type Constant_Reference_Type
147 (Element : not null access constant Element_Type) is private
148 with Implicit_Dereference => Element;
150 function Constant_Reference
151 (Container : aliased Set;
152 Position : Cursor) return Constant_Reference_Type;
154 procedure Assign (Target : in out Set; Source : Set);
155 -- If Target denotes the same object as Source, then the operation has no
156 -- effect. If the Target capacity is less than the Source length, then
157 -- Assign raises Capacity_Error. Otherwise, Assign clears Target and then
158 -- copies the (active) elements from Source to Target.
160 function Copy
161 (Source : Set;
162 Capacity : Count_Type := 0;
163 Modulus : Hash_Type := 0) return Set;
164 -- Constructs a new set object whose elements correspond to Source. If the
165 -- Capacity parameter is 0, then the capacity of the result is the same as
166 -- the length of Source. If the Capacity parameter is equal or greater than
167 -- the length of Source, then the capacity of the result is the specified
168 -- value. Otherwise, Copy raises Capacity_Error. If the Modulus parameter
169 -- is 0, then the modulus of the result is the value returned by a call to
170 -- Default_Modulus with the capacity parameter determined as above;
171 -- otherwise the modulus of the result is the specified value.
173 procedure Move (Target : in out Set; Source : in out Set);
174 -- Clears Target (if it's not empty), and then moves (not copies) the
175 -- buckets array and nodes from Source to Target.
177 procedure Insert
178 (Container : in out Set;
179 New_Item : Element_Type;
180 Position : out Cursor;
181 Inserted : out Boolean);
182 -- Conditionally inserts New_Item into the set. If New_Item is already in
183 -- the set, then Inserted returns False and Position designates the node
184 -- containing the existing element (which is not modified). If New_Item is
185 -- not already in the set, then Inserted returns True and Position
186 -- designates the newly-inserted node containing New_Item. The search for
187 -- an existing element works as follows. Hash is called to determine
188 -- New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
189 -- is called to compare New_Item to the element of each node in that
190 -- bucket. If the bucket is empty, or there were no equivalent elements in
191 -- the bucket, the search "fails" and the New_Item is inserted in the set
192 -- (and Inserted returns True); otherwise, the search "succeeds" (and
193 -- Inserted returns False).
195 procedure Insert (Container : in out Set; New_Item : Element_Type);
196 -- Attempts to insert New_Item into the set, performing the usual insertion
197 -- search (which involves calling both Hash and Equivalent_Elements); if
198 -- the search succeeds (New_Item is equivalent to an element already in the
199 -- set, and so was not inserted), then this operation raises
200 -- Constraint_Error. (This version of Insert is similar to Replace, but
201 -- having the opposite exception behavior. It is intended for use when you
202 -- want to assert that the item is not already in the set.)
204 procedure Include (Container : in out Set; New_Item : Element_Type);
205 -- Attempts to insert New_Item into the set. If an element equivalent to
206 -- New_Item is already in the set (the insertion search succeeded, and
207 -- hence New_Item was not inserted), then the value of New_Item is assigned
208 -- to the existing element. (This insertion operation only raises an
209 -- exception if cursor tampering occurs. It is intended for use when you
210 -- want to insert the item in the set, and you don't care whether an
211 -- equivalent element is already present.)
213 procedure Replace (Container : in out Set; New_Item : Element_Type);
214 -- Searches for New_Item in the set; if the search fails (because an
215 -- equivalent element was not in the set), then it raises
216 -- Constraint_Error. Otherwise, the existing element is assigned the value
217 -- New_Item. (This is similar to Insert, but with the opposite exception
218 -- behavior. It is intended for use when you want to assert that the item
219 -- is already in the set.)
221 procedure Exclude (Container : in out Set; Item : Element_Type);
222 -- Searches for Item in the set, and if found, removes its node from the
223 -- set and then deallocates it. The search works as follows. The operation
224 -- calls Hash to determine the item's bucket; if the bucket is not empty,
225 -- it calls Equivalent_Elements to compare Item to the element of each node
226 -- in the bucket. (This is the deletion analog of Include. It is intended
227 -- for use when you want to remove the item from the set, but don't care
228 -- whether the item is already in the set.)
230 procedure Delete (Container : in out Set; Item : Element_Type);
231 -- Searches for Item in the set (which involves calling both Hash and
232 -- Equivalent_Elements). If the search fails, then the operation raises
233 -- Constraint_Error. Otherwise it removes the node from the set and then
234 -- deallocates it. (This is the deletion analog of non-conditional
235 -- Insert. It is intended for use when you want to assert that the item is
236 -- already in the set.)
238 procedure Delete (Container : in out Set; Position : in out Cursor);
239 -- Removes the node designated by Position from the set, and then
240 -- deallocates the node. The operation calls Hash to determine the bucket,
241 -- and then compares Position to each node in the bucket until there's a
242 -- match (it does not call Equivalent_Elements).
244 procedure Union (Target : in out Set; Source : Set);
245 -- Iterates over the Source set, and conditionally inserts each element
246 -- into Target.
248 function Union (Left, Right : Set) return Set;
249 -- The operation first copies the Left set to the result, and then iterates
250 -- over the Right set to conditionally insert each element into the result.
252 function "or" (Left, Right : Set) return Set renames Union;
254 procedure Intersection (Target : in out Set; Source : Set);
255 -- Iterates over the Target set (calling First and Next), calling Find to
256 -- determine whether the element is in Source. If an equivalent element is
257 -- not found in Source, the element is deleted from Target.
259 function Intersection (Left, Right : Set) return Set;
260 -- Iterates over the Left set, calling Find to determine whether the
261 -- element is in Right. If an equivalent element is found, it is inserted
262 -- into the result set.
264 function "and" (Left, Right : Set) return Set renames Intersection;
266 procedure Difference (Target : in out Set; Source : Set);
267 -- Iterates over the Source (calling First and Next), calling Find to
268 -- determine whether the element is in Target. If an equivalent element is
269 -- found, it is deleted from Target.
271 function Difference (Left, Right : Set) return Set;
272 -- Iterates over the Left set, calling Find to determine whether the
273 -- element is in the Right set. If an equivalent element is not found, the
274 -- element is inserted into the result set.
276 function "-" (Left, Right : Set) return Set renames Difference;
278 procedure Symmetric_Difference (Target : in out Set; Source : Set);
279 -- The operation iterates over the Source set, searching for the element
280 -- in Target (calling Hash and Equivalent_Elements). If an equivalent
281 -- element is found, it is removed from Target; otherwise it is inserted
282 -- into Target.
284 function Symmetric_Difference (Left, Right : Set) return Set;
285 -- The operation first iterates over the Left set. It calls Find to
286 -- determine whether the element is in the Right set. If no equivalent
287 -- element is found, the element from Left is inserted into the result. The
288 -- operation then iterates over the Right set, to determine whether the
289 -- element is in the Left set. If no equivalent element is found, the Right
290 -- element is inserted into the result.
292 function "xor" (Left, Right : Set) return Set
293 renames Symmetric_Difference;
295 function Overlap (Left, Right : Set) return Boolean;
296 -- Iterates over the Left set (calling First and Next), calling Find to
297 -- determine whether the element is in the Right set. If an equivalent
298 -- element is found, the operation immediately returns True. The operation
299 -- returns False if the iteration over Left terminates without finding any
300 -- equivalent element in Right.
302 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
303 -- Iterates over Subset (calling First and Next), calling Find to determine
304 -- whether the element is in Of_Set. If no equivalent element is found in
305 -- Of_Set, the operation immediately returns False. The operation returns
306 -- True if the iteration over Subset terminates without finding an element
307 -- not in Of_Set (that is, every element in Subset is equivalent to an
308 -- element in Of_Set).
310 function First (Container : Set) return Cursor;
311 -- Returns a cursor that designates the first non-empty bucket, by
312 -- searching from the beginning of the buckets array.
314 function Next (Position : Cursor) return Cursor;
315 -- Returns a cursor that designates the node that follows the current one
316 -- designated by Position. If Position designates the last node in its
317 -- bucket, the operation calls Hash to compute the index of this bucket,
318 -- and searches the buckets array for the first non-empty bucket, starting
319 -- from that index; otherwise, it simply follows the link to the next node
320 -- in the same bucket.
322 procedure Next (Position : in out Cursor);
323 -- Equivalent to Position := Next (Position)
325 function Find
326 (Container : Set;
327 Item : Element_Type) return Cursor;
328 -- Searches for Item in the set. Find calls Hash to determine the item's
329 -- bucket; if the bucket is not empty, it calls Equivalent_Elements to
330 -- compare Item to each element in the bucket. If the search succeeds, Find
331 -- returns a cursor designating the node containing the equivalent element;
332 -- otherwise, it returns No_Element.
334 function Contains (Container : Set; Item : Element_Type) return Boolean;
335 -- Equivalent to Find (Container, Item) /= No_Element
337 function Equivalent_Elements (Left, Right : Cursor) return Boolean;
338 -- Returns the result of calling Equivalent_Elements with the elements of
339 -- the nodes designated by cursors Left and Right.
341 function Equivalent_Elements
342 (Left : Cursor;
343 Right : Element_Type) return Boolean;
344 -- Returns the result of calling Equivalent_Elements with element of the
345 -- node designated by Left and element Right.
347 function Equivalent_Elements
348 (Left : Element_Type;
349 Right : Cursor) return Boolean;
350 -- Returns the result of calling Equivalent_Elements with element Left and
351 -- the element of the node designated by Right.
353 procedure Iterate
354 (Container : Set;
355 Process : not null access procedure (Position : Cursor));
356 -- Calls Process for each node in the set
358 function Iterate
359 (Container : Set)
360 return Set_Iterator_Interfaces.Forward_Iterator'Class;
362 generic
363 type Key_Type (<>) is private;
365 with function Key (Element : Element_Type) return Key_Type;
367 with function Hash (Key : Key_Type) return Hash_Type;
369 with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
371 package Generic_Keys is
373 function Key (Position : Cursor) return Key_Type;
374 -- Applies generic formal operation Key to the element of the node
375 -- designated by Position.
377 function Element (Container : Set; Key : Key_Type) return Element_Type;
378 -- Searches (as per the key-based Find) for the node containing Key, and
379 -- returns the associated element.
381 procedure Replace
382 (Container : in out Set;
383 Key : Key_Type;
384 New_Item : Element_Type);
385 -- Searches (as per the key-based Find) for the node containing Key, and
386 -- then replaces the element of that node (as per the element-based
387 -- Replace_Element).
389 procedure Exclude (Container : in out Set; Key : Key_Type);
390 -- Searches for Key in the set, and if found, removes its node from the
391 -- set and then deallocates it. The search works by first calling Hash
392 -- (on Key) to determine the bucket; if the bucket is not empty, it
393 -- calls Equivalent_Keys to compare parameter Key to the value of
394 -- generic formal operation Key applied to element of each node in the
395 -- bucket.
397 procedure Delete (Container : in out Set; Key : Key_Type);
398 -- Deletes the node containing Key as per Exclude, with the difference
399 -- that Constraint_Error is raised if Key is not found.
401 function Find (Container : Set; Key : Key_Type) return Cursor;
402 -- Searches for the node containing Key, and returns a cursor
403 -- designating the node. The search works by first calling Hash (on Key)
404 -- to determine the bucket. If the bucket is not empty, the search
405 -- compares Key to the element of each node in the bucket, and returns
406 -- the matching node. The comparison itself works by applying the
407 -- generic formal Key operation to the element of the node, and then
408 -- calling generic formal operation Equivalent_Keys.
410 function Contains (Container : Set; Key : Key_Type) return Boolean;
411 -- Equivalent to Find (Container, Key) /= No_Element
413 procedure Update_Element_Preserving_Key
414 (Container : in out Set;
415 Position : Cursor;
416 Process : not null access
417 procedure (Element : in out Element_Type));
418 -- Calls Process with the element of the node designated by Position,
419 -- but with the restriction that the key-value of the element is not
420 -- modified. The operation first makes a copy of the value returned by
421 -- applying generic formal operation Key on the element of the node, and
422 -- then calls Process with the element. The operation verifies that the
423 -- key-part has not been modified by calling generic formal operation
424 -- Equivalent_Keys to compare the saved key-value to the value returned
425 -- by applying generic formal operation Key to the post-Process value of
426 -- element. If the key values compare equal then the operation
427 -- completes. Otherwise, the node is removed from the map and
428 -- Program_Error is raised.
430 type Reference_Type (Element : not null access Element_Type) is private
431 with Implicit_Dereference => Element;
433 function Reference_Preserving_Key
434 (Container : aliased in out Set;
435 Position : Cursor) return Reference_Type;
437 function Constant_Reference
438 (Container : aliased Set;
439 Key : Key_Type) return Constant_Reference_Type;
441 function Reference_Preserving_Key
442 (Container : aliased in out Set;
443 Key : Key_Type) return Reference_Type;
445 private
446 type Reference_Type (Element : not null access Element_Type)
447 is null record;
449 use Ada.Streams;
451 procedure Read
452 (Stream : not null access Root_Stream_Type'Class;
453 Item : out Reference_Type);
455 for Reference_Type'Read use Read;
457 procedure Write
458 (Stream : not null access Root_Stream_Type'Class;
459 Item : Reference_Type);
461 for Reference_Type'Write use Write;
463 end Generic_Keys;
465 private
466 pragma Inline (Next);
468 type Node_Type is record
469 Element : aliased Element_Type;
470 Next : Count_Type;
471 end record;
473 package HT_Types is
474 new Hash_Tables.Generic_Bounded_Hash_Table_Types (Node_Type);
476 type Set (Capacity : Count_Type; Modulus : Hash_Type) is
477 new HT_Types.Hash_Table_Type (Capacity, Modulus) with null record;
479 use HT_Types;
480 use Ada.Streams;
482 procedure Write
483 (Stream : not null access Root_Stream_Type'Class;
484 Container : Set);
486 for Set'Write use Write;
488 procedure Read
489 (Stream : not null access Root_Stream_Type'Class;
490 Container : out Set);
492 for Set'Read use Read;
494 type Set_Access is access all Set;
495 for Set_Access'Storage_Size use 0;
497 -- Note: If a Cursor object has no explicit initialization expression,
498 -- it must default initialize to the same value as constant No_Element.
499 -- The Node component of type Cursor has scalar type Count_Type, so it
500 -- requires an explicit initialization expression of its own declaration,
501 -- in order for objects of record type Cursor to properly initialize.
503 type Cursor is record
504 Container : Set_Access;
505 Node : Count_Type := 0;
506 end record;
508 procedure Write
509 (Stream : not null access Root_Stream_Type'Class;
510 Item : Cursor);
512 for Cursor'Write use Write;
514 procedure Read
515 (Stream : not null access Root_Stream_Type'Class;
516 Item : out Cursor);
518 for Cursor'Read use Read;
520 type Constant_Reference_Type
521 (Element : not null access constant Element_Type) is null record;
523 procedure Read
524 (Stream : not null access Root_Stream_Type'Class;
525 Item : out Constant_Reference_Type);
527 for Constant_Reference_Type'Read use Read;
529 procedure Write
530 (Stream : not null access Root_Stream_Type'Class;
531 Item : Constant_Reference_Type);
533 for Constant_Reference_Type'Write use Write;
535 Empty_Set : constant Set :=
536 (Hash_Table_Type with Capacity => 0, Modulus => 0);
538 No_Element : constant Cursor := (Container => null, Node => 0);
540 end Ada.Containers.Bounded_Hashed_Sets;