2018-11-11 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-switch-conversion.c
blobe65552edea52d08ba9c9ecdd85d5209313df4915
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2018 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "params.h"
40 #include "fold-const.h"
41 #include "varasm.h"
42 #include "stor-layout.h"
43 #include "cfganal.h"
44 #include "gimplify.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "gimple-fold.h"
48 #include "tree-cfg.h"
49 #include "cfgloop.h"
50 #include "alloc-pool.h"
51 #include "target.h"
52 #include "tree-into-ssa.h"
53 #include "omp-general.h"
55 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
56 type in the GIMPLE type system that is language-independent? */
57 #include "langhooks.h"
59 #include "tree-switch-conversion.h"
61 using namespace tree_switch_conversion;
63 /* Constructor. */
65 switch_conversion::switch_conversion (): m_final_bb (NULL), m_other_count (),
66 m_constructors (NULL), m_default_values (NULL),
67 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
68 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
72 /* Collection information about SWTCH statement. */
74 void
75 switch_conversion::collect (gswitch *swtch)
77 unsigned int branch_num = gimple_switch_num_labels (swtch);
78 tree min_case, max_case;
79 unsigned int i;
80 edge e, e_default, e_first;
81 edge_iterator ei;
83 m_switch = swtch;
85 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
86 is a default label which is the first in the vector.
87 Collect the bits we can deduce from the CFG. */
88 m_index_expr = gimple_switch_index (swtch);
89 m_switch_bb = gimple_bb (swtch);
90 e_default = gimple_switch_default_edge (cfun, swtch);
91 m_default_bb = e_default->dest;
92 m_default_prob = e_default->probability;
93 m_default_count = e_default->count ();
94 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
95 if (e != e_default)
96 m_other_count += e->count ();
98 /* Get upper and lower bounds of case values, and the covered range. */
99 min_case = gimple_switch_label (swtch, 1);
100 max_case = gimple_switch_label (swtch, branch_num - 1);
102 m_range_min = CASE_LOW (min_case);
103 if (CASE_HIGH (max_case) != NULL_TREE)
104 m_range_max = CASE_HIGH (max_case);
105 else
106 m_range_max = CASE_LOW (max_case);
108 m_contiguous_range = true;
109 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
110 for (i = 2; i < branch_num; i++)
112 tree elt = gimple_switch_label (swtch, i);
113 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
115 m_contiguous_range = false;
116 break;
118 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
121 if (m_contiguous_range)
122 e_first = gimple_switch_edge (cfun, swtch, 1);
123 else
124 e_first = e_default;
126 /* See if there is one common successor block for all branch
127 targets. If it exists, record it in FINAL_BB.
128 Start with the destination of the first non-default case
129 if the range is contiguous and default case otherwise as
130 guess or its destination in case it is a forwarder block. */
131 if (! single_pred_p (e_first->dest))
132 m_final_bb = e_first->dest;
133 else if (single_succ_p (e_first->dest)
134 && ! single_pred_p (single_succ (e_first->dest)))
135 m_final_bb = single_succ (e_first->dest);
136 /* Require that all switch destinations are either that common
137 FINAL_BB or a forwarder to it, except for the default
138 case if contiguous range. */
139 if (m_final_bb)
140 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
142 if (e->dest == m_final_bb)
143 continue;
145 if (single_pred_p (e->dest)
146 && single_succ_p (e->dest)
147 && single_succ (e->dest) == m_final_bb)
148 continue;
150 if (e == e_default && m_contiguous_range)
152 m_default_case_nonstandard = true;
153 continue;
156 m_final_bb = NULL;
157 break;
160 m_range_size
161 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
163 /* Get a count of the number of case labels. Single-valued case labels
164 simply count as one, but a case range counts double, since it may
165 require two compares if it gets lowered as a branching tree. */
166 m_count = 0;
167 for (i = 1; i < branch_num; i++)
169 tree elt = gimple_switch_label (swtch, i);
170 m_count++;
171 if (CASE_HIGH (elt)
172 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
173 m_count++;
176 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
177 block. Assume a CFG cleanup would have already removed degenerate
178 switch statements, this allows us to just use EDGE_COUNT. */
179 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
182 /* Checks whether the range given by individual case statements of the switch
183 switch statement isn't too big and whether the number of branches actually
184 satisfies the size of the new array. */
186 bool
187 switch_conversion::check_range ()
189 gcc_assert (m_range_size);
190 if (!tree_fits_uhwi_p (m_range_size))
192 m_reason = "index range way too large or otherwise unusable";
193 return false;
196 if (tree_to_uhwi (m_range_size)
197 > ((unsigned) m_count * SWITCH_CONVERSION_BRANCH_RATIO))
199 m_reason = "the maximum range-branch ratio exceeded";
200 return false;
203 return true;
206 /* Checks whether all but the final BB basic blocks are empty. */
208 bool
209 switch_conversion::check_all_empty_except_final ()
211 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
212 edge_iterator ei;
214 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
216 if (e->dest == m_final_bb)
217 continue;
219 if (!empty_block_p (e->dest))
221 if (m_contiguous_range && e == e_default)
223 m_default_case_nonstandard = true;
224 continue;
227 m_reason = "bad case - a non-final BB not empty";
228 return false;
232 return true;
235 /* This function checks whether all required values in phi nodes in final_bb
236 are constants. Required values are those that correspond to a basic block
237 which is a part of the examined switch statement. It returns true if the
238 phi nodes are OK, otherwise false. */
240 bool
241 switch_conversion::check_final_bb ()
243 gphi_iterator gsi;
245 m_phi_count = 0;
246 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
248 gphi *phi = gsi.phi ();
249 unsigned int i;
251 if (virtual_operand_p (gimple_phi_result (phi)))
252 continue;
254 m_phi_count++;
256 for (i = 0; i < gimple_phi_num_args (phi); i++)
258 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
260 if (bb == m_switch_bb
261 || (single_pred_p (bb)
262 && single_pred (bb) == m_switch_bb
263 && (!m_default_case_nonstandard
264 || empty_block_p (bb))))
266 tree reloc, val;
267 const char *reason = NULL;
269 val = gimple_phi_arg_def (phi, i);
270 if (!is_gimple_ip_invariant (val))
271 reason = "non-invariant value from a case";
272 else
274 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
275 if ((flag_pic && reloc != null_pointer_node)
276 || (!flag_pic && reloc == NULL_TREE))
278 if (reloc)
279 reason
280 = "value from a case would need runtime relocations";
281 else
282 reason
283 = "value from a case is not a valid initializer";
286 if (reason)
288 /* For contiguous range, we can allow non-constant
289 or one that needs relocation, as long as it is
290 only reachable from the default case. */
291 if (bb == m_switch_bb)
292 bb = m_final_bb;
293 if (!m_contiguous_range || bb != m_default_bb)
295 m_reason = reason;
296 return false;
299 unsigned int branch_num = gimple_switch_num_labels (m_switch);
300 for (unsigned int i = 1; i < branch_num; i++)
302 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
304 m_reason = reason;
305 return false;
308 m_default_case_nonstandard = true;
314 return true;
317 /* The following function allocates default_values, target_{in,out}_names and
318 constructors arrays. The last one is also populated with pointers to
319 vectors that will become constructors of new arrays. */
321 void
322 switch_conversion::create_temp_arrays ()
324 int i;
326 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
327 /* ??? Macros do not support multi argument templates in their
328 argument list. We create a typedef to work around that problem. */
329 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
330 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
331 m_target_inbound_names = m_default_values + m_phi_count;
332 m_target_outbound_names = m_target_inbound_names + m_phi_count;
333 for (i = 0; i < m_phi_count; i++)
334 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
337 /* Populate the array of default values in the order of phi nodes.
338 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
339 if the range is non-contiguous or the default case has standard
340 structure, otherwise it is the first non-default case instead. */
342 void
343 switch_conversion::gather_default_values (tree default_case)
345 gphi_iterator gsi;
346 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
347 edge e;
348 int i = 0;
350 gcc_assert (CASE_LOW (default_case) == NULL_TREE
351 || m_default_case_nonstandard);
353 if (bb == m_final_bb)
354 e = find_edge (m_switch_bb, bb);
355 else
356 e = single_succ_edge (bb);
358 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
360 gphi *phi = gsi.phi ();
361 if (virtual_operand_p (gimple_phi_result (phi)))
362 continue;
363 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
364 gcc_assert (val);
365 m_default_values[i++] = val;
369 /* The following function populates the vectors in the constructors array with
370 future contents of the static arrays. The vectors are populated in the
371 order of phi nodes. */
373 void
374 switch_conversion::build_constructors ()
376 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
377 tree pos = m_range_min;
378 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
380 for (i = 1; i < branch_num; i++)
382 tree cs = gimple_switch_label (m_switch, i);
383 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
384 edge e;
385 tree high;
386 gphi_iterator gsi;
387 int j;
389 if (bb == m_final_bb)
390 e = find_edge (m_switch_bb, bb);
391 else
392 e = single_succ_edge (bb);
393 gcc_assert (e);
395 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
397 int k;
398 for (k = 0; k < m_phi_count; k++)
400 constructor_elt elt;
402 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
403 elt.value
404 = unshare_expr_without_location (m_default_values[k]);
405 m_constructors[k]->quick_push (elt);
408 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
410 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
412 j = 0;
413 if (CASE_HIGH (cs))
414 high = CASE_HIGH (cs);
415 else
416 high = CASE_LOW (cs);
417 for (gsi = gsi_start_phis (m_final_bb);
418 !gsi_end_p (gsi); gsi_next (&gsi))
420 gphi *phi = gsi.phi ();
421 if (virtual_operand_p (gimple_phi_result (phi)))
422 continue;
423 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
424 tree low = CASE_LOW (cs);
425 pos = CASE_LOW (cs);
429 constructor_elt elt;
431 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
432 elt.value = unshare_expr_without_location (val);
433 m_constructors[j]->quick_push (elt);
435 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
436 } while (!tree_int_cst_lt (high, pos)
437 && tree_int_cst_lt (low, pos));
438 j++;
443 /* If all values in the constructor vector are products of a linear function
444 a * x + b, then return true. When true, COEFF_A and COEFF_B and
445 coefficients of the linear function. Note that equal values are special
446 case of a linear function with a and b equal to zero. */
448 bool
449 switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
450 wide_int *coeff_a,
451 wide_int *coeff_b)
453 unsigned int i;
454 constructor_elt *elt;
456 gcc_assert (vec->length () >= 2);
458 /* Let's try to find any linear function a * x + y that can apply to
459 given values. 'a' can be calculated as follows:
461 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
462 a = y2 - y1
466 b = y2 - a * x2
470 tree elt0 = (*vec)[0].value;
471 tree elt1 = (*vec)[1].value;
473 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
474 return false;
476 wide_int range_min = wi::to_wide (fold_convert (TREE_TYPE (elt0),
477 m_range_min));
478 wide_int y1 = wi::to_wide (elt0);
479 wide_int y2 = wi::to_wide (elt1);
480 wide_int a = y2 - y1;
481 wide_int b = y2 - a * (range_min + 1);
483 /* Verify that all values fulfill the linear function. */
484 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
486 if (TREE_CODE (elt->value) != INTEGER_CST)
487 return false;
489 wide_int value = wi::to_wide (elt->value);
490 if (a * range_min + b != value)
491 return false;
493 ++range_min;
496 *coeff_a = a;
497 *coeff_b = b;
499 return true;
502 /* Return type which should be used for array elements, either TYPE's
503 main variant or, for integral types, some smaller integral type
504 that can still hold all the constants. */
506 tree
507 switch_conversion::array_value_type (tree type, int num)
509 unsigned int i, len = vec_safe_length (m_constructors[num]);
510 constructor_elt *elt;
511 int sign = 0;
512 tree smaller_type;
514 /* Types with alignments greater than their size can reach here, e.g. out of
515 SRA. We couldn't use these as an array component type so get back to the
516 main variant first, which, for our purposes, is fine for other types as
517 well. */
519 type = TYPE_MAIN_VARIANT (type);
521 if (!INTEGRAL_TYPE_P (type))
522 return type;
524 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
525 scalar_int_mode mode = get_narrowest_mode (type_mode);
526 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
527 return type;
529 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
530 return type;
532 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
534 wide_int cst;
536 if (TREE_CODE (elt->value) != INTEGER_CST)
537 return type;
539 cst = wi::to_wide (elt->value);
540 while (1)
542 unsigned int prec = GET_MODE_BITSIZE (mode);
543 if (prec > HOST_BITS_PER_WIDE_INT)
544 return type;
546 if (sign >= 0 && cst == wi::zext (cst, prec))
548 if (sign == 0 && cst == wi::sext (cst, prec))
549 break;
550 sign = 1;
551 break;
553 if (sign <= 0 && cst == wi::sext (cst, prec))
555 sign = -1;
556 break;
559 if (sign == 1)
560 sign = 0;
562 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
563 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
564 return type;
568 if (sign == 0)
569 sign = TYPE_UNSIGNED (type) ? 1 : -1;
570 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
571 if (GET_MODE_SIZE (type_mode)
572 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
573 return type;
575 return smaller_type;
578 /* Create an appropriate array type and declaration and assemble a static
579 array variable. Also create a load statement that initializes
580 the variable in question with a value from the static array. SWTCH is
581 the switch statement being converted, NUM is the index to
582 arrays of constructors, default values and target SSA names
583 for this particular array. ARR_INDEX_TYPE is the type of the index
584 of the new array, PHI is the phi node of the final BB that corresponds
585 to the value that will be loaded from the created array. TIDX
586 is an ssa name of a temporary variable holding the index for loads from the
587 new array. */
589 void
590 switch_conversion::build_one_array (int num, tree arr_index_type,
591 gphi *phi, tree tidx)
593 tree name;
594 gimple *load;
595 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
596 location_t loc = gimple_location (m_switch);
598 gcc_assert (m_default_values[num]);
600 name = copy_ssa_name (PHI_RESULT (phi));
601 m_target_inbound_names[num] = name;
603 wide_int coeff_a, coeff_b;
604 bool linear_p = contains_linear_function_p (m_constructors[num], &coeff_a,
605 &coeff_b);
606 if (linear_p)
608 if (dump_file && coeff_a.to_uhwi () > 0)
609 fprintf (dump_file, "Linear transformation with A = %" PRId64
610 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
611 coeff_b.to_shwi ());
613 tree t = unsigned_type_for (TREE_TYPE (m_index_expr));
614 gimple_seq seq = NULL;
615 tree tmp = gimple_convert (&seq, t, m_index_expr);
616 tree tmp2 = gimple_build (&seq, MULT_EXPR, t,
617 wide_int_to_tree (t, coeff_a), tmp);
618 tree tmp3 = gimple_build (&seq, PLUS_EXPR, t, tmp2,
619 wide_int_to_tree (t, coeff_b));
620 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
621 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
622 load = gimple_build_assign (name, tmp4);
624 else
626 tree array_type, ctor, decl, value_type, fetch, default_type;
628 default_type = TREE_TYPE (m_default_values[num]);
629 value_type = array_value_type (default_type, num);
630 array_type = build_array_type (value_type, arr_index_type);
631 if (default_type != value_type)
633 unsigned int i;
634 constructor_elt *elt;
636 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
637 elt->value = fold_convert (value_type, elt->value);
639 ctor = build_constructor (array_type, m_constructors[num]);
640 TREE_CONSTANT (ctor) = true;
641 TREE_STATIC (ctor) = true;
643 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
644 TREE_STATIC (decl) = 1;
645 DECL_INITIAL (decl) = ctor;
647 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
648 DECL_ARTIFICIAL (decl) = 1;
649 DECL_IGNORED_P (decl) = 1;
650 TREE_CONSTANT (decl) = 1;
651 TREE_READONLY (decl) = 1;
652 DECL_IGNORED_P (decl) = 1;
653 if (offloading_function_p (cfun->decl))
654 DECL_ATTRIBUTES (decl)
655 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
656 NULL_TREE);
657 varpool_node::finalize_decl (decl);
659 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
660 NULL_TREE);
661 if (default_type != value_type)
663 fetch = fold_convert (default_type, fetch);
664 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
665 true, GSI_SAME_STMT);
667 load = gimple_build_assign (name, fetch);
670 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
671 update_stmt (load);
672 m_arr_ref_last = load;
675 /* Builds and initializes static arrays initialized with values gathered from
676 the switch statement. Also creates statements that load values from
677 them. */
679 void
680 switch_conversion::build_arrays ()
682 tree arr_index_type;
683 tree tidx, sub, utype;
684 gimple *stmt;
685 gimple_stmt_iterator gsi;
686 gphi_iterator gpi;
687 int i;
688 location_t loc = gimple_location (m_switch);
690 gsi = gsi_for_stmt (m_switch);
692 /* Make sure we do not generate arithmetics in a subrange. */
693 utype = TREE_TYPE (m_index_expr);
694 if (TREE_TYPE (utype))
695 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
696 else
697 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
699 arr_index_type = build_index_type (m_range_size);
700 tidx = make_ssa_name (utype);
701 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
702 fold_convert_loc (loc, utype, m_index_expr),
703 fold_convert_loc (loc, utype, m_range_min));
704 sub = force_gimple_operand_gsi (&gsi, sub,
705 false, NULL, true, GSI_SAME_STMT);
706 stmt = gimple_build_assign (tidx, sub);
708 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
709 update_stmt (stmt);
710 m_arr_ref_first = stmt;
712 for (gpi = gsi_start_phis (m_final_bb), i = 0;
713 !gsi_end_p (gpi); gsi_next (&gpi))
715 gphi *phi = gpi.phi ();
716 if (!virtual_operand_p (gimple_phi_result (phi)))
717 build_one_array (i++, arr_index_type, phi, tidx);
718 else
720 edge e;
721 edge_iterator ei;
722 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
724 if (e->dest == m_final_bb)
725 break;
726 if (!m_default_case_nonstandard
727 || e->dest != m_default_bb)
729 e = single_succ_edge (e->dest);
730 break;
733 gcc_assert (e && e->dest == m_final_bb);
734 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
739 /* Generates and appropriately inserts loads of default values at the position
740 given by GSI. Returns the last inserted statement. */
742 gassign *
743 switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
745 int i;
746 gassign *assign = NULL;
748 for (i = 0; i < m_phi_count; i++)
750 tree name = copy_ssa_name (m_target_inbound_names[i]);
751 m_target_outbound_names[i] = name;
752 assign = gimple_build_assign (name, m_default_values[i]);
753 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
754 update_stmt (assign);
756 return assign;
759 /* Deletes the unused bbs and edges that now contain the switch statement and
760 its empty branch bbs. BBD is the now dead BB containing
761 the original switch statement, FINAL is the last BB of the converted
762 switch statement (in terms of succession). */
764 void
765 switch_conversion::prune_bbs (basic_block bbd, basic_block final,
766 basic_block default_bb)
768 edge_iterator ei;
769 edge e;
771 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
773 basic_block bb;
774 bb = e->dest;
775 remove_edge (e);
776 if (bb != final && bb != default_bb)
777 delete_basic_block (bb);
779 delete_basic_block (bbd);
782 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
783 from the basic block loading values from an array and E2F from the basic
784 block loading default values. BBF is the last switch basic block (see the
785 bbf description in the comment below). */
787 void
788 switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
790 gphi_iterator gsi;
791 int i;
793 for (gsi = gsi_start_phis (bbf), i = 0;
794 !gsi_end_p (gsi); gsi_next (&gsi))
796 gphi *phi = gsi.phi ();
797 tree inbound, outbound;
798 if (virtual_operand_p (gimple_phi_result (phi)))
799 inbound = outbound = m_target_vop;
800 else
802 inbound = m_target_inbound_names[i];
803 outbound = m_target_outbound_names[i++];
805 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
806 if (!m_default_case_nonstandard)
807 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
811 /* Creates a check whether the switch expression value actually falls into the
812 range given by all the cases. If it does not, the temporaries are loaded
813 with default values instead. */
815 void
816 switch_conversion::gen_inbound_check ()
818 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
819 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
820 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
821 glabel *label1, *label2, *label3;
822 tree utype, tidx;
823 tree bound;
825 gcond *cond_stmt;
827 gassign *last_assign = NULL;
828 gimple_stmt_iterator gsi;
829 basic_block bb0, bb1, bb2, bbf, bbd;
830 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
831 location_t loc = gimple_location (m_switch);
833 gcc_assert (m_default_values);
835 bb0 = gimple_bb (m_switch);
837 tidx = gimple_assign_lhs (m_arr_ref_first);
838 utype = TREE_TYPE (tidx);
840 /* (end of) block 0 */
841 gsi = gsi_for_stmt (m_arr_ref_first);
842 gsi_next (&gsi);
844 bound = fold_convert_loc (loc, utype, m_range_size);
845 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
846 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
847 update_stmt (cond_stmt);
849 /* block 2 */
850 if (!m_default_case_nonstandard)
852 label2 = gimple_build_label (label_decl2);
853 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
854 last_assign = gen_def_assigns (&gsi);
857 /* block 1 */
858 label1 = gimple_build_label (label_decl1);
859 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
861 /* block F */
862 gsi = gsi_start_bb (m_final_bb);
863 label3 = gimple_build_label (label_decl3);
864 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
866 /* cfg fix */
867 e02 = split_block (bb0, cond_stmt);
868 bb2 = e02->dest;
870 if (m_default_case_nonstandard)
872 bb1 = bb2;
873 bb2 = m_default_bb;
874 e01 = e02;
875 e01->flags = EDGE_TRUE_VALUE;
876 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
877 edge e_default = find_edge (bb1, bb2);
878 for (gphi_iterator gsi = gsi_start_phis (bb2);
879 !gsi_end_p (gsi); gsi_next (&gsi))
881 gphi *phi = gsi.phi ();
882 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
883 add_phi_arg (phi, arg, e02,
884 gimple_phi_arg_location_from_edge (phi, e_default));
886 /* Partially fix the dominator tree, if it is available. */
887 if (dom_info_available_p (CDI_DOMINATORS))
888 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
890 else
892 e21 = split_block (bb2, last_assign);
893 bb1 = e21->dest;
894 remove_edge (e21);
897 e1d = split_block (bb1, m_arr_ref_last);
898 bbd = e1d->dest;
899 remove_edge (e1d);
901 /* Flags and profiles of the edge for in-range values. */
902 if (!m_default_case_nonstandard)
903 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
904 e01->probability = m_default_prob.invert ();
906 /* Flags and profiles of the edge taking care of out-of-range values. */
907 e02->flags &= ~EDGE_FALLTHRU;
908 e02->flags |= EDGE_FALSE_VALUE;
909 e02->probability = m_default_prob;
911 bbf = m_final_bb;
913 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
914 e1f->probability = profile_probability::always ();
916 if (m_default_case_nonstandard)
917 e2f = NULL;
918 else
920 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
921 e2f->probability = profile_probability::always ();
924 /* frequencies of the new BBs */
925 bb1->count = e01->count ();
926 bb2->count = e02->count ();
927 if (!m_default_case_nonstandard)
928 bbf->count = e1f->count () + e2f->count ();
930 /* Tidy blocks that have become unreachable. */
931 prune_bbs (bbd, m_final_bb,
932 m_default_case_nonstandard ? m_default_bb : NULL);
934 /* Fixup the PHI nodes in bbF. */
935 fix_phi_nodes (e1f, e2f, bbf);
937 /* Fix the dominator tree, if it is available. */
938 if (dom_info_available_p (CDI_DOMINATORS))
940 vec<basic_block> bbs_to_fix_dom;
942 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
943 if (!m_default_case_nonstandard)
944 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
945 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
946 /* If bbD was the immediate dominator ... */
947 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
949 bbs_to_fix_dom.create (3 + (bb2 != bbf));
950 bbs_to_fix_dom.quick_push (bb0);
951 bbs_to_fix_dom.quick_push (bb1);
952 if (bb2 != bbf)
953 bbs_to_fix_dom.quick_push (bb2);
954 bbs_to_fix_dom.quick_push (bbf);
956 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
957 bbs_to_fix_dom.release ();
961 /* The following function is invoked on every switch statement (the current
962 one is given in SWTCH) and runs the individual phases of switch
963 conversion on it one after another until one fails or the conversion
964 is completed. On success, NULL is in m_reason, otherwise points
965 to a string with the reason why the conversion failed. */
967 void
968 switch_conversion::expand (gswitch *swtch)
970 /* Group case labels so that we get the right results from the heuristics
971 that decide on the code generation approach for this switch. */
972 m_cfg_altered |= group_case_labels_stmt (swtch);
974 /* If this switch is now a degenerate case with only a default label,
975 there is nothing left for us to do. */
976 if (gimple_switch_num_labels (swtch) < 2)
978 m_reason = "switch is a degenerate case";
979 return;
982 collect (swtch);
984 /* No error markers should reach here (they should be filtered out
985 during gimplification). */
986 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
988 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
989 gcc_checking_assert (!TREE_CONSTANT (m_index_expr));
991 /* Prefer bit test if possible. */
992 if (tree_fits_uhwi_p (m_range_size)
993 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
994 && bit_test_cluster::is_beneficial (m_count, m_uniq))
996 m_reason = "expanding as bit test is preferable";
997 return;
1000 if (m_uniq <= 2)
1002 /* This will be expanded as a decision tree . */
1003 m_reason = "expanding as jumps is preferable";
1004 return;
1007 /* If there is no common successor, we cannot do the transformation. */
1008 if (!m_final_bb)
1010 m_reason = "no common successor to all case label target blocks found";
1011 return;
1014 /* Check the case label values are within reasonable range: */
1015 if (!check_range ())
1017 gcc_assert (m_reason);
1018 return;
1021 /* For all the cases, see whether they are empty, the assignments they
1022 represent constant and so on... */
1023 if (!check_all_empty_except_final ())
1025 gcc_assert (m_reason);
1026 return;
1028 if (!check_final_bb ())
1030 gcc_assert (m_reason);
1031 return;
1034 /* At this point all checks have passed and we can proceed with the
1035 transformation. */
1037 create_temp_arrays ();
1038 gather_default_values (m_default_case_nonstandard
1039 ? gimple_switch_label (swtch, 1)
1040 : gimple_switch_default_label (swtch));
1041 build_constructors ();
1043 build_arrays (); /* Build the static arrays and assignments. */
1044 gen_inbound_check (); /* Build the bounds check. */
1046 m_cfg_altered = true;
1049 /* Destructor. */
1051 switch_conversion::~switch_conversion ()
1053 XDELETEVEC (m_constructors);
1054 XDELETEVEC (m_default_values);
1057 /* Constructor. */
1059 group_cluster::group_cluster (vec<cluster *> &clusters,
1060 unsigned start, unsigned end)
1062 gcc_checking_assert (end - start + 1 >= 1);
1063 m_prob = profile_probability::never ();
1064 m_cases.create (end - start + 1);
1065 for (unsigned i = start; i <= end; i++)
1067 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1068 m_prob += clusters[i]->m_prob;
1070 m_subtree_prob = m_prob;
1073 /* Destructor. */
1075 group_cluster::~group_cluster ()
1077 for (unsigned i = 0; i < m_cases.length (); i++)
1078 delete m_cases[i];
1080 m_cases.release ();
1083 /* Dump content of a cluster. */
1085 void
1086 group_cluster::dump (FILE *f, bool details)
1088 unsigned total_values = 0;
1089 for (unsigned i = 0; i < m_cases.length (); i++)
1090 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1091 m_cases[i]->get_high ());
1093 unsigned comparison_count = 0;
1094 for (unsigned i = 0; i < m_cases.length (); i++)
1096 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1097 comparison_count += sc->m_range_p ? 2 : 1;
1100 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1101 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
1103 if (details)
1104 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1105 " density: %.2f%%)", total_values, comparison_count, range,
1106 100.0f * comparison_count / range);
1108 fprintf (f, ":");
1109 PRINT_CASE (f, get_low ());
1110 fprintf (f, "-");
1111 PRINT_CASE (f, get_high ());
1112 fprintf (f, " ");
1115 /* Emit GIMPLE code to handle the cluster. */
1117 void
1118 jump_table_cluster::emit (tree index_expr, tree,
1119 tree default_label_expr, basic_block default_bb)
1121 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1122 unsigned HOST_WIDE_INT nondefault_range = 0;
1124 /* For jump table we just emit a new gswitch statement that will
1125 be latter lowered to jump table. */
1126 auto_vec <tree> labels;
1127 labels.create (m_cases.length ());
1129 make_edge (m_case_bb, default_bb, 0);
1130 for (unsigned i = 0; i < m_cases.length (); i++)
1132 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1133 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1136 gswitch *s = gimple_build_switch (index_expr,
1137 unshare_expr (default_label_expr), labels);
1138 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1139 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
1141 /* Set up even probabilities for all cases. */
1142 for (unsigned i = 0; i < m_cases.length (); i++)
1144 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1145 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1146 unsigned HOST_WIDE_INT case_range
1147 = sc->get_range (sc->get_low (), sc->get_high ());
1148 nondefault_range += case_range;
1150 /* case_edge->aux is number of values in a jump-table that are covered
1151 by the case_edge. */
1152 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1155 edge default_edge = gimple_switch_default_edge (cfun, s);
1156 default_edge->probability = profile_probability::never ();
1158 for (unsigned i = 0; i < m_cases.length (); i++)
1160 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1161 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1162 case_edge->probability
1163 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1164 range);
1167 /* Number of non-default values is probability of default edge. */
1168 default_edge->probability
1169 += profile_probability::always ().apply_scale (nondefault_range,
1170 range).invert ();
1172 switch_decision_tree::reset_out_edges_aux (s);
1175 /* Find jump tables of given CLUSTERS, where all members of the vector
1176 are of type simple_cluster. New clusters are returned. */
1178 vec<cluster *>
1179 jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1181 if (!is_enabled ())
1182 return clusters.copy ();
1184 unsigned l = clusters.length ();
1185 auto_vec<min_cluster_item> min;
1186 min.reserve (l + 1);
1188 min.quick_push (min_cluster_item (0, 0, 0));
1190 for (unsigned i = 1; i <= l; i++)
1192 /* Set minimal # of clusters with i-th item to infinite. */
1193 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1195 for (unsigned j = 0; j < i; j++)
1197 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1198 if (i - j < case_values_threshold ())
1199 s += i - j;
1201 /* Prefer clusters with smaller number of numbers covered. */
1202 if ((min[j].m_count + 1 < min[i].m_count
1203 || (min[j].m_count + 1 == min[i].m_count
1204 && s < min[i].m_non_jt_cases))
1205 && can_be_handled (clusters, j, i - 1))
1206 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1209 gcc_checking_assert (min[i].m_count != INT_MAX);
1212 /* No result. */
1213 if (min[l].m_count == INT_MAX)
1214 return clusters.copy ();
1216 vec<cluster *> output;
1217 output.create (4);
1219 /* Find and build the clusters. */
1220 for (int end = l;;)
1222 int start = min[end].m_start;
1224 /* Do not allow clusters with small number of cases. */
1225 if (is_beneficial (clusters, start, end - 1))
1226 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1227 else
1228 for (int i = end - 1; i >= start; i--)
1229 output.safe_push (clusters[i]);
1231 end = start;
1233 if (start <= 0)
1234 break;
1237 output.reverse ();
1238 return output;
1241 /* Return true when cluster starting at START and ending at END (inclusive)
1242 can build a jump-table. */
1244 bool
1245 jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1246 unsigned start, unsigned end)
1248 /* If the switch is relatively small such that the cost of one
1249 indirect jump on the target are higher than the cost of a
1250 decision tree, go with the decision tree.
1252 If range of values is much bigger than number of values,
1253 or if it is too large to represent in a HOST_WIDE_INT,
1254 make a sequence of conditional branches instead of a dispatch.
1256 The definition of "much bigger" depends on whether we are
1257 optimizing for size or for speed. */
1258 if (!flag_jump_tables)
1259 return false;
1261 /* For algorithm correctness, jump table for a single case must return
1262 true. We bail out in is_beneficial if it's called just for
1263 a single case. */
1264 if (start == end)
1265 return true;
1267 unsigned HOST_WIDE_INT max_ratio
1268 = optimize_insn_for_size_p () ? max_ratio_for_size : max_ratio_for_speed;
1269 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1270 clusters[end]->get_high ());
1271 /* Check overflow. */
1272 if (range == 0)
1273 return false;
1275 unsigned HOST_WIDE_INT comparison_count = 0;
1276 for (unsigned i = start; i <= end; i++)
1278 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1279 comparison_count += sc->m_range_p ? 2 : 1;
1282 return range <= max_ratio * comparison_count;
1285 /* Return true if cluster starting at START and ending at END (inclusive)
1286 is profitable transformation. */
1288 bool
1289 jump_table_cluster::is_beneficial (const vec<cluster *> &,
1290 unsigned start, unsigned end)
1292 /* Single case bail out. */
1293 if (start == end)
1294 return false;
1296 return end - start + 1 >= case_values_threshold ();
1299 /* Definition of jump_table_cluster constants. */
1301 const unsigned HOST_WIDE_INT jump_table_cluster::max_ratio_for_size;
1302 const unsigned HOST_WIDE_INT jump_table_cluster::max_ratio_for_speed;
1304 /* Find bit tests of given CLUSTERS, where all members of the vector
1305 are of type simple_cluster. New clusters are returned. */
1307 vec<cluster *>
1308 bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1310 vec<cluster *> output;
1311 output.create (4);
1313 unsigned l = clusters.length ();
1314 auto_vec<min_cluster_item> min;
1315 min.reserve (l + 1);
1317 min.quick_push (min_cluster_item (0, 0, 0));
1319 for (unsigned i = 1; i <= l; i++)
1321 /* Set minimal # of clusters with i-th item to infinite. */
1322 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1324 for (unsigned j = 0; j < i; j++)
1326 if (min[j].m_count + 1 < min[i].m_count
1327 && can_be_handled (clusters, j, i - 1))
1328 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1331 gcc_checking_assert (min[i].m_count != INT_MAX);
1334 /* No result. */
1335 if (min[l].m_count == INT_MAX)
1336 return clusters.copy ();
1338 /* Find and build the clusters. */
1339 for (unsigned end = l;;)
1341 int start = min[end].m_start;
1343 if (is_beneficial (clusters, start, end - 1))
1345 bool entire = start == 0 && end == clusters.length ();
1346 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1347 entire));
1349 else
1350 for (int i = end - 1; i >= start; i--)
1351 output.safe_push (clusters[i]);
1353 end = start;
1355 if (start <= 0)
1356 break;
1359 output.reverse ();
1360 return output;
1363 /* Return true when RANGE of case values with UNIQ labels
1364 can build a bit test. */
1366 bool
1367 bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1368 unsigned int uniq)
1370 /* Check overflow. */
1371 if (range == 0)
1372 return 0;
1374 if (range >= GET_MODE_BITSIZE (word_mode))
1375 return false;
1377 return uniq <= 3;
1380 /* Return true when cluster starting at START and ending at END (inclusive)
1381 can build a bit test. */
1383 bool
1384 bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1385 unsigned start, unsigned end)
1387 /* For algorithm correctness, bit test for a single case must return
1388 true. We bail out in is_beneficial if it's called just for
1389 a single case. */
1390 if (start == end)
1391 return true;
1393 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1394 clusters[end]->get_high ());
1395 auto_bitmap dest_bbs;
1397 for (unsigned i = start; i <= end; i++)
1399 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1400 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1403 return can_be_handled (range, bitmap_count_bits (dest_bbs));
1406 /* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1407 transformation. */
1409 bool
1410 bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
1412 return (((uniq == 1 && count >= 3)
1413 || (uniq == 2 && count >= 5)
1414 || (uniq == 3 && count >= 6)));
1417 /* Return true if cluster starting at START and ending at END (inclusive)
1418 is profitable transformation. */
1420 bool
1421 bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1422 unsigned start, unsigned end)
1424 /* Single case bail out. */
1425 if (start == end)
1426 return false;
1428 auto_bitmap dest_bbs;
1430 for (unsigned i = start; i <= end; i++)
1432 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1433 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1436 unsigned uniq = bitmap_count_bits (dest_bbs);
1437 unsigned count = end - start + 1;
1438 return is_beneficial (count, uniq);
1441 /* Comparison function for qsort to order bit tests by decreasing
1442 probability of execution. */
1445 case_bit_test::cmp (const void *p1, const void *p2)
1447 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
1448 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
1450 if (d2->bits != d1->bits)
1451 return d2->bits - d1->bits;
1453 /* Stabilize the sort. */
1454 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1455 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1458 /* Expand a switch statement by a short sequence of bit-wise
1459 comparisons. "switch(x)" is effectively converted into
1460 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1461 integer constants.
1463 INDEX_EXPR is the value being switched on.
1465 MINVAL is the lowest case value of in the case nodes,
1466 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1467 are not guaranteed to be of the same type as INDEX_EXPR
1468 (the gimplifier doesn't change the type of case label values,
1469 and MINVAL and RANGE are derived from those values).
1470 MAXVAL is MINVAL + RANGE.
1472 There *MUST* be max_case_bit_tests or less unique case
1473 node targets. */
1475 void
1476 bit_test_cluster::emit (tree index_expr, tree index_type,
1477 tree, basic_block default_bb)
1479 struct case_bit_test test[m_max_case_bit_tests] = { {} };
1480 unsigned int i, j, k;
1481 unsigned int count;
1483 tree unsigned_index_type = unsigned_type_for (index_type);
1485 gimple_stmt_iterator gsi;
1486 gassign *shift_stmt;
1488 tree idx, tmp, csui;
1489 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1490 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1491 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1492 int prec = TYPE_PRECISION (word_type_node);
1493 wide_int wone = wi::one (prec);
1495 tree minval = get_low ();
1496 tree maxval = get_high ();
1497 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
1498 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval);
1500 /* Go through all case labels, and collect the case labels, profile
1501 counts, and other information we need to build the branch tests. */
1502 count = 0;
1503 for (i = 0; i < m_cases.length (); i++)
1505 unsigned int lo, hi;
1506 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1507 for (k = 0; k < count; k++)
1508 if (n->m_case_bb == test[k].target_bb)
1509 break;
1511 if (k == count)
1513 gcc_checking_assert (count < m_max_case_bit_tests);
1514 test[k].mask = wi::zero (prec);
1515 test[k].target_bb = n->m_case_bb;
1516 test[k].label = n->m_case_label_expr;
1517 test[k].bits = 0;
1518 count++;
1521 test[k].bits += n->get_range (n->get_low (), n->get_high ());
1523 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1524 if (n->get_high () == NULL_TREE)
1525 hi = lo;
1526 else
1527 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1528 minval));
1530 for (j = lo; j <= hi; j++)
1531 test[k].mask |= wi::lshift (wone, j);
1534 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1536 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1537 the minval subtractions, but it might make the mask constants more
1538 expensive. So, compare the costs. */
1539 if (compare_tree_int (minval, 0) > 0
1540 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
1542 int cost_diff;
1543 HOST_WIDE_INT m = tree_to_uhwi (minval);
1544 rtx reg = gen_raw_REG (word_mode, 10000);
1545 bool speed_p = optimize_insn_for_speed_p ();
1546 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
1547 GEN_INT (-m)), speed_p);
1548 for (i = 0; i < count; i++)
1550 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1551 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1552 word_mode, speed_p);
1553 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1554 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1555 word_mode, speed_p);
1557 if (cost_diff > 0)
1559 for (i = 0; i < count; i++)
1560 test[i].mask = wi::lshift (test[i].mask, m);
1561 minval = build_zero_cst (TREE_TYPE (minval));
1562 range = maxval;
1566 /* Now build the test-and-branch code. */
1568 gsi = gsi_last_bb (m_case_bb);
1570 /* idx = (unsigned)x - minval. */
1571 idx = fold_convert (unsigned_index_type, index_expr);
1572 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
1573 fold_convert (unsigned_index_type, minval));
1574 idx = force_gimple_operand_gsi (&gsi, idx,
1575 /*simple=*/true, NULL_TREE,
1576 /*before=*/true, GSI_SAME_STMT);
1578 if (m_handles_entire_switch)
1580 /* if (idx > range) goto default */
1581 range
1582 = force_gimple_operand_gsi (&gsi,
1583 fold_convert (unsigned_index_type, range),
1584 /*simple=*/true, NULL_TREE,
1585 /*before=*/true, GSI_SAME_STMT);
1586 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
1587 basic_block new_bb
1588 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1589 profile_probability::unlikely ());
1590 gsi = gsi_last_bb (new_bb);
1593 /* csui = (1 << (word_mode) idx) */
1594 csui = make_ssa_name (word_type_node);
1595 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
1596 fold_convert (word_type_node, idx));
1597 tmp = force_gimple_operand_gsi (&gsi, tmp,
1598 /*simple=*/false, NULL_TREE,
1599 /*before=*/true, GSI_SAME_STMT);
1600 shift_stmt = gimple_build_assign (csui, tmp);
1601 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1602 update_stmt (shift_stmt);
1604 profile_probability prob = profile_probability::always ();
1606 /* for each unique set of cases:
1607 if (const & csui) goto target */
1608 for (k = 0; k < count; k++)
1610 prob = profile_probability::always ().apply_scale (test[k].bits,
1611 bt_range);
1612 bt_range -= test[k].bits;
1613 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1614 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
1615 tmp = force_gimple_operand_gsi (&gsi, tmp,
1616 /*simple=*/true, NULL_TREE,
1617 /*before=*/true, GSI_SAME_STMT);
1618 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
1619 basic_block new_bb
1620 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb, prob);
1621 gsi = gsi_last_bb (new_bb);
1624 /* We should have removed all edges now. */
1625 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
1627 /* If nothing matched, go to the default label. */
1628 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1629 e->probability = profile_probability::always ();
1632 /* Split the basic block at the statement pointed to by GSIP, and insert
1633 a branch to the target basic block of E_TRUE conditional on tree
1634 expression COND.
1636 It is assumed that there is already an edge from the to-be-split
1637 basic block to E_TRUE->dest block. This edge is removed, and the
1638 profile information on the edge is re-used for the new conditional
1639 jump.
1641 The CFG is updated. The dominator tree will not be valid after
1642 this transformation, but the immediate dominators are updated if
1643 UPDATE_DOMINATORS is true.
1645 Returns the newly created basic block. */
1647 basic_block
1648 bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
1649 tree cond, basic_block case_bb,
1650 profile_probability prob)
1652 tree tmp;
1653 gcond *cond_stmt;
1654 edge e_false;
1655 basic_block new_bb, split_bb = gsi_bb (*gsip);
1657 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
1658 e_true->probability = prob;
1659 gcc_assert (e_true->src == split_bb);
1661 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1662 /*before=*/true, GSI_SAME_STMT);
1663 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1664 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
1666 e_false = split_block (split_bb, cond_stmt);
1667 new_bb = e_false->dest;
1668 redirect_edge_pred (e_true, split_bb);
1670 e_false->flags &= ~EDGE_FALLTHRU;
1671 e_false->flags |= EDGE_FALSE_VALUE;
1672 e_false->probability = e_true->probability.invert ();
1673 new_bb->count = e_false->count ();
1675 return new_bb;
1678 /* Compute the number of case labels that correspond to each outgoing edge of
1679 switch statement. Record this information in the aux field of the edge. */
1681 void
1682 switch_decision_tree::compute_cases_per_edge ()
1684 reset_out_edges_aux (m_switch);
1685 int ncases = gimple_switch_num_labels (m_switch);
1686 for (int i = ncases - 1; i >= 1; --i)
1688 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
1689 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1693 /* Analyze switch statement and return true when the statement is expanded
1694 as decision tree. */
1696 bool
1697 switch_decision_tree::analyze_switch_statement ()
1699 unsigned l = gimple_switch_num_labels (m_switch);
1700 basic_block bb = gimple_bb (m_switch);
1701 auto_vec<cluster *> clusters;
1702 clusters.create (l - 1);
1704 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
1705 m_case_bbs.reserve (l);
1706 m_case_bbs.quick_push (default_bb);
1708 compute_cases_per_edge ();
1710 for (unsigned i = 1; i < l; i++)
1712 tree elt = gimple_switch_label (m_switch, i);
1713 tree lab = CASE_LABEL (elt);
1714 basic_block case_bb = label_to_block (cfun, lab);
1715 edge case_edge = find_edge (bb, case_bb);
1716 tree low = CASE_LOW (elt);
1717 tree high = CASE_HIGH (elt);
1719 profile_probability p
1720 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux));
1721 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1722 p));
1723 m_case_bbs.quick_push (case_edge->dest);
1726 reset_out_edges_aux (m_switch);
1728 /* Find jump table clusters. */
1729 vec<cluster *> output = jump_table_cluster::find_jump_tables (clusters);
1731 /* Find bit test clusters. */
1732 vec<cluster *> output2;
1733 auto_vec<cluster *> tmp;
1734 output2.create (1);
1735 tmp.create (1);
1737 for (unsigned i = 0; i < output.length (); i++)
1739 cluster *c = output[i];
1740 if (c->get_type () != SIMPLE_CASE)
1742 if (!tmp.is_empty ())
1744 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1745 output2.safe_splice (n);
1746 n.release ();
1747 tmp.truncate (0);
1749 output2.safe_push (c);
1751 else
1752 tmp.safe_push (c);
1755 /* We still can have a temporary vector to test. */
1756 if (!tmp.is_empty ())
1758 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1759 output2.safe_splice (n);
1760 n.release ();
1763 if (dump_file)
1765 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
1766 for (unsigned i = 0; i < output2.length (); i++)
1767 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
1768 fprintf (dump_file, "\n");
1771 output.release ();
1773 bool expanded = try_switch_expansion (output2);
1775 for (unsigned i = 0; i < output2.length (); i++)
1776 delete output2[i];
1778 output2.release ();
1780 return expanded;
1783 /* Attempt to expand CLUSTERS as a decision tree. Return true when
1784 expanded. */
1786 bool
1787 switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1789 tree index_expr = gimple_switch_index (m_switch);
1790 tree index_type = TREE_TYPE (index_expr);
1791 basic_block bb = gimple_bb (m_switch);
1793 if (gimple_switch_num_labels (m_switch) == 1)
1794 return false;
1796 /* Find the default case target label. */
1797 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1798 m_default_bb = default_edge->dest;
1800 /* Do the insertion of a case label into m_case_list. The labels are
1801 fed to us in descending order from the sorted vector of case labels used
1802 in the tree part of the middle end. So the list we construct is
1803 sorted in ascending order. */
1805 for (int i = clusters.length () - 1; i >= 0; i--)
1807 case_tree_node *r = m_case_list;
1808 m_case_list = m_case_node_pool.allocate ();
1809 m_case_list->m_right = r;
1810 m_case_list->m_c = clusters[i];
1813 record_phi_operand_mapping ();
1815 /* Split basic block that contains the gswitch statement. */
1816 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1817 edge e;
1818 if (gsi_end_p (gsi))
1819 e = split_block_after_labels (bb);
1820 else
1822 gsi_prev (&gsi);
1823 e = split_block (bb, gsi_stmt (gsi));
1825 bb = split_edge (e);
1827 /* Create new basic blocks for non-case clusters where specific expansion
1828 needs to happen. */
1829 for (unsigned i = 0; i < clusters.length (); i++)
1830 if (clusters[i]->get_type () != SIMPLE_CASE)
1832 clusters[i]->m_case_bb = create_empty_bb (bb);
1833 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1836 /* Do not do an extra work for a single cluster. */
1837 if (clusters.length () == 1
1838 && clusters[0]->get_type () != SIMPLE_CASE)
1840 cluster *c = clusters[0];
1841 c->emit (index_expr, index_type,
1842 gimple_switch_default_label (m_switch), m_default_bb);
1843 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1845 else
1847 emit (bb, index_expr, default_edge->probability, index_type);
1849 /* Emit cluster-specific switch handling. */
1850 for (unsigned i = 0; i < clusters.length (); i++)
1851 if (clusters[i]->get_type () != SIMPLE_CASE)
1852 clusters[i]->emit (index_expr, index_type,
1853 gimple_switch_default_label (m_switch),
1854 m_default_bb);
1857 fix_phi_operands_for_edges ();
1859 return true;
1862 /* Before switch transformation, record all SSA_NAMEs defined in switch BB
1863 and used in a label basic block. */
1865 void
1866 switch_decision_tree::record_phi_operand_mapping ()
1868 basic_block switch_bb = gimple_bb (m_switch);
1869 /* Record all PHI nodes that have to be fixed after conversion. */
1870 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1872 gphi_iterator gsi;
1873 basic_block bb = m_case_bbs[i];
1874 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1876 gphi *phi = gsi.phi ();
1878 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1880 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1881 if (phi_src_bb == switch_bb)
1883 tree def = gimple_phi_arg_def (phi, i);
1884 tree result = gimple_phi_result (phi);
1885 m_phi_mapping.put (result, def);
1886 break;
1893 /* Append new operands to PHI statements that were introduced due to
1894 addition of new edges to case labels. */
1896 void
1897 switch_decision_tree::fix_phi_operands_for_edges ()
1899 gphi_iterator gsi;
1901 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1903 basic_block bb = m_case_bbs[i];
1904 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1906 gphi *phi = gsi.phi ();
1907 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1909 tree def = gimple_phi_arg_def (phi, j);
1910 if (def == NULL_TREE)
1912 edge e = gimple_phi_arg_edge (phi, j);
1913 tree *definition
1914 = m_phi_mapping.get (gimple_phi_result (phi));
1915 gcc_assert (definition);
1916 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1923 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1924 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1926 We generate a binary decision tree to select the appropriate target
1927 code. */
1929 void
1930 switch_decision_tree::emit (basic_block bb, tree index_expr,
1931 profile_probability default_prob, tree index_type)
1933 balance_case_nodes (&m_case_list, NULL);
1935 if (dump_file)
1936 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1937 if (dump_file && (dump_flags & TDF_DETAILS))
1939 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1940 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1941 gcc_assert (m_case_list != NULL);
1942 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
1945 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type);
1947 if (bb)
1948 emit_jump (bb, m_default_bb);
1950 /* Remove all edges and do just an edge that will reach default_bb. */
1951 bb = gimple_bb (m_switch);
1952 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1953 gsi_remove (&gsi, true);
1955 delete_basic_block (bb);
1958 /* Take an ordered list of case nodes
1959 and transform them into a near optimal binary tree,
1960 on the assumption that any target code selection value is as
1961 likely as any other.
1963 The transformation is performed by splitting the ordered
1964 list into two equal sections plus a pivot. The parts are
1965 then attached to the pivot as left and right branches. Each
1966 branch is then transformed recursively. */
1968 void
1969 switch_decision_tree::balance_case_nodes (case_tree_node **head,
1970 case_tree_node *parent)
1972 case_tree_node *np;
1974 np = *head;
1975 if (np)
1977 int i = 0;
1978 int ranges = 0;
1979 case_tree_node **npp;
1980 case_tree_node *left;
1981 profile_probability prob = profile_probability::never ();
1983 /* Count the number of entries on branch. Also count the ranges. */
1985 while (np)
1987 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ()))
1988 ranges++;
1990 i++;
1991 prob += np->m_c->m_prob;
1992 np = np->m_right;
1995 if (i > 2)
1997 /* Split this list if it is long enough for that to help. */
1998 npp = head;
1999 left = *npp;
2000 profile_probability pivot_prob = prob.apply_scale (1, 2);
2002 /* Find the place in the list that bisects the list's total cost,
2003 where ranges count as 2. */
2004 while (1)
2006 /* Skip nodes while their probability does not reach
2007 that amount. */
2008 prob -= (*npp)->m_c->m_prob;
2009 if ((prob.initialized_p () && prob < pivot_prob)
2010 || ! (*npp)->m_right)
2011 break;
2012 npp = &(*npp)->m_right;
2015 np = *npp;
2016 *npp = 0;
2017 *head = np;
2018 np->m_parent = parent;
2019 np->m_left = left == np ? NULL : left;
2021 /* Optimize each of the two split parts. */
2022 balance_case_nodes (&np->m_left, np);
2023 balance_case_nodes (&np->m_right, np);
2024 np->m_c->m_subtree_prob = np->m_c->m_prob;
2025 if (np->m_left)
2026 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2027 if (np->m_right)
2028 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2030 else
2032 /* Else leave this branch as one level,
2033 but fill in `parent' fields. */
2034 np = *head;
2035 np->m_parent = parent;
2036 np->m_c->m_subtree_prob = np->m_c->m_prob;
2037 for (; np->m_right; np = np->m_right)
2039 np->m_right->m_parent = np;
2040 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2046 /* Dump ROOT, a list or tree of case nodes, to file. */
2048 void
2049 switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2050 int indent_step, int indent_level)
2052 if (root == 0)
2053 return;
2054 indent_level++;
2056 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2058 fputs (";; ", f);
2059 fprintf (f, "%*s", indent_step * indent_level, "");
2060 root->m_c->dump (f);
2061 root->m_c->m_prob.dump (f);
2062 fputs (" subtree: ", f);
2063 root->m_c->m_subtree_prob.dump (f);
2064 fputs (")\n", f);
2066 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2070 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2072 void
2073 switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2075 edge e = single_succ_edge (bb);
2076 redirect_edge_succ (e, case_bb);
2079 /* Generate code to compare OP0 with OP1 so that the condition codes are
2080 set and to jump to LABEL_BB if the condition is true.
2081 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2082 PROB is the probability of jumping to LABEL_BB. */
2084 basic_block
2085 switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2086 tree op1, tree_code comparison,
2087 basic_block label_bb,
2088 profile_probability prob)
2090 // TODO: it's once called with lhs != index.
2091 op1 = fold_convert (TREE_TYPE (op0), op1);
2093 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2094 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2095 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2097 gcc_assert (single_succ_p (bb));
2099 /* Make a new basic block where false branch will take place. */
2100 edge false_edge = split_block (bb, cond);
2101 false_edge->flags = EDGE_FALSE_VALUE;
2102 false_edge->probability = prob.invert ();
2104 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2105 true_edge->probability = prob;
2107 return false_edge->dest;
2110 /* Generate code to jump to LABEL if OP0 and OP1 are equal.
2111 PROB is the probability of jumping to LABEL_BB.
2112 BB is a basic block where the new condition will be placed. */
2114 basic_block
2115 switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2116 basic_block label_bb,
2117 profile_probability prob)
2119 op1 = fold_convert (TREE_TYPE (op0), op1);
2121 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2122 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2123 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2125 gcc_assert (single_succ_p (bb));
2127 /* Make a new basic block where false branch will take place. */
2128 edge false_edge = split_block (bb, cond);
2129 false_edge->flags = EDGE_FALSE_VALUE;
2130 false_edge->probability = prob.invert ();
2132 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2133 true_edge->probability = prob;
2135 return false_edge->dest;
2138 /* Emit step-by-step code to select a case for the value of INDEX.
2139 The thus generated decision tree follows the form of the
2140 case-node binary tree NODE, whose nodes represent test conditions.
2141 DEFAULT_PROB is probability of cases leading to default BB.
2142 INDEX_TYPE is the type of the index of the switch. */
2144 basic_block
2145 switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2146 case_tree_node *node,
2147 profile_probability default_prob,
2148 tree index_type)
2150 profile_probability p;
2152 /* If node is null, we are done. */
2153 if (node == NULL)
2154 return bb;
2156 /* Single value case. */
2157 if (node->m_c->is_single_value_p ())
2159 /* Node is single valued. First see if the index expression matches
2160 this node and then check our children, if any. */
2161 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2162 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
2163 node->m_c->m_case_bb, p);
2164 /* Since this case is taken at this point, reduce its weight from
2165 subtree_weight. */
2166 node->m_c->m_subtree_prob -= p;
2168 if (node->m_left != NULL && node->m_right != NULL)
2170 /* 1) the node has both children
2172 If both children are single-valued cases with no
2173 children, finish up all the work. This way, we can save
2174 one ordered comparison. */
2176 if (!node->m_left->has_child ()
2177 && node->m_left->m_c->is_single_value_p ()
2178 && !node->m_right->has_child ()
2179 && node->m_right->m_c->is_single_value_p ())
2181 p = (node->m_right->m_c->m_prob
2182 / (node->m_c->m_subtree_prob + default_prob));
2183 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2184 node->m_right->m_c->m_case_bb, p);
2186 p = (node->m_left->m_c->m_prob
2187 / (node->m_c->m_subtree_prob + default_prob));
2188 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2189 node->m_left->m_c->m_case_bb, p);
2191 else
2193 /* Branch to a label where we will handle it later. */
2194 basic_block test_bb = split_edge (single_succ_edge (bb));
2195 redirect_edge_succ (single_pred_edge (test_bb),
2196 single_succ_edge (bb)->dest);
2198 p = ((node->m_right->m_c->m_subtree_prob
2199 + default_prob.apply_scale (1, 2))
2200 / (node->m_c->m_subtree_prob + default_prob));
2201 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2202 GT_EXPR, test_bb, p);
2203 default_prob = default_prob.apply_scale (1, 2);
2205 /* Handle the left-hand subtree. */
2206 bb = emit_case_nodes (bb, index, node->m_left,
2207 default_prob, index_type);
2209 /* If the left-hand subtree fell through,
2210 don't let it fall into the right-hand subtree. */
2211 if (bb && m_default_bb)
2212 emit_jump (bb, m_default_bb);
2214 bb = emit_case_nodes (test_bb, index, node->m_right,
2215 default_prob, index_type);
2218 else if (node->m_left == NULL && node->m_right != NULL)
2220 /* 2) the node has only right child. */
2222 /* Here we have a right child but no left so we issue a conditional
2223 branch to default and process the right child.
2225 Omit the conditional branch to default if the right child
2226 does not have any children and is single valued; it would
2227 cost too much space to save so little time. */
2229 if (node->m_right->has_child ()
2230 || !node->m_right->m_c->is_single_value_p ())
2232 p = (default_prob.apply_scale (1, 2)
2233 / (node->m_c->m_subtree_prob + default_prob));
2234 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2235 LT_EXPR, m_default_bb, p);
2236 default_prob = default_prob.apply_scale (1, 2);
2238 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
2239 index_type);
2241 else
2243 /* We cannot process node->right normally
2244 since we haven't ruled out the numbers less than
2245 this node's value. So handle node->right explicitly. */
2246 p = (node->m_right->m_c->m_subtree_prob
2247 / (node->m_c->m_subtree_prob + default_prob));
2248 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2249 node->m_right->m_c->m_case_bb, p);
2252 else if (node->m_left != NULL && node->m_right == NULL)
2254 /* 3) just one subtree, on the left. Similar case as previous. */
2256 if (node->m_left->has_child ()
2257 || !node->m_left->m_c->is_single_value_p ())
2259 p = (default_prob.apply_scale (1, 2)
2260 / (node->m_c->m_subtree_prob + default_prob));
2261 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2262 GT_EXPR, m_default_bb, p);
2263 default_prob = default_prob.apply_scale (1, 2);
2265 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
2266 index_type);
2268 else
2270 /* We cannot process node->left normally
2271 since we haven't ruled out the numbers less than
2272 this node's value. So handle node->left explicitly. */
2273 p = (node->m_left->m_c->m_subtree_prob
2274 / (node->m_c->m_subtree_prob + default_prob));
2275 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2276 node->m_left->m_c->m_case_bb, p);
2280 else
2282 /* Node is a range. These cases are very similar to those for a single
2283 value, except that we do not start by testing whether this node
2284 is the one to branch to. */
2285 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2287 /* Branch to a label where we will handle it later. */
2288 basic_block test_bb = split_edge (single_succ_edge (bb));
2289 redirect_edge_succ (single_pred_edge (test_bb),
2290 single_succ_edge (bb)->dest);
2293 profile_probability right_prob = profile_probability::never ();
2294 if (node->m_right)
2295 right_prob = node->m_right->m_c->m_subtree_prob;
2296 p = ((right_prob + default_prob.apply_scale (1, 2))
2297 / (node->m_c->m_subtree_prob + default_prob));
2299 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2300 GT_EXPR, test_bb, p);
2301 default_prob = default_prob.apply_scale (1, 2);
2303 /* Value belongs to this node or to the left-hand subtree. */
2304 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2305 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2306 GE_EXPR, node->m_c->m_case_bb, p);
2308 /* Handle the left-hand subtree. */
2309 bb = emit_case_nodes (bb, index, node->m_left,
2310 default_prob, index_type);
2312 /* If the left-hand subtree fell through,
2313 don't let it fall into the right-hand subtree. */
2314 if (bb && m_default_bb)
2315 emit_jump (bb, m_default_bb);
2317 bb = emit_case_nodes (test_bb, index, node->m_right,
2318 default_prob, index_type);
2320 else
2322 /* Node has no children so we check low and high bounds to remove
2323 redundant tests. Only one of the bounds can exist,
2324 since otherwise this node is bounded--a case tested already. */
2325 tree lhs, rhs;
2326 generate_range_test (bb, index, node->m_c->get_low (),
2327 node->m_c->get_high (), &lhs, &rhs);
2328 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2330 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
2331 m_default_bb, p);
2333 emit_jump (bb, node->m_c->m_case_bb);
2334 return NULL;
2338 return bb;
2341 /* The main function of the pass scans statements for switches and invokes
2342 process_switch on them. */
2344 namespace {
2346 const pass_data pass_data_convert_switch =
2348 GIMPLE_PASS, /* type */
2349 "switchconv", /* name */
2350 OPTGROUP_NONE, /* optinfo_flags */
2351 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2352 ( PROP_cfg | PROP_ssa ), /* properties_required */
2353 0, /* properties_provided */
2354 0, /* properties_destroyed */
2355 0, /* todo_flags_start */
2356 TODO_update_ssa, /* todo_flags_finish */
2359 class pass_convert_switch : public gimple_opt_pass
2361 public:
2362 pass_convert_switch (gcc::context *ctxt)
2363 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2366 /* opt_pass methods: */
2367 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
2368 virtual unsigned int execute (function *);
2370 }; // class pass_convert_switch
2372 unsigned int
2373 pass_convert_switch::execute (function *fun)
2375 basic_block bb;
2376 bool cfg_altered = false;
2378 FOR_EACH_BB_FN (bb, fun)
2380 gimple *stmt = last_stmt (bb);
2381 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2383 if (dump_file)
2385 expanded_location loc = expand_location (gimple_location (stmt));
2387 fprintf (dump_file, "beginning to process the following "
2388 "SWITCH statement (%s:%d) : ------- \n",
2389 loc.file, loc.line);
2390 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2391 putc ('\n', dump_file);
2394 switch_conversion sconv;
2395 sconv.expand (as_a <gswitch *> (stmt));
2396 cfg_altered |= sconv.m_cfg_altered;
2397 if (!sconv.m_reason)
2399 if (dump_file)
2401 fputs ("Switch converted\n", dump_file);
2402 fputs ("--------------------------------\n", dump_file);
2405 /* Make no effort to update the post-dominator tree.
2406 It is actually not that hard for the transformations
2407 we have performed, but it is not supported
2408 by iterate_fix_dominators. */
2409 free_dominance_info (CDI_POST_DOMINATORS);
2411 else
2413 if (dump_file)
2415 fputs ("Bailing out - ", dump_file);
2416 fputs (sconv.m_reason, dump_file);
2417 fputs ("\n--------------------------------\n", dump_file);
2423 return cfg_altered ? TODO_cleanup_cfg : 0;;
2426 } // anon namespace
2428 gimple_opt_pass *
2429 make_pass_convert_switch (gcc::context *ctxt)
2431 return new pass_convert_switch (ctxt);
2434 /* The main function of the pass scans statements for switches and invokes
2435 process_switch on them. */
2437 namespace {
2439 template <bool O0> class pass_lower_switch: public gimple_opt_pass
2441 public:
2442 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2444 static const pass_data data;
2445 opt_pass *
2446 clone ()
2448 return new pass_lower_switch<O0> (m_ctxt);
2451 virtual bool
2452 gate (function *)
2454 return !O0 || !optimize;
2457 virtual unsigned int execute (function *fun);
2458 }; // class pass_lower_switch
2460 template <bool O0>
2461 const pass_data pass_lower_switch<O0>::data = {
2462 GIMPLE_PASS, /* type */
2463 O0 ? "switchlower_O0" : "switchlower", /* name */
2464 OPTGROUP_NONE, /* optinfo_flags */
2465 TV_TREE_SWITCH_LOWERING, /* tv_id */
2466 ( PROP_cfg | PROP_ssa ), /* properties_required */
2467 0, /* properties_provided */
2468 0, /* properties_destroyed */
2469 0, /* todo_flags_start */
2470 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2473 template <bool O0>
2474 unsigned int
2475 pass_lower_switch<O0>::execute (function *fun)
2477 basic_block bb;
2478 bool expanded = false;
2480 auto_vec<gimple *> switch_statements;
2481 switch_statements.create (1);
2483 FOR_EACH_BB_FN (bb, fun)
2485 gimple *stmt = last_stmt (bb);
2486 gswitch *swtch;
2487 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2489 if (!O0)
2490 group_case_labels_stmt (swtch);
2491 switch_statements.safe_push (swtch);
2495 for (unsigned i = 0; i < switch_statements.length (); i++)
2497 gimple *stmt = switch_statements[i];
2498 if (dump_file)
2500 expanded_location loc = expand_location (gimple_location (stmt));
2502 fprintf (dump_file, "beginning to process the following "
2503 "SWITCH statement (%s:%d) : ------- \n",
2504 loc.file, loc.line);
2505 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2506 putc ('\n', dump_file);
2509 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2510 if (swtch)
2512 switch_decision_tree dt (swtch);
2513 expanded |= dt.analyze_switch_statement ();
2517 if (expanded)
2519 free_dominance_info (CDI_DOMINATORS);
2520 free_dominance_info (CDI_POST_DOMINATORS);
2521 mark_virtual_operands_for_renaming (cfun);
2524 return 0;
2527 } // anon namespace
2529 gimple_opt_pass *
2530 make_pass_lower_switch_O0 (gcc::context *ctxt)
2532 return new pass_lower_switch<true> (ctxt);
2534 gimple_opt_pass *
2535 make_pass_lower_switch (gcc::context *ctxt)
2537 return new pass_lower_switch<false> (ctxt);