2018-11-11 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / modulo-sched.c
blob121e6191afd30a61afde4d89eb5a53a5d26cdadc
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "params.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "loop-unroll.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
161 /* Holds the partial schedule as an array of II rows. Each entry of the
162 array points to a linked list of PS_INSNs, which represents the
163 instructions that are scheduled for that row. */
164 struct partial_schedule
166 int ii; /* Number of rows in the partial schedule. */
167 int history; /* Threshold for conflict checking using DFA. */
169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
170 ps_insn_ptr *rows;
172 /* All the moves added for this partial schedule. Index X has
173 a ps_insn id of X + g->num_nodes. */
174 vec<ps_reg_move_info> reg_moves;
176 /* rows_length[i] holds the number of instructions in the row.
177 It is used only (as an optimization) to back off quickly from
178 trying to schedule a node in a full row; that is, to avoid running
179 through futile DFA state transitions. */
180 int *rows_length;
182 /* The earliest absolute cycle of an insn in the partial schedule. */
183 int min_cycle;
185 /* The latest absolute cycle of an insn in the partial schedule. */
186 int max_cycle;
188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
190 int stage_count; /* The stage count of the partial schedule. */
194 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
195 static void free_partial_schedule (partial_schedule_ptr);
196 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
197 void print_partial_schedule (partial_schedule_ptr, FILE *);
198 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
199 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
200 int, int, sbitmap, sbitmap);
201 static void rotate_partial_schedule (partial_schedule_ptr, int);
202 void set_row_column_for_ps (partial_schedule_ptr);
203 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
204 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
207 /* This page defines constants and structures for the modulo scheduling
208 driver. */
210 static int sms_order_nodes (ddg_ptr, int, int *, int *);
211 static void set_node_sched_params (ddg_ptr);
212 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
213 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
214 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
215 rtx, rtx);
216 static int calculate_stage_count (partial_schedule_ptr, int);
217 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
218 int, int, sbitmap, sbitmap, sbitmap);
219 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
220 sbitmap, int, int *, int *, int *);
221 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
222 sbitmap, int *, sbitmap, sbitmap);
223 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
225 #define NODE_ASAP(node) ((node)->aux.count)
227 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
228 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
229 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
230 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
231 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
233 /* The scheduling parameters held for each node. */
234 typedef struct node_sched_params
236 int time; /* The absolute scheduling cycle. */
238 int row; /* Holds time % ii. */
239 int stage; /* Holds time / ii. */
241 /* The column of a node inside the ps. If nodes u, v are on the same row,
242 u will precede v if column (u) < column (v). */
243 int column;
244 } *node_sched_params_ptr;
246 /* The following three functions are copied from the current scheduler
247 code in order to use sched_analyze() for computing the dependencies.
248 They are used when initializing the sched_info structure. */
249 static const char *
250 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
252 static char tmp[80];
254 sprintf (tmp, "i%4d", INSN_UID (insn));
255 return tmp;
258 static void
259 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
260 regset used ATTRIBUTE_UNUSED)
264 static struct common_sched_info_def sms_common_sched_info;
266 static struct sched_deps_info_def sms_sched_deps_info =
268 compute_jump_reg_dependencies,
269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
270 NULL,
271 0, 0, 0
274 static struct haifa_sched_info sms_sched_info =
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 NULL,
281 sms_print_insn,
282 NULL,
283 NULL, /* insn_finishes_block_p */
284 NULL, NULL,
285 NULL, NULL,
286 0, 0,
288 NULL, NULL, NULL, NULL,
289 NULL, NULL,
293 /* Partial schedule instruction ID in PS is a register move. Return
294 information about it. */
295 static struct ps_reg_move_info *
296 ps_reg_move (partial_schedule_ptr ps, int id)
298 gcc_checking_assert (id >= ps->g->num_nodes);
299 return &ps->reg_moves[id - ps->g->num_nodes];
302 /* Return the rtl instruction that is being scheduled by partial schedule
303 instruction ID, which belongs to schedule PS. */
304 static rtx_insn *
305 ps_rtl_insn (partial_schedule_ptr ps, int id)
307 if (id < ps->g->num_nodes)
308 return ps->g->nodes[id].insn;
309 else
310 return ps_reg_move (ps, id)->insn;
313 /* Partial schedule instruction ID, which belongs to PS, occurred in
314 the original (unscheduled) loop. Return the first instruction
315 in the loop that was associated with ps_rtl_insn (PS, ID).
316 If the instruction had some notes before it, this is the first
317 of those notes. */
318 static rtx_insn *
319 ps_first_note (partial_schedule_ptr ps, int id)
321 gcc_assert (id < ps->g->num_nodes);
322 return ps->g->nodes[id].first_note;
325 /* Return the number of consecutive stages that are occupied by
326 partial schedule instruction ID in PS. */
327 static int
328 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
330 if (id < ps->g->num_nodes)
331 return 1;
332 else
333 return ps_reg_move (ps, id)->num_consecutive_stages;
336 /* Given HEAD and TAIL which are the first and last insns in a loop;
337 return the register which controls the loop. Return zero if it has
338 more than one occurrence in the loop besides the control part or the
339 do-loop pattern is not of the form we expect. */
340 static rtx
341 doloop_register_get (rtx_insn *head, rtx_insn *tail)
343 rtx reg, condition;
344 rtx_insn *insn, *first_insn_not_to_check;
346 if (!JUMP_P (tail))
347 return NULL_RTX;
349 if (!targetm.code_for_doloop_end)
350 return NULL_RTX;
352 /* TODO: Free SMS's dependence on doloop_condition_get. */
353 condition = doloop_condition_get (tail);
354 if (! condition)
355 return NULL_RTX;
357 if (REG_P (XEXP (condition, 0)))
358 reg = XEXP (condition, 0);
359 else if (GET_CODE (XEXP (condition, 0)) == PLUS
360 && REG_P (XEXP (XEXP (condition, 0), 0)))
361 reg = XEXP (XEXP (condition, 0), 0);
362 else
363 gcc_unreachable ();
365 /* Check that the COUNT_REG has no other occurrences in the loop
366 until the decrement. We assume the control part consists of
367 either a single (parallel) branch-on-count or a (non-parallel)
368 branch immediately preceded by a single (decrement) insn. */
369 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
370 : prev_nondebug_insn (tail));
372 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
373 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
375 if (dump_file)
377 fprintf (dump_file, "SMS count_reg found ");
378 print_rtl_single (dump_file, reg);
379 fprintf (dump_file, " outside control in insn:\n");
380 print_rtl_single (dump_file, insn);
383 return NULL_RTX;
386 return reg;
389 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
390 that the number of iterations is a compile-time constant. If so,
391 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
392 this constant. Otherwise return 0. */
393 static rtx_insn *
394 const_iteration_count (rtx count_reg, basic_block pre_header,
395 int64_t * count)
397 rtx_insn *insn;
398 rtx_insn *head, *tail;
400 if (! pre_header)
401 return NULL;
403 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
405 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
406 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
407 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
409 rtx pat = single_set (insn);
411 if (CONST_INT_P (SET_SRC (pat)))
413 *count = INTVAL (SET_SRC (pat));
414 return insn;
417 return NULL;
420 return NULL;
423 /* A very simple resource-based lower bound on the initiation interval.
424 ??? Improve the accuracy of this bound by considering the
425 utilization of various units. */
426 static int
427 res_MII (ddg_ptr g)
429 if (targetm.sched.sms_res_mii)
430 return targetm.sched.sms_res_mii (g);
432 return ((g->num_nodes - g->num_debug) / issue_rate);
436 /* A vector that contains the sched data for each ps_insn. */
437 static vec<node_sched_params> node_sched_param_vec;
439 /* Allocate sched_params for each node and initialize it. */
440 static void
441 set_node_sched_params (ddg_ptr g)
443 node_sched_param_vec.truncate (0);
444 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
447 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
448 static void
449 extend_node_sched_params (partial_schedule_ptr ps)
451 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
452 + ps->reg_moves.length ());
455 /* Update the sched_params (time, row and stage) for node U using the II,
456 the CYCLE of U and MIN_CYCLE.
457 We're not simply taking the following
458 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
459 because the stages may not be aligned on cycle 0. */
460 static void
461 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
463 int sc_until_cycle_zero;
464 int stage;
466 SCHED_TIME (u) = cycle;
467 SCHED_ROW (u) = SMODULO (cycle, ii);
469 /* The calculation of stage count is done adding the number
470 of stages before cycle zero and after cycle zero. */
471 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
473 if (SCHED_TIME (u) < 0)
475 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
476 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
478 else
480 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
481 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
485 static void
486 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
488 int i;
490 if (! file)
491 return;
492 for (i = 0; i < num_nodes; i++)
494 node_sched_params_ptr nsp = SCHED_PARAMS (i);
496 fprintf (file, "Node = %d; INSN = %d\n", i,
497 INSN_UID (ps_rtl_insn (ps, i)));
498 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
499 fprintf (file, " time = %d:\n", nsp->time);
500 fprintf (file, " stage = %d:\n", nsp->stage);
504 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
505 static void
506 set_columns_for_row (partial_schedule_ptr ps, int row)
508 ps_insn_ptr cur_insn;
509 int column;
511 column = 0;
512 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
513 SCHED_COLUMN (cur_insn->id) = column++;
516 /* Set SCHED_COLUMN for each instruction in PS. */
517 static void
518 set_columns_for_ps (partial_schedule_ptr ps)
520 int row;
522 for (row = 0; row < ps->ii; row++)
523 set_columns_for_row (ps, row);
526 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
527 Its single predecessor has already been scheduled, as has its
528 ddg node successors. (The move may have also another move as its
529 successor, in which case that successor will be scheduled later.)
531 The move is part of a chain that satisfies register dependencies
532 between a producing ddg node and various consuming ddg nodes.
533 If some of these dependencies have a distance of 1 (meaning that
534 the use is upward-exposed) then DISTANCE1_USES is nonnull and
535 contains the set of uses with distance-1 dependencies.
536 DISTANCE1_USES is null otherwise.
538 MUST_FOLLOW is a scratch bitmap that is big enough to hold
539 all current ps_insn ids.
541 Return true on success. */
542 static bool
543 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
544 sbitmap distance1_uses, sbitmap must_follow)
546 unsigned int u;
547 int this_time, this_distance, this_start, this_end, this_latency;
548 int start, end, c, ii;
549 sbitmap_iterator sbi;
550 ps_reg_move_info *move;
551 rtx_insn *this_insn;
552 ps_insn_ptr psi;
554 move = ps_reg_move (ps, i_reg_move);
555 ii = ps->ii;
556 if (dump_file)
558 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
559 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
560 PS_MIN_CYCLE (ps));
561 print_rtl_single (dump_file, move->insn);
562 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
563 fprintf (dump_file, "=========== =========== =====\n");
566 start = INT_MIN;
567 end = INT_MAX;
569 /* For dependencies of distance 1 between a producer ddg node A
570 and consumer ddg node B, we have a chain of dependencies:
572 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
574 where Mi is the ith move. For dependencies of distance 0 between
575 a producer ddg node A and consumer ddg node C, we have a chain of
576 dependencies:
578 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
580 where Mi' occupies the same position as Mi but occurs a stage later.
581 We can only schedule each move once, so if we have both types of
582 chain, we model the second as:
584 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
586 First handle the dependencies between the previously-scheduled
587 predecessor and the move. */
588 this_insn = ps_rtl_insn (ps, move->def);
589 this_latency = insn_latency (this_insn, move->insn);
590 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
591 this_time = SCHED_TIME (move->def) - this_distance * ii;
592 this_start = this_time + this_latency;
593 this_end = this_time + ii;
594 if (dump_file)
595 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
596 this_start, this_end, SCHED_TIME (move->def),
597 INSN_UID (this_insn), this_latency, this_distance,
598 INSN_UID (move->insn));
600 if (start < this_start)
601 start = this_start;
602 if (end > this_end)
603 end = this_end;
605 /* Handle the dependencies between the move and previously-scheduled
606 successors. */
607 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
609 this_insn = ps_rtl_insn (ps, u);
610 this_latency = insn_latency (move->insn, this_insn);
611 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
612 this_distance = -1;
613 else
614 this_distance = 0;
615 this_time = SCHED_TIME (u) + this_distance * ii;
616 this_start = this_time - ii;
617 this_end = this_time - this_latency;
618 if (dump_file)
619 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
620 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
621 this_latency, this_distance, INSN_UID (this_insn));
623 if (start < this_start)
624 start = this_start;
625 if (end > this_end)
626 end = this_end;
629 if (dump_file)
631 fprintf (dump_file, "----------- ----------- -----\n");
632 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
635 bitmap_clear (must_follow);
636 bitmap_set_bit (must_follow, move->def);
638 start = MAX (start, end - (ii - 1));
639 for (c = end; c >= start; c--)
641 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
642 move->uses, must_follow);
643 if (psi)
645 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
646 if (dump_file)
647 fprintf (dump_file, "\nScheduled register move INSN %d at"
648 " time %d, row %d\n\n", INSN_UID (move->insn), c,
649 SCHED_ROW (i_reg_move));
650 return true;
654 if (dump_file)
655 fprintf (dump_file, "\nNo available slot\n\n");
657 return false;
661 Breaking intra-loop register anti-dependences:
662 Each intra-loop register anti-dependence implies a cross-iteration true
663 dependence of distance 1. Therefore, we can remove such false dependencies
664 and figure out if the partial schedule broke them by checking if (for a
665 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
666 if so generate a register move. The number of such moves is equal to:
667 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
668 nreg_moves = ----------------------------------- + 1 - { dependence.
669 ii { 1 if not.
671 static bool
672 schedule_reg_moves (partial_schedule_ptr ps)
674 ddg_ptr g = ps->g;
675 int ii = ps->ii;
676 int i;
678 for (i = 0; i < g->num_nodes; i++)
680 ddg_node_ptr u = &g->nodes[i];
681 ddg_edge_ptr e;
682 int nreg_moves = 0, i_reg_move;
683 rtx prev_reg, old_reg;
684 int first_move;
685 int distances[2];
686 sbitmap distance1_uses;
687 rtx set = single_set (u->insn);
689 /* Skip instructions that do not set a register. */
690 if (set && !REG_P (SET_DEST (set)))
691 continue;
693 /* Compute the number of reg_moves needed for u, by looking at life
694 ranges started at u (excluding self-loops). */
695 distances[0] = distances[1] = false;
696 for (e = u->out; e; e = e->next_out)
697 if (e->type == TRUE_DEP && e->dest != e->src)
699 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
700 - SCHED_TIME (e->src->cuid)) / ii;
702 if (e->distance == 1)
703 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
704 - SCHED_TIME (e->src->cuid) + ii) / ii;
706 /* If dest precedes src in the schedule of the kernel, then dest
707 will read before src writes and we can save one reg_copy. */
708 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
709 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
710 nreg_moves4e--;
712 if (nreg_moves4e >= 1)
714 /* !single_set instructions are not supported yet and
715 thus we do not except to encounter them in the loop
716 except from the doloop part. For the latter case
717 we assume no regmoves are generated as the doloop
718 instructions are tied to the branch with an edge. */
719 gcc_assert (set);
720 /* If the instruction contains auto-inc register then
721 validate that the regmov is being generated for the
722 target regsiter rather then the inc'ed register. */
723 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
726 if (nreg_moves4e)
728 gcc_assert (e->distance < 2);
729 distances[e->distance] = true;
731 nreg_moves = MAX (nreg_moves, nreg_moves4e);
734 if (nreg_moves == 0)
735 continue;
737 /* Create NREG_MOVES register moves. */
738 first_move = ps->reg_moves.length ();
739 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
740 extend_node_sched_params (ps);
742 /* Record the moves associated with this node. */
743 first_move += ps->g->num_nodes;
745 /* Generate each move. */
746 old_reg = prev_reg = SET_DEST (set);
747 if (HARD_REGISTER_P (old_reg))
748 return false;
750 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
752 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
754 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
755 move->uses = sbitmap_alloc (first_move + nreg_moves);
756 move->old_reg = old_reg;
757 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
758 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
759 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
760 bitmap_clear (move->uses);
762 prev_reg = move->new_reg;
765 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
767 if (distance1_uses)
768 bitmap_clear (distance1_uses);
770 /* Every use of the register defined by node may require a different
771 copy of this register, depending on the time the use is scheduled.
772 Record which uses require which move results. */
773 for (e = u->out; e; e = e->next_out)
774 if (e->type == TRUE_DEP && e->dest != e->src)
776 int dest_copy = (SCHED_TIME (e->dest->cuid)
777 - SCHED_TIME (e->src->cuid)) / ii;
779 if (e->distance == 1)
780 dest_copy = (SCHED_TIME (e->dest->cuid)
781 - SCHED_TIME (e->src->cuid) + ii) / ii;
783 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
784 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
785 dest_copy--;
787 if (dest_copy)
789 ps_reg_move_info *move;
791 move = ps_reg_move (ps, first_move + dest_copy - 1);
792 bitmap_set_bit (move->uses, e->dest->cuid);
793 if (e->distance == 1)
794 bitmap_set_bit (distance1_uses, e->dest->cuid);
798 auto_sbitmap must_follow (first_move + nreg_moves);
799 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
800 if (!schedule_reg_move (ps, first_move + i_reg_move,
801 distance1_uses, must_follow))
802 break;
803 if (distance1_uses)
804 sbitmap_free (distance1_uses);
805 if (i_reg_move < nreg_moves)
806 return false;
808 return true;
811 /* Emit the moves associated with PS. Apply the substitutions
812 associated with them. */
813 static void
814 apply_reg_moves (partial_schedule_ptr ps)
816 ps_reg_move_info *move;
817 int i;
819 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
821 unsigned int i_use;
822 sbitmap_iterator sbi;
824 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
826 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
827 df_insn_rescan (ps->g->nodes[i_use].insn);
832 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
833 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
834 will move to cycle zero. */
835 static void
836 reset_sched_times (partial_schedule_ptr ps, int amount)
838 int row;
839 int ii = ps->ii;
840 ps_insn_ptr crr_insn;
842 for (row = 0; row < ii; row++)
843 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
845 int u = crr_insn->id;
846 int normalized_time = SCHED_TIME (u) - amount;
847 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
849 if (dump_file)
851 /* Print the scheduling times after the rotation. */
852 rtx_insn *insn = ps_rtl_insn (ps, u);
854 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
855 "crr_insn->cycle=%d, min_cycle=%d", u,
856 INSN_UID (insn), normalized_time, new_min_cycle);
857 if (JUMP_P (insn))
858 fprintf (dump_file, " (branch)");
859 fprintf (dump_file, "\n");
862 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
863 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
865 crr_insn->cycle = normalized_time;
866 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
870 /* Permute the insns according to their order in PS, from row 0 to
871 row ii-1, and position them right before LAST. This schedules
872 the insns of the loop kernel. */
873 static void
874 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
876 int ii = ps->ii;
877 int row;
878 ps_insn_ptr ps_ij;
880 for (row = 0; row < ii ; row++)
881 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
883 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
885 if (PREV_INSN (last) != insn)
887 if (ps_ij->id < ps->g->num_nodes)
888 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
889 PREV_INSN (last));
890 else
891 add_insn_before (insn, last, NULL);
896 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
897 respectively only if cycle C falls on the border of the scheduling
898 window boundaries marked by START and END cycles. STEP is the
899 direction of the window. */
900 static inline void
901 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
902 sbitmap *tmp_precede, sbitmap must_precede, int c,
903 int start, int end, int step)
905 *tmp_precede = NULL;
906 *tmp_follow = NULL;
908 if (c == start)
910 if (step == 1)
911 *tmp_precede = must_precede;
912 else /* step == -1. */
913 *tmp_follow = must_follow;
915 if (c == end - step)
917 if (step == 1)
918 *tmp_follow = must_follow;
919 else /* step == -1. */
920 *tmp_precede = must_precede;
925 /* Return True if the branch can be moved to row ii-1 while
926 normalizing the partial schedule PS to start from cycle zero and thus
927 optimize the SC. Otherwise return False. */
928 static bool
929 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
931 int amount = PS_MIN_CYCLE (ps);
932 int start, end, step;
933 int ii = ps->ii;
934 bool ok = false;
935 int stage_count, stage_count_curr;
937 /* Compare the SC after normalization and SC after bringing the branch
938 to row ii-1. If they are equal just bail out. */
939 stage_count = calculate_stage_count (ps, amount);
940 stage_count_curr =
941 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
943 if (stage_count == stage_count_curr)
945 if (dump_file)
946 fprintf (dump_file, "SMS SC already optimized.\n");
948 return false;
951 if (dump_file)
953 fprintf (dump_file, "SMS Trying to optimize branch location\n");
954 fprintf (dump_file, "SMS partial schedule before trial:\n");
955 print_partial_schedule (ps, dump_file);
958 /* First, normalize the partial scheduling. */
959 reset_sched_times (ps, amount);
960 rotate_partial_schedule (ps, amount);
961 if (dump_file)
963 fprintf (dump_file,
964 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
965 ii, stage_count);
966 print_partial_schedule (ps, dump_file);
969 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
970 return true;
972 auto_sbitmap sched_nodes (g->num_nodes);
973 bitmap_ones (sched_nodes);
975 /* Calculate the new placement of the branch. It should be in row
976 ii-1 and fall into it's scheduling window. */
977 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
978 &step, &end) == 0)
980 bool success;
981 ps_insn_ptr next_ps_i;
982 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
983 int row = SMODULO (branch_cycle, ps->ii);
984 int num_splits = 0;
985 sbitmap tmp_precede, tmp_follow;
986 int min_cycle, c;
988 if (dump_file)
989 fprintf (dump_file, "\nTrying to schedule node %d "
990 "INSN = %d in (%d .. %d) step %d\n",
991 g->closing_branch->cuid,
992 (INSN_UID (g->closing_branch->insn)), start, end, step);
994 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
995 if (step == 1)
997 c = start + ii - SMODULO (start, ii) - 1;
998 gcc_assert (c >= start);
999 if (c >= end)
1001 if (dump_file)
1002 fprintf (dump_file,
1003 "SMS failed to schedule branch at cycle: %d\n", c);
1004 return false;
1007 else
1009 c = start - SMODULO (start, ii) - 1;
1010 gcc_assert (c <= start);
1012 if (c <= end)
1014 if (dump_file)
1015 fprintf (dump_file,
1016 "SMS failed to schedule branch at cycle: %d\n", c);
1017 return false;
1021 auto_sbitmap must_precede (g->num_nodes);
1022 auto_sbitmap must_follow (g->num_nodes);
1024 /* Try to schedule the branch is it's new cycle. */
1025 calculate_must_precede_follow (g->closing_branch, start, end,
1026 step, ii, sched_nodes,
1027 must_precede, must_follow);
1029 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1030 must_precede, c, start, end, step);
1032 /* Find the element in the partial schedule related to the closing
1033 branch so we can remove it from it's current cycle. */
1034 for (next_ps_i = ps->rows[row];
1035 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1036 if (next_ps_i->id == g->closing_branch->cuid)
1037 break;
1039 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1040 remove_node_from_ps (ps, next_ps_i);
1041 success =
1042 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1043 sched_nodes, &num_splits,
1044 tmp_precede, tmp_follow);
1045 gcc_assert (num_splits == 0);
1046 if (!success)
1048 if (dump_file)
1049 fprintf (dump_file,
1050 "SMS failed to schedule branch at cycle: %d, "
1051 "bringing it back to cycle %d\n", c, branch_cycle);
1053 /* The branch was failed to be placed in row ii - 1.
1054 Put it back in it's original place in the partial
1055 schedualing. */
1056 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1057 must_precede, branch_cycle, start, end,
1058 step);
1059 success =
1060 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1061 branch_cycle, sched_nodes,
1062 &num_splits, tmp_precede,
1063 tmp_follow);
1064 gcc_assert (success && (num_splits == 0));
1065 ok = false;
1067 else
1069 /* The branch is placed in row ii - 1. */
1070 if (dump_file)
1071 fprintf (dump_file,
1072 "SMS success in moving branch to cycle %d\n", c);
1074 update_node_sched_params (g->closing_branch->cuid, ii, c,
1075 PS_MIN_CYCLE (ps));
1076 ok = true;
1079 /* This might have been added to a new first stage. */
1080 if (PS_MIN_CYCLE (ps) < min_cycle)
1081 reset_sched_times (ps, 0);
1084 return ok;
1087 static void
1088 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1089 int to_stage, rtx count_reg)
1091 int row;
1092 ps_insn_ptr ps_ij;
1094 for (row = 0; row < ps->ii; row++)
1095 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1097 int u = ps_ij->id;
1098 int first_u, last_u;
1099 rtx_insn *u_insn;
1101 /* Do not duplicate any insn which refers to count_reg as it
1102 belongs to the control part.
1103 The closing branch is scheduled as well and thus should
1104 be ignored.
1105 TODO: This should be done by analyzing the control part of
1106 the loop. */
1107 u_insn = ps_rtl_insn (ps, u);
1108 if (reg_mentioned_p (count_reg, u_insn)
1109 || JUMP_P (u_insn))
1110 continue;
1112 first_u = SCHED_STAGE (u);
1113 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1114 if (from_stage <= last_u && to_stage >= first_u)
1116 if (u < ps->g->num_nodes)
1117 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1118 else
1119 emit_insn (copy_rtx (PATTERN (u_insn)));
1125 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1126 static void
1127 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1128 rtx count_reg, rtx count_init)
1130 int i;
1131 int last_stage = PS_STAGE_COUNT (ps) - 1;
1132 edge e;
1134 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1135 start_sequence ();
1137 if (!count_init)
1139 /* Generate instructions at the beginning of the prolog to
1140 adjust the loop count by STAGE_COUNT. If loop count is constant
1141 (count_init), this constant is adjusted by STAGE_COUNT in
1142 generate_prolog_epilog function. */
1143 rtx sub_reg = NULL_RTX;
1145 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1146 gen_int_mode (last_stage,
1147 GET_MODE (count_reg)),
1148 count_reg, 1, OPTAB_DIRECT);
1149 gcc_assert (REG_P (sub_reg));
1150 if (REGNO (sub_reg) != REGNO (count_reg))
1151 emit_move_insn (count_reg, sub_reg);
1154 for (i = 0; i < last_stage; i++)
1155 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1157 /* Put the prolog on the entry edge. */
1158 e = loop_preheader_edge (loop);
1159 split_edge_and_insert (e, get_insns ());
1160 if (!flag_resched_modulo_sched)
1161 e->dest->flags |= BB_DISABLE_SCHEDULE;
1163 end_sequence ();
1165 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1166 start_sequence ();
1168 for (i = 0; i < last_stage; i++)
1169 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1171 /* Put the epilogue on the exit edge. */
1172 gcc_assert (single_exit (loop));
1173 e = single_exit (loop);
1174 split_edge_and_insert (e, get_insns ());
1175 if (!flag_resched_modulo_sched)
1176 e->dest->flags |= BB_DISABLE_SCHEDULE;
1178 end_sequence ();
1181 /* Mark LOOP as software pipelined so the later
1182 scheduling passes don't touch it. */
1183 static void
1184 mark_loop_unsched (struct loop *loop)
1186 unsigned i;
1187 basic_block *bbs = get_loop_body (loop);
1189 for (i = 0; i < loop->num_nodes; i++)
1190 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1192 free (bbs);
1195 /* Return true if all the BBs of the loop are empty except the
1196 loop header. */
1197 static bool
1198 loop_single_full_bb_p (struct loop *loop)
1200 unsigned i;
1201 basic_block *bbs = get_loop_body (loop);
1203 for (i = 0; i < loop->num_nodes ; i++)
1205 rtx_insn *head, *tail;
1206 bool empty_bb = true;
1208 if (bbs[i] == loop->header)
1209 continue;
1211 /* Make sure that basic blocks other than the header
1212 have only notes labels or jumps. */
1213 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1214 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1216 if (NOTE_P (head) || LABEL_P (head)
1217 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1218 continue;
1219 empty_bb = false;
1220 break;
1223 if (! empty_bb)
1225 free (bbs);
1226 return false;
1229 free (bbs);
1230 return true;
1233 /* Dump file:line from INSN's location info to dump_file. */
1235 static void
1236 dump_insn_location (rtx_insn *insn)
1238 if (dump_file && INSN_HAS_LOCATION (insn))
1240 expanded_location xloc = insn_location (insn);
1241 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1245 /* A simple loop from SMS point of view; it is a loop that is composed of
1246 either a single basic block or two BBs - a header and a latch. */
1247 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1248 && (EDGE_COUNT (loop->latch->preds) == 1) \
1249 && (EDGE_COUNT (loop->latch->succs) == 1))
1251 /* Return true if the loop is in its canonical form and false if not.
1252 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1253 static bool
1254 loop_canon_p (struct loop *loop)
1257 if (loop->inner || !loop_outer (loop))
1259 if (dump_file)
1260 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1261 return false;
1264 if (!single_exit (loop))
1266 if (dump_file)
1268 rtx_insn *insn = BB_END (loop->header);
1270 fprintf (dump_file, "SMS loop many exits");
1271 dump_insn_location (insn);
1272 fprintf (dump_file, "\n");
1274 return false;
1277 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1279 if (dump_file)
1281 rtx_insn *insn = BB_END (loop->header);
1283 fprintf (dump_file, "SMS loop many BBs.");
1284 dump_insn_location (insn);
1285 fprintf (dump_file, "\n");
1287 return false;
1290 return true;
1293 /* If there are more than one entry for the loop,
1294 make it one by splitting the first entry edge and
1295 redirecting the others to the new BB. */
1296 static void
1297 canon_loop (struct loop *loop)
1299 edge e;
1300 edge_iterator i;
1302 /* Avoid annoying special cases of edges going to exit
1303 block. */
1304 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1305 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1306 split_edge (e);
1308 if (loop->latch == loop->header
1309 || EDGE_COUNT (loop->latch->succs) > 1)
1311 FOR_EACH_EDGE (e, i, loop->header->preds)
1312 if (e->src == loop->latch)
1313 break;
1314 split_edge (e);
1318 /* Setup infos. */
1319 static void
1320 setup_sched_infos (void)
1322 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1323 sizeof (sms_common_sched_info));
1324 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1325 common_sched_info = &sms_common_sched_info;
1327 sched_deps_info = &sms_sched_deps_info;
1328 current_sched_info = &sms_sched_info;
1331 /* Probability in % that the sms-ed loop rolls enough so that optimized
1332 version may be entered. Just a guess. */
1333 #define PROB_SMS_ENOUGH_ITERATIONS 80
1335 /* Used to calculate the upper bound of ii. */
1336 #define MAXII_FACTOR 2
1338 /* Main entry point, perform SMS scheduling on the loops of the function
1339 that consist of single basic blocks. */
1340 static void
1341 sms_schedule (void)
1343 rtx_insn *insn;
1344 ddg_ptr *g_arr, g;
1345 int * node_order;
1346 int maxii, max_asap;
1347 partial_schedule_ptr ps;
1348 basic_block bb = NULL;
1349 struct loop *loop;
1350 basic_block condition_bb = NULL;
1351 edge latch_edge;
1352 HOST_WIDE_INT trip_count, max_trip_count;
1354 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1355 | LOOPS_HAVE_RECORDED_EXITS);
1356 if (number_of_loops (cfun) <= 1)
1358 loop_optimizer_finalize ();
1359 return; /* There are no loops to schedule. */
1362 /* Initialize issue_rate. */
1363 if (targetm.sched.issue_rate)
1365 int temp = reload_completed;
1367 reload_completed = 1;
1368 issue_rate = targetm.sched.issue_rate ();
1369 reload_completed = temp;
1371 else
1372 issue_rate = 1;
1374 /* Initialize the scheduler. */
1375 setup_sched_infos ();
1376 haifa_sched_init ();
1378 /* Allocate memory to hold the DDG array one entry for each loop.
1379 We use loop->num as index into this array. */
1380 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1382 if (dump_file)
1384 fprintf (dump_file, "\n\nSMS analysis phase\n");
1385 fprintf (dump_file, "===================\n\n");
1388 /* Build DDGs for all the relevant loops and hold them in G_ARR
1389 indexed by the loop index. */
1390 FOR_EACH_LOOP (loop, 0)
1392 rtx_insn *head, *tail;
1393 rtx count_reg;
1395 /* For debugging. */
1396 if (dbg_cnt (sms_sched_loop) == false)
1398 if (dump_file)
1399 fprintf (dump_file, "SMS reached max limit... \n");
1401 break;
1404 if (dump_file)
1406 rtx_insn *insn = BB_END (loop->header);
1408 fprintf (dump_file, "SMS loop num: %d", loop->num);
1409 dump_insn_location (insn);
1410 fprintf (dump_file, "\n");
1413 if (! loop_canon_p (loop))
1414 continue;
1416 if (! loop_single_full_bb_p (loop))
1418 if (dump_file)
1419 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1420 continue;
1423 bb = loop->header;
1425 get_ebb_head_tail (bb, bb, &head, &tail);
1426 latch_edge = loop_latch_edge (loop);
1427 gcc_assert (single_exit (loop));
1428 trip_count = get_estimated_loop_iterations_int (loop);
1429 max_trip_count = get_max_loop_iterations_int (loop);
1431 /* Perform SMS only on loops that their average count is above threshold. */
1433 if ( latch_edge->count () > profile_count::zero ()
1434 && (latch_edge->count()
1435 < single_exit (loop)->count ().apply_scale
1436 (SMS_LOOP_AVERAGE_COUNT_THRESHOLD, 1)))
1438 if (dump_file)
1440 dump_insn_location (tail);
1441 fprintf (dump_file, "\nSMS single-bb-loop\n");
1442 if (profile_info && flag_branch_probabilities)
1444 fprintf (dump_file, "SMS loop-count ");
1445 fprintf (dump_file, "%" PRId64,
1446 (int64_t) bb->count.to_gcov_type ());
1447 fprintf (dump_file, "\n");
1448 fprintf (dump_file, "SMS trip-count ");
1449 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1450 (int64_t) trip_count, (int64_t) max_trip_count);
1451 fprintf (dump_file, "\n");
1454 continue;
1457 /* Make sure this is a doloop. */
1458 if ( !(count_reg = doloop_register_get (head, tail)))
1460 if (dump_file)
1461 fprintf (dump_file, "SMS doloop_register_get failed\n");
1462 continue;
1465 /* Don't handle BBs with calls or barriers
1466 or !single_set with the exception of instructions that include
1467 count_reg---these instructions are part of the control part
1468 that do-loop recognizes.
1469 ??? Should handle insns defining subregs. */
1470 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1472 rtx set;
1474 if (CALL_P (insn)
1475 || BARRIER_P (insn)
1476 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1477 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1478 && !reg_mentioned_p (count_reg, insn))
1479 || (INSN_P (insn) && (set = single_set (insn))
1480 && GET_CODE (SET_DEST (set)) == SUBREG))
1481 break;
1484 if (insn != NEXT_INSN (tail))
1486 if (dump_file)
1488 if (CALL_P (insn))
1489 fprintf (dump_file, "SMS loop-with-call\n");
1490 else if (BARRIER_P (insn))
1491 fprintf (dump_file, "SMS loop-with-barrier\n");
1492 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1493 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1494 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1495 else
1496 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1497 print_rtl_single (dump_file, insn);
1500 continue;
1503 /* Always schedule the closing branch with the rest of the
1504 instructions. The branch is rotated to be in row ii-1 at the
1505 end of the scheduling procedure to make sure it's the last
1506 instruction in the iteration. */
1507 if (! (g = create_ddg (bb, 1)))
1509 if (dump_file)
1510 fprintf (dump_file, "SMS create_ddg failed\n");
1511 continue;
1514 g_arr[loop->num] = g;
1515 if (dump_file)
1516 fprintf (dump_file, "...OK\n");
1519 if (dump_file)
1521 fprintf (dump_file, "\nSMS transformation phase\n");
1522 fprintf (dump_file, "=========================\n\n");
1525 /* We don't want to perform SMS on new loops - created by versioning. */
1526 FOR_EACH_LOOP (loop, 0)
1528 rtx_insn *head, *tail;
1529 rtx count_reg;
1530 rtx_insn *count_init;
1531 int mii, rec_mii, stage_count, min_cycle;
1532 int64_t loop_count = 0;
1533 bool opt_sc_p;
1535 if (! (g = g_arr[loop->num]))
1536 continue;
1538 if (dump_file)
1540 rtx_insn *insn = BB_END (loop->header);
1542 fprintf (dump_file, "SMS loop num: %d", loop->num);
1543 dump_insn_location (insn);
1544 fprintf (dump_file, "\n");
1546 print_ddg (dump_file, g);
1549 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1551 latch_edge = loop_latch_edge (loop);
1552 gcc_assert (single_exit (loop));
1553 trip_count = get_estimated_loop_iterations_int (loop);
1554 max_trip_count = get_max_loop_iterations_int (loop);
1556 if (dump_file)
1558 dump_insn_location (tail);
1559 fprintf (dump_file, "\nSMS single-bb-loop\n");
1560 if (profile_info && flag_branch_probabilities)
1562 fprintf (dump_file, "SMS loop-count ");
1563 fprintf (dump_file, "%" PRId64,
1564 (int64_t) bb->count.to_gcov_type ());
1565 fprintf (dump_file, "\n");
1567 fprintf (dump_file, "SMS doloop\n");
1568 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1569 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1570 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1574 /* In case of th loop have doloop register it gets special
1575 handling. */
1576 count_init = NULL;
1577 if ((count_reg = doloop_register_get (head, tail)))
1579 basic_block pre_header;
1581 pre_header = loop_preheader_edge (loop)->src;
1582 count_init = const_iteration_count (count_reg, pre_header,
1583 &loop_count);
1585 gcc_assert (count_reg);
1587 if (dump_file && count_init)
1589 fprintf (dump_file, "SMS const-doloop ");
1590 fprintf (dump_file, "%" PRId64,
1591 loop_count);
1592 fprintf (dump_file, "\n");
1595 node_order = XNEWVEC (int, g->num_nodes);
1597 mii = 1; /* Need to pass some estimate of mii. */
1598 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1599 mii = MAX (res_MII (g), rec_mii);
1600 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1602 if (dump_file)
1603 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1604 rec_mii, mii, maxii);
1606 for (;;)
1608 set_node_sched_params (g);
1610 stage_count = 0;
1611 opt_sc_p = false;
1612 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1614 if (ps)
1616 /* Try to achieve optimized SC by normalizing the partial
1617 schedule (having the cycles start from cycle zero).
1618 The branch location must be placed in row ii-1 in the
1619 final scheduling. If failed, shift all instructions to
1620 position the branch in row ii-1. */
1621 opt_sc_p = optimize_sc (ps, g);
1622 if (opt_sc_p)
1623 stage_count = calculate_stage_count (ps, 0);
1624 else
1626 /* Bring the branch to cycle ii-1. */
1627 int amount = (SCHED_TIME (g->closing_branch->cuid)
1628 - (ps->ii - 1));
1630 if (dump_file)
1631 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1633 stage_count = calculate_stage_count (ps, amount);
1636 gcc_assert (stage_count >= 1);
1639 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1640 1 means that there is no interleaving between iterations thus
1641 we let the scheduling passes do the job in this case. */
1642 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1643 || (count_init && (loop_count <= stage_count))
1644 || (max_trip_count >= 0 && max_trip_count <= stage_count)
1645 || (trip_count >= 0 && trip_count <= stage_count))
1647 if (dump_file)
1649 fprintf (dump_file, "SMS failed... \n");
1650 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1651 " loop-count=", stage_count);
1652 fprintf (dump_file, "%" PRId64, loop_count);
1653 fprintf (dump_file, ", trip-count=");
1654 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1655 (int64_t) trip_count, (int64_t) max_trip_count);
1656 fprintf (dump_file, ")\n");
1658 break;
1661 if (!opt_sc_p)
1663 /* Rotate the partial schedule to have the branch in row ii-1. */
1664 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1666 reset_sched_times (ps, amount);
1667 rotate_partial_schedule (ps, amount);
1670 set_columns_for_ps (ps);
1672 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1673 if (!schedule_reg_moves (ps))
1675 mii = ps->ii + 1;
1676 free_partial_schedule (ps);
1677 continue;
1680 /* Moves that handle incoming values might have been added
1681 to a new first stage. Bump the stage count if so.
1683 ??? Perhaps we could consider rotating the schedule here
1684 instead? */
1685 if (PS_MIN_CYCLE (ps) < min_cycle)
1687 reset_sched_times (ps, 0);
1688 stage_count++;
1691 /* The stage count should now be correct without rotation. */
1692 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1693 PS_STAGE_COUNT (ps) = stage_count;
1695 canon_loop (loop);
1697 if (dump_file)
1699 dump_insn_location (tail);
1700 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1701 ps->ii, stage_count);
1702 print_partial_schedule (ps, dump_file);
1705 /* case the BCT count is not known , Do loop-versioning */
1706 if (count_reg && ! count_init)
1708 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1709 gen_int_mode (stage_count,
1710 GET_MODE (count_reg)));
1711 profile_probability prob = profile_probability::guessed_always ()
1712 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
1714 loop_version (loop, comp_rtx, &condition_bb,
1715 prob, prob.invert (),
1716 prob, prob.invert (), true);
1719 /* Set new iteration count of loop kernel. */
1720 if (count_reg && count_init)
1721 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1722 - stage_count + 1);
1724 /* Now apply the scheduled kernel to the RTL of the loop. */
1725 permute_partial_schedule (ps, g->closing_branch->first_note);
1727 /* Mark this loop as software pipelined so the later
1728 scheduling passes don't touch it. */
1729 if (! flag_resched_modulo_sched)
1730 mark_loop_unsched (loop);
1732 /* The life-info is not valid any more. */
1733 df_set_bb_dirty (g->bb);
1735 apply_reg_moves (ps);
1736 if (dump_file)
1737 print_node_sched_params (dump_file, g->num_nodes, ps);
1738 /* Generate prolog and epilog. */
1739 generate_prolog_epilog (ps, loop, count_reg, count_init);
1740 break;
1743 free_partial_schedule (ps);
1744 node_sched_param_vec.release ();
1745 free (node_order);
1746 free_ddg (g);
1749 free (g_arr);
1751 /* Release scheduler data, needed until now because of DFA. */
1752 haifa_sched_finish ();
1753 loop_optimizer_finalize ();
1756 /* The SMS scheduling algorithm itself
1757 -----------------------------------
1758 Input: 'O' an ordered list of insns of a loop.
1759 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1761 'Q' is the empty Set
1762 'PS' is the partial schedule; it holds the currently scheduled nodes with
1763 their cycle/slot.
1764 'PSP' previously scheduled predecessors.
1765 'PSS' previously scheduled successors.
1766 't(u)' the cycle where u is scheduled.
1767 'l(u)' is the latency of u.
1768 'd(v,u)' is the dependence distance from v to u.
1769 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1770 the node ordering phase.
1771 'check_hardware_resources_conflicts(u, PS, c)'
1772 run a trace around cycle/slot through DFA model
1773 to check resource conflicts involving instruction u
1774 at cycle c given the partial schedule PS.
1775 'add_to_partial_schedule_at_time(u, PS, c)'
1776 Add the node/instruction u to the partial schedule
1777 PS at time c.
1778 'calculate_register_pressure(PS)'
1779 Given a schedule of instructions, calculate the register
1780 pressure it implies. One implementation could be the
1781 maximum number of overlapping live ranges.
1782 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1783 registers available in the hardware.
1785 1. II = MII.
1786 2. PS = empty list
1787 3. for each node u in O in pre-computed order
1788 4. if (PSP(u) != Q && PSS(u) == Q) then
1789 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1790 6. start = Early_start; end = Early_start + II - 1; step = 1
1791 11. else if (PSP(u) == Q && PSS(u) != Q) then
1792 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1793 13. start = Late_start; end = Late_start - II + 1; step = -1
1794 14. else if (PSP(u) != Q && PSS(u) != Q) then
1795 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1796 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1797 17. start = Early_start;
1798 18. end = min(Early_start + II - 1 , Late_start);
1799 19. step = 1
1800 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1801 21. start = ASAP(u); end = start + II - 1; step = 1
1802 22. endif
1804 23. success = false
1805 24. for (c = start ; c != end ; c += step)
1806 25. if check_hardware_resources_conflicts(u, PS, c) then
1807 26. add_to_partial_schedule_at_time(u, PS, c)
1808 27. success = true
1809 28. break
1810 29. endif
1811 30. endfor
1812 31. if (success == false) then
1813 32. II = II + 1
1814 33. if (II > maxII) then
1815 34. finish - failed to schedule
1816 35. endif
1817 36. goto 2.
1818 37. endif
1819 38. endfor
1820 39. if (calculate_register_pressure(PS) > maxRP) then
1821 40. goto 32.
1822 41. endif
1823 42. compute epilogue & prologue
1824 43. finish - succeeded to schedule
1826 ??? The algorithm restricts the scheduling window to II cycles.
1827 In rare cases, it may be better to allow windows of II+1 cycles.
1828 The window would then start and end on the same row, but with
1829 different "must precede" and "must follow" requirements. */
1831 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1832 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1833 set to 0 to save compile time. */
1834 #define DFA_HISTORY SMS_DFA_HISTORY
1836 /* A threshold for the number of repeated unsuccessful attempts to insert
1837 an empty row, before we flush the partial schedule and start over. */
1838 #define MAX_SPLIT_NUM 10
1839 /* Given the partial schedule PS, this function calculates and returns the
1840 cycles in which we can schedule the node with the given index I.
1841 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1842 noticed that there are several cases in which we fail to SMS the loop
1843 because the sched window of a node is empty due to tight data-deps. In
1844 such cases we want to unschedule some of the predecessors/successors
1845 until we get non-empty scheduling window. It returns -1 if the
1846 scheduling window is empty and zero otherwise. */
1848 static int
1849 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1850 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1851 int *end_p)
1853 int start, step, end;
1854 int early_start, late_start;
1855 ddg_edge_ptr e;
1856 auto_sbitmap psp (ps->g->num_nodes);
1857 auto_sbitmap pss (ps->g->num_nodes);
1858 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1859 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1860 int psp_not_empty;
1861 int pss_not_empty;
1862 int count_preds;
1863 int count_succs;
1865 /* 1. compute sched window for u (start, end, step). */
1866 bitmap_clear (psp);
1867 bitmap_clear (pss);
1868 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1869 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1871 /* We first compute a forward range (start <= end), then decide whether
1872 to reverse it. */
1873 early_start = INT_MIN;
1874 late_start = INT_MAX;
1875 start = INT_MIN;
1876 end = INT_MAX;
1877 step = 1;
1879 count_preds = 0;
1880 count_succs = 0;
1882 if (dump_file && (psp_not_empty || pss_not_empty))
1884 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1885 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1886 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1887 "start", "early start", "late start", "end", "time");
1888 fprintf (dump_file, "=========== =========== =========== ==========="
1889 " =====\n");
1891 /* Calculate early_start and limit end. Both bounds are inclusive. */
1892 if (psp_not_empty)
1893 for (e = u_node->in; e != 0; e = e->next_in)
1895 int v = e->src->cuid;
1897 if (bitmap_bit_p (sched_nodes, v))
1899 int p_st = SCHED_TIME (v);
1900 int earliest = p_st + e->latency - (e->distance * ii);
1901 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1903 if (dump_file)
1905 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1906 "", earliest, "", latest, p_st);
1907 print_ddg_edge (dump_file, e);
1908 fprintf (dump_file, "\n");
1911 early_start = MAX (early_start, earliest);
1912 end = MIN (end, latest);
1914 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1915 count_preds++;
1919 /* Calculate late_start and limit start. Both bounds are inclusive. */
1920 if (pss_not_empty)
1921 for (e = u_node->out; e != 0; e = e->next_out)
1923 int v = e->dest->cuid;
1925 if (bitmap_bit_p (sched_nodes, v))
1927 int s_st = SCHED_TIME (v);
1928 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1929 int latest = s_st - e->latency + (e->distance * ii);
1931 if (dump_file)
1933 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1934 earliest, "", latest, "", s_st);
1935 print_ddg_edge (dump_file, e);
1936 fprintf (dump_file, "\n");
1939 start = MAX (start, earliest);
1940 late_start = MIN (late_start, latest);
1942 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1943 count_succs++;
1947 if (dump_file && (psp_not_empty || pss_not_empty))
1949 fprintf (dump_file, "----------- ----------- ----------- -----------"
1950 " -----\n");
1951 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1952 start, early_start, late_start, end, "",
1953 "(max, max, min, min)");
1956 /* Get a target scheduling window no bigger than ii. */
1957 if (early_start == INT_MIN && late_start == INT_MAX)
1958 early_start = NODE_ASAP (u_node);
1959 else if (early_start == INT_MIN)
1960 early_start = late_start - (ii - 1);
1961 late_start = MIN (late_start, early_start + (ii - 1));
1963 /* Apply memory dependence limits. */
1964 start = MAX (start, early_start);
1965 end = MIN (end, late_start);
1967 if (dump_file && (psp_not_empty || pss_not_empty))
1968 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1969 "", start, end, "", "");
1971 /* If there are at least as many successors as predecessors, schedule the
1972 node close to its successors. */
1973 if (pss_not_empty && count_succs >= count_preds)
1975 std::swap (start, end);
1976 step = -1;
1979 /* Now that we've finalized the window, make END an exclusive rather
1980 than an inclusive bound. */
1981 end += step;
1983 *start_p = start;
1984 *step_p = step;
1985 *end_p = end;
1987 if ((start >= end && step == 1) || (start <= end && step == -1))
1989 if (dump_file)
1990 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1991 start, end, step);
1992 return -1;
1995 return 0;
1998 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1999 node currently been scheduled. At the end of the calculation
2000 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2001 U_NODE which are (1) already scheduled in the first/last row of
2002 U_NODE's scheduling window, (2) whose dependence inequality with U
2003 becomes an equality when U is scheduled in this same row, and (3)
2004 whose dependence latency is zero.
2006 The first and last rows are calculated using the following parameters:
2007 START/END rows - The cycles that begins/ends the traversal on the window;
2008 searching for an empty cycle to schedule U_NODE.
2009 STEP - The direction in which we traverse the window.
2010 II - The initiation interval. */
2012 static void
2013 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2014 int step, int ii, sbitmap sched_nodes,
2015 sbitmap must_precede, sbitmap must_follow)
2017 ddg_edge_ptr e;
2018 int first_cycle_in_window, last_cycle_in_window;
2020 gcc_assert (must_precede && must_follow);
2022 /* Consider the following scheduling window:
2023 {first_cycle_in_window, first_cycle_in_window+1, ...,
2024 last_cycle_in_window}. If step is 1 then the following will be
2025 the order we traverse the window: {start=first_cycle_in_window,
2026 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2027 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2028 end=first_cycle_in_window-1} if step is -1. */
2029 first_cycle_in_window = (step == 1) ? start : end - step;
2030 last_cycle_in_window = (step == 1) ? end - step : start;
2032 bitmap_clear (must_precede);
2033 bitmap_clear (must_follow);
2035 if (dump_file)
2036 fprintf (dump_file, "\nmust_precede: ");
2038 /* Instead of checking if:
2039 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2040 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2041 first_cycle_in_window)
2042 && e->latency == 0
2043 we use the fact that latency is non-negative:
2044 SCHED_TIME (e->src) - (e->distance * ii) <=
2045 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2046 first_cycle_in_window
2047 and check only if
2048 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2049 for (e = u_node->in; e != 0; e = e->next_in)
2050 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2051 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2052 first_cycle_in_window))
2054 if (dump_file)
2055 fprintf (dump_file, "%d ", e->src->cuid);
2057 bitmap_set_bit (must_precede, e->src->cuid);
2060 if (dump_file)
2061 fprintf (dump_file, "\nmust_follow: ");
2063 /* Instead of checking if:
2064 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2065 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2066 last_cycle_in_window)
2067 && e->latency == 0
2068 we use the fact that latency is non-negative:
2069 SCHED_TIME (e->dest) + (e->distance * ii) >=
2070 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2071 last_cycle_in_window
2072 and check only if
2073 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2074 for (e = u_node->out; e != 0; e = e->next_out)
2075 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2076 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2077 last_cycle_in_window))
2079 if (dump_file)
2080 fprintf (dump_file, "%d ", e->dest->cuid);
2082 bitmap_set_bit (must_follow, e->dest->cuid);
2085 if (dump_file)
2086 fprintf (dump_file, "\n");
2089 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2090 parameters to decide if that's possible:
2091 PS - The partial schedule.
2092 U - The serial number of U_NODE.
2093 NUM_SPLITS - The number of row splits made so far.
2094 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2095 the first row of the scheduling window)
2096 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2097 last row of the scheduling window) */
2099 static bool
2100 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2101 int u, int cycle, sbitmap sched_nodes,
2102 int *num_splits, sbitmap must_precede,
2103 sbitmap must_follow)
2105 ps_insn_ptr psi;
2106 bool success = 0;
2108 verify_partial_schedule (ps, sched_nodes);
2109 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2110 if (psi)
2112 SCHED_TIME (u) = cycle;
2113 bitmap_set_bit (sched_nodes, u);
2114 success = 1;
2115 *num_splits = 0;
2116 if (dump_file)
2117 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2121 return success;
2124 /* This function implements the scheduling algorithm for SMS according to the
2125 above algorithm. */
2126 static partial_schedule_ptr
2127 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2129 int ii = mii;
2130 int i, c, success, num_splits = 0;
2131 int flush_and_start_over = true;
2132 int num_nodes = g->num_nodes;
2133 int start, end, step; /* Place together into one struct? */
2134 auto_sbitmap sched_nodes (num_nodes);
2135 auto_sbitmap must_precede (num_nodes);
2136 auto_sbitmap must_follow (num_nodes);
2137 auto_sbitmap tobe_scheduled (num_nodes);
2139 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2141 bitmap_ones (tobe_scheduled);
2142 bitmap_clear (sched_nodes);
2144 while (flush_and_start_over && (ii < maxii))
2147 if (dump_file)
2148 fprintf (dump_file, "Starting with ii=%d\n", ii);
2149 flush_and_start_over = false;
2150 bitmap_clear (sched_nodes);
2152 for (i = 0; i < num_nodes; i++)
2154 int u = nodes_order[i];
2155 ddg_node_ptr u_node = &ps->g->nodes[u];
2156 rtx_insn *insn = u_node->insn;
2158 if (!NONDEBUG_INSN_P (insn))
2160 bitmap_clear_bit (tobe_scheduled, u);
2161 continue;
2164 if (bitmap_bit_p (sched_nodes, u))
2165 continue;
2167 /* Try to get non-empty scheduling window. */
2168 success = 0;
2169 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2170 &step, &end) == 0)
2172 if (dump_file)
2173 fprintf (dump_file, "\nTrying to schedule node %d "
2174 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2175 (g->nodes[u].insn)), start, end, step);
2177 gcc_assert ((step > 0 && start < end)
2178 || (step < 0 && start > end));
2180 calculate_must_precede_follow (u_node, start, end, step, ii,
2181 sched_nodes, must_precede,
2182 must_follow);
2184 for (c = start; c != end; c += step)
2186 sbitmap tmp_precede, tmp_follow;
2188 set_must_precede_follow (&tmp_follow, must_follow,
2189 &tmp_precede, must_precede,
2190 c, start, end, step);
2191 success =
2192 try_scheduling_node_in_cycle (ps, u, c,
2193 sched_nodes,
2194 &num_splits, tmp_precede,
2195 tmp_follow);
2196 if (success)
2197 break;
2200 verify_partial_schedule (ps, sched_nodes);
2202 if (!success)
2204 int split_row;
2206 if (ii++ == maxii)
2207 break;
2209 if (num_splits >= MAX_SPLIT_NUM)
2211 num_splits = 0;
2212 flush_and_start_over = true;
2213 verify_partial_schedule (ps, sched_nodes);
2214 reset_partial_schedule (ps, ii);
2215 verify_partial_schedule (ps, sched_nodes);
2216 break;
2219 num_splits++;
2220 /* The scheduling window is exclusive of 'end'
2221 whereas compute_split_window() expects an inclusive,
2222 ordered range. */
2223 if (step == 1)
2224 split_row = compute_split_row (sched_nodes, start, end - 1,
2225 ps->ii, u_node);
2226 else
2227 split_row = compute_split_row (sched_nodes, end + 1, start,
2228 ps->ii, u_node);
2230 ps_insert_empty_row (ps, split_row, sched_nodes);
2231 i--; /* Go back and retry node i. */
2233 if (dump_file)
2234 fprintf (dump_file, "num_splits=%d\n", num_splits);
2237 /* ??? If (success), check register pressure estimates. */
2238 } /* Continue with next node. */
2239 } /* While flush_and_start_over. */
2240 if (ii >= maxii)
2242 free_partial_schedule (ps);
2243 ps = NULL;
2245 else
2246 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2248 return ps;
2251 /* This function inserts a new empty row into PS at the position
2252 according to SPLITROW, keeping all already scheduled instructions
2253 intact and updating their SCHED_TIME and cycle accordingly. */
2254 static void
2255 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2256 sbitmap sched_nodes)
2258 ps_insn_ptr crr_insn;
2259 ps_insn_ptr *rows_new;
2260 int ii = ps->ii;
2261 int new_ii = ii + 1;
2262 int row;
2263 int *rows_length_new;
2265 verify_partial_schedule (ps, sched_nodes);
2267 /* We normalize sched_time and rotate ps to have only non-negative sched
2268 times, for simplicity of updating cycles after inserting new row. */
2269 split_row -= ps->min_cycle;
2270 split_row = SMODULO (split_row, ii);
2271 if (dump_file)
2272 fprintf (dump_file, "split_row=%d\n", split_row);
2274 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2275 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2277 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2278 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2279 for (row = 0; row < split_row; row++)
2281 rows_new[row] = ps->rows[row];
2282 rows_length_new[row] = ps->rows_length[row];
2283 ps->rows[row] = NULL;
2284 for (crr_insn = rows_new[row];
2285 crr_insn; crr_insn = crr_insn->next_in_row)
2287 int u = crr_insn->id;
2288 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2290 SCHED_TIME (u) = new_time;
2291 crr_insn->cycle = new_time;
2292 SCHED_ROW (u) = new_time % new_ii;
2293 SCHED_STAGE (u) = new_time / new_ii;
2298 rows_new[split_row] = NULL;
2300 for (row = split_row; row < ii; row++)
2302 rows_new[row + 1] = ps->rows[row];
2303 rows_length_new[row + 1] = ps->rows_length[row];
2304 ps->rows[row] = NULL;
2305 for (crr_insn = rows_new[row + 1];
2306 crr_insn; crr_insn = crr_insn->next_in_row)
2308 int u = crr_insn->id;
2309 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2311 SCHED_TIME (u) = new_time;
2312 crr_insn->cycle = new_time;
2313 SCHED_ROW (u) = new_time % new_ii;
2314 SCHED_STAGE (u) = new_time / new_ii;
2318 /* Updating ps. */
2319 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2320 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2321 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2322 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2323 free (ps->rows);
2324 ps->rows = rows_new;
2325 free (ps->rows_length);
2326 ps->rows_length = rows_length_new;
2327 ps->ii = new_ii;
2328 gcc_assert (ps->min_cycle >= 0);
2330 verify_partial_schedule (ps, sched_nodes);
2332 if (dump_file)
2333 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2334 ps->max_cycle);
2337 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2338 UP which are the boundaries of it's scheduling window; compute using
2339 SCHED_NODES and II a row in the partial schedule that can be split
2340 which will separate a critical predecessor from a critical successor
2341 thereby expanding the window, and return it. */
2342 static int
2343 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2344 ddg_node_ptr u_node)
2346 ddg_edge_ptr e;
2347 int lower = INT_MIN, upper = INT_MAX;
2348 int crit_pred = -1;
2349 int crit_succ = -1;
2350 int crit_cycle;
2352 for (e = u_node->in; e != 0; e = e->next_in)
2354 int v = e->src->cuid;
2356 if (bitmap_bit_p (sched_nodes, v)
2357 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2358 if (SCHED_TIME (v) > lower)
2360 crit_pred = v;
2361 lower = SCHED_TIME (v);
2365 if (crit_pred >= 0)
2367 crit_cycle = SCHED_TIME (crit_pred) + 1;
2368 return SMODULO (crit_cycle, ii);
2371 for (e = u_node->out; e != 0; e = e->next_out)
2373 int v = e->dest->cuid;
2375 if (bitmap_bit_p (sched_nodes, v)
2376 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2377 if (SCHED_TIME (v) < upper)
2379 crit_succ = v;
2380 upper = SCHED_TIME (v);
2384 if (crit_succ >= 0)
2386 crit_cycle = SCHED_TIME (crit_succ);
2387 return SMODULO (crit_cycle, ii);
2390 if (dump_file)
2391 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2393 return SMODULO ((low + up + 1) / 2, ii);
2396 static void
2397 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2399 int row;
2400 ps_insn_ptr crr_insn;
2402 for (row = 0; row < ps->ii; row++)
2404 int length = 0;
2406 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2408 int u = crr_insn->id;
2410 length++;
2411 gcc_assert (bitmap_bit_p (sched_nodes, u));
2412 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2413 popcount (sched_nodes) == number of insns in ps. */
2414 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2415 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2418 gcc_assert (ps->rows_length[row] == length);
2423 /* This page implements the algorithm for ordering the nodes of a DDG
2424 for modulo scheduling, activated through the
2425 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2427 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2428 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2429 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2430 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2431 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2432 #define DEPTH(x) (ASAP ((x)))
2434 typedef struct node_order_params * nopa;
2436 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2437 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2438 static nopa calculate_order_params (ddg_ptr, int, int *);
2439 static int find_max_asap (ddg_ptr, sbitmap);
2440 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2441 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2443 enum sms_direction {BOTTOMUP, TOPDOWN};
2445 struct node_order_params
2447 int asap;
2448 int alap;
2449 int height;
2452 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2453 static void
2454 check_nodes_order (int *node_order, int num_nodes)
2456 int i;
2457 auto_sbitmap tmp (num_nodes);
2459 bitmap_clear (tmp);
2461 if (dump_file)
2462 fprintf (dump_file, "SMS final nodes order: \n");
2464 for (i = 0; i < num_nodes; i++)
2466 int u = node_order[i];
2468 if (dump_file)
2469 fprintf (dump_file, "%d ", u);
2470 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2472 bitmap_set_bit (tmp, u);
2475 if (dump_file)
2476 fprintf (dump_file, "\n");
2479 /* Order the nodes of G for scheduling and pass the result in
2480 NODE_ORDER. Also set aux.count of each node to ASAP.
2481 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2482 static int
2483 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2485 int i;
2486 int rec_mii = 0;
2487 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2489 nopa nops = calculate_order_params (g, mii, pmax_asap);
2491 if (dump_file)
2492 print_sccs (dump_file, sccs, g);
2494 order_nodes_of_sccs (sccs, node_order);
2496 if (sccs->num_sccs > 0)
2497 /* First SCC has the largest recurrence_length. */
2498 rec_mii = sccs->sccs[0]->recurrence_length;
2500 /* Save ASAP before destroying node_order_params. */
2501 for (i = 0; i < g->num_nodes; i++)
2503 ddg_node_ptr v = &g->nodes[i];
2504 v->aux.count = ASAP (v);
2507 free (nops);
2508 free_ddg_all_sccs (sccs);
2509 check_nodes_order (node_order, g->num_nodes);
2511 return rec_mii;
2514 static void
2515 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2517 int i, pos = 0;
2518 ddg_ptr g = all_sccs->ddg;
2519 int num_nodes = g->num_nodes;
2520 auto_sbitmap prev_sccs (num_nodes);
2521 auto_sbitmap on_path (num_nodes);
2522 auto_sbitmap tmp (num_nodes);
2523 auto_sbitmap ones (num_nodes);
2525 bitmap_clear (prev_sccs);
2526 bitmap_ones (ones);
2528 /* Perform the node ordering starting from the SCC with the highest recMII.
2529 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2530 for (i = 0; i < all_sccs->num_sccs; i++)
2532 ddg_scc_ptr scc = all_sccs->sccs[i];
2534 /* Add nodes on paths from previous SCCs to the current SCC. */
2535 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2536 bitmap_ior (tmp, scc->nodes, on_path);
2538 /* Add nodes on paths from the current SCC to previous SCCs. */
2539 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2540 bitmap_ior (tmp, tmp, on_path);
2542 /* Remove nodes of previous SCCs from current extended SCC. */
2543 bitmap_and_compl (tmp, tmp, prev_sccs);
2545 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2546 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2549 /* Handle the remaining nodes that do not belong to any scc. Each call
2550 to order_nodes_in_scc handles a single connected component. */
2551 while (pos < g->num_nodes)
2553 bitmap_and_compl (tmp, ones, prev_sccs);
2554 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2558 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2559 static struct node_order_params *
2560 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2562 int u;
2563 int max_asap;
2564 int num_nodes = g->num_nodes;
2565 ddg_edge_ptr e;
2566 /* Allocate a place to hold ordering params for each node in the DDG. */
2567 nopa node_order_params_arr;
2569 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2570 node_order_params_arr = (nopa) xcalloc (num_nodes,
2571 sizeof (struct node_order_params));
2573 /* Set the aux pointer of each node to point to its order_params structure. */
2574 for (u = 0; u < num_nodes; u++)
2575 g->nodes[u].aux.info = &node_order_params_arr[u];
2577 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2578 calculate ASAP, ALAP, mobility, distance, and height for each node
2579 in the dependence (direct acyclic) graph. */
2581 /* We assume that the nodes in the array are in topological order. */
2583 max_asap = 0;
2584 for (u = 0; u < num_nodes; u++)
2586 ddg_node_ptr u_node = &g->nodes[u];
2588 ASAP (u_node) = 0;
2589 for (e = u_node->in; e; e = e->next_in)
2590 if (e->distance == 0)
2591 ASAP (u_node) = MAX (ASAP (u_node),
2592 ASAP (e->src) + e->latency);
2593 max_asap = MAX (max_asap, ASAP (u_node));
2596 for (u = num_nodes - 1; u > -1; u--)
2598 ddg_node_ptr u_node = &g->nodes[u];
2600 ALAP (u_node) = max_asap;
2601 HEIGHT (u_node) = 0;
2602 for (e = u_node->out; e; e = e->next_out)
2603 if (e->distance == 0)
2605 ALAP (u_node) = MIN (ALAP (u_node),
2606 ALAP (e->dest) - e->latency);
2607 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2608 HEIGHT (e->dest) + e->latency);
2611 if (dump_file)
2613 fprintf (dump_file, "\nOrder params\n");
2614 for (u = 0; u < num_nodes; u++)
2616 ddg_node_ptr u_node = &g->nodes[u];
2618 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2619 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2623 *pmax_asap = max_asap;
2624 return node_order_params_arr;
2627 static int
2628 find_max_asap (ddg_ptr g, sbitmap nodes)
2630 unsigned int u = 0;
2631 int max_asap = -1;
2632 int result = -1;
2633 sbitmap_iterator sbi;
2635 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2637 ddg_node_ptr u_node = &g->nodes[u];
2639 if (max_asap < ASAP (u_node))
2641 max_asap = ASAP (u_node);
2642 result = u;
2645 return result;
2648 static int
2649 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2651 unsigned int u = 0;
2652 int max_hv = -1;
2653 int min_mob = INT_MAX;
2654 int result = -1;
2655 sbitmap_iterator sbi;
2657 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2659 ddg_node_ptr u_node = &g->nodes[u];
2661 if (max_hv < HEIGHT (u_node))
2663 max_hv = HEIGHT (u_node);
2664 min_mob = MOB (u_node);
2665 result = u;
2667 else if ((max_hv == HEIGHT (u_node))
2668 && (min_mob > MOB (u_node)))
2670 min_mob = MOB (u_node);
2671 result = u;
2674 return result;
2677 static int
2678 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2680 unsigned int u = 0;
2681 int max_dv = -1;
2682 int min_mob = INT_MAX;
2683 int result = -1;
2684 sbitmap_iterator sbi;
2686 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2688 ddg_node_ptr u_node = &g->nodes[u];
2690 if (max_dv < DEPTH (u_node))
2692 max_dv = DEPTH (u_node);
2693 min_mob = MOB (u_node);
2694 result = u;
2696 else if ((max_dv == DEPTH (u_node))
2697 && (min_mob > MOB (u_node)))
2699 min_mob = MOB (u_node);
2700 result = u;
2703 return result;
2706 /* Places the nodes of SCC into the NODE_ORDER array starting
2707 at position POS, according to the SMS ordering algorithm.
2708 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2709 the NODE_ORDER array, starting from position zero. */
2710 static int
2711 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2712 int * node_order, int pos)
2714 enum sms_direction dir;
2715 int num_nodes = g->num_nodes;
2716 auto_sbitmap workset (num_nodes);
2717 auto_sbitmap tmp (num_nodes);
2718 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2719 auto_sbitmap predecessors (num_nodes);
2720 auto_sbitmap successors (num_nodes);
2722 bitmap_clear (predecessors);
2723 find_predecessors (predecessors, g, nodes_ordered);
2725 bitmap_clear (successors);
2726 find_successors (successors, g, nodes_ordered);
2728 bitmap_clear (tmp);
2729 if (bitmap_and (tmp, predecessors, scc))
2731 bitmap_copy (workset, tmp);
2732 dir = BOTTOMUP;
2734 else if (bitmap_and (tmp, successors, scc))
2736 bitmap_copy (workset, tmp);
2737 dir = TOPDOWN;
2739 else
2741 int u;
2743 bitmap_clear (workset);
2744 if ((u = find_max_asap (g, scc)) >= 0)
2745 bitmap_set_bit (workset, u);
2746 dir = BOTTOMUP;
2749 bitmap_clear (zero_bitmap);
2750 while (!bitmap_equal_p (workset, zero_bitmap))
2752 int v;
2753 ddg_node_ptr v_node;
2754 sbitmap v_node_preds;
2755 sbitmap v_node_succs;
2757 if (dir == TOPDOWN)
2759 while (!bitmap_equal_p (workset, zero_bitmap))
2761 v = find_max_hv_min_mob (g, workset);
2762 v_node = &g->nodes[v];
2763 node_order[pos++] = v;
2764 v_node_succs = NODE_SUCCESSORS (v_node);
2765 bitmap_and (tmp, v_node_succs, scc);
2767 /* Don't consider the already ordered successors again. */
2768 bitmap_and_compl (tmp, tmp, nodes_ordered);
2769 bitmap_ior (workset, workset, tmp);
2770 bitmap_clear_bit (workset, v);
2771 bitmap_set_bit (nodes_ordered, v);
2773 dir = BOTTOMUP;
2774 bitmap_clear (predecessors);
2775 find_predecessors (predecessors, g, nodes_ordered);
2776 bitmap_and (workset, predecessors, scc);
2778 else
2780 while (!bitmap_equal_p (workset, zero_bitmap))
2782 v = find_max_dv_min_mob (g, workset);
2783 v_node = &g->nodes[v];
2784 node_order[pos++] = v;
2785 v_node_preds = NODE_PREDECESSORS (v_node);
2786 bitmap_and (tmp, v_node_preds, scc);
2788 /* Don't consider the already ordered predecessors again. */
2789 bitmap_and_compl (tmp, tmp, nodes_ordered);
2790 bitmap_ior (workset, workset, tmp);
2791 bitmap_clear_bit (workset, v);
2792 bitmap_set_bit (nodes_ordered, v);
2794 dir = TOPDOWN;
2795 bitmap_clear (successors);
2796 find_successors (successors, g, nodes_ordered);
2797 bitmap_and (workset, successors, scc);
2800 sbitmap_free (zero_bitmap);
2801 return pos;
2805 /* This page contains functions for manipulating partial-schedules during
2806 modulo scheduling. */
2808 /* Create a partial schedule and allocate a memory to hold II rows. */
2810 static partial_schedule_ptr
2811 create_partial_schedule (int ii, ddg_ptr g, int history)
2813 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2814 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2815 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2816 ps->reg_moves.create (0);
2817 ps->ii = ii;
2818 ps->history = history;
2819 ps->min_cycle = INT_MAX;
2820 ps->max_cycle = INT_MIN;
2821 ps->g = g;
2823 return ps;
2826 /* Free the PS_INSNs in rows array of the given partial schedule.
2827 ??? Consider caching the PS_INSN's. */
2828 static void
2829 free_ps_insns (partial_schedule_ptr ps)
2831 int i;
2833 for (i = 0; i < ps->ii; i++)
2835 while (ps->rows[i])
2837 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2839 free (ps->rows[i]);
2840 ps->rows[i] = ps_insn;
2842 ps->rows[i] = NULL;
2846 /* Free all the memory allocated to the partial schedule. */
2848 static void
2849 free_partial_schedule (partial_schedule_ptr ps)
2851 ps_reg_move_info *move;
2852 unsigned int i;
2854 if (!ps)
2855 return;
2857 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2858 sbitmap_free (move->uses);
2859 ps->reg_moves.release ();
2861 free_ps_insns (ps);
2862 free (ps->rows);
2863 free (ps->rows_length);
2864 free (ps);
2867 /* Clear the rows array with its PS_INSNs, and create a new one with
2868 NEW_II rows. */
2870 static void
2871 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2873 if (!ps)
2874 return;
2875 free_ps_insns (ps);
2876 if (new_ii == ps->ii)
2877 return;
2878 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2879 * sizeof (ps_insn_ptr));
2880 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2881 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2882 memset (ps->rows_length, 0, new_ii * sizeof (int));
2883 ps->ii = new_ii;
2884 ps->min_cycle = INT_MAX;
2885 ps->max_cycle = INT_MIN;
2888 /* Prints the partial schedule as an ii rows array, for each rows
2889 print the ids of the insns in it. */
2890 void
2891 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2893 int i;
2895 for (i = 0; i < ps->ii; i++)
2897 ps_insn_ptr ps_i = ps->rows[i];
2899 fprintf (dump, "\n[ROW %d ]: ", i);
2900 while (ps_i)
2902 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2904 if (JUMP_P (insn))
2905 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2906 else
2907 fprintf (dump, "%d, ", INSN_UID (insn));
2909 ps_i = ps_i->next_in_row;
2914 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2915 static ps_insn_ptr
2916 create_ps_insn (int id, int cycle)
2918 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2920 ps_i->id = id;
2921 ps_i->next_in_row = NULL;
2922 ps_i->prev_in_row = NULL;
2923 ps_i->cycle = cycle;
2925 return ps_i;
2929 /* Removes the given PS_INSN from the partial schedule. */
2930 static void
2931 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2933 int row;
2935 gcc_assert (ps && ps_i);
2937 row = SMODULO (ps_i->cycle, ps->ii);
2938 if (! ps_i->prev_in_row)
2940 gcc_assert (ps_i == ps->rows[row]);
2941 ps->rows[row] = ps_i->next_in_row;
2942 if (ps->rows[row])
2943 ps->rows[row]->prev_in_row = NULL;
2945 else
2947 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2948 if (ps_i->next_in_row)
2949 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2952 ps->rows_length[row] -= 1;
2953 free (ps_i);
2954 return;
2957 /* Unlike what literature describes for modulo scheduling (which focuses
2958 on VLIW machines) the order of the instructions inside a cycle is
2959 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2960 where the current instruction should go relative to the already
2961 scheduled instructions in the given cycle. Go over these
2962 instructions and find the first possible column to put it in. */
2963 static bool
2964 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2965 sbitmap must_precede, sbitmap must_follow)
2967 ps_insn_ptr next_ps_i;
2968 ps_insn_ptr first_must_follow = NULL;
2969 ps_insn_ptr last_must_precede = NULL;
2970 ps_insn_ptr last_in_row = NULL;
2971 int row;
2973 if (! ps_i)
2974 return false;
2976 row = SMODULO (ps_i->cycle, ps->ii);
2978 /* Find the first must follow and the last must precede
2979 and insert the node immediately after the must precede
2980 but make sure that it there is no must follow after it. */
2981 for (next_ps_i = ps->rows[row];
2982 next_ps_i;
2983 next_ps_i = next_ps_i->next_in_row)
2985 if (must_follow
2986 && bitmap_bit_p (must_follow, next_ps_i->id)
2987 && ! first_must_follow)
2988 first_must_follow = next_ps_i;
2989 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2991 /* If we have already met a node that must follow, then
2992 there is no possible column. */
2993 if (first_must_follow)
2994 return false;
2995 else
2996 last_must_precede = next_ps_i;
2998 /* The closing branch must be the last in the row. */
2999 if (must_precede
3000 && bitmap_bit_p (must_precede, next_ps_i->id)
3001 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3002 return false;
3004 last_in_row = next_ps_i;
3007 /* The closing branch is scheduled as well. Make sure there is no
3008 dependent instruction after it as the branch should be the last
3009 instruction in the row. */
3010 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3012 if (first_must_follow)
3013 return false;
3014 if (last_in_row)
3016 /* Make the branch the last in the row. New instructions
3017 will be inserted at the beginning of the row or after the
3018 last must_precede instruction thus the branch is guaranteed
3019 to remain the last instruction in the row. */
3020 last_in_row->next_in_row = ps_i;
3021 ps_i->prev_in_row = last_in_row;
3022 ps_i->next_in_row = NULL;
3024 else
3025 ps->rows[row] = ps_i;
3026 return true;
3029 /* Now insert the node after INSERT_AFTER_PSI. */
3031 if (! last_must_precede)
3033 ps_i->next_in_row = ps->rows[row];
3034 ps_i->prev_in_row = NULL;
3035 if (ps_i->next_in_row)
3036 ps_i->next_in_row->prev_in_row = ps_i;
3037 ps->rows[row] = ps_i;
3039 else
3041 ps_i->next_in_row = last_must_precede->next_in_row;
3042 last_must_precede->next_in_row = ps_i;
3043 ps_i->prev_in_row = last_must_precede;
3044 if (ps_i->next_in_row)
3045 ps_i->next_in_row->prev_in_row = ps_i;
3048 return true;
3051 /* Advances the PS_INSN one column in its current row; returns false
3052 in failure and true in success. Bit N is set in MUST_FOLLOW if
3053 the node with cuid N must be come after the node pointed to by
3054 PS_I when scheduled in the same cycle. */
3055 static int
3056 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3057 sbitmap must_follow)
3059 ps_insn_ptr prev, next;
3060 int row;
3062 if (!ps || !ps_i)
3063 return false;
3065 row = SMODULO (ps_i->cycle, ps->ii);
3067 if (! ps_i->next_in_row)
3068 return false;
3070 /* Check if next_in_row is dependent on ps_i, both having same sched
3071 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3072 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3073 return false;
3075 /* Advance PS_I over its next_in_row in the doubly linked list. */
3076 prev = ps_i->prev_in_row;
3077 next = ps_i->next_in_row;
3079 if (ps_i == ps->rows[row])
3080 ps->rows[row] = next;
3082 ps_i->next_in_row = next->next_in_row;
3084 if (next->next_in_row)
3085 next->next_in_row->prev_in_row = ps_i;
3087 next->next_in_row = ps_i;
3088 ps_i->prev_in_row = next;
3090 next->prev_in_row = prev;
3091 if (prev)
3092 prev->next_in_row = next;
3094 return true;
3097 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3098 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3099 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3100 before/after (respectively) the node pointed to by PS_I when scheduled
3101 in the same cycle. */
3102 static ps_insn_ptr
3103 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3104 sbitmap must_precede, sbitmap must_follow)
3106 ps_insn_ptr ps_i;
3107 int row = SMODULO (cycle, ps->ii);
3109 if (ps->rows_length[row] >= issue_rate)
3110 return NULL;
3112 ps_i = create_ps_insn (id, cycle);
3114 /* Finds and inserts PS_I according to MUST_FOLLOW and
3115 MUST_PRECEDE. */
3116 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3118 free (ps_i);
3119 return NULL;
3122 ps->rows_length[row] += 1;
3123 return ps_i;
3126 /* Advance time one cycle. Assumes DFA is being used. */
3127 static void
3128 advance_one_cycle (void)
3130 if (targetm.sched.dfa_pre_cycle_insn)
3131 state_transition (curr_state,
3132 targetm.sched.dfa_pre_cycle_insn ());
3134 state_transition (curr_state, NULL);
3136 if (targetm.sched.dfa_post_cycle_insn)
3137 state_transition (curr_state,
3138 targetm.sched.dfa_post_cycle_insn ());
3143 /* Checks if PS has resource conflicts according to DFA, starting from
3144 FROM cycle to TO cycle; returns true if there are conflicts and false
3145 if there are no conflicts. Assumes DFA is being used. */
3146 static int
3147 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3149 int cycle;
3151 state_reset (curr_state);
3153 for (cycle = from; cycle <= to; cycle++)
3155 ps_insn_ptr crr_insn;
3156 /* Holds the remaining issue slots in the current row. */
3157 int can_issue_more = issue_rate;
3159 /* Walk through the DFA for the current row. */
3160 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3161 crr_insn;
3162 crr_insn = crr_insn->next_in_row)
3164 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3166 if (!NONDEBUG_INSN_P (insn))
3167 continue;
3169 /* Check if there is room for the current insn. */
3170 if (!can_issue_more || state_dead_lock_p (curr_state))
3171 return true;
3173 /* Update the DFA state and return with failure if the DFA found
3174 resource conflicts. */
3175 if (state_transition (curr_state, insn) >= 0)
3176 return true;
3178 if (targetm.sched.variable_issue)
3179 can_issue_more =
3180 targetm.sched.variable_issue (sched_dump, sched_verbose,
3181 insn, can_issue_more);
3182 /* A naked CLOBBER or USE generates no instruction, so don't
3183 let them consume issue slots. */
3184 else if (GET_CODE (PATTERN (insn)) != USE
3185 && GET_CODE (PATTERN (insn)) != CLOBBER)
3186 can_issue_more--;
3189 /* Advance the DFA to the next cycle. */
3190 advance_one_cycle ();
3192 return false;
3195 /* Checks if the given node causes resource conflicts when added to PS at
3196 cycle C. If not the node is added to PS and returned; otherwise zero
3197 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3198 cuid N must be come before/after (respectively) the node pointed to by
3199 PS_I when scheduled in the same cycle. */
3200 ps_insn_ptr
3201 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3202 int c, sbitmap must_precede,
3203 sbitmap must_follow)
3205 int has_conflicts = 0;
3206 ps_insn_ptr ps_i;
3208 /* First add the node to the PS, if this succeeds check for
3209 conflicts, trying different issue slots in the same row. */
3210 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3211 return NULL; /* Failed to insert the node at the given cycle. */
3213 has_conflicts = ps_has_conflicts (ps, c, c)
3214 || (ps->history > 0
3215 && ps_has_conflicts (ps,
3216 c - ps->history,
3217 c + ps->history));
3219 /* Try different issue slots to find one that the given node can be
3220 scheduled in without conflicts. */
3221 while (has_conflicts)
3223 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3224 break;
3225 has_conflicts = ps_has_conflicts (ps, c, c)
3226 || (ps->history > 0
3227 && ps_has_conflicts (ps,
3228 c - ps->history,
3229 c + ps->history));
3232 if (has_conflicts)
3234 remove_node_from_ps (ps, ps_i);
3235 return NULL;
3238 ps->min_cycle = MIN (ps->min_cycle, c);
3239 ps->max_cycle = MAX (ps->max_cycle, c);
3240 return ps_i;
3243 /* Calculate the stage count of the partial schedule PS. The calculation
3244 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3246 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3248 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3249 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3250 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3252 /* The calculation of stage count is done adding the number of stages
3253 before cycle zero and after cycle zero. */
3254 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3256 return stage_count;
3259 /* Rotate the rows of PS such that insns scheduled at time
3260 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3261 void
3262 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3264 int i, row, backward_rotates;
3265 int last_row = ps->ii - 1;
3267 if (start_cycle == 0)
3268 return;
3270 backward_rotates = SMODULO (start_cycle, ps->ii);
3272 /* Revisit later and optimize this into a single loop. */
3273 for (i = 0; i < backward_rotates; i++)
3275 ps_insn_ptr first_row = ps->rows[0];
3276 int first_row_length = ps->rows_length[0];
3278 for (row = 0; row < last_row; row++)
3280 ps->rows[row] = ps->rows[row + 1];
3281 ps->rows_length[row] = ps->rows_length[row + 1];
3284 ps->rows[last_row] = first_row;
3285 ps->rows_length[last_row] = first_row_length;
3288 ps->max_cycle -= start_cycle;
3289 ps->min_cycle -= start_cycle;
3292 #endif /* INSN_SCHEDULING */
3294 /* Run instruction scheduler. */
3295 /* Perform SMS module scheduling. */
3297 namespace {
3299 const pass_data pass_data_sms =
3301 RTL_PASS, /* type */
3302 "sms", /* name */
3303 OPTGROUP_NONE, /* optinfo_flags */
3304 TV_SMS, /* tv_id */
3305 0, /* properties_required */
3306 0, /* properties_provided */
3307 0, /* properties_destroyed */
3308 0, /* todo_flags_start */
3309 TODO_df_finish, /* todo_flags_finish */
3312 class pass_sms : public rtl_opt_pass
3314 public:
3315 pass_sms (gcc::context *ctxt)
3316 : rtl_opt_pass (pass_data_sms, ctxt)
3319 /* opt_pass methods: */
3320 virtual bool gate (function *)
3322 return (optimize > 0 && flag_modulo_sched);
3325 virtual unsigned int execute (function *);
3327 }; // class pass_sms
3329 unsigned int
3330 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3332 #ifdef INSN_SCHEDULING
3333 basic_block bb;
3335 /* Collect loop information to be used in SMS. */
3336 cfg_layout_initialize (0);
3337 sms_schedule ();
3339 /* Update the life information, because we add pseudos. */
3340 max_regno = max_reg_num ();
3342 /* Finalize layout changes. */
3343 FOR_EACH_BB_FN (bb, fun)
3344 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3345 bb->aux = bb->next_bb;
3346 free_dominance_info (CDI_DOMINATORS);
3347 cfg_layout_finalize ();
3348 #endif /* INSN_SCHEDULING */
3349 return 0;
3352 } // anon namespace
3354 rtl_opt_pass *
3355 make_pass_sms (gcc::context *ctxt)
3357 return new pass_sms (ctxt);