2018-11-11 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / fwprop.c
blob78c08e0a9dfaf895a31fea41cbad1b046bb86a3f
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
35 #include "sparseset.h"
36 #include "cfgrtl.h"
37 #include "cfgcleanup.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "rtl-iter.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes;
119 static vec<df_ref> use_def_ref;
120 static vec<df_ref> reg_defs;
121 static vec<df_ref> reg_defs_stack;
123 /* The maximum number of propagations that are still allowed. If we do
124 more propagations than originally we had uses, we must have ended up
125 in a propagation loop, as in PR79405. Until the algorithm fwprop
126 uses can obviously not get into such loops we need a workaround like
127 this. */
128 static int propagations_left;
130 /* The MD bitmaps are trimmed to include only live registers to cut
131 memory usage on testcases like insn-recog.c. Track live registers
132 in the basic block and do not perform forward propagation if the
133 destination is a dead pseudo occurring in a note. */
134 static bitmap local_md;
135 static bitmap local_lr;
137 /* Return the only def in USE's use-def chain, or NULL if there is
138 more than one def in the chain. */
140 static inline df_ref
141 get_def_for_use (df_ref use)
143 return use_def_ref[DF_REF_ID (use)];
147 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
148 TOP_FLAG says which artificials uses should be used, when DEF_REC
149 is an artificial def vector. LOCAL_MD is modified as after a
150 df_md_simulate_* function; we do more or less the same processing
151 done there, so we do not use those functions. */
153 #define DF_MD_GEN_FLAGS \
154 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
156 static void
157 process_defs (df_ref def, int top_flag)
159 for (; def; def = DF_REF_NEXT_LOC (def))
161 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
162 unsigned int dregno;
164 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
165 continue;
167 dregno = DF_REF_REGNO (def);
168 if (curr_def)
169 reg_defs_stack.safe_push (curr_def);
170 else
172 /* Do not store anything if "transitioning" from NULL to NULL. But
173 otherwise, push a special entry on the stack to tell the
174 leave_block callback that the entry in reg_defs was NULL. */
175 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
177 else
178 reg_defs_stack.safe_push (def);
181 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
183 bitmap_set_bit (local_md, dregno);
184 reg_defs[dregno] = NULL;
186 else
188 bitmap_clear_bit (local_md, dregno);
189 reg_defs[dregno] = def;
195 /* Fill the use_def_ref vector with values for the uses in USE_REC,
196 taking reaching definitions info from LOCAL_MD and REG_DEFS.
197 TOP_FLAG says which artificials uses should be used, when USE_REC
198 is an artificial use vector. */
200 static void
201 process_uses (df_ref use, int top_flag)
203 for (; use; use = DF_REF_NEXT_LOC (use))
204 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
206 unsigned int uregno = DF_REF_REGNO (use);
207 if (reg_defs[uregno]
208 && !bitmap_bit_p (local_md, uregno)
209 && bitmap_bit_p (local_lr, uregno))
210 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
214 class single_def_use_dom_walker : public dom_walker
216 public:
217 single_def_use_dom_walker (cdi_direction direction)
218 : dom_walker (direction) {}
219 virtual edge before_dom_children (basic_block);
220 virtual void after_dom_children (basic_block);
223 edge
224 single_def_use_dom_walker::before_dom_children (basic_block bb)
226 int bb_index = bb->index;
227 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
228 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
229 rtx_insn *insn;
231 bitmap_copy (local_md, &md_bb_info->in);
232 bitmap_copy (local_lr, &lr_bb_info->in);
234 /* Push a marker for the leave_block callback. */
235 reg_defs_stack.safe_push (NULL);
237 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
238 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
240 /* We don't call df_simulate_initialize_forwards, as it may overestimate
241 the live registers if there are unused artificial defs. We prefer
242 liveness to be underestimated. */
244 FOR_BB_INSNS (bb, insn)
245 if (INSN_P (insn))
247 unsigned int uid = INSN_UID (insn);
248 process_uses (DF_INSN_UID_USES (uid), 0);
249 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
250 process_defs (DF_INSN_UID_DEFS (uid), 0);
251 df_simulate_one_insn_forwards (bb, insn, local_lr);
254 process_uses (df_get_artificial_uses (bb_index), 0);
255 process_defs (df_get_artificial_defs (bb_index), 0);
257 return NULL;
260 /* Pop the definitions created in this basic block when leaving its
261 dominated parts. */
263 void
264 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
266 df_ref saved_def;
267 while ((saved_def = reg_defs_stack.pop ()) != NULL)
269 unsigned int dregno = DF_REF_REGNO (saved_def);
271 /* See also process_defs. */
272 if (saved_def == reg_defs[dregno])
273 reg_defs[dregno] = NULL;
274 else
275 reg_defs[dregno] = saved_def;
280 /* Build a vector holding the reaching definitions of uses reached by a
281 single dominating definition. */
283 static void
284 build_single_def_use_links (void)
286 /* We use the multiple definitions problem to compute our restricted
287 use-def chains. */
288 df_set_flags (DF_EQ_NOTES);
289 df_md_add_problem ();
290 df_note_add_problem ();
291 df_analyze ();
292 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
294 use_def_ref.create (DF_USES_TABLE_SIZE ());
295 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
297 reg_defs.create (max_reg_num ());
298 reg_defs.safe_grow_cleared (max_reg_num ());
300 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
301 local_md = BITMAP_ALLOC (NULL);
302 local_lr = BITMAP_ALLOC (NULL);
304 /* Walk the dominator tree looking for single reaching definitions
305 dominating the uses. This is similar to how SSA form is built. */
306 single_def_use_dom_walker (CDI_DOMINATORS)
307 .walk (cfun->cfg->x_entry_block_ptr);
309 BITMAP_FREE (local_lr);
310 BITMAP_FREE (local_md);
311 reg_defs.release ();
312 reg_defs_stack.release ();
316 /* Do not try to replace constant addresses or addresses of local and
317 argument slots. These MEM expressions are made only once and inserted
318 in many instructions, as well as being used to control symbol table
319 output. It is not safe to clobber them.
321 There are some uncommon cases where the address is already in a register
322 for some reason, but we cannot take advantage of that because we have
323 no easy way to unshare the MEM. In addition, looking up all stack
324 addresses is costly. */
326 static bool
327 can_simplify_addr (rtx addr)
329 rtx reg;
331 if (CONSTANT_ADDRESS_P (addr))
332 return false;
334 if (GET_CODE (addr) == PLUS)
335 reg = XEXP (addr, 0);
336 else
337 reg = addr;
339 return (!REG_P (reg)
340 || (REGNO (reg) != FRAME_POINTER_REGNUM
341 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
342 && REGNO (reg) != ARG_POINTER_REGNUM));
345 /* Returns a canonical version of X for the address, from the point of view,
346 that all multiplications are represented as MULT instead of the multiply
347 by a power of 2 being represented as ASHIFT.
349 Every ASHIFT we find has been made by simplify_gen_binary and was not
350 there before, so it is not shared. So we can do this in place. */
352 static void
353 canonicalize_address (rtx x)
355 for (;;)
356 switch (GET_CODE (x))
358 case ASHIFT:
359 if (CONST_INT_P (XEXP (x, 1))
360 && INTVAL (XEXP (x, 1)) < GET_MODE_UNIT_BITSIZE (GET_MODE (x))
361 && INTVAL (XEXP (x, 1)) >= 0)
363 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
364 PUT_CODE (x, MULT);
365 XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
366 GET_MODE (x));
369 x = XEXP (x, 0);
370 break;
372 case PLUS:
373 if (GET_CODE (XEXP (x, 0)) == PLUS
374 || GET_CODE (XEXP (x, 0)) == ASHIFT
375 || GET_CODE (XEXP (x, 0)) == CONST)
376 canonicalize_address (XEXP (x, 0));
378 x = XEXP (x, 1);
379 break;
381 case CONST:
382 x = XEXP (x, 0);
383 break;
385 default:
386 return;
390 /* OLD is a memory address. Return whether it is good to use NEW instead,
391 for a memory access in the given MODE. */
393 static bool
394 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
395 addr_space_t as, bool speed)
397 int gain;
399 if (rtx_equal_p (old_rtx, new_rtx)
400 || !memory_address_addr_space_p (mode, new_rtx, as))
401 return false;
403 /* Copy propagation is always ok. */
404 if (REG_P (old_rtx) && REG_P (new_rtx))
405 return true;
407 /* Prefer the new address if it is less expensive. */
408 gain = (address_cost (old_rtx, mode, as, speed)
409 - address_cost (new_rtx, mode, as, speed));
411 /* If the addresses have equivalent cost, prefer the new address
412 if it has the highest `set_src_cost'. That has the potential of
413 eliminating the most insns without additional costs, and it
414 is the same that cse.c used to do. */
415 if (gain == 0)
416 gain = (set_src_cost (new_rtx, VOIDmode, speed)
417 - set_src_cost (old_rtx, VOIDmode, speed));
419 return (gain > 0);
423 /* Flags for the last parameter of propagate_rtx_1. */
425 enum {
426 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
427 if it is false, propagate_rtx_1 returns false if, for at least
428 one occurrence OLD, it failed to collapse the result to a constant.
429 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
430 collapse to zero if replacing (reg:M B) with (reg:M A).
432 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
433 propagate_rtx_1 just tries to make cheaper and valid memory
434 addresses. */
435 PR_CAN_APPEAR = 1,
437 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
438 outside memory addresses. This is needed because propagate_rtx_1 does
439 not do any analysis on memory; thus it is very conservative and in general
440 it will fail if non-read-only MEMs are found in the source expression.
442 PR_HANDLE_MEM is set when the source of the propagation was not
443 another MEM. Then, it is safe not to treat non-read-only MEMs as
444 ``opaque'' objects. */
445 PR_HANDLE_MEM = 2,
447 /* Set when costs should be optimized for speed. */
448 PR_OPTIMIZE_FOR_SPEED = 4
452 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
453 resulting expression. Replace *PX with a new RTL expression if an
454 occurrence of OLD was found.
456 This is only a wrapper around simplify-rtx.c: do not add any pattern
457 matching code here. (The sole exception is the handling of LO_SUM, but
458 that is because there is no simplify_gen_* function for LO_SUM). */
460 static bool
461 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
463 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
464 enum rtx_code code = GET_CODE (x);
465 machine_mode mode = GET_MODE (x);
466 machine_mode op_mode;
467 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
468 bool valid_ops = true;
470 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
472 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
473 they have side effects or not). */
474 *px = (side_effects_p (x)
475 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
476 : gen_rtx_SCRATCH (GET_MODE (x)));
477 return false;
480 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
481 address, and we are *not* inside one. */
482 if (x == old_rtx)
484 *px = new_rtx;
485 return can_appear;
488 /* If this is an expression, try recursive substitution. */
489 switch (GET_RTX_CLASS (code))
491 case RTX_UNARY:
492 op0 = XEXP (x, 0);
493 op_mode = GET_MODE (op0);
494 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
495 if (op0 == XEXP (x, 0))
496 return true;
497 tem = simplify_gen_unary (code, mode, op0, op_mode);
498 break;
500 case RTX_BIN_ARITH:
501 case RTX_COMM_ARITH:
502 op0 = XEXP (x, 0);
503 op1 = XEXP (x, 1);
504 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
505 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
506 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
507 return true;
508 tem = simplify_gen_binary (code, mode, op0, op1);
509 break;
511 case RTX_COMPARE:
512 case RTX_COMM_COMPARE:
513 op0 = XEXP (x, 0);
514 op1 = XEXP (x, 1);
515 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
516 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
517 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
518 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
519 return true;
520 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
521 break;
523 case RTX_TERNARY:
524 case RTX_BITFIELD_OPS:
525 op0 = XEXP (x, 0);
526 op1 = XEXP (x, 1);
527 op2 = XEXP (x, 2);
528 op_mode = GET_MODE (op0);
529 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
530 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
531 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
532 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
533 return true;
534 if (op_mode == VOIDmode)
535 op_mode = GET_MODE (op0);
536 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
537 break;
539 case RTX_EXTRA:
540 /* The only case we try to handle is a SUBREG. */
541 if (code == SUBREG)
543 op0 = XEXP (x, 0);
544 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
545 if (op0 == XEXP (x, 0))
546 return true;
547 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
548 SUBREG_BYTE (x));
550 break;
552 case RTX_OBJ:
553 if (code == MEM && x != new_rtx)
555 rtx new_op0;
556 op0 = XEXP (x, 0);
558 /* There are some addresses that we cannot work on. */
559 if (!can_simplify_addr (op0))
560 return true;
562 op0 = new_op0 = targetm.delegitimize_address (op0);
563 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
564 flags | PR_CAN_APPEAR);
566 /* Dismiss transformation that we do not want to carry on. */
567 if (!valid_ops
568 || new_op0 == op0
569 || !(GET_MODE (new_op0) == GET_MODE (op0)
570 || GET_MODE (new_op0) == VOIDmode))
571 return true;
573 canonicalize_address (new_op0);
575 /* Copy propagations are always ok. Otherwise check the costs. */
576 if (!(REG_P (old_rtx) && REG_P (new_rtx))
577 && !should_replace_address (op0, new_op0, GET_MODE (x),
578 MEM_ADDR_SPACE (x),
579 flags & PR_OPTIMIZE_FOR_SPEED))
580 return true;
582 tem = replace_equiv_address_nv (x, new_op0);
585 else if (code == LO_SUM)
587 op0 = XEXP (x, 0);
588 op1 = XEXP (x, 1);
590 /* The only simplification we do attempts to remove references to op0
591 or make it constant -- in both cases, op0's invalidity will not
592 make the result invalid. */
593 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
594 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
595 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
596 return true;
598 /* (lo_sum (high x) x) -> x */
599 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
600 tem = op1;
601 else
602 tem = gen_rtx_LO_SUM (mode, op0, op1);
604 /* OP1 is likely not a legitimate address, otherwise there would have
605 been no LO_SUM. We want it to disappear if it is invalid, return
606 false in that case. */
607 return memory_address_p (mode, tem);
610 else if (code == REG)
612 if (rtx_equal_p (x, old_rtx))
614 *px = new_rtx;
615 return can_appear;
618 break;
620 default:
621 break;
624 /* No change, no trouble. */
625 if (tem == NULL_RTX)
626 return true;
628 *px = tem;
630 /* Allow replacements that simplify operations on a vector or complex
631 value to a component. The most prominent case is
632 (subreg ([vec_]concat ...)). */
633 if (REG_P (tem) && !HARD_REGISTER_P (tem)
634 && (VECTOR_MODE_P (GET_MODE (new_rtx))
635 || COMPLEX_MODE_P (GET_MODE (new_rtx)))
636 && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx)))
637 return true;
639 /* The replacement we made so far is valid, if all of the recursive
640 replacements were valid, or we could simplify everything to
641 a constant. */
642 return valid_ops || can_appear || CONSTANT_P (tem);
646 /* Return true if X constains a non-constant mem. */
648 static bool
649 varying_mem_p (const_rtx x)
651 subrtx_iterator::array_type array;
652 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
653 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
654 return true;
655 return false;
659 /* Replace all occurrences of OLD in X with NEW and try to simplify the
660 resulting expression (in mode MODE). Return a new expression if it is
661 a constant, otherwise X.
663 Simplifications where occurrences of NEW collapse to a constant are always
664 accepted. All simplifications are accepted if NEW is a pseudo too.
665 Otherwise, we accept simplifications that have a lower or equal cost. */
667 static rtx
668 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
669 bool speed)
671 rtx tem;
672 bool collapsed;
673 int flags;
675 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
676 return NULL_RTX;
678 flags = 0;
679 if (REG_P (new_rtx)
680 || CONSTANT_P (new_rtx)
681 || (GET_CODE (new_rtx) == SUBREG
682 && REG_P (SUBREG_REG (new_rtx))
683 && !paradoxical_subreg_p (mode, GET_MODE (SUBREG_REG (new_rtx)))))
684 flags |= PR_CAN_APPEAR;
685 if (!varying_mem_p (new_rtx))
686 flags |= PR_HANDLE_MEM;
688 if (speed)
689 flags |= PR_OPTIMIZE_FOR_SPEED;
691 tem = x;
692 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
693 if (tem == x || !collapsed)
694 return NULL_RTX;
696 /* gen_lowpart_common will not be able to process VOIDmode entities other
697 than CONST_INTs. */
698 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
699 return NULL_RTX;
701 if (GET_MODE (tem) == VOIDmode)
702 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
703 else
704 gcc_assert (GET_MODE (tem) == mode);
706 return tem;
712 /* Return true if the register from reference REF is killed
713 between FROM to (but not including) TO. */
715 static bool
716 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
718 rtx_insn *insn;
720 for (insn = from; insn != to; insn = NEXT_INSN (insn))
722 df_ref def;
723 if (!INSN_P (insn))
724 continue;
726 FOR_EACH_INSN_DEF (def, insn)
727 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
728 return true;
730 return false;
734 /* Check if USE is killed between DEF_INSN and TARGET_INSN. This would
735 require full computation of available expressions; we check only a few
736 restricted conditions:
737 - if the reg in USE has only one definition, go ahead;
738 - in the same basic block, we check for no definitions killing the use;
739 - if TARGET_INSN's basic block has DEF_INSN's basic block as its sole
740 predecessor, we check if the use is killed after DEF_INSN or before
741 TARGET_INSN insn, in their respective basic blocks. */
743 static bool
744 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
746 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
747 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
748 int regno;
749 df_ref def;
751 /* We used to have a def reaching a use that is _before_ the def,
752 with the def not dominating the use even though the use and def
753 are in the same basic block, when a register may be used
754 uninitialized in a loop. This should not happen anymore since
755 we do not use reaching definitions, but still we test for such
756 cases and assume that DEF is not available. */
757 if (def_bb == target_bb
758 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
759 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
760 return true;
762 /* Check if the reg in USE has only one definition. We already
763 know that this definition reaches use, or we wouldn't be here.
764 However, this is invalid for hard registers because if they are
765 live at the beginning of the function it does not mean that we
766 have an uninitialized access. And we have to check for the case
767 where a register may be used uninitialized in a loop as above. */
768 regno = DF_REF_REGNO (use);
769 def = DF_REG_DEF_CHAIN (regno);
770 if (def
771 && DF_REF_NEXT_REG (def) == NULL
772 && regno >= FIRST_PSEUDO_REGISTER
773 && (BLOCK_FOR_INSN (DF_REF_INSN (def)) == def_bb
774 ? DF_INSN_LUID (DF_REF_INSN (def)) < DF_INSN_LUID (def_insn)
775 : dominated_by_p (CDI_DOMINATORS,
776 def_bb, BLOCK_FOR_INSN (DF_REF_INSN (def)))))
777 return false;
779 /* Check locally if we are in the same basic block. */
780 if (def_bb == target_bb)
781 return local_ref_killed_between_p (use, def_insn, target_insn);
783 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
784 if (single_pred_p (target_bb)
785 && single_pred (target_bb) == def_bb)
787 df_ref x;
789 /* See if USE is killed between DEF_INSN and the last insn in the
790 basic block containing DEF_INSN. */
791 x = df_bb_regno_last_def_find (def_bb, regno);
792 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
793 return true;
795 /* See if USE is killed between TARGET_INSN and the first insn in the
796 basic block containing TARGET_INSN. */
797 x = df_bb_regno_first_def_find (target_bb, regno);
798 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
799 return true;
801 return false;
804 /* Otherwise assume the worst case. */
805 return true;
809 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
810 would require full computation of available expressions;
811 we check only restricted conditions, see use_killed_between. */
812 static bool
813 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
815 df_ref use;
816 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
817 rtx def_set = single_set (def_insn);
818 rtx_insn *next;
820 gcc_assert (def_set);
822 /* If target_insn comes right after def_insn, which is very common
823 for addresses, we can use a quicker test. Ignore debug insns
824 other than target insns for this. */
825 next = NEXT_INSN (def_insn);
826 while (next && next != target_insn && DEBUG_INSN_P (next))
827 next = NEXT_INSN (next);
828 if (next == target_insn && REG_P (SET_DEST (def_set)))
830 rtx def_reg = SET_DEST (def_set);
832 /* If the insn uses the reg that it defines, the substitution is
833 invalid. */
834 FOR_EACH_INSN_INFO_USE (use, insn_info)
835 if (rtx_equal_p (DF_REF_REG (use), def_reg))
836 return false;
837 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
838 if (rtx_equal_p (DF_REF_REG (use), def_reg))
839 return false;
841 else
843 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
845 /* Look at all the uses of DEF_INSN, and see if they are not
846 killed between DEF_INSN and TARGET_INSN. */
847 FOR_EACH_INSN_INFO_USE (use, insn_info)
849 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
850 return false;
851 if (use_killed_between (use, def_insn, target_insn))
852 return false;
854 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
856 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
857 return false;
858 if (use_killed_between (use, def_insn, target_insn))
859 return false;
863 return true;
867 static df_ref *active_defs;
868 static sparseset active_defs_check;
870 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
871 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
872 too, for checking purposes. */
874 static void
875 register_active_defs (df_ref use)
877 for (; use; use = DF_REF_NEXT_LOC (use))
879 df_ref def = get_def_for_use (use);
880 int regno = DF_REF_REGNO (use);
882 if (flag_checking)
883 sparseset_set_bit (active_defs_check, regno);
884 active_defs[regno] = def;
889 /* Build the use->def links that we use to update the dataflow info
890 for new uses. Note that building the links is very cheap and if
891 it were done earlier, they could be used to rule out invalid
892 propagations (in addition to what is done in all_uses_available_at).
893 I'm not doing this yet, though. */
895 static void
896 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
898 if (flag_checking)
899 sparseset_clear (active_defs_check);
900 register_active_defs (DF_INSN_USES (def_insn));
901 register_active_defs (DF_INSN_USES (insn));
902 register_active_defs (DF_INSN_EQ_USES (insn));
906 /* Update the USE_DEF_REF array for the given use, using the active definitions
907 in the ACTIVE_DEFS array to match pseudos to their def. */
909 static inline void
910 update_uses (df_ref use)
912 for (; use; use = DF_REF_NEXT_LOC (use))
914 int regno = DF_REF_REGNO (use);
916 /* Set up the use-def chain. */
917 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
918 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
920 if (flag_checking)
921 gcc_assert (sparseset_bit_p (active_defs_check, regno));
922 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
927 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
928 uses if NOTES_ONLY is true. */
930 static void
931 update_df (rtx_insn *insn, rtx note)
933 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
935 if (note)
937 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
938 df_notes_rescan (insn);
940 else
942 df_uses_create (&PATTERN (insn), insn, 0);
943 df_insn_rescan (insn);
944 update_uses (DF_INSN_INFO_USES (insn_info));
947 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
951 /* Try substituting NEW into LOC, which originated from forward propagation
952 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
953 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
954 new insn is not recognized. Return whether the substitution was
955 performed. */
957 static bool
958 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
959 bool set_reg_equal)
961 rtx_insn *insn = DF_REF_INSN (use);
962 rtx set = single_set (insn);
963 rtx note = NULL_RTX;
964 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
965 int old_cost = 0;
966 bool ok;
968 update_df_init (def_insn, insn);
970 /* forward_propagate_subreg may be operating on an instruction with
971 multiple sets. If so, assume the cost of the new instruction is
972 not greater than the old one. */
973 if (set)
974 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
975 if (dump_file)
977 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
978 print_inline_rtx (dump_file, *loc, 2);
979 fprintf (dump_file, "\n with ");
980 print_inline_rtx (dump_file, new_rtx, 2);
981 fprintf (dump_file, "\n");
984 validate_unshare_change (insn, loc, new_rtx, true);
985 if (!verify_changes (0))
987 if (dump_file)
988 fprintf (dump_file, "Changes to insn %d not recognized\n",
989 INSN_UID (insn));
990 ok = false;
993 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
994 && set
995 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
996 > old_cost))
998 if (dump_file)
999 fprintf (dump_file, "Changes to insn %d not profitable\n",
1000 INSN_UID (insn));
1001 ok = false;
1004 else
1006 if (dump_file)
1007 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1008 ok = true;
1011 if (ok)
1013 confirm_change_group ();
1014 num_changes++;
1016 else
1018 cancel_changes (0);
1020 /* Can also record a simplified value in a REG_EQUAL note,
1021 making a new one if one does not already exist. */
1022 if (set_reg_equal)
1024 /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
1025 because the bits in there can be anything and so might not
1026 match the REG_EQUAL note content. See PR70574. */
1027 subrtx_var_iterator::array_type array;
1028 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
1030 rtx x = *iter;
1031 if (SUBREG_P (x) && paradoxical_subreg_p (x))
1033 set_reg_equal = false;
1034 break;
1038 if (set_reg_equal)
1040 if (dump_file)
1041 fprintf (dump_file, " Setting REG_EQUAL note\n");
1043 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1048 if ((ok || note) && !CONSTANT_P (new_rtx))
1049 update_df (insn, note);
1051 return ok;
1054 /* For the given single_set INSN, containing SRC known to be a
1055 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1056 is redundant due to the register being set by a LOAD_EXTEND_OP
1057 load from memory. */
1059 static bool
1060 free_load_extend (rtx src, rtx_insn *insn)
1062 rtx reg;
1063 df_ref def, use;
1065 reg = XEXP (src, 0);
1066 if (load_extend_op (GET_MODE (reg)) != GET_CODE (src))
1067 return false;
1069 FOR_EACH_INSN_USE (use, insn)
1070 if (!DF_REF_IS_ARTIFICIAL (use)
1071 && DF_REF_TYPE (use) == DF_REF_REG_USE
1072 && DF_REF_REG (use) == reg)
1073 break;
1074 if (!use)
1075 return false;
1077 def = get_def_for_use (use);
1078 if (!def)
1079 return false;
1081 if (DF_REF_IS_ARTIFICIAL (def))
1082 return false;
1084 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1086 rtx patt = PATTERN (DF_REF_INSN (def));
1088 if (GET_CODE (patt) == SET
1089 && GET_CODE (SET_SRC (patt)) == MEM
1090 && rtx_equal_p (SET_DEST (patt), reg))
1091 return true;
1093 return false;
1096 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1098 static bool
1099 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1101 rtx use_reg = DF_REF_REG (use);
1102 rtx_insn *use_insn;
1103 rtx src;
1104 scalar_int_mode int_use_mode, src_mode;
1106 /* Only consider subregs... */
1107 machine_mode use_mode = GET_MODE (use_reg);
1108 if (GET_CODE (use_reg) != SUBREG
1109 || !REG_P (SET_DEST (def_set)))
1110 return false;
1112 if (paradoxical_subreg_p (use_reg))
1114 /* If this is a paradoxical SUBREG, we have no idea what value the
1115 extra bits would have. However, if the operand is equivalent to
1116 a SUBREG whose operand is the same as our mode, and all the modes
1117 are within a word, we can just use the inner operand because
1118 these SUBREGs just say how to treat the register. */
1119 use_insn = DF_REF_INSN (use);
1120 src = SET_SRC (def_set);
1121 if (GET_CODE (src) == SUBREG
1122 && REG_P (SUBREG_REG (src))
1123 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1124 && GET_MODE (SUBREG_REG (src)) == use_mode
1125 && subreg_lowpart_p (src)
1126 && all_uses_available_at (def_insn, use_insn))
1127 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1128 def_insn, false);
1131 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1132 is the low part of the reg being extended then just use the inner
1133 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1134 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1135 or due to the operation being a no-op when applied to registers.
1136 For example, if we have:
1138 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1139 B: (... (subreg:SI (reg:DI X)) ...)
1141 and mode_rep_extended says that Y is already sign-extended,
1142 the backend will typically allow A to be combined with the
1143 definition of Y or, failing that, allow A to be deleted after
1144 reload through register tying. Introducing more uses of Y
1145 prevents both optimisations. */
1146 else if (is_a <scalar_int_mode> (use_mode, &int_use_mode)
1147 && subreg_lowpart_p (use_reg))
1149 use_insn = DF_REF_INSN (use);
1150 src = SET_SRC (def_set);
1151 if ((GET_CODE (src) == ZERO_EXTEND
1152 || GET_CODE (src) == SIGN_EXTEND)
1153 && is_a <scalar_int_mode> (GET_MODE (src), &src_mode)
1154 && REG_P (XEXP (src, 0))
1155 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1156 && GET_MODE (XEXP (src, 0)) == use_mode
1157 && !free_load_extend (src, def_insn)
1158 && (targetm.mode_rep_extended (int_use_mode, src_mode)
1159 != (int) GET_CODE (src))
1160 && all_uses_available_at (def_insn, use_insn))
1161 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1162 def_insn, false);
1165 return false;
1168 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1170 static bool
1171 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1173 rtx_insn *use_insn = DF_REF_INSN (use);
1174 rtx src, use_pat, asm_operands, new_rtx, *loc;
1175 int speed_p, i;
1176 df_ref uses;
1178 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1180 src = SET_SRC (def_set);
1181 use_pat = PATTERN (use_insn);
1183 /* In __asm don't replace if src might need more registers than
1184 reg, as that could increase register pressure on the __asm. */
1185 uses = DF_INSN_USES (def_insn);
1186 if (uses && DF_REF_NEXT_LOC (uses))
1187 return false;
1189 update_df_init (def_insn, use_insn);
1190 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1191 asm_operands = NULL_RTX;
1192 switch (GET_CODE (use_pat))
1194 case ASM_OPERANDS:
1195 asm_operands = use_pat;
1196 break;
1197 case SET:
1198 if (MEM_P (SET_DEST (use_pat)))
1200 loc = &SET_DEST (use_pat);
1201 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1202 if (new_rtx)
1203 validate_unshare_change (use_insn, loc, new_rtx, true);
1205 asm_operands = SET_SRC (use_pat);
1206 break;
1207 case PARALLEL:
1208 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1209 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1211 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1213 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1214 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1215 src, speed_p);
1216 if (new_rtx)
1217 validate_unshare_change (use_insn, loc, new_rtx, true);
1219 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1221 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1222 asm_operands = XVECEXP (use_pat, 0, i);
1223 break;
1224 default:
1225 gcc_unreachable ();
1228 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1229 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1231 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1232 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1233 if (new_rtx)
1234 validate_unshare_change (use_insn, loc, new_rtx, true);
1237 if (num_changes_pending () == 0 || !apply_change_group ())
1238 return false;
1240 update_df (use_insn, NULL);
1241 num_changes++;
1242 return true;
1245 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1246 result. */
1248 static bool
1249 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1251 rtx_insn *use_insn = DF_REF_INSN (use);
1252 rtx use_set = single_set (use_insn);
1253 rtx src, reg, new_rtx, *loc;
1254 bool set_reg_equal;
1255 machine_mode mode;
1256 int asm_use = -1;
1258 if (INSN_CODE (use_insn) < 0)
1259 asm_use = asm_noperands (PATTERN (use_insn));
1261 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1262 return false;
1264 /* Do not propagate into PC, CC0, etc. */
1265 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1266 return false;
1268 /* If def and use are subreg, check if they match. */
1269 reg = DF_REF_REG (use);
1270 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1272 if (maybe_ne (SUBREG_BYTE (SET_DEST (def_set)), SUBREG_BYTE (reg)))
1273 return false;
1275 /* Check if the def had a subreg, but the use has the whole reg. */
1276 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1277 return false;
1278 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1279 previous case, the optimization is possible and often useful indeed. */
1280 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1281 reg = SUBREG_REG (reg);
1283 /* Make sure that we can treat REG as having the same mode as the
1284 source of DEF_SET. */
1285 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1286 return false;
1288 /* Check if the substitution is valid (last, because it's the most
1289 expensive check!). */
1290 src = SET_SRC (def_set);
1291 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1292 return false;
1294 /* Check if the def is loading something from the constant pool; in this
1295 case we would undo optimization such as compress_float_constant.
1296 Still, we can set a REG_EQUAL note. */
1297 if (MEM_P (src) && MEM_READONLY_P (src))
1299 rtx x = avoid_constant_pool_reference (src);
1300 if (x != src && use_set)
1302 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1303 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1304 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1305 if (old_rtx != new_rtx)
1306 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1308 return false;
1311 if (asm_use >= 0)
1312 return forward_propagate_asm (use, def_insn, def_set, reg);
1314 /* Else try simplifying. */
1316 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1318 loc = &SET_DEST (use_set);
1319 set_reg_equal = false;
1321 else if (!use_set)
1323 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1324 set_reg_equal = false;
1326 else
1328 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1329 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1330 loc = &XEXP (note, 0);
1331 else
1332 loc = &SET_SRC (use_set);
1334 /* Do not replace an existing REG_EQUAL note if the insn is not
1335 recognized. Either we're already replacing in the note, or we'll
1336 separately try plugging the definition in the note and simplifying.
1337 And only install a REQ_EQUAL note when the destination is a REG
1338 that isn't mentioned in USE_SET, as the note would be invalid
1339 otherwise. We also don't want to install a note if we are merely
1340 propagating a pseudo since verifying that this pseudo isn't dead
1341 is a pain; moreover such a note won't help anything.
1342 If the use is a paradoxical subreg, make sure we don't add a
1343 REG_EQUAL note for it, because it is not equivalent, it is one
1344 possible value for it, but we can't rely on it holding that value.
1345 See PR70574. */
1346 set_reg_equal = (note == NULL_RTX
1347 && REG_P (SET_DEST (use_set))
1348 && !REG_P (src)
1349 && !(GET_CODE (src) == SUBREG
1350 && REG_P (SUBREG_REG (src)))
1351 && !reg_mentioned_p (SET_DEST (use_set),
1352 SET_SRC (use_set))
1353 && !paradoxical_subreg_p (DF_REF_REG (use)));
1356 if (GET_MODE (*loc) == VOIDmode)
1357 mode = GET_MODE (SET_DEST (use_set));
1358 else
1359 mode = GET_MODE (*loc);
1361 new_rtx = propagate_rtx (*loc, mode, reg, src,
1362 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1364 if (!new_rtx)
1365 return false;
1367 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1371 /* Given a use USE of an insn, if it has a single reaching
1372 definition, try to forward propagate it into that insn.
1373 Return true if cfg cleanup will be needed. */
1375 static bool
1376 forward_propagate_into (df_ref use)
1378 df_ref def;
1379 rtx_insn *def_insn, *use_insn;
1380 rtx def_set;
1381 rtx parent;
1383 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1384 return false;
1385 if (DF_REF_IS_ARTIFICIAL (use))
1386 return false;
1388 /* Only consider uses that have a single definition. */
1389 def = get_def_for_use (use);
1390 if (!def)
1391 return false;
1392 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1393 return false;
1394 if (DF_REF_IS_ARTIFICIAL (def))
1395 return false;
1397 /* Do not propagate loop invariant definitions inside the loop. */
1398 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1399 return false;
1401 /* Check if the use is still present in the insn! */
1402 use_insn = DF_REF_INSN (use);
1403 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1404 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1405 else
1406 parent = PATTERN (use_insn);
1408 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1409 return false;
1411 def_insn = DF_REF_INSN (def);
1412 if (multiple_sets (def_insn))
1413 return false;
1414 def_set = single_set (def_insn);
1415 if (!def_set)
1416 return false;
1418 /* Only try one kind of propagation. If two are possible, we'll
1419 do it on the following iterations. */
1420 if (forward_propagate_and_simplify (use, def_insn, def_set)
1421 || forward_propagate_subreg (use, def_insn, def_set))
1423 propagations_left--;
1425 if (cfun->can_throw_non_call_exceptions
1426 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1427 && purge_dead_edges (DF_REF_BB (use)))
1428 return true;
1430 return false;
1434 static void
1435 fwprop_init (void)
1437 num_changes = 0;
1438 calculate_dominance_info (CDI_DOMINATORS);
1440 /* We do not always want to propagate into loops, so we have to find
1441 loops and be careful about them. Avoid CFG modifications so that
1442 we don't have to update dominance information afterwards for
1443 build_single_def_use_links. */
1444 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1446 build_single_def_use_links ();
1447 df_set_flags (DF_DEFER_INSN_RESCAN);
1449 active_defs = XNEWVEC (df_ref, max_reg_num ());
1450 if (flag_checking)
1451 active_defs_check = sparseset_alloc (max_reg_num ());
1453 propagations_left = DF_USES_TABLE_SIZE ();
1456 static void
1457 fwprop_done (void)
1459 loop_optimizer_finalize ();
1461 use_def_ref.release ();
1462 free (active_defs);
1463 if (flag_checking)
1464 sparseset_free (active_defs_check);
1466 free_dominance_info (CDI_DOMINATORS);
1467 cleanup_cfg (0);
1468 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1470 if (dump_file)
1471 fprintf (dump_file,
1472 "\nNumber of successful forward propagations: %d\n\n",
1473 num_changes);
1477 /* Main entry point. */
1479 static bool
1480 gate_fwprop (void)
1482 return optimize > 0 && flag_forward_propagate;
1485 static unsigned int
1486 fwprop (void)
1488 unsigned i;
1490 fwprop_init ();
1492 /* Go through all the uses. df_uses_create will create new ones at the
1493 end, and we'll go through them as well.
1495 Do not forward propagate addresses into loops until after unrolling.
1496 CSE did so because it was able to fix its own mess, but we are not. */
1498 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1500 if (!propagations_left)
1501 break;
1503 df_ref use = DF_USES_GET (i);
1504 if (use)
1505 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1506 || DF_REF_BB (use)->loop_father == NULL
1507 /* The outer most loop is not really a loop. */
1508 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1509 forward_propagate_into (use);
1512 fwprop_done ();
1513 return 0;
1516 namespace {
1518 const pass_data pass_data_rtl_fwprop =
1520 RTL_PASS, /* type */
1521 "fwprop1", /* name */
1522 OPTGROUP_NONE, /* optinfo_flags */
1523 TV_FWPROP, /* tv_id */
1524 0, /* properties_required */
1525 0, /* properties_provided */
1526 0, /* properties_destroyed */
1527 0, /* todo_flags_start */
1528 TODO_df_finish, /* todo_flags_finish */
1531 class pass_rtl_fwprop : public rtl_opt_pass
1533 public:
1534 pass_rtl_fwprop (gcc::context *ctxt)
1535 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1538 /* opt_pass methods: */
1539 virtual bool gate (function *) { return gate_fwprop (); }
1540 virtual unsigned int execute (function *) { return fwprop (); }
1542 }; // class pass_rtl_fwprop
1544 } // anon namespace
1546 rtl_opt_pass *
1547 make_pass_rtl_fwprop (gcc::context *ctxt)
1549 return new pass_rtl_fwprop (ctxt);
1552 static unsigned int
1553 fwprop_addr (void)
1555 unsigned i;
1557 fwprop_init ();
1559 /* Go through all the uses. df_uses_create will create new ones at the
1560 end, and we'll go through them as well. */
1561 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1563 if (!propagations_left)
1564 break;
1566 df_ref use = DF_USES_GET (i);
1567 if (use)
1568 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1569 && DF_REF_BB (use)->loop_father != NULL
1570 /* The outer most loop is not really a loop. */
1571 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1572 forward_propagate_into (use);
1575 fwprop_done ();
1576 return 0;
1579 namespace {
1581 const pass_data pass_data_rtl_fwprop_addr =
1583 RTL_PASS, /* type */
1584 "fwprop2", /* name */
1585 OPTGROUP_NONE, /* optinfo_flags */
1586 TV_FWPROP, /* tv_id */
1587 0, /* properties_required */
1588 0, /* properties_provided */
1589 0, /* properties_destroyed */
1590 0, /* todo_flags_start */
1591 TODO_df_finish, /* todo_flags_finish */
1594 class pass_rtl_fwprop_addr : public rtl_opt_pass
1596 public:
1597 pass_rtl_fwprop_addr (gcc::context *ctxt)
1598 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1601 /* opt_pass methods: */
1602 virtual bool gate (function *) { return gate_fwprop (); }
1603 virtual unsigned int execute (function *) { return fwprop_addr (); }
1605 }; // class pass_rtl_fwprop_addr
1607 } // anon namespace
1609 rtl_opt_pass *
1610 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1612 return new pass_rtl_fwprop_addr (ctxt);