PR target/56124
[official-gcc.git] / gcc / emit-rtl.c
blob73a59b58046213bd1f05e94a51b99008c8279417
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "diagnostic-core.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "regs.h"
46 #include "hard-reg-set.h"
47 #include "hashtab.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "bitmap.h"
51 #include "basic-block.h"
52 #include "ggc.h"
53 #include "debug.h"
54 #include "langhooks.h"
55 #include "df.h"
56 #include "params.h"
57 #include "target.h"
59 struct target_rtl default_target_rtl;
60 #if SWITCHABLE_TARGET
61 struct target_rtl *this_target_rtl = &default_target_rtl;
62 #endif
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66 /* Commonly used modes. */
68 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
73 /* Datastructures maintained for currently processed function in RTL form. */
75 struct rtl_data x_rtl;
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
82 rtx * regno_reg_rtx;
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
87 static GTY(()) int label_num = 1;
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
96 rtx const_true_rtx;
98 REAL_VALUE_TYPE dconst0;
99 REAL_VALUE_TYPE dconst1;
100 REAL_VALUE_TYPE dconst2;
101 REAL_VALUE_TYPE dconstm1;
102 REAL_VALUE_TYPE dconsthalf;
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
106 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
111 integers. */
113 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
115 /* Standard pieces of rtx, to be substituted directly into things. */
116 rtx pc_rtx;
117 rtx ret_rtx;
118 rtx simple_return_rtx;
119 rtx cc0_rtx;
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
125 htab_t const_int_htab;
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
129 htab_t mem_attrs_htab;
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
133 htab_t reg_attrs_htab;
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
137 htab_t const_double_htab;
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_fixed_htab;
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs *get_reg_attrs (tree, int);
163 static rtx gen_const_vector (enum machine_mode, int);
164 static void copy_rtx_if_shared_1 (rtx *orig);
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability = -1;
170 /* Returns a hash code for X (which is a really a CONST_INT). */
172 static hashval_t
173 const_int_htab_hash (const void *x)
175 return (hashval_t) INTVAL ((const_rtx) x);
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
180 HOST_WIDE_INT *). */
182 static int
183 const_int_htab_eq (const void *x, const void *y)
185 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
189 static hashval_t
190 const_double_htab_hash (const void *x)
192 const_rtx const value = (const_rtx) x;
193 hashval_t h;
195 if (GET_MODE (value) == VOIDmode)
196 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
197 else
199 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h ^= GET_MODE (value);
203 return h;
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
208 static int
209 const_double_htab_eq (const void *x, const void *y)
211 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
213 if (GET_MODE (a) != GET_MODE (b))
214 return 0;
215 if (GET_MODE (a) == VOIDmode)
216 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
217 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
218 else
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
220 CONST_DOUBLE_REAL_VALUE (b));
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
225 static hashval_t
226 const_fixed_htab_hash (const void *x)
228 const_rtx const value = (const_rtx) x;
229 hashval_t h;
231 h = fixed_hash (CONST_FIXED_VALUE (value));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h ^= GET_MODE (value);
234 return h;
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
240 static int
241 const_fixed_htab_eq (const void *x, const void *y)
243 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
245 if (GET_MODE (a) != GET_MODE (b))
246 return 0;
247 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
252 static hashval_t
253 mem_attrs_htab_hash (const void *x)
255 const mem_attrs *const p = (const mem_attrs *) x;
257 return (p->alias ^ (p->align * 1000)
258 ^ (p->addrspace * 4000)
259 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
260 ^ ((p->size_known_p ? p->size : 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p->expr, 0));
264 /* Return true if the given memory attributes are equal. */
266 static bool
267 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
269 return (p->alias == q->alias
270 && p->offset_known_p == q->offset_known_p
271 && (!p->offset_known_p || p->offset == q->offset)
272 && p->size_known_p == q->size_known_p
273 && (!p->size_known_p || p->size == q->size)
274 && p->align == q->align
275 && p->addrspace == q->addrspace
276 && (p->expr == q->expr
277 || (p->expr != NULL_TREE && q->expr != NULL_TREE
278 && operand_equal_p (p->expr, q->expr, 0))));
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
283 mem_attrs *). */
285 static int
286 mem_attrs_htab_eq (const void *x, const void *y)
288 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
293 static void
294 set_mem_attrs (rtx mem, mem_attrs *attrs)
296 void **slot;
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
301 MEM_ATTRS (mem) = 0;
302 return;
305 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
306 if (*slot == 0)
308 *slot = ggc_alloc_mem_attrs ();
309 memcpy (*slot, attrs, sizeof (mem_attrs));
312 MEM_ATTRS (mem) = (mem_attrs *) *slot;
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
317 static hashval_t
318 reg_attrs_htab_hash (const void *x)
320 const reg_attrs *const p = (const reg_attrs *) x;
322 return ((p->offset * 1000) ^ (intptr_t) p->decl);
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
327 reg_attrs *). */
329 static int
330 reg_attrs_htab_eq (const void *x, const void *y)
332 const reg_attrs *const p = (const reg_attrs *) x;
333 const reg_attrs *const q = (const reg_attrs *) y;
335 return (p->decl == q->decl && p->offset == q->offset);
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
339 MEM of mode MODE. */
341 static reg_attrs *
342 get_reg_attrs (tree decl, int offset)
344 reg_attrs attrs;
345 void **slot;
347 /* If everything is the default, we can just return zero. */
348 if (decl == 0 && offset == 0)
349 return 0;
351 attrs.decl = decl;
352 attrs.offset = offset;
354 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
355 if (*slot == 0)
357 *slot = ggc_alloc_reg_attrs ();
358 memcpy (*slot, &attrs, sizeof (reg_attrs));
361 return (reg_attrs *) *slot;
365 #if !HAVE_blockage
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
370 gen_blockage (void)
372 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
373 MEM_VOLATILE_P (x) = true;
374 return x;
376 #endif
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
384 gen_raw_REG (enum machine_mode mode, int regno)
386 rtx x = gen_rtx_raw_REG (mode, regno);
387 ORIGINAL_REGNO (x) = regno;
388 return x;
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
398 void **slot;
400 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
401 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx && arg == STORE_FLAG_VALUE)
405 return const_true_rtx;
406 #endif
408 /* Look up the CONST_INT in the hash table. */
409 slot = htab_find_slot_with_hash (const_int_htab, &arg,
410 (hashval_t) arg, INSERT);
411 if (*slot == 0)
412 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
414 return (rtx) *slot;
418 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
420 return GEN_INT (trunc_int_for_mode (c, mode));
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
430 static rtx
431 lookup_const_double (rtx real)
433 void **slot = htab_find_slot (const_double_htab, real, INSERT);
434 if (*slot == 0)
435 *slot = real;
437 return (rtx) *slot;
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
443 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
445 rtx real = rtx_alloc (CONST_DOUBLE);
446 PUT_MODE (real, mode);
448 real->u.rv = value;
450 return lookup_const_double (real);
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
457 static rtx
458 lookup_const_fixed (rtx fixed)
460 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
461 if (*slot == 0)
462 *slot = fixed;
464 return (rtx) *slot;
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
473 rtx fixed = rtx_alloc (CONST_FIXED);
474 PUT_MODE (fixed, mode);
476 fixed->u.fv = value;
478 return lookup_const_fixed (fixed);
481 /* Constructs double_int from rtx CST. */
483 double_int
484 rtx_to_double_int (const_rtx cst)
486 double_int r;
488 if (CONST_INT_P (cst))
489 r = double_int::from_shwi (INTVAL (cst));
490 else if (CONST_DOUBLE_AS_INT_P (cst))
492 r.low = CONST_DOUBLE_LOW (cst);
493 r.high = CONST_DOUBLE_HIGH (cst);
495 else
496 gcc_unreachable ();
498 return r;
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
503 a double_int. */
506 immed_double_int_const (double_int i, enum machine_mode mode)
508 return immed_double_const (i.low, i.high, mode);
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
520 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
522 rtx value;
523 unsigned int i;
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
529 gen_int_mode.
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode != VOIDmode)
536 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
537 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
542 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
543 return gen_int_mode (i0, mode);
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
548 return GEN_INT (i0);
550 /* We use VOIDmode for integers. */
551 value = rtx_alloc (CONST_DOUBLE);
552 PUT_MODE (value, VOIDmode);
554 CONST_DOUBLE_LOW (value) = i0;
555 CONST_DOUBLE_HIGH (value) = i1;
557 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
558 XWINT (value, i) = 0;
560 return lookup_const_double (value);
564 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
570 assigned to them.
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
580 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
582 if (regno == FRAME_POINTER_REGNUM
583 && (!reload_completed || frame_pointer_needed))
584 return frame_pointer_rtx;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno == HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return hard_frame_pointer_rtx;
589 #endif
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno == ARG_POINTER_REGNUM)
592 return arg_pointer_rtx;
593 #endif
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
596 return return_address_pointer_rtx;
597 #endif
598 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
600 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
601 return pic_offset_table_rtx;
602 if (regno == STACK_POINTER_REGNUM)
603 return stack_pointer_rtx;
606 #if 0
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
618 if (cfun
619 && cfun->emit
620 && regno_reg_rtx
621 && regno < FIRST_PSEUDO_REGISTER
622 && reg_raw_mode[regno] == mode)
623 return regno_reg_rtx[regno];
624 #endif
626 return gen_raw_REG (mode, regno);
630 gen_rtx_MEM (enum machine_mode mode, rtx addr)
632 rtx rt = gen_rtx_raw_MEM (mode, addr);
634 /* This field is not cleared by the mere allocation of the rtx, so
635 we clear it here. */
636 MEM_ATTRS (rt) = 0;
638 return rt;
641 /* Generate a memory referring to non-trapping constant memory. */
644 gen_const_mem (enum machine_mode mode, rtx addr)
646 rtx mem = gen_rtx_MEM (mode, addr);
647 MEM_READONLY_P (mem) = 1;
648 MEM_NOTRAP_P (mem) = 1;
649 return mem;
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
653 save areas. */
656 gen_frame_mem (enum machine_mode mode, rtx addr)
658 rtx mem = gen_rtx_MEM (mode, addr);
659 MEM_NOTRAP_P (mem) = 1;
660 set_mem_alias_set (mem, get_frame_alias_set ());
661 return mem;
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
668 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
670 rtx mem = gen_rtx_MEM (mode, addr);
671 MEM_NOTRAP_P (mem) = 1;
672 if (!cfun->calls_alloca)
673 set_mem_alias_set (mem, get_frame_alias_set ());
674 return mem;
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
680 bool
681 validate_subreg (enum machine_mode omode, enum machine_mode imode,
682 const_rtx reg, unsigned int offset)
684 unsigned int isize = GET_MODE_SIZE (imode);
685 unsigned int osize = GET_MODE_SIZE (omode);
687 /* All subregs must be aligned. */
688 if (offset % osize != 0)
689 return false;
691 /* The subreg offset cannot be outside the inner object. */
692 if (offset >= isize)
693 return false;
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
698 fix them all. */
699 if (omode == word_mode)
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize >= UNITS_PER_WORD && isize >= osize)
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
708 && GET_MODE_INNER (imode) == omode)
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
722 if (! (isize == osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
729 || lra_in_progress))
730 return false;
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 unsigned int regno = REGNO (reg);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
753 return subreg_offset_representable_p (regno, imode, offset, omode);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD
763 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
770 return true;
774 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777 return gen_rtx_raw_SUBREG (mode, reg, offset);
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
784 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
786 enum machine_mode inmode;
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798 rtvec
799 gen_rtvec (int n, ...)
801 int i;
802 rtvec rt_val;
803 va_list p;
805 va_start (p, n);
807 /* Don't allocate an empty rtvec... */
808 if (n == 0)
810 va_end (p);
811 return NULL_RTVEC;
814 rt_val = rtvec_alloc (n);
816 for (i = 0; i < n; i++)
817 rt_val->elem[i] = va_arg (p, rtx);
819 va_end (p);
820 return rt_val;
823 rtvec
824 gen_rtvec_v (int n, rtx *argp)
826 int i;
827 rtvec rt_val;
829 /* Don't allocate an empty rtvec... */
830 if (n == 0)
831 return NULL_RTVEC;
833 rt_val = rtvec_alloc (n);
835 for (i = 0; i < n; i++)
836 rt_val->elem[i] = *argp++;
838 return rt_val;
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
848 byte_lowpart_offset (enum machine_mode outer_mode,
849 enum machine_mode inner_mode)
851 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
852 return subreg_lowpart_offset (outer_mode, inner_mode);
853 else
854 return -subreg_lowpart_offset (inner_mode, outer_mode);
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
861 gen_reg_rtx (enum machine_mode mode)
863 rtx val;
864 unsigned int align = GET_MODE_ALIGNMENT (mode);
866 gcc_assert (can_create_pseudo_p ());
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
870 to stack later. */
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl->stack_alignment_estimated < align
873 && !crtl->stack_realign_processed)
875 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
876 if (crtl->stack_alignment_estimated < min_align)
877 crtl->stack_alignment_estimated = min_align;
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart, imagpart;
890 enum machine_mode partmode = GET_MODE_INNER (mode);
892 realpart = gen_reg_rtx (partmode);
893 imagpart = gen_reg_rtx (partmode);
894 return gen_rtx_CONCAT (mode, realpart, imagpart);
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
900 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
902 int old_size = crtl->emit.regno_pointer_align_length;
903 char *tmp;
904 rtx *new1;
906 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
907 memset (tmp + old_size, 0, old_size);
908 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
910 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
911 memset (new1 + old_size, 0, old_size * sizeof (rtx));
912 regno_reg_rtx = new1;
914 crtl->emit.regno_pointer_align_length = old_size * 2;
917 val = gen_raw_REG (mode, reg_rtx_no);
918 regno_reg_rtx[reg_rtx_no++] = val;
919 return val;
922 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
924 bool
925 reg_is_parm_p (rtx reg)
927 tree decl;
929 gcc_assert (REG_P (reg));
930 decl = REG_EXPR (reg);
931 return (decl && TREE_CODE (decl) == PARM_DECL);
934 /* Update NEW with the same attributes as REG, but with OFFSET added
935 to the REG_OFFSET. */
937 static void
938 update_reg_offset (rtx new_rtx, rtx reg, int offset)
940 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
941 REG_OFFSET (reg) + offset);
944 /* Generate a register with same attributes as REG, but with OFFSET
945 added to the REG_OFFSET. */
948 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
949 int offset)
951 rtx new_rtx = gen_rtx_REG (mode, regno);
953 update_reg_offset (new_rtx, reg, offset);
954 return new_rtx;
957 /* Generate a new pseudo-register with the same attributes as REG, but
958 with OFFSET added to the REG_OFFSET. */
961 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
963 rtx new_rtx = gen_reg_rtx (mode);
965 update_reg_offset (new_rtx, reg, offset);
966 return new_rtx;
969 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
970 new register is a (possibly paradoxical) lowpart of the old one. */
972 void
973 adjust_reg_mode (rtx reg, enum machine_mode mode)
975 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
976 PUT_MODE (reg, mode);
979 /* Copy REG's attributes from X, if X has any attributes. If REG and X
980 have different modes, REG is a (possibly paradoxical) lowpart of X. */
982 void
983 set_reg_attrs_from_value (rtx reg, rtx x)
985 int offset;
986 bool can_be_reg_pointer = true;
988 /* Don't call mark_reg_pointer for incompatible pointer sign
989 extension. */
990 while (GET_CODE (x) == SIGN_EXTEND
991 || GET_CODE (x) == ZERO_EXTEND
992 || GET_CODE (x) == TRUNCATE
993 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
995 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
996 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
997 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
998 can_be_reg_pointer = false;
999 #endif
1000 x = XEXP (x, 0);
1003 /* Hard registers can be reused for multiple purposes within the same
1004 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1005 on them is wrong. */
1006 if (HARD_REGISTER_P (reg))
1007 return;
1009 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1010 if (MEM_P (x))
1012 if (MEM_OFFSET_KNOWN_P (x))
1013 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1014 MEM_OFFSET (x) + offset);
1015 if (can_be_reg_pointer && MEM_POINTER (x))
1016 mark_reg_pointer (reg, 0);
1018 else if (REG_P (x))
1020 if (REG_ATTRS (x))
1021 update_reg_offset (reg, x, offset);
1022 if (can_be_reg_pointer && REG_POINTER (x))
1023 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1027 /* Generate a REG rtx for a new pseudo register, copying the mode
1028 and attributes from X. */
1031 gen_reg_rtx_and_attrs (rtx x)
1033 rtx reg = gen_reg_rtx (GET_MODE (x));
1034 set_reg_attrs_from_value (reg, x);
1035 return reg;
1038 /* Set the register attributes for registers contained in PARM_RTX.
1039 Use needed values from memory attributes of MEM. */
1041 void
1042 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1044 if (REG_P (parm_rtx))
1045 set_reg_attrs_from_value (parm_rtx, mem);
1046 else if (GET_CODE (parm_rtx) == PARALLEL)
1048 /* Check for a NULL entry in the first slot, used to indicate that the
1049 parameter goes both on the stack and in registers. */
1050 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1051 for (; i < XVECLEN (parm_rtx, 0); i++)
1053 rtx x = XVECEXP (parm_rtx, 0, i);
1054 if (REG_P (XEXP (x, 0)))
1055 REG_ATTRS (XEXP (x, 0))
1056 = get_reg_attrs (MEM_EXPR (mem),
1057 INTVAL (XEXP (x, 1)));
1062 /* Set the REG_ATTRS for registers in value X, given that X represents
1063 decl T. */
1065 void
1066 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1068 if (GET_CODE (x) == SUBREG)
1070 gcc_assert (subreg_lowpart_p (x));
1071 x = SUBREG_REG (x);
1073 if (REG_P (x))
1074 REG_ATTRS (x)
1075 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1076 DECL_MODE (t)));
1077 if (GET_CODE (x) == CONCAT)
1079 if (REG_P (XEXP (x, 0)))
1080 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1081 if (REG_P (XEXP (x, 1)))
1082 REG_ATTRS (XEXP (x, 1))
1083 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1085 if (GET_CODE (x) == PARALLEL)
1087 int i, start;
1089 /* Check for a NULL entry, used to indicate that the parameter goes
1090 both on the stack and in registers. */
1091 if (XEXP (XVECEXP (x, 0, 0), 0))
1092 start = 0;
1093 else
1094 start = 1;
1096 for (i = start; i < XVECLEN (x, 0); i++)
1098 rtx y = XVECEXP (x, 0, i);
1099 if (REG_P (XEXP (y, 0)))
1100 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1105 /* Assign the RTX X to declaration T. */
1107 void
1108 set_decl_rtl (tree t, rtx x)
1110 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1111 if (x)
1112 set_reg_attrs_for_decl_rtl (t, x);
1115 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1116 if the ABI requires the parameter to be passed by reference. */
1118 void
1119 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1121 DECL_INCOMING_RTL (t) = x;
1122 if (x && !by_reference_p)
1123 set_reg_attrs_for_decl_rtl (t, x);
1126 /* Identify REG (which may be a CONCAT) as a user register. */
1128 void
1129 mark_user_reg (rtx reg)
1131 if (GET_CODE (reg) == CONCAT)
1133 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1134 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1136 else
1138 gcc_assert (REG_P (reg));
1139 REG_USERVAR_P (reg) = 1;
1143 /* Identify REG as a probable pointer register and show its alignment
1144 as ALIGN, if nonzero. */
1146 void
1147 mark_reg_pointer (rtx reg, int align)
1149 if (! REG_POINTER (reg))
1151 REG_POINTER (reg) = 1;
1153 if (align)
1154 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1156 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1157 /* We can no-longer be sure just how aligned this pointer is. */
1158 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1161 /* Return 1 plus largest pseudo reg number used in the current function. */
1164 max_reg_num (void)
1166 return reg_rtx_no;
1169 /* Return 1 + the largest label number used so far in the current function. */
1172 max_label_num (void)
1174 return label_num;
1177 /* Return first label number used in this function (if any were used). */
1180 get_first_label_num (void)
1182 return first_label_num;
1185 /* If the rtx for label was created during the expansion of a nested
1186 function, then first_label_num won't include this label number.
1187 Fix this now so that array indices work later. */
1189 void
1190 maybe_set_first_label_num (rtx x)
1192 if (CODE_LABEL_NUMBER (x) < first_label_num)
1193 first_label_num = CODE_LABEL_NUMBER (x);
1196 /* Return a value representing some low-order bits of X, where the number
1197 of low-order bits is given by MODE. Note that no conversion is done
1198 between floating-point and fixed-point values, rather, the bit
1199 representation is returned.
1201 This function handles the cases in common between gen_lowpart, below,
1202 and two variants in cse.c and combine.c. These are the cases that can
1203 be safely handled at all points in the compilation.
1205 If this is not a case we can handle, return 0. */
1208 gen_lowpart_common (enum machine_mode mode, rtx x)
1210 int msize = GET_MODE_SIZE (mode);
1211 int xsize;
1212 int offset = 0;
1213 enum machine_mode innermode;
1215 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1216 so we have to make one up. Yuk. */
1217 innermode = GET_MODE (x);
1218 if (CONST_INT_P (x)
1219 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1220 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1221 else if (innermode == VOIDmode)
1222 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1224 xsize = GET_MODE_SIZE (innermode);
1226 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1228 if (innermode == mode)
1229 return x;
1231 /* MODE must occupy no more words than the mode of X. */
1232 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1233 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1234 return 0;
1236 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1237 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1238 return 0;
1240 offset = subreg_lowpart_offset (mode, innermode);
1242 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1243 && (GET_MODE_CLASS (mode) == MODE_INT
1244 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1246 /* If we are getting the low-order part of something that has been
1247 sign- or zero-extended, we can either just use the object being
1248 extended or make a narrower extension. If we want an even smaller
1249 piece than the size of the object being extended, call ourselves
1250 recursively.
1252 This case is used mostly by combine and cse. */
1254 if (GET_MODE (XEXP (x, 0)) == mode)
1255 return XEXP (x, 0);
1256 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1257 return gen_lowpart_common (mode, XEXP (x, 0));
1258 else if (msize < xsize)
1259 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1261 else if (GET_CODE (x) == SUBREG || REG_P (x)
1262 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1263 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1264 return simplify_gen_subreg (mode, x, innermode, offset);
1266 /* Otherwise, we can't do this. */
1267 return 0;
1271 gen_highpart (enum machine_mode mode, rtx x)
1273 unsigned int msize = GET_MODE_SIZE (mode);
1274 rtx result;
1276 /* This case loses if X is a subreg. To catch bugs early,
1277 complain if an invalid MODE is used even in other cases. */
1278 gcc_assert (msize <= UNITS_PER_WORD
1279 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1281 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1282 subreg_highpart_offset (mode, GET_MODE (x)));
1283 gcc_assert (result);
1285 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1286 the target if we have a MEM. gen_highpart must return a valid operand,
1287 emitting code if necessary to do so. */
1288 if (MEM_P (result))
1290 result = validize_mem (result);
1291 gcc_assert (result);
1294 return result;
1297 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1298 be VOIDmode constant. */
1300 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1302 if (GET_MODE (exp) != VOIDmode)
1304 gcc_assert (GET_MODE (exp) == innermode);
1305 return gen_highpart (outermode, exp);
1307 return simplify_gen_subreg (outermode, exp, innermode,
1308 subreg_highpart_offset (outermode, innermode));
1311 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1313 unsigned int
1314 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1316 unsigned int offset = 0;
1317 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1319 if (difference > 0)
1321 if (WORDS_BIG_ENDIAN)
1322 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1323 if (BYTES_BIG_ENDIAN)
1324 offset += difference % UNITS_PER_WORD;
1327 return offset;
1330 /* Return offset in bytes to get OUTERMODE high part
1331 of the value in mode INNERMODE stored in memory in target format. */
1332 unsigned int
1333 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1335 unsigned int offset = 0;
1336 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1338 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1340 if (difference > 0)
1342 if (! WORDS_BIG_ENDIAN)
1343 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1344 if (! BYTES_BIG_ENDIAN)
1345 offset += difference % UNITS_PER_WORD;
1348 return offset;
1351 /* Return 1 iff X, assumed to be a SUBREG,
1352 refers to the least significant part of its containing reg.
1353 If X is not a SUBREG, always return 1 (it is its own low part!). */
1356 subreg_lowpart_p (const_rtx x)
1358 if (GET_CODE (x) != SUBREG)
1359 return 1;
1360 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1361 return 0;
1363 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1364 == SUBREG_BYTE (x));
1367 /* Return true if X is a paradoxical subreg, false otherwise. */
1368 bool
1369 paradoxical_subreg_p (const_rtx x)
1371 if (GET_CODE (x) != SUBREG)
1372 return false;
1373 return (GET_MODE_PRECISION (GET_MODE (x))
1374 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1377 /* Return subword OFFSET of operand OP.
1378 The word number, OFFSET, is interpreted as the word number starting
1379 at the low-order address. OFFSET 0 is the low-order word if not
1380 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1382 If we cannot extract the required word, we return zero. Otherwise,
1383 an rtx corresponding to the requested word will be returned.
1385 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1386 reload has completed, a valid address will always be returned. After
1387 reload, if a valid address cannot be returned, we return zero.
1389 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1390 it is the responsibility of the caller.
1392 MODE is the mode of OP in case it is a CONST_INT.
1394 ??? This is still rather broken for some cases. The problem for the
1395 moment is that all callers of this thing provide no 'goal mode' to
1396 tell us to work with. This exists because all callers were written
1397 in a word based SUBREG world.
1398 Now use of this function can be deprecated by simplify_subreg in most
1399 cases.
1403 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1405 if (mode == VOIDmode)
1406 mode = GET_MODE (op);
1408 gcc_assert (mode != VOIDmode);
1410 /* If OP is narrower than a word, fail. */
1411 if (mode != BLKmode
1412 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1413 return 0;
1415 /* If we want a word outside OP, return zero. */
1416 if (mode != BLKmode
1417 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1418 return const0_rtx;
1420 /* Form a new MEM at the requested address. */
1421 if (MEM_P (op))
1423 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1425 if (! validate_address)
1426 return new_rtx;
1428 else if (reload_completed)
1430 if (! strict_memory_address_addr_space_p (word_mode,
1431 XEXP (new_rtx, 0),
1432 MEM_ADDR_SPACE (op)))
1433 return 0;
1435 else
1436 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1439 /* Rest can be handled by simplify_subreg. */
1440 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1443 /* Similar to `operand_subword', but never return 0. If we can't
1444 extract the required subword, put OP into a register and try again.
1445 The second attempt must succeed. We always validate the address in
1446 this case.
1448 MODE is the mode of OP, in case it is CONST_INT. */
1451 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1453 rtx result = operand_subword (op, offset, 1, mode);
1455 if (result)
1456 return result;
1458 if (mode != BLKmode && mode != VOIDmode)
1460 /* If this is a register which can not be accessed by words, copy it
1461 to a pseudo register. */
1462 if (REG_P (op))
1463 op = copy_to_reg (op);
1464 else
1465 op = force_reg (mode, op);
1468 result = operand_subword (op, offset, 1, mode);
1469 gcc_assert (result);
1471 return result;
1474 /* Returns 1 if both MEM_EXPR can be considered equal
1475 and 0 otherwise. */
1478 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1480 if (expr1 == expr2)
1481 return 1;
1483 if (! expr1 || ! expr2)
1484 return 0;
1486 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1487 return 0;
1489 return operand_equal_p (expr1, expr2, 0);
1492 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1493 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1494 -1 if not known. */
1497 get_mem_align_offset (rtx mem, unsigned int align)
1499 tree expr;
1500 unsigned HOST_WIDE_INT offset;
1502 /* This function can't use
1503 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1504 || (MAX (MEM_ALIGN (mem),
1505 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1506 < align))
1507 return -1;
1508 else
1509 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1510 for two reasons:
1511 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1512 for <variable>. get_inner_reference doesn't handle it and
1513 even if it did, the alignment in that case needs to be determined
1514 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1515 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1516 isn't sufficiently aligned, the object it is in might be. */
1517 gcc_assert (MEM_P (mem));
1518 expr = MEM_EXPR (mem);
1519 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1520 return -1;
1522 offset = MEM_OFFSET (mem);
1523 if (DECL_P (expr))
1525 if (DECL_ALIGN (expr) < align)
1526 return -1;
1528 else if (INDIRECT_REF_P (expr))
1530 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1531 return -1;
1533 else if (TREE_CODE (expr) == COMPONENT_REF)
1535 while (1)
1537 tree inner = TREE_OPERAND (expr, 0);
1538 tree field = TREE_OPERAND (expr, 1);
1539 tree byte_offset = component_ref_field_offset (expr);
1540 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1542 if (!byte_offset
1543 || !host_integerp (byte_offset, 1)
1544 || !host_integerp (bit_offset, 1))
1545 return -1;
1547 offset += tree_low_cst (byte_offset, 1);
1548 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1550 if (inner == NULL_TREE)
1552 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1553 < (unsigned int) align)
1554 return -1;
1555 break;
1557 else if (DECL_P (inner))
1559 if (DECL_ALIGN (inner) < align)
1560 return -1;
1561 break;
1563 else if (TREE_CODE (inner) != COMPONENT_REF)
1564 return -1;
1565 expr = inner;
1568 else
1569 return -1;
1571 return offset & ((align / BITS_PER_UNIT) - 1);
1574 /* Given REF (a MEM) and T, either the type of X or the expression
1575 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1576 if we are making a new object of this type. BITPOS is nonzero if
1577 there is an offset outstanding on T that will be applied later. */
1579 void
1580 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1581 HOST_WIDE_INT bitpos)
1583 HOST_WIDE_INT apply_bitpos = 0;
1584 tree type;
1585 struct mem_attrs attrs, *defattrs, *refattrs;
1586 addr_space_t as;
1588 /* It can happen that type_for_mode was given a mode for which there
1589 is no language-level type. In which case it returns NULL, which
1590 we can see here. */
1591 if (t == NULL_TREE)
1592 return;
1594 type = TYPE_P (t) ? t : TREE_TYPE (t);
1595 if (type == error_mark_node)
1596 return;
1598 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1599 wrong answer, as it assumes that DECL_RTL already has the right alias
1600 info. Callers should not set DECL_RTL until after the call to
1601 set_mem_attributes. */
1602 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1604 memset (&attrs, 0, sizeof (attrs));
1606 /* Get the alias set from the expression or type (perhaps using a
1607 front-end routine) and use it. */
1608 attrs.alias = get_alias_set (t);
1610 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1611 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1613 /* Default values from pre-existing memory attributes if present. */
1614 refattrs = MEM_ATTRS (ref);
1615 if (refattrs)
1617 /* ??? Can this ever happen? Calling this routine on a MEM that
1618 already carries memory attributes should probably be invalid. */
1619 attrs.expr = refattrs->expr;
1620 attrs.offset_known_p = refattrs->offset_known_p;
1621 attrs.offset = refattrs->offset;
1622 attrs.size_known_p = refattrs->size_known_p;
1623 attrs.size = refattrs->size;
1624 attrs.align = refattrs->align;
1627 /* Otherwise, default values from the mode of the MEM reference. */
1628 else
1630 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1631 gcc_assert (!defattrs->expr);
1632 gcc_assert (!defattrs->offset_known_p);
1634 /* Respect mode size. */
1635 attrs.size_known_p = defattrs->size_known_p;
1636 attrs.size = defattrs->size;
1637 /* ??? Is this really necessary? We probably should always get
1638 the size from the type below. */
1640 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1641 if T is an object, always compute the object alignment below. */
1642 if (TYPE_P (t))
1643 attrs.align = defattrs->align;
1644 else
1645 attrs.align = BITS_PER_UNIT;
1646 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1647 e.g. if the type carries an alignment attribute. Should we be
1648 able to simply always use TYPE_ALIGN? */
1651 /* We can set the alignment from the type if we are making an object,
1652 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1653 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1654 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1656 /* If the size is known, we can set that. */
1657 tree new_size = TYPE_SIZE_UNIT (type);
1659 /* The address-space is that of the type. */
1660 as = TYPE_ADDR_SPACE (type);
1662 /* If T is not a type, we may be able to deduce some more information about
1663 the expression. */
1664 if (! TYPE_P (t))
1666 tree base;
1668 if (TREE_THIS_VOLATILE (t))
1669 MEM_VOLATILE_P (ref) = 1;
1671 /* Now remove any conversions: they don't change what the underlying
1672 object is. Likewise for SAVE_EXPR. */
1673 while (CONVERT_EXPR_P (t)
1674 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1675 || TREE_CODE (t) == SAVE_EXPR)
1676 t = TREE_OPERAND (t, 0);
1678 /* Note whether this expression can trap. */
1679 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1681 base = get_base_address (t);
1682 if (base)
1684 if (DECL_P (base)
1685 && TREE_READONLY (base)
1686 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1687 && !TREE_THIS_VOLATILE (base))
1688 MEM_READONLY_P (ref) = 1;
1690 /* Mark static const strings readonly as well. */
1691 if (TREE_CODE (base) == STRING_CST
1692 && TREE_READONLY (base)
1693 && TREE_STATIC (base))
1694 MEM_READONLY_P (ref) = 1;
1696 /* Address-space information is on the base object. */
1697 if (TREE_CODE (base) == MEM_REF
1698 || TREE_CODE (base) == TARGET_MEM_REF)
1699 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1700 0))));
1701 else
1702 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1705 /* If this expression uses it's parent's alias set, mark it such
1706 that we won't change it. */
1707 if (component_uses_parent_alias_set (t))
1708 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1710 /* If this is a decl, set the attributes of the MEM from it. */
1711 if (DECL_P (t))
1713 attrs.expr = t;
1714 attrs.offset_known_p = true;
1715 attrs.offset = 0;
1716 apply_bitpos = bitpos;
1717 new_size = DECL_SIZE_UNIT (t);
1720 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1721 else if (CONSTANT_CLASS_P (t))
1724 /* If this is a field reference, record it. */
1725 else if (TREE_CODE (t) == COMPONENT_REF)
1727 attrs.expr = t;
1728 attrs.offset_known_p = true;
1729 attrs.offset = 0;
1730 apply_bitpos = bitpos;
1731 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1732 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1735 /* If this is an array reference, look for an outer field reference. */
1736 else if (TREE_CODE (t) == ARRAY_REF)
1738 tree off_tree = size_zero_node;
1739 /* We can't modify t, because we use it at the end of the
1740 function. */
1741 tree t2 = t;
1745 tree index = TREE_OPERAND (t2, 1);
1746 tree low_bound = array_ref_low_bound (t2);
1747 tree unit_size = array_ref_element_size (t2);
1749 /* We assume all arrays have sizes that are a multiple of a byte.
1750 First subtract the lower bound, if any, in the type of the
1751 index, then convert to sizetype and multiply by the size of
1752 the array element. */
1753 if (! integer_zerop (low_bound))
1754 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1755 index, low_bound);
1757 off_tree = size_binop (PLUS_EXPR,
1758 size_binop (MULT_EXPR,
1759 fold_convert (sizetype,
1760 index),
1761 unit_size),
1762 off_tree);
1763 t2 = TREE_OPERAND (t2, 0);
1765 while (TREE_CODE (t2) == ARRAY_REF);
1767 if (DECL_P (t2)
1768 || TREE_CODE (t2) == COMPONENT_REF)
1770 attrs.expr = t2;
1771 attrs.offset_known_p = false;
1772 if (host_integerp (off_tree, 1))
1774 attrs.offset_known_p = true;
1775 attrs.offset = tree_low_cst (off_tree, 1);
1776 apply_bitpos = bitpos;
1779 /* Else do not record a MEM_EXPR. */
1782 /* If this is an indirect reference, record it. */
1783 else if (TREE_CODE (t) == MEM_REF
1784 || TREE_CODE (t) == TARGET_MEM_REF)
1786 attrs.expr = t;
1787 attrs.offset_known_p = true;
1788 attrs.offset = 0;
1789 apply_bitpos = bitpos;
1792 /* Compute the alignment. */
1793 unsigned int obj_align;
1794 unsigned HOST_WIDE_INT obj_bitpos;
1795 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1796 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1797 if (obj_bitpos != 0)
1798 obj_align = (obj_bitpos & -obj_bitpos);
1799 attrs.align = MAX (attrs.align, obj_align);
1802 if (host_integerp (new_size, 1))
1804 attrs.size_known_p = true;
1805 attrs.size = tree_low_cst (new_size, 1);
1808 /* If we modified OFFSET based on T, then subtract the outstanding
1809 bit position offset. Similarly, increase the size of the accessed
1810 object to contain the negative offset. */
1811 if (apply_bitpos)
1813 gcc_assert (attrs.offset_known_p);
1814 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1815 if (attrs.size_known_p)
1816 attrs.size += apply_bitpos / BITS_PER_UNIT;
1819 /* Now set the attributes we computed above. */
1820 attrs.addrspace = as;
1821 set_mem_attrs (ref, &attrs);
1824 void
1825 set_mem_attributes (rtx ref, tree t, int objectp)
1827 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1830 /* Set the alias set of MEM to SET. */
1832 void
1833 set_mem_alias_set (rtx mem, alias_set_type set)
1835 struct mem_attrs attrs;
1837 /* If the new and old alias sets don't conflict, something is wrong. */
1838 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1839 attrs = *get_mem_attrs (mem);
1840 attrs.alias = set;
1841 set_mem_attrs (mem, &attrs);
1844 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1846 void
1847 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1849 struct mem_attrs attrs;
1851 attrs = *get_mem_attrs (mem);
1852 attrs.addrspace = addrspace;
1853 set_mem_attrs (mem, &attrs);
1856 /* Set the alignment of MEM to ALIGN bits. */
1858 void
1859 set_mem_align (rtx mem, unsigned int align)
1861 struct mem_attrs attrs;
1863 attrs = *get_mem_attrs (mem);
1864 attrs.align = align;
1865 set_mem_attrs (mem, &attrs);
1868 /* Set the expr for MEM to EXPR. */
1870 void
1871 set_mem_expr (rtx mem, tree expr)
1873 struct mem_attrs attrs;
1875 attrs = *get_mem_attrs (mem);
1876 attrs.expr = expr;
1877 set_mem_attrs (mem, &attrs);
1880 /* Set the offset of MEM to OFFSET. */
1882 void
1883 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1885 struct mem_attrs attrs;
1887 attrs = *get_mem_attrs (mem);
1888 attrs.offset_known_p = true;
1889 attrs.offset = offset;
1890 set_mem_attrs (mem, &attrs);
1893 /* Clear the offset of MEM. */
1895 void
1896 clear_mem_offset (rtx mem)
1898 struct mem_attrs attrs;
1900 attrs = *get_mem_attrs (mem);
1901 attrs.offset_known_p = false;
1902 set_mem_attrs (mem, &attrs);
1905 /* Set the size of MEM to SIZE. */
1907 void
1908 set_mem_size (rtx mem, HOST_WIDE_INT size)
1910 struct mem_attrs attrs;
1912 attrs = *get_mem_attrs (mem);
1913 attrs.size_known_p = true;
1914 attrs.size = size;
1915 set_mem_attrs (mem, &attrs);
1918 /* Clear the size of MEM. */
1920 void
1921 clear_mem_size (rtx mem)
1923 struct mem_attrs attrs;
1925 attrs = *get_mem_attrs (mem);
1926 attrs.size_known_p = false;
1927 set_mem_attrs (mem, &attrs);
1930 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1931 and its address changed to ADDR. (VOIDmode means don't change the mode.
1932 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1933 returned memory location is required to be valid. The memory
1934 attributes are not changed. */
1936 static rtx
1937 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1939 addr_space_t as;
1940 rtx new_rtx;
1942 gcc_assert (MEM_P (memref));
1943 as = MEM_ADDR_SPACE (memref);
1944 if (mode == VOIDmode)
1945 mode = GET_MODE (memref);
1946 if (addr == 0)
1947 addr = XEXP (memref, 0);
1948 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1949 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1950 return memref;
1952 if (validate)
1954 if (reload_in_progress || reload_completed)
1955 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1956 else
1957 addr = memory_address_addr_space (mode, addr, as);
1960 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1961 return memref;
1963 new_rtx = gen_rtx_MEM (mode, addr);
1964 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1965 return new_rtx;
1968 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1969 way we are changing MEMREF, so we only preserve the alias set. */
1972 change_address (rtx memref, enum machine_mode mode, rtx addr)
1974 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
1975 enum machine_mode mmode = GET_MODE (new_rtx);
1976 struct mem_attrs attrs, *defattrs;
1978 attrs = *get_mem_attrs (memref);
1979 defattrs = mode_mem_attrs[(int) mmode];
1980 attrs.expr = NULL_TREE;
1981 attrs.offset_known_p = false;
1982 attrs.size_known_p = defattrs->size_known_p;
1983 attrs.size = defattrs->size;
1984 attrs.align = defattrs->align;
1986 /* If there are no changes, just return the original memory reference. */
1987 if (new_rtx == memref)
1989 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
1990 return new_rtx;
1992 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1993 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1996 set_mem_attrs (new_rtx, &attrs);
1997 return new_rtx;
2000 /* Return a memory reference like MEMREF, but with its mode changed
2001 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2002 nonzero, the memory address is forced to be valid.
2003 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2004 and the caller is responsible for adjusting MEMREF base register.
2005 If ADJUST_OBJECT is zero, the underlying object associated with the
2006 memory reference is left unchanged and the caller is responsible for
2007 dealing with it. Otherwise, if the new memory reference is outside
2008 the underlying object, even partially, then the object is dropped.
2009 SIZE, if nonzero, is the size of an access in cases where MODE
2010 has no inherent size. */
2013 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2014 int validate, int adjust_address, int adjust_object,
2015 HOST_WIDE_INT size)
2017 rtx addr = XEXP (memref, 0);
2018 rtx new_rtx;
2019 enum machine_mode address_mode;
2020 int pbits;
2021 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2022 unsigned HOST_WIDE_INT max_align;
2023 #ifdef POINTERS_EXTEND_UNSIGNED
2024 enum machine_mode pointer_mode
2025 = targetm.addr_space.pointer_mode (attrs.addrspace);
2026 #endif
2028 /* VOIDmode means no mode change for change_address_1. */
2029 if (mode == VOIDmode)
2030 mode = GET_MODE (memref);
2032 /* Take the size of non-BLKmode accesses from the mode. */
2033 defattrs = mode_mem_attrs[(int) mode];
2034 if (defattrs->size_known_p)
2035 size = defattrs->size;
2037 /* If there are no changes, just return the original memory reference. */
2038 if (mode == GET_MODE (memref) && !offset
2039 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2040 && (!validate || memory_address_addr_space_p (mode, addr,
2041 attrs.addrspace)))
2042 return memref;
2044 /* ??? Prefer to create garbage instead of creating shared rtl.
2045 This may happen even if offset is nonzero -- consider
2046 (plus (plus reg reg) const_int) -- so do this always. */
2047 addr = copy_rtx (addr);
2049 /* Convert a possibly large offset to a signed value within the
2050 range of the target address space. */
2051 address_mode = get_address_mode (memref);
2052 pbits = GET_MODE_BITSIZE (address_mode);
2053 if (HOST_BITS_PER_WIDE_INT > pbits)
2055 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2056 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2057 >> shift);
2060 if (adjust_address)
2062 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2063 object, we can merge it into the LO_SUM. */
2064 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2065 && offset >= 0
2066 && (unsigned HOST_WIDE_INT) offset
2067 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2068 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2069 plus_constant (address_mode,
2070 XEXP (addr, 1), offset));
2071 #ifdef POINTERS_EXTEND_UNSIGNED
2072 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2073 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2074 the fact that pointers are not allowed to overflow. */
2075 else if (POINTERS_EXTEND_UNSIGNED > 0
2076 && GET_CODE (addr) == ZERO_EXTEND
2077 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2078 && trunc_int_for_mode (offset, pointer_mode) == offset)
2079 addr = gen_rtx_ZERO_EXTEND (address_mode,
2080 plus_constant (pointer_mode,
2081 XEXP (addr, 0), offset));
2082 #endif
2083 else
2084 addr = plus_constant (address_mode, addr, offset);
2087 new_rtx = change_address_1 (memref, mode, addr, validate);
2089 /* If the address is a REG, change_address_1 rightfully returns memref,
2090 but this would destroy memref's MEM_ATTRS. */
2091 if (new_rtx == memref && offset != 0)
2092 new_rtx = copy_rtx (new_rtx);
2094 /* Conservatively drop the object if we don't know where we start from. */
2095 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2097 attrs.expr = NULL_TREE;
2098 attrs.alias = 0;
2101 /* Compute the new values of the memory attributes due to this adjustment.
2102 We add the offsets and update the alignment. */
2103 if (attrs.offset_known_p)
2105 attrs.offset += offset;
2107 /* Drop the object if the new left end is not within its bounds. */
2108 if (adjust_object && attrs.offset < 0)
2110 attrs.expr = NULL_TREE;
2111 attrs.alias = 0;
2115 /* Compute the new alignment by taking the MIN of the alignment and the
2116 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2117 if zero. */
2118 if (offset != 0)
2120 max_align = (offset & -offset) * BITS_PER_UNIT;
2121 attrs.align = MIN (attrs.align, max_align);
2124 if (size)
2126 /* Drop the object if the new right end is not within its bounds. */
2127 if (adjust_object && (offset + size) > attrs.size)
2129 attrs.expr = NULL_TREE;
2130 attrs.alias = 0;
2132 attrs.size_known_p = true;
2133 attrs.size = size;
2135 else if (attrs.size_known_p)
2137 gcc_assert (!adjust_object);
2138 attrs.size -= offset;
2139 /* ??? The store_by_pieces machinery generates negative sizes,
2140 so don't assert for that here. */
2143 set_mem_attrs (new_rtx, &attrs);
2145 return new_rtx;
2148 /* Return a memory reference like MEMREF, but with its mode changed
2149 to MODE and its address changed to ADDR, which is assumed to be
2150 MEMREF offset by OFFSET bytes. If VALIDATE is
2151 nonzero, the memory address is forced to be valid. */
2154 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2155 HOST_WIDE_INT offset, int validate)
2157 memref = change_address_1 (memref, VOIDmode, addr, validate);
2158 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2161 /* Return a memory reference like MEMREF, but whose address is changed by
2162 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2163 known to be in OFFSET (possibly 1). */
2166 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2168 rtx new_rtx, addr = XEXP (memref, 0);
2169 enum machine_mode address_mode;
2170 struct mem_attrs attrs, *defattrs;
2172 attrs = *get_mem_attrs (memref);
2173 address_mode = get_address_mode (memref);
2174 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2176 /* At this point we don't know _why_ the address is invalid. It
2177 could have secondary memory references, multiplies or anything.
2179 However, if we did go and rearrange things, we can wind up not
2180 being able to recognize the magic around pic_offset_table_rtx.
2181 This stuff is fragile, and is yet another example of why it is
2182 bad to expose PIC machinery too early. */
2183 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2184 attrs.addrspace)
2185 && GET_CODE (addr) == PLUS
2186 && XEXP (addr, 0) == pic_offset_table_rtx)
2188 addr = force_reg (GET_MODE (addr), addr);
2189 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2192 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2193 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2195 /* If there are no changes, just return the original memory reference. */
2196 if (new_rtx == memref)
2197 return new_rtx;
2199 /* Update the alignment to reflect the offset. Reset the offset, which
2200 we don't know. */
2201 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2202 attrs.offset_known_p = false;
2203 attrs.size_known_p = defattrs->size_known_p;
2204 attrs.size = defattrs->size;
2205 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2206 set_mem_attrs (new_rtx, &attrs);
2207 return new_rtx;
2210 /* Return a memory reference like MEMREF, but with its address changed to
2211 ADDR. The caller is asserting that the actual piece of memory pointed
2212 to is the same, just the form of the address is being changed, such as
2213 by putting something into a register. */
2216 replace_equiv_address (rtx memref, rtx addr)
2218 /* change_address_1 copies the memory attribute structure without change
2219 and that's exactly what we want here. */
2220 update_temp_slot_address (XEXP (memref, 0), addr);
2221 return change_address_1 (memref, VOIDmode, addr, 1);
2224 /* Likewise, but the reference is not required to be valid. */
2227 replace_equiv_address_nv (rtx memref, rtx addr)
2229 return change_address_1 (memref, VOIDmode, addr, 0);
2232 /* Return a memory reference like MEMREF, but with its mode widened to
2233 MODE and offset by OFFSET. This would be used by targets that e.g.
2234 cannot issue QImode memory operations and have to use SImode memory
2235 operations plus masking logic. */
2238 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2240 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2241 struct mem_attrs attrs;
2242 unsigned int size = GET_MODE_SIZE (mode);
2244 /* If there are no changes, just return the original memory reference. */
2245 if (new_rtx == memref)
2246 return new_rtx;
2248 attrs = *get_mem_attrs (new_rtx);
2250 /* If we don't know what offset we were at within the expression, then
2251 we can't know if we've overstepped the bounds. */
2252 if (! attrs.offset_known_p)
2253 attrs.expr = NULL_TREE;
2255 while (attrs.expr)
2257 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2259 tree field = TREE_OPERAND (attrs.expr, 1);
2260 tree offset = component_ref_field_offset (attrs.expr);
2262 if (! DECL_SIZE_UNIT (field))
2264 attrs.expr = NULL_TREE;
2265 break;
2268 /* Is the field at least as large as the access? If so, ok,
2269 otherwise strip back to the containing structure. */
2270 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2271 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2272 && attrs.offset >= 0)
2273 break;
2275 if (! host_integerp (offset, 1))
2277 attrs.expr = NULL_TREE;
2278 break;
2281 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2282 attrs.offset += tree_low_cst (offset, 1);
2283 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2284 / BITS_PER_UNIT);
2286 /* Similarly for the decl. */
2287 else if (DECL_P (attrs.expr)
2288 && DECL_SIZE_UNIT (attrs.expr)
2289 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2290 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2291 && (! attrs.offset_known_p || attrs.offset >= 0))
2292 break;
2293 else
2295 /* The widened memory access overflows the expression, which means
2296 that it could alias another expression. Zap it. */
2297 attrs.expr = NULL_TREE;
2298 break;
2302 if (! attrs.expr)
2303 attrs.offset_known_p = false;
2305 /* The widened memory may alias other stuff, so zap the alias set. */
2306 /* ??? Maybe use get_alias_set on any remaining expression. */
2307 attrs.alias = 0;
2308 attrs.size_known_p = true;
2309 attrs.size = size;
2310 set_mem_attrs (new_rtx, &attrs);
2311 return new_rtx;
2314 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2315 static GTY(()) tree spill_slot_decl;
2317 tree
2318 get_spill_slot_decl (bool force_build_p)
2320 tree d = spill_slot_decl;
2321 rtx rd;
2322 struct mem_attrs attrs;
2324 if (d || !force_build_p)
2325 return d;
2327 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2328 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2329 DECL_ARTIFICIAL (d) = 1;
2330 DECL_IGNORED_P (d) = 1;
2331 TREE_USED (d) = 1;
2332 spill_slot_decl = d;
2334 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2335 MEM_NOTRAP_P (rd) = 1;
2336 attrs = *mode_mem_attrs[(int) BLKmode];
2337 attrs.alias = new_alias_set ();
2338 attrs.expr = d;
2339 set_mem_attrs (rd, &attrs);
2340 SET_DECL_RTL (d, rd);
2342 return d;
2345 /* Given MEM, a result from assign_stack_local, fill in the memory
2346 attributes as appropriate for a register allocator spill slot.
2347 These slots are not aliasable by other memory. We arrange for
2348 them all to use a single MEM_EXPR, so that the aliasing code can
2349 work properly in the case of shared spill slots. */
2351 void
2352 set_mem_attrs_for_spill (rtx mem)
2354 struct mem_attrs attrs;
2355 rtx addr;
2357 attrs = *get_mem_attrs (mem);
2358 attrs.expr = get_spill_slot_decl (true);
2359 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2360 attrs.addrspace = ADDR_SPACE_GENERIC;
2362 /* We expect the incoming memory to be of the form:
2363 (mem:MODE (plus (reg sfp) (const_int offset)))
2364 with perhaps the plus missing for offset = 0. */
2365 addr = XEXP (mem, 0);
2366 attrs.offset_known_p = true;
2367 attrs.offset = 0;
2368 if (GET_CODE (addr) == PLUS
2369 && CONST_INT_P (XEXP (addr, 1)))
2370 attrs.offset = INTVAL (XEXP (addr, 1));
2372 set_mem_attrs (mem, &attrs);
2373 MEM_NOTRAP_P (mem) = 1;
2376 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2379 gen_label_rtx (void)
2381 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2382 NULL, label_num++, NULL);
2385 /* For procedure integration. */
2387 /* Install new pointers to the first and last insns in the chain.
2388 Also, set cur_insn_uid to one higher than the last in use.
2389 Used for an inline-procedure after copying the insn chain. */
2391 void
2392 set_new_first_and_last_insn (rtx first, rtx last)
2394 rtx insn;
2396 set_first_insn (first);
2397 set_last_insn (last);
2398 cur_insn_uid = 0;
2400 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2402 int debug_count = 0;
2404 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2405 cur_debug_insn_uid = 0;
2407 for (insn = first; insn; insn = NEXT_INSN (insn))
2408 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2409 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2410 else
2412 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2413 if (DEBUG_INSN_P (insn))
2414 debug_count++;
2417 if (debug_count)
2418 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2419 else
2420 cur_debug_insn_uid++;
2422 else
2423 for (insn = first; insn; insn = NEXT_INSN (insn))
2424 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2426 cur_insn_uid++;
2429 /* Go through all the RTL insn bodies and copy any invalid shared
2430 structure. This routine should only be called once. */
2432 static void
2433 unshare_all_rtl_1 (rtx insn)
2435 /* Unshare just about everything else. */
2436 unshare_all_rtl_in_chain (insn);
2438 /* Make sure the addresses of stack slots found outside the insn chain
2439 (such as, in DECL_RTL of a variable) are not shared
2440 with the insn chain.
2442 This special care is necessary when the stack slot MEM does not
2443 actually appear in the insn chain. If it does appear, its address
2444 is unshared from all else at that point. */
2445 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2448 /* Go through all the RTL insn bodies and copy any invalid shared
2449 structure, again. This is a fairly expensive thing to do so it
2450 should be done sparingly. */
2452 void
2453 unshare_all_rtl_again (rtx insn)
2455 rtx p;
2456 tree decl;
2458 for (p = insn; p; p = NEXT_INSN (p))
2459 if (INSN_P (p))
2461 reset_used_flags (PATTERN (p));
2462 reset_used_flags (REG_NOTES (p));
2463 if (CALL_P (p))
2464 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2467 /* Make sure that virtual stack slots are not shared. */
2468 set_used_decls (DECL_INITIAL (cfun->decl));
2470 /* Make sure that virtual parameters are not shared. */
2471 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2472 set_used_flags (DECL_RTL (decl));
2474 reset_used_flags (stack_slot_list);
2476 unshare_all_rtl_1 (insn);
2479 unsigned int
2480 unshare_all_rtl (void)
2482 unshare_all_rtl_1 (get_insns ());
2483 return 0;
2487 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2488 Recursively does the same for subexpressions. */
2490 static void
2491 verify_rtx_sharing (rtx orig, rtx insn)
2493 rtx x = orig;
2494 int i;
2495 enum rtx_code code;
2496 const char *format_ptr;
2498 if (x == 0)
2499 return;
2501 code = GET_CODE (x);
2503 /* These types may be freely shared. */
2505 switch (code)
2507 case REG:
2508 case DEBUG_EXPR:
2509 case VALUE:
2510 CASE_CONST_ANY:
2511 case SYMBOL_REF:
2512 case LABEL_REF:
2513 case CODE_LABEL:
2514 case PC:
2515 case CC0:
2516 case RETURN:
2517 case SIMPLE_RETURN:
2518 case SCRATCH:
2519 /* SCRATCH must be shared because they represent distinct values. */
2520 return;
2521 case CLOBBER:
2522 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2523 clobbers or clobbers of hard registers that originated as pseudos.
2524 This is needed to allow safe register renaming. */
2525 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2526 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2527 return;
2528 break;
2530 case CONST:
2531 if (shared_const_p (orig))
2532 return;
2533 break;
2535 case MEM:
2536 /* A MEM is allowed to be shared if its address is constant. */
2537 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2538 || reload_completed || reload_in_progress)
2539 return;
2541 break;
2543 default:
2544 break;
2547 /* This rtx may not be shared. If it has already been seen,
2548 replace it with a copy of itself. */
2549 #ifdef ENABLE_CHECKING
2550 if (RTX_FLAG (x, used))
2552 error ("invalid rtl sharing found in the insn");
2553 debug_rtx (insn);
2554 error ("shared rtx");
2555 debug_rtx (x);
2556 internal_error ("internal consistency failure");
2558 #endif
2559 gcc_assert (!RTX_FLAG (x, used));
2561 RTX_FLAG (x, used) = 1;
2563 /* Now scan the subexpressions recursively. */
2565 format_ptr = GET_RTX_FORMAT (code);
2567 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2569 switch (*format_ptr++)
2571 case 'e':
2572 verify_rtx_sharing (XEXP (x, i), insn);
2573 break;
2575 case 'E':
2576 if (XVEC (x, i) != NULL)
2578 int j;
2579 int len = XVECLEN (x, i);
2581 for (j = 0; j < len; j++)
2583 /* We allow sharing of ASM_OPERANDS inside single
2584 instruction. */
2585 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2586 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2587 == ASM_OPERANDS))
2588 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2589 else
2590 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2593 break;
2596 return;
2599 /* Go through all the RTL insn bodies and check that there is no unexpected
2600 sharing in between the subexpressions. */
2602 DEBUG_FUNCTION void
2603 verify_rtl_sharing (void)
2605 rtx p;
2607 timevar_push (TV_VERIFY_RTL_SHARING);
2609 for (p = get_insns (); p; p = NEXT_INSN (p))
2610 if (INSN_P (p))
2612 reset_used_flags (PATTERN (p));
2613 reset_used_flags (REG_NOTES (p));
2614 if (CALL_P (p))
2615 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2616 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2618 int i;
2619 rtx q, sequence = PATTERN (p);
2621 for (i = 0; i < XVECLEN (sequence, 0); i++)
2623 q = XVECEXP (sequence, 0, i);
2624 gcc_assert (INSN_P (q));
2625 reset_used_flags (PATTERN (q));
2626 reset_used_flags (REG_NOTES (q));
2627 if (CALL_P (q))
2628 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2633 for (p = get_insns (); p; p = NEXT_INSN (p))
2634 if (INSN_P (p))
2636 verify_rtx_sharing (PATTERN (p), p);
2637 verify_rtx_sharing (REG_NOTES (p), p);
2638 if (CALL_P (p))
2639 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2642 timevar_pop (TV_VERIFY_RTL_SHARING);
2645 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2646 Assumes the mark bits are cleared at entry. */
2648 void
2649 unshare_all_rtl_in_chain (rtx insn)
2651 for (; insn; insn = NEXT_INSN (insn))
2652 if (INSN_P (insn))
2654 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2655 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2656 if (CALL_P (insn))
2657 CALL_INSN_FUNCTION_USAGE (insn)
2658 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2662 /* Go through all virtual stack slots of a function and mark them as
2663 shared. We never replace the DECL_RTLs themselves with a copy,
2664 but expressions mentioned into a DECL_RTL cannot be shared with
2665 expressions in the instruction stream.
2667 Note that reload may convert pseudo registers into memories in-place.
2668 Pseudo registers are always shared, but MEMs never are. Thus if we
2669 reset the used flags on MEMs in the instruction stream, we must set
2670 them again on MEMs that appear in DECL_RTLs. */
2672 static void
2673 set_used_decls (tree blk)
2675 tree t;
2677 /* Mark decls. */
2678 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2679 if (DECL_RTL_SET_P (t))
2680 set_used_flags (DECL_RTL (t));
2682 /* Now process sub-blocks. */
2683 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2684 set_used_decls (t);
2687 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2688 Recursively does the same for subexpressions. Uses
2689 copy_rtx_if_shared_1 to reduce stack space. */
2692 copy_rtx_if_shared (rtx orig)
2694 copy_rtx_if_shared_1 (&orig);
2695 return orig;
2698 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2699 use. Recursively does the same for subexpressions. */
2701 static void
2702 copy_rtx_if_shared_1 (rtx *orig1)
2704 rtx x;
2705 int i;
2706 enum rtx_code code;
2707 rtx *last_ptr;
2708 const char *format_ptr;
2709 int copied = 0;
2710 int length;
2712 /* Repeat is used to turn tail-recursion into iteration. */
2713 repeat:
2714 x = *orig1;
2716 if (x == 0)
2717 return;
2719 code = GET_CODE (x);
2721 /* These types may be freely shared. */
2723 switch (code)
2725 case REG:
2726 case DEBUG_EXPR:
2727 case VALUE:
2728 CASE_CONST_ANY:
2729 case SYMBOL_REF:
2730 case LABEL_REF:
2731 case CODE_LABEL:
2732 case PC:
2733 case CC0:
2734 case RETURN:
2735 case SIMPLE_RETURN:
2736 case SCRATCH:
2737 /* SCRATCH must be shared because they represent distinct values. */
2738 return;
2739 case CLOBBER:
2740 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2741 clobbers or clobbers of hard registers that originated as pseudos.
2742 This is needed to allow safe register renaming. */
2743 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2744 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2745 return;
2746 break;
2748 case CONST:
2749 if (shared_const_p (x))
2750 return;
2751 break;
2753 case DEBUG_INSN:
2754 case INSN:
2755 case JUMP_INSN:
2756 case CALL_INSN:
2757 case NOTE:
2758 case BARRIER:
2759 /* The chain of insns is not being copied. */
2760 return;
2762 default:
2763 break;
2766 /* This rtx may not be shared. If it has already been seen,
2767 replace it with a copy of itself. */
2769 if (RTX_FLAG (x, used))
2771 x = shallow_copy_rtx (x);
2772 copied = 1;
2774 RTX_FLAG (x, used) = 1;
2776 /* Now scan the subexpressions recursively.
2777 We can store any replaced subexpressions directly into X
2778 since we know X is not shared! Any vectors in X
2779 must be copied if X was copied. */
2781 format_ptr = GET_RTX_FORMAT (code);
2782 length = GET_RTX_LENGTH (code);
2783 last_ptr = NULL;
2785 for (i = 0; i < length; i++)
2787 switch (*format_ptr++)
2789 case 'e':
2790 if (last_ptr)
2791 copy_rtx_if_shared_1 (last_ptr);
2792 last_ptr = &XEXP (x, i);
2793 break;
2795 case 'E':
2796 if (XVEC (x, i) != NULL)
2798 int j;
2799 int len = XVECLEN (x, i);
2801 /* Copy the vector iff I copied the rtx and the length
2802 is nonzero. */
2803 if (copied && len > 0)
2804 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2806 /* Call recursively on all inside the vector. */
2807 for (j = 0; j < len; j++)
2809 if (last_ptr)
2810 copy_rtx_if_shared_1 (last_ptr);
2811 last_ptr = &XVECEXP (x, i, j);
2814 break;
2817 *orig1 = x;
2818 if (last_ptr)
2820 orig1 = last_ptr;
2821 goto repeat;
2823 return;
2826 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2828 static void
2829 mark_used_flags (rtx x, int flag)
2831 int i, j;
2832 enum rtx_code code;
2833 const char *format_ptr;
2834 int length;
2836 /* Repeat is used to turn tail-recursion into iteration. */
2837 repeat:
2838 if (x == 0)
2839 return;
2841 code = GET_CODE (x);
2843 /* These types may be freely shared so we needn't do any resetting
2844 for them. */
2846 switch (code)
2848 case REG:
2849 case DEBUG_EXPR:
2850 case VALUE:
2851 CASE_CONST_ANY:
2852 case SYMBOL_REF:
2853 case CODE_LABEL:
2854 case PC:
2855 case CC0:
2856 case RETURN:
2857 case SIMPLE_RETURN:
2858 return;
2860 case DEBUG_INSN:
2861 case INSN:
2862 case JUMP_INSN:
2863 case CALL_INSN:
2864 case NOTE:
2865 case LABEL_REF:
2866 case BARRIER:
2867 /* The chain of insns is not being copied. */
2868 return;
2870 default:
2871 break;
2874 RTX_FLAG (x, used) = flag;
2876 format_ptr = GET_RTX_FORMAT (code);
2877 length = GET_RTX_LENGTH (code);
2879 for (i = 0; i < length; i++)
2881 switch (*format_ptr++)
2883 case 'e':
2884 if (i == length-1)
2886 x = XEXP (x, i);
2887 goto repeat;
2889 mark_used_flags (XEXP (x, i), flag);
2890 break;
2892 case 'E':
2893 for (j = 0; j < XVECLEN (x, i); j++)
2894 mark_used_flags (XVECEXP (x, i, j), flag);
2895 break;
2900 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2901 to look for shared sub-parts. */
2903 void
2904 reset_used_flags (rtx x)
2906 mark_used_flags (x, 0);
2909 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2910 to look for shared sub-parts. */
2912 void
2913 set_used_flags (rtx x)
2915 mark_used_flags (x, 1);
2918 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2919 Return X or the rtx for the pseudo reg the value of X was copied into.
2920 OTHER must be valid as a SET_DEST. */
2923 make_safe_from (rtx x, rtx other)
2925 while (1)
2926 switch (GET_CODE (other))
2928 case SUBREG:
2929 other = SUBREG_REG (other);
2930 break;
2931 case STRICT_LOW_PART:
2932 case SIGN_EXTEND:
2933 case ZERO_EXTEND:
2934 other = XEXP (other, 0);
2935 break;
2936 default:
2937 goto done;
2939 done:
2940 if ((MEM_P (other)
2941 && ! CONSTANT_P (x)
2942 && !REG_P (x)
2943 && GET_CODE (x) != SUBREG)
2944 || (REG_P (other)
2945 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2946 || reg_mentioned_p (other, x))))
2948 rtx temp = gen_reg_rtx (GET_MODE (x));
2949 emit_move_insn (temp, x);
2950 return temp;
2952 return x;
2955 /* Emission of insns (adding them to the doubly-linked list). */
2957 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2960 get_last_insn_anywhere (void)
2962 struct sequence_stack *stack;
2963 if (get_last_insn ())
2964 return get_last_insn ();
2965 for (stack = seq_stack; stack; stack = stack->next)
2966 if (stack->last != 0)
2967 return stack->last;
2968 return 0;
2971 /* Return the first nonnote insn emitted in current sequence or current
2972 function. This routine looks inside SEQUENCEs. */
2975 get_first_nonnote_insn (void)
2977 rtx insn = get_insns ();
2979 if (insn)
2981 if (NOTE_P (insn))
2982 for (insn = next_insn (insn);
2983 insn && NOTE_P (insn);
2984 insn = next_insn (insn))
2985 continue;
2986 else
2988 if (NONJUMP_INSN_P (insn)
2989 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2990 insn = XVECEXP (PATTERN (insn), 0, 0);
2994 return insn;
2997 /* Return the last nonnote insn emitted in current sequence or current
2998 function. This routine looks inside SEQUENCEs. */
3001 get_last_nonnote_insn (void)
3003 rtx insn = get_last_insn ();
3005 if (insn)
3007 if (NOTE_P (insn))
3008 for (insn = previous_insn (insn);
3009 insn && NOTE_P (insn);
3010 insn = previous_insn (insn))
3011 continue;
3012 else
3014 if (NONJUMP_INSN_P (insn)
3015 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3016 insn = XVECEXP (PATTERN (insn), 0,
3017 XVECLEN (PATTERN (insn), 0) - 1);
3021 return insn;
3024 /* Return the number of actual (non-debug) insns emitted in this
3025 function. */
3028 get_max_insn_count (void)
3030 int n = cur_insn_uid;
3032 /* The table size must be stable across -g, to avoid codegen
3033 differences due to debug insns, and not be affected by
3034 -fmin-insn-uid, to avoid excessive table size and to simplify
3035 debugging of -fcompare-debug failures. */
3036 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3037 n -= cur_debug_insn_uid;
3038 else
3039 n -= MIN_NONDEBUG_INSN_UID;
3041 return n;
3045 /* Return the next insn. If it is a SEQUENCE, return the first insn
3046 of the sequence. */
3049 next_insn (rtx insn)
3051 if (insn)
3053 insn = NEXT_INSN (insn);
3054 if (insn && NONJUMP_INSN_P (insn)
3055 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3056 insn = XVECEXP (PATTERN (insn), 0, 0);
3059 return insn;
3062 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3063 of the sequence. */
3066 previous_insn (rtx insn)
3068 if (insn)
3070 insn = PREV_INSN (insn);
3071 if (insn && NONJUMP_INSN_P (insn)
3072 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3073 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3076 return insn;
3079 /* Return the next insn after INSN that is not a NOTE. This routine does not
3080 look inside SEQUENCEs. */
3083 next_nonnote_insn (rtx insn)
3085 while (insn)
3087 insn = NEXT_INSN (insn);
3088 if (insn == 0 || !NOTE_P (insn))
3089 break;
3092 return insn;
3095 /* Return the next insn after INSN that is not a NOTE, but stop the
3096 search before we enter another basic block. This routine does not
3097 look inside SEQUENCEs. */
3100 next_nonnote_insn_bb (rtx insn)
3102 while (insn)
3104 insn = NEXT_INSN (insn);
3105 if (insn == 0 || !NOTE_P (insn))
3106 break;
3107 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3108 return NULL_RTX;
3111 return insn;
3114 /* Return the previous insn before INSN that is not a NOTE. This routine does
3115 not look inside SEQUENCEs. */
3118 prev_nonnote_insn (rtx insn)
3120 while (insn)
3122 insn = PREV_INSN (insn);
3123 if (insn == 0 || !NOTE_P (insn))
3124 break;
3127 return insn;
3130 /* Return the previous insn before INSN that is not a NOTE, but stop
3131 the search before we enter another basic block. This routine does
3132 not look inside SEQUENCEs. */
3135 prev_nonnote_insn_bb (rtx insn)
3137 while (insn)
3139 insn = PREV_INSN (insn);
3140 if (insn == 0 || !NOTE_P (insn))
3141 break;
3142 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3143 return NULL_RTX;
3146 return insn;
3149 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3150 routine does not look inside SEQUENCEs. */
3153 next_nondebug_insn (rtx insn)
3155 while (insn)
3157 insn = NEXT_INSN (insn);
3158 if (insn == 0 || !DEBUG_INSN_P (insn))
3159 break;
3162 return insn;
3165 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3166 This routine does not look inside SEQUENCEs. */
3169 prev_nondebug_insn (rtx insn)
3171 while (insn)
3173 insn = PREV_INSN (insn);
3174 if (insn == 0 || !DEBUG_INSN_P (insn))
3175 break;
3178 return insn;
3181 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3182 This routine does not look inside SEQUENCEs. */
3185 next_nonnote_nondebug_insn (rtx insn)
3187 while (insn)
3189 insn = NEXT_INSN (insn);
3190 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3191 break;
3194 return insn;
3197 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3198 This routine does not look inside SEQUENCEs. */
3201 prev_nonnote_nondebug_insn (rtx insn)
3203 while (insn)
3205 insn = PREV_INSN (insn);
3206 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3207 break;
3210 return insn;
3213 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3214 or 0, if there is none. This routine does not look inside
3215 SEQUENCEs. */
3218 next_real_insn (rtx insn)
3220 while (insn)
3222 insn = NEXT_INSN (insn);
3223 if (insn == 0 || INSN_P (insn))
3224 break;
3227 return insn;
3230 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3231 or 0, if there is none. This routine does not look inside
3232 SEQUENCEs. */
3235 prev_real_insn (rtx insn)
3237 while (insn)
3239 insn = PREV_INSN (insn);
3240 if (insn == 0 || INSN_P (insn))
3241 break;
3244 return insn;
3247 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3248 This routine does not look inside SEQUENCEs. */
3251 last_call_insn (void)
3253 rtx insn;
3255 for (insn = get_last_insn ();
3256 insn && !CALL_P (insn);
3257 insn = PREV_INSN (insn))
3260 return insn;
3263 /* Find the next insn after INSN that really does something. This routine
3264 does not look inside SEQUENCEs. After reload this also skips over
3265 standalone USE and CLOBBER insn. */
3268 active_insn_p (const_rtx insn)
3270 return (CALL_P (insn) || JUMP_P (insn)
3271 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3272 || (NONJUMP_INSN_P (insn)
3273 && (! reload_completed
3274 || (GET_CODE (PATTERN (insn)) != USE
3275 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3279 next_active_insn (rtx insn)
3281 while (insn)
3283 insn = NEXT_INSN (insn);
3284 if (insn == 0 || active_insn_p (insn))
3285 break;
3288 return insn;
3291 /* Find the last insn before INSN that really does something. This routine
3292 does not look inside SEQUENCEs. After reload this also skips over
3293 standalone USE and CLOBBER insn. */
3296 prev_active_insn (rtx insn)
3298 while (insn)
3300 insn = PREV_INSN (insn);
3301 if (insn == 0 || active_insn_p (insn))
3302 break;
3305 return insn;
3308 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3311 next_label (rtx insn)
3313 while (insn)
3315 insn = NEXT_INSN (insn);
3316 if (insn == 0 || LABEL_P (insn))
3317 break;
3320 return insn;
3323 /* Return the last label to mark the same position as LABEL. Return LABEL
3324 itself if it is null or any return rtx. */
3327 skip_consecutive_labels (rtx label)
3329 rtx insn;
3331 if (label && ANY_RETURN_P (label))
3332 return label;
3334 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3335 if (LABEL_P (insn))
3336 label = insn;
3338 return label;
3341 #ifdef HAVE_cc0
3342 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3343 and REG_CC_USER notes so we can find it. */
3345 void
3346 link_cc0_insns (rtx insn)
3348 rtx user = next_nonnote_insn (insn);
3350 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3351 user = XVECEXP (PATTERN (user), 0, 0);
3353 add_reg_note (user, REG_CC_SETTER, insn);
3354 add_reg_note (insn, REG_CC_USER, user);
3357 /* Return the next insn that uses CC0 after INSN, which is assumed to
3358 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3359 applied to the result of this function should yield INSN).
3361 Normally, this is simply the next insn. However, if a REG_CC_USER note
3362 is present, it contains the insn that uses CC0.
3364 Return 0 if we can't find the insn. */
3367 next_cc0_user (rtx insn)
3369 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3371 if (note)
3372 return XEXP (note, 0);
3374 insn = next_nonnote_insn (insn);
3375 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3376 insn = XVECEXP (PATTERN (insn), 0, 0);
3378 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3379 return insn;
3381 return 0;
3384 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3385 note, it is the previous insn. */
3388 prev_cc0_setter (rtx insn)
3390 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3392 if (note)
3393 return XEXP (note, 0);
3395 insn = prev_nonnote_insn (insn);
3396 gcc_assert (sets_cc0_p (PATTERN (insn)));
3398 return insn;
3400 #endif
3402 #ifdef AUTO_INC_DEC
3403 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3405 static int
3406 find_auto_inc (rtx *xp, void *data)
3408 rtx x = *xp;
3409 rtx reg = (rtx) data;
3411 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3412 return 0;
3414 switch (GET_CODE (x))
3416 case PRE_DEC:
3417 case PRE_INC:
3418 case POST_DEC:
3419 case POST_INC:
3420 case PRE_MODIFY:
3421 case POST_MODIFY:
3422 if (rtx_equal_p (reg, XEXP (x, 0)))
3423 return 1;
3424 break;
3426 default:
3427 gcc_unreachable ();
3429 return -1;
3431 #endif
3433 /* Increment the label uses for all labels present in rtx. */
3435 static void
3436 mark_label_nuses (rtx x)
3438 enum rtx_code code;
3439 int i, j;
3440 const char *fmt;
3442 code = GET_CODE (x);
3443 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3444 LABEL_NUSES (XEXP (x, 0))++;
3446 fmt = GET_RTX_FORMAT (code);
3447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3449 if (fmt[i] == 'e')
3450 mark_label_nuses (XEXP (x, i));
3451 else if (fmt[i] == 'E')
3452 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3453 mark_label_nuses (XVECEXP (x, i, j));
3458 /* Try splitting insns that can be split for better scheduling.
3459 PAT is the pattern which might split.
3460 TRIAL is the insn providing PAT.
3461 LAST is nonzero if we should return the last insn of the sequence produced.
3463 If this routine succeeds in splitting, it returns the first or last
3464 replacement insn depending on the value of LAST. Otherwise, it
3465 returns TRIAL. If the insn to be returned can be split, it will be. */
3468 try_split (rtx pat, rtx trial, int last)
3470 rtx before = PREV_INSN (trial);
3471 rtx after = NEXT_INSN (trial);
3472 int has_barrier = 0;
3473 rtx note, seq, tem;
3474 int probability;
3475 rtx insn_last, insn;
3476 int njumps = 0;
3478 /* We're not good at redistributing frame information. */
3479 if (RTX_FRAME_RELATED_P (trial))
3480 return trial;
3482 if (any_condjump_p (trial)
3483 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3484 split_branch_probability = INTVAL (XEXP (note, 0));
3485 probability = split_branch_probability;
3487 seq = split_insns (pat, trial);
3489 split_branch_probability = -1;
3491 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3492 We may need to handle this specially. */
3493 if (after && BARRIER_P (after))
3495 has_barrier = 1;
3496 after = NEXT_INSN (after);
3499 if (!seq)
3500 return trial;
3502 /* Avoid infinite loop if any insn of the result matches
3503 the original pattern. */
3504 insn_last = seq;
3505 while (1)
3507 if (INSN_P (insn_last)
3508 && rtx_equal_p (PATTERN (insn_last), pat))
3509 return trial;
3510 if (!NEXT_INSN (insn_last))
3511 break;
3512 insn_last = NEXT_INSN (insn_last);
3515 /* We will be adding the new sequence to the function. The splitters
3516 may have introduced invalid RTL sharing, so unshare the sequence now. */
3517 unshare_all_rtl_in_chain (seq);
3519 /* Mark labels. */
3520 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3522 if (JUMP_P (insn))
3524 mark_jump_label (PATTERN (insn), insn, 0);
3525 njumps++;
3526 if (probability != -1
3527 && any_condjump_p (insn)
3528 && !find_reg_note (insn, REG_BR_PROB, 0))
3530 /* We can preserve the REG_BR_PROB notes only if exactly
3531 one jump is created, otherwise the machine description
3532 is responsible for this step using
3533 split_branch_probability variable. */
3534 gcc_assert (njumps == 1);
3535 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3540 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3541 in SEQ and copy any additional information across. */
3542 if (CALL_P (trial))
3544 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3545 if (CALL_P (insn))
3547 rtx next, *p;
3549 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3550 target may have explicitly specified. */
3551 p = &CALL_INSN_FUNCTION_USAGE (insn);
3552 while (*p)
3553 p = &XEXP (*p, 1);
3554 *p = CALL_INSN_FUNCTION_USAGE (trial);
3556 /* If the old call was a sibling call, the new one must
3557 be too. */
3558 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3560 /* If the new call is the last instruction in the sequence,
3561 it will effectively replace the old call in-situ. Otherwise
3562 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3563 so that it comes immediately after the new call. */
3564 if (NEXT_INSN (insn))
3565 for (next = NEXT_INSN (trial);
3566 next && NOTE_P (next);
3567 next = NEXT_INSN (next))
3568 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3570 remove_insn (next);
3571 add_insn_after (next, insn, NULL);
3572 break;
3577 /* Copy notes, particularly those related to the CFG. */
3578 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3580 switch (REG_NOTE_KIND (note))
3582 case REG_EH_REGION:
3583 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3584 break;
3586 case REG_NORETURN:
3587 case REG_SETJMP:
3588 case REG_TM:
3589 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3591 if (CALL_P (insn))
3592 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3594 break;
3596 case REG_NON_LOCAL_GOTO:
3597 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3599 if (JUMP_P (insn))
3600 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3602 break;
3604 #ifdef AUTO_INC_DEC
3605 case REG_INC:
3606 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3608 rtx reg = XEXP (note, 0);
3609 if (!FIND_REG_INC_NOTE (insn, reg)
3610 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3611 add_reg_note (insn, REG_INC, reg);
3613 break;
3614 #endif
3616 case REG_ARGS_SIZE:
3617 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3618 break;
3620 default:
3621 break;
3625 /* If there are LABELS inside the split insns increment the
3626 usage count so we don't delete the label. */
3627 if (INSN_P (trial))
3629 insn = insn_last;
3630 while (insn != NULL_RTX)
3632 /* JUMP_P insns have already been "marked" above. */
3633 if (NONJUMP_INSN_P (insn))
3634 mark_label_nuses (PATTERN (insn));
3636 insn = PREV_INSN (insn);
3640 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3642 delete_insn (trial);
3643 if (has_barrier)
3644 emit_barrier_after (tem);
3646 /* Recursively call try_split for each new insn created; by the
3647 time control returns here that insn will be fully split, so
3648 set LAST and continue from the insn after the one returned.
3649 We can't use next_active_insn here since AFTER may be a note.
3650 Ignore deleted insns, which can be occur if not optimizing. */
3651 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3652 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3653 tem = try_split (PATTERN (tem), tem, 1);
3655 /* Return either the first or the last insn, depending on which was
3656 requested. */
3657 return last
3658 ? (after ? PREV_INSN (after) : get_last_insn ())
3659 : NEXT_INSN (before);
3662 /* Make and return an INSN rtx, initializing all its slots.
3663 Store PATTERN in the pattern slots. */
3666 make_insn_raw (rtx pattern)
3668 rtx insn;
3670 insn = rtx_alloc (INSN);
3672 INSN_UID (insn) = cur_insn_uid++;
3673 PATTERN (insn) = pattern;
3674 INSN_CODE (insn) = -1;
3675 REG_NOTES (insn) = NULL;
3676 INSN_LOCATION (insn) = curr_insn_location ();
3677 BLOCK_FOR_INSN (insn) = NULL;
3679 #ifdef ENABLE_RTL_CHECKING
3680 if (insn
3681 && INSN_P (insn)
3682 && (returnjump_p (insn)
3683 || (GET_CODE (insn) == SET
3684 && SET_DEST (insn) == pc_rtx)))
3686 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3687 debug_rtx (insn);
3689 #endif
3691 return insn;
3694 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3696 static rtx
3697 make_debug_insn_raw (rtx pattern)
3699 rtx insn;
3701 insn = rtx_alloc (DEBUG_INSN);
3702 INSN_UID (insn) = cur_debug_insn_uid++;
3703 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3704 INSN_UID (insn) = cur_insn_uid++;
3706 PATTERN (insn) = pattern;
3707 INSN_CODE (insn) = -1;
3708 REG_NOTES (insn) = NULL;
3709 INSN_LOCATION (insn) = curr_insn_location ();
3710 BLOCK_FOR_INSN (insn) = NULL;
3712 return insn;
3715 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3717 static rtx
3718 make_jump_insn_raw (rtx pattern)
3720 rtx insn;
3722 insn = rtx_alloc (JUMP_INSN);
3723 INSN_UID (insn) = cur_insn_uid++;
3725 PATTERN (insn) = pattern;
3726 INSN_CODE (insn) = -1;
3727 REG_NOTES (insn) = NULL;
3728 JUMP_LABEL (insn) = NULL;
3729 INSN_LOCATION (insn) = curr_insn_location ();
3730 BLOCK_FOR_INSN (insn) = NULL;
3732 return insn;
3735 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3737 static rtx
3738 make_call_insn_raw (rtx pattern)
3740 rtx insn;
3742 insn = rtx_alloc (CALL_INSN);
3743 INSN_UID (insn) = cur_insn_uid++;
3745 PATTERN (insn) = pattern;
3746 INSN_CODE (insn) = -1;
3747 REG_NOTES (insn) = NULL;
3748 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3749 INSN_LOCATION (insn) = curr_insn_location ();
3750 BLOCK_FOR_INSN (insn) = NULL;
3752 return insn;
3755 /* Add INSN to the end of the doubly-linked list.
3756 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3758 void
3759 add_insn (rtx insn)
3761 PREV_INSN (insn) = get_last_insn();
3762 NEXT_INSN (insn) = 0;
3764 if (NULL != get_last_insn())
3765 NEXT_INSN (get_last_insn ()) = insn;
3767 if (NULL == get_insns ())
3768 set_first_insn (insn);
3770 set_last_insn (insn);
3773 /* Add INSN into the doubly-linked list after insn AFTER. This and
3774 the next should be the only functions called to insert an insn once
3775 delay slots have been filled since only they know how to update a
3776 SEQUENCE. */
3778 void
3779 add_insn_after (rtx insn, rtx after, basic_block bb)
3781 rtx next = NEXT_INSN (after);
3783 gcc_assert (!optimize || !INSN_DELETED_P (after));
3785 NEXT_INSN (insn) = next;
3786 PREV_INSN (insn) = after;
3788 if (next)
3790 PREV_INSN (next) = insn;
3791 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3792 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3794 else if (get_last_insn () == after)
3795 set_last_insn (insn);
3796 else
3798 struct sequence_stack *stack = seq_stack;
3799 /* Scan all pending sequences too. */
3800 for (; stack; stack = stack->next)
3801 if (after == stack->last)
3803 stack->last = insn;
3804 break;
3807 gcc_assert (stack);
3810 if (!BARRIER_P (after)
3811 && !BARRIER_P (insn)
3812 && (bb = BLOCK_FOR_INSN (after)))
3814 set_block_for_insn (insn, bb);
3815 if (INSN_P (insn))
3816 df_insn_rescan (insn);
3817 /* Should not happen as first in the BB is always
3818 either NOTE or LABEL. */
3819 if (BB_END (bb) == after
3820 /* Avoid clobbering of structure when creating new BB. */
3821 && !BARRIER_P (insn)
3822 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3823 BB_END (bb) = insn;
3826 NEXT_INSN (after) = insn;
3827 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3829 rtx sequence = PATTERN (after);
3830 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3834 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3835 the previous should be the only functions called to insert an insn
3836 once delay slots have been filled since only they know how to
3837 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3838 bb from before. */
3840 void
3841 add_insn_before (rtx insn, rtx before, basic_block bb)
3843 rtx prev = PREV_INSN (before);
3845 gcc_assert (!optimize || !INSN_DELETED_P (before));
3847 PREV_INSN (insn) = prev;
3848 NEXT_INSN (insn) = before;
3850 if (prev)
3852 NEXT_INSN (prev) = insn;
3853 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3855 rtx sequence = PATTERN (prev);
3856 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3859 else if (get_insns () == before)
3860 set_first_insn (insn);
3861 else
3863 struct sequence_stack *stack = seq_stack;
3864 /* Scan all pending sequences too. */
3865 for (; stack; stack = stack->next)
3866 if (before == stack->first)
3868 stack->first = insn;
3869 break;
3872 gcc_assert (stack);
3875 if (!bb
3876 && !BARRIER_P (before)
3877 && !BARRIER_P (insn))
3878 bb = BLOCK_FOR_INSN (before);
3880 if (bb)
3882 set_block_for_insn (insn, bb);
3883 if (INSN_P (insn))
3884 df_insn_rescan (insn);
3885 /* Should not happen as first in the BB is always either NOTE or
3886 LABEL. */
3887 gcc_assert (BB_HEAD (bb) != insn
3888 /* Avoid clobbering of structure when creating new BB. */
3889 || BARRIER_P (insn)
3890 || NOTE_INSN_BASIC_BLOCK_P (insn));
3893 PREV_INSN (before) = insn;
3894 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3895 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3899 /* Replace insn with an deleted instruction note. */
3901 void
3902 set_insn_deleted (rtx insn)
3904 if (INSN_P (insn))
3905 df_insn_delete (insn);
3906 PUT_CODE (insn, NOTE);
3907 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3911 /* Remove an insn from its doubly-linked list. This function knows how
3912 to handle sequences. */
3913 void
3914 remove_insn (rtx insn)
3916 rtx next = NEXT_INSN (insn);
3917 rtx prev = PREV_INSN (insn);
3918 basic_block bb;
3920 if (prev)
3922 NEXT_INSN (prev) = next;
3923 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3925 rtx sequence = PATTERN (prev);
3926 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3929 else if (get_insns () == insn)
3931 if (next)
3932 PREV_INSN (next) = NULL;
3933 set_first_insn (next);
3935 else
3937 struct sequence_stack *stack = seq_stack;
3938 /* Scan all pending sequences too. */
3939 for (; stack; stack = stack->next)
3940 if (insn == stack->first)
3942 stack->first = next;
3943 break;
3946 gcc_assert (stack);
3949 if (next)
3951 PREV_INSN (next) = prev;
3952 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3953 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3955 else if (get_last_insn () == insn)
3956 set_last_insn (prev);
3957 else
3959 struct sequence_stack *stack = seq_stack;
3960 /* Scan all pending sequences too. */
3961 for (; stack; stack = stack->next)
3962 if (insn == stack->last)
3964 stack->last = prev;
3965 break;
3968 gcc_assert (stack);
3971 /* Invalidate data flow information associated with INSN. */
3972 if (INSN_P (insn))
3973 df_insn_delete (insn);
3975 /* Fix up basic block boundaries, if necessary. */
3976 if (!BARRIER_P (insn)
3977 && (bb = BLOCK_FOR_INSN (insn)))
3979 if (BB_HEAD (bb) == insn)
3981 /* Never ever delete the basic block note without deleting whole
3982 basic block. */
3983 gcc_assert (!NOTE_P (insn));
3984 BB_HEAD (bb) = next;
3986 if (BB_END (bb) == insn)
3987 BB_END (bb) = prev;
3991 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3993 void
3994 add_function_usage_to (rtx call_insn, rtx call_fusage)
3996 gcc_assert (call_insn && CALL_P (call_insn));
3998 /* Put the register usage information on the CALL. If there is already
3999 some usage information, put ours at the end. */
4000 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4002 rtx link;
4004 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4005 link = XEXP (link, 1))
4008 XEXP (link, 1) = call_fusage;
4010 else
4011 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4014 /* Delete all insns made since FROM.
4015 FROM becomes the new last instruction. */
4017 void
4018 delete_insns_since (rtx from)
4020 if (from == 0)
4021 set_first_insn (0);
4022 else
4023 NEXT_INSN (from) = 0;
4024 set_last_insn (from);
4027 /* This function is deprecated, please use sequences instead.
4029 Move a consecutive bunch of insns to a different place in the chain.
4030 The insns to be moved are those between FROM and TO.
4031 They are moved to a new position after the insn AFTER.
4032 AFTER must not be FROM or TO or any insn in between.
4034 This function does not know about SEQUENCEs and hence should not be
4035 called after delay-slot filling has been done. */
4037 void
4038 reorder_insns_nobb (rtx from, rtx to, rtx after)
4040 #ifdef ENABLE_CHECKING
4041 rtx x;
4042 for (x = from; x != to; x = NEXT_INSN (x))
4043 gcc_assert (after != x);
4044 gcc_assert (after != to);
4045 #endif
4047 /* Splice this bunch out of where it is now. */
4048 if (PREV_INSN (from))
4049 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4050 if (NEXT_INSN (to))
4051 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4052 if (get_last_insn () == to)
4053 set_last_insn (PREV_INSN (from));
4054 if (get_insns () == from)
4055 set_first_insn (NEXT_INSN (to));
4057 /* Make the new neighbors point to it and it to them. */
4058 if (NEXT_INSN (after))
4059 PREV_INSN (NEXT_INSN (after)) = to;
4061 NEXT_INSN (to) = NEXT_INSN (after);
4062 PREV_INSN (from) = after;
4063 NEXT_INSN (after) = from;
4064 if (after == get_last_insn())
4065 set_last_insn (to);
4068 /* Same as function above, but take care to update BB boundaries. */
4069 void
4070 reorder_insns (rtx from, rtx to, rtx after)
4072 rtx prev = PREV_INSN (from);
4073 basic_block bb, bb2;
4075 reorder_insns_nobb (from, to, after);
4077 if (!BARRIER_P (after)
4078 && (bb = BLOCK_FOR_INSN (after)))
4080 rtx x;
4081 df_set_bb_dirty (bb);
4083 if (!BARRIER_P (from)
4084 && (bb2 = BLOCK_FOR_INSN (from)))
4086 if (BB_END (bb2) == to)
4087 BB_END (bb2) = prev;
4088 df_set_bb_dirty (bb2);
4091 if (BB_END (bb) == after)
4092 BB_END (bb) = to;
4094 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4095 if (!BARRIER_P (x))
4096 df_insn_change_bb (x, bb);
4101 /* Emit insn(s) of given code and pattern
4102 at a specified place within the doubly-linked list.
4104 All of the emit_foo global entry points accept an object
4105 X which is either an insn list or a PATTERN of a single
4106 instruction.
4108 There are thus a few canonical ways to generate code and
4109 emit it at a specific place in the instruction stream. For
4110 example, consider the instruction named SPOT and the fact that
4111 we would like to emit some instructions before SPOT. We might
4112 do it like this:
4114 start_sequence ();
4115 ... emit the new instructions ...
4116 insns_head = get_insns ();
4117 end_sequence ();
4119 emit_insn_before (insns_head, SPOT);
4121 It used to be common to generate SEQUENCE rtl instead, but that
4122 is a relic of the past which no longer occurs. The reason is that
4123 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4124 generated would almost certainly die right after it was created. */
4126 static rtx
4127 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4128 rtx (*make_raw) (rtx))
4130 rtx insn;
4132 gcc_assert (before);
4134 if (x == NULL_RTX)
4135 return last;
4137 switch (GET_CODE (x))
4139 case DEBUG_INSN:
4140 case INSN:
4141 case JUMP_INSN:
4142 case CALL_INSN:
4143 case CODE_LABEL:
4144 case BARRIER:
4145 case NOTE:
4146 insn = x;
4147 while (insn)
4149 rtx next = NEXT_INSN (insn);
4150 add_insn_before (insn, before, bb);
4151 last = insn;
4152 insn = next;
4154 break;
4156 #ifdef ENABLE_RTL_CHECKING
4157 case SEQUENCE:
4158 gcc_unreachable ();
4159 break;
4160 #endif
4162 default:
4163 last = (*make_raw) (x);
4164 add_insn_before (last, before, bb);
4165 break;
4168 return last;
4171 /* Make X be output before the instruction BEFORE. */
4174 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4176 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4179 /* Make an instruction with body X and code JUMP_INSN
4180 and output it before the instruction BEFORE. */
4183 emit_jump_insn_before_noloc (rtx x, rtx before)
4185 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4186 make_jump_insn_raw);
4189 /* Make an instruction with body X and code CALL_INSN
4190 and output it before the instruction BEFORE. */
4193 emit_call_insn_before_noloc (rtx x, rtx before)
4195 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4196 make_call_insn_raw);
4199 /* Make an instruction with body X and code DEBUG_INSN
4200 and output it before the instruction BEFORE. */
4203 emit_debug_insn_before_noloc (rtx x, rtx before)
4205 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4206 make_debug_insn_raw);
4209 /* Make an insn of code BARRIER
4210 and output it before the insn BEFORE. */
4213 emit_barrier_before (rtx before)
4215 rtx insn = rtx_alloc (BARRIER);
4217 INSN_UID (insn) = cur_insn_uid++;
4219 add_insn_before (insn, before, NULL);
4220 return insn;
4223 /* Emit the label LABEL before the insn BEFORE. */
4226 emit_label_before (rtx label, rtx before)
4228 gcc_checking_assert (INSN_UID (label) == 0);
4229 INSN_UID (label) = cur_insn_uid++;
4230 add_insn_before (label, before, NULL);
4231 return label;
4234 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4237 emit_note_before (enum insn_note subtype, rtx before)
4239 rtx note = rtx_alloc (NOTE);
4240 INSN_UID (note) = cur_insn_uid++;
4241 NOTE_KIND (note) = subtype;
4242 BLOCK_FOR_INSN (note) = NULL;
4243 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4245 add_insn_before (note, before, NULL);
4246 return note;
4249 /* Helper for emit_insn_after, handles lists of instructions
4250 efficiently. */
4252 static rtx
4253 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4255 rtx last;
4256 rtx after_after;
4257 if (!bb && !BARRIER_P (after))
4258 bb = BLOCK_FOR_INSN (after);
4260 if (bb)
4262 df_set_bb_dirty (bb);
4263 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4264 if (!BARRIER_P (last))
4266 set_block_for_insn (last, bb);
4267 df_insn_rescan (last);
4269 if (!BARRIER_P (last))
4271 set_block_for_insn (last, bb);
4272 df_insn_rescan (last);
4274 if (BB_END (bb) == after)
4275 BB_END (bb) = last;
4277 else
4278 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4279 continue;
4281 after_after = NEXT_INSN (after);
4283 NEXT_INSN (after) = first;
4284 PREV_INSN (first) = after;
4285 NEXT_INSN (last) = after_after;
4286 if (after_after)
4287 PREV_INSN (after_after) = last;
4289 if (after == get_last_insn())
4290 set_last_insn (last);
4292 return last;
4295 static rtx
4296 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4297 rtx (*make_raw)(rtx))
4299 rtx last = after;
4301 gcc_assert (after);
4303 if (x == NULL_RTX)
4304 return last;
4306 switch (GET_CODE (x))
4308 case DEBUG_INSN:
4309 case INSN:
4310 case JUMP_INSN:
4311 case CALL_INSN:
4312 case CODE_LABEL:
4313 case BARRIER:
4314 case NOTE:
4315 last = emit_insn_after_1 (x, after, bb);
4316 break;
4318 #ifdef ENABLE_RTL_CHECKING
4319 case SEQUENCE:
4320 gcc_unreachable ();
4321 break;
4322 #endif
4324 default:
4325 last = (*make_raw) (x);
4326 add_insn_after (last, after, bb);
4327 break;
4330 return last;
4333 /* Make X be output after the insn AFTER and set the BB of insn. If
4334 BB is NULL, an attempt is made to infer the BB from AFTER. */
4337 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4339 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4343 /* Make an insn of code JUMP_INSN with body X
4344 and output it after the insn AFTER. */
4347 emit_jump_insn_after_noloc (rtx x, rtx after)
4349 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4352 /* Make an instruction with body X and code CALL_INSN
4353 and output it after the instruction AFTER. */
4356 emit_call_insn_after_noloc (rtx x, rtx after)
4358 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4361 /* Make an instruction with body X and code CALL_INSN
4362 and output it after the instruction AFTER. */
4365 emit_debug_insn_after_noloc (rtx x, rtx after)
4367 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4370 /* Make an insn of code BARRIER
4371 and output it after the insn AFTER. */
4374 emit_barrier_after (rtx after)
4376 rtx insn = rtx_alloc (BARRIER);
4378 INSN_UID (insn) = cur_insn_uid++;
4380 add_insn_after (insn, after, NULL);
4381 return insn;
4384 /* Emit the label LABEL after the insn AFTER. */
4387 emit_label_after (rtx label, rtx after)
4389 gcc_checking_assert (INSN_UID (label) == 0);
4390 INSN_UID (label) = cur_insn_uid++;
4391 add_insn_after (label, after, NULL);
4392 return label;
4395 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4398 emit_note_after (enum insn_note subtype, rtx after)
4400 rtx note = rtx_alloc (NOTE);
4401 INSN_UID (note) = cur_insn_uid++;
4402 NOTE_KIND (note) = subtype;
4403 BLOCK_FOR_INSN (note) = NULL;
4404 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4405 add_insn_after (note, after, NULL);
4406 return note;
4409 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4410 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4412 static rtx
4413 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4414 rtx (*make_raw) (rtx))
4416 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4418 if (pattern == NULL_RTX || !loc)
4419 return last;
4421 after = NEXT_INSN (after);
4422 while (1)
4424 if (active_insn_p (after) && !INSN_LOCATION (after))
4425 INSN_LOCATION (after) = loc;
4426 if (after == last)
4427 break;
4428 after = NEXT_INSN (after);
4430 return last;
4433 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4434 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4435 any DEBUG_INSNs. */
4437 static rtx
4438 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4439 rtx (*make_raw) (rtx))
4441 rtx prev = after;
4443 if (skip_debug_insns)
4444 while (DEBUG_INSN_P (prev))
4445 prev = PREV_INSN (prev);
4447 if (INSN_P (prev))
4448 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4449 make_raw);
4450 else
4451 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4454 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4456 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4458 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4461 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4463 emit_insn_after (rtx pattern, rtx after)
4465 return emit_pattern_after (pattern, after, true, make_insn_raw);
4468 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4470 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4472 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4475 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4477 emit_jump_insn_after (rtx pattern, rtx after)
4479 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4482 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4484 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4486 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4489 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4491 emit_call_insn_after (rtx pattern, rtx after)
4493 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4496 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4498 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4500 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4503 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4505 emit_debug_insn_after (rtx pattern, rtx after)
4507 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4510 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4511 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4512 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4513 CALL_INSN, etc. */
4515 static rtx
4516 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4517 rtx (*make_raw) (rtx))
4519 rtx first = PREV_INSN (before);
4520 rtx last = emit_pattern_before_noloc (pattern, before,
4521 insnp ? before : NULL_RTX,
4522 NULL, make_raw);
4524 if (pattern == NULL_RTX || !loc)
4525 return last;
4527 if (!first)
4528 first = get_insns ();
4529 else
4530 first = NEXT_INSN (first);
4531 while (1)
4533 if (active_insn_p (first) && !INSN_LOCATION (first))
4534 INSN_LOCATION (first) = loc;
4535 if (first == last)
4536 break;
4537 first = NEXT_INSN (first);
4539 return last;
4542 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4543 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4544 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4545 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4547 static rtx
4548 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4549 bool insnp, rtx (*make_raw) (rtx))
4551 rtx next = before;
4553 if (skip_debug_insns)
4554 while (DEBUG_INSN_P (next))
4555 next = PREV_INSN (next);
4557 if (INSN_P (next))
4558 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4559 insnp, make_raw);
4560 else
4561 return emit_pattern_before_noloc (pattern, before,
4562 insnp ? before : NULL_RTX,
4563 NULL, make_raw);
4566 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4568 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4570 return emit_pattern_before_setloc (pattern, before, loc, true,
4571 make_insn_raw);
4574 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4576 emit_insn_before (rtx pattern, rtx before)
4578 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4581 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4583 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4585 return emit_pattern_before_setloc (pattern, before, loc, false,
4586 make_jump_insn_raw);
4589 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4591 emit_jump_insn_before (rtx pattern, rtx before)
4593 return emit_pattern_before (pattern, before, true, false,
4594 make_jump_insn_raw);
4597 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4599 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4601 return emit_pattern_before_setloc (pattern, before, loc, false,
4602 make_call_insn_raw);
4605 /* Like emit_call_insn_before_noloc,
4606 but set insn_location according to BEFORE. */
4608 emit_call_insn_before (rtx pattern, rtx before)
4610 return emit_pattern_before (pattern, before, true, false,
4611 make_call_insn_raw);
4614 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4616 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4618 return emit_pattern_before_setloc (pattern, before, loc, false,
4619 make_debug_insn_raw);
4622 /* Like emit_debug_insn_before_noloc,
4623 but set insn_location according to BEFORE. */
4625 emit_debug_insn_before (rtx pattern, rtx before)
4627 return emit_pattern_before (pattern, before, false, false,
4628 make_debug_insn_raw);
4631 /* Take X and emit it at the end of the doubly-linked
4632 INSN list.
4634 Returns the last insn emitted. */
4637 emit_insn (rtx x)
4639 rtx last = get_last_insn();
4640 rtx insn;
4642 if (x == NULL_RTX)
4643 return last;
4645 switch (GET_CODE (x))
4647 case DEBUG_INSN:
4648 case INSN:
4649 case JUMP_INSN:
4650 case CALL_INSN:
4651 case CODE_LABEL:
4652 case BARRIER:
4653 case NOTE:
4654 insn = x;
4655 while (insn)
4657 rtx next = NEXT_INSN (insn);
4658 add_insn (insn);
4659 last = insn;
4660 insn = next;
4662 break;
4664 #ifdef ENABLE_RTL_CHECKING
4665 case JUMP_TABLE_DATA:
4666 case SEQUENCE:
4667 gcc_unreachable ();
4668 break;
4669 #endif
4671 default:
4672 last = make_insn_raw (x);
4673 add_insn (last);
4674 break;
4677 return last;
4680 /* Make an insn of code DEBUG_INSN with pattern X
4681 and add it to the end of the doubly-linked list. */
4684 emit_debug_insn (rtx x)
4686 rtx last = get_last_insn();
4687 rtx insn;
4689 if (x == NULL_RTX)
4690 return last;
4692 switch (GET_CODE (x))
4694 case DEBUG_INSN:
4695 case INSN:
4696 case JUMP_INSN:
4697 case CALL_INSN:
4698 case CODE_LABEL:
4699 case BARRIER:
4700 case NOTE:
4701 insn = x;
4702 while (insn)
4704 rtx next = NEXT_INSN (insn);
4705 add_insn (insn);
4706 last = insn;
4707 insn = next;
4709 break;
4711 #ifdef ENABLE_RTL_CHECKING
4712 case JUMP_TABLE_DATA:
4713 case SEQUENCE:
4714 gcc_unreachable ();
4715 break;
4716 #endif
4718 default:
4719 last = make_debug_insn_raw (x);
4720 add_insn (last);
4721 break;
4724 return last;
4727 /* Make an insn of code JUMP_INSN with pattern X
4728 and add it to the end of the doubly-linked list. */
4731 emit_jump_insn (rtx x)
4733 rtx last = NULL_RTX, insn;
4735 switch (GET_CODE (x))
4737 case DEBUG_INSN:
4738 case INSN:
4739 case JUMP_INSN:
4740 case CALL_INSN:
4741 case CODE_LABEL:
4742 case BARRIER:
4743 case NOTE:
4744 insn = x;
4745 while (insn)
4747 rtx next = NEXT_INSN (insn);
4748 add_insn (insn);
4749 last = insn;
4750 insn = next;
4752 break;
4754 #ifdef ENABLE_RTL_CHECKING
4755 case JUMP_TABLE_DATA:
4756 case SEQUENCE:
4757 gcc_unreachable ();
4758 break;
4759 #endif
4761 default:
4762 last = make_jump_insn_raw (x);
4763 add_insn (last);
4764 break;
4767 return last;
4770 /* Make an insn of code CALL_INSN with pattern X
4771 and add it to the end of the doubly-linked list. */
4774 emit_call_insn (rtx x)
4776 rtx insn;
4778 switch (GET_CODE (x))
4780 case DEBUG_INSN:
4781 case INSN:
4782 case JUMP_INSN:
4783 case CALL_INSN:
4784 case CODE_LABEL:
4785 case BARRIER:
4786 case NOTE:
4787 insn = emit_insn (x);
4788 break;
4790 #ifdef ENABLE_RTL_CHECKING
4791 case SEQUENCE:
4792 case JUMP_TABLE_DATA:
4793 gcc_unreachable ();
4794 break;
4795 #endif
4797 default:
4798 insn = make_call_insn_raw (x);
4799 add_insn (insn);
4800 break;
4803 return insn;
4806 /* Add the label LABEL to the end of the doubly-linked list. */
4809 emit_label (rtx label)
4811 gcc_checking_assert (INSN_UID (label) == 0);
4812 INSN_UID (label) = cur_insn_uid++;
4813 add_insn (label);
4814 return label;
4817 /* Make an insn of code JUMP_TABLE_DATA
4818 and add it to the end of the doubly-linked list. */
4821 emit_jump_table_data (rtx table)
4823 rtx jump_table_data = rtx_alloc (JUMP_TABLE_DATA);
4824 INSN_UID (jump_table_data) = cur_insn_uid++;
4825 PATTERN (jump_table_data) = table;
4826 BLOCK_FOR_INSN (jump_table_data) = NULL;
4827 add_insn (jump_table_data);
4828 return jump_table_data;
4831 /* Make an insn of code BARRIER
4832 and add it to the end of the doubly-linked list. */
4835 emit_barrier (void)
4837 rtx barrier = rtx_alloc (BARRIER);
4838 INSN_UID (barrier) = cur_insn_uid++;
4839 add_insn (barrier);
4840 return barrier;
4843 /* Emit a copy of note ORIG. */
4846 emit_note_copy (rtx orig)
4848 rtx note;
4850 note = rtx_alloc (NOTE);
4852 INSN_UID (note) = cur_insn_uid++;
4853 NOTE_DATA (note) = NOTE_DATA (orig);
4854 NOTE_KIND (note) = NOTE_KIND (orig);
4855 BLOCK_FOR_INSN (note) = NULL;
4856 add_insn (note);
4858 return note;
4861 /* Make an insn of code NOTE or type NOTE_NO
4862 and add it to the end of the doubly-linked list. */
4865 emit_note (enum insn_note kind)
4867 rtx note;
4869 note = rtx_alloc (NOTE);
4870 INSN_UID (note) = cur_insn_uid++;
4871 NOTE_KIND (note) = kind;
4872 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4873 BLOCK_FOR_INSN (note) = NULL;
4874 add_insn (note);
4875 return note;
4878 /* Emit a clobber of lvalue X. */
4881 emit_clobber (rtx x)
4883 /* CONCATs should not appear in the insn stream. */
4884 if (GET_CODE (x) == CONCAT)
4886 emit_clobber (XEXP (x, 0));
4887 return emit_clobber (XEXP (x, 1));
4889 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4892 /* Return a sequence of insns to clobber lvalue X. */
4895 gen_clobber (rtx x)
4897 rtx seq;
4899 start_sequence ();
4900 emit_clobber (x);
4901 seq = get_insns ();
4902 end_sequence ();
4903 return seq;
4906 /* Emit a use of rvalue X. */
4909 emit_use (rtx x)
4911 /* CONCATs should not appear in the insn stream. */
4912 if (GET_CODE (x) == CONCAT)
4914 emit_use (XEXP (x, 0));
4915 return emit_use (XEXP (x, 1));
4917 return emit_insn (gen_rtx_USE (VOIDmode, x));
4920 /* Return a sequence of insns to use rvalue X. */
4923 gen_use (rtx x)
4925 rtx seq;
4927 start_sequence ();
4928 emit_use (x);
4929 seq = get_insns ();
4930 end_sequence ();
4931 return seq;
4934 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4935 note of this type already exists, remove it first. */
4938 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4940 rtx note = find_reg_note (insn, kind, NULL_RTX);
4942 switch (kind)
4944 case REG_EQUAL:
4945 case REG_EQUIV:
4946 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4947 has multiple sets (some callers assume single_set
4948 means the insn only has one set, when in fact it
4949 means the insn only has one * useful * set). */
4950 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4952 gcc_assert (!note);
4953 return NULL_RTX;
4956 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4957 It serves no useful purpose and breaks eliminate_regs. */
4958 if (GET_CODE (datum) == ASM_OPERANDS)
4959 return NULL_RTX;
4961 if (note)
4963 XEXP (note, 0) = datum;
4964 df_notes_rescan (insn);
4965 return note;
4967 break;
4969 default:
4970 if (note)
4972 XEXP (note, 0) = datum;
4973 return note;
4975 break;
4978 add_reg_note (insn, kind, datum);
4980 switch (kind)
4982 case REG_EQUAL:
4983 case REG_EQUIV:
4984 df_notes_rescan (insn);
4985 break;
4986 default:
4987 break;
4990 return REG_NOTES (insn);
4993 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
4995 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
4997 rtx set = single_set (insn);
4999 if (set && SET_DEST (set) == dst)
5000 return set_unique_reg_note (insn, kind, datum);
5001 return NULL_RTX;
5004 /* Return an indication of which type of insn should have X as a body.
5005 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5007 static enum rtx_code
5008 classify_insn (rtx x)
5010 if (LABEL_P (x))
5011 return CODE_LABEL;
5012 if (GET_CODE (x) == CALL)
5013 return CALL_INSN;
5014 if (ANY_RETURN_P (x))
5015 return JUMP_INSN;
5016 if (GET_CODE (x) == SET)
5018 if (SET_DEST (x) == pc_rtx)
5019 return JUMP_INSN;
5020 else if (GET_CODE (SET_SRC (x)) == CALL)
5021 return CALL_INSN;
5022 else
5023 return INSN;
5025 if (GET_CODE (x) == PARALLEL)
5027 int j;
5028 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5029 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5030 return CALL_INSN;
5031 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5032 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5033 return JUMP_INSN;
5034 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5035 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5036 return CALL_INSN;
5038 return INSN;
5041 /* Emit the rtl pattern X as an appropriate kind of insn.
5042 If X is a label, it is simply added into the insn chain. */
5045 emit (rtx x)
5047 enum rtx_code code = classify_insn (x);
5049 switch (code)
5051 case CODE_LABEL:
5052 return emit_label (x);
5053 case INSN:
5054 return emit_insn (x);
5055 case JUMP_INSN:
5057 rtx insn = emit_jump_insn (x);
5058 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5059 return emit_barrier ();
5060 return insn;
5062 case CALL_INSN:
5063 return emit_call_insn (x);
5064 case DEBUG_INSN:
5065 return emit_debug_insn (x);
5066 default:
5067 gcc_unreachable ();
5071 /* Space for free sequence stack entries. */
5072 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5074 /* Begin emitting insns to a sequence. If this sequence will contain
5075 something that might cause the compiler to pop arguments to function
5076 calls (because those pops have previously been deferred; see
5077 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5078 before calling this function. That will ensure that the deferred
5079 pops are not accidentally emitted in the middle of this sequence. */
5081 void
5082 start_sequence (void)
5084 struct sequence_stack *tem;
5086 if (free_sequence_stack != NULL)
5088 tem = free_sequence_stack;
5089 free_sequence_stack = tem->next;
5091 else
5092 tem = ggc_alloc_sequence_stack ();
5094 tem->next = seq_stack;
5095 tem->first = get_insns ();
5096 tem->last = get_last_insn ();
5098 seq_stack = tem;
5100 set_first_insn (0);
5101 set_last_insn (0);
5104 /* Set up the insn chain starting with FIRST as the current sequence,
5105 saving the previously current one. See the documentation for
5106 start_sequence for more information about how to use this function. */
5108 void
5109 push_to_sequence (rtx first)
5111 rtx last;
5113 start_sequence ();
5115 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5118 set_first_insn (first);
5119 set_last_insn (last);
5122 /* Like push_to_sequence, but take the last insn as an argument to avoid
5123 looping through the list. */
5125 void
5126 push_to_sequence2 (rtx first, rtx last)
5128 start_sequence ();
5130 set_first_insn (first);
5131 set_last_insn (last);
5134 /* Set up the outer-level insn chain
5135 as the current sequence, saving the previously current one. */
5137 void
5138 push_topmost_sequence (void)
5140 struct sequence_stack *stack, *top = NULL;
5142 start_sequence ();
5144 for (stack = seq_stack; stack; stack = stack->next)
5145 top = stack;
5147 set_first_insn (top->first);
5148 set_last_insn (top->last);
5151 /* After emitting to the outer-level insn chain, update the outer-level
5152 insn chain, and restore the previous saved state. */
5154 void
5155 pop_topmost_sequence (void)
5157 struct sequence_stack *stack, *top = NULL;
5159 for (stack = seq_stack; stack; stack = stack->next)
5160 top = stack;
5162 top->first = get_insns ();
5163 top->last = get_last_insn ();
5165 end_sequence ();
5168 /* After emitting to a sequence, restore previous saved state.
5170 To get the contents of the sequence just made, you must call
5171 `get_insns' *before* calling here.
5173 If the compiler might have deferred popping arguments while
5174 generating this sequence, and this sequence will not be immediately
5175 inserted into the instruction stream, use do_pending_stack_adjust
5176 before calling get_insns. That will ensure that the deferred
5177 pops are inserted into this sequence, and not into some random
5178 location in the instruction stream. See INHIBIT_DEFER_POP for more
5179 information about deferred popping of arguments. */
5181 void
5182 end_sequence (void)
5184 struct sequence_stack *tem = seq_stack;
5186 set_first_insn (tem->first);
5187 set_last_insn (tem->last);
5188 seq_stack = tem->next;
5190 memset (tem, 0, sizeof (*tem));
5191 tem->next = free_sequence_stack;
5192 free_sequence_stack = tem;
5195 /* Return 1 if currently emitting into a sequence. */
5198 in_sequence_p (void)
5200 return seq_stack != 0;
5203 /* Put the various virtual registers into REGNO_REG_RTX. */
5205 static void
5206 init_virtual_regs (void)
5208 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5209 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5210 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5211 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5212 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5213 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5214 = virtual_preferred_stack_boundary_rtx;
5218 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5219 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5220 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5221 static int copy_insn_n_scratches;
5223 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5224 copied an ASM_OPERANDS.
5225 In that case, it is the original input-operand vector. */
5226 static rtvec orig_asm_operands_vector;
5228 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5229 copied an ASM_OPERANDS.
5230 In that case, it is the copied input-operand vector. */
5231 static rtvec copy_asm_operands_vector;
5233 /* Likewise for the constraints vector. */
5234 static rtvec orig_asm_constraints_vector;
5235 static rtvec copy_asm_constraints_vector;
5237 /* Recursively create a new copy of an rtx for copy_insn.
5238 This function differs from copy_rtx in that it handles SCRATCHes and
5239 ASM_OPERANDs properly.
5240 Normally, this function is not used directly; use copy_insn as front end.
5241 However, you could first copy an insn pattern with copy_insn and then use
5242 this function afterwards to properly copy any REG_NOTEs containing
5243 SCRATCHes. */
5246 copy_insn_1 (rtx orig)
5248 rtx copy;
5249 int i, j;
5250 RTX_CODE code;
5251 const char *format_ptr;
5253 if (orig == NULL)
5254 return NULL;
5256 code = GET_CODE (orig);
5258 switch (code)
5260 case REG:
5261 case DEBUG_EXPR:
5262 CASE_CONST_ANY:
5263 case SYMBOL_REF:
5264 case CODE_LABEL:
5265 case PC:
5266 case CC0:
5267 case RETURN:
5268 case SIMPLE_RETURN:
5269 return orig;
5270 case CLOBBER:
5271 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5272 clobbers or clobbers of hard registers that originated as pseudos.
5273 This is needed to allow safe register renaming. */
5274 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5275 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5276 return orig;
5277 break;
5279 case SCRATCH:
5280 for (i = 0; i < copy_insn_n_scratches; i++)
5281 if (copy_insn_scratch_in[i] == orig)
5282 return copy_insn_scratch_out[i];
5283 break;
5285 case CONST:
5286 if (shared_const_p (orig))
5287 return orig;
5288 break;
5290 /* A MEM with a constant address is not sharable. The problem is that
5291 the constant address may need to be reloaded. If the mem is shared,
5292 then reloading one copy of this mem will cause all copies to appear
5293 to have been reloaded. */
5295 default:
5296 break;
5299 /* Copy the various flags, fields, and other information. We assume
5300 that all fields need copying, and then clear the fields that should
5301 not be copied. That is the sensible default behavior, and forces
5302 us to explicitly document why we are *not* copying a flag. */
5303 copy = shallow_copy_rtx (orig);
5305 /* We do not copy the USED flag, which is used as a mark bit during
5306 walks over the RTL. */
5307 RTX_FLAG (copy, used) = 0;
5309 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5310 if (INSN_P (orig))
5312 RTX_FLAG (copy, jump) = 0;
5313 RTX_FLAG (copy, call) = 0;
5314 RTX_FLAG (copy, frame_related) = 0;
5317 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5319 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5320 switch (*format_ptr++)
5322 case 'e':
5323 if (XEXP (orig, i) != NULL)
5324 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5325 break;
5327 case 'E':
5328 case 'V':
5329 if (XVEC (orig, i) == orig_asm_constraints_vector)
5330 XVEC (copy, i) = copy_asm_constraints_vector;
5331 else if (XVEC (orig, i) == orig_asm_operands_vector)
5332 XVEC (copy, i) = copy_asm_operands_vector;
5333 else if (XVEC (orig, i) != NULL)
5335 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5336 for (j = 0; j < XVECLEN (copy, i); j++)
5337 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5339 break;
5341 case 't':
5342 case 'w':
5343 case 'i':
5344 case 's':
5345 case 'S':
5346 case 'u':
5347 case '0':
5348 /* These are left unchanged. */
5349 break;
5351 default:
5352 gcc_unreachable ();
5355 if (code == SCRATCH)
5357 i = copy_insn_n_scratches++;
5358 gcc_assert (i < MAX_RECOG_OPERANDS);
5359 copy_insn_scratch_in[i] = orig;
5360 copy_insn_scratch_out[i] = copy;
5362 else if (code == ASM_OPERANDS)
5364 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5365 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5366 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5367 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5370 return copy;
5373 /* Create a new copy of an rtx.
5374 This function differs from copy_rtx in that it handles SCRATCHes and
5375 ASM_OPERANDs properly.
5376 INSN doesn't really have to be a full INSN; it could be just the
5377 pattern. */
5379 copy_insn (rtx insn)
5381 copy_insn_n_scratches = 0;
5382 orig_asm_operands_vector = 0;
5383 orig_asm_constraints_vector = 0;
5384 copy_asm_operands_vector = 0;
5385 copy_asm_constraints_vector = 0;
5386 return copy_insn_1 (insn);
5389 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5390 on that assumption that INSN itself remains in its original place. */
5393 copy_delay_slot_insn (rtx insn)
5395 /* Copy INSN with its rtx_code, all its notes, location etc. */
5396 insn = copy_rtx (insn);
5397 INSN_UID (insn) = cur_insn_uid++;
5398 return insn;
5401 /* Initialize data structures and variables in this file
5402 before generating rtl for each function. */
5404 void
5405 init_emit (void)
5407 set_first_insn (NULL);
5408 set_last_insn (NULL);
5409 if (MIN_NONDEBUG_INSN_UID)
5410 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5411 else
5412 cur_insn_uid = 1;
5413 cur_debug_insn_uid = 1;
5414 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5415 first_label_num = label_num;
5416 seq_stack = NULL;
5418 /* Init the tables that describe all the pseudo regs. */
5420 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5422 crtl->emit.regno_pointer_align
5423 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5425 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5427 /* Put copies of all the hard registers into regno_reg_rtx. */
5428 memcpy (regno_reg_rtx,
5429 initial_regno_reg_rtx,
5430 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5432 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5433 init_virtual_regs ();
5435 /* Indicate that the virtual registers and stack locations are
5436 all pointers. */
5437 REG_POINTER (stack_pointer_rtx) = 1;
5438 REG_POINTER (frame_pointer_rtx) = 1;
5439 REG_POINTER (hard_frame_pointer_rtx) = 1;
5440 REG_POINTER (arg_pointer_rtx) = 1;
5442 REG_POINTER (virtual_incoming_args_rtx) = 1;
5443 REG_POINTER (virtual_stack_vars_rtx) = 1;
5444 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5445 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5446 REG_POINTER (virtual_cfa_rtx) = 1;
5448 #ifdef STACK_BOUNDARY
5449 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5450 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5451 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5452 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5454 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5455 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5456 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5457 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5458 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5459 #endif
5461 #ifdef INIT_EXPANDERS
5462 INIT_EXPANDERS;
5463 #endif
5466 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5468 static rtx
5469 gen_const_vector (enum machine_mode mode, int constant)
5471 rtx tem;
5472 rtvec v;
5473 int units, i;
5474 enum machine_mode inner;
5476 units = GET_MODE_NUNITS (mode);
5477 inner = GET_MODE_INNER (mode);
5479 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5481 v = rtvec_alloc (units);
5483 /* We need to call this function after we set the scalar const_tiny_rtx
5484 entries. */
5485 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5487 for (i = 0; i < units; ++i)
5488 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5490 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5491 return tem;
5494 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5495 all elements are zero, and the one vector when all elements are one. */
5497 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5499 enum machine_mode inner = GET_MODE_INNER (mode);
5500 int nunits = GET_MODE_NUNITS (mode);
5501 rtx x;
5502 int i;
5504 /* Check to see if all of the elements have the same value. */
5505 x = RTVEC_ELT (v, nunits - 1);
5506 for (i = nunits - 2; i >= 0; i--)
5507 if (RTVEC_ELT (v, i) != x)
5508 break;
5510 /* If the values are all the same, check to see if we can use one of the
5511 standard constant vectors. */
5512 if (i == -1)
5514 if (x == CONST0_RTX (inner))
5515 return CONST0_RTX (mode);
5516 else if (x == CONST1_RTX (inner))
5517 return CONST1_RTX (mode);
5518 else if (x == CONSTM1_RTX (inner))
5519 return CONSTM1_RTX (mode);
5522 return gen_rtx_raw_CONST_VECTOR (mode, v);
5525 /* Initialise global register information required by all functions. */
5527 void
5528 init_emit_regs (void)
5530 int i;
5531 enum machine_mode mode;
5532 mem_attrs *attrs;
5534 /* Reset register attributes */
5535 htab_empty (reg_attrs_htab);
5537 /* We need reg_raw_mode, so initialize the modes now. */
5538 init_reg_modes_target ();
5540 /* Assign register numbers to the globally defined register rtx. */
5541 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5542 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5543 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5544 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5545 virtual_incoming_args_rtx =
5546 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5547 virtual_stack_vars_rtx =
5548 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5549 virtual_stack_dynamic_rtx =
5550 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5551 virtual_outgoing_args_rtx =
5552 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5553 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5554 virtual_preferred_stack_boundary_rtx =
5555 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5557 /* Initialize RTL for commonly used hard registers. These are
5558 copied into regno_reg_rtx as we begin to compile each function. */
5559 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5560 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5562 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5563 return_address_pointer_rtx
5564 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5565 #endif
5567 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5568 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5569 else
5570 pic_offset_table_rtx = NULL_RTX;
5572 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5574 mode = (enum machine_mode) i;
5575 attrs = ggc_alloc_cleared_mem_attrs ();
5576 attrs->align = BITS_PER_UNIT;
5577 attrs->addrspace = ADDR_SPACE_GENERIC;
5578 if (mode != BLKmode)
5580 attrs->size_known_p = true;
5581 attrs->size = GET_MODE_SIZE (mode);
5582 if (STRICT_ALIGNMENT)
5583 attrs->align = GET_MODE_ALIGNMENT (mode);
5585 mode_mem_attrs[i] = attrs;
5589 /* Create some permanent unique rtl objects shared between all functions. */
5591 void
5592 init_emit_once (void)
5594 int i;
5595 enum machine_mode mode;
5596 enum machine_mode double_mode;
5598 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5599 hash tables. */
5600 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5601 const_int_htab_eq, NULL);
5603 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5604 const_double_htab_eq, NULL);
5606 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5607 const_fixed_htab_eq, NULL);
5609 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5610 mem_attrs_htab_eq, NULL);
5611 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5612 reg_attrs_htab_eq, NULL);
5614 /* Compute the word and byte modes. */
5616 byte_mode = VOIDmode;
5617 word_mode = VOIDmode;
5618 double_mode = VOIDmode;
5620 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5621 mode != VOIDmode;
5622 mode = GET_MODE_WIDER_MODE (mode))
5624 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5625 && byte_mode == VOIDmode)
5626 byte_mode = mode;
5628 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5629 && word_mode == VOIDmode)
5630 word_mode = mode;
5633 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5634 mode != VOIDmode;
5635 mode = GET_MODE_WIDER_MODE (mode))
5637 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5638 && double_mode == VOIDmode)
5639 double_mode = mode;
5642 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5644 #ifdef INIT_EXPANDERS
5645 /* This is to initialize {init|mark|free}_machine_status before the first
5646 call to push_function_context_to. This is needed by the Chill front
5647 end which calls push_function_context_to before the first call to
5648 init_function_start. */
5649 INIT_EXPANDERS;
5650 #endif
5652 /* Create the unique rtx's for certain rtx codes and operand values. */
5654 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5655 tries to use these variables. */
5656 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5657 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5658 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5660 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5661 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5662 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5663 else
5664 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5666 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5667 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5668 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5670 dconstm1 = dconst1;
5671 dconstm1.sign = 1;
5673 dconsthalf = dconst1;
5674 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5676 for (i = 0; i < 3; i++)
5678 const REAL_VALUE_TYPE *const r =
5679 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5681 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5682 mode != VOIDmode;
5683 mode = GET_MODE_WIDER_MODE (mode))
5684 const_tiny_rtx[i][(int) mode] =
5685 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5687 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5688 mode != VOIDmode;
5689 mode = GET_MODE_WIDER_MODE (mode))
5690 const_tiny_rtx[i][(int) mode] =
5691 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5693 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5695 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5696 mode != VOIDmode;
5697 mode = GET_MODE_WIDER_MODE (mode))
5698 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5700 for (mode = MIN_MODE_PARTIAL_INT;
5701 mode <= MAX_MODE_PARTIAL_INT;
5702 mode = (enum machine_mode)((int)(mode) + 1))
5703 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5706 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5708 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5709 mode != VOIDmode;
5710 mode = GET_MODE_WIDER_MODE (mode))
5711 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5713 for (mode = MIN_MODE_PARTIAL_INT;
5714 mode <= MAX_MODE_PARTIAL_INT;
5715 mode = (enum machine_mode)((int)(mode) + 1))
5716 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5718 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5719 mode != VOIDmode;
5720 mode = GET_MODE_WIDER_MODE (mode))
5722 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5723 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5727 mode != VOIDmode;
5728 mode = GET_MODE_WIDER_MODE (mode))
5730 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5731 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5734 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5735 mode != VOIDmode;
5736 mode = GET_MODE_WIDER_MODE (mode))
5738 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5739 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5740 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5743 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5744 mode != VOIDmode;
5745 mode = GET_MODE_WIDER_MODE (mode))
5747 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5748 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5751 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5752 mode != VOIDmode;
5753 mode = GET_MODE_WIDER_MODE (mode))
5755 FCONST0(mode).data.high = 0;
5756 FCONST0(mode).data.low = 0;
5757 FCONST0(mode).mode = mode;
5758 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5759 FCONST0 (mode), mode);
5762 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5763 mode != VOIDmode;
5764 mode = GET_MODE_WIDER_MODE (mode))
5766 FCONST0(mode).data.high = 0;
5767 FCONST0(mode).data.low = 0;
5768 FCONST0(mode).mode = mode;
5769 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5770 FCONST0 (mode), mode);
5773 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5774 mode != VOIDmode;
5775 mode = GET_MODE_WIDER_MODE (mode))
5777 FCONST0(mode).data.high = 0;
5778 FCONST0(mode).data.low = 0;
5779 FCONST0(mode).mode = mode;
5780 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5781 FCONST0 (mode), mode);
5783 /* We store the value 1. */
5784 FCONST1(mode).data.high = 0;
5785 FCONST1(mode).data.low = 0;
5786 FCONST1(mode).mode = mode;
5787 FCONST1(mode).data
5788 = double_int_one.lshift (GET_MODE_FBIT (mode),
5789 HOST_BITS_PER_DOUBLE_INT,
5790 SIGNED_FIXED_POINT_MODE_P (mode));
5791 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5792 FCONST1 (mode), mode);
5795 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5796 mode != VOIDmode;
5797 mode = GET_MODE_WIDER_MODE (mode))
5799 FCONST0(mode).data.high = 0;
5800 FCONST0(mode).data.low = 0;
5801 FCONST0(mode).mode = mode;
5802 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5803 FCONST0 (mode), mode);
5805 /* We store the value 1. */
5806 FCONST1(mode).data.high = 0;
5807 FCONST1(mode).data.low = 0;
5808 FCONST1(mode).mode = mode;
5809 FCONST1(mode).data
5810 = double_int_one.lshift (GET_MODE_FBIT (mode),
5811 HOST_BITS_PER_DOUBLE_INT,
5812 SIGNED_FIXED_POINT_MODE_P (mode));
5813 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5814 FCONST1 (mode), mode);
5817 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5818 mode != VOIDmode;
5819 mode = GET_MODE_WIDER_MODE (mode))
5821 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5824 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5825 mode != VOIDmode;
5826 mode = GET_MODE_WIDER_MODE (mode))
5828 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5831 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5832 mode != VOIDmode;
5833 mode = GET_MODE_WIDER_MODE (mode))
5835 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5836 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5839 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5840 mode != VOIDmode;
5841 mode = GET_MODE_WIDER_MODE (mode))
5843 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5844 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5847 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5848 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5849 const_tiny_rtx[0][i] = const0_rtx;
5851 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5852 if (STORE_FLAG_VALUE == 1)
5853 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5855 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5856 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5857 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5858 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5861 /* Produce exact duplicate of insn INSN after AFTER.
5862 Care updating of libcall regions if present. */
5865 emit_copy_of_insn_after (rtx insn, rtx after)
5867 rtx new_rtx, link;
5869 switch (GET_CODE (insn))
5871 case INSN:
5872 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5873 break;
5875 case JUMP_INSN:
5876 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5877 break;
5879 case DEBUG_INSN:
5880 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5881 break;
5883 case CALL_INSN:
5884 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5885 if (CALL_INSN_FUNCTION_USAGE (insn))
5886 CALL_INSN_FUNCTION_USAGE (new_rtx)
5887 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5888 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5889 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5890 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5891 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5892 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5893 break;
5895 default:
5896 gcc_unreachable ();
5899 /* Update LABEL_NUSES. */
5900 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5902 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
5904 /* If the old insn is frame related, then so is the new one. This is
5905 primarily needed for IA-64 unwind info which marks epilogue insns,
5906 which may be duplicated by the basic block reordering code. */
5907 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5909 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5910 will make them. REG_LABEL_TARGETs are created there too, but are
5911 supposed to be sticky, so we copy them. */
5912 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5913 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5915 if (GET_CODE (link) == EXPR_LIST)
5916 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5917 copy_insn_1 (XEXP (link, 0)));
5918 else
5919 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5922 INSN_CODE (new_rtx) = INSN_CODE (insn);
5923 return new_rtx;
5926 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5928 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5930 if (hard_reg_clobbers[mode][regno])
5931 return hard_reg_clobbers[mode][regno];
5932 else
5933 return (hard_reg_clobbers[mode][regno] =
5934 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5937 location_t prologue_location;
5938 location_t epilogue_location;
5940 /* Hold current location information and last location information, so the
5941 datastructures are built lazily only when some instructions in given
5942 place are needed. */
5943 static location_t curr_location;
5945 /* Allocate insn location datastructure. */
5946 void
5947 insn_locations_init (void)
5949 prologue_location = epilogue_location = 0;
5950 curr_location = UNKNOWN_LOCATION;
5953 /* At the end of emit stage, clear current location. */
5954 void
5955 insn_locations_finalize (void)
5957 epilogue_location = curr_location;
5958 curr_location = UNKNOWN_LOCATION;
5961 /* Set current location. */
5962 void
5963 set_curr_insn_location (location_t location)
5965 curr_location = location;
5968 /* Get current location. */
5969 location_t
5970 curr_insn_location (void)
5972 return curr_location;
5975 /* Return lexical scope block insn belongs to. */
5976 tree
5977 insn_scope (const_rtx insn)
5979 return LOCATION_BLOCK (INSN_LOCATION (insn));
5982 /* Return line number of the statement that produced this insn. */
5984 insn_line (const_rtx insn)
5986 return LOCATION_LINE (INSN_LOCATION (insn));
5989 /* Return source file of the statement that produced this insn. */
5990 const char *
5991 insn_file (const_rtx insn)
5993 return LOCATION_FILE (INSN_LOCATION (insn));
5996 /* Return true if memory model MODEL requires a pre-operation (release-style)
5997 barrier or a post-operation (acquire-style) barrier. While not universal,
5998 this function matches behavior of several targets. */
6000 bool
6001 need_atomic_barrier_p (enum memmodel model, bool pre)
6003 switch (model & MEMMODEL_MASK)
6005 case MEMMODEL_RELAXED:
6006 case MEMMODEL_CONSUME:
6007 return false;
6008 case MEMMODEL_RELEASE:
6009 return pre;
6010 case MEMMODEL_ACQUIRE:
6011 return !pre;
6012 case MEMMODEL_ACQ_REL:
6013 case MEMMODEL_SEQ_CST:
6014 return true;
6015 default:
6016 gcc_unreachable ();
6020 #include "gt-emit-rtl.h"