1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
46 #include "hard-reg-set.h"
48 #include "insn-config.h"
51 #include "basic-block.h"
54 #include "langhooks.h"
59 struct target_rtl default_target_rtl
;
61 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66 /* Commonly used modes. */
68 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
73 /* Datastructures maintained for currently processed function in RTL form. */
75 struct rtl_data x_rtl
;
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
87 static GTY(()) int label_num
= 1;
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
98 REAL_VALUE_TYPE dconst0
;
99 REAL_VALUE_TYPE dconst1
;
100 REAL_VALUE_TYPE dconst2
;
101 REAL_VALUE_TYPE dconstm1
;
102 REAL_VALUE_TYPE dconsthalf
;
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
106 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
113 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
115 /* Standard pieces of rtx, to be substituted directly into things. */
118 rtx simple_return_rtx
;
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
125 htab_t const_int_htab
;
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
129 htab_t mem_attrs_htab
;
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
133 htab_t reg_attrs_htab
;
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
137 htab_t const_double_htab
;
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
141 htab_t const_fixed_htab
;
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
147 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
148 static void set_used_decls (tree
);
149 static void mark_label_nuses (rtx
);
150 static hashval_t
const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t
const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx
lookup_const_double (rtx
);
155 static hashval_t
const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx
lookup_const_fixed (rtx
);
158 static hashval_t
mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t
reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs
*get_reg_attrs (tree
, int);
163 static rtx
gen_const_vector (enum machine_mode
, int);
164 static void copy_rtx_if_shared_1 (rtx
*orig
);
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability
= -1;
170 /* Returns a hash code for X (which is a really a CONST_INT). */
173 const_int_htab_hash (const void *x
)
175 return (hashval_t
) INTVAL ((const_rtx
) x
);
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
183 const_int_htab_eq (const void *x
, const void *y
)
185 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 const_double_htab_hash (const void *x
)
192 const_rtx
const value
= (const_rtx
) x
;
195 if (GET_MODE (value
) == VOIDmode
)
196 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
199 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h
^= GET_MODE (value
);
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
209 const_double_htab_eq (const void *x
, const void *y
)
211 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
213 if (GET_MODE (a
) != GET_MODE (b
))
215 if (GET_MODE (a
) == VOIDmode
)
216 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
217 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
220 CONST_DOUBLE_REAL_VALUE (b
));
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
226 const_fixed_htab_hash (const void *x
)
228 const_rtx
const value
= (const_rtx
) x
;
231 h
= fixed_hash (CONST_FIXED_VALUE (value
));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h
^= GET_MODE (value
);
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
241 const_fixed_htab_eq (const void *x
, const void *y
)
243 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
245 if (GET_MODE (a
) != GET_MODE (b
))
247 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
253 mem_attrs_htab_hash (const void *x
)
255 const mem_attrs
*const p
= (const mem_attrs
*) x
;
257 return (p
->alias
^ (p
->align
* 1000)
258 ^ (p
->addrspace
* 4000)
259 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
260 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
264 /* Return true if the given memory attributes are equal. */
267 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
269 return (p
->alias
== q
->alias
270 && p
->offset_known_p
== q
->offset_known_p
271 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
272 && p
->size_known_p
== q
->size_known_p
273 && (!p
->size_known_p
|| p
->size
== q
->size
)
274 && p
->align
== q
->align
275 && p
->addrspace
== q
->addrspace
276 && (p
->expr
== q
->expr
277 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
278 && operand_equal_p (p
->expr
, q
->expr
, 0))));
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
286 mem_attrs_htab_eq (const void *x
, const void *y
)
288 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
294 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
305 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
308 *slot
= ggc_alloc_mem_attrs ();
309 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
312 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
318 reg_attrs_htab_hash (const void *x
)
320 const reg_attrs
*const p
= (const reg_attrs
*) x
;
322 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
330 reg_attrs_htab_eq (const void *x
, const void *y
)
332 const reg_attrs
*const p
= (const reg_attrs
*) x
;
333 const reg_attrs
*const q
= (const reg_attrs
*) y
;
335 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
342 get_reg_attrs (tree decl
, int offset
)
347 /* If everything is the default, we can just return zero. */
348 if (decl
== 0 && offset
== 0)
352 attrs
.offset
= offset
;
354 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
357 *slot
= ggc_alloc_reg_attrs ();
358 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
361 return (reg_attrs
*) *slot
;
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
372 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
373 MEM_VOLATILE_P (x
) = true;
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
384 gen_raw_REG (enum machine_mode mode
, int regno
)
386 rtx x
= gen_rtx_raw_REG (mode
, regno
);
387 ORIGINAL_REGNO (x
) = regno
;
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
400 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
401 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
405 return const_true_rtx
;
408 /* Look up the CONST_INT in the hash table. */
409 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
410 (hashval_t
) arg
, INSERT
);
412 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
418 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
420 return GEN_INT (trunc_int_for_mode (c
, mode
));
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
431 lookup_const_double (rtx real
)
433 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
443 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
445 rtx real
= rtx_alloc (CONST_DOUBLE
);
446 PUT_MODE (real
, mode
);
450 return lookup_const_double (real
);
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
458 lookup_const_fixed (rtx fixed
)
460 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
473 rtx fixed
= rtx_alloc (CONST_FIXED
);
474 PUT_MODE (fixed
, mode
);
478 return lookup_const_fixed (fixed
);
481 /* Constructs double_int from rtx CST. */
484 rtx_to_double_int (const_rtx cst
)
488 if (CONST_INT_P (cst
))
489 r
= double_int::from_shwi (INTVAL (cst
));
490 else if (CONST_DOUBLE_AS_INT_P (cst
))
492 r
.low
= CONST_DOUBLE_LOW (cst
);
493 r
.high
= CONST_DOUBLE_HIGH (cst
);
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
506 immed_double_int_const (double_int i
, enum machine_mode mode
)
508 return immed_double_const (i
.low
, i
.high
, mode
);
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
520 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode
!= VOIDmode
)
536 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
537 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
542 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
543 return gen_int_mode (i0
, mode
);
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
550 /* We use VOIDmode for integers. */
551 value
= rtx_alloc (CONST_DOUBLE
);
552 PUT_MODE (value
, VOIDmode
);
554 CONST_DOUBLE_LOW (value
) = i0
;
555 CONST_DOUBLE_HIGH (value
) = i1
;
557 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
558 XWINT (value
, i
) = 0;
560 return lookup_const_double (value
);
564 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
580 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
582 if (regno
== FRAME_POINTER_REGNUM
583 && (!reload_completed
|| frame_pointer_needed
))
584 return frame_pointer_rtx
;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno
== HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed
|| frame_pointer_needed
))
588 return hard_frame_pointer_rtx
;
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno
== ARG_POINTER_REGNUM
)
592 return arg_pointer_rtx
;
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
596 return return_address_pointer_rtx
;
598 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
600 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
601 return pic_offset_table_rtx
;
602 if (regno
== STACK_POINTER_REGNUM
)
603 return stack_pointer_rtx
;
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
621 && regno
< FIRST_PSEUDO_REGISTER
622 && reg_raw_mode
[regno
] == mode
)
623 return regno_reg_rtx
[regno
];
626 return gen_raw_REG (mode
, regno
);
630 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
632 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
634 /* This field is not cleared by the mere allocation of the rtx, so
641 /* Generate a memory referring to non-trapping constant memory. */
644 gen_const_mem (enum machine_mode mode
, rtx addr
)
646 rtx mem
= gen_rtx_MEM (mode
, addr
);
647 MEM_READONLY_P (mem
) = 1;
648 MEM_NOTRAP_P (mem
) = 1;
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
656 gen_frame_mem (enum machine_mode mode
, rtx addr
)
658 rtx mem
= gen_rtx_MEM (mode
, addr
);
659 MEM_NOTRAP_P (mem
) = 1;
660 set_mem_alias_set (mem
, get_frame_alias_set ());
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
668 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
670 rtx mem
= gen_rtx_MEM (mode
, addr
);
671 MEM_NOTRAP_P (mem
) = 1;
672 if (!cfun
->calls_alloca
)
673 set_mem_alias_set (mem
, get_frame_alias_set ());
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
681 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
682 const_rtx reg
, unsigned int offset
)
684 unsigned int isize
= GET_MODE_SIZE (imode
);
685 unsigned int osize
= GET_MODE_SIZE (omode
);
687 /* All subregs must be aligned. */
688 if (offset
% osize
!= 0)
691 /* The subreg offset cannot be outside the inner object. */
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
699 if (omode
== word_mode
)
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
708 && GET_MODE_INNER (imode
) == omode
)
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
722 if (! (isize
== osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
733 /* Paradoxical subregs must have offset zero. */
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
743 unsigned int regno
= REGNO (reg
);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
747 && GET_MODE_INNER (imode
) == omode
)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
753 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize
< UNITS_PER_WORD
763 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
765 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
766 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
767 if (offset
% UNITS_PER_WORD
!= low_off
)
774 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
776 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
777 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
784 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
786 enum machine_mode inmode
;
788 inmode
= GET_MODE (reg
);
789 if (inmode
== VOIDmode
)
791 return gen_rtx_SUBREG (mode
, reg
,
792 subreg_lowpart_offset (mode
, inmode
));
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 gen_rtvec (int n
, ...)
807 /* Don't allocate an empty rtvec... */
814 rt_val
= rtvec_alloc (n
);
816 for (i
= 0; i
< n
; i
++)
817 rt_val
->elem
[i
] = va_arg (p
, rtx
);
824 gen_rtvec_v (int n
, rtx
*argp
)
829 /* Don't allocate an empty rtvec... */
833 rt_val
= rtvec_alloc (n
);
835 for (i
= 0; i
< n
; i
++)
836 rt_val
->elem
[i
] = *argp
++;
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
848 byte_lowpart_offset (enum machine_mode outer_mode
,
849 enum machine_mode inner_mode
)
851 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
852 return subreg_lowpart_offset (outer_mode
, inner_mode
);
854 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
861 gen_reg_rtx (enum machine_mode mode
)
864 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
866 gcc_assert (can_create_pseudo_p ());
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl
->stack_alignment_estimated
< align
873 && !crtl
->stack_realign_processed
)
875 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
876 if (crtl
->stack_alignment_estimated
< min_align
)
877 crtl
->stack_alignment_estimated
= min_align
;
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart
, imagpart
;
890 enum machine_mode partmode
= GET_MODE_INNER (mode
);
892 realpart
= gen_reg_rtx (partmode
);
893 imagpart
= gen_reg_rtx (partmode
);
894 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
900 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
902 int old_size
= crtl
->emit
.regno_pointer_align_length
;
906 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
907 memset (tmp
+ old_size
, 0, old_size
);
908 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
910 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
911 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
912 regno_reg_rtx
= new1
;
914 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
917 val
= gen_raw_REG (mode
, reg_rtx_no
);
918 regno_reg_rtx
[reg_rtx_no
++] = val
;
922 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
925 reg_is_parm_p (rtx reg
)
929 gcc_assert (REG_P (reg
));
930 decl
= REG_EXPR (reg
);
931 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
934 /* Update NEW with the same attributes as REG, but with OFFSET added
935 to the REG_OFFSET. */
938 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
940 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
941 REG_OFFSET (reg
) + offset
);
944 /* Generate a register with same attributes as REG, but with OFFSET
945 added to the REG_OFFSET. */
948 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
951 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
953 update_reg_offset (new_rtx
, reg
, offset
);
957 /* Generate a new pseudo-register with the same attributes as REG, but
958 with OFFSET added to the REG_OFFSET. */
961 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
963 rtx new_rtx
= gen_reg_rtx (mode
);
965 update_reg_offset (new_rtx
, reg
, offset
);
969 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
970 new register is a (possibly paradoxical) lowpart of the old one. */
973 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
975 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
976 PUT_MODE (reg
, mode
);
979 /* Copy REG's attributes from X, if X has any attributes. If REG and X
980 have different modes, REG is a (possibly paradoxical) lowpart of X. */
983 set_reg_attrs_from_value (rtx reg
, rtx x
)
986 bool can_be_reg_pointer
= true;
988 /* Don't call mark_reg_pointer for incompatible pointer sign
990 while (GET_CODE (x
) == SIGN_EXTEND
991 || GET_CODE (x
) == ZERO_EXTEND
992 || GET_CODE (x
) == TRUNCATE
993 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
995 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
996 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
997 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
998 can_be_reg_pointer
= false;
1003 /* Hard registers can be reused for multiple purposes within the same
1004 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1005 on them is wrong. */
1006 if (HARD_REGISTER_P (reg
))
1009 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1012 if (MEM_OFFSET_KNOWN_P (x
))
1013 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1014 MEM_OFFSET (x
) + offset
);
1015 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1016 mark_reg_pointer (reg
, 0);
1021 update_reg_offset (reg
, x
, offset
);
1022 if (can_be_reg_pointer
&& REG_POINTER (x
))
1023 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1027 /* Generate a REG rtx for a new pseudo register, copying the mode
1028 and attributes from X. */
1031 gen_reg_rtx_and_attrs (rtx x
)
1033 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1034 set_reg_attrs_from_value (reg
, x
);
1038 /* Set the register attributes for registers contained in PARM_RTX.
1039 Use needed values from memory attributes of MEM. */
1042 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1044 if (REG_P (parm_rtx
))
1045 set_reg_attrs_from_value (parm_rtx
, mem
);
1046 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1048 /* Check for a NULL entry in the first slot, used to indicate that the
1049 parameter goes both on the stack and in registers. */
1050 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1051 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1053 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1054 if (REG_P (XEXP (x
, 0)))
1055 REG_ATTRS (XEXP (x
, 0))
1056 = get_reg_attrs (MEM_EXPR (mem
),
1057 INTVAL (XEXP (x
, 1)));
1062 /* Set the REG_ATTRS for registers in value X, given that X represents
1066 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1068 if (GET_CODE (x
) == SUBREG
)
1070 gcc_assert (subreg_lowpart_p (x
));
1075 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1077 if (GET_CODE (x
) == CONCAT
)
1079 if (REG_P (XEXP (x
, 0)))
1080 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1081 if (REG_P (XEXP (x
, 1)))
1082 REG_ATTRS (XEXP (x
, 1))
1083 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1085 if (GET_CODE (x
) == PARALLEL
)
1089 /* Check for a NULL entry, used to indicate that the parameter goes
1090 both on the stack and in registers. */
1091 if (XEXP (XVECEXP (x
, 0, 0), 0))
1096 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1098 rtx y
= XVECEXP (x
, 0, i
);
1099 if (REG_P (XEXP (y
, 0)))
1100 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1105 /* Assign the RTX X to declaration T. */
1108 set_decl_rtl (tree t
, rtx x
)
1110 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1112 set_reg_attrs_for_decl_rtl (t
, x
);
1115 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1116 if the ABI requires the parameter to be passed by reference. */
1119 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1121 DECL_INCOMING_RTL (t
) = x
;
1122 if (x
&& !by_reference_p
)
1123 set_reg_attrs_for_decl_rtl (t
, x
);
1126 /* Identify REG (which may be a CONCAT) as a user register. */
1129 mark_user_reg (rtx reg
)
1131 if (GET_CODE (reg
) == CONCAT
)
1133 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1134 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1138 gcc_assert (REG_P (reg
));
1139 REG_USERVAR_P (reg
) = 1;
1143 /* Identify REG as a probable pointer register and show its alignment
1144 as ALIGN, if nonzero. */
1147 mark_reg_pointer (rtx reg
, int align
)
1149 if (! REG_POINTER (reg
))
1151 REG_POINTER (reg
) = 1;
1154 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1156 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1157 /* We can no-longer be sure just how aligned this pointer is. */
1158 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1161 /* Return 1 plus largest pseudo reg number used in the current function. */
1169 /* Return 1 + the largest label number used so far in the current function. */
1172 max_label_num (void)
1177 /* Return first label number used in this function (if any were used). */
1180 get_first_label_num (void)
1182 return first_label_num
;
1185 /* If the rtx for label was created during the expansion of a nested
1186 function, then first_label_num won't include this label number.
1187 Fix this now so that array indices work later. */
1190 maybe_set_first_label_num (rtx x
)
1192 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1193 first_label_num
= CODE_LABEL_NUMBER (x
);
1196 /* Return a value representing some low-order bits of X, where the number
1197 of low-order bits is given by MODE. Note that no conversion is done
1198 between floating-point and fixed-point values, rather, the bit
1199 representation is returned.
1201 This function handles the cases in common between gen_lowpart, below,
1202 and two variants in cse.c and combine.c. These are the cases that can
1203 be safely handled at all points in the compilation.
1205 If this is not a case we can handle, return 0. */
1208 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1210 int msize
= GET_MODE_SIZE (mode
);
1213 enum machine_mode innermode
;
1215 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1216 so we have to make one up. Yuk. */
1217 innermode
= GET_MODE (x
);
1219 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1220 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1221 else if (innermode
== VOIDmode
)
1222 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1224 xsize
= GET_MODE_SIZE (innermode
);
1226 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1228 if (innermode
== mode
)
1231 /* MODE must occupy no more words than the mode of X. */
1232 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1233 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1236 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1237 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1240 offset
= subreg_lowpart_offset (mode
, innermode
);
1242 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1243 && (GET_MODE_CLASS (mode
) == MODE_INT
1244 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1246 /* If we are getting the low-order part of something that has been
1247 sign- or zero-extended, we can either just use the object being
1248 extended or make a narrower extension. If we want an even smaller
1249 piece than the size of the object being extended, call ourselves
1252 This case is used mostly by combine and cse. */
1254 if (GET_MODE (XEXP (x
, 0)) == mode
)
1256 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1257 return gen_lowpart_common (mode
, XEXP (x
, 0));
1258 else if (msize
< xsize
)
1259 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1261 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1262 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1263 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1264 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1266 /* Otherwise, we can't do this. */
1271 gen_highpart (enum machine_mode mode
, rtx x
)
1273 unsigned int msize
= GET_MODE_SIZE (mode
);
1276 /* This case loses if X is a subreg. To catch bugs early,
1277 complain if an invalid MODE is used even in other cases. */
1278 gcc_assert (msize
<= UNITS_PER_WORD
1279 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1281 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1282 subreg_highpart_offset (mode
, GET_MODE (x
)));
1283 gcc_assert (result
);
1285 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1286 the target if we have a MEM. gen_highpart must return a valid operand,
1287 emitting code if necessary to do so. */
1290 result
= validize_mem (result
);
1291 gcc_assert (result
);
1297 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1298 be VOIDmode constant. */
1300 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1302 if (GET_MODE (exp
) != VOIDmode
)
1304 gcc_assert (GET_MODE (exp
) == innermode
);
1305 return gen_highpart (outermode
, exp
);
1307 return simplify_gen_subreg (outermode
, exp
, innermode
,
1308 subreg_highpart_offset (outermode
, innermode
));
1311 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1314 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1316 unsigned int offset
= 0;
1317 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1321 if (WORDS_BIG_ENDIAN
)
1322 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1323 if (BYTES_BIG_ENDIAN
)
1324 offset
+= difference
% UNITS_PER_WORD
;
1330 /* Return offset in bytes to get OUTERMODE high part
1331 of the value in mode INNERMODE stored in memory in target format. */
1333 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1335 unsigned int offset
= 0;
1336 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1338 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1342 if (! WORDS_BIG_ENDIAN
)
1343 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1344 if (! BYTES_BIG_ENDIAN
)
1345 offset
+= difference
% UNITS_PER_WORD
;
1351 /* Return 1 iff X, assumed to be a SUBREG,
1352 refers to the least significant part of its containing reg.
1353 If X is not a SUBREG, always return 1 (it is its own low part!). */
1356 subreg_lowpart_p (const_rtx x
)
1358 if (GET_CODE (x
) != SUBREG
)
1360 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1363 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1364 == SUBREG_BYTE (x
));
1367 /* Return true if X is a paradoxical subreg, false otherwise. */
1369 paradoxical_subreg_p (const_rtx x
)
1371 if (GET_CODE (x
) != SUBREG
)
1373 return (GET_MODE_PRECISION (GET_MODE (x
))
1374 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1377 /* Return subword OFFSET of operand OP.
1378 The word number, OFFSET, is interpreted as the word number starting
1379 at the low-order address. OFFSET 0 is the low-order word if not
1380 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1382 If we cannot extract the required word, we return zero. Otherwise,
1383 an rtx corresponding to the requested word will be returned.
1385 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1386 reload has completed, a valid address will always be returned. After
1387 reload, if a valid address cannot be returned, we return zero.
1389 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1390 it is the responsibility of the caller.
1392 MODE is the mode of OP in case it is a CONST_INT.
1394 ??? This is still rather broken for some cases. The problem for the
1395 moment is that all callers of this thing provide no 'goal mode' to
1396 tell us to work with. This exists because all callers were written
1397 in a word based SUBREG world.
1398 Now use of this function can be deprecated by simplify_subreg in most
1403 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1405 if (mode
== VOIDmode
)
1406 mode
= GET_MODE (op
);
1408 gcc_assert (mode
!= VOIDmode
);
1410 /* If OP is narrower than a word, fail. */
1412 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1415 /* If we want a word outside OP, return zero. */
1417 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1420 /* Form a new MEM at the requested address. */
1423 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1425 if (! validate_address
)
1428 else if (reload_completed
)
1430 if (! strict_memory_address_addr_space_p (word_mode
,
1432 MEM_ADDR_SPACE (op
)))
1436 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1439 /* Rest can be handled by simplify_subreg. */
1440 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1443 /* Similar to `operand_subword', but never return 0. If we can't
1444 extract the required subword, put OP into a register and try again.
1445 The second attempt must succeed. We always validate the address in
1448 MODE is the mode of OP, in case it is CONST_INT. */
1451 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1453 rtx result
= operand_subword (op
, offset
, 1, mode
);
1458 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1460 /* If this is a register which can not be accessed by words, copy it
1461 to a pseudo register. */
1463 op
= copy_to_reg (op
);
1465 op
= force_reg (mode
, op
);
1468 result
= operand_subword (op
, offset
, 1, mode
);
1469 gcc_assert (result
);
1474 /* Returns 1 if both MEM_EXPR can be considered equal
1478 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1483 if (! expr1
|| ! expr2
)
1486 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1489 return operand_equal_p (expr1
, expr2
, 0);
1492 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1493 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1497 get_mem_align_offset (rtx mem
, unsigned int align
)
1500 unsigned HOST_WIDE_INT offset
;
1502 /* This function can't use
1503 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1504 || (MAX (MEM_ALIGN (mem),
1505 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1509 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1511 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1512 for <variable>. get_inner_reference doesn't handle it and
1513 even if it did, the alignment in that case needs to be determined
1514 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1515 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1516 isn't sufficiently aligned, the object it is in might be. */
1517 gcc_assert (MEM_P (mem
));
1518 expr
= MEM_EXPR (mem
);
1519 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1522 offset
= MEM_OFFSET (mem
);
1525 if (DECL_ALIGN (expr
) < align
)
1528 else if (INDIRECT_REF_P (expr
))
1530 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1533 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1537 tree inner
= TREE_OPERAND (expr
, 0);
1538 tree field
= TREE_OPERAND (expr
, 1);
1539 tree byte_offset
= component_ref_field_offset (expr
);
1540 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1543 || !host_integerp (byte_offset
, 1)
1544 || !host_integerp (bit_offset
, 1))
1547 offset
+= tree_low_cst (byte_offset
, 1);
1548 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1550 if (inner
== NULL_TREE
)
1552 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1553 < (unsigned int) align
)
1557 else if (DECL_P (inner
))
1559 if (DECL_ALIGN (inner
) < align
)
1563 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1571 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1574 /* Given REF (a MEM) and T, either the type of X or the expression
1575 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1576 if we are making a new object of this type. BITPOS is nonzero if
1577 there is an offset outstanding on T that will be applied later. */
1580 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1581 HOST_WIDE_INT bitpos
)
1583 HOST_WIDE_INT apply_bitpos
= 0;
1585 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1588 /* It can happen that type_for_mode was given a mode for which there
1589 is no language-level type. In which case it returns NULL, which
1594 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1595 if (type
== error_mark_node
)
1598 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1599 wrong answer, as it assumes that DECL_RTL already has the right alias
1600 info. Callers should not set DECL_RTL until after the call to
1601 set_mem_attributes. */
1602 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1604 memset (&attrs
, 0, sizeof (attrs
));
1606 /* Get the alias set from the expression or type (perhaps using a
1607 front-end routine) and use it. */
1608 attrs
.alias
= get_alias_set (t
);
1610 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1611 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1613 /* Default values from pre-existing memory attributes if present. */
1614 refattrs
= MEM_ATTRS (ref
);
1617 /* ??? Can this ever happen? Calling this routine on a MEM that
1618 already carries memory attributes should probably be invalid. */
1619 attrs
.expr
= refattrs
->expr
;
1620 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1621 attrs
.offset
= refattrs
->offset
;
1622 attrs
.size_known_p
= refattrs
->size_known_p
;
1623 attrs
.size
= refattrs
->size
;
1624 attrs
.align
= refattrs
->align
;
1627 /* Otherwise, default values from the mode of the MEM reference. */
1630 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1631 gcc_assert (!defattrs
->expr
);
1632 gcc_assert (!defattrs
->offset_known_p
);
1634 /* Respect mode size. */
1635 attrs
.size_known_p
= defattrs
->size_known_p
;
1636 attrs
.size
= defattrs
->size
;
1637 /* ??? Is this really necessary? We probably should always get
1638 the size from the type below. */
1640 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1641 if T is an object, always compute the object alignment below. */
1643 attrs
.align
= defattrs
->align
;
1645 attrs
.align
= BITS_PER_UNIT
;
1646 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1647 e.g. if the type carries an alignment attribute. Should we be
1648 able to simply always use TYPE_ALIGN? */
1651 /* We can set the alignment from the type if we are making an object,
1652 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1653 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1654 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1656 /* If the size is known, we can set that. */
1657 tree new_size
= TYPE_SIZE_UNIT (type
);
1659 /* The address-space is that of the type. */
1660 as
= TYPE_ADDR_SPACE (type
);
1662 /* If T is not a type, we may be able to deduce some more information about
1668 if (TREE_THIS_VOLATILE (t
))
1669 MEM_VOLATILE_P (ref
) = 1;
1671 /* Now remove any conversions: they don't change what the underlying
1672 object is. Likewise for SAVE_EXPR. */
1673 while (CONVERT_EXPR_P (t
)
1674 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1675 || TREE_CODE (t
) == SAVE_EXPR
)
1676 t
= TREE_OPERAND (t
, 0);
1678 /* Note whether this expression can trap. */
1679 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1681 base
= get_base_address (t
);
1685 && TREE_READONLY (base
)
1686 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1687 && !TREE_THIS_VOLATILE (base
))
1688 MEM_READONLY_P (ref
) = 1;
1690 /* Mark static const strings readonly as well. */
1691 if (TREE_CODE (base
) == STRING_CST
1692 && TREE_READONLY (base
)
1693 && TREE_STATIC (base
))
1694 MEM_READONLY_P (ref
) = 1;
1696 /* Address-space information is on the base object. */
1697 if (TREE_CODE (base
) == MEM_REF
1698 || TREE_CODE (base
) == TARGET_MEM_REF
)
1699 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1702 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1705 /* If this expression uses it's parent's alias set, mark it such
1706 that we won't change it. */
1707 if (component_uses_parent_alias_set (t
))
1708 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1710 /* If this is a decl, set the attributes of the MEM from it. */
1714 attrs
.offset_known_p
= true;
1716 apply_bitpos
= bitpos
;
1717 new_size
= DECL_SIZE_UNIT (t
);
1720 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1721 else if (CONSTANT_CLASS_P (t
))
1724 /* If this is a field reference, record it. */
1725 else if (TREE_CODE (t
) == COMPONENT_REF
)
1728 attrs
.offset_known_p
= true;
1730 apply_bitpos
= bitpos
;
1731 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1732 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1735 /* If this is an array reference, look for an outer field reference. */
1736 else if (TREE_CODE (t
) == ARRAY_REF
)
1738 tree off_tree
= size_zero_node
;
1739 /* We can't modify t, because we use it at the end of the
1745 tree index
= TREE_OPERAND (t2
, 1);
1746 tree low_bound
= array_ref_low_bound (t2
);
1747 tree unit_size
= array_ref_element_size (t2
);
1749 /* We assume all arrays have sizes that are a multiple of a byte.
1750 First subtract the lower bound, if any, in the type of the
1751 index, then convert to sizetype and multiply by the size of
1752 the array element. */
1753 if (! integer_zerop (low_bound
))
1754 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1757 off_tree
= size_binop (PLUS_EXPR
,
1758 size_binop (MULT_EXPR
,
1759 fold_convert (sizetype
,
1763 t2
= TREE_OPERAND (t2
, 0);
1765 while (TREE_CODE (t2
) == ARRAY_REF
);
1768 || TREE_CODE (t2
) == COMPONENT_REF
)
1771 attrs
.offset_known_p
= false;
1772 if (host_integerp (off_tree
, 1))
1774 attrs
.offset_known_p
= true;
1775 attrs
.offset
= tree_low_cst (off_tree
, 1);
1776 apply_bitpos
= bitpos
;
1779 /* Else do not record a MEM_EXPR. */
1782 /* If this is an indirect reference, record it. */
1783 else if (TREE_CODE (t
) == MEM_REF
1784 || TREE_CODE (t
) == TARGET_MEM_REF
)
1787 attrs
.offset_known_p
= true;
1789 apply_bitpos
= bitpos
;
1792 /* Compute the alignment. */
1793 unsigned int obj_align
;
1794 unsigned HOST_WIDE_INT obj_bitpos
;
1795 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1796 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1797 if (obj_bitpos
!= 0)
1798 obj_align
= (obj_bitpos
& -obj_bitpos
);
1799 attrs
.align
= MAX (attrs
.align
, obj_align
);
1802 if (host_integerp (new_size
, 1))
1804 attrs
.size_known_p
= true;
1805 attrs
.size
= tree_low_cst (new_size
, 1);
1808 /* If we modified OFFSET based on T, then subtract the outstanding
1809 bit position offset. Similarly, increase the size of the accessed
1810 object to contain the negative offset. */
1813 gcc_assert (attrs
.offset_known_p
);
1814 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1815 if (attrs
.size_known_p
)
1816 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1819 /* Now set the attributes we computed above. */
1820 attrs
.addrspace
= as
;
1821 set_mem_attrs (ref
, &attrs
);
1825 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1827 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1830 /* Set the alias set of MEM to SET. */
1833 set_mem_alias_set (rtx mem
, alias_set_type set
)
1835 struct mem_attrs attrs
;
1837 /* If the new and old alias sets don't conflict, something is wrong. */
1838 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1839 attrs
= *get_mem_attrs (mem
);
1841 set_mem_attrs (mem
, &attrs
);
1844 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1847 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1849 struct mem_attrs attrs
;
1851 attrs
= *get_mem_attrs (mem
);
1852 attrs
.addrspace
= addrspace
;
1853 set_mem_attrs (mem
, &attrs
);
1856 /* Set the alignment of MEM to ALIGN bits. */
1859 set_mem_align (rtx mem
, unsigned int align
)
1861 struct mem_attrs attrs
;
1863 attrs
= *get_mem_attrs (mem
);
1864 attrs
.align
= align
;
1865 set_mem_attrs (mem
, &attrs
);
1868 /* Set the expr for MEM to EXPR. */
1871 set_mem_expr (rtx mem
, tree expr
)
1873 struct mem_attrs attrs
;
1875 attrs
= *get_mem_attrs (mem
);
1877 set_mem_attrs (mem
, &attrs
);
1880 /* Set the offset of MEM to OFFSET. */
1883 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1885 struct mem_attrs attrs
;
1887 attrs
= *get_mem_attrs (mem
);
1888 attrs
.offset_known_p
= true;
1889 attrs
.offset
= offset
;
1890 set_mem_attrs (mem
, &attrs
);
1893 /* Clear the offset of MEM. */
1896 clear_mem_offset (rtx mem
)
1898 struct mem_attrs attrs
;
1900 attrs
= *get_mem_attrs (mem
);
1901 attrs
.offset_known_p
= false;
1902 set_mem_attrs (mem
, &attrs
);
1905 /* Set the size of MEM to SIZE. */
1908 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1910 struct mem_attrs attrs
;
1912 attrs
= *get_mem_attrs (mem
);
1913 attrs
.size_known_p
= true;
1915 set_mem_attrs (mem
, &attrs
);
1918 /* Clear the size of MEM. */
1921 clear_mem_size (rtx mem
)
1923 struct mem_attrs attrs
;
1925 attrs
= *get_mem_attrs (mem
);
1926 attrs
.size_known_p
= false;
1927 set_mem_attrs (mem
, &attrs
);
1930 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1931 and its address changed to ADDR. (VOIDmode means don't change the mode.
1932 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1933 returned memory location is required to be valid. The memory
1934 attributes are not changed. */
1937 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1942 gcc_assert (MEM_P (memref
));
1943 as
= MEM_ADDR_SPACE (memref
);
1944 if (mode
== VOIDmode
)
1945 mode
= GET_MODE (memref
);
1947 addr
= XEXP (memref
, 0);
1948 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1949 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1954 if (reload_in_progress
|| reload_completed
)
1955 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1957 addr
= memory_address_addr_space (mode
, addr
, as
);
1960 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1963 new_rtx
= gen_rtx_MEM (mode
, addr
);
1964 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1968 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1969 way we are changing MEMREF, so we only preserve the alias set. */
1972 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1974 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
1975 enum machine_mode mmode
= GET_MODE (new_rtx
);
1976 struct mem_attrs attrs
, *defattrs
;
1978 attrs
= *get_mem_attrs (memref
);
1979 defattrs
= mode_mem_attrs
[(int) mmode
];
1980 attrs
.expr
= NULL_TREE
;
1981 attrs
.offset_known_p
= false;
1982 attrs
.size_known_p
= defattrs
->size_known_p
;
1983 attrs
.size
= defattrs
->size
;
1984 attrs
.align
= defattrs
->align
;
1986 /* If there are no changes, just return the original memory reference. */
1987 if (new_rtx
== memref
)
1989 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
1992 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1993 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1996 set_mem_attrs (new_rtx
, &attrs
);
2000 /* Return a memory reference like MEMREF, but with its mode changed
2001 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2002 nonzero, the memory address is forced to be valid.
2003 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2004 and the caller is responsible for adjusting MEMREF base register.
2005 If ADJUST_OBJECT is zero, the underlying object associated with the
2006 memory reference is left unchanged and the caller is responsible for
2007 dealing with it. Otherwise, if the new memory reference is outside
2008 the underlying object, even partially, then the object is dropped.
2009 SIZE, if nonzero, is the size of an access in cases where MODE
2010 has no inherent size. */
2013 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2014 int validate
, int adjust_address
, int adjust_object
,
2017 rtx addr
= XEXP (memref
, 0);
2019 enum machine_mode address_mode
;
2021 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2022 unsigned HOST_WIDE_INT max_align
;
2023 #ifdef POINTERS_EXTEND_UNSIGNED
2024 enum machine_mode pointer_mode
2025 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2028 /* VOIDmode means no mode change for change_address_1. */
2029 if (mode
== VOIDmode
)
2030 mode
= GET_MODE (memref
);
2032 /* Take the size of non-BLKmode accesses from the mode. */
2033 defattrs
= mode_mem_attrs
[(int) mode
];
2034 if (defattrs
->size_known_p
)
2035 size
= defattrs
->size
;
2037 /* If there are no changes, just return the original memory reference. */
2038 if (mode
== GET_MODE (memref
) && !offset
2039 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2040 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2044 /* ??? Prefer to create garbage instead of creating shared rtl.
2045 This may happen even if offset is nonzero -- consider
2046 (plus (plus reg reg) const_int) -- so do this always. */
2047 addr
= copy_rtx (addr
);
2049 /* Convert a possibly large offset to a signed value within the
2050 range of the target address space. */
2051 address_mode
= get_address_mode (memref
);
2052 pbits
= GET_MODE_BITSIZE (address_mode
);
2053 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2055 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2056 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2062 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2063 object, we can merge it into the LO_SUM. */
2064 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2066 && (unsigned HOST_WIDE_INT
) offset
2067 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2068 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2069 plus_constant (address_mode
,
2070 XEXP (addr
, 1), offset
));
2071 #ifdef POINTERS_EXTEND_UNSIGNED
2072 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2073 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2074 the fact that pointers are not allowed to overflow. */
2075 else if (POINTERS_EXTEND_UNSIGNED
> 0
2076 && GET_CODE (addr
) == ZERO_EXTEND
2077 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2078 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2079 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2080 plus_constant (pointer_mode
,
2081 XEXP (addr
, 0), offset
));
2084 addr
= plus_constant (address_mode
, addr
, offset
);
2087 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2089 /* If the address is a REG, change_address_1 rightfully returns memref,
2090 but this would destroy memref's MEM_ATTRS. */
2091 if (new_rtx
== memref
&& offset
!= 0)
2092 new_rtx
= copy_rtx (new_rtx
);
2094 /* Conservatively drop the object if we don't know where we start from. */
2095 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2097 attrs
.expr
= NULL_TREE
;
2101 /* Compute the new values of the memory attributes due to this adjustment.
2102 We add the offsets and update the alignment. */
2103 if (attrs
.offset_known_p
)
2105 attrs
.offset
+= offset
;
2107 /* Drop the object if the new left end is not within its bounds. */
2108 if (adjust_object
&& attrs
.offset
< 0)
2110 attrs
.expr
= NULL_TREE
;
2115 /* Compute the new alignment by taking the MIN of the alignment and the
2116 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2120 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2121 attrs
.align
= MIN (attrs
.align
, max_align
);
2126 /* Drop the object if the new right end is not within its bounds. */
2127 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2129 attrs
.expr
= NULL_TREE
;
2132 attrs
.size_known_p
= true;
2135 else if (attrs
.size_known_p
)
2137 gcc_assert (!adjust_object
);
2138 attrs
.size
-= offset
;
2139 /* ??? The store_by_pieces machinery generates negative sizes,
2140 so don't assert for that here. */
2143 set_mem_attrs (new_rtx
, &attrs
);
2148 /* Return a memory reference like MEMREF, but with its mode changed
2149 to MODE and its address changed to ADDR, which is assumed to be
2150 MEMREF offset by OFFSET bytes. If VALIDATE is
2151 nonzero, the memory address is forced to be valid. */
2154 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2155 HOST_WIDE_INT offset
, int validate
)
2157 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2158 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2161 /* Return a memory reference like MEMREF, but whose address is changed by
2162 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2163 known to be in OFFSET (possibly 1). */
2166 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2168 rtx new_rtx
, addr
= XEXP (memref
, 0);
2169 enum machine_mode address_mode
;
2170 struct mem_attrs attrs
, *defattrs
;
2172 attrs
= *get_mem_attrs (memref
);
2173 address_mode
= get_address_mode (memref
);
2174 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2176 /* At this point we don't know _why_ the address is invalid. It
2177 could have secondary memory references, multiplies or anything.
2179 However, if we did go and rearrange things, we can wind up not
2180 being able to recognize the magic around pic_offset_table_rtx.
2181 This stuff is fragile, and is yet another example of why it is
2182 bad to expose PIC machinery too early. */
2183 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2185 && GET_CODE (addr
) == PLUS
2186 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2188 addr
= force_reg (GET_MODE (addr
), addr
);
2189 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2192 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2193 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2195 /* If there are no changes, just return the original memory reference. */
2196 if (new_rtx
== memref
)
2199 /* Update the alignment to reflect the offset. Reset the offset, which
2201 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2202 attrs
.offset_known_p
= false;
2203 attrs
.size_known_p
= defattrs
->size_known_p
;
2204 attrs
.size
= defattrs
->size
;
2205 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2206 set_mem_attrs (new_rtx
, &attrs
);
2210 /* Return a memory reference like MEMREF, but with its address changed to
2211 ADDR. The caller is asserting that the actual piece of memory pointed
2212 to is the same, just the form of the address is being changed, such as
2213 by putting something into a register. */
2216 replace_equiv_address (rtx memref
, rtx addr
)
2218 /* change_address_1 copies the memory attribute structure without change
2219 and that's exactly what we want here. */
2220 update_temp_slot_address (XEXP (memref
, 0), addr
);
2221 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2224 /* Likewise, but the reference is not required to be valid. */
2227 replace_equiv_address_nv (rtx memref
, rtx addr
)
2229 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2232 /* Return a memory reference like MEMREF, but with its mode widened to
2233 MODE and offset by OFFSET. This would be used by targets that e.g.
2234 cannot issue QImode memory operations and have to use SImode memory
2235 operations plus masking logic. */
2238 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2240 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2241 struct mem_attrs attrs
;
2242 unsigned int size
= GET_MODE_SIZE (mode
);
2244 /* If there are no changes, just return the original memory reference. */
2245 if (new_rtx
== memref
)
2248 attrs
= *get_mem_attrs (new_rtx
);
2250 /* If we don't know what offset we were at within the expression, then
2251 we can't know if we've overstepped the bounds. */
2252 if (! attrs
.offset_known_p
)
2253 attrs
.expr
= NULL_TREE
;
2257 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2259 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2260 tree offset
= component_ref_field_offset (attrs
.expr
);
2262 if (! DECL_SIZE_UNIT (field
))
2264 attrs
.expr
= NULL_TREE
;
2268 /* Is the field at least as large as the access? If so, ok,
2269 otherwise strip back to the containing structure. */
2270 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2271 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2272 && attrs
.offset
>= 0)
2275 if (! host_integerp (offset
, 1))
2277 attrs
.expr
= NULL_TREE
;
2281 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2282 attrs
.offset
+= tree_low_cst (offset
, 1);
2283 attrs
.offset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2286 /* Similarly for the decl. */
2287 else if (DECL_P (attrs
.expr
)
2288 && DECL_SIZE_UNIT (attrs
.expr
)
2289 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2290 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2291 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2295 /* The widened memory access overflows the expression, which means
2296 that it could alias another expression. Zap it. */
2297 attrs
.expr
= NULL_TREE
;
2303 attrs
.offset_known_p
= false;
2305 /* The widened memory may alias other stuff, so zap the alias set. */
2306 /* ??? Maybe use get_alias_set on any remaining expression. */
2308 attrs
.size_known_p
= true;
2310 set_mem_attrs (new_rtx
, &attrs
);
2314 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2315 static GTY(()) tree spill_slot_decl
;
2318 get_spill_slot_decl (bool force_build_p
)
2320 tree d
= spill_slot_decl
;
2322 struct mem_attrs attrs
;
2324 if (d
|| !force_build_p
)
2327 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2328 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2329 DECL_ARTIFICIAL (d
) = 1;
2330 DECL_IGNORED_P (d
) = 1;
2332 spill_slot_decl
= d
;
2334 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2335 MEM_NOTRAP_P (rd
) = 1;
2336 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2337 attrs
.alias
= new_alias_set ();
2339 set_mem_attrs (rd
, &attrs
);
2340 SET_DECL_RTL (d
, rd
);
2345 /* Given MEM, a result from assign_stack_local, fill in the memory
2346 attributes as appropriate for a register allocator spill slot.
2347 These slots are not aliasable by other memory. We arrange for
2348 them all to use a single MEM_EXPR, so that the aliasing code can
2349 work properly in the case of shared spill slots. */
2352 set_mem_attrs_for_spill (rtx mem
)
2354 struct mem_attrs attrs
;
2357 attrs
= *get_mem_attrs (mem
);
2358 attrs
.expr
= get_spill_slot_decl (true);
2359 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2360 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2362 /* We expect the incoming memory to be of the form:
2363 (mem:MODE (plus (reg sfp) (const_int offset)))
2364 with perhaps the plus missing for offset = 0. */
2365 addr
= XEXP (mem
, 0);
2366 attrs
.offset_known_p
= true;
2368 if (GET_CODE (addr
) == PLUS
2369 && CONST_INT_P (XEXP (addr
, 1)))
2370 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2372 set_mem_attrs (mem
, &attrs
);
2373 MEM_NOTRAP_P (mem
) = 1;
2376 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2379 gen_label_rtx (void)
2381 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2382 NULL
, label_num
++, NULL
);
2385 /* For procedure integration. */
2387 /* Install new pointers to the first and last insns in the chain.
2388 Also, set cur_insn_uid to one higher than the last in use.
2389 Used for an inline-procedure after copying the insn chain. */
2392 set_new_first_and_last_insn (rtx first
, rtx last
)
2396 set_first_insn (first
);
2397 set_last_insn (last
);
2400 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2402 int debug_count
= 0;
2404 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2405 cur_debug_insn_uid
= 0;
2407 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2408 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2409 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2412 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2413 if (DEBUG_INSN_P (insn
))
2418 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2420 cur_debug_insn_uid
++;
2423 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2424 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2429 /* Go through all the RTL insn bodies and copy any invalid shared
2430 structure. This routine should only be called once. */
2433 unshare_all_rtl_1 (rtx insn
)
2435 /* Unshare just about everything else. */
2436 unshare_all_rtl_in_chain (insn
);
2438 /* Make sure the addresses of stack slots found outside the insn chain
2439 (such as, in DECL_RTL of a variable) are not shared
2440 with the insn chain.
2442 This special care is necessary when the stack slot MEM does not
2443 actually appear in the insn chain. If it does appear, its address
2444 is unshared from all else at that point. */
2445 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2448 /* Go through all the RTL insn bodies and copy any invalid shared
2449 structure, again. This is a fairly expensive thing to do so it
2450 should be done sparingly. */
2453 unshare_all_rtl_again (rtx insn
)
2458 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2461 reset_used_flags (PATTERN (p
));
2462 reset_used_flags (REG_NOTES (p
));
2464 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2467 /* Make sure that virtual stack slots are not shared. */
2468 set_used_decls (DECL_INITIAL (cfun
->decl
));
2470 /* Make sure that virtual parameters are not shared. */
2471 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2472 set_used_flags (DECL_RTL (decl
));
2474 reset_used_flags (stack_slot_list
);
2476 unshare_all_rtl_1 (insn
);
2480 unshare_all_rtl (void)
2482 unshare_all_rtl_1 (get_insns ());
2487 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2488 Recursively does the same for subexpressions. */
2491 verify_rtx_sharing (rtx orig
, rtx insn
)
2496 const char *format_ptr
;
2501 code
= GET_CODE (x
);
2503 /* These types may be freely shared. */
2519 /* SCRATCH must be shared because they represent distinct values. */
2522 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2523 clobbers or clobbers of hard registers that originated as pseudos.
2524 This is needed to allow safe register renaming. */
2525 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2526 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2531 if (shared_const_p (orig
))
2536 /* A MEM is allowed to be shared if its address is constant. */
2537 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2538 || reload_completed
|| reload_in_progress
)
2547 /* This rtx may not be shared. If it has already been seen,
2548 replace it with a copy of itself. */
2549 #ifdef ENABLE_CHECKING
2550 if (RTX_FLAG (x
, used
))
2552 error ("invalid rtl sharing found in the insn");
2554 error ("shared rtx");
2556 internal_error ("internal consistency failure");
2559 gcc_assert (!RTX_FLAG (x
, used
));
2561 RTX_FLAG (x
, used
) = 1;
2563 /* Now scan the subexpressions recursively. */
2565 format_ptr
= GET_RTX_FORMAT (code
);
2567 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2569 switch (*format_ptr
++)
2572 verify_rtx_sharing (XEXP (x
, i
), insn
);
2576 if (XVEC (x
, i
) != NULL
)
2579 int len
= XVECLEN (x
, i
);
2581 for (j
= 0; j
< len
; j
++)
2583 /* We allow sharing of ASM_OPERANDS inside single
2585 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2586 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2588 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2590 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2599 /* Go through all the RTL insn bodies and check that there is no unexpected
2600 sharing in between the subexpressions. */
2603 verify_rtl_sharing (void)
2607 timevar_push (TV_VERIFY_RTL_SHARING
);
2609 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2612 reset_used_flags (PATTERN (p
));
2613 reset_used_flags (REG_NOTES (p
));
2615 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2616 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2619 rtx q
, sequence
= PATTERN (p
);
2621 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2623 q
= XVECEXP (sequence
, 0, i
);
2624 gcc_assert (INSN_P (q
));
2625 reset_used_flags (PATTERN (q
));
2626 reset_used_flags (REG_NOTES (q
));
2628 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q
));
2633 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2636 verify_rtx_sharing (PATTERN (p
), p
);
2637 verify_rtx_sharing (REG_NOTES (p
), p
);
2639 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p
), p
);
2642 timevar_pop (TV_VERIFY_RTL_SHARING
);
2645 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2646 Assumes the mark bits are cleared at entry. */
2649 unshare_all_rtl_in_chain (rtx insn
)
2651 for (; insn
; insn
= NEXT_INSN (insn
))
2654 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2655 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2657 CALL_INSN_FUNCTION_USAGE (insn
)
2658 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2662 /* Go through all virtual stack slots of a function and mark them as
2663 shared. We never replace the DECL_RTLs themselves with a copy,
2664 but expressions mentioned into a DECL_RTL cannot be shared with
2665 expressions in the instruction stream.
2667 Note that reload may convert pseudo registers into memories in-place.
2668 Pseudo registers are always shared, but MEMs never are. Thus if we
2669 reset the used flags on MEMs in the instruction stream, we must set
2670 them again on MEMs that appear in DECL_RTLs. */
2673 set_used_decls (tree blk
)
2678 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2679 if (DECL_RTL_SET_P (t
))
2680 set_used_flags (DECL_RTL (t
));
2682 /* Now process sub-blocks. */
2683 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2687 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2688 Recursively does the same for subexpressions. Uses
2689 copy_rtx_if_shared_1 to reduce stack space. */
2692 copy_rtx_if_shared (rtx orig
)
2694 copy_rtx_if_shared_1 (&orig
);
2698 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2699 use. Recursively does the same for subexpressions. */
2702 copy_rtx_if_shared_1 (rtx
*orig1
)
2708 const char *format_ptr
;
2712 /* Repeat is used to turn tail-recursion into iteration. */
2719 code
= GET_CODE (x
);
2721 /* These types may be freely shared. */
2737 /* SCRATCH must be shared because they represent distinct values. */
2740 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2741 clobbers or clobbers of hard registers that originated as pseudos.
2742 This is needed to allow safe register renaming. */
2743 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2744 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2749 if (shared_const_p (x
))
2759 /* The chain of insns is not being copied. */
2766 /* This rtx may not be shared. If it has already been seen,
2767 replace it with a copy of itself. */
2769 if (RTX_FLAG (x
, used
))
2771 x
= shallow_copy_rtx (x
);
2774 RTX_FLAG (x
, used
) = 1;
2776 /* Now scan the subexpressions recursively.
2777 We can store any replaced subexpressions directly into X
2778 since we know X is not shared! Any vectors in X
2779 must be copied if X was copied. */
2781 format_ptr
= GET_RTX_FORMAT (code
);
2782 length
= GET_RTX_LENGTH (code
);
2785 for (i
= 0; i
< length
; i
++)
2787 switch (*format_ptr
++)
2791 copy_rtx_if_shared_1 (last_ptr
);
2792 last_ptr
= &XEXP (x
, i
);
2796 if (XVEC (x
, i
) != NULL
)
2799 int len
= XVECLEN (x
, i
);
2801 /* Copy the vector iff I copied the rtx and the length
2803 if (copied
&& len
> 0)
2804 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2806 /* Call recursively on all inside the vector. */
2807 for (j
= 0; j
< len
; j
++)
2810 copy_rtx_if_shared_1 (last_ptr
);
2811 last_ptr
= &XVECEXP (x
, i
, j
);
2826 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2829 mark_used_flags (rtx x
, int flag
)
2833 const char *format_ptr
;
2836 /* Repeat is used to turn tail-recursion into iteration. */
2841 code
= GET_CODE (x
);
2843 /* These types may be freely shared so we needn't do any resetting
2867 /* The chain of insns is not being copied. */
2874 RTX_FLAG (x
, used
) = flag
;
2876 format_ptr
= GET_RTX_FORMAT (code
);
2877 length
= GET_RTX_LENGTH (code
);
2879 for (i
= 0; i
< length
; i
++)
2881 switch (*format_ptr
++)
2889 mark_used_flags (XEXP (x
, i
), flag
);
2893 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2894 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2900 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2901 to look for shared sub-parts. */
2904 reset_used_flags (rtx x
)
2906 mark_used_flags (x
, 0);
2909 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2910 to look for shared sub-parts. */
2913 set_used_flags (rtx x
)
2915 mark_used_flags (x
, 1);
2918 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2919 Return X or the rtx for the pseudo reg the value of X was copied into.
2920 OTHER must be valid as a SET_DEST. */
2923 make_safe_from (rtx x
, rtx other
)
2926 switch (GET_CODE (other
))
2929 other
= SUBREG_REG (other
);
2931 case STRICT_LOW_PART
:
2934 other
= XEXP (other
, 0);
2943 && GET_CODE (x
) != SUBREG
)
2945 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2946 || reg_mentioned_p (other
, x
))))
2948 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2949 emit_move_insn (temp
, x
);
2955 /* Emission of insns (adding them to the doubly-linked list). */
2957 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2960 get_last_insn_anywhere (void)
2962 struct sequence_stack
*stack
;
2963 if (get_last_insn ())
2964 return get_last_insn ();
2965 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2966 if (stack
->last
!= 0)
2971 /* Return the first nonnote insn emitted in current sequence or current
2972 function. This routine looks inside SEQUENCEs. */
2975 get_first_nonnote_insn (void)
2977 rtx insn
= get_insns ();
2982 for (insn
= next_insn (insn
);
2983 insn
&& NOTE_P (insn
);
2984 insn
= next_insn (insn
))
2988 if (NONJUMP_INSN_P (insn
)
2989 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2990 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2997 /* Return the last nonnote insn emitted in current sequence or current
2998 function. This routine looks inside SEQUENCEs. */
3001 get_last_nonnote_insn (void)
3003 rtx insn
= get_last_insn ();
3008 for (insn
= previous_insn (insn
);
3009 insn
&& NOTE_P (insn
);
3010 insn
= previous_insn (insn
))
3014 if (NONJUMP_INSN_P (insn
)
3015 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3016 insn
= XVECEXP (PATTERN (insn
), 0,
3017 XVECLEN (PATTERN (insn
), 0) - 1);
3024 /* Return the number of actual (non-debug) insns emitted in this
3028 get_max_insn_count (void)
3030 int n
= cur_insn_uid
;
3032 /* The table size must be stable across -g, to avoid codegen
3033 differences due to debug insns, and not be affected by
3034 -fmin-insn-uid, to avoid excessive table size and to simplify
3035 debugging of -fcompare-debug failures. */
3036 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3037 n
-= cur_debug_insn_uid
;
3039 n
-= MIN_NONDEBUG_INSN_UID
;
3045 /* Return the next insn. If it is a SEQUENCE, return the first insn
3049 next_insn (rtx insn
)
3053 insn
= NEXT_INSN (insn
);
3054 if (insn
&& NONJUMP_INSN_P (insn
)
3055 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3056 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3062 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3066 previous_insn (rtx insn
)
3070 insn
= PREV_INSN (insn
);
3071 if (insn
&& NONJUMP_INSN_P (insn
)
3072 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3073 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3079 /* Return the next insn after INSN that is not a NOTE. This routine does not
3080 look inside SEQUENCEs. */
3083 next_nonnote_insn (rtx insn
)
3087 insn
= NEXT_INSN (insn
);
3088 if (insn
== 0 || !NOTE_P (insn
))
3095 /* Return the next insn after INSN that is not a NOTE, but stop the
3096 search before we enter another basic block. This routine does not
3097 look inside SEQUENCEs. */
3100 next_nonnote_insn_bb (rtx insn
)
3104 insn
= NEXT_INSN (insn
);
3105 if (insn
== 0 || !NOTE_P (insn
))
3107 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3114 /* Return the previous insn before INSN that is not a NOTE. This routine does
3115 not look inside SEQUENCEs. */
3118 prev_nonnote_insn (rtx insn
)
3122 insn
= PREV_INSN (insn
);
3123 if (insn
== 0 || !NOTE_P (insn
))
3130 /* Return the previous insn before INSN that is not a NOTE, but stop
3131 the search before we enter another basic block. This routine does
3132 not look inside SEQUENCEs. */
3135 prev_nonnote_insn_bb (rtx insn
)
3139 insn
= PREV_INSN (insn
);
3140 if (insn
== 0 || !NOTE_P (insn
))
3142 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3149 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3150 routine does not look inside SEQUENCEs. */
3153 next_nondebug_insn (rtx insn
)
3157 insn
= NEXT_INSN (insn
);
3158 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3165 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3166 This routine does not look inside SEQUENCEs. */
3169 prev_nondebug_insn (rtx insn
)
3173 insn
= PREV_INSN (insn
);
3174 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3181 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3182 This routine does not look inside SEQUENCEs. */
3185 next_nonnote_nondebug_insn (rtx insn
)
3189 insn
= NEXT_INSN (insn
);
3190 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3197 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3198 This routine does not look inside SEQUENCEs. */
3201 prev_nonnote_nondebug_insn (rtx insn
)
3205 insn
= PREV_INSN (insn
);
3206 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3213 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3214 or 0, if there is none. This routine does not look inside
3218 next_real_insn (rtx insn
)
3222 insn
= NEXT_INSN (insn
);
3223 if (insn
== 0 || INSN_P (insn
))
3230 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3231 or 0, if there is none. This routine does not look inside
3235 prev_real_insn (rtx insn
)
3239 insn
= PREV_INSN (insn
);
3240 if (insn
== 0 || INSN_P (insn
))
3247 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3248 This routine does not look inside SEQUENCEs. */
3251 last_call_insn (void)
3255 for (insn
= get_last_insn ();
3256 insn
&& !CALL_P (insn
);
3257 insn
= PREV_INSN (insn
))
3263 /* Find the next insn after INSN that really does something. This routine
3264 does not look inside SEQUENCEs. After reload this also skips over
3265 standalone USE and CLOBBER insn. */
3268 active_insn_p (const_rtx insn
)
3270 return (CALL_P (insn
) || JUMP_P (insn
)
3271 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3272 || (NONJUMP_INSN_P (insn
)
3273 && (! reload_completed
3274 || (GET_CODE (PATTERN (insn
)) != USE
3275 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3279 next_active_insn (rtx insn
)
3283 insn
= NEXT_INSN (insn
);
3284 if (insn
== 0 || active_insn_p (insn
))
3291 /* Find the last insn before INSN that really does something. This routine
3292 does not look inside SEQUENCEs. After reload this also skips over
3293 standalone USE and CLOBBER insn. */
3296 prev_active_insn (rtx insn
)
3300 insn
= PREV_INSN (insn
);
3301 if (insn
== 0 || active_insn_p (insn
))
3308 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3311 next_label (rtx insn
)
3315 insn
= NEXT_INSN (insn
);
3316 if (insn
== 0 || LABEL_P (insn
))
3323 /* Return the last label to mark the same position as LABEL. Return LABEL
3324 itself if it is null or any return rtx. */
3327 skip_consecutive_labels (rtx label
)
3331 if (label
&& ANY_RETURN_P (label
))
3334 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3342 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3343 and REG_CC_USER notes so we can find it. */
3346 link_cc0_insns (rtx insn
)
3348 rtx user
= next_nonnote_insn (insn
);
3350 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3351 user
= XVECEXP (PATTERN (user
), 0, 0);
3353 add_reg_note (user
, REG_CC_SETTER
, insn
);
3354 add_reg_note (insn
, REG_CC_USER
, user
);
3357 /* Return the next insn that uses CC0 after INSN, which is assumed to
3358 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3359 applied to the result of this function should yield INSN).
3361 Normally, this is simply the next insn. However, if a REG_CC_USER note
3362 is present, it contains the insn that uses CC0.
3364 Return 0 if we can't find the insn. */
3367 next_cc0_user (rtx insn
)
3369 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3372 return XEXP (note
, 0);
3374 insn
= next_nonnote_insn (insn
);
3375 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3376 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3378 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3384 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3385 note, it is the previous insn. */
3388 prev_cc0_setter (rtx insn
)
3390 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3393 return XEXP (note
, 0);
3395 insn
= prev_nonnote_insn (insn
);
3396 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3403 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3406 find_auto_inc (rtx
*xp
, void *data
)
3409 rtx reg
= (rtx
) data
;
3411 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3414 switch (GET_CODE (x
))
3422 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3433 /* Increment the label uses for all labels present in rtx. */
3436 mark_label_nuses (rtx x
)
3442 code
= GET_CODE (x
);
3443 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3444 LABEL_NUSES (XEXP (x
, 0))++;
3446 fmt
= GET_RTX_FORMAT (code
);
3447 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3450 mark_label_nuses (XEXP (x
, i
));
3451 else if (fmt
[i
] == 'E')
3452 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3453 mark_label_nuses (XVECEXP (x
, i
, j
));
3458 /* Try splitting insns that can be split for better scheduling.
3459 PAT is the pattern which might split.
3460 TRIAL is the insn providing PAT.
3461 LAST is nonzero if we should return the last insn of the sequence produced.
3463 If this routine succeeds in splitting, it returns the first or last
3464 replacement insn depending on the value of LAST. Otherwise, it
3465 returns TRIAL. If the insn to be returned can be split, it will be. */
3468 try_split (rtx pat
, rtx trial
, int last
)
3470 rtx before
= PREV_INSN (trial
);
3471 rtx after
= NEXT_INSN (trial
);
3472 int has_barrier
= 0;
3475 rtx insn_last
, insn
;
3478 /* We're not good at redistributing frame information. */
3479 if (RTX_FRAME_RELATED_P (trial
))
3482 if (any_condjump_p (trial
)
3483 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3484 split_branch_probability
= INTVAL (XEXP (note
, 0));
3485 probability
= split_branch_probability
;
3487 seq
= split_insns (pat
, trial
);
3489 split_branch_probability
= -1;
3491 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3492 We may need to handle this specially. */
3493 if (after
&& BARRIER_P (after
))
3496 after
= NEXT_INSN (after
);
3502 /* Avoid infinite loop if any insn of the result matches
3503 the original pattern. */
3507 if (INSN_P (insn_last
)
3508 && rtx_equal_p (PATTERN (insn_last
), pat
))
3510 if (!NEXT_INSN (insn_last
))
3512 insn_last
= NEXT_INSN (insn_last
);
3515 /* We will be adding the new sequence to the function. The splitters
3516 may have introduced invalid RTL sharing, so unshare the sequence now. */
3517 unshare_all_rtl_in_chain (seq
);
3520 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3524 mark_jump_label (PATTERN (insn
), insn
, 0);
3526 if (probability
!= -1
3527 && any_condjump_p (insn
)
3528 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3530 /* We can preserve the REG_BR_PROB notes only if exactly
3531 one jump is created, otherwise the machine description
3532 is responsible for this step using
3533 split_branch_probability variable. */
3534 gcc_assert (njumps
== 1);
3535 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3540 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3541 in SEQ and copy any additional information across. */
3544 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3549 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3550 target may have explicitly specified. */
3551 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3554 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3556 /* If the old call was a sibling call, the new one must
3558 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3560 /* If the new call is the last instruction in the sequence,
3561 it will effectively replace the old call in-situ. Otherwise
3562 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3563 so that it comes immediately after the new call. */
3564 if (NEXT_INSN (insn
))
3565 for (next
= NEXT_INSN (trial
);
3566 next
&& NOTE_P (next
);
3567 next
= NEXT_INSN (next
))
3568 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3571 add_insn_after (next
, insn
, NULL
);
3577 /* Copy notes, particularly those related to the CFG. */
3578 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3580 switch (REG_NOTE_KIND (note
))
3583 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3589 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3592 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3596 case REG_NON_LOCAL_GOTO
:
3597 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3600 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3606 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3608 rtx reg
= XEXP (note
, 0);
3609 if (!FIND_REG_INC_NOTE (insn
, reg
)
3610 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3611 add_reg_note (insn
, REG_INC
, reg
);
3617 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3625 /* If there are LABELS inside the split insns increment the
3626 usage count so we don't delete the label. */
3630 while (insn
!= NULL_RTX
)
3632 /* JUMP_P insns have already been "marked" above. */
3633 if (NONJUMP_INSN_P (insn
))
3634 mark_label_nuses (PATTERN (insn
));
3636 insn
= PREV_INSN (insn
);
3640 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3642 delete_insn (trial
);
3644 emit_barrier_after (tem
);
3646 /* Recursively call try_split for each new insn created; by the
3647 time control returns here that insn will be fully split, so
3648 set LAST and continue from the insn after the one returned.
3649 We can't use next_active_insn here since AFTER may be a note.
3650 Ignore deleted insns, which can be occur if not optimizing. */
3651 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3652 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3653 tem
= try_split (PATTERN (tem
), tem
, 1);
3655 /* Return either the first or the last insn, depending on which was
3658 ? (after
? PREV_INSN (after
) : get_last_insn ())
3659 : NEXT_INSN (before
);
3662 /* Make and return an INSN rtx, initializing all its slots.
3663 Store PATTERN in the pattern slots. */
3666 make_insn_raw (rtx pattern
)
3670 insn
= rtx_alloc (INSN
);
3672 INSN_UID (insn
) = cur_insn_uid
++;
3673 PATTERN (insn
) = pattern
;
3674 INSN_CODE (insn
) = -1;
3675 REG_NOTES (insn
) = NULL
;
3676 INSN_LOCATION (insn
) = curr_insn_location ();
3677 BLOCK_FOR_INSN (insn
) = NULL
;
3679 #ifdef ENABLE_RTL_CHECKING
3682 && (returnjump_p (insn
)
3683 || (GET_CODE (insn
) == SET
3684 && SET_DEST (insn
) == pc_rtx
)))
3686 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3694 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3697 make_debug_insn_raw (rtx pattern
)
3701 insn
= rtx_alloc (DEBUG_INSN
);
3702 INSN_UID (insn
) = cur_debug_insn_uid
++;
3703 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3704 INSN_UID (insn
) = cur_insn_uid
++;
3706 PATTERN (insn
) = pattern
;
3707 INSN_CODE (insn
) = -1;
3708 REG_NOTES (insn
) = NULL
;
3709 INSN_LOCATION (insn
) = curr_insn_location ();
3710 BLOCK_FOR_INSN (insn
) = NULL
;
3715 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3718 make_jump_insn_raw (rtx pattern
)
3722 insn
= rtx_alloc (JUMP_INSN
);
3723 INSN_UID (insn
) = cur_insn_uid
++;
3725 PATTERN (insn
) = pattern
;
3726 INSN_CODE (insn
) = -1;
3727 REG_NOTES (insn
) = NULL
;
3728 JUMP_LABEL (insn
) = NULL
;
3729 INSN_LOCATION (insn
) = curr_insn_location ();
3730 BLOCK_FOR_INSN (insn
) = NULL
;
3735 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3738 make_call_insn_raw (rtx pattern
)
3742 insn
= rtx_alloc (CALL_INSN
);
3743 INSN_UID (insn
) = cur_insn_uid
++;
3745 PATTERN (insn
) = pattern
;
3746 INSN_CODE (insn
) = -1;
3747 REG_NOTES (insn
) = NULL
;
3748 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3749 INSN_LOCATION (insn
) = curr_insn_location ();
3750 BLOCK_FOR_INSN (insn
) = NULL
;
3755 /* Add INSN to the end of the doubly-linked list.
3756 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3761 PREV_INSN (insn
) = get_last_insn();
3762 NEXT_INSN (insn
) = 0;
3764 if (NULL
!= get_last_insn())
3765 NEXT_INSN (get_last_insn ()) = insn
;
3767 if (NULL
== get_insns ())
3768 set_first_insn (insn
);
3770 set_last_insn (insn
);
3773 /* Add INSN into the doubly-linked list after insn AFTER. This and
3774 the next should be the only functions called to insert an insn once
3775 delay slots have been filled since only they know how to update a
3779 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3781 rtx next
= NEXT_INSN (after
);
3783 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3785 NEXT_INSN (insn
) = next
;
3786 PREV_INSN (insn
) = after
;
3790 PREV_INSN (next
) = insn
;
3791 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3792 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3794 else if (get_last_insn () == after
)
3795 set_last_insn (insn
);
3798 struct sequence_stack
*stack
= seq_stack
;
3799 /* Scan all pending sequences too. */
3800 for (; stack
; stack
= stack
->next
)
3801 if (after
== stack
->last
)
3810 if (!BARRIER_P (after
)
3811 && !BARRIER_P (insn
)
3812 && (bb
= BLOCK_FOR_INSN (after
)))
3814 set_block_for_insn (insn
, bb
);
3816 df_insn_rescan (insn
);
3817 /* Should not happen as first in the BB is always
3818 either NOTE or LABEL. */
3819 if (BB_END (bb
) == after
3820 /* Avoid clobbering of structure when creating new BB. */
3821 && !BARRIER_P (insn
)
3822 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3826 NEXT_INSN (after
) = insn
;
3827 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3829 rtx sequence
= PATTERN (after
);
3830 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3834 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3835 the previous should be the only functions called to insert an insn
3836 once delay slots have been filled since only they know how to
3837 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3841 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3843 rtx prev
= PREV_INSN (before
);
3845 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3847 PREV_INSN (insn
) = prev
;
3848 NEXT_INSN (insn
) = before
;
3852 NEXT_INSN (prev
) = insn
;
3853 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3855 rtx sequence
= PATTERN (prev
);
3856 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3859 else if (get_insns () == before
)
3860 set_first_insn (insn
);
3863 struct sequence_stack
*stack
= seq_stack
;
3864 /* Scan all pending sequences too. */
3865 for (; stack
; stack
= stack
->next
)
3866 if (before
== stack
->first
)
3868 stack
->first
= insn
;
3876 && !BARRIER_P (before
)
3877 && !BARRIER_P (insn
))
3878 bb
= BLOCK_FOR_INSN (before
);
3882 set_block_for_insn (insn
, bb
);
3884 df_insn_rescan (insn
);
3885 /* Should not happen as first in the BB is always either NOTE or
3887 gcc_assert (BB_HEAD (bb
) != insn
3888 /* Avoid clobbering of structure when creating new BB. */
3890 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3893 PREV_INSN (before
) = insn
;
3894 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3895 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3899 /* Replace insn with an deleted instruction note. */
3902 set_insn_deleted (rtx insn
)
3905 df_insn_delete (insn
);
3906 PUT_CODE (insn
, NOTE
);
3907 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3911 /* Remove an insn from its doubly-linked list. This function knows how
3912 to handle sequences. */
3914 remove_insn (rtx insn
)
3916 rtx next
= NEXT_INSN (insn
);
3917 rtx prev
= PREV_INSN (insn
);
3922 NEXT_INSN (prev
) = next
;
3923 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3925 rtx sequence
= PATTERN (prev
);
3926 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3929 else if (get_insns () == insn
)
3932 PREV_INSN (next
) = NULL
;
3933 set_first_insn (next
);
3937 struct sequence_stack
*stack
= seq_stack
;
3938 /* Scan all pending sequences too. */
3939 for (; stack
; stack
= stack
->next
)
3940 if (insn
== stack
->first
)
3942 stack
->first
= next
;
3951 PREV_INSN (next
) = prev
;
3952 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3953 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3955 else if (get_last_insn () == insn
)
3956 set_last_insn (prev
);
3959 struct sequence_stack
*stack
= seq_stack
;
3960 /* Scan all pending sequences too. */
3961 for (; stack
; stack
= stack
->next
)
3962 if (insn
== stack
->last
)
3971 /* Invalidate data flow information associated with INSN. */
3973 df_insn_delete (insn
);
3975 /* Fix up basic block boundaries, if necessary. */
3976 if (!BARRIER_P (insn
)
3977 && (bb
= BLOCK_FOR_INSN (insn
)))
3979 if (BB_HEAD (bb
) == insn
)
3981 /* Never ever delete the basic block note without deleting whole
3983 gcc_assert (!NOTE_P (insn
));
3984 BB_HEAD (bb
) = next
;
3986 if (BB_END (bb
) == insn
)
3991 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3994 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3996 gcc_assert (call_insn
&& CALL_P (call_insn
));
3998 /* Put the register usage information on the CALL. If there is already
3999 some usage information, put ours at the end. */
4000 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4004 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4005 link
= XEXP (link
, 1))
4008 XEXP (link
, 1) = call_fusage
;
4011 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4014 /* Delete all insns made since FROM.
4015 FROM becomes the new last instruction. */
4018 delete_insns_since (rtx from
)
4023 NEXT_INSN (from
) = 0;
4024 set_last_insn (from
);
4027 /* This function is deprecated, please use sequences instead.
4029 Move a consecutive bunch of insns to a different place in the chain.
4030 The insns to be moved are those between FROM and TO.
4031 They are moved to a new position after the insn AFTER.
4032 AFTER must not be FROM or TO or any insn in between.
4034 This function does not know about SEQUENCEs and hence should not be
4035 called after delay-slot filling has been done. */
4038 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4040 #ifdef ENABLE_CHECKING
4042 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4043 gcc_assert (after
!= x
);
4044 gcc_assert (after
!= to
);
4047 /* Splice this bunch out of where it is now. */
4048 if (PREV_INSN (from
))
4049 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4051 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4052 if (get_last_insn () == to
)
4053 set_last_insn (PREV_INSN (from
));
4054 if (get_insns () == from
)
4055 set_first_insn (NEXT_INSN (to
));
4057 /* Make the new neighbors point to it and it to them. */
4058 if (NEXT_INSN (after
))
4059 PREV_INSN (NEXT_INSN (after
)) = to
;
4061 NEXT_INSN (to
) = NEXT_INSN (after
);
4062 PREV_INSN (from
) = after
;
4063 NEXT_INSN (after
) = from
;
4064 if (after
== get_last_insn())
4068 /* Same as function above, but take care to update BB boundaries. */
4070 reorder_insns (rtx from
, rtx to
, rtx after
)
4072 rtx prev
= PREV_INSN (from
);
4073 basic_block bb
, bb2
;
4075 reorder_insns_nobb (from
, to
, after
);
4077 if (!BARRIER_P (after
)
4078 && (bb
= BLOCK_FOR_INSN (after
)))
4081 df_set_bb_dirty (bb
);
4083 if (!BARRIER_P (from
)
4084 && (bb2
= BLOCK_FOR_INSN (from
)))
4086 if (BB_END (bb2
) == to
)
4087 BB_END (bb2
) = prev
;
4088 df_set_bb_dirty (bb2
);
4091 if (BB_END (bb
) == after
)
4094 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4096 df_insn_change_bb (x
, bb
);
4101 /* Emit insn(s) of given code and pattern
4102 at a specified place within the doubly-linked list.
4104 All of the emit_foo global entry points accept an object
4105 X which is either an insn list or a PATTERN of a single
4108 There are thus a few canonical ways to generate code and
4109 emit it at a specific place in the instruction stream. For
4110 example, consider the instruction named SPOT and the fact that
4111 we would like to emit some instructions before SPOT. We might
4115 ... emit the new instructions ...
4116 insns_head = get_insns ();
4119 emit_insn_before (insns_head, SPOT);
4121 It used to be common to generate SEQUENCE rtl instead, but that
4122 is a relic of the past which no longer occurs. The reason is that
4123 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4124 generated would almost certainly die right after it was created. */
4127 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4128 rtx (*make_raw
) (rtx
))
4132 gcc_assert (before
);
4137 switch (GET_CODE (x
))
4149 rtx next
= NEXT_INSN (insn
);
4150 add_insn_before (insn
, before
, bb
);
4156 #ifdef ENABLE_RTL_CHECKING
4163 last
= (*make_raw
) (x
);
4164 add_insn_before (last
, before
, bb
);
4171 /* Make X be output before the instruction BEFORE. */
4174 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4176 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4179 /* Make an instruction with body X and code JUMP_INSN
4180 and output it before the instruction BEFORE. */
4183 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4185 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4186 make_jump_insn_raw
);
4189 /* Make an instruction with body X and code CALL_INSN
4190 and output it before the instruction BEFORE. */
4193 emit_call_insn_before_noloc (rtx x
, rtx before
)
4195 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4196 make_call_insn_raw
);
4199 /* Make an instruction with body X and code DEBUG_INSN
4200 and output it before the instruction BEFORE. */
4203 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4205 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4206 make_debug_insn_raw
);
4209 /* Make an insn of code BARRIER
4210 and output it before the insn BEFORE. */
4213 emit_barrier_before (rtx before
)
4215 rtx insn
= rtx_alloc (BARRIER
);
4217 INSN_UID (insn
) = cur_insn_uid
++;
4219 add_insn_before (insn
, before
, NULL
);
4223 /* Emit the label LABEL before the insn BEFORE. */
4226 emit_label_before (rtx label
, rtx before
)
4228 gcc_checking_assert (INSN_UID (label
) == 0);
4229 INSN_UID (label
) = cur_insn_uid
++;
4230 add_insn_before (label
, before
, NULL
);
4234 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4237 emit_note_before (enum insn_note subtype
, rtx before
)
4239 rtx note
= rtx_alloc (NOTE
);
4240 INSN_UID (note
) = cur_insn_uid
++;
4241 NOTE_KIND (note
) = subtype
;
4242 BLOCK_FOR_INSN (note
) = NULL
;
4243 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4245 add_insn_before (note
, before
, NULL
);
4249 /* Helper for emit_insn_after, handles lists of instructions
4253 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4257 if (!bb
&& !BARRIER_P (after
))
4258 bb
= BLOCK_FOR_INSN (after
);
4262 df_set_bb_dirty (bb
);
4263 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4264 if (!BARRIER_P (last
))
4266 set_block_for_insn (last
, bb
);
4267 df_insn_rescan (last
);
4269 if (!BARRIER_P (last
))
4271 set_block_for_insn (last
, bb
);
4272 df_insn_rescan (last
);
4274 if (BB_END (bb
) == after
)
4278 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4281 after_after
= NEXT_INSN (after
);
4283 NEXT_INSN (after
) = first
;
4284 PREV_INSN (first
) = after
;
4285 NEXT_INSN (last
) = after_after
;
4287 PREV_INSN (after_after
) = last
;
4289 if (after
== get_last_insn())
4290 set_last_insn (last
);
4296 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4297 rtx (*make_raw
)(rtx
))
4306 switch (GET_CODE (x
))
4315 last
= emit_insn_after_1 (x
, after
, bb
);
4318 #ifdef ENABLE_RTL_CHECKING
4325 last
= (*make_raw
) (x
);
4326 add_insn_after (last
, after
, bb
);
4333 /* Make X be output after the insn AFTER and set the BB of insn. If
4334 BB is NULL, an attempt is made to infer the BB from AFTER. */
4337 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4339 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4343 /* Make an insn of code JUMP_INSN with body X
4344 and output it after the insn AFTER. */
4347 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4349 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4352 /* Make an instruction with body X and code CALL_INSN
4353 and output it after the instruction AFTER. */
4356 emit_call_insn_after_noloc (rtx x
, rtx after
)
4358 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4361 /* Make an instruction with body X and code CALL_INSN
4362 and output it after the instruction AFTER. */
4365 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4367 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4370 /* Make an insn of code BARRIER
4371 and output it after the insn AFTER. */
4374 emit_barrier_after (rtx after
)
4376 rtx insn
= rtx_alloc (BARRIER
);
4378 INSN_UID (insn
) = cur_insn_uid
++;
4380 add_insn_after (insn
, after
, NULL
);
4384 /* Emit the label LABEL after the insn AFTER. */
4387 emit_label_after (rtx label
, rtx after
)
4389 gcc_checking_assert (INSN_UID (label
) == 0);
4390 INSN_UID (label
) = cur_insn_uid
++;
4391 add_insn_after (label
, after
, NULL
);
4395 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4398 emit_note_after (enum insn_note subtype
, rtx after
)
4400 rtx note
= rtx_alloc (NOTE
);
4401 INSN_UID (note
) = cur_insn_uid
++;
4402 NOTE_KIND (note
) = subtype
;
4403 BLOCK_FOR_INSN (note
) = NULL
;
4404 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4405 add_insn_after (note
, after
, NULL
);
4409 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4410 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4413 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4414 rtx (*make_raw
) (rtx
))
4416 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4418 if (pattern
== NULL_RTX
|| !loc
)
4421 after
= NEXT_INSN (after
);
4424 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4425 INSN_LOCATION (after
) = loc
;
4428 after
= NEXT_INSN (after
);
4433 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4434 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4438 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4439 rtx (*make_raw
) (rtx
))
4443 if (skip_debug_insns
)
4444 while (DEBUG_INSN_P (prev
))
4445 prev
= PREV_INSN (prev
);
4448 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4451 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4454 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4456 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4458 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4461 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4463 emit_insn_after (rtx pattern
, rtx after
)
4465 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4468 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4470 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4472 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4475 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4477 emit_jump_insn_after (rtx pattern
, rtx after
)
4479 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4482 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4484 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4486 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4489 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4491 emit_call_insn_after (rtx pattern
, rtx after
)
4493 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4496 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4498 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4500 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4503 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4505 emit_debug_insn_after (rtx pattern
, rtx after
)
4507 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4510 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4511 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4512 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4516 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4517 rtx (*make_raw
) (rtx
))
4519 rtx first
= PREV_INSN (before
);
4520 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4521 insnp
? before
: NULL_RTX
,
4524 if (pattern
== NULL_RTX
|| !loc
)
4528 first
= get_insns ();
4530 first
= NEXT_INSN (first
);
4533 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4534 INSN_LOCATION (first
) = loc
;
4537 first
= NEXT_INSN (first
);
4542 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4543 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4544 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4545 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4548 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4549 bool insnp
, rtx (*make_raw
) (rtx
))
4553 if (skip_debug_insns
)
4554 while (DEBUG_INSN_P (next
))
4555 next
= PREV_INSN (next
);
4558 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4561 return emit_pattern_before_noloc (pattern
, before
,
4562 insnp
? before
: NULL_RTX
,
4566 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4568 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4570 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4574 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4576 emit_insn_before (rtx pattern
, rtx before
)
4578 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4581 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4583 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4585 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4586 make_jump_insn_raw
);
4589 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4591 emit_jump_insn_before (rtx pattern
, rtx before
)
4593 return emit_pattern_before (pattern
, before
, true, false,
4594 make_jump_insn_raw
);
4597 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4599 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4601 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4602 make_call_insn_raw
);
4605 /* Like emit_call_insn_before_noloc,
4606 but set insn_location according to BEFORE. */
4608 emit_call_insn_before (rtx pattern
, rtx before
)
4610 return emit_pattern_before (pattern
, before
, true, false,
4611 make_call_insn_raw
);
4614 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4616 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4618 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4619 make_debug_insn_raw
);
4622 /* Like emit_debug_insn_before_noloc,
4623 but set insn_location according to BEFORE. */
4625 emit_debug_insn_before (rtx pattern
, rtx before
)
4627 return emit_pattern_before (pattern
, before
, false, false,
4628 make_debug_insn_raw
);
4631 /* Take X and emit it at the end of the doubly-linked
4634 Returns the last insn emitted. */
4639 rtx last
= get_last_insn();
4645 switch (GET_CODE (x
))
4657 rtx next
= NEXT_INSN (insn
);
4664 #ifdef ENABLE_RTL_CHECKING
4665 case JUMP_TABLE_DATA
:
4672 last
= make_insn_raw (x
);
4680 /* Make an insn of code DEBUG_INSN with pattern X
4681 and add it to the end of the doubly-linked list. */
4684 emit_debug_insn (rtx x
)
4686 rtx last
= get_last_insn();
4692 switch (GET_CODE (x
))
4704 rtx next
= NEXT_INSN (insn
);
4711 #ifdef ENABLE_RTL_CHECKING
4712 case JUMP_TABLE_DATA
:
4719 last
= make_debug_insn_raw (x
);
4727 /* Make an insn of code JUMP_INSN with pattern X
4728 and add it to the end of the doubly-linked list. */
4731 emit_jump_insn (rtx x
)
4733 rtx last
= NULL_RTX
, insn
;
4735 switch (GET_CODE (x
))
4747 rtx next
= NEXT_INSN (insn
);
4754 #ifdef ENABLE_RTL_CHECKING
4755 case JUMP_TABLE_DATA
:
4762 last
= make_jump_insn_raw (x
);
4770 /* Make an insn of code CALL_INSN with pattern X
4771 and add it to the end of the doubly-linked list. */
4774 emit_call_insn (rtx x
)
4778 switch (GET_CODE (x
))
4787 insn
= emit_insn (x
);
4790 #ifdef ENABLE_RTL_CHECKING
4792 case JUMP_TABLE_DATA
:
4798 insn
= make_call_insn_raw (x
);
4806 /* Add the label LABEL to the end of the doubly-linked list. */
4809 emit_label (rtx label
)
4811 gcc_checking_assert (INSN_UID (label
) == 0);
4812 INSN_UID (label
) = cur_insn_uid
++;
4817 /* Make an insn of code JUMP_TABLE_DATA
4818 and add it to the end of the doubly-linked list. */
4821 emit_jump_table_data (rtx table
)
4823 rtx jump_table_data
= rtx_alloc (JUMP_TABLE_DATA
);
4824 INSN_UID (jump_table_data
) = cur_insn_uid
++;
4825 PATTERN (jump_table_data
) = table
;
4826 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
4827 add_insn (jump_table_data
);
4828 return jump_table_data
;
4831 /* Make an insn of code BARRIER
4832 and add it to the end of the doubly-linked list. */
4837 rtx barrier
= rtx_alloc (BARRIER
);
4838 INSN_UID (barrier
) = cur_insn_uid
++;
4843 /* Emit a copy of note ORIG. */
4846 emit_note_copy (rtx orig
)
4850 note
= rtx_alloc (NOTE
);
4852 INSN_UID (note
) = cur_insn_uid
++;
4853 NOTE_DATA (note
) = NOTE_DATA (orig
);
4854 NOTE_KIND (note
) = NOTE_KIND (orig
);
4855 BLOCK_FOR_INSN (note
) = NULL
;
4861 /* Make an insn of code NOTE or type NOTE_NO
4862 and add it to the end of the doubly-linked list. */
4865 emit_note (enum insn_note kind
)
4869 note
= rtx_alloc (NOTE
);
4870 INSN_UID (note
) = cur_insn_uid
++;
4871 NOTE_KIND (note
) = kind
;
4872 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4873 BLOCK_FOR_INSN (note
) = NULL
;
4878 /* Emit a clobber of lvalue X. */
4881 emit_clobber (rtx x
)
4883 /* CONCATs should not appear in the insn stream. */
4884 if (GET_CODE (x
) == CONCAT
)
4886 emit_clobber (XEXP (x
, 0));
4887 return emit_clobber (XEXP (x
, 1));
4889 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4892 /* Return a sequence of insns to clobber lvalue X. */
4906 /* Emit a use of rvalue X. */
4911 /* CONCATs should not appear in the insn stream. */
4912 if (GET_CODE (x
) == CONCAT
)
4914 emit_use (XEXP (x
, 0));
4915 return emit_use (XEXP (x
, 1));
4917 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4920 /* Return a sequence of insns to use rvalue X. */
4934 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4935 note of this type already exists, remove it first. */
4938 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4940 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4946 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4947 has multiple sets (some callers assume single_set
4948 means the insn only has one set, when in fact it
4949 means the insn only has one * useful * set). */
4950 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4956 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4957 It serves no useful purpose and breaks eliminate_regs. */
4958 if (GET_CODE (datum
) == ASM_OPERANDS
)
4963 XEXP (note
, 0) = datum
;
4964 df_notes_rescan (insn
);
4972 XEXP (note
, 0) = datum
;
4978 add_reg_note (insn
, kind
, datum
);
4984 df_notes_rescan (insn
);
4990 return REG_NOTES (insn
);
4993 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
4995 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
4997 rtx set
= single_set (insn
);
4999 if (set
&& SET_DEST (set
) == dst
)
5000 return set_unique_reg_note (insn
, kind
, datum
);
5004 /* Return an indication of which type of insn should have X as a body.
5005 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5007 static enum rtx_code
5008 classify_insn (rtx x
)
5012 if (GET_CODE (x
) == CALL
)
5014 if (ANY_RETURN_P (x
))
5016 if (GET_CODE (x
) == SET
)
5018 if (SET_DEST (x
) == pc_rtx
)
5020 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5025 if (GET_CODE (x
) == PARALLEL
)
5028 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5029 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5031 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5032 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5034 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5035 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5041 /* Emit the rtl pattern X as an appropriate kind of insn.
5042 If X is a label, it is simply added into the insn chain. */
5047 enum rtx_code code
= classify_insn (x
);
5052 return emit_label (x
);
5054 return emit_insn (x
);
5057 rtx insn
= emit_jump_insn (x
);
5058 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5059 return emit_barrier ();
5063 return emit_call_insn (x
);
5065 return emit_debug_insn (x
);
5071 /* Space for free sequence stack entries. */
5072 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5074 /* Begin emitting insns to a sequence. If this sequence will contain
5075 something that might cause the compiler to pop arguments to function
5076 calls (because those pops have previously been deferred; see
5077 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5078 before calling this function. That will ensure that the deferred
5079 pops are not accidentally emitted in the middle of this sequence. */
5082 start_sequence (void)
5084 struct sequence_stack
*tem
;
5086 if (free_sequence_stack
!= NULL
)
5088 tem
= free_sequence_stack
;
5089 free_sequence_stack
= tem
->next
;
5092 tem
= ggc_alloc_sequence_stack ();
5094 tem
->next
= seq_stack
;
5095 tem
->first
= get_insns ();
5096 tem
->last
= get_last_insn ();
5104 /* Set up the insn chain starting with FIRST as the current sequence,
5105 saving the previously current one. See the documentation for
5106 start_sequence for more information about how to use this function. */
5109 push_to_sequence (rtx first
)
5115 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5118 set_first_insn (first
);
5119 set_last_insn (last
);
5122 /* Like push_to_sequence, but take the last insn as an argument to avoid
5123 looping through the list. */
5126 push_to_sequence2 (rtx first
, rtx last
)
5130 set_first_insn (first
);
5131 set_last_insn (last
);
5134 /* Set up the outer-level insn chain
5135 as the current sequence, saving the previously current one. */
5138 push_topmost_sequence (void)
5140 struct sequence_stack
*stack
, *top
= NULL
;
5144 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5147 set_first_insn (top
->first
);
5148 set_last_insn (top
->last
);
5151 /* After emitting to the outer-level insn chain, update the outer-level
5152 insn chain, and restore the previous saved state. */
5155 pop_topmost_sequence (void)
5157 struct sequence_stack
*stack
, *top
= NULL
;
5159 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5162 top
->first
= get_insns ();
5163 top
->last
= get_last_insn ();
5168 /* After emitting to a sequence, restore previous saved state.
5170 To get the contents of the sequence just made, you must call
5171 `get_insns' *before* calling here.
5173 If the compiler might have deferred popping arguments while
5174 generating this sequence, and this sequence will not be immediately
5175 inserted into the instruction stream, use do_pending_stack_adjust
5176 before calling get_insns. That will ensure that the deferred
5177 pops are inserted into this sequence, and not into some random
5178 location in the instruction stream. See INHIBIT_DEFER_POP for more
5179 information about deferred popping of arguments. */
5184 struct sequence_stack
*tem
= seq_stack
;
5186 set_first_insn (tem
->first
);
5187 set_last_insn (tem
->last
);
5188 seq_stack
= tem
->next
;
5190 memset (tem
, 0, sizeof (*tem
));
5191 tem
->next
= free_sequence_stack
;
5192 free_sequence_stack
= tem
;
5195 /* Return 1 if currently emitting into a sequence. */
5198 in_sequence_p (void)
5200 return seq_stack
!= 0;
5203 /* Put the various virtual registers into REGNO_REG_RTX. */
5206 init_virtual_regs (void)
5208 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5209 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5210 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5211 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5212 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5213 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5214 = virtual_preferred_stack_boundary_rtx
;
5218 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5219 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5220 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5221 static int copy_insn_n_scratches
;
5223 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5224 copied an ASM_OPERANDS.
5225 In that case, it is the original input-operand vector. */
5226 static rtvec orig_asm_operands_vector
;
5228 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5229 copied an ASM_OPERANDS.
5230 In that case, it is the copied input-operand vector. */
5231 static rtvec copy_asm_operands_vector
;
5233 /* Likewise for the constraints vector. */
5234 static rtvec orig_asm_constraints_vector
;
5235 static rtvec copy_asm_constraints_vector
;
5237 /* Recursively create a new copy of an rtx for copy_insn.
5238 This function differs from copy_rtx in that it handles SCRATCHes and
5239 ASM_OPERANDs properly.
5240 Normally, this function is not used directly; use copy_insn as front end.
5241 However, you could first copy an insn pattern with copy_insn and then use
5242 this function afterwards to properly copy any REG_NOTEs containing
5246 copy_insn_1 (rtx orig
)
5251 const char *format_ptr
;
5256 code
= GET_CODE (orig
);
5271 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5272 clobbers or clobbers of hard registers that originated as pseudos.
5273 This is needed to allow safe register renaming. */
5274 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5275 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5280 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5281 if (copy_insn_scratch_in
[i
] == orig
)
5282 return copy_insn_scratch_out
[i
];
5286 if (shared_const_p (orig
))
5290 /* A MEM with a constant address is not sharable. The problem is that
5291 the constant address may need to be reloaded. If the mem is shared,
5292 then reloading one copy of this mem will cause all copies to appear
5293 to have been reloaded. */
5299 /* Copy the various flags, fields, and other information. We assume
5300 that all fields need copying, and then clear the fields that should
5301 not be copied. That is the sensible default behavior, and forces
5302 us to explicitly document why we are *not* copying a flag. */
5303 copy
= shallow_copy_rtx (orig
);
5305 /* We do not copy the USED flag, which is used as a mark bit during
5306 walks over the RTL. */
5307 RTX_FLAG (copy
, used
) = 0;
5309 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5312 RTX_FLAG (copy
, jump
) = 0;
5313 RTX_FLAG (copy
, call
) = 0;
5314 RTX_FLAG (copy
, frame_related
) = 0;
5317 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5319 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5320 switch (*format_ptr
++)
5323 if (XEXP (orig
, i
) != NULL
)
5324 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5329 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5330 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5331 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5332 XVEC (copy
, i
) = copy_asm_operands_vector
;
5333 else if (XVEC (orig
, i
) != NULL
)
5335 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5336 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5337 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5348 /* These are left unchanged. */
5355 if (code
== SCRATCH
)
5357 i
= copy_insn_n_scratches
++;
5358 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5359 copy_insn_scratch_in
[i
] = orig
;
5360 copy_insn_scratch_out
[i
] = copy
;
5362 else if (code
== ASM_OPERANDS
)
5364 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5365 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5366 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5367 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5373 /* Create a new copy of an rtx.
5374 This function differs from copy_rtx in that it handles SCRATCHes and
5375 ASM_OPERANDs properly.
5376 INSN doesn't really have to be a full INSN; it could be just the
5379 copy_insn (rtx insn
)
5381 copy_insn_n_scratches
= 0;
5382 orig_asm_operands_vector
= 0;
5383 orig_asm_constraints_vector
= 0;
5384 copy_asm_operands_vector
= 0;
5385 copy_asm_constraints_vector
= 0;
5386 return copy_insn_1 (insn
);
5389 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5390 on that assumption that INSN itself remains in its original place. */
5393 copy_delay_slot_insn (rtx insn
)
5395 /* Copy INSN with its rtx_code, all its notes, location etc. */
5396 insn
= copy_rtx (insn
);
5397 INSN_UID (insn
) = cur_insn_uid
++;
5401 /* Initialize data structures and variables in this file
5402 before generating rtl for each function. */
5407 set_first_insn (NULL
);
5408 set_last_insn (NULL
);
5409 if (MIN_NONDEBUG_INSN_UID
)
5410 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5413 cur_debug_insn_uid
= 1;
5414 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5415 first_label_num
= label_num
;
5418 /* Init the tables that describe all the pseudo regs. */
5420 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5422 crtl
->emit
.regno_pointer_align
5423 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5425 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5427 /* Put copies of all the hard registers into regno_reg_rtx. */
5428 memcpy (regno_reg_rtx
,
5429 initial_regno_reg_rtx
,
5430 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5432 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5433 init_virtual_regs ();
5435 /* Indicate that the virtual registers and stack locations are
5437 REG_POINTER (stack_pointer_rtx
) = 1;
5438 REG_POINTER (frame_pointer_rtx
) = 1;
5439 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5440 REG_POINTER (arg_pointer_rtx
) = 1;
5442 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5443 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5444 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5445 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5446 REG_POINTER (virtual_cfa_rtx
) = 1;
5448 #ifdef STACK_BOUNDARY
5449 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5450 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5451 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5452 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5454 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5455 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5456 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5457 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5458 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5461 #ifdef INIT_EXPANDERS
5466 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5469 gen_const_vector (enum machine_mode mode
, int constant
)
5474 enum machine_mode inner
;
5476 units
= GET_MODE_NUNITS (mode
);
5477 inner
= GET_MODE_INNER (mode
);
5479 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5481 v
= rtvec_alloc (units
);
5483 /* We need to call this function after we set the scalar const_tiny_rtx
5485 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5487 for (i
= 0; i
< units
; ++i
)
5488 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5490 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5494 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5495 all elements are zero, and the one vector when all elements are one. */
5497 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5499 enum machine_mode inner
= GET_MODE_INNER (mode
);
5500 int nunits
= GET_MODE_NUNITS (mode
);
5504 /* Check to see if all of the elements have the same value. */
5505 x
= RTVEC_ELT (v
, nunits
- 1);
5506 for (i
= nunits
- 2; i
>= 0; i
--)
5507 if (RTVEC_ELT (v
, i
) != x
)
5510 /* If the values are all the same, check to see if we can use one of the
5511 standard constant vectors. */
5514 if (x
== CONST0_RTX (inner
))
5515 return CONST0_RTX (mode
);
5516 else if (x
== CONST1_RTX (inner
))
5517 return CONST1_RTX (mode
);
5518 else if (x
== CONSTM1_RTX (inner
))
5519 return CONSTM1_RTX (mode
);
5522 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5525 /* Initialise global register information required by all functions. */
5528 init_emit_regs (void)
5531 enum machine_mode mode
;
5534 /* Reset register attributes */
5535 htab_empty (reg_attrs_htab
);
5537 /* We need reg_raw_mode, so initialize the modes now. */
5538 init_reg_modes_target ();
5540 /* Assign register numbers to the globally defined register rtx. */
5541 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5542 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5543 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5544 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5545 virtual_incoming_args_rtx
=
5546 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5547 virtual_stack_vars_rtx
=
5548 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5549 virtual_stack_dynamic_rtx
=
5550 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5551 virtual_outgoing_args_rtx
=
5552 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5553 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5554 virtual_preferred_stack_boundary_rtx
=
5555 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5557 /* Initialize RTL for commonly used hard registers. These are
5558 copied into regno_reg_rtx as we begin to compile each function. */
5559 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5560 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5562 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5563 return_address_pointer_rtx
5564 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5567 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5568 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5570 pic_offset_table_rtx
= NULL_RTX
;
5572 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5574 mode
= (enum machine_mode
) i
;
5575 attrs
= ggc_alloc_cleared_mem_attrs ();
5576 attrs
->align
= BITS_PER_UNIT
;
5577 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5578 if (mode
!= BLKmode
)
5580 attrs
->size_known_p
= true;
5581 attrs
->size
= GET_MODE_SIZE (mode
);
5582 if (STRICT_ALIGNMENT
)
5583 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5585 mode_mem_attrs
[i
] = attrs
;
5589 /* Create some permanent unique rtl objects shared between all functions. */
5592 init_emit_once (void)
5595 enum machine_mode mode
;
5596 enum machine_mode double_mode
;
5598 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5600 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5601 const_int_htab_eq
, NULL
);
5603 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5604 const_double_htab_eq
, NULL
);
5606 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5607 const_fixed_htab_eq
, NULL
);
5609 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5610 mem_attrs_htab_eq
, NULL
);
5611 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5612 reg_attrs_htab_eq
, NULL
);
5614 /* Compute the word and byte modes. */
5616 byte_mode
= VOIDmode
;
5617 word_mode
= VOIDmode
;
5618 double_mode
= VOIDmode
;
5620 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5622 mode
= GET_MODE_WIDER_MODE (mode
))
5624 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5625 && byte_mode
== VOIDmode
)
5628 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5629 && word_mode
== VOIDmode
)
5633 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5635 mode
= GET_MODE_WIDER_MODE (mode
))
5637 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5638 && double_mode
== VOIDmode
)
5642 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5644 #ifdef INIT_EXPANDERS
5645 /* This is to initialize {init|mark|free}_machine_status before the first
5646 call to push_function_context_to. This is needed by the Chill front
5647 end which calls push_function_context_to before the first call to
5648 init_function_start. */
5652 /* Create the unique rtx's for certain rtx codes and operand values. */
5654 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5655 tries to use these variables. */
5656 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5657 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5658 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5660 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5661 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5662 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5664 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5666 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5667 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5668 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5673 dconsthalf
= dconst1
;
5674 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5676 for (i
= 0; i
< 3; i
++)
5678 const REAL_VALUE_TYPE
*const r
=
5679 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5681 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5683 mode
= GET_MODE_WIDER_MODE (mode
))
5684 const_tiny_rtx
[i
][(int) mode
] =
5685 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5687 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5689 mode
= GET_MODE_WIDER_MODE (mode
))
5690 const_tiny_rtx
[i
][(int) mode
] =
5691 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5693 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5695 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5697 mode
= GET_MODE_WIDER_MODE (mode
))
5698 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5700 for (mode
= MIN_MODE_PARTIAL_INT
;
5701 mode
<= MAX_MODE_PARTIAL_INT
;
5702 mode
= (enum machine_mode
)((int)(mode
) + 1))
5703 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5706 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5708 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5710 mode
= GET_MODE_WIDER_MODE (mode
))
5711 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5713 for (mode
= MIN_MODE_PARTIAL_INT
;
5714 mode
<= MAX_MODE_PARTIAL_INT
;
5715 mode
= (enum machine_mode
)((int)(mode
) + 1))
5716 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5718 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5720 mode
= GET_MODE_WIDER_MODE (mode
))
5722 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5723 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5726 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5728 mode
= GET_MODE_WIDER_MODE (mode
))
5730 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5731 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5734 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5736 mode
= GET_MODE_WIDER_MODE (mode
))
5738 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5739 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5740 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5743 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5745 mode
= GET_MODE_WIDER_MODE (mode
))
5747 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5748 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5751 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5753 mode
= GET_MODE_WIDER_MODE (mode
))
5755 FCONST0(mode
).data
.high
= 0;
5756 FCONST0(mode
).data
.low
= 0;
5757 FCONST0(mode
).mode
= mode
;
5758 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5759 FCONST0 (mode
), mode
);
5762 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5764 mode
= GET_MODE_WIDER_MODE (mode
))
5766 FCONST0(mode
).data
.high
= 0;
5767 FCONST0(mode
).data
.low
= 0;
5768 FCONST0(mode
).mode
= mode
;
5769 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5770 FCONST0 (mode
), mode
);
5773 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5775 mode
= GET_MODE_WIDER_MODE (mode
))
5777 FCONST0(mode
).data
.high
= 0;
5778 FCONST0(mode
).data
.low
= 0;
5779 FCONST0(mode
).mode
= mode
;
5780 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5781 FCONST0 (mode
), mode
);
5783 /* We store the value 1. */
5784 FCONST1(mode
).data
.high
= 0;
5785 FCONST1(mode
).data
.low
= 0;
5786 FCONST1(mode
).mode
= mode
;
5788 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5789 HOST_BITS_PER_DOUBLE_INT
,
5790 SIGNED_FIXED_POINT_MODE_P (mode
));
5791 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5792 FCONST1 (mode
), mode
);
5795 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5797 mode
= GET_MODE_WIDER_MODE (mode
))
5799 FCONST0(mode
).data
.high
= 0;
5800 FCONST0(mode
).data
.low
= 0;
5801 FCONST0(mode
).mode
= mode
;
5802 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5803 FCONST0 (mode
), mode
);
5805 /* We store the value 1. */
5806 FCONST1(mode
).data
.high
= 0;
5807 FCONST1(mode
).data
.low
= 0;
5808 FCONST1(mode
).mode
= mode
;
5810 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5811 HOST_BITS_PER_DOUBLE_INT
,
5812 SIGNED_FIXED_POINT_MODE_P (mode
));
5813 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5814 FCONST1 (mode
), mode
);
5817 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5819 mode
= GET_MODE_WIDER_MODE (mode
))
5821 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5824 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5826 mode
= GET_MODE_WIDER_MODE (mode
))
5828 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5831 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5833 mode
= GET_MODE_WIDER_MODE (mode
))
5835 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5836 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5839 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5841 mode
= GET_MODE_WIDER_MODE (mode
))
5843 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5844 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5847 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5848 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5849 const_tiny_rtx
[0][i
] = const0_rtx
;
5851 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5852 if (STORE_FLAG_VALUE
== 1)
5853 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5855 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5856 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5857 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5858 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5861 /* Produce exact duplicate of insn INSN after AFTER.
5862 Care updating of libcall regions if present. */
5865 emit_copy_of_insn_after (rtx insn
, rtx after
)
5869 switch (GET_CODE (insn
))
5872 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5876 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5880 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5884 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5885 if (CALL_INSN_FUNCTION_USAGE (insn
))
5886 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5887 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5888 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5889 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5890 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5891 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5892 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5899 /* Update LABEL_NUSES. */
5900 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5902 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5904 /* If the old insn is frame related, then so is the new one. This is
5905 primarily needed for IA-64 unwind info which marks epilogue insns,
5906 which may be duplicated by the basic block reordering code. */
5907 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5909 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5910 will make them. REG_LABEL_TARGETs are created there too, but are
5911 supposed to be sticky, so we copy them. */
5912 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5913 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5915 if (GET_CODE (link
) == EXPR_LIST
)
5916 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5917 copy_insn_1 (XEXP (link
, 0)));
5919 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5922 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5926 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5928 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5930 if (hard_reg_clobbers
[mode
][regno
])
5931 return hard_reg_clobbers
[mode
][regno
];
5933 return (hard_reg_clobbers
[mode
][regno
] =
5934 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5937 location_t prologue_location
;
5938 location_t epilogue_location
;
5940 /* Hold current location information and last location information, so the
5941 datastructures are built lazily only when some instructions in given
5942 place are needed. */
5943 static location_t curr_location
;
5945 /* Allocate insn location datastructure. */
5947 insn_locations_init (void)
5949 prologue_location
= epilogue_location
= 0;
5950 curr_location
= UNKNOWN_LOCATION
;
5953 /* At the end of emit stage, clear current location. */
5955 insn_locations_finalize (void)
5957 epilogue_location
= curr_location
;
5958 curr_location
= UNKNOWN_LOCATION
;
5961 /* Set current location. */
5963 set_curr_insn_location (location_t location
)
5965 curr_location
= location
;
5968 /* Get current location. */
5970 curr_insn_location (void)
5972 return curr_location
;
5975 /* Return lexical scope block insn belongs to. */
5977 insn_scope (const_rtx insn
)
5979 return LOCATION_BLOCK (INSN_LOCATION (insn
));
5982 /* Return line number of the statement that produced this insn. */
5984 insn_line (const_rtx insn
)
5986 return LOCATION_LINE (INSN_LOCATION (insn
));
5989 /* Return source file of the statement that produced this insn. */
5991 insn_file (const_rtx insn
)
5993 return LOCATION_FILE (INSN_LOCATION (insn
));
5996 /* Return true if memory model MODEL requires a pre-operation (release-style)
5997 barrier or a post-operation (acquire-style) barrier. While not universal,
5998 this function matches behavior of several targets. */
6001 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6003 switch (model
& MEMMODEL_MASK
)
6005 case MEMMODEL_RELAXED
:
6006 case MEMMODEL_CONSUME
:
6008 case MEMMODEL_RELEASE
:
6010 case MEMMODEL_ACQUIRE
:
6012 case MEMMODEL_ACQ_REL
:
6013 case MEMMODEL_SEQ_CST
:
6020 #include "gt-emit-rtl.h"