Merge from trunk: 215733-215743
[official-gcc.git] / gcc-4_9 / gcc / lcm.c
blob2f02129aaeb187220ad11f2c0aedbaae700058a4
1 /* Generic partial redundancy elimination with lazy code motion support.
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* These routines are meant to be used by various optimization
21 passes which can be modeled as lazy code motion problems.
22 Including, but not limited to:
24 * Traditional partial redundancy elimination.
26 * Placement of caller/caller register save/restores.
28 * Load/store motion.
30 * Copy motion.
32 * Conversion of flat register files to a stacked register
33 model.
35 * Dead load/store elimination.
37 These routines accept as input:
39 * Basic block information (number of blocks, lists of
40 predecessors and successors). Note the granularity
41 does not need to be basic block, they could be statements
42 or functions.
44 * Bitmaps of local properties (computed, transparent and
45 anticipatable expressions).
47 The output of these routines is bitmap of redundant computations
48 and a bitmap of optimal placement points. */
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "tm.h"
55 #include "rtl.h"
56 #include "regs.h"
57 #include "hard-reg-set.h"
58 #include "flags.h"
59 #include "insn-config.h"
60 #include "recog.h"
61 #include "basic-block.h"
62 #include "tm_p.h"
63 #include "function.h"
64 #include "sbitmap.h"
65 #include "dumpfile.h"
67 /* Edge based LCM routines. */
68 static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
69 static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
70 sbitmap *, sbitmap *, sbitmap *);
71 static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
72 sbitmap *, sbitmap *);
73 static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
74 sbitmap *, sbitmap *, sbitmap *, sbitmap *);
76 /* Edge based LCM routines on a reverse flowgraph. */
77 static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
78 sbitmap*, sbitmap *, sbitmap *);
79 static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
80 sbitmap *, sbitmap *);
81 static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
82 sbitmap *, sbitmap *, sbitmap *,
83 sbitmap *);
85 /* Edge based lcm routines. */
87 /* Compute expression anticipatability at entrance and exit of each block.
88 This is done based on the flow graph, and not on the pred-succ lists.
89 Other than that, its pretty much identical to compute_antinout. */
91 static void
92 compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
93 sbitmap *antout)
95 basic_block bb;
96 edge e;
97 basic_block *worklist, *qin, *qout, *qend;
98 unsigned int qlen;
99 edge_iterator ei;
101 /* Allocate a worklist array/queue. Entries are only added to the
102 list if they were not already on the list. So the size is
103 bounded by the number of basic blocks. */
104 qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
106 /* We want a maximal solution, so make an optimistic initialization of
107 ANTIN. */
108 bitmap_vector_ones (antin, last_basic_block_for_fn (cfun));
110 /* Put every block on the worklist; this is necessary because of the
111 optimistic initialization of ANTIN above. */
112 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
113 int postorder_num = post_order_compute (postorder, false, false);
114 for (int i = 0; i < postorder_num; ++i)
116 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
117 *qin++ = bb;
118 bb->aux = bb;
120 free (postorder);
122 qin = worklist;
123 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
124 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
126 /* Mark blocks which are predecessors of the exit block so that we
127 can easily identify them below. */
128 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
129 e->src->aux = EXIT_BLOCK_PTR_FOR_FN (cfun);
131 /* Iterate until the worklist is empty. */
132 while (qlen)
134 /* Take the first entry off the worklist. */
135 bb = *qout++;
136 qlen--;
138 if (qout >= qend)
139 qout = worklist;
141 if (bb->aux == EXIT_BLOCK_PTR_FOR_FN (cfun))
142 /* Do not clear the aux field for blocks which are predecessors of
143 the EXIT block. That way we never add then to the worklist
144 again. */
145 bitmap_clear (antout[bb->index]);
146 else
148 /* Clear the aux field of this block so that it can be added to
149 the worklist again if necessary. */
150 bb->aux = NULL;
151 bitmap_intersection_of_succs (antout[bb->index], antin, bb);
154 if (bitmap_or_and (antin[bb->index], antloc[bb->index],
155 transp[bb->index], antout[bb->index]))
156 /* If the in state of this block changed, then we need
157 to add the predecessors of this block to the worklist
158 if they are not already on the worklist. */
159 FOR_EACH_EDGE (e, ei, bb->preds)
160 if (!e->src->aux && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
162 *qin++ = e->src;
163 e->src->aux = e;
164 qlen++;
165 if (qin >= qend)
166 qin = worklist;
170 clear_aux_for_edges ();
171 clear_aux_for_blocks ();
172 free (worklist);
175 /* Compute the earliest vector for edge based lcm. */
177 static void
178 compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
179 sbitmap *antout, sbitmap *avout, sbitmap *kill,
180 sbitmap *earliest)
182 sbitmap difference, temp_bitmap;
183 int x, num_edges;
184 basic_block pred, succ;
186 num_edges = NUM_EDGES (edge_list);
188 difference = sbitmap_alloc (n_exprs);
189 temp_bitmap = sbitmap_alloc (n_exprs);
191 for (x = 0; x < num_edges; x++)
193 pred = INDEX_EDGE_PRED_BB (edge_list, x);
194 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
195 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
196 bitmap_copy (earliest[x], antin[succ->index]);
197 else
199 if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun))
200 bitmap_clear (earliest[x]);
201 else
203 bitmap_and_compl (difference, antin[succ->index],
204 avout[pred->index]);
205 bitmap_not (temp_bitmap, antout[pred->index]);
206 bitmap_and_or (earliest[x], difference,
207 kill[pred->index], temp_bitmap);
212 sbitmap_free (temp_bitmap);
213 sbitmap_free (difference);
216 /* later(p,s) is dependent on the calculation of laterin(p).
217 laterin(p) is dependent on the calculation of later(p2,p).
219 laterin(ENTRY) is defined as all 0's
220 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
221 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
223 If we progress in this manner, starting with all basic blocks
224 in the work list, anytime we change later(bb), we need to add
225 succs(bb) to the worklist if they are not already on the worklist.
227 Boundary conditions:
229 We prime the worklist all the normal basic blocks. The ENTRY block can
230 never be added to the worklist since it is never the successor of any
231 block. We explicitly prevent the EXIT block from being added to the
232 worklist.
234 We optimistically initialize LATER. That is the only time this routine
235 will compute LATER for an edge out of the entry block since the entry
236 block is never on the worklist. Thus, LATERIN is neither used nor
237 computed for the ENTRY block.
239 Since the EXIT block is never added to the worklist, we will neither
240 use nor compute LATERIN for the exit block. Edges which reach the
241 EXIT block are handled in the normal fashion inside the loop. However,
242 the insertion/deletion computation needs LATERIN(EXIT), so we have
243 to compute it. */
245 static void
246 compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
247 sbitmap *antloc, sbitmap *later, sbitmap *laterin)
249 int num_edges, i;
250 edge e;
251 basic_block *worklist, *qin, *qout, *qend, bb;
252 unsigned int qlen;
253 edge_iterator ei;
255 num_edges = NUM_EDGES (edge_list);
257 /* Allocate a worklist array/queue. Entries are only added to the
258 list if they were not already on the list. So the size is
259 bounded by the number of basic blocks. */
260 qin = qout = worklist
261 = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
263 /* Initialize a mapping from each edge to its index. */
264 for (i = 0; i < num_edges; i++)
265 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
267 /* We want a maximal solution, so initially consider LATER true for
268 all edges. This allows propagation through a loop since the incoming
269 loop edge will have LATER set, so if all the other incoming edges
270 to the loop are set, then LATERIN will be set for the head of the
271 loop.
273 If the optimistic setting of LATER on that edge was incorrect (for
274 example the expression is ANTLOC in a block within the loop) then
275 this algorithm will detect it when we process the block at the head
276 of the optimistic edge. That will requeue the affected blocks. */
277 bitmap_vector_ones (later, num_edges);
279 /* Note that even though we want an optimistic setting of LATER, we
280 do not want to be overly optimistic. Consider an outgoing edge from
281 the entry block. That edge should always have a LATER value the
282 same as EARLIEST for that edge. */
283 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
284 bitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
286 /* Add all the blocks to the worklist. This prevents an early exit from
287 the loop given our optimistic initialization of LATER above. */
288 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
289 int postorder_num = inverted_post_order_compute (postorder);
290 for (int i = 0; i < postorder_num; ++i)
292 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
293 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
294 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
295 continue;
296 *qin++ = bb;
297 bb->aux = bb;
299 free (postorder);
301 /* Note that we do not use the last allocated element for our queue,
302 as EXIT_BLOCK is never inserted into it. */
303 qin = worklist;
304 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
305 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
307 /* Iterate until the worklist is empty. */
308 while (qlen)
310 /* Take the first entry off the worklist. */
311 bb = *qout++;
312 bb->aux = NULL;
313 qlen--;
314 if (qout >= qend)
315 qout = worklist;
317 /* Compute the intersection of LATERIN for each incoming edge to B. */
318 bitmap_ones (laterin[bb->index]);
319 FOR_EACH_EDGE (e, ei, bb->preds)
320 bitmap_and (laterin[bb->index], laterin[bb->index],
321 later[(size_t)e->aux]);
323 /* Calculate LATER for all outgoing edges. */
324 FOR_EACH_EDGE (e, ei, bb->succs)
325 if (bitmap_ior_and_compl (later[(size_t) e->aux],
326 earliest[(size_t) e->aux],
327 laterin[bb->index],
328 antloc[bb->index])
329 /* If LATER for an outgoing edge was changed, then we need
330 to add the target of the outgoing edge to the worklist. */
331 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest->aux == 0)
333 *qin++ = e->dest;
334 e->dest->aux = e;
335 qlen++;
336 if (qin >= qend)
337 qin = worklist;
341 /* Computation of insertion and deletion points requires computing LATERIN
342 for the EXIT block. We allocated an extra entry in the LATERIN array
343 for just this purpose. */
344 bitmap_ones (laterin[last_basic_block_for_fn (cfun)]);
345 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
346 bitmap_and (laterin[last_basic_block_for_fn (cfun)],
347 laterin[last_basic_block_for_fn (cfun)],
348 later[(size_t) e->aux]);
350 clear_aux_for_edges ();
351 free (worklist);
354 /* Compute the insertion and deletion points for edge based LCM. */
356 static void
357 compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
358 sbitmap *later, sbitmap *laterin, sbitmap *insert,
359 sbitmap *del)
361 int x;
362 basic_block bb;
364 FOR_EACH_BB_FN (bb, cfun)
365 bitmap_and_compl (del[bb->index], antloc[bb->index],
366 laterin[bb->index]);
368 for (x = 0; x < NUM_EDGES (edge_list); x++)
370 basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
372 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
373 bitmap_and_compl (insert[x], later[x],
374 laterin[last_basic_block_for_fn (cfun)]);
375 else
376 bitmap_and_compl (insert[x], later[x], laterin[b->index]);
380 /* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
381 delete vectors for edge based LCM. Returns an edgelist which is used to
382 map the insert vector to what edge an expression should be inserted on. */
384 struct edge_list *
385 pre_edge_lcm (int n_exprs, sbitmap *transp,
386 sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
387 sbitmap **insert, sbitmap **del)
389 sbitmap *antin, *antout, *earliest;
390 sbitmap *avin, *avout;
391 sbitmap *later, *laterin;
392 struct edge_list *edge_list;
393 int num_edges;
395 edge_list = create_edge_list ();
396 num_edges = NUM_EDGES (edge_list);
398 #ifdef LCM_DEBUG_INFO
399 if (dump_file)
401 fprintf (dump_file, "Edge List:\n");
402 verify_edge_list (dump_file, edge_list);
403 print_edge_list (dump_file, edge_list);
404 dump_bitmap_vector (dump_file, "transp", "", transp,
405 last_basic_block_for_fn (cfun));
406 dump_bitmap_vector (dump_file, "antloc", "", antloc,
407 last_basic_block_for_fn (cfun));
408 dump_bitmap_vector (dump_file, "avloc", "", avloc,
409 last_basic_block_for_fn (cfun));
410 dump_bitmap_vector (dump_file, "kill", "", kill,
411 last_basic_block_for_fn (cfun));
413 #endif
415 /* Compute global availability. */
416 avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
417 avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
418 compute_available (avloc, kill, avout, avin);
419 sbitmap_vector_free (avin);
421 /* Compute global anticipatability. */
422 antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
423 antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
424 compute_antinout_edge (antloc, transp, antin, antout);
426 #ifdef LCM_DEBUG_INFO
427 if (dump_file)
429 dump_bitmap_vector (dump_file, "antin", "", antin,
430 last_basic_block_for_fn (cfun));
431 dump_bitmap_vector (dump_file, "antout", "", antout,
432 last_basic_block_for_fn (cfun));
434 #endif
436 /* Compute earliestness. */
437 earliest = sbitmap_vector_alloc (num_edges, n_exprs);
438 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
440 #ifdef LCM_DEBUG_INFO
441 if (dump_file)
442 dump_bitmap_vector (dump_file, "earliest", "", earliest, num_edges);
443 #endif
445 sbitmap_vector_free (antout);
446 sbitmap_vector_free (antin);
447 sbitmap_vector_free (avout);
449 later = sbitmap_vector_alloc (num_edges, n_exprs);
451 /* Allocate an extra element for the exit block in the laterin vector. */
452 laterin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1,
453 n_exprs);
454 compute_laterin (edge_list, earliest, antloc, later, laterin);
456 #ifdef LCM_DEBUG_INFO
457 if (dump_file)
459 dump_bitmap_vector (dump_file, "laterin", "", laterin,
460 last_basic_block_for_fn (cfun) + 1);
461 dump_bitmap_vector (dump_file, "later", "", later, num_edges);
463 #endif
465 sbitmap_vector_free (earliest);
467 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
468 *del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
469 bitmap_vector_clear (*insert, num_edges);
470 bitmap_vector_clear (*del, last_basic_block_for_fn (cfun));
471 compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del);
473 sbitmap_vector_free (laterin);
474 sbitmap_vector_free (later);
476 #ifdef LCM_DEBUG_INFO
477 if (dump_file)
479 dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
480 dump_bitmap_vector (dump_file, "pre_delete_map", "", *del,
481 last_basic_block_for_fn (cfun));
483 #endif
485 return edge_list;
488 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
489 Return the number of passes we performed to iterate to a solution. */
491 void
492 compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
493 sbitmap *avin)
495 edge e;
496 basic_block *worklist, *qin, *qout, *qend, bb;
497 unsigned int qlen;
498 edge_iterator ei;
500 /* Allocate a worklist array/queue. Entries are only added to the
501 list if they were not already on the list. So the size is
502 bounded by the number of basic blocks. */
503 qin = qout = worklist =
504 XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
506 /* We want a maximal solution. */
507 bitmap_vector_ones (avout, last_basic_block_for_fn (cfun));
509 /* Put every block on the worklist; this is necessary because of the
510 optimistic initialization of AVOUT above. Use inverted postorder
511 to make the dataflow problem require less iterations. */
512 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
513 int postorder_num = inverted_post_order_compute (postorder);
514 for (int i = 0; i < postorder_num; ++i)
516 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
517 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
518 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
519 continue;
520 *qin++ = bb;
521 bb->aux = bb;
523 free (postorder);
525 qin = worklist;
526 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
527 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
529 /* Mark blocks which are successors of the entry block so that we
530 can easily identify them below. */
531 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
532 e->dest->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun);
534 /* Iterate until the worklist is empty. */
535 while (qlen)
537 /* Take the first entry off the worklist. */
538 bb = *qout++;
539 qlen--;
541 if (qout >= qend)
542 qout = worklist;
544 /* If one of the predecessor blocks is the ENTRY block, then the
545 intersection of avouts is the null set. We can identify such blocks
546 by the special value in the AUX field in the block structure. */
547 if (bb->aux == ENTRY_BLOCK_PTR_FOR_FN (cfun))
548 /* Do not clear the aux field for blocks which are successors of the
549 ENTRY block. That way we never add then to the worklist again. */
550 bitmap_clear (avin[bb->index]);
551 else
553 /* Clear the aux field of this block so that it can be added to
554 the worklist again if necessary. */
555 bb->aux = NULL;
556 bitmap_intersection_of_preds (avin[bb->index], avout, bb);
559 if (bitmap_ior_and_compl (avout[bb->index], avloc[bb->index],
560 avin[bb->index], kill[bb->index]))
561 /* If the out state of this block changed, then we need
562 to add the successors of this block to the worklist
563 if they are not already on the worklist. */
564 FOR_EACH_EDGE (e, ei, bb->succs)
565 if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
567 *qin++ = e->dest;
568 e->dest->aux = e;
569 qlen++;
571 if (qin >= qend)
572 qin = worklist;
576 clear_aux_for_edges ();
577 clear_aux_for_blocks ();
578 free (worklist);
581 /* Compute the farthest vector for edge based lcm. */
583 static void
584 compute_farthest (struct edge_list *edge_list, int n_exprs,
585 sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
586 sbitmap *kill, sbitmap *farthest)
588 sbitmap difference, temp_bitmap;
589 int x, num_edges;
590 basic_block pred, succ;
592 num_edges = NUM_EDGES (edge_list);
594 difference = sbitmap_alloc (n_exprs);
595 temp_bitmap = sbitmap_alloc (n_exprs);
597 for (x = 0; x < num_edges; x++)
599 pred = INDEX_EDGE_PRED_BB (edge_list, x);
600 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
601 if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun))
602 bitmap_copy (farthest[x], st_avout[pred->index]);
603 else
605 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
606 bitmap_clear (farthest[x]);
607 else
609 bitmap_and_compl (difference, st_avout[pred->index],
610 st_antin[succ->index]);
611 bitmap_not (temp_bitmap, st_avin[succ->index]);
612 bitmap_and_or (farthest[x], difference,
613 kill[succ->index], temp_bitmap);
618 sbitmap_free (temp_bitmap);
619 sbitmap_free (difference);
622 /* Compute nearer and nearerout vectors for edge based lcm.
624 This is the mirror of compute_laterin, additional comments on the
625 implementation can be found before compute_laterin. */
627 static void
628 compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
629 sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
631 int num_edges, i;
632 edge e;
633 basic_block *worklist, *tos, bb;
634 edge_iterator ei;
636 num_edges = NUM_EDGES (edge_list);
638 /* Allocate a worklist array/queue. Entries are only added to the
639 list if they were not already on the list. So the size is
640 bounded by the number of basic blocks. */
641 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
643 /* Initialize NEARER for each edge and build a mapping from an edge to
644 its index. */
645 for (i = 0; i < num_edges; i++)
646 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
648 /* We want a maximal solution. */
649 bitmap_vector_ones (nearer, num_edges);
651 /* Note that even though we want an optimistic setting of NEARER, we
652 do not want to be overly optimistic. Consider an incoming edge to
653 the exit block. That edge should always have a NEARER value the
654 same as FARTHEST for that edge. */
655 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
656 bitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
658 /* Add all the blocks to the worklist. This prevents an early exit
659 from the loop given our optimistic initialization of NEARER. */
660 FOR_EACH_BB_FN (bb, cfun)
662 *tos++ = bb;
663 bb->aux = bb;
666 /* Iterate until the worklist is empty. */
667 while (tos != worklist)
669 /* Take the first entry off the worklist. */
670 bb = *--tos;
671 bb->aux = NULL;
673 /* Compute the intersection of NEARER for each outgoing edge from B. */
674 bitmap_ones (nearerout[bb->index]);
675 FOR_EACH_EDGE (e, ei, bb->succs)
676 bitmap_and (nearerout[bb->index], nearerout[bb->index],
677 nearer[(size_t) e->aux]);
679 /* Calculate NEARER for all incoming edges. */
680 FOR_EACH_EDGE (e, ei, bb->preds)
681 if (bitmap_ior_and_compl (nearer[(size_t) e->aux],
682 farthest[(size_t) e->aux],
683 nearerout[e->dest->index],
684 st_avloc[e->dest->index])
685 /* If NEARER for an incoming edge was changed, then we need
686 to add the source of the incoming edge to the worklist. */
687 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && e->src->aux == 0)
689 *tos++ = e->src;
690 e->src->aux = e;
694 /* Computation of insertion and deletion points requires computing NEAREROUT
695 for the ENTRY block. We allocated an extra entry in the NEAREROUT array
696 for just this purpose. */
697 bitmap_ones (nearerout[last_basic_block_for_fn (cfun)]);
698 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
699 bitmap_and (nearerout[last_basic_block_for_fn (cfun)],
700 nearerout[last_basic_block_for_fn (cfun)],
701 nearer[(size_t) e->aux]);
703 clear_aux_for_edges ();
704 free (tos);
707 /* Compute the insertion and deletion points for edge based LCM. */
709 static void
710 compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
711 sbitmap *nearer, sbitmap *nearerout,
712 sbitmap *insert, sbitmap *del)
714 int x;
715 basic_block bb;
717 FOR_EACH_BB_FN (bb, cfun)
718 bitmap_and_compl (del[bb->index], st_avloc[bb->index],
719 nearerout[bb->index]);
721 for (x = 0; x < NUM_EDGES (edge_list); x++)
723 basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
724 if (b == ENTRY_BLOCK_PTR_FOR_FN (cfun))
725 bitmap_and_compl (insert[x], nearer[x],
726 nearerout[last_basic_block_for_fn (cfun)]);
727 else
728 bitmap_and_compl (insert[x], nearer[x], nearerout[b->index]);
732 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
733 insert and delete vectors for edge based reverse LCM. Returns an
734 edgelist which is used to map the insert vector to what edge
735 an expression should be inserted on. */
737 struct edge_list *
738 pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
739 sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
740 sbitmap **insert, sbitmap **del)
742 sbitmap *st_antin, *st_antout;
743 sbitmap *st_avout, *st_avin, *farthest;
744 sbitmap *nearer, *nearerout;
745 struct edge_list *edge_list;
746 int num_edges;
748 edge_list = create_edge_list ();
749 num_edges = NUM_EDGES (edge_list);
751 st_antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
752 st_antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
753 bitmap_vector_clear (st_antin, last_basic_block_for_fn (cfun));
754 bitmap_vector_clear (st_antout, last_basic_block_for_fn (cfun));
755 compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
757 /* Compute global anticipatability. */
758 st_avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
759 st_avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
760 compute_available (st_avloc, kill, st_avout, st_avin);
762 #ifdef LCM_DEBUG_INFO
763 if (dump_file)
765 fprintf (dump_file, "Edge List:\n");
766 verify_edge_list (dump_file, edge_list);
767 print_edge_list (dump_file, edge_list);
768 dump_bitmap_vector (dump_file, "transp", "", transp,
769 last_basic_block_for_fn (cfun));
770 dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc,
771 last_basic_block_for_fn (cfun));
772 dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc,
773 last_basic_block_for_fn (cfun));
774 dump_bitmap_vector (dump_file, "st_antin", "", st_antin,
775 last_basic_block_for_fn (cfun));
776 dump_bitmap_vector (dump_file, "st_antout", "", st_antout,
777 last_basic_block_for_fn (cfun));
778 dump_bitmap_vector (dump_file, "st_kill", "", kill,
779 last_basic_block_for_fn (cfun));
781 #endif
783 #ifdef LCM_DEBUG_INFO
784 if (dump_file)
786 dump_bitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block_for_fn (cfun));
787 dump_bitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block_for_fn (cfun));
789 #endif
791 /* Compute farthestness. */
792 farthest = sbitmap_vector_alloc (num_edges, n_exprs);
793 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
794 kill, farthest);
796 #ifdef LCM_DEBUG_INFO
797 if (dump_file)
798 dump_bitmap_vector (dump_file, "farthest", "", farthest, num_edges);
799 #endif
801 sbitmap_vector_free (st_antin);
802 sbitmap_vector_free (st_antout);
804 sbitmap_vector_free (st_avin);
805 sbitmap_vector_free (st_avout);
807 nearer = sbitmap_vector_alloc (num_edges, n_exprs);
809 /* Allocate an extra element for the entry block. */
810 nearerout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1,
811 n_exprs);
812 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
814 #ifdef LCM_DEBUG_INFO
815 if (dump_file)
817 dump_bitmap_vector (dump_file, "nearerout", "", nearerout,
818 last_basic_block_for_fn (cfun) + 1);
819 dump_bitmap_vector (dump_file, "nearer", "", nearer, num_edges);
821 #endif
823 sbitmap_vector_free (farthest);
825 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
826 *del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
827 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
828 *insert, *del);
830 sbitmap_vector_free (nearerout);
831 sbitmap_vector_free (nearer);
833 #ifdef LCM_DEBUG_INFO
834 if (dump_file)
836 dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
837 dump_bitmap_vector (dump_file, "pre_delete_map", "", *del,
838 last_basic_block_for_fn (cfun));
840 #endif
841 return edge_list;