Merge from trunk: 215733-215743
[official-gcc.git] / gcc-4_7 / gcc / tree-ssa-ccp.c
blob105c36038e5935c918618880cab6bae60405b991
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
102 References:
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "output.h"
122 #include "function.h"
123 #include "tree-pretty-print.h"
124 #include "gimple-pretty-print.h"
125 #include "timevar.h"
126 #include "tree-dump.h"
127 #include "tree-flow.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
132 #include "target.h"
133 #include "diagnostic-core.h"
134 #include "dbgcnt.h"
135 #include "gimple-fold.h"
136 #include "params.h"
139 /* Possible lattice values. */
140 typedef enum
142 UNINITIALIZED,
143 UNDEFINED,
144 CONSTANT,
145 VARYING
146 } ccp_lattice_t;
148 struct prop_value_d {
149 /* Lattice value. */
150 ccp_lattice_t lattice_val;
152 /* Propagated value. */
153 tree value;
155 /* Mask that applies to the propagated value during CCP. For
156 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
157 double_int mask;
160 typedef struct prop_value_d prop_value_t;
162 /* Array of propagated constant values. After propagation,
163 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
164 the constant is held in an SSA name representing a memory store
165 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
166 memory reference used to store (i.e., the LHS of the assignment
167 doing the store). */
168 static prop_value_t *const_val;
170 static void canonicalize_float_value (prop_value_t *);
171 static bool ccp_fold_stmt (gimple_stmt_iterator *);
173 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
175 static void
176 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
178 switch (val.lattice_val)
180 case UNINITIALIZED:
181 fprintf (outf, "%sUNINITIALIZED", prefix);
182 break;
183 case UNDEFINED:
184 fprintf (outf, "%sUNDEFINED", prefix);
185 break;
186 case VARYING:
187 fprintf (outf, "%sVARYING", prefix);
188 break;
189 case CONSTANT:
190 fprintf (outf, "%sCONSTANT ", prefix);
191 if (TREE_CODE (val.value) != INTEGER_CST
192 || double_int_zero_p (val.mask))
193 print_generic_expr (outf, val.value, dump_flags);
194 else
196 double_int cval = double_int_and_not (tree_to_double_int (val.value),
197 val.mask);
198 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
199 prefix, cval.high, cval.low);
200 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
201 val.mask.high, val.mask.low);
203 break;
204 default:
205 gcc_unreachable ();
210 /* Print lattice value VAL to stderr. */
212 void debug_lattice_value (prop_value_t val);
214 DEBUG_FUNCTION void
215 debug_lattice_value (prop_value_t val)
217 dump_lattice_value (stderr, "", val);
218 fprintf (stderr, "\n");
222 /* Compute a default value for variable VAR and store it in the
223 CONST_VAL array. The following rules are used to get default
224 values:
226 1- Global and static variables that are declared constant are
227 considered CONSTANT.
229 2- Any other value is considered UNDEFINED. This is useful when
230 considering PHI nodes. PHI arguments that are undefined do not
231 change the constant value of the PHI node, which allows for more
232 constants to be propagated.
234 3- Variables defined by statements other than assignments and PHI
235 nodes are considered VARYING.
237 4- Initial values of variables that are not GIMPLE registers are
238 considered VARYING. */
240 static prop_value_t
241 get_default_value (tree var)
243 tree sym = SSA_NAME_VAR (var);
244 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
245 gimple stmt;
247 stmt = SSA_NAME_DEF_STMT (var);
249 if (gimple_nop_p (stmt))
251 /* Variables defined by an empty statement are those used
252 before being initialized. If VAR is a local variable, we
253 can assume initially that it is UNDEFINED, otherwise we must
254 consider it VARYING. */
255 if (is_gimple_reg (sym)
256 && TREE_CODE (sym) == VAR_DECL)
257 val.lattice_val = UNDEFINED;
258 else
260 val.lattice_val = VARYING;
261 val.mask = double_int_minus_one;
264 else if (is_gimple_assign (stmt)
265 /* Value-returning GIMPLE_CALL statements assign to
266 a variable, and are treated similarly to GIMPLE_ASSIGN. */
267 || (is_gimple_call (stmt)
268 && gimple_call_lhs (stmt) != NULL_TREE)
269 || gimple_code (stmt) == GIMPLE_PHI)
271 tree cst;
272 if (gimple_assign_single_p (stmt)
273 && DECL_P (gimple_assign_rhs1 (stmt))
274 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
276 val.lattice_val = CONSTANT;
277 val.value = cst;
279 else
280 /* Any other variable defined by an assignment or a PHI node
281 is considered UNDEFINED. */
282 val.lattice_val = UNDEFINED;
284 else
286 /* Otherwise, VAR will never take on a constant value. */
287 val.lattice_val = VARYING;
288 val.mask = double_int_minus_one;
291 return val;
295 /* Get the constant value associated with variable VAR. */
297 static inline prop_value_t *
298 get_value (tree var)
300 prop_value_t *val;
302 if (const_val == NULL)
303 return NULL;
305 val = &const_val[SSA_NAME_VERSION (var)];
306 if (val->lattice_val == UNINITIALIZED)
307 *val = get_default_value (var);
309 canonicalize_float_value (val);
311 return val;
314 /* Return the constant tree value associated with VAR. */
316 static inline tree
317 get_constant_value (tree var)
319 prop_value_t *val;
320 if (TREE_CODE (var) != SSA_NAME)
322 if (is_gimple_min_invariant (var))
323 return var;
324 return NULL_TREE;
326 val = get_value (var);
327 if (val
328 && val->lattice_val == CONSTANT
329 && (TREE_CODE (val->value) != INTEGER_CST
330 || double_int_zero_p (val->mask)))
331 return val->value;
332 return NULL_TREE;
335 /* Sets the value associated with VAR to VARYING. */
337 static inline void
338 set_value_varying (tree var)
340 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
342 val->lattice_val = VARYING;
343 val->value = NULL_TREE;
344 val->mask = double_int_minus_one;
347 /* For float types, modify the value of VAL to make ccp work correctly
348 for non-standard values (-0, NaN):
350 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
351 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
352 This is to fix the following problem (see PR 29921): Suppose we have
354 x = 0.0 * y
356 and we set value of y to NaN. This causes value of x to be set to NaN.
357 When we later determine that y is in fact VARYING, fold uses the fact
358 that HONOR_NANS is false, and we try to change the value of x to 0,
359 causing an ICE. With HONOR_NANS being false, the real appearance of
360 NaN would cause undefined behavior, though, so claiming that y (and x)
361 are UNDEFINED initially is correct. */
363 static void
364 canonicalize_float_value (prop_value_t *val)
366 enum machine_mode mode;
367 tree type;
368 REAL_VALUE_TYPE d;
370 if (val->lattice_val != CONSTANT
371 || TREE_CODE (val->value) != REAL_CST)
372 return;
374 d = TREE_REAL_CST (val->value);
375 type = TREE_TYPE (val->value);
376 mode = TYPE_MODE (type);
378 if (!HONOR_SIGNED_ZEROS (mode)
379 && REAL_VALUE_MINUS_ZERO (d))
381 val->value = build_real (type, dconst0);
382 return;
385 if (!HONOR_NANS (mode)
386 && REAL_VALUE_ISNAN (d))
388 val->lattice_val = UNDEFINED;
389 val->value = NULL;
390 return;
394 /* Return whether the lattice transition is valid. */
396 static bool
397 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
399 /* Lattice transitions must always be monotonically increasing in
400 value. */
401 if (old_val.lattice_val < new_val.lattice_val)
402 return true;
404 if (old_val.lattice_val != new_val.lattice_val)
405 return false;
407 if (!old_val.value && !new_val.value)
408 return true;
410 /* Now both lattice values are CONSTANT. */
412 /* Allow transitioning from PHI <&x, not executable> == &x
413 to PHI <&x, &y> == common alignment. */
414 if (TREE_CODE (old_val.value) != INTEGER_CST
415 && TREE_CODE (new_val.value) == INTEGER_CST)
416 return true;
418 /* Bit-lattices have to agree in the still valid bits. */
419 if (TREE_CODE (old_val.value) == INTEGER_CST
420 && TREE_CODE (new_val.value) == INTEGER_CST)
421 return double_int_equal_p
422 (double_int_and_not (tree_to_double_int (old_val.value),
423 new_val.mask),
424 double_int_and_not (tree_to_double_int (new_val.value),
425 new_val.mask));
427 /* Otherwise constant values have to agree. */
428 return operand_equal_p (old_val.value, new_val.value, 0);
431 /* Set the value for variable VAR to NEW_VAL. Return true if the new
432 value is different from VAR's previous value. */
434 static bool
435 set_lattice_value (tree var, prop_value_t new_val)
437 /* We can deal with old UNINITIALIZED values just fine here. */
438 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
440 canonicalize_float_value (&new_val);
442 /* We have to be careful to not go up the bitwise lattice
443 represented by the mask.
444 ??? This doesn't seem to be the best place to enforce this. */
445 if (new_val.lattice_val == CONSTANT
446 && old_val->lattice_val == CONSTANT
447 && TREE_CODE (new_val.value) == INTEGER_CST
448 && TREE_CODE (old_val->value) == INTEGER_CST)
450 double_int diff;
451 diff = double_int_xor (tree_to_double_int (new_val.value),
452 tree_to_double_int (old_val->value));
453 new_val.mask = double_int_ior (new_val.mask,
454 double_int_ior (old_val->mask, diff));
457 gcc_assert (valid_lattice_transition (*old_val, new_val));
459 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
460 caller that this was a non-transition. */
461 if (old_val->lattice_val != new_val.lattice_val
462 || (new_val.lattice_val == CONSTANT
463 && TREE_CODE (new_val.value) == INTEGER_CST
464 && (TREE_CODE (old_val->value) != INTEGER_CST
465 || !double_int_equal_p (new_val.mask, old_val->mask))))
467 /* ??? We would like to delay creation of INTEGER_CSTs from
468 partially constants here. */
470 if (dump_file && (dump_flags & TDF_DETAILS))
472 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
473 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
476 *old_val = new_val;
478 gcc_assert (new_val.lattice_val != UNINITIALIZED);
479 return true;
482 return false;
485 static prop_value_t get_value_for_expr (tree, bool);
486 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
487 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
488 tree, double_int, double_int,
489 tree, double_int, double_int);
491 /* Return a double_int that can be used for bitwise simplifications
492 from VAL. */
494 static double_int
495 value_to_double_int (prop_value_t val)
497 if (val.value
498 && TREE_CODE (val.value) == INTEGER_CST)
499 return tree_to_double_int (val.value);
500 else
501 return double_int_zero;
504 /* Return the value for the address expression EXPR based on alignment
505 information. */
507 static prop_value_t
508 get_value_from_alignment (tree expr)
510 tree type = TREE_TYPE (expr);
511 prop_value_t val;
512 unsigned HOST_WIDE_INT bitpos;
513 unsigned int align;
515 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
517 align = get_object_alignment_1 (TREE_OPERAND (expr, 0), &bitpos);
518 val.mask
519 = double_int_and_not (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
520 ? double_int_mask (TYPE_PRECISION (type))
521 : double_int_minus_one,
522 uhwi_to_double_int (align / BITS_PER_UNIT - 1));
523 val.lattice_val = double_int_minus_one_p (val.mask) ? VARYING : CONSTANT;
524 if (val.lattice_val == CONSTANT)
525 val.value
526 = double_int_to_tree (type, uhwi_to_double_int (bitpos / BITS_PER_UNIT));
527 else
528 val.value = NULL_TREE;
530 return val;
533 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
534 return constant bits extracted from alignment information for
535 invariant addresses. */
537 static prop_value_t
538 get_value_for_expr (tree expr, bool for_bits_p)
540 prop_value_t val;
542 if (TREE_CODE (expr) == SSA_NAME)
544 val = *get_value (expr);
545 if (for_bits_p
546 && val.lattice_val == CONSTANT
547 && TREE_CODE (val.value) == ADDR_EXPR)
548 val = get_value_from_alignment (val.value);
550 else if (is_gimple_min_invariant (expr)
551 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
553 val.lattice_val = CONSTANT;
554 val.value = expr;
555 val.mask = double_int_zero;
556 canonicalize_float_value (&val);
558 else if (TREE_CODE (expr) == ADDR_EXPR)
559 val = get_value_from_alignment (expr);
560 else
562 val.lattice_val = VARYING;
563 val.mask = double_int_minus_one;
564 val.value = NULL_TREE;
566 return val;
569 /* Return the likely CCP lattice value for STMT.
571 If STMT has no operands, then return CONSTANT.
573 Else if undefinedness of operands of STMT cause its value to be
574 undefined, then return UNDEFINED.
576 Else if any operands of STMT are constants, then return CONSTANT.
578 Else return VARYING. */
580 static ccp_lattice_t
581 likely_value (gimple stmt)
583 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
584 tree use;
585 ssa_op_iter iter;
586 unsigned i;
588 enum gimple_code code = gimple_code (stmt);
590 /* This function appears to be called only for assignments, calls,
591 conditionals, and switches, due to the logic in visit_stmt. */
592 gcc_assert (code == GIMPLE_ASSIGN
593 || code == GIMPLE_CALL
594 || code == GIMPLE_COND
595 || code == GIMPLE_SWITCH);
597 /* If the statement has volatile operands, it won't fold to a
598 constant value. */
599 if (gimple_has_volatile_ops (stmt))
600 return VARYING;
602 /* Arrive here for more complex cases. */
603 has_constant_operand = false;
604 has_undefined_operand = false;
605 all_undefined_operands = true;
606 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
608 prop_value_t *val = get_value (use);
610 if (val->lattice_val == UNDEFINED)
611 has_undefined_operand = true;
612 else
613 all_undefined_operands = false;
615 if (val->lattice_val == CONSTANT)
616 has_constant_operand = true;
619 /* There may be constants in regular rhs operands. For calls we
620 have to ignore lhs, fndecl and static chain, otherwise only
621 the lhs. */
622 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
623 i < gimple_num_ops (stmt); ++i)
625 tree op = gimple_op (stmt, i);
626 if (!op || TREE_CODE (op) == SSA_NAME)
627 continue;
628 if (is_gimple_min_invariant (op))
629 has_constant_operand = true;
632 if (has_constant_operand)
633 all_undefined_operands = false;
635 /* If the operation combines operands like COMPLEX_EXPR make sure to
636 not mark the result UNDEFINED if only one part of the result is
637 undefined. */
638 if (has_undefined_operand && all_undefined_operands)
639 return UNDEFINED;
640 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
642 switch (gimple_assign_rhs_code (stmt))
644 /* Unary operators are handled with all_undefined_operands. */
645 case PLUS_EXPR:
646 case MINUS_EXPR:
647 case POINTER_PLUS_EXPR:
648 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
649 Not bitwise operators, one VARYING operand may specify the
650 result completely. Not logical operators for the same reason.
651 Not COMPLEX_EXPR as one VARYING operand makes the result partly
652 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
653 the undefined operand may be promoted. */
654 return UNDEFINED;
656 case ADDR_EXPR:
657 /* If any part of an address is UNDEFINED, like the index
658 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
659 return UNDEFINED;
661 default:
665 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
666 fall back to CONSTANT. During iteration UNDEFINED may still drop
667 to CONSTANT. */
668 if (has_undefined_operand)
669 return CONSTANT;
671 /* We do not consider virtual operands here -- load from read-only
672 memory may have only VARYING virtual operands, but still be
673 constant. */
674 if (has_constant_operand
675 || gimple_references_memory_p (stmt))
676 return CONSTANT;
678 return VARYING;
681 /* Returns true if STMT cannot be constant. */
683 static bool
684 surely_varying_stmt_p (gimple stmt)
686 /* If the statement has operands that we cannot handle, it cannot be
687 constant. */
688 if (gimple_has_volatile_ops (stmt))
689 return true;
691 /* If it is a call and does not return a value or is not a
692 builtin and not an indirect call, it is varying. */
693 if (is_gimple_call (stmt))
695 tree fndecl;
696 if (!gimple_call_lhs (stmt)
697 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
698 && !DECL_BUILT_IN (fndecl)))
699 return true;
702 /* Any other store operation is not interesting. */
703 else if (gimple_vdef (stmt))
704 return true;
706 /* Anything other than assignments and conditional jumps are not
707 interesting for CCP. */
708 if (gimple_code (stmt) != GIMPLE_ASSIGN
709 && gimple_code (stmt) != GIMPLE_COND
710 && gimple_code (stmt) != GIMPLE_SWITCH
711 && gimple_code (stmt) != GIMPLE_CALL)
712 return true;
714 return false;
717 /* Initialize local data structures for CCP. */
719 static void
720 ccp_initialize (void)
722 basic_block bb;
724 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
726 /* Initialize simulation flags for PHI nodes and statements. */
727 FOR_EACH_BB (bb)
729 gimple_stmt_iterator i;
731 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
733 gimple stmt = gsi_stmt (i);
734 bool is_varying;
736 /* If the statement is a control insn, then we do not
737 want to avoid simulating the statement once. Failure
738 to do so means that those edges will never get added. */
739 if (stmt_ends_bb_p (stmt))
740 is_varying = false;
741 else
742 is_varying = surely_varying_stmt_p (stmt);
744 if (is_varying)
746 tree def;
747 ssa_op_iter iter;
749 /* If the statement will not produce a constant, mark
750 all its outputs VARYING. */
751 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
752 set_value_varying (def);
754 prop_set_simulate_again (stmt, !is_varying);
758 /* Now process PHI nodes. We never clear the simulate_again flag on
759 phi nodes, since we do not know which edges are executable yet,
760 except for phi nodes for virtual operands when we do not do store ccp. */
761 FOR_EACH_BB (bb)
763 gimple_stmt_iterator i;
765 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
767 gimple phi = gsi_stmt (i);
769 if (!is_gimple_reg (gimple_phi_result (phi)))
770 prop_set_simulate_again (phi, false);
771 else
772 prop_set_simulate_again (phi, true);
777 /* Debug count support. Reset the values of ssa names
778 VARYING when the total number ssa names analyzed is
779 beyond the debug count specified. */
781 static void
782 do_dbg_cnt (void)
784 unsigned i;
785 for (i = 0; i < num_ssa_names; i++)
787 if (!dbg_cnt (ccp))
789 const_val[i].lattice_val = VARYING;
790 const_val[i].mask = double_int_minus_one;
791 const_val[i].value = NULL_TREE;
797 /* Do final substitution of propagated values, cleanup the flowgraph and
798 free allocated storage.
800 Return TRUE when something was optimized. */
802 static bool
803 ccp_finalize (void)
805 bool something_changed;
806 unsigned i;
808 do_dbg_cnt ();
810 /* Derive alignment and misalignment information from partially
811 constant pointers in the lattice. */
812 for (i = 1; i < num_ssa_names; ++i)
814 tree name = ssa_name (i);
815 prop_value_t *val;
816 struct ptr_info_def *pi;
817 unsigned int tem, align;
819 if (!name
820 || !POINTER_TYPE_P (TREE_TYPE (name)))
821 continue;
823 val = get_value (name);
824 if (val->lattice_val != CONSTANT
825 || TREE_CODE (val->value) != INTEGER_CST)
826 continue;
828 /* Trailing constant bits specify the alignment, trailing value
829 bits the misalignment. */
830 tem = val->mask.low;
831 align = (tem & -tem);
832 if (align == 1)
833 continue;
835 pi = get_ptr_info (name);
836 pi->align = align;
837 pi->misalign = TREE_INT_CST_LOW (val->value) & (align - 1);
840 /* Perform substitutions based on the known constant values. */
841 something_changed = substitute_and_fold (get_constant_value,
842 ccp_fold_stmt, true);
844 free (const_val);
845 const_val = NULL;
846 return something_changed;;
850 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
851 in VAL1.
853 any M UNDEFINED = any
854 any M VARYING = VARYING
855 Ci M Cj = Ci if (i == j)
856 Ci M Cj = VARYING if (i != j)
859 static void
860 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
862 if (val1->lattice_val == UNDEFINED)
864 /* UNDEFINED M any = any */
865 *val1 = *val2;
867 else if (val2->lattice_val == UNDEFINED)
869 /* any M UNDEFINED = any
870 Nothing to do. VAL1 already contains the value we want. */
873 else if (val1->lattice_val == VARYING
874 || val2->lattice_val == VARYING)
876 /* any M VARYING = VARYING. */
877 val1->lattice_val = VARYING;
878 val1->mask = double_int_minus_one;
879 val1->value = NULL_TREE;
881 else if (val1->lattice_val == CONSTANT
882 && val2->lattice_val == CONSTANT
883 && TREE_CODE (val1->value) == INTEGER_CST
884 && TREE_CODE (val2->value) == INTEGER_CST)
886 /* Ci M Cj = Ci if (i == j)
887 Ci M Cj = VARYING if (i != j)
889 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
890 drop to varying. */
891 val1->mask
892 = double_int_ior (double_int_ior (val1->mask,
893 val2->mask),
894 double_int_xor (tree_to_double_int (val1->value),
895 tree_to_double_int (val2->value)));
896 if (double_int_minus_one_p (val1->mask))
898 val1->lattice_val = VARYING;
899 val1->value = NULL_TREE;
902 else if (val1->lattice_val == CONSTANT
903 && val2->lattice_val == CONSTANT
904 && simple_cst_equal (val1->value, val2->value) == 1)
906 /* Ci M Cj = Ci if (i == j)
907 Ci M Cj = VARYING if (i != j)
909 VAL1 already contains the value we want for equivalent values. */
911 else if (val1->lattice_val == CONSTANT
912 && val2->lattice_val == CONSTANT
913 && (TREE_CODE (val1->value) == ADDR_EXPR
914 || TREE_CODE (val2->value) == ADDR_EXPR))
916 /* When not equal addresses are involved try meeting for
917 alignment. */
918 prop_value_t tem = *val2;
919 if (TREE_CODE (val1->value) == ADDR_EXPR)
920 *val1 = get_value_for_expr (val1->value, true);
921 if (TREE_CODE (val2->value) == ADDR_EXPR)
922 tem = get_value_for_expr (val2->value, true);
923 ccp_lattice_meet (val1, &tem);
925 else
927 /* Any other combination is VARYING. */
928 val1->lattice_val = VARYING;
929 val1->mask = double_int_minus_one;
930 val1->value = NULL_TREE;
935 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
936 lattice values to determine PHI_NODE's lattice value. The value of a
937 PHI node is determined calling ccp_lattice_meet with all the arguments
938 of the PHI node that are incoming via executable edges. */
940 static enum ssa_prop_result
941 ccp_visit_phi_node (gimple phi)
943 unsigned i;
944 prop_value_t *old_val, new_val;
946 if (dump_file && (dump_flags & TDF_DETAILS))
948 fprintf (dump_file, "\nVisiting PHI node: ");
949 print_gimple_stmt (dump_file, phi, 0, dump_flags);
952 old_val = get_value (gimple_phi_result (phi));
953 switch (old_val->lattice_val)
955 case VARYING:
956 return SSA_PROP_VARYING;
958 case CONSTANT:
959 new_val = *old_val;
960 break;
962 case UNDEFINED:
963 new_val.lattice_val = UNDEFINED;
964 new_val.value = NULL_TREE;
965 break;
967 default:
968 gcc_unreachable ();
971 for (i = 0; i < gimple_phi_num_args (phi); i++)
973 /* Compute the meet operator over all the PHI arguments flowing
974 through executable edges. */
975 edge e = gimple_phi_arg_edge (phi, i);
977 if (dump_file && (dump_flags & TDF_DETAILS))
979 fprintf (dump_file,
980 "\n Argument #%d (%d -> %d %sexecutable)\n",
981 i, e->src->index, e->dest->index,
982 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
985 /* If the incoming edge is executable, Compute the meet operator for
986 the existing value of the PHI node and the current PHI argument. */
987 if (e->flags & EDGE_EXECUTABLE)
989 tree arg = gimple_phi_arg (phi, i)->def;
990 prop_value_t arg_val = get_value_for_expr (arg, false);
992 ccp_lattice_meet (&new_val, &arg_val);
994 if (dump_file && (dump_flags & TDF_DETAILS))
996 fprintf (dump_file, "\t");
997 print_generic_expr (dump_file, arg, dump_flags);
998 dump_lattice_value (dump_file, "\tValue: ", arg_val);
999 fprintf (dump_file, "\n");
1002 if (new_val.lattice_val == VARYING)
1003 break;
1007 if (dump_file && (dump_flags & TDF_DETAILS))
1009 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1010 fprintf (dump_file, "\n\n");
1013 /* Make the transition to the new value. */
1014 if (set_lattice_value (gimple_phi_result (phi), new_val))
1016 if (new_val.lattice_val == VARYING)
1017 return SSA_PROP_VARYING;
1018 else
1019 return SSA_PROP_INTERESTING;
1021 else
1022 return SSA_PROP_NOT_INTERESTING;
1025 /* Return the constant value for OP or OP otherwise. */
1027 static tree
1028 valueize_op (tree op)
1030 if (TREE_CODE (op) == SSA_NAME)
1032 tree tem = get_constant_value (op);
1033 if (tem)
1034 return tem;
1036 return op;
1039 /* CCP specific front-end to the non-destructive constant folding
1040 routines.
1042 Attempt to simplify the RHS of STMT knowing that one or more
1043 operands are constants.
1045 If simplification is possible, return the simplified RHS,
1046 otherwise return the original RHS or NULL_TREE. */
1048 static tree
1049 ccp_fold (gimple stmt)
1051 location_t loc = gimple_location (stmt);
1052 switch (gimple_code (stmt))
1054 case GIMPLE_COND:
1056 /* Handle comparison operators that can appear in GIMPLE form. */
1057 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1058 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1059 enum tree_code code = gimple_cond_code (stmt);
1060 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1063 case GIMPLE_SWITCH:
1065 /* Return the constant switch index. */
1066 return valueize_op (gimple_switch_index (stmt));
1069 case GIMPLE_ASSIGN:
1070 case GIMPLE_CALL:
1071 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1073 default:
1074 gcc_unreachable ();
1078 /* Apply the operation CODE in type TYPE to the value, mask pair
1079 RVAL and RMASK representing a value of type RTYPE and set
1080 the value, mask pair *VAL and *MASK to the result. */
1082 static void
1083 bit_value_unop_1 (enum tree_code code, tree type,
1084 double_int *val, double_int *mask,
1085 tree rtype, double_int rval, double_int rmask)
1087 switch (code)
1089 case BIT_NOT_EXPR:
1090 *mask = rmask;
1091 *val = double_int_not (rval);
1092 break;
1094 case NEGATE_EXPR:
1096 double_int temv, temm;
1097 /* Return ~rval + 1. */
1098 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1099 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1100 type, temv, temm,
1101 type, double_int_one, double_int_zero);
1102 break;
1105 CASE_CONVERT:
1107 bool uns;
1109 /* First extend mask and value according to the original type. */
1110 uns = (TREE_CODE (rtype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (rtype)
1111 ? 0 : TYPE_UNSIGNED (rtype));
1112 *mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
1113 *val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
1115 /* Then extend mask and value according to the target type. */
1116 uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1117 ? 0 : TYPE_UNSIGNED (type));
1118 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1119 *val = double_int_ext (*val, TYPE_PRECISION (type), uns);
1120 break;
1123 default:
1124 *mask = double_int_minus_one;
1125 break;
1129 /* Apply the operation CODE in type TYPE to the value, mask pairs
1130 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1131 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1133 static void
1134 bit_value_binop_1 (enum tree_code code, tree type,
1135 double_int *val, double_int *mask,
1136 tree r1type, double_int r1val, double_int r1mask,
1137 tree r2type, double_int r2val, double_int r2mask)
1139 bool uns = (TREE_CODE (type) == INTEGER_TYPE
1140 && TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type));
1141 /* Assume we'll get a constant result. Use an initial varying value,
1142 we fall back to varying in the end if necessary. */
1143 *mask = double_int_minus_one;
1144 switch (code)
1146 case BIT_AND_EXPR:
1147 /* The mask is constant where there is a known not
1148 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1149 *mask = double_int_and (double_int_ior (r1mask, r2mask),
1150 double_int_and (double_int_ior (r1val, r1mask),
1151 double_int_ior (r2val, r2mask)));
1152 *val = double_int_and (r1val, r2val);
1153 break;
1155 case BIT_IOR_EXPR:
1156 /* The mask is constant where there is a known
1157 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1158 *mask = double_int_and_not
1159 (double_int_ior (r1mask, r2mask),
1160 double_int_ior (double_int_and_not (r1val, r1mask),
1161 double_int_and_not (r2val, r2mask)));
1162 *val = double_int_ior (r1val, r2val);
1163 break;
1165 case BIT_XOR_EXPR:
1166 /* m1 | m2 */
1167 *mask = double_int_ior (r1mask, r2mask);
1168 *val = double_int_xor (r1val, r2val);
1169 break;
1171 case LROTATE_EXPR:
1172 case RROTATE_EXPR:
1173 if (double_int_zero_p (r2mask))
1175 HOST_WIDE_INT shift = r2val.low;
1176 if (code == RROTATE_EXPR)
1177 shift = -shift;
1178 *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
1179 *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
1181 break;
1183 case LSHIFT_EXPR:
1184 case RSHIFT_EXPR:
1185 /* ??? We can handle partially known shift counts if we know
1186 its sign. That way we can tell that (x << (y | 8)) & 255
1187 is zero. */
1188 if (double_int_zero_p (r2mask))
1190 HOST_WIDE_INT shift = r2val.low;
1191 if (code == RSHIFT_EXPR)
1192 shift = -shift;
1193 /* We need to know if we are doing a left or a right shift
1194 to properly shift in zeros for left shift and unsigned
1195 right shifts and the sign bit for signed right shifts.
1196 For signed right shifts we shift in varying in case
1197 the sign bit was varying. */
1198 if (shift > 0)
1200 *mask = double_int_lshift (r1mask, shift,
1201 TYPE_PRECISION (type), false);
1202 *val = double_int_lshift (r1val, shift,
1203 TYPE_PRECISION (type), false);
1205 else if (shift < 0)
1207 /* ??? We can have sizetype related inconsistencies in
1208 the IL. */
1209 if ((TREE_CODE (r1type) == INTEGER_TYPE
1210 && (TYPE_IS_SIZETYPE (r1type)
1211 ? 0 : TYPE_UNSIGNED (r1type))) != uns)
1212 break;
1214 shift = -shift;
1215 *mask = double_int_rshift (r1mask, shift,
1216 TYPE_PRECISION (type), !uns);
1217 *val = double_int_rshift (r1val, shift,
1218 TYPE_PRECISION (type), !uns);
1220 else
1222 *mask = r1mask;
1223 *val = r1val;
1226 break;
1228 case PLUS_EXPR:
1229 case POINTER_PLUS_EXPR:
1231 double_int lo, hi;
1232 /* Do the addition with unknown bits set to zero, to give carry-ins of
1233 zero wherever possible. */
1234 lo = double_int_add (double_int_and_not (r1val, r1mask),
1235 double_int_and_not (r2val, r2mask));
1236 lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
1237 /* Do the addition with unknown bits set to one, to give carry-ins of
1238 one wherever possible. */
1239 hi = double_int_add (double_int_ior (r1val, r1mask),
1240 double_int_ior (r2val, r2mask));
1241 hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
1242 /* Each bit in the result is known if (a) the corresponding bits in
1243 both inputs are known, and (b) the carry-in to that bit position
1244 is known. We can check condition (b) by seeing if we got the same
1245 result with minimised carries as with maximised carries. */
1246 *mask = double_int_ior (double_int_ior (r1mask, r2mask),
1247 double_int_xor (lo, hi));
1248 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1249 /* It shouldn't matter whether we choose lo or hi here. */
1250 *val = lo;
1251 break;
1254 case MINUS_EXPR:
1256 double_int temv, temm;
1257 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1258 r2type, r2val, r2mask);
1259 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1260 r1type, r1val, r1mask,
1261 r2type, temv, temm);
1262 break;
1265 case MULT_EXPR:
1267 /* Just track trailing zeros in both operands and transfer
1268 them to the other. */
1269 int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
1270 int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
1271 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1273 *mask = double_int_zero;
1274 *val = double_int_zero;
1276 else if (r1tz + r2tz > 0)
1278 *mask = double_int_not (double_int_mask (r1tz + r2tz));
1279 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1280 *val = double_int_zero;
1282 break;
1285 case EQ_EXPR:
1286 case NE_EXPR:
1288 double_int m = double_int_ior (r1mask, r2mask);
1289 if (!double_int_equal_p (double_int_and_not (r1val, m),
1290 double_int_and_not (r2val, m)))
1292 *mask = double_int_zero;
1293 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1295 else
1297 /* We know the result of a comparison is always one or zero. */
1298 *mask = double_int_one;
1299 *val = double_int_zero;
1301 break;
1304 case GE_EXPR:
1305 case GT_EXPR:
1307 double_int tem = r1val;
1308 r1val = r2val;
1309 r2val = tem;
1310 tem = r1mask;
1311 r1mask = r2mask;
1312 r2mask = tem;
1313 code = swap_tree_comparison (code);
1315 /* Fallthru. */
1316 case LT_EXPR:
1317 case LE_EXPR:
1319 int minmax, maxmin;
1320 /* If the most significant bits are not known we know nothing. */
1321 if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
1322 break;
1324 /* For comparisons the signedness is in the comparison operands. */
1325 uns = (TREE_CODE (r1type) == INTEGER_TYPE
1326 && TYPE_IS_SIZETYPE (r1type) ? 0 : TYPE_UNSIGNED (r1type));
1327 /* ??? We can have sizetype related inconsistencies in the IL. */
1328 if ((TREE_CODE (r2type) == INTEGER_TYPE
1329 && TYPE_IS_SIZETYPE (r2type) ? 0 : TYPE_UNSIGNED (r2type)) != uns)
1330 break;
1332 /* If we know the most significant bits we know the values
1333 value ranges by means of treating varying bits as zero
1334 or one. Do a cross comparison of the max/min pairs. */
1335 maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
1336 double_int_and_not (r2val, r2mask), uns);
1337 minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
1338 double_int_ior (r2val, r2mask), uns);
1339 if (maxmin < 0) /* r1 is less than r2. */
1341 *mask = double_int_zero;
1342 *val = double_int_one;
1344 else if (minmax > 0) /* r1 is not less or equal to r2. */
1346 *mask = double_int_zero;
1347 *val = double_int_zero;
1349 else if (maxmin == minmax) /* r1 and r2 are equal. */
1351 /* This probably should never happen as we'd have
1352 folded the thing during fully constant value folding. */
1353 *mask = double_int_zero;
1354 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1356 else
1358 /* We know the result of a comparison is always one or zero. */
1359 *mask = double_int_one;
1360 *val = double_int_zero;
1362 break;
1365 default:;
1369 /* Return the propagation value when applying the operation CODE to
1370 the value RHS yielding type TYPE. */
1372 static prop_value_t
1373 bit_value_unop (enum tree_code code, tree type, tree rhs)
1375 prop_value_t rval = get_value_for_expr (rhs, true);
1376 double_int value, mask;
1377 prop_value_t val;
1379 if (rval.lattice_val == UNDEFINED)
1380 return rval;
1382 gcc_assert ((rval.lattice_val == CONSTANT
1383 && TREE_CODE (rval.value) == INTEGER_CST)
1384 || double_int_minus_one_p (rval.mask));
1385 bit_value_unop_1 (code, type, &value, &mask,
1386 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1387 if (!double_int_minus_one_p (mask))
1389 val.lattice_val = CONSTANT;
1390 val.mask = mask;
1391 /* ??? Delay building trees here. */
1392 val.value = double_int_to_tree (type, value);
1394 else
1396 val.lattice_val = VARYING;
1397 val.value = NULL_TREE;
1398 val.mask = double_int_minus_one;
1400 return val;
1403 /* Return the propagation value when applying the operation CODE to
1404 the values RHS1 and RHS2 yielding type TYPE. */
1406 static prop_value_t
1407 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1409 prop_value_t r1val = get_value_for_expr (rhs1, true);
1410 prop_value_t r2val = get_value_for_expr (rhs2, true);
1411 double_int value, mask;
1412 prop_value_t val;
1414 if (r1val.lattice_val == UNDEFINED
1415 || r2val.lattice_val == UNDEFINED)
1417 val.lattice_val = VARYING;
1418 val.value = NULL_TREE;
1419 val.mask = double_int_minus_one;
1420 return val;
1423 gcc_assert ((r1val.lattice_val == CONSTANT
1424 && TREE_CODE (r1val.value) == INTEGER_CST)
1425 || double_int_minus_one_p (r1val.mask));
1426 gcc_assert ((r2val.lattice_val == CONSTANT
1427 && TREE_CODE (r2val.value) == INTEGER_CST)
1428 || double_int_minus_one_p (r2val.mask));
1429 bit_value_binop_1 (code, type, &value, &mask,
1430 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1431 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1432 if (!double_int_minus_one_p (mask))
1434 val.lattice_val = CONSTANT;
1435 val.mask = mask;
1436 /* ??? Delay building trees here. */
1437 val.value = double_int_to_tree (type, value);
1439 else
1441 val.lattice_val = VARYING;
1442 val.value = NULL_TREE;
1443 val.mask = double_int_minus_one;
1445 return val;
1448 /* Return the propagation value when applying __builtin_assume_aligned to
1449 its arguments. */
1451 static prop_value_t
1452 bit_value_assume_aligned (gimple stmt)
1454 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1455 tree type = TREE_TYPE (ptr);
1456 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1457 prop_value_t ptrval = get_value_for_expr (ptr, true);
1458 prop_value_t alignval;
1459 double_int value, mask;
1460 prop_value_t val;
1461 if (ptrval.lattice_val == UNDEFINED)
1462 return ptrval;
1463 gcc_assert ((ptrval.lattice_val == CONSTANT
1464 && TREE_CODE (ptrval.value) == INTEGER_CST)
1465 || double_int_minus_one_p (ptrval.mask));
1466 align = gimple_call_arg (stmt, 1);
1467 if (!host_integerp (align, 1))
1468 return ptrval;
1469 aligni = tree_low_cst (align, 1);
1470 if (aligni <= 1
1471 || (aligni & (aligni - 1)) != 0)
1472 return ptrval;
1473 if (gimple_call_num_args (stmt) > 2)
1475 misalign = gimple_call_arg (stmt, 2);
1476 if (!host_integerp (misalign, 1))
1477 return ptrval;
1478 misaligni = tree_low_cst (misalign, 1);
1479 if (misaligni >= aligni)
1480 return ptrval;
1482 align = build_int_cst_type (type, -aligni);
1483 alignval = get_value_for_expr (align, true);
1484 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1485 type, value_to_double_int (ptrval), ptrval.mask,
1486 type, value_to_double_int (alignval), alignval.mask);
1487 if (!double_int_minus_one_p (mask))
1489 val.lattice_val = CONSTANT;
1490 val.mask = mask;
1491 gcc_assert ((mask.low & (aligni - 1)) == 0);
1492 gcc_assert ((value.low & (aligni - 1)) == 0);
1493 value.low |= misaligni;
1494 /* ??? Delay building trees here. */
1495 val.value = double_int_to_tree (type, value);
1497 else
1499 val.lattice_val = VARYING;
1500 val.value = NULL_TREE;
1501 val.mask = double_int_minus_one;
1503 return val;
1506 /* Evaluate statement STMT.
1507 Valid only for assignments, calls, conditionals, and switches. */
1509 static prop_value_t
1510 evaluate_stmt (gimple stmt)
1512 prop_value_t val;
1513 tree simplified = NULL_TREE;
1514 ccp_lattice_t likelyvalue = likely_value (stmt);
1515 bool is_constant = false;
1516 unsigned int align;
1518 if (dump_file && (dump_flags & TDF_DETAILS))
1520 fprintf (dump_file, "which is likely ");
1521 switch (likelyvalue)
1523 case CONSTANT:
1524 fprintf (dump_file, "CONSTANT");
1525 break;
1526 case UNDEFINED:
1527 fprintf (dump_file, "UNDEFINED");
1528 break;
1529 case VARYING:
1530 fprintf (dump_file, "VARYING");
1531 break;
1532 default:;
1534 fprintf (dump_file, "\n");
1537 /* If the statement is likely to have a CONSTANT result, then try
1538 to fold the statement to determine the constant value. */
1539 /* FIXME. This is the only place that we call ccp_fold.
1540 Since likely_value never returns CONSTANT for calls, we will
1541 not attempt to fold them, including builtins that may profit. */
1542 if (likelyvalue == CONSTANT)
1544 fold_defer_overflow_warnings ();
1545 simplified = ccp_fold (stmt);
1546 is_constant = simplified && is_gimple_min_invariant (simplified);
1547 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1548 if (is_constant)
1550 /* The statement produced a constant value. */
1551 val.lattice_val = CONSTANT;
1552 val.value = simplified;
1553 val.mask = double_int_zero;
1556 /* If the statement is likely to have a VARYING result, then do not
1557 bother folding the statement. */
1558 else if (likelyvalue == VARYING)
1560 enum gimple_code code = gimple_code (stmt);
1561 if (code == GIMPLE_ASSIGN)
1563 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1565 /* Other cases cannot satisfy is_gimple_min_invariant
1566 without folding. */
1567 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1568 simplified = gimple_assign_rhs1 (stmt);
1570 else if (code == GIMPLE_SWITCH)
1571 simplified = gimple_switch_index (stmt);
1572 else
1573 /* These cannot satisfy is_gimple_min_invariant without folding. */
1574 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1575 is_constant = simplified && is_gimple_min_invariant (simplified);
1576 if (is_constant)
1578 /* The statement produced a constant value. */
1579 val.lattice_val = CONSTANT;
1580 val.value = simplified;
1581 val.mask = double_int_zero;
1585 /* Resort to simplification for bitwise tracking. */
1586 if (flag_tree_bit_ccp
1587 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1588 && !is_constant)
1590 enum gimple_code code = gimple_code (stmt);
1591 val.lattice_val = VARYING;
1592 val.value = NULL_TREE;
1593 val.mask = double_int_minus_one;
1594 if (code == GIMPLE_ASSIGN)
1596 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1597 tree rhs1 = gimple_assign_rhs1 (stmt);
1598 switch (get_gimple_rhs_class (subcode))
1600 case GIMPLE_SINGLE_RHS:
1601 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1602 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1603 val = get_value_for_expr (rhs1, true);
1604 break;
1606 case GIMPLE_UNARY_RHS:
1607 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1608 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1609 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1610 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1611 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1612 break;
1614 case GIMPLE_BINARY_RHS:
1615 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1616 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1618 tree lhs = gimple_assign_lhs (stmt);
1619 tree rhs2 = gimple_assign_rhs2 (stmt);
1620 val = bit_value_binop (subcode,
1621 TREE_TYPE (lhs), rhs1, rhs2);
1623 break;
1625 default:;
1628 else if (code == GIMPLE_COND)
1630 enum tree_code code = gimple_cond_code (stmt);
1631 tree rhs1 = gimple_cond_lhs (stmt);
1632 tree rhs2 = gimple_cond_rhs (stmt);
1633 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1634 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1635 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1637 else if (gimple_call_builtin_class_p (stmt, BUILT_IN_NORMAL))
1639 tree fndecl = gimple_call_fndecl (stmt);
1640 switch (DECL_FUNCTION_CODE (fndecl))
1642 case BUILT_IN_MALLOC:
1643 case BUILT_IN_REALLOC:
1644 case BUILT_IN_CALLOC:
1645 case BUILT_IN_STRDUP:
1646 case BUILT_IN_STRNDUP:
1647 val.lattice_val = CONSTANT;
1648 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1649 val.mask = shwi_to_double_int
1650 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1651 / BITS_PER_UNIT - 1));
1652 break;
1654 case BUILT_IN_ALLOCA:
1655 case BUILT_IN_ALLOCA_WITH_ALIGN:
1656 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1657 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1658 : BIGGEST_ALIGNMENT);
1659 val.lattice_val = CONSTANT;
1660 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1661 val.mask = shwi_to_double_int
1662 (~(((HOST_WIDE_INT) align)
1663 / BITS_PER_UNIT - 1));
1664 break;
1666 /* These builtins return their first argument, unmodified. */
1667 case BUILT_IN_MEMCPY:
1668 case BUILT_IN_MEMMOVE:
1669 case BUILT_IN_MEMSET:
1670 case BUILT_IN_STRCPY:
1671 case BUILT_IN_STRNCPY:
1672 case BUILT_IN_MEMCPY_CHK:
1673 case BUILT_IN_MEMMOVE_CHK:
1674 case BUILT_IN_MEMSET_CHK:
1675 case BUILT_IN_STRCPY_CHK:
1676 case BUILT_IN_STRNCPY_CHK:
1677 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1678 break;
1680 case BUILT_IN_ASSUME_ALIGNED:
1681 val = bit_value_assume_aligned (stmt);
1682 break;
1684 default:;
1687 is_constant = (val.lattice_val == CONSTANT);
1690 if (!is_constant)
1692 /* The statement produced a nonconstant value. If the statement
1693 had UNDEFINED operands, then the result of the statement
1694 should be UNDEFINED. Otherwise, the statement is VARYING. */
1695 if (likelyvalue == UNDEFINED)
1697 val.lattice_val = likelyvalue;
1698 val.mask = double_int_zero;
1700 else
1702 val.lattice_val = VARYING;
1703 val.mask = double_int_minus_one;
1706 val.value = NULL_TREE;
1709 return val;
1712 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1713 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1715 static void
1716 insert_clobber_before_stack_restore (tree saved_val, tree var, htab_t *visited)
1718 gimple stmt, clobber_stmt;
1719 tree clobber;
1720 imm_use_iterator iter;
1721 gimple_stmt_iterator i;
1722 gimple *slot;
1724 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1725 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1727 clobber = build_constructor (TREE_TYPE (var), NULL);
1728 TREE_THIS_VOLATILE (clobber) = 1;
1729 clobber_stmt = gimple_build_assign (var, clobber);
1731 i = gsi_for_stmt (stmt);
1732 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1734 else if (gimple_code (stmt) == GIMPLE_PHI)
1736 if (*visited == NULL)
1737 *visited = htab_create (10, htab_hash_pointer, htab_eq_pointer, NULL);
1739 slot = (gimple *)htab_find_slot (*visited, stmt, INSERT);
1740 if (*slot != NULL)
1741 continue;
1743 *slot = stmt;
1744 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1745 visited);
1747 else
1748 gcc_assert (is_gimple_debug (stmt));
1751 /* Advance the iterator to the previous non-debug gimple statement in the same
1752 or dominating basic block. */
1754 static inline void
1755 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1757 basic_block dom;
1759 gsi_prev_nondebug (i);
1760 while (gsi_end_p (*i))
1762 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1763 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1764 return;
1766 *i = gsi_last_bb (dom);
1770 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1771 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1773 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1774 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1775 that case the function gives up without inserting the clobbers. */
1777 static void
1778 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1780 gimple stmt;
1781 tree saved_val;
1782 htab_t visited = NULL;
1784 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1786 stmt = gsi_stmt (i);
1788 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1789 continue;
1791 saved_val = gimple_call_lhs (stmt);
1792 if (saved_val == NULL_TREE)
1793 continue;
1795 insert_clobber_before_stack_restore (saved_val, var, &visited);
1796 break;
1799 if (visited != NULL)
1800 htab_delete (visited);
1803 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1804 fixed-size array and returns the address, if found, otherwise returns
1805 NULL_TREE. */
1807 static tree
1808 fold_builtin_alloca_with_align (gimple stmt)
1810 unsigned HOST_WIDE_INT size, threshold, n_elem;
1811 tree lhs, arg, block, var, elem_type, array_type;
1813 /* Get lhs. */
1814 lhs = gimple_call_lhs (stmt);
1815 if (lhs == NULL_TREE)
1816 return NULL_TREE;
1818 /* Detect constant argument. */
1819 arg = get_constant_value (gimple_call_arg (stmt, 0));
1820 if (arg == NULL_TREE
1821 || TREE_CODE (arg) != INTEGER_CST
1822 || !host_integerp (arg, 1))
1823 return NULL_TREE;
1825 size = TREE_INT_CST_LOW (arg);
1827 /* Heuristic: don't fold large allocas. */
1828 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1829 /* In case the alloca is located at function entry, it has the same lifetime
1830 as a declared array, so we allow a larger size. */
1831 block = gimple_block (stmt);
1832 if (!(cfun->after_inlining
1833 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1834 threshold /= 10;
1835 if (size > threshold)
1836 return NULL_TREE;
1838 /* Declare array. */
1839 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1840 n_elem = size * 8 / BITS_PER_UNIT;
1841 array_type = build_array_type_nelts (elem_type, n_elem);
1842 var = create_tmp_var (array_type, NULL);
1843 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1845 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1846 if (pi != NULL && !pi->pt.anything)
1848 bool singleton_p;
1849 unsigned uid;
1850 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1851 gcc_assert (singleton_p);
1852 SET_DECL_PT_UID (var, uid);
1856 /* Fold alloca to the address of the array. */
1857 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1860 /* Fold the stmt at *GSI with CCP specific information that propagating
1861 and regular folding does not catch. */
1863 static bool
1864 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1866 gimple stmt = gsi_stmt (*gsi);
1868 switch (gimple_code (stmt))
1870 case GIMPLE_COND:
1872 prop_value_t val;
1873 /* Statement evaluation will handle type mismatches in constants
1874 more gracefully than the final propagation. This allows us to
1875 fold more conditionals here. */
1876 val = evaluate_stmt (stmt);
1877 if (val.lattice_val != CONSTANT
1878 || !double_int_zero_p (val.mask))
1879 return false;
1881 if (dump_file)
1883 fprintf (dump_file, "Folding predicate ");
1884 print_gimple_expr (dump_file, stmt, 0, 0);
1885 fprintf (dump_file, " to ");
1886 print_generic_expr (dump_file, val.value, 0);
1887 fprintf (dump_file, "\n");
1890 if (integer_zerop (val.value))
1891 gimple_cond_make_false (stmt);
1892 else
1893 gimple_cond_make_true (stmt);
1895 return true;
1898 case GIMPLE_CALL:
1900 tree lhs = gimple_call_lhs (stmt);
1901 int flags = gimple_call_flags (stmt);
1902 tree val;
1903 tree argt;
1904 bool changed = false;
1905 unsigned i;
1907 /* If the call was folded into a constant make sure it goes
1908 away even if we cannot propagate into all uses because of
1909 type issues. */
1910 if (lhs
1911 && TREE_CODE (lhs) == SSA_NAME
1912 && (val = get_constant_value (lhs))
1913 /* Don't optimize away calls that have side-effects. */
1914 && (flags & (ECF_CONST|ECF_PURE)) != 0
1915 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1917 tree new_rhs = unshare_expr (val);
1918 bool res;
1919 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1920 TREE_TYPE (new_rhs)))
1921 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1922 res = update_call_from_tree (gsi, new_rhs);
1923 gcc_assert (res);
1924 return true;
1927 /* Internal calls provide no argument types, so the extra laxity
1928 for normal calls does not apply. */
1929 if (gimple_call_internal_p (stmt))
1930 return false;
1932 /* The heuristic of fold_builtin_alloca_with_align differs before and
1933 after inlining, so we don't require the arg to be changed into a
1934 constant for folding, but just to be constant. */
1935 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1937 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1938 if (new_rhs)
1940 bool res = update_call_from_tree (gsi, new_rhs);
1941 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1942 gcc_assert (res);
1943 insert_clobbers_for_var (*gsi, var);
1944 return true;
1948 /* Propagate into the call arguments. Compared to replace_uses_in
1949 this can use the argument slot types for type verification
1950 instead of the current argument type. We also can safely
1951 drop qualifiers here as we are dealing with constants anyway. */
1952 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1953 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1954 ++i, argt = TREE_CHAIN (argt))
1956 tree arg = gimple_call_arg (stmt, i);
1957 if (TREE_CODE (arg) == SSA_NAME
1958 && (val = get_constant_value (arg))
1959 && useless_type_conversion_p
1960 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1961 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1963 gimple_call_set_arg (stmt, i, unshare_expr (val));
1964 changed = true;
1968 return changed;
1971 case GIMPLE_ASSIGN:
1973 tree lhs = gimple_assign_lhs (stmt);
1974 tree val;
1976 /* If we have a load that turned out to be constant replace it
1977 as we cannot propagate into all uses in all cases. */
1978 if (gimple_assign_single_p (stmt)
1979 && TREE_CODE (lhs) == SSA_NAME
1980 && (val = get_constant_value (lhs)))
1982 tree rhs = unshare_expr (val);
1983 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1984 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1985 gimple_assign_set_rhs_from_tree (gsi, rhs);
1986 return true;
1989 return false;
1992 default:
1993 return false;
1997 /* Visit the assignment statement STMT. Set the value of its LHS to the
1998 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1999 creates virtual definitions, set the value of each new name to that
2000 of the RHS (if we can derive a constant out of the RHS).
2001 Value-returning call statements also perform an assignment, and
2002 are handled here. */
2004 static enum ssa_prop_result
2005 visit_assignment (gimple stmt, tree *output_p)
2007 prop_value_t val;
2008 enum ssa_prop_result retval;
2010 tree lhs = gimple_get_lhs (stmt);
2012 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2013 || gimple_call_lhs (stmt) != NULL_TREE);
2015 if (gimple_assign_single_p (stmt)
2016 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2017 /* For a simple copy operation, we copy the lattice values. */
2018 val = *get_value (gimple_assign_rhs1 (stmt));
2019 else
2020 /* Evaluate the statement, which could be
2021 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2022 val = evaluate_stmt (stmt);
2024 retval = SSA_PROP_NOT_INTERESTING;
2026 /* Set the lattice value of the statement's output. */
2027 if (TREE_CODE (lhs) == SSA_NAME)
2029 /* If STMT is an assignment to an SSA_NAME, we only have one
2030 value to set. */
2031 if (set_lattice_value (lhs, val))
2033 *output_p = lhs;
2034 if (val.lattice_val == VARYING)
2035 retval = SSA_PROP_VARYING;
2036 else
2037 retval = SSA_PROP_INTERESTING;
2041 return retval;
2045 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2046 if it can determine which edge will be taken. Otherwise, return
2047 SSA_PROP_VARYING. */
2049 static enum ssa_prop_result
2050 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2052 prop_value_t val;
2053 basic_block block;
2055 block = gimple_bb (stmt);
2056 val = evaluate_stmt (stmt);
2057 if (val.lattice_val != CONSTANT
2058 || !double_int_zero_p (val.mask))
2059 return SSA_PROP_VARYING;
2061 /* Find which edge out of the conditional block will be taken and add it
2062 to the worklist. If no single edge can be determined statically,
2063 return SSA_PROP_VARYING to feed all the outgoing edges to the
2064 propagation engine. */
2065 *taken_edge_p = find_taken_edge (block, val.value);
2066 if (*taken_edge_p)
2067 return SSA_PROP_INTERESTING;
2068 else
2069 return SSA_PROP_VARYING;
2073 /* Evaluate statement STMT. If the statement produces an output value and
2074 its evaluation changes the lattice value of its output, return
2075 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2076 output value.
2078 If STMT is a conditional branch and we can determine its truth
2079 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2080 value, return SSA_PROP_VARYING. */
2082 static enum ssa_prop_result
2083 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2085 tree def;
2086 ssa_op_iter iter;
2088 if (dump_file && (dump_flags & TDF_DETAILS))
2090 fprintf (dump_file, "\nVisiting statement:\n");
2091 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2094 switch (gimple_code (stmt))
2096 case GIMPLE_ASSIGN:
2097 /* If the statement is an assignment that produces a single
2098 output value, evaluate its RHS to see if the lattice value of
2099 its output has changed. */
2100 return visit_assignment (stmt, output_p);
2102 case GIMPLE_CALL:
2103 /* A value-returning call also performs an assignment. */
2104 if (gimple_call_lhs (stmt) != NULL_TREE)
2105 return visit_assignment (stmt, output_p);
2106 break;
2108 case GIMPLE_COND:
2109 case GIMPLE_SWITCH:
2110 /* If STMT is a conditional branch, see if we can determine
2111 which branch will be taken. */
2112 /* FIXME. It appears that we should be able to optimize
2113 computed GOTOs here as well. */
2114 return visit_cond_stmt (stmt, taken_edge_p);
2116 default:
2117 break;
2120 /* Any other kind of statement is not interesting for constant
2121 propagation and, therefore, not worth simulating. */
2122 if (dump_file && (dump_flags & TDF_DETAILS))
2123 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2125 /* Definitions made by statements other than assignments to
2126 SSA_NAMEs represent unknown modifications to their outputs.
2127 Mark them VARYING. */
2128 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2130 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2131 set_lattice_value (def, v);
2134 return SSA_PROP_VARYING;
2138 /* Main entry point for SSA Conditional Constant Propagation. */
2140 static unsigned int
2141 do_ssa_ccp (void)
2143 unsigned int todo = 0;
2144 calculate_dominance_info (CDI_DOMINATORS);
2145 ccp_initialize ();
2146 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2147 if (ccp_finalize ())
2148 todo = (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2149 free_dominance_info (CDI_DOMINATORS);
2150 return todo;
2154 static bool
2155 gate_ccp (void)
2157 return flag_tree_ccp != 0;
2161 struct gimple_opt_pass pass_ccp =
2164 GIMPLE_PASS,
2165 "ccp", /* name */
2166 gate_ccp, /* gate */
2167 do_ssa_ccp, /* execute */
2168 NULL, /* sub */
2169 NULL, /* next */
2170 0, /* static_pass_number */
2171 TV_TREE_CCP, /* tv_id */
2172 PROP_cfg | PROP_ssa, /* properties_required */
2173 0, /* properties_provided */
2174 0, /* properties_destroyed */
2175 0, /* todo_flags_start */
2176 TODO_verify_ssa
2177 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2183 /* Try to optimize out __builtin_stack_restore. Optimize it out
2184 if there is another __builtin_stack_restore in the same basic
2185 block and no calls or ASM_EXPRs are in between, or if this block's
2186 only outgoing edge is to EXIT_BLOCK and there are no calls or
2187 ASM_EXPRs after this __builtin_stack_restore. */
2189 static tree
2190 optimize_stack_restore (gimple_stmt_iterator i)
2192 tree callee;
2193 gimple stmt;
2195 basic_block bb = gsi_bb (i);
2196 gimple call = gsi_stmt (i);
2198 if (gimple_code (call) != GIMPLE_CALL
2199 || gimple_call_num_args (call) != 1
2200 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2201 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2202 return NULL_TREE;
2204 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2206 stmt = gsi_stmt (i);
2207 if (gimple_code (stmt) == GIMPLE_ASM)
2208 return NULL_TREE;
2209 if (gimple_code (stmt) != GIMPLE_CALL)
2210 continue;
2212 callee = gimple_call_fndecl (stmt);
2213 if (!callee
2214 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2215 /* All regular builtins are ok, just obviously not alloca. */
2216 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2217 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2218 return NULL_TREE;
2220 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2221 goto second_stack_restore;
2224 if (!gsi_end_p (i))
2225 return NULL_TREE;
2227 /* Allow one successor of the exit block, or zero successors. */
2228 switch (EDGE_COUNT (bb->succs))
2230 case 0:
2231 break;
2232 case 1:
2233 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2234 return NULL_TREE;
2235 break;
2236 default:
2237 return NULL_TREE;
2239 second_stack_restore:
2241 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2242 If there are multiple uses, then the last one should remove the call.
2243 In any case, whether the call to __builtin_stack_save can be removed
2244 or not is irrelevant to removing the call to __builtin_stack_restore. */
2245 if (has_single_use (gimple_call_arg (call, 0)))
2247 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2248 if (is_gimple_call (stack_save))
2250 callee = gimple_call_fndecl (stack_save);
2251 if (callee
2252 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2253 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2255 gimple_stmt_iterator stack_save_gsi;
2256 tree rhs;
2258 stack_save_gsi = gsi_for_stmt (stack_save);
2259 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2260 update_call_from_tree (&stack_save_gsi, rhs);
2265 /* No effect, so the statement will be deleted. */
2266 return integer_zero_node;
2269 /* If va_list type is a simple pointer and nothing special is needed,
2270 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2271 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2272 pointer assignment. */
2274 static tree
2275 optimize_stdarg_builtin (gimple call)
2277 tree callee, lhs, rhs, cfun_va_list;
2278 bool va_list_simple_ptr;
2279 location_t loc = gimple_location (call);
2281 if (gimple_code (call) != GIMPLE_CALL)
2282 return NULL_TREE;
2284 callee = gimple_call_fndecl (call);
2286 cfun_va_list = targetm.fn_abi_va_list (callee);
2287 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2288 && (TREE_TYPE (cfun_va_list) == void_type_node
2289 || TREE_TYPE (cfun_va_list) == char_type_node);
2291 switch (DECL_FUNCTION_CODE (callee))
2293 case BUILT_IN_VA_START:
2294 if (!va_list_simple_ptr
2295 || targetm.expand_builtin_va_start != NULL
2296 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2297 return NULL_TREE;
2299 if (gimple_call_num_args (call) != 2)
2300 return NULL_TREE;
2302 lhs = gimple_call_arg (call, 0);
2303 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2304 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2305 != TYPE_MAIN_VARIANT (cfun_va_list))
2306 return NULL_TREE;
2308 lhs = build_fold_indirect_ref_loc (loc, lhs);
2309 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2310 1, integer_zero_node);
2311 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2312 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2314 case BUILT_IN_VA_COPY:
2315 if (!va_list_simple_ptr)
2316 return NULL_TREE;
2318 if (gimple_call_num_args (call) != 2)
2319 return NULL_TREE;
2321 lhs = gimple_call_arg (call, 0);
2322 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2323 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2324 != TYPE_MAIN_VARIANT (cfun_va_list))
2325 return NULL_TREE;
2327 lhs = build_fold_indirect_ref_loc (loc, lhs);
2328 rhs = gimple_call_arg (call, 1);
2329 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2330 != TYPE_MAIN_VARIANT (cfun_va_list))
2331 return NULL_TREE;
2333 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2334 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2336 case BUILT_IN_VA_END:
2337 /* No effect, so the statement will be deleted. */
2338 return integer_zero_node;
2340 default:
2341 gcc_unreachable ();
2345 /* A simple pass that attempts to fold all builtin functions. This pass
2346 is run after we've propagated as many constants as we can. */
2348 static unsigned int
2349 execute_fold_all_builtins (void)
2351 bool cfg_changed = false;
2352 basic_block bb;
2353 unsigned int todoflags = 0;
2355 FOR_EACH_BB (bb)
2357 gimple_stmt_iterator i;
2358 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2360 gimple stmt, old_stmt;
2361 tree callee, result;
2362 enum built_in_function fcode;
2364 stmt = gsi_stmt (i);
2366 if (gimple_code (stmt) != GIMPLE_CALL)
2368 gsi_next (&i);
2369 continue;
2371 callee = gimple_call_fndecl (stmt);
2372 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2374 gsi_next (&i);
2375 continue;
2377 fcode = DECL_FUNCTION_CODE (callee);
2379 result = gimple_fold_builtin (stmt);
2381 if (result)
2382 gimple_remove_stmt_histograms (cfun, stmt);
2384 if (!result)
2385 switch (DECL_FUNCTION_CODE (callee))
2387 case BUILT_IN_CONSTANT_P:
2388 /* Resolve __builtin_constant_p. If it hasn't been
2389 folded to integer_one_node by now, it's fairly
2390 certain that the value simply isn't constant. */
2391 result = integer_zero_node;
2392 break;
2394 case BUILT_IN_ASSUME_ALIGNED:
2395 /* Remove __builtin_assume_aligned. */
2396 result = gimple_call_arg (stmt, 0);
2397 break;
2399 case BUILT_IN_STACK_RESTORE:
2400 result = optimize_stack_restore (i);
2401 if (result)
2402 break;
2403 gsi_next (&i);
2404 continue;
2406 case BUILT_IN_VA_START:
2407 case BUILT_IN_VA_END:
2408 case BUILT_IN_VA_COPY:
2409 /* These shouldn't be folded before pass_stdarg. */
2410 result = optimize_stdarg_builtin (stmt);
2411 if (result)
2412 break;
2413 /* FALLTHRU */
2415 default:
2416 gsi_next (&i);
2417 continue;
2420 if (dump_file && (dump_flags & TDF_DETAILS))
2422 fprintf (dump_file, "Simplified\n ");
2423 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2426 old_stmt = stmt;
2427 if (!update_call_from_tree (&i, result))
2429 gimplify_and_update_call_from_tree (&i, result);
2430 todoflags |= TODO_update_address_taken;
2433 stmt = gsi_stmt (i);
2434 update_stmt (stmt);
2436 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2437 && gimple_purge_dead_eh_edges (bb))
2438 cfg_changed = true;
2440 if (dump_file && (dump_flags & TDF_DETAILS))
2442 fprintf (dump_file, "to\n ");
2443 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2444 fprintf (dump_file, "\n");
2447 /* Retry the same statement if it changed into another
2448 builtin, there might be new opportunities now. */
2449 if (gimple_code (stmt) != GIMPLE_CALL)
2451 gsi_next (&i);
2452 continue;
2454 callee = gimple_call_fndecl (stmt);
2455 if (!callee
2456 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2457 || DECL_FUNCTION_CODE (callee) == fcode)
2458 gsi_next (&i);
2462 /* Delete unreachable blocks. */
2463 if (cfg_changed)
2464 todoflags |= TODO_cleanup_cfg;
2466 return todoflags;
2470 struct gimple_opt_pass pass_fold_builtins =
2473 GIMPLE_PASS,
2474 "fab", /* name */
2475 NULL, /* gate */
2476 execute_fold_all_builtins, /* execute */
2477 NULL, /* sub */
2478 NULL, /* next */
2479 0, /* static_pass_number */
2480 TV_NONE, /* tv_id */
2481 PROP_cfg | PROP_ssa, /* properties_required */
2482 0, /* properties_provided */
2483 0, /* properties_destroyed */
2484 0, /* todo_flags_start */
2485 TODO_verify_ssa
2486 | TODO_update_ssa /* todo_flags_finish */