Merge from trunk: 215733-215743
[official-gcc.git] / gcc-4_7 / gcc / tree-parloops.c
blob960b4f8145bfc61402053693c6edc90c4c4ba167
1 /* Loop autoparallelization.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr> and
5 Zdenek Dvorak <dvorakz@suse.cz>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tree-flow.h"
27 #include "cfgloop.h"
28 #include "tree-data-ref.h"
29 #include "tree-scalar-evolution.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-pass.h"
32 #include "langhooks.h"
33 #include "tree-vectorizer.h"
35 /* This pass tries to distribute iterations of loops into several threads.
36 The implementation is straightforward -- for each loop we test whether its
37 iterations are independent, and if it is the case (and some additional
38 conditions regarding profitability and correctness are satisfied), we
39 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
40 machinery do its job.
42 The most of the complexity is in bringing the code into shape expected
43 by the omp expanders:
44 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
45 variable and that the exit test is at the start of the loop body
46 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
47 variables by accesses through pointers, and breaking up ssa chains
48 by storing the values incoming to the parallelized loop to a structure
49 passed to the new function as an argument (something similar is done
50 in omp gimplification, unfortunately only a small part of the code
51 can be shared).
53 TODO:
54 -- if there are several parallelizable loops in a function, it may be
55 possible to generate the threads just once (using synchronization to
56 ensure that cross-loop dependences are obeyed).
57 -- handling of common scalar dependence patterns (accumulation, ...)
58 -- handling of non-innermost loops */
61 Reduction handling:
62 currently we use vect_force_simple_reduction() to detect reduction patterns.
63 The code transformation will be introduced by an example.
66 parloop
68 int sum=1;
70 for (i = 0; i < N; i++)
72 x[i] = i + 3;
73 sum+=x[i];
77 gimple-like code:
78 header_bb:
80 # sum_29 = PHI <sum_11(5), 1(3)>
81 # i_28 = PHI <i_12(5), 0(3)>
82 D.1795_8 = i_28 + 3;
83 x[i_28] = D.1795_8;
84 sum_11 = D.1795_8 + sum_29;
85 i_12 = i_28 + 1;
86 if (N_6(D) > i_12)
87 goto header_bb;
90 exit_bb:
92 # sum_21 = PHI <sum_11(4)>
93 printf (&"%d"[0], sum_21);
96 after reduction transformation (only relevant parts):
98 parloop
101 ....
104 # Storing the initial value given by the user. #
106 .paral_data_store.32.sum.27 = 1;
108 #pragma omp parallel num_threads(4)
110 #pragma omp for schedule(static)
112 # The neutral element corresponding to the particular
113 reduction's operation, e.g. 0 for PLUS_EXPR,
114 1 for MULT_EXPR, etc. replaces the user's initial value. #
116 # sum.27_29 = PHI <sum.27_11, 0>
118 sum.27_11 = D.1827_8 + sum.27_29;
120 GIMPLE_OMP_CONTINUE
122 # Adding this reduction phi is done at create_phi_for_local_result() #
123 # sum.27_56 = PHI <sum.27_11, 0>
124 GIMPLE_OMP_RETURN
126 # Creating the atomic operation is done at
127 create_call_for_reduction_1() #
129 #pragma omp atomic_load
130 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
131 D.1840_60 = sum.27_56 + D.1839_59;
132 #pragma omp atomic_store (D.1840_60);
134 GIMPLE_OMP_RETURN
136 # collecting the result after the join of the threads is done at
137 create_loads_for_reductions().
138 The value computed by the threads is loaded from the
139 shared struct. #
142 .paral_data_load.33_52 = &.paral_data_store.32;
143 sum_37 = .paral_data_load.33_52->sum.27;
144 sum_43 = D.1795_41 + sum_37;
146 exit bb:
147 # sum_21 = PHI <sum_43, sum_26>
148 printf (&"%d"[0], sum_21);
156 /* Minimal number of iterations of a loop that should be executed in each
157 thread. */
158 #define MIN_PER_THREAD 100
160 /* Element of the hashtable, representing a
161 reduction in the current loop. */
162 struct reduction_info
164 gimple reduc_stmt; /* reduction statement. */
165 gimple reduc_phi; /* The phi node defining the reduction. */
166 enum tree_code reduction_code;/* code for the reduction operation. */
167 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
168 result. */
169 gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
170 of the reduction variable when existing the loop. */
171 tree initial_value; /* The initial value of the reduction var before entering the loop. */
172 tree field; /* the name of the field in the parloop data structure intended for reduction. */
173 tree init; /* reduction initialization value. */
174 gimple new_phi; /* (helper field) Newly created phi node whose result
175 will be passed to the atomic operation. Represents
176 the local result each thread computed for the reduction
177 operation. */
180 /* Equality and hash functions for hashtab code. */
182 static int
183 reduction_info_eq (const void *aa, const void *bb)
185 const struct reduction_info *a = (const struct reduction_info *) aa;
186 const struct reduction_info *b = (const struct reduction_info *) bb;
188 return (a->reduc_phi == b->reduc_phi);
191 static hashval_t
192 reduction_info_hash (const void *aa)
194 const struct reduction_info *a = (const struct reduction_info *) aa;
196 return a->reduc_version;
199 static struct reduction_info *
200 reduction_phi (htab_t reduction_list, gimple phi)
202 struct reduction_info tmpred, *red;
204 if (htab_elements (reduction_list) == 0 || phi == NULL)
205 return NULL;
207 tmpred.reduc_phi = phi;
208 tmpred.reduc_version = gimple_uid (phi);
209 red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
211 return red;
214 /* Element of hashtable of names to copy. */
216 struct name_to_copy_elt
218 unsigned version; /* The version of the name to copy. */
219 tree new_name; /* The new name used in the copy. */
220 tree field; /* The field of the structure used to pass the
221 value. */
224 /* Equality and hash functions for hashtab code. */
226 static int
227 name_to_copy_elt_eq (const void *aa, const void *bb)
229 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
230 const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
232 return a->version == b->version;
235 static hashval_t
236 name_to_copy_elt_hash (const void *aa)
238 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
240 return (hashval_t) a->version;
243 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
244 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
245 represents the denominator for every element in the matrix. */
246 typedef struct lambda_trans_matrix_s
248 lambda_matrix matrix;
249 int rowsize;
250 int colsize;
251 int denominator;
252 } *lambda_trans_matrix;
253 #define LTM_MATRIX(T) ((T)->matrix)
254 #define LTM_ROWSIZE(T) ((T)->rowsize)
255 #define LTM_COLSIZE(T) ((T)->colsize)
256 #define LTM_DENOMINATOR(T) ((T)->denominator)
258 /* Allocate a new transformation matrix. */
260 static lambda_trans_matrix
261 lambda_trans_matrix_new (int colsize, int rowsize,
262 struct obstack * lambda_obstack)
264 lambda_trans_matrix ret;
266 ret = (lambda_trans_matrix)
267 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
268 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
269 LTM_ROWSIZE (ret) = rowsize;
270 LTM_COLSIZE (ret) = colsize;
271 LTM_DENOMINATOR (ret) = 1;
272 return ret;
275 /* Multiply a vector VEC by a matrix MAT.
276 MAT is an M*N matrix, and VEC is a vector with length N. The result
277 is stored in DEST which must be a vector of length M. */
279 static void
280 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
281 lambda_vector vec, lambda_vector dest)
283 int i, j;
285 lambda_vector_clear (dest, m);
286 for (i = 0; i < m; i++)
287 for (j = 0; j < n; j++)
288 dest[i] += matrix[i][j] * vec[j];
291 /* Return true if TRANS is a legal transformation matrix that respects
292 the dependence vectors in DISTS and DIRS. The conservative answer
293 is false.
295 "Wolfe proves that a unimodular transformation represented by the
296 matrix T is legal when applied to a loop nest with a set of
297 lexicographically non-negative distance vectors RDG if and only if
298 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
299 i.e.: if and only if it transforms the lexicographically positive
300 distance vectors to lexicographically positive vectors. Note that
301 a unimodular matrix must transform the zero vector (and only it) to
302 the zero vector." S.Muchnick. */
304 static bool
305 lambda_transform_legal_p (lambda_trans_matrix trans,
306 int nb_loops,
307 VEC (ddr_p, heap) *dependence_relations)
309 unsigned int i, j;
310 lambda_vector distres;
311 struct data_dependence_relation *ddr;
313 gcc_assert (LTM_COLSIZE (trans) == nb_loops
314 && LTM_ROWSIZE (trans) == nb_loops);
316 /* When there are no dependences, the transformation is correct. */
317 if (VEC_length (ddr_p, dependence_relations) == 0)
318 return true;
320 ddr = VEC_index (ddr_p, dependence_relations, 0);
321 if (ddr == NULL)
322 return true;
324 /* When there is an unknown relation in the dependence_relations, we
325 know that it is no worth looking at this loop nest: give up. */
326 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
327 return false;
329 distres = lambda_vector_new (nb_loops);
331 /* For each distance vector in the dependence graph. */
332 FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
334 /* Don't care about relations for which we know that there is no
335 dependence, nor about read-read (aka. output-dependences):
336 these data accesses can happen in any order. */
337 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
338 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
339 continue;
341 /* Conservatively answer: "this transformation is not valid". */
342 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
343 return false;
345 /* If the dependence could not be captured by a distance vector,
346 conservatively answer that the transform is not valid. */
347 if (DDR_NUM_DIST_VECTS (ddr) == 0)
348 return false;
350 /* Compute trans.dist_vect */
351 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
353 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
354 DDR_DIST_VECT (ddr, j), distres);
356 if (!lambda_vector_lexico_pos (distres, nb_loops))
357 return false;
360 return true;
363 /* Data dependency analysis. Returns true if the iterations of LOOP
364 are independent on each other (that is, if we can execute them
365 in parallel). */
367 static bool
368 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
370 VEC (loop_p, heap) *loop_nest;
371 VEC (ddr_p, heap) *dependence_relations;
372 VEC (data_reference_p, heap) *datarefs;
373 lambda_trans_matrix trans;
374 bool ret = false;
376 if (dump_file && (dump_flags & TDF_DETAILS))
378 fprintf (dump_file, "Considering loop %d\n", loop->num);
379 if (!loop->inner)
380 fprintf (dump_file, "loop is innermost\n");
381 else
382 fprintf (dump_file, "loop NOT innermost\n");
385 /* Check for problems with dependences. If the loop can be reversed,
386 the iterations are independent. */
387 datarefs = VEC_alloc (data_reference_p, heap, 10);
388 dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
389 loop_nest = VEC_alloc (loop_p, heap, 3);
390 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
391 &dependence_relations))
393 if (dump_file && (dump_flags & TDF_DETAILS))
394 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
395 ret = false;
396 goto end;
398 if (dump_file && (dump_flags & TDF_DETAILS))
399 dump_data_dependence_relations (dump_file, dependence_relations);
401 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
402 LTM_MATRIX (trans)[0][0] = -1;
404 if (lambda_transform_legal_p (trans, 1, dependence_relations))
406 ret = true;
407 if (dump_file && (dump_flags & TDF_DETAILS))
408 fprintf (dump_file, " SUCCESS: may be parallelized\n");
410 else if (dump_file && (dump_flags & TDF_DETAILS))
411 fprintf (dump_file,
412 " FAILED: data dependencies exist across iterations\n");
414 end:
415 VEC_free (loop_p, heap, loop_nest);
416 free_dependence_relations (dependence_relations);
417 free_data_refs (datarefs);
419 return ret;
422 /* Return true when LOOP contains basic blocks marked with the
423 BB_IRREDUCIBLE_LOOP flag. */
425 static inline bool
426 loop_has_blocks_with_irreducible_flag (struct loop *loop)
428 unsigned i;
429 basic_block *bbs = get_loop_body_in_dom_order (loop);
430 bool res = true;
432 for (i = 0; i < loop->num_nodes; i++)
433 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
434 goto end;
436 res = false;
437 end:
438 free (bbs);
439 return res;
442 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
443 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
444 to their addresses that can be reused. The address of OBJ is known to
445 be invariant in the whole function. Other needed statements are placed
446 right before GSI. */
448 static tree
449 take_address_of (tree obj, tree type, edge entry, htab_t decl_address,
450 gimple_stmt_iterator *gsi)
452 int uid;
453 void **dslot;
454 struct int_tree_map ielt, *nielt;
455 tree *var_p, name, bvar, addr;
456 gimple stmt;
457 gimple_seq stmts;
459 /* Since the address of OBJ is invariant, the trees may be shared.
460 Avoid rewriting unrelated parts of the code. */
461 obj = unshare_expr (obj);
462 for (var_p = &obj;
463 handled_component_p (*var_p);
464 var_p = &TREE_OPERAND (*var_p, 0))
465 continue;
467 /* Canonicalize the access to base on a MEM_REF. */
468 if (DECL_P (*var_p))
469 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
471 /* Assign a canonical SSA name to the address of the base decl used
472 in the address and share it for all accesses and addresses based
473 on it. */
474 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
475 ielt.uid = uid;
476 dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
477 if (!*dslot)
479 if (gsi == NULL)
480 return NULL;
481 addr = TREE_OPERAND (*var_p, 0);
482 bvar = create_tmp_var (TREE_TYPE (addr),
483 get_name (TREE_OPERAND
484 (TREE_OPERAND (*var_p, 0), 0)));
485 add_referenced_var (bvar);
486 stmt = gimple_build_assign (bvar, addr);
487 name = make_ssa_name (bvar, stmt);
488 gimple_assign_set_lhs (stmt, name);
489 gsi_insert_on_edge_immediate (entry, stmt);
491 nielt = XNEW (struct int_tree_map);
492 nielt->uid = uid;
493 nielt->to = name;
494 *dslot = nielt;
496 else
497 name = ((struct int_tree_map *) *dslot)->to;
499 /* Express the address in terms of the canonical SSA name. */
500 TREE_OPERAND (*var_p, 0) = name;
501 if (gsi == NULL)
502 return build_fold_addr_expr_with_type (obj, type);
504 name = force_gimple_operand (build_addr (obj, current_function_decl),
505 &stmts, true, NULL_TREE);
506 if (!gimple_seq_empty_p (stmts))
507 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
509 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
511 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
512 NULL_TREE);
513 if (!gimple_seq_empty_p (stmts))
514 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
517 return name;
520 /* Callback for htab_traverse. Create the initialization statement
521 for reduction described in SLOT, and place it at the preheader of
522 the loop described in DATA. */
524 static int
525 initialize_reductions (void **slot, void *data)
527 tree init, c;
528 tree bvar, type, arg;
529 edge e;
531 struct reduction_info *const reduc = (struct reduction_info *) *slot;
532 struct loop *loop = (struct loop *) data;
534 /* Create initialization in preheader:
535 reduction_variable = initialization value of reduction. */
537 /* In the phi node at the header, replace the argument coming
538 from the preheader with the reduction initialization value. */
540 /* Create a new variable to initialize the reduction. */
541 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
542 bvar = create_tmp_var (type, "reduction");
543 add_referenced_var (bvar);
545 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
546 OMP_CLAUSE_REDUCTION);
547 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
548 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
550 init = omp_reduction_init (c, TREE_TYPE (bvar));
551 reduc->init = init;
553 /* Replace the argument representing the initialization value
554 with the initialization value for the reduction (neutral
555 element for the particular operation, e.g. 0 for PLUS_EXPR,
556 1 for MULT_EXPR, etc).
557 Keep the old value in a new variable "reduction_initial",
558 that will be taken in consideration after the parallel
559 computing is done. */
561 e = loop_preheader_edge (loop);
562 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
563 /* Create new variable to hold the initial value. */
565 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
566 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
567 reduc->initial_value = arg;
568 return 1;
571 struct elv_data
573 struct walk_stmt_info info;
574 edge entry;
575 htab_t decl_address;
576 gimple_stmt_iterator *gsi;
577 bool changed;
578 bool reset;
581 /* Eliminates references to local variables in *TP out of the single
582 entry single exit region starting at DTA->ENTRY.
583 DECL_ADDRESS contains addresses of the references that had their
584 address taken already. If the expression is changed, CHANGED is
585 set to true. Callback for walk_tree. */
587 static tree
588 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
590 struct elv_data *const dta = (struct elv_data *) data;
591 tree t = *tp, var, addr, addr_type, type, obj;
593 if (DECL_P (t))
595 *walk_subtrees = 0;
597 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
598 return NULL_TREE;
600 type = TREE_TYPE (t);
601 addr_type = build_pointer_type (type);
602 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
603 dta->gsi);
604 if (dta->gsi == NULL && addr == NULL_TREE)
606 dta->reset = true;
607 return NULL_TREE;
610 *tp = build_simple_mem_ref (addr);
612 dta->changed = true;
613 return NULL_TREE;
616 if (TREE_CODE (t) == ADDR_EXPR)
618 /* ADDR_EXPR may appear in two contexts:
619 -- as a gimple operand, when the address taken is a function invariant
620 -- as gimple rhs, when the resulting address in not a function
621 invariant
622 We do not need to do anything special in the latter case (the base of
623 the memory reference whose address is taken may be replaced in the
624 DECL_P case). The former case is more complicated, as we need to
625 ensure that the new address is still a gimple operand. Thus, it
626 is not sufficient to replace just the base of the memory reference --
627 we need to move the whole computation of the address out of the
628 loop. */
629 if (!is_gimple_val (t))
630 return NULL_TREE;
632 *walk_subtrees = 0;
633 obj = TREE_OPERAND (t, 0);
634 var = get_base_address (obj);
635 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
636 return NULL_TREE;
638 addr_type = TREE_TYPE (t);
639 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
640 dta->gsi);
641 if (dta->gsi == NULL && addr == NULL_TREE)
643 dta->reset = true;
644 return NULL_TREE;
646 *tp = addr;
648 dta->changed = true;
649 return NULL_TREE;
652 if (!EXPR_P (t))
653 *walk_subtrees = 0;
655 return NULL_TREE;
658 /* Moves the references to local variables in STMT at *GSI out of the single
659 entry single exit region starting at ENTRY. DECL_ADDRESS contains
660 addresses of the references that had their address taken
661 already. */
663 static void
664 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
665 htab_t decl_address)
667 struct elv_data dta;
668 gimple stmt = gsi_stmt (*gsi);
670 memset (&dta.info, '\0', sizeof (dta.info));
671 dta.entry = entry;
672 dta.decl_address = decl_address;
673 dta.changed = false;
674 dta.reset = false;
676 if (gimple_debug_bind_p (stmt))
678 dta.gsi = NULL;
679 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
680 eliminate_local_variables_1, &dta.info, NULL);
681 if (dta.reset)
683 gimple_debug_bind_reset_value (stmt);
684 dta.changed = true;
687 else
689 dta.gsi = gsi;
690 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
693 if (dta.changed)
694 update_stmt (stmt);
697 /* Eliminates the references to local variables from the single entry
698 single exit region between the ENTRY and EXIT edges.
700 This includes:
701 1) Taking address of a local variable -- these are moved out of the
702 region (and temporary variable is created to hold the address if
703 necessary).
705 2) Dereferencing a local variable -- these are replaced with indirect
706 references. */
708 static void
709 eliminate_local_variables (edge entry, edge exit)
711 basic_block bb;
712 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
713 unsigned i;
714 gimple_stmt_iterator gsi;
715 bool has_debug_stmt = false;
716 htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
717 free);
718 basic_block entry_bb = entry->src;
719 basic_block exit_bb = exit->dest;
721 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
723 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
724 if (bb != entry_bb && bb != exit_bb)
725 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
726 if (is_gimple_debug (gsi_stmt (gsi)))
728 if (gimple_debug_bind_p (gsi_stmt (gsi)))
729 has_debug_stmt = true;
731 else
732 eliminate_local_variables_stmt (entry, &gsi, decl_address);
734 if (has_debug_stmt)
735 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
736 if (bb != entry_bb && bb != exit_bb)
737 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
738 if (gimple_debug_bind_p (gsi_stmt (gsi)))
739 eliminate_local_variables_stmt (entry, &gsi, decl_address);
741 htab_delete (decl_address);
742 VEC_free (basic_block, heap, body);
745 /* Returns true if expression EXPR is not defined between ENTRY and
746 EXIT, i.e. if all its operands are defined outside of the region. */
748 static bool
749 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
751 basic_block entry_bb = entry->src;
752 basic_block exit_bb = exit->dest;
753 basic_block def_bb;
755 if (is_gimple_min_invariant (expr))
756 return true;
758 if (TREE_CODE (expr) == SSA_NAME)
760 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
761 if (def_bb
762 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
763 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
764 return false;
766 return true;
769 return false;
772 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
773 The copies are stored to NAME_COPIES, if NAME was already duplicated,
774 its duplicate stored in NAME_COPIES is returned.
776 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
777 duplicated, storing the copies in DECL_COPIES. */
779 static tree
780 separate_decls_in_region_name (tree name,
781 htab_t name_copies, htab_t decl_copies,
782 bool copy_name_p)
784 tree copy, var, var_copy;
785 unsigned idx, uid, nuid;
786 struct int_tree_map ielt, *nielt;
787 struct name_to_copy_elt elt, *nelt;
788 void **slot, **dslot;
790 if (TREE_CODE (name) != SSA_NAME)
791 return name;
793 idx = SSA_NAME_VERSION (name);
794 elt.version = idx;
795 slot = htab_find_slot_with_hash (name_copies, &elt, idx,
796 copy_name_p ? INSERT : NO_INSERT);
797 if (slot && *slot)
798 return ((struct name_to_copy_elt *) *slot)->new_name;
800 var = SSA_NAME_VAR (name);
801 uid = DECL_UID (var);
802 ielt.uid = uid;
803 dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
804 if (!*dslot)
806 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
807 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
808 add_referenced_var (var_copy);
809 nielt = XNEW (struct int_tree_map);
810 nielt->uid = uid;
811 nielt->to = var_copy;
812 *dslot = nielt;
814 /* Ensure that when we meet this decl next time, we won't duplicate
815 it again. */
816 nuid = DECL_UID (var_copy);
817 ielt.uid = nuid;
818 dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
819 gcc_assert (!*dslot);
820 nielt = XNEW (struct int_tree_map);
821 nielt->uid = nuid;
822 nielt->to = var_copy;
823 *dslot = nielt;
825 else
826 var_copy = ((struct int_tree_map *) *dslot)->to;
828 if (copy_name_p)
830 copy = duplicate_ssa_name (name, NULL);
831 nelt = XNEW (struct name_to_copy_elt);
832 nelt->version = idx;
833 nelt->new_name = copy;
834 nelt->field = NULL_TREE;
835 *slot = nelt;
837 else
839 gcc_assert (!slot);
840 copy = name;
843 SSA_NAME_VAR (copy) = var_copy;
844 return copy;
847 /* Finds the ssa names used in STMT that are defined outside the
848 region between ENTRY and EXIT and replaces such ssa names with
849 their duplicates. The duplicates are stored to NAME_COPIES. Base
850 decls of all ssa names used in STMT (including those defined in
851 LOOP) are replaced with the new temporary variables; the
852 replacement decls are stored in DECL_COPIES. */
854 static void
855 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
856 htab_t name_copies, htab_t decl_copies)
858 use_operand_p use;
859 def_operand_p def;
860 ssa_op_iter oi;
861 tree name, copy;
862 bool copy_name_p;
864 mark_virtual_ops_for_renaming (stmt);
866 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
868 name = DEF_FROM_PTR (def);
869 gcc_assert (TREE_CODE (name) == SSA_NAME);
870 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
871 false);
872 gcc_assert (copy == name);
875 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
877 name = USE_FROM_PTR (use);
878 if (TREE_CODE (name) != SSA_NAME)
879 continue;
881 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
882 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
883 copy_name_p);
884 SET_USE (use, copy);
888 /* Finds the ssa names used in STMT that are defined outside the
889 region between ENTRY and EXIT and replaces such ssa names with
890 their duplicates. The duplicates are stored to NAME_COPIES. Base
891 decls of all ssa names used in STMT (including those defined in
892 LOOP) are replaced with the new temporary variables; the
893 replacement decls are stored in DECL_COPIES. */
895 static bool
896 separate_decls_in_region_debug (gimple stmt, htab_t name_copies,
897 htab_t decl_copies)
899 use_operand_p use;
900 ssa_op_iter oi;
901 tree var, name;
902 struct int_tree_map ielt;
903 struct name_to_copy_elt elt;
904 void **slot, **dslot;
906 if (gimple_debug_bind_p (stmt))
907 var = gimple_debug_bind_get_var (stmt);
908 else if (gimple_debug_source_bind_p (stmt))
909 var = gimple_debug_source_bind_get_var (stmt);
910 else
911 return true;
912 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
913 return true;
914 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
915 ielt.uid = DECL_UID (var);
916 dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
917 if (!dslot)
918 return true;
919 if (gimple_debug_bind_p (stmt))
920 gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
921 else if (gimple_debug_source_bind_p (stmt))
922 gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
924 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
926 name = USE_FROM_PTR (use);
927 if (TREE_CODE (name) != SSA_NAME)
928 continue;
930 elt.version = SSA_NAME_VERSION (name);
931 slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
932 if (!slot)
934 gimple_debug_bind_reset_value (stmt);
935 update_stmt (stmt);
936 break;
939 SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
942 return false;
945 /* Callback for htab_traverse. Adds a field corresponding to the reduction
946 specified in SLOT. The type is passed in DATA. */
948 static int
949 add_field_for_reduction (void **slot, void *data)
952 struct reduction_info *const red = (struct reduction_info *) *slot;
953 tree const type = (tree) data;
954 tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
955 tree field = build_decl (gimple_location (red->reduc_stmt),
956 FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
958 insert_field_into_struct (type, field);
960 red->field = field;
962 return 1;
965 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
966 described in SLOT. The type is passed in DATA. */
968 static int
969 add_field_for_name (void **slot, void *data)
971 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
972 tree type = (tree) data;
973 tree name = ssa_name (elt->version);
974 tree var = SSA_NAME_VAR (name);
975 tree field = build_decl (DECL_SOURCE_LOCATION (var),
976 FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
978 insert_field_into_struct (type, field);
979 elt->field = field;
981 return 1;
984 /* Callback for htab_traverse. A local result is the intermediate result
985 computed by a single
986 thread, or the initial value in case no iteration was executed.
987 This function creates a phi node reflecting these values.
988 The phi's result will be stored in NEW_PHI field of the
989 reduction's data structure. */
991 static int
992 create_phi_for_local_result (void **slot, void *data)
994 struct reduction_info *const reduc = (struct reduction_info *) *slot;
995 const struct loop *const loop = (const struct loop *) data;
996 edge e;
997 gimple new_phi;
998 basic_block store_bb;
999 tree local_res;
1000 source_location locus;
1002 /* STORE_BB is the block where the phi
1003 should be stored. It is the destination of the loop exit.
1004 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1005 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1007 /* STORE_BB has two predecessors. One coming from the loop
1008 (the reduction's result is computed at the loop),
1009 and another coming from a block preceding the loop,
1010 when no iterations
1011 are executed (the initial value should be taken). */
1012 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1013 e = EDGE_PRED (store_bb, 1);
1014 else
1015 e = EDGE_PRED (store_bb, 0);
1016 local_res
1017 = make_ssa_name (SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)),
1018 NULL);
1019 locus = gimple_location (reduc->reduc_stmt);
1020 new_phi = create_phi_node (local_res, store_bb);
1021 SSA_NAME_DEF_STMT (local_res) = new_phi;
1022 add_phi_arg (new_phi, reduc->init, e, locus);
1023 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1024 FALLTHRU_EDGE (loop->latch), locus);
1025 reduc->new_phi = new_phi;
1027 return 1;
1030 struct clsn_data
1032 tree store;
1033 tree load;
1035 basic_block store_bb;
1036 basic_block load_bb;
1039 /* Callback for htab_traverse. Create an atomic instruction for the
1040 reduction described in SLOT.
1041 DATA annotates the place in memory the atomic operation relates to,
1042 and the basic block it needs to be generated in. */
1044 static int
1045 create_call_for_reduction_1 (void **slot, void *data)
1047 struct reduction_info *const reduc = (struct reduction_info *) *slot;
1048 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1049 gimple_stmt_iterator gsi;
1050 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1051 tree load_struct;
1052 basic_block bb;
1053 basic_block new_bb;
1054 edge e;
1055 tree t, addr, ref, x;
1056 tree tmp_load, name;
1057 gimple load;
1059 load_struct = build_simple_mem_ref (clsn_data->load);
1060 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1062 addr = build_addr (t, current_function_decl);
1064 /* Create phi node. */
1065 bb = clsn_data->load_bb;
1067 e = split_block (bb, t);
1068 new_bb = e->dest;
1070 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
1071 add_referenced_var (tmp_load);
1072 tmp_load = make_ssa_name (tmp_load, NULL);
1073 load = gimple_build_omp_atomic_load (tmp_load, addr);
1074 SSA_NAME_DEF_STMT (tmp_load) = load;
1075 gsi = gsi_start_bb (new_bb);
1076 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1078 e = split_block (new_bb, load);
1079 new_bb = e->dest;
1080 gsi = gsi_start_bb (new_bb);
1081 ref = tmp_load;
1082 x = fold_build2 (reduc->reduction_code,
1083 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1084 PHI_RESULT (reduc->new_phi));
1086 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1087 GSI_CONTINUE_LINKING);
1089 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1090 return 1;
1093 /* Create the atomic operation at the join point of the threads.
1094 REDUCTION_LIST describes the reductions in the LOOP.
1095 LD_ST_DATA describes the shared data structure where
1096 shared data is stored in and loaded from. */
1097 static void
1098 create_call_for_reduction (struct loop *loop, htab_t reduction_list,
1099 struct clsn_data *ld_st_data)
1101 htab_traverse (reduction_list, create_phi_for_local_result, loop);
1102 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1103 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1104 htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
1107 /* Callback for htab_traverse. Loads the final reduction value at the
1108 join point of all threads, and inserts it in the right place. */
1110 static int
1111 create_loads_for_reductions (void **slot, void *data)
1113 struct reduction_info *const red = (struct reduction_info *) *slot;
1114 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1115 gimple stmt;
1116 gimple_stmt_iterator gsi;
1117 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1118 tree load_struct;
1119 tree name;
1120 tree x;
1122 gsi = gsi_after_labels (clsn_data->load_bb);
1123 load_struct = build_simple_mem_ref (clsn_data->load);
1124 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1125 NULL_TREE);
1127 x = load_struct;
1128 name = PHI_RESULT (red->keep_res);
1129 stmt = gimple_build_assign (name, x);
1130 SSA_NAME_DEF_STMT (name) = stmt;
1132 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1134 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1135 !gsi_end_p (gsi); gsi_next (&gsi))
1136 if (gsi_stmt (gsi) == red->keep_res)
1138 remove_phi_node (&gsi, false);
1139 return 1;
1141 gcc_unreachable ();
1144 /* Load the reduction result that was stored in LD_ST_DATA.
1145 REDUCTION_LIST describes the list of reductions that the
1146 loads should be generated for. */
1147 static void
1148 create_final_loads_for_reduction (htab_t reduction_list,
1149 struct clsn_data *ld_st_data)
1151 gimple_stmt_iterator gsi;
1152 tree t;
1153 gimple stmt;
1155 gsi = gsi_after_labels (ld_st_data->load_bb);
1156 t = build_fold_addr_expr (ld_st_data->store);
1157 stmt = gimple_build_assign (ld_st_data->load, t);
1159 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1160 SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
1162 htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
1166 /* Callback for htab_traverse. Store the neutral value for the
1167 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1168 1 for MULT_EXPR, etc. into the reduction field.
1169 The reduction is specified in SLOT. The store information is
1170 passed in DATA. */
1172 static int
1173 create_stores_for_reduction (void **slot, void *data)
1175 struct reduction_info *const red = (struct reduction_info *) *slot;
1176 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1177 tree t;
1178 gimple stmt;
1179 gimple_stmt_iterator gsi;
1180 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1182 gsi = gsi_last_bb (clsn_data->store_bb);
1183 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1184 stmt = gimple_build_assign (t, red->initial_value);
1185 mark_virtual_ops_for_renaming (stmt);
1186 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1188 return 1;
1191 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1192 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1193 specified in SLOT. */
1195 static int
1196 create_loads_and_stores_for_name (void **slot, void *data)
1198 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
1199 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1200 tree t;
1201 gimple stmt;
1202 gimple_stmt_iterator gsi;
1203 tree type = TREE_TYPE (elt->new_name);
1204 tree load_struct;
1206 gsi = gsi_last_bb (clsn_data->store_bb);
1207 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1208 stmt = gimple_build_assign (t, ssa_name (elt->version));
1209 mark_virtual_ops_for_renaming (stmt);
1210 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1212 gsi = gsi_last_bb (clsn_data->load_bb);
1213 load_struct = build_simple_mem_ref (clsn_data->load);
1214 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1215 stmt = gimple_build_assign (elt->new_name, t);
1216 SSA_NAME_DEF_STMT (elt->new_name) = stmt;
1217 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1219 return 1;
1222 /* Moves all the variables used in LOOP and defined outside of it (including
1223 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1224 name) to a structure created for this purpose. The code
1226 while (1)
1228 use (a);
1229 use (b);
1232 is transformed this way:
1234 bb0:
1235 old.a = a;
1236 old.b = b;
1238 bb1:
1239 a' = new->a;
1240 b' = new->b;
1241 while (1)
1243 use (a');
1244 use (b');
1247 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1248 pointer `new' is intentionally not initialized (the loop will be split to a
1249 separate function later, and `new' will be initialized from its arguments).
1250 LD_ST_DATA holds information about the shared data structure used to pass
1251 information among the threads. It is initialized here, and
1252 gen_parallel_loop will pass it to create_call_for_reduction that
1253 needs this information. REDUCTION_LIST describes the reductions
1254 in LOOP. */
1256 static void
1257 separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
1258 tree *arg_struct, tree *new_arg_struct,
1259 struct clsn_data *ld_st_data)
1262 basic_block bb1 = split_edge (entry);
1263 basic_block bb0 = single_pred (bb1);
1264 htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
1265 name_to_copy_elt_eq, free);
1266 htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
1267 free);
1268 unsigned i;
1269 tree type, type_name, nvar;
1270 gimple_stmt_iterator gsi;
1271 struct clsn_data clsn_data;
1272 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
1273 basic_block bb;
1274 basic_block entry_bb = bb1;
1275 basic_block exit_bb = exit->dest;
1276 bool has_debug_stmt = false;
1278 entry = single_succ_edge (entry_bb);
1279 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1281 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
1283 if (bb != entry_bb && bb != exit_bb)
1285 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1286 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1287 name_copies, decl_copies);
1289 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1291 gimple stmt = gsi_stmt (gsi);
1293 if (is_gimple_debug (stmt))
1294 has_debug_stmt = true;
1295 else
1296 separate_decls_in_region_stmt (entry, exit, stmt,
1297 name_copies, decl_copies);
1302 /* Now process debug bind stmts. We must not create decls while
1303 processing debug stmts, so we defer their processing so as to
1304 make sure we will have debug info for as many variables as
1305 possible (all of those that were dealt with in the loop above),
1306 and discard those for which we know there's nothing we can
1307 do. */
1308 if (has_debug_stmt)
1309 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
1310 if (bb != entry_bb && bb != exit_bb)
1312 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1314 gimple stmt = gsi_stmt (gsi);
1316 if (is_gimple_debug (stmt))
1318 if (separate_decls_in_region_debug (stmt, name_copies,
1319 decl_copies))
1321 gsi_remove (&gsi, true);
1322 continue;
1326 gsi_next (&gsi);
1330 VEC_free (basic_block, heap, body);
1332 if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
1334 /* It may happen that there is nothing to copy (if there are only
1335 loop carried and external variables in the loop). */
1336 *arg_struct = NULL;
1337 *new_arg_struct = NULL;
1339 else
1341 /* Create the type for the structure to store the ssa names to. */
1342 type = lang_hooks.types.make_type (RECORD_TYPE);
1343 type_name = build_decl (UNKNOWN_LOCATION,
1344 TYPE_DECL, create_tmp_var_name (".paral_data"),
1345 type);
1346 TYPE_NAME (type) = type_name;
1348 htab_traverse (name_copies, add_field_for_name, type);
1349 if (reduction_list && htab_elements (reduction_list) > 0)
1351 /* Create the fields for reductions. */
1352 htab_traverse (reduction_list, add_field_for_reduction,
1353 type);
1355 layout_type (type);
1357 /* Create the loads and stores. */
1358 *arg_struct = create_tmp_var (type, ".paral_data_store");
1359 add_referenced_var (*arg_struct);
1360 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1361 add_referenced_var (nvar);
1362 *new_arg_struct = make_ssa_name (nvar, NULL);
1364 ld_st_data->store = *arg_struct;
1365 ld_st_data->load = *new_arg_struct;
1366 ld_st_data->store_bb = bb0;
1367 ld_st_data->load_bb = bb1;
1369 htab_traverse (name_copies, create_loads_and_stores_for_name,
1370 ld_st_data);
1372 /* Load the calculation from memory (after the join of the threads). */
1374 if (reduction_list && htab_elements (reduction_list) > 0)
1376 htab_traverse (reduction_list, create_stores_for_reduction,
1377 ld_st_data);
1378 clsn_data.load = make_ssa_name (nvar, NULL);
1379 clsn_data.load_bb = exit->dest;
1380 clsn_data.store = ld_st_data->store;
1381 create_final_loads_for_reduction (reduction_list, &clsn_data);
1385 htab_delete (decl_copies);
1386 htab_delete (name_copies);
1389 /* Bitmap containing uids of functions created by parallelization. We cannot
1390 allocate it from the default obstack, as it must live across compilation
1391 of several functions; we make it gc allocated instead. */
1393 static GTY(()) bitmap parallelized_functions;
1395 /* Returns true if FN was created by create_loop_fn. */
1397 static bool
1398 parallelized_function_p (tree fn)
1400 if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1401 return false;
1403 return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1406 /* Creates and returns an empty function that will receive the body of
1407 a parallelized loop. */
1409 static tree
1410 create_loop_fn (location_t loc)
1412 char buf[100];
1413 char *tname;
1414 tree decl, type, name, t;
1415 struct function *act_cfun = cfun;
1416 static unsigned loopfn_num;
1418 loc = LOCATION_LOCUS (loc);
1419 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1420 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1421 clean_symbol_name (tname);
1422 name = get_identifier (tname);
1423 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1425 decl = build_decl (loc, FUNCTION_DECL, name, type);
1426 if (!parallelized_functions)
1427 parallelized_functions = BITMAP_GGC_ALLOC ();
1428 bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1430 TREE_STATIC (decl) = 1;
1431 TREE_USED (decl) = 1;
1432 DECL_ARTIFICIAL (decl) = 1;
1433 DECL_IGNORED_P (decl) = 0;
1434 TREE_PUBLIC (decl) = 0;
1435 DECL_UNINLINABLE (decl) = 1;
1436 DECL_EXTERNAL (decl) = 0;
1437 DECL_CONTEXT (decl) = NULL_TREE;
1438 DECL_INITIAL (decl) = make_node (BLOCK);
1440 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1441 DECL_ARTIFICIAL (t) = 1;
1442 DECL_IGNORED_P (t) = 1;
1443 DECL_RESULT (decl) = t;
1445 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1446 ptr_type_node);
1447 DECL_ARTIFICIAL (t) = 1;
1448 DECL_ARG_TYPE (t) = ptr_type_node;
1449 DECL_CONTEXT (t) = decl;
1450 TREE_USED (t) = 1;
1451 DECL_ARGUMENTS (decl) = t;
1453 allocate_struct_function (decl, false);
1455 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1456 it. */
1457 set_cfun (act_cfun);
1459 return decl;
1462 /* Moves the exit condition of LOOP to the beginning of its header, and
1463 duplicates the part of the last iteration that gets disabled to the
1464 exit of the loop. NIT is the number of iterations of the loop
1465 (used to initialize the variables in the duplicated part).
1467 TODO: the common case is that latch of the loop is empty and immediately
1468 follows the loop exit. In this case, it would be better not to copy the
1469 body of the loop, but only move the entry of the loop directly before the
1470 exit check and increase the number of iterations of the loop by one.
1471 This may need some additional preconditioning in case NIT = ~0.
1472 REDUCTION_LIST describes the reductions in LOOP. */
1474 static void
1475 transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
1477 basic_block *bbs, *nbbs, ex_bb, orig_header;
1478 unsigned n;
1479 bool ok;
1480 edge exit = single_dom_exit (loop), hpred;
1481 tree control, control_name, res, t;
1482 gimple phi, nphi, cond_stmt, stmt, cond_nit;
1483 gimple_stmt_iterator gsi;
1484 tree nit_1;
1485 edge exit_1;
1486 tree new_rhs;
1488 split_block_after_labels (loop->header);
1489 orig_header = single_succ (loop->header);
1490 hpred = single_succ_edge (loop->header);
1492 cond_stmt = last_stmt (exit->src);
1493 control = gimple_cond_lhs (cond_stmt);
1494 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1496 /* Make sure that we have phi nodes on exit for all loop header phis
1497 (create_parallel_loop requires that). */
1498 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1500 phi = gsi_stmt (gsi);
1501 res = PHI_RESULT (phi);
1502 t = make_ssa_name (SSA_NAME_VAR (res), phi);
1503 SET_PHI_RESULT (phi, t);
1504 nphi = create_phi_node (res, orig_header);
1505 SSA_NAME_DEF_STMT (res) = nphi;
1506 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1508 if (res == control)
1510 gimple_cond_set_lhs (cond_stmt, t);
1511 update_stmt (cond_stmt);
1512 control = t;
1516 /* Setting the condition towards peeling the last iteration:
1517 If the block consisting of the exit condition has the latch as
1518 successor, then the body of the loop is executed before
1519 the exit condition is tested. In such case, moving the
1520 condition to the entry, causes that the loop will iterate
1521 one less iteration (which is the wanted outcome, since we
1522 peel out the last iteration). If the body is executed after
1523 the condition, moving the condition to the entry requires
1524 decrementing one iteration. */
1525 exit_1 = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
1526 if (exit_1->dest == loop->latch)
1527 new_rhs = gimple_cond_rhs (cond_stmt);
1528 else
1530 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
1531 gimple_cond_rhs (cond_stmt),
1532 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
1533 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
1535 basic_block preheader;
1536 gimple_stmt_iterator gsi1;
1538 preheader = loop_preheader_edge(loop)->src;
1539 gsi1 = gsi_after_labels (preheader);
1540 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
1541 NULL_TREE,false,GSI_CONTINUE_LINKING);
1544 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
1545 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
1547 bbs = get_loop_body_in_dom_order (loop);
1549 for (n = 0; bbs[n] != loop->latch; n++)
1550 continue;
1551 nbbs = XNEWVEC (basic_block, n);
1552 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1553 bbs + 1, n, nbbs);
1554 gcc_assert (ok);
1555 free (bbs);
1556 ex_bb = nbbs[0];
1557 free (nbbs);
1559 /* Other than reductions, the only gimple reg that should be copied
1560 out of the loop is the control variable. */
1562 control_name = NULL_TREE;
1563 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
1565 phi = gsi_stmt (gsi);
1566 res = PHI_RESULT (phi);
1567 if (!is_gimple_reg (res))
1569 gsi_next (&gsi);
1570 continue;
1573 /* Check if it is a part of reduction. If it is,
1574 keep the phi at the reduction's keep_res field. The
1575 PHI_RESULT of this phi is the resulting value of the reduction
1576 variable when exiting the loop. */
1578 exit = single_dom_exit (loop);
1580 if (htab_elements (reduction_list) > 0)
1582 struct reduction_info *red;
1584 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1585 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1586 if (red)
1588 red->keep_res = phi;
1589 gsi_next (&gsi);
1590 continue;
1593 gcc_assert (control_name == NULL_TREE
1594 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1595 control_name = res;
1596 remove_phi_node (&gsi, false);
1598 gcc_assert (control_name != NULL_TREE);
1600 /* Initialize the control variable to number of iterations
1601 according to the rhs of the exit condition. */
1602 gsi = gsi_after_labels (ex_bb);
1603 cond_nit = last_stmt (exit->src);
1604 nit_1 = gimple_cond_rhs (cond_nit);
1605 nit_1 = force_gimple_operand_gsi (&gsi,
1606 fold_convert (TREE_TYPE (control_name), nit_1),
1607 false, NULL_TREE, false, GSI_SAME_STMT);
1608 stmt = gimple_build_assign (control_name, nit_1);
1609 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1610 SSA_NAME_DEF_STMT (control_name) = stmt;
1613 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1614 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1615 NEW_DATA is the variable that should be initialized from the argument
1616 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1617 basic block containing GIMPLE_OMP_PARALLEL tree. */
1619 static basic_block
1620 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1621 tree new_data, unsigned n_threads, location_t loc)
1623 gimple_stmt_iterator gsi;
1624 basic_block bb, paral_bb, for_bb, ex_bb;
1625 tree t, param;
1626 gimple stmt, for_stmt, phi, cond_stmt;
1627 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1628 edge exit, nexit, guard, end, e;
1630 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1631 bb = loop_preheader_edge (loop)->src;
1632 paral_bb = single_pred (bb);
1633 gsi = gsi_last_bb (paral_bb);
1635 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1636 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1637 = build_int_cst (integer_type_node, n_threads);
1638 stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1639 gimple_set_location (stmt, loc);
1641 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1643 /* Initialize NEW_DATA. */
1644 if (data)
1646 gsi = gsi_after_labels (bb);
1648 param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
1649 stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1650 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1651 SSA_NAME_DEF_STMT (param) = stmt;
1653 stmt = gimple_build_assign (new_data,
1654 fold_convert (TREE_TYPE (new_data), param));
1655 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1656 SSA_NAME_DEF_STMT (new_data) = stmt;
1659 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1660 bb = split_loop_exit_edge (single_dom_exit (loop));
1661 gsi = gsi_last_bb (bb);
1662 stmt = gimple_build_omp_return (false);
1663 gimple_set_location (stmt, loc);
1664 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1666 /* Extract data for GIMPLE_OMP_FOR. */
1667 gcc_assert (loop->header == single_dom_exit (loop)->src);
1668 cond_stmt = last_stmt (loop->header);
1670 cvar = gimple_cond_lhs (cond_stmt);
1671 cvar_base = SSA_NAME_VAR (cvar);
1672 phi = SSA_NAME_DEF_STMT (cvar);
1673 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1674 initvar = make_ssa_name (cvar_base, NULL);
1675 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1676 initvar);
1677 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1679 gsi = gsi_last_nondebug_bb (loop->latch);
1680 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1681 gsi_remove (&gsi, true);
1683 /* Prepare cfg. */
1684 for_bb = split_edge (loop_preheader_edge (loop));
1685 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1686 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1687 gcc_assert (exit == single_dom_exit (loop));
1689 guard = make_edge (for_bb, ex_bb, 0);
1690 single_succ_edge (loop->latch)->flags = 0;
1691 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1692 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1694 source_location locus;
1695 tree def;
1696 phi = gsi_stmt (gsi);
1697 stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
1699 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
1700 locus = gimple_phi_arg_location_from_edge (stmt,
1701 loop_preheader_edge (loop));
1702 add_phi_arg (phi, def, guard, locus);
1704 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
1705 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
1706 add_phi_arg (phi, def, end, locus);
1708 e = redirect_edge_and_branch (exit, nexit->dest);
1709 PENDING_STMT (e) = NULL;
1711 /* Emit GIMPLE_OMP_FOR. */
1712 gimple_cond_set_lhs (cond_stmt, cvar_base);
1713 type = TREE_TYPE (cvar);
1714 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
1715 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1717 for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
1718 gimple_set_location (for_stmt, loc);
1719 gimple_omp_for_set_index (for_stmt, 0, initvar);
1720 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1721 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1722 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1723 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1724 cvar_base,
1725 build_int_cst (type, 1)));
1727 gsi = gsi_last_bb (for_bb);
1728 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1729 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1731 /* Emit GIMPLE_OMP_CONTINUE. */
1732 gsi = gsi_last_bb (loop->latch);
1733 stmt = gimple_build_omp_continue (cvar_next, cvar);
1734 gimple_set_location (stmt, loc);
1735 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1736 SSA_NAME_DEF_STMT (cvar_next) = stmt;
1738 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
1739 gsi = gsi_last_bb (ex_bb);
1740 stmt = gimple_build_omp_return (true);
1741 gimple_set_location (stmt, loc);
1742 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1744 return paral_bb;
1747 /* Generates code to execute the iterations of LOOP in N_THREADS
1748 threads in parallel.
1750 NITER describes number of iterations of LOOP.
1751 REDUCTION_LIST describes the reductions existent in the LOOP. */
1753 static void
1754 gen_parallel_loop (struct loop *loop, htab_t reduction_list,
1755 unsigned n_threads, struct tree_niter_desc *niter)
1757 loop_iterator li;
1758 tree many_iterations_cond, type, nit;
1759 tree arg_struct, new_arg_struct;
1760 gimple_seq stmts;
1761 basic_block parallel_head;
1762 edge entry, exit;
1763 struct clsn_data clsn_data;
1764 unsigned prob;
1765 location_t loc;
1766 gimple cond_stmt;
1768 /* From
1770 ---------------------------------------------------------------------
1771 loop
1773 IV = phi (INIT, IV + STEP)
1774 BODY1;
1775 if (COND)
1776 break;
1777 BODY2;
1779 ---------------------------------------------------------------------
1781 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1782 we generate the following code:
1784 ---------------------------------------------------------------------
1786 if (MAY_BE_ZERO
1787 || NITER < MIN_PER_THREAD * N_THREADS)
1788 goto original;
1790 BODY1;
1791 store all local loop-invariant variables used in body of the loop to DATA.
1792 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1793 load the variables from DATA.
1794 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1795 BODY2;
1796 BODY1;
1797 GIMPLE_OMP_CONTINUE;
1798 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
1799 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
1800 goto end;
1802 original:
1803 loop
1805 IV = phi (INIT, IV + STEP)
1806 BODY1;
1807 if (COND)
1808 break;
1809 BODY2;
1812 end:
1816 /* Create two versions of the loop -- in the old one, we know that the
1817 number of iterations is large enough, and we will transform it into the
1818 loop that will be split to loop_fn, the new one will be used for the
1819 remaining iterations. */
1821 type = TREE_TYPE (niter->niter);
1822 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1823 NULL_TREE);
1824 if (stmts)
1825 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1827 many_iterations_cond =
1828 fold_build2 (GE_EXPR, boolean_type_node,
1829 nit, build_int_cst (type, MIN_PER_THREAD * n_threads));
1830 many_iterations_cond
1831 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1832 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1833 many_iterations_cond);
1834 many_iterations_cond
1835 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1836 if (stmts)
1837 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1838 if (!is_gimple_condexpr (many_iterations_cond))
1840 many_iterations_cond
1841 = force_gimple_operand (many_iterations_cond, &stmts,
1842 true, NULL_TREE);
1843 if (stmts)
1844 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1847 initialize_original_copy_tables ();
1849 /* We assume that the loop usually iterates a lot. */
1850 prob = 4 * REG_BR_PROB_BASE / 5;
1851 loop_version (loop, many_iterations_cond, NULL,
1852 prob, prob, REG_BR_PROB_BASE - prob, true);
1853 update_ssa (TODO_update_ssa);
1854 free_original_copy_tables ();
1856 /* Base all the induction variables in LOOP on a single control one. */
1857 canonicalize_loop_ivs (loop, &nit, true);
1859 /* Ensure that the exit condition is the first statement in the loop. */
1860 transform_to_exit_first_loop (loop, reduction_list, nit);
1862 /* Generate initializations for reductions. */
1863 if (htab_elements (reduction_list) > 0)
1864 htab_traverse (reduction_list, initialize_reductions, loop);
1866 /* Eliminate the references to local variables from the loop. */
1867 gcc_assert (single_exit (loop));
1868 entry = loop_preheader_edge (loop);
1869 exit = single_dom_exit (loop);
1871 eliminate_local_variables (entry, exit);
1872 /* In the old loop, move all variables non-local to the loop to a structure
1873 and back, and create separate decls for the variables used in loop. */
1874 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1875 &new_arg_struct, &clsn_data);
1877 /* Create the parallel constructs. */
1878 loc = UNKNOWN_LOCATION;
1879 cond_stmt = last_stmt (loop->header);
1880 if (cond_stmt)
1881 loc = gimple_location (cond_stmt);
1882 parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
1883 new_arg_struct, n_threads, loc);
1884 if (htab_elements (reduction_list) > 0)
1885 create_call_for_reduction (loop, reduction_list, &clsn_data);
1887 scev_reset ();
1889 /* Cancel the loop (it is simpler to do it here rather than to teach the
1890 expander to do it). */
1891 cancel_loop_tree (loop);
1893 /* Free loop bound estimations that could contain references to
1894 removed statements. */
1895 FOR_EACH_LOOP (li, loop, 0)
1896 free_numbers_of_iterations_estimates_loop (loop);
1898 /* Expand the parallel constructs. We do it directly here instead of running
1899 a separate expand_omp pass, since it is more efficient, and less likely to
1900 cause troubles with further analyses not being able to deal with the
1901 OMP trees. */
1903 omp_expand_local (parallel_head);
1906 /* Returns true when LOOP contains vector phi nodes. */
1908 static bool
1909 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1911 unsigned i;
1912 basic_block *bbs = get_loop_body_in_dom_order (loop);
1913 gimple_stmt_iterator gsi;
1914 bool res = true;
1916 for (i = 0; i < loop->num_nodes; i++)
1917 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1918 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
1919 goto end;
1921 res = false;
1922 end:
1923 free (bbs);
1924 return res;
1927 /* Create a reduction_info struct, initialize it with REDUC_STMT
1928 and PHI, insert it to the REDUCTION_LIST. */
1930 static void
1931 build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
1933 PTR *slot;
1934 struct reduction_info *new_reduction;
1936 gcc_assert (reduc_stmt);
1938 if (dump_file && (dump_flags & TDF_DETAILS))
1940 fprintf (dump_file,
1941 "Detected reduction. reduction stmt is: \n");
1942 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
1943 fprintf (dump_file, "\n");
1946 new_reduction = XCNEW (struct reduction_info);
1948 new_reduction->reduc_stmt = reduc_stmt;
1949 new_reduction->reduc_phi = phi;
1950 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
1951 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
1952 slot = htab_find_slot (reduction_list, new_reduction, INSERT);
1953 *slot = new_reduction;
1956 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
1958 static int
1959 set_reduc_phi_uids (void **slot, void *data ATTRIBUTE_UNUSED)
1961 struct reduction_info *const red = (struct reduction_info *) *slot;
1962 gimple_set_uid (red->reduc_phi, red->reduc_version);
1963 return 1;
1966 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
1968 static void
1969 gather_scalar_reductions (loop_p loop, htab_t reduction_list)
1971 gimple_stmt_iterator gsi;
1972 loop_vec_info simple_loop_info;
1974 vect_dump = NULL;
1975 simple_loop_info = vect_analyze_loop_form (loop);
1977 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1979 gimple phi = gsi_stmt (gsi);
1980 affine_iv iv;
1981 tree res = PHI_RESULT (phi);
1982 bool double_reduc;
1984 if (!is_gimple_reg (res))
1985 continue;
1987 if (!simple_iv (loop, loop, res, &iv, true)
1988 && simple_loop_info)
1990 gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
1991 phi, true,
1992 &double_reduc);
1993 if (reduc_stmt && !double_reduc)
1994 build_new_reduction (reduction_list, reduc_stmt, phi);
1997 destroy_loop_vec_info (simple_loop_info, true);
1999 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2000 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2001 only now. */
2002 htab_traverse (reduction_list, set_reduc_phi_uids, NULL);
2005 /* Try to initialize NITER for code generation part. */
2007 static bool
2008 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2010 edge exit = single_dom_exit (loop);
2012 gcc_assert (exit);
2014 /* We need to know # of iterations, and there should be no uses of values
2015 defined inside loop outside of it, unless the values are invariants of
2016 the loop. */
2017 if (!number_of_iterations_exit (loop, exit, niter, false))
2019 if (dump_file && (dump_flags & TDF_DETAILS))
2020 fprintf (dump_file, " FAILED: number of iterations not known\n");
2021 return false;
2024 return true;
2027 /* Try to initialize REDUCTION_LIST for code generation part.
2028 REDUCTION_LIST describes the reductions. */
2030 static bool
2031 try_create_reduction_list (loop_p loop, htab_t reduction_list)
2033 edge exit = single_dom_exit (loop);
2034 gimple_stmt_iterator gsi;
2036 gcc_assert (exit);
2038 gather_scalar_reductions (loop, reduction_list);
2041 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2043 gimple phi = gsi_stmt (gsi);
2044 struct reduction_info *red;
2045 imm_use_iterator imm_iter;
2046 use_operand_p use_p;
2047 gimple reduc_phi;
2048 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2050 if (is_gimple_reg (val))
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2054 fprintf (dump_file, "phi is ");
2055 print_gimple_stmt (dump_file, phi, 0, 0);
2056 fprintf (dump_file, "arg of phi to exit: value ");
2057 print_generic_expr (dump_file, val, 0);
2058 fprintf (dump_file, " used outside loop\n");
2059 fprintf (dump_file,
2060 " checking if it a part of reduction pattern: \n");
2062 if (htab_elements (reduction_list) == 0)
2064 if (dump_file && (dump_flags & TDF_DETAILS))
2065 fprintf (dump_file,
2066 " FAILED: it is not a part of reduction.\n");
2067 return false;
2069 reduc_phi = NULL;
2070 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2072 if (!gimple_debug_bind_p (USE_STMT (use_p))
2073 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2075 reduc_phi = USE_STMT (use_p);
2076 break;
2079 red = reduction_phi (reduction_list, reduc_phi);
2080 if (red == NULL)
2082 if (dump_file && (dump_flags & TDF_DETAILS))
2083 fprintf (dump_file,
2084 " FAILED: it is not a part of reduction.\n");
2085 return false;
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2089 fprintf (dump_file, "reduction phi is ");
2090 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2091 fprintf (dump_file, "reduction stmt is ");
2092 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2097 /* The iterations of the loop may communicate only through bivs whose
2098 iteration space can be distributed efficiently. */
2099 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2101 gimple phi = gsi_stmt (gsi);
2102 tree def = PHI_RESULT (phi);
2103 affine_iv iv;
2105 if (is_gimple_reg (def) && !simple_iv (loop, loop, def, &iv, true))
2107 struct reduction_info *red;
2109 red = reduction_phi (reduction_list, phi);
2110 if (red == NULL)
2112 if (dump_file && (dump_flags & TDF_DETAILS))
2113 fprintf (dump_file,
2114 " FAILED: scalar dependency between iterations\n");
2115 return false;
2121 return true;
2124 /* Detect parallel loops and generate parallel code using libgomp
2125 primitives. Returns true if some loop was parallelized, false
2126 otherwise. */
2128 bool
2129 parallelize_loops (void)
2131 unsigned n_threads = flag_tree_parallelize_loops;
2132 bool changed = false;
2133 struct loop *loop;
2134 struct tree_niter_desc niter_desc;
2135 loop_iterator li;
2136 htab_t reduction_list;
2137 struct obstack parloop_obstack;
2138 HOST_WIDE_INT estimated;
2139 LOC loop_loc;
2141 /* Do not parallelize loops in the functions created by parallelization. */
2142 if (parallelized_function_p (cfun->decl))
2143 return false;
2144 if (cfun->has_nonlocal_label)
2145 return false;
2147 gcc_obstack_init (&parloop_obstack);
2148 reduction_list = htab_create (10, reduction_info_hash,
2149 reduction_info_eq, free);
2150 init_stmt_vec_info_vec ();
2152 FOR_EACH_LOOP (li, loop, 0)
2154 htab_empty (reduction_list);
2155 if (dump_file && (dump_flags & TDF_DETAILS))
2157 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2158 if (loop->inner)
2159 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2160 else
2161 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2164 /* If we use autopar in graphite pass, we use its marked dependency
2165 checking results. */
2166 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2168 if (dump_file && (dump_flags & TDF_DETAILS))
2169 fprintf (dump_file, "loop is not parallel according to graphite\n");
2170 continue;
2173 if (!single_dom_exit (loop))
2176 if (dump_file && (dump_flags & TDF_DETAILS))
2177 fprintf (dump_file, "loop is !single_dom_exit\n");
2179 continue;
2182 if (/* And of course, the loop must be parallelizable. */
2183 !can_duplicate_loop_p (loop)
2184 || loop_has_blocks_with_irreducible_flag (loop)
2185 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2186 /* FIXME: the check for vector phi nodes could be removed. */
2187 || loop_has_vector_phi_nodes (loop)
2188 /* FIXME: transform_to_exit_first_loop does not handle not
2189 header-copied loops correctly - see PR46886. */
2190 || !do_while_loop_p (loop))
2191 continue;
2192 estimated = max_stmt_executions_int (loop, false);
2193 /* FIXME: Bypass this check as graphite doesn't update the
2194 count and frequency correctly now. */
2195 if (!flag_loop_parallelize_all
2196 && ((estimated !=-1
2197 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2198 /* Do not bother with loops in cold areas. */
2199 || optimize_loop_nest_for_size_p (loop)))
2200 continue;
2202 if (!try_get_loop_niter (loop, &niter_desc))
2203 continue;
2205 if (!try_create_reduction_list (loop, reduction_list))
2206 continue;
2208 if (!flag_loop_parallelize_all
2209 && !loop_parallel_p (loop, &parloop_obstack))
2210 continue;
2212 changed = true;
2213 if (dump_file && (dump_flags & TDF_DETAILS))
2215 if (loop->inner)
2216 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2217 else
2218 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2219 loop_loc = find_loop_location (loop);
2220 if (loop_loc != UNKNOWN_LOC)
2221 fprintf (dump_file, "\nloop at %s:%d: ",
2222 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
2224 gen_parallel_loop (loop, reduction_list,
2225 n_threads, &niter_desc);
2226 verify_flow_info ();
2227 verify_dominators (CDI_DOMINATORS);
2228 verify_loop_structure ();
2229 verify_loop_closed_ssa (true);
2232 free_stmt_vec_info_vec ();
2233 htab_delete (reduction_list);
2234 obstack_free (&parloop_obstack, NULL);
2236 /* Parallelization will cause new function calls to be inserted through
2237 which local variables will escape. Reset the points-to solution
2238 for ESCAPED. */
2239 if (changed)
2240 pt_solution_reset (&cfun->gimple_df->escaped);
2242 return changed;
2245 #include "gt-tree-parloops.h"